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If you have an apple and I have an apple and we exchange
apples, then you and I will still each have one apple. But
if you have an idea and I have an idea and we exchange
these ideas, then each of us will have two ideas.

George Bernard Shaw
(attributed)



Abstract

We answer questions in extremal combinatorics, for directed graphs. Specifically,
we investigate which large tree-like directed graphs are contained in all dense
directed graphs of large order. More precisely, let T be an oriented tree of order n;
among others, we establish the following results.

(1) We obtain a sufficient condition which ensures every tournament of order n
contains T , and show that almost every tree possesses this property.

(2) We prove that for all positive C, ε and sufficiently large n, every tournament
of order (1 + ε)n contains T if ∆(T ) ≤ (log n)C .

(3) We prove that for all positive ∆, ε and sufficiently large n, every di-
rected graph G of order n and minimum semidegree (1/2 + ε)n contains T
if ∆(T ) ≤ ∆.

(4) We obtain a sufficient condition which ensures that every directed graph G
of order n with minimum semidegree at least (1/2 + ε)n contains T , and
show that almost every tree possesses this property.

(5) We extend our method in (4) to a class of tree-like spanning graphs which
includes all orientations of Hamilton cycles and large subdivisions of any
graph.

Result (1) confirms a conjecture of Bender and Wormald and settles a con-
jecture of Havet and Thomassé for almost every tree; (2) strengthens a result of
Kühn, Mycroft and Osthus; (3) is a directed graph analogue of a classical result of
Komlós, Sárközy and Szemerédi and is implied by (4); and (5) is of independent
interest.
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1 Introduction

In this thesis we study various conditions which ensure that certain (dense)
directed graphs contain spanning copies of many (non-isomorphic) oriented trees.
One of the most basic assertions in graph theory is that a graph G is connected
if and only if it contains a spanning tree T . It is also simple to show that every
graph G contains every tree of order δ(G)+1, but the same is not true if the edges
of G and T are given orientations (see Figure 1.1). To ‘recover’ the result, we
may replace minimum degree δ(G) by minimum semidegree, where the minimum
semidegree δ0(G) of a digraph G is the minimum of all the in- and outdegrees of
the vertices in G.

In the next subsections we introduce some problems of the same flavour, which
arise from well known and studied properties of graphs when orientations are
given to the edges. We also state there our main results. In Chapter 2 we state
(sometimes with proof) auxiliary results, define concepts and introduce notation
which is used in the proofs of our main results in Chapters 3, 4 and 5, as well
as in the next section. Finally, in Chapter 6, we describe a few open problems
and directions for further research. The results in this thesis are joint work with
Richard Mycroft [66, 67].

1.1 Unavoidable trees

An oriented graph H on n vertices is unavoidableunavoidable if every tournament on n

vertices contains a copy of H; otherwise, we say that H is avoidableavoidable (see figures 1.1
and 1.2). In particular, if H contains a directed cycle then H must be avoidable,
since a transitive tournament contains no directed cycles and hence no copy of H.
It is therefore natural to ask which oriented trees are unavoidable. A classical

Figure 1.1: Two trees and a tournament (on the right) which avoids them.

1
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Figure 1.2: An unavoidable tree in all 12 nonisomorphic tournaments of order 5.

result of Rédei [68] states that every directed path is unavoidable (a directed
path is a path •→•→ · · ·→• whose edges are all oriented towards the same leaf).
Over 50 years later, Thomason [79] showed that every orientation of a cycle of
order at least 2128 is unavoidable, except for those which yield directed cycles (see
Figure 1.3). In particular this implies that all orientations of paths with order at
least 2128 are unavoidable. Havet and Thomassé [41] then gave a complete answer
for paths: with three exceptions, every orientation of a path is unavoidable (the
exceptions are antidirected paths of order 3, 5 and 7, which are not contained
in the directed cycle of length 3, the regular 5-vertex tournament and the Paley
tournament on 7 vertices respectively). Significant attention has also been focused
on the unavoidability of claws (a claw is an oriented graph formed by identifying
the initial vertices of a collection of vertex-disjoint directed paths). Indeed Saks
and Sós [70] conjectured that every claw on n vertices with maximum degree at
most n/2 is unavoidable. Lu [60, 59] gave a counterexample to this conjecture, but
in the other direction showed that every claw with maximum degree at most 3n/8
is unavoidable. Lu, Wang and Wong [62] then extended these results by showing
that every claw with maximum degree at most 19n/50 is unavoidable, but that
there exist claws with maximum degree approaching 11n/23 which are avoidable.
Finding the supremum of all c > 0 for which every claw with maximum degree at
most cn is unavoidable remains an open problem.

Some oriented trees are far from being unavoidable. For example, the out-
directed star S on n vertices (whose edges are oriented from the central vertex
to each of the n− 1 leaves) is not contained in a regular tournament on 2n− 3
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Figure 1.3: In a directed path (left) all edges are oriented consistently, ‘towards’
the same leaf; in an anti-directed path (centre) the orientation of the edges
alternates; finally, in a directed cycle (right) the removal of any edge yields a
directed path.

vertices, since each vertex of the latter has only n − 2 outneighbours. That is,
there exist tournaments with almost twice as many vertices as S which do not
contain a copy of S. On the other hand, Bender and Wormald [8] proved that
almost all oriented trees are ‘almost unavoidable’, in the sense that they are
contained in almost all tournaments on the same number of vertices.

Theorem1.1. [8, Theorem 4.4] Let Tn denote the set of all labelled oriented trees
on n vertices. Then there is a subset T ′n ⊆ Tn of size (1− o(1))|Tn| such that a
uniformly-random labelled tournament on n vertices asymptotically almost surely
contains every tree in T ′n.

In particular, it follows that if T is chosen uniformly at random from the set
of all labelled oriented trees on n vertices, and G is chosen uniformly at random
from the set of all labelled tournaments on n vertices, then asymptotically almost
surely G contains a copy of T . In the same paper Bender and Wormald conjectured
that this holds for every tournament G, or, in other words, that almost all labelled
oriented trees are unavoidable. The main result of Chapter 3 is to prove this
conjecture.

Theorem1.2. Let T be chosen uniformly at random from the set of all labelled
oriented trees on n vertices. Then asymptotically almost surely T is unavoidable.

The following definitions are crucial for the proof of Theorem 1.2. We say
that a subtree T ′ of a tree T is pendantpendant if T − T ′ is connected. Next, we define
‘nice’ oriented trees, whose properties are useful for embedding in tournaments,
as follows (see Figure 1.4).
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···

···

···

···

···

···

A1 A2 As B1 B2 Bs

· · · · · ·

Figure 1.4: An α-nice tree T has s = dαne pendant stars A1, . . . As which contain
an out-leaf of T such that the edge between T − Ai and Ai is directed away
from Ai, and also s pendant stars B1, . . . , Bs which contain both an in-leaf of
T and an out-leaf of T such that the edge between T − Bi and Bi is directed
towards Bi. In this illustration we only indicate the orientations of edges specified
by this definition. The shaded area is the subtree T − ⋃i∈[s]

(
V (Ai) ∪ V (Bi)

)
.

Definition 1.3 (α-nice). For α > 0 we say that an oriented tree T on n vertices
isα-nice α-nice if, writing s := dαne, T contains 2s vertex-disjoint pendant oriented
stars A1, . . . , As and B1, . . . , Bs such that for each i ∈ [s]

(i) Ai is a subtree of T which contains an out-leaf of T and the edge between Ai
and T − Ai is oriented away from Ai, and

(ii) Bi is a subtree of T which contains both an in-leaf of T and an out-leaf
of T and the edge between Bi and T −Bi is oriented towards Bi.

We note that the asymmetry in the definition above is a product of our proof;
a similar definition (with the directions of the edges reversed) would also work.

Most of the work involved in proving Theorem 1.2 is in the proof of the
following theorem, which states that large nice oriented trees with polylogarithmic
maximum degree are unavoidable.

Theorem 1.4. For every α,C > 0 there exists n0 such that if T is an oriented
tree on n ≥ n0 vertices such that

(i) ∆(T ) ≤ (log n)C and

(ii) T is α-nice,

then T is unavoidable.

Almost all labelled trees satisfy condition (i) of Theorem 1.4, as proved by
Moon.
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Theorem1.5. [65, Corollaries 1 and 2] For every ε > 0, if T is chosen uniformly
at random from the set of all labelled trees on n vertices, then asymptotically
almost surely

(1− ε) log n
log log n ≤ ∆(T ) ≤ (1 + ε) log n

log log n.

Since a uniformly-random orientation of a uniformly-random labelled tree
yields a uniformly-random labelled oriented tree, Theorem 1.5 remains valid if we
replace ‘labelled tree’ by ‘labelled oriented tree’. We prove that almost all labelled
oriented trees satisfy condition (ii) of Theorem 1.4.

Theorem1.6. Let T be chosen uniformly at random from the set of all labelled
oriented trees on n vertices. Then asymptotically almost surely T is 1

250 -nice.

Combining Theorems 1.4, 1.5 and 1.6 (with C = ε = 1 and α = 1
250) immedi-

ately proves Theorem 1.2.
Another natural question is to find, for a given oriented tree T , the smallest

integer t(T )t(T ) such that every tournament on t(T ) vertices contains a copy of T . In
particular, T is unavoidable if and only if t(T ) = |T |, where |T | denotes the order
of T . Sumner conjectured the following.

Conjecture 1.7. [83] If T is an oriented tree, then t(T ) ≤ 2|T | − 2.

The example of an outdirected star described above demonstrates that this
bound would be best possible. Kühn, Mycroft and Osthus [52, 51] used a
randomised embedding algorithm to prove that Conjecture 1.7 holds for sufficiently
large n; previous upper bounds on t(T ) had been established by Chung [19],
Wormald [83], Häggkvist and Thomason [35], Havet [39], Havet and Thomassé [40]
and El Sahili [29]. In particular, El Sahili proved that t(T ) ≤ 3n − 3 for every
oriented tree T on n vertices, and this remains the best known upper bound
on t(T ) for small n.

Alas, despite significant advances, it still not clear what parameter governs
the ‘embeddability’ of an oriented tree. Havet and Thomassé [39] proposed
investigating the parameter h(`)h(`), defined as the smallest integer such that every
tournament of order n+h(`) contains every tree of order n which contains precisely
` leaves. Häggkvist and Thomason [35] have shown that h(`) ≤ 2512`3 . This was
subsequently improved to h(`) ≤ 3

2(`2 − 3`) + 5 by Havet [39], who jointly with
Thomassé proposed the following conjecture.

Conjecture 1.8. If ` is an integer and ` ≥ 2, then h(`) ≤ `− 1.
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Conjecture 1.8 is known to hold for paths and it is not difficult to show that
it holds for stars as well. We provide some support for this conjecture. Since
every tree has at least 2 leaves, it follows that every unavoidable tree satisfies
Havet and Thomassé’s conjecture. Therefore, by Theorem 1.2, Conjecture 1.8 is
correct for almost every tree.

Kühn, Mycroft and Osthus [51] also gave a stronger bound for t(T ) when T is
a large oriented tree of bounded maximum degree. More precisely, they proved
that for every α,∆ > 0, if n is sufficiently large then every oriented tree T on n
vertices with ∆(T ) ≤ ∆ has t(T ) ≤ (1 + α)n. In other words, bounded degree
oriented trees are close to being unavoidable, in that they are contained in every
tournament of slightly larger order.

Our proof of Theorem 1.4 makes use of the aforementioned random embedding
algorithm of Kühn, Mycroft and Osthus, using somewhat sharper estimates on
certain quantities associated with the random embedding. In particular, using
these stronger estimates we are able to establish the same bound on t(T ) for
oriented trees whose maximum degree is at most polylogarithmic in n (rather
than bounded by a constant as above). This is the following theorem, which we
use repeatedly in the proof of Theorem 1.4, and which is of independent interest.

Theorem 1.9. For every α,C > 0 there exists n0 such that if T is an oriented
tree on n ≥ n0 vertices with ∆(T ) ≤ (log n)C and G is a tournament on at
least (1 + α)n vertices, then G contains a copy of T .

Observe that, under the assumption that Theorem 1.4 holds, we can deduce
Theorem 1.9 immediately by appending a linear number of pendant stars to T .
However, since Theorem 1.9 plays a crucial role in the proof of Theorem 1.4, we
cannot use this deduction.

We prove Theorems 1.2, 1.4, 1.6 and 1.9 in Chapter 3.

1.2 Spanning trees via high semidegree

We now turn away from tournaments and consider other dense digraphs. (All
digraphs we consider are simple, see Figure 1.5.) There are many actively re-
searched questions for digraphs with given minimum degree (for many distinct
notions of degree). Before describing our main results, we mention a few of these.

A well-known open problem is whether the absence of short directed cycles
forces a digraph to have small outdegrees; this is the following conjecture, raised
40 years ago by Caccetta and Häggkvist.
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Conjecture 1.10. [17] Every simple digraph of order n with minimum outdegree
at least r has a cycle with length at most dn/re.

Caccetta and Häggkvist [17] have settled the case r = 2; it has also been
confirmed for r = 3 by Hamidoune [37], for r ∈ {4, 5} by Hoáng and Reed [42]
and for r ≤

√
n/2 by Shen [73]; many other related results have been obtained

(see, e.g., [7, 75]).
Rather than forcing a ‘single’ subgraph (such as a cycle), one can also ask

for many disjoint copies of some fixed digraph. Indeed, significant attention has
been given to the question of whether high (semi)degrees guarantee the existence
of a perfect tiling. More precisely, an H-tilingH-tiling of a graph G is a collection of
vertex-disjoint copies of H in G; an H-tiling of G is perfect tilingperfect if it covers all vertices
in G. We highlight three results in the area. Yuster [46] has shown that for every
positive ε, h and every transitive tournament T , if H is the digraph obtained
from T by replacing each vertex with an independent set of size h ≥ 1, then
there exists N = N(ε, h, T ) and c = c(T ) > 0 such that if G is a graph of
order n ≥ N and minimum degree cn, then every orientation of G admits an
H-tiling covering all but at most εn vertices of G. Cuckler [22] and Yuster [84]
asked whether every regular tournament of order n ≡ 3 mod 6 must contain a
perfect directed triangle tiling (a directed triangle is a directed cycle of order 3);
Keevash and Sudakov [47] have shown that every large oriented graph G of order n
with minimum semidegree at least (1/2− o(1))n admits a directed triangle tiling
which covers all but at most 3 vertices of G; the question was finally settled by
Li and Molla [58]. In a similar vein, Czygrinow, Kierstead and Molla [24] have
shown that every digraph G with order n, where n = ks, and minimum total
degree minv∈G deg−(v) + deg+(v) at least 2k(s− 1)− 1 contains k vertex-disjoint
transitive tournaments of order s (this is a generalisation, for digraphs, of a result
of Hajnal and Szemerédi [36]). The number of results and conjectures in the area
is large (see, e.g., [7, 23, 48, 54, 80, 81]), and the above are a small sample.

Let F be a family of trees of order n (for instance, the set of all oriented
paths of order n). We investigate the following question: what is the smallest

Figure 1.5: simple digraphSimple digraphs contain no loops (left) or parallel arcs (centre); besides
those, oriented graphs also do not contain 2-cycles (right).
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integer δn,F such that every digraph G of order n with semidegree δ0(G) ≥ δn,F

contains every tree in F? Note that if δ0(G) = dn/2e − 1 then G may not even
be connected (see Figure 1.6), so δn,F ≥ n/2 whenever F is not empty. On the
other hand, Ghouila-Houri [43] proved that if δ0(G) ≥ n/2, then G contains a
directed Hamilton cycle (i.e., a consistently oriented spanning cycle), and thus
contains a spanning directed path. This has been extended recently by DeBiasio,
Kühn, Molla, Osthus and Taylor [25], who proved that if δ0(G) ≥ n/2 (and n

is sufficiently large) then G contains every possible orientation of a Hamilton
cycle, except perhaps for the antidirected one; the threshold for existence of
antidirected Hamilton cycles is δ0(G) ≥ n/2 + 1 (again, for sufficiently large n)
and was established by DeBiasio and Molla [26] (see Figure 1.7).

The results described above are sharp in the sense that the value of δn,F is
determined precisely (see Figures 1.6 and 1.7). Hence if G has semidegree at
least n/2 then G contains every orientation of a Hamilton path (this can be shown
by changing the orientation of at most one edge in a Hamilton cycle of G to yield
the desired Hamilton path), and as noted above this bound is best possible. To
the best of our knowledge, not much else is known about spanning trees of general
digraphs G with given semidegree if no other conditions are imposed on G. For
instance, more is known about the presence of Hamilton cycles in G if G is an
oriented graph [48] or if G is strongly connected [56].

The situation in the graph setting is quite different (see, e.g.: [53, 55]). For
instance, a classical theorem by Komlós, Sárközy and Szemerédi [49] states that
if δ(G) ≥

(
1/2 + o(1)

)
n then G contains every tree with bounded degree.

Theorem 1.11. [49] For every positive integer ∆, every real 0 < α < 1/2 and
sufficiently large integer n, every graph of order n and minimum degree at least(

1
2 + α

)
n contains every spanning tree T with maximum degree at most ∆.

Kk Kk Kk Kk

Figure 1.6: Digraphs with order n, and semidegree dn/2e−1 which do not contain
any orientation of a Hamilton cycle. In the figure, Kk denotes a digraph of order k
where each pair of vertices is connected by two edges, one in each direction.
Left: two disjoint copies of Kk, so n = 2k. Right: two disjoint copies of Kk and a
vertex connected (in both directions) to each vertex in each copy, so n = 2k + 1.
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We remark the same authors have later improved the result above, replacing
the constant bound ∆ by cn/ log n, where c is some constant depending on α [50].
One of the main results we prove in Chapter 4 is a directed graph analogue of
Theorem 1.11.

Theorem1.12. For all positive real α,C,∆ there exists n0 such that for all n ≥ n0

the following holds. If G is a directed graph of order n and minimum semidegree
at least (1

2 + α)n, then G contains every (spanning) tree of order n such that
∆(T ) ≤ ∆.

We prove Theorem 1.12 by establishing a stronger result. Let Gn,α be the set
of all digraphs G of order n with δ0(G) ≥ (1/2 + α)n. Let C > 0 and T be an
oriented tree of order n, where n is sufficiently large, and suppose that T has
maximum underlying degree ∆(T ) ≤ (log n)C . We describe a sufficient condition
for T to be contained in every G ∈ Gn,α, and use this to prove that almost every
oriented tree of order n is contained in every G ∈ Gn,α. Theorem 1.12 follows
because every (sufficiently large) oriented tree of bounded degree satisfies this
condition.

A path P of a digraph T is barebare if every edge in E(T ) \ E(P ) which contains
a vertex v ∈ P is incident to one of its endvertices.

Kk Kk Kk−1 Kk

Figure 1.7: Two digraphs with order n and semidegree n/2 which do not contain an
antidirected Hamilton cycle, due to Cai [18] (left) and to DeBiasio and Molla [26]
(right). In the figure, Kp denotes a digraph of order p where each pair of vertices
is connected by two edges, one in each direction, and arrowed-lines mean that all
possible edges (in the corresponding direction) are present.
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Theorem 1.13. Suppose that 1/n � 1/C and that 1/n � λ � α. Let G be a
digraph of order n with δ0(G) ≥ (1/2 + α)n, and let T be an oriented tree of
order n such that ∆(T ) ≤ (log n)C . If T contains either

(i) at least λn vertex-disjoint bare paths of order 7; or

(ii) at least λn vertex-disjoint edges incident to leaves,

then G contains a copy of T .

Not every tree satisfies one of the conditions above, as we now show. Let Bn

be a rooted binary tree with n/ log n leaves, where the root has degree 2 and every
other vertex which is not a leaf has degree 3. Then Bn has 2n/ log n− 1 vertices.
Let Tn be the tree we obtain from Bn by appending log n− 2 new leaf vertices to
each leaf vertex of Bn so that Tn has has order n− 1. Note that any bare-path in
Tn is an edge, that ∆(T ) ≤ log n and moreover that T contains at most n/ log n
distinct leaf-edges; this means that for all λ > 0 we can choose n sufficiently large
so that Tn does not satisfy either condition of Theorem 1.13.

Since almost every tree has sublogarithmic maximum degree (by Theorem 1.5)
and almost every tree satisfies (ii) (with λ = 1

250 , by Theorem 1.6) we immediately
conclude the following.

Theorem1.14. Let Tn be the set of all labelled oriented trees of order n. For all
positive α, ε, there exists n0 such that for all n ≥ n0 the following holds. There
exists a family F ⊆ Tn with |F| ≥ (1 − ε)|Tn| such that if G is a digraph of
order n ≥ n0 with δ0(G) ≥ (1/2 + α)n then G contains every tree T ∈ F .

We conclude Chapter 4 by extending these methods to find spanning tree-like
digraphs of bounded degree in all G ∈ Gn,α. Roughly speaking, a digraph H is
tree-like if there exists a small subset S ⊆ V (H) such that H[S] has no edges
and H − S is a forest with at least one ‘large’ component. Examples of tree-like
graphs include every orientation of a Hamilton cycle; indeed, every orientation of
a large subdivision of every graph Q such that each edge has been subdivided a
sufficient number of times.
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Theorem 1.15. Suppose that 1/n � α � C. Let G be a digraph of order n
with δ0(G) ≥ (1/2 + α)n. If Q is a subdivision of a graph Qunder such that

(i) |Qunder| ≤ (log n)C ;

(ii) each edge of Qunder has been subdivided at least log n times; and

(iii) |Q| = n;

then G contains every orientation of Q.

1.3 Trees via chromatic number

The chromatic numberchromatic number χ(G) of a graph G is the smallest integer k such that
the vertices of G can be partitioned into k sets such that no edge of G has both
endvertices in the same set. Throughout this thesis, the chromatic number of a
digraph D is defined similarly, i.e.: as the chromatic number of the underlying
(undirected) graph of D.

A classical result in graph theory is that every graph G contains a subgraph H
with δ(H) ≥ χ(G)−1, and therefore contains a copy of every tree on χ(G) vertices.
On the other hand, the following well-known result of Erdős (Theorem 1.16 below,
see, e.g., [5, pp. 38–39]) implies that for every integer k, if F is contained in every
graph G with χ(G) = k then F must be a forest. The girthgirth of a graph is the
smallest integer g such that g contains a cycle of order g.

Theorem 1.16 (Erdős, 1959). [30] For all positive k, ` there exists a graph G

with χ(G) > k and girth(G) > `.

There are many open questions related to the existence of trees in undirected
graphs of high chromatic number. For instance, Erdős and Sós [31] conjectured
that if G is a graph and |E(G)| > (k − 2)|G|/2 then G contains every tree of
order k (a proof of this was announced in the early 1990’s by Ajtai, Komlós,
Simonovits and Szemerédi); and Gyárfás [34] and Sumner [76] conjectured that
for any tree T and any integer n, if G is a graph of sufficiently high chromatic
number, then either G contains an induced copy of T or G contains a copy of Kn

(this conjecture remains open, but has been shown to be true for particular trees,
such as paths [34] and subdivisions of stars [71], among others—see, e.g., [72]).
Considering the relationship between chromatic number and orientations of graphs,
Burr [16] (see also [83]) conjectured the following.
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Conjecture 1.17. [16] If G is a graph with χ(G) ≥ 2t− 2 and T is an oriented
tree of order t, then every orientation of G contains a copy of T .

This is a far-reaching generalisation of Conjecture 1.7, since tournaments are
orientations of complete graphs. Letq(T ) q(T ) be the smallest integer such that every
orientation of a q(T )-chromatic graph contains a copy of T ; with this notation,
Burr’s conjecture is equivalent to the statement that if T is an oriented tree of
order t then q(T ) ≤ 2t − 2. Note that the example of an anti-directed star S
(given in Section 1.1) implies that the value 2t− 2 cannot be replaced by a smaller
function of t.

Burr’s conjecture is known to be true for some classes of trees. The next
theorem states that every orientation of a graph G contains a directed path with
at least as many vertices as the chromatic number of G.

Theorem1.18. [32, 38, 69, 82] Every orientation of a graph G contains a directed
path of order χ(G).

In other words, q(T ) = |T | for every directed path. This theorem was obtained
independently and with distinct proofs (!) by Gallai, Hasse, Roy and Vitaver [32,
38, 69, 82]. Below is a (fifth) proof of this beautiful result, included for completeness
(see, e.g.: [33]).

Proof. Fix an orientation D of G and let A be an edge-maximal acyclic subdigraph
of D. We may assume that V (A) = V (G). Let c be a colouring of V (G) which
assigns to each vertex v the number of vertices in a longest directed path of A
ending in v. We will show that this is a proper colouring of G, and therefore some
vertex receives label χ(G), completing the proof. First note that if uv is an edge
of A, then c(u) < c(v), because A is acyclic and thus the longest directed path
Pu ending in u cannot contain v. Therefore c is a proper colouring of A and, in
particular, c strictly increases over any directed path in A. Now consider any edge
xy which is in D but not in A. Since A is edge-maximal, adding xy to A must
create a directed cycle; it follows that there exists a directed path from y to x
in A. Hence, c(y) < c(x), and we conclude that c is a proper colouring of G.

Burr’s conjecture has been settled for certain orientations of paths by El Sahili
and Kouider [28], namely, for paths P of order at least 4 with at most 2 blocks
(i.e: at most one ‘change in direction’) by proving that q(P ) = |P |+ 1 for such
paths; Addario-Berry, Havet and Thomassé [2] have improved this to the best
possible bound q(P ) = |P |. Burr himself proved that q(T ) ≤ (n− 1)2 for every
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tree T of order n. This has been improved recently by Addario-Berry, Havet,
Sales, Reed and Thomassé [1].

Theorem1.19. [1] If T is an oriented tree T of order n, then

q(T ) ≤
(
n

2

)
+ 1.

In Chapter 5 we present some new preliminary results related to Burr’s
conjecture. Recall that if a digraph H is contained in every orientation of a
k-chromatic graph G, then H cannot contain directed cycles. Moreover, H must
be contained in every tournament of order k. The next theorem gives a bound
on the chromatic number of acyclic subgraphs of tournaments. It is known that
every digraph D contains an acyclic digraph H with χ(H) ≥

√
χ(D) [1] (see

Lemma 5.2).

Theorem 1.20. For all ε > 0 there exists a tournament D such that if H is an
acyclic subgraph of D then

χ(H) ≤
(1

2 + ε
)

χ(D)
logχ(D) .

We also consider which trees are contained in a uniformly random orientation
of a graph G of given minimum degree. Since every graph G contains a (critical)
subgraph Gcrit with minimum degree χ(G) − 1, the next theorem implies that
for every positive ε and graph G with chromatic number k, if k is sufficiently
large, then almost surely a random orientation of G contains every oriented tree
of order (1− ε)k/ log k.

Theorem 1.21. For all positive ε and sufficiently large k = k(ε), the following
holds for every graph G be with δ(G) ≥ k− 1. If D is an orientation of G formed
by orienting each e ∈ E(G) uniformly at random, independently for each edge,
then D contains every oriented tree of order (1 − ε)k/ log k almost surely as
k →∞.

Note that every graph G contains a critical subgraph G′ (i.e., a subgraph G′

such that χ(G′) = χ(G) but every proper subgraph of G′ has chromatic number
strictly less than χ(G)); moreover, we have δ(G′) ≥ χ(G′) − 1 = χ(G) − 1 (if
this was not the case, then it would be possible to delete a vertex v of degree
at most χ(G′)− 2 from G′ and then properly colour G′ with χ(G′)− 1 colours:
first colour G′ − v using χ(G′) − 2 colours, and then extend this to a proper
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colouring of G′ using a new colour for v). In other words, if G is a graph with high
chromatic number, then almost every orientation of G contains every oriented tree
T whose order is close to χ(G)/ logχ(G)—which is much larger than the bound
in Theorem 1.19.

We conclude the Chapter 5 with two non-probabilistic partial results towards
Burr’s conjecture. For any graph G, letq−1(G) q−1(G) be the largest integer t such
that every orientation of G contains every oriented tree of order t. The best
known general bounds imply that q−1(G) Our main theorem in the chapter is an
approximate result towards Burr’s conjecture, in the following sense: we obtain a
lower bound on q−1(G) (depending on χ(G) and |G|) which for most graphs is
significantly stronger than the currently known bounds.

Theorem1.22. If D is a digraph of order n, where n ≥ 1, then D contains every
oriented tree of order χ(D)/ log2(2n), that is,

q−1(D) ≥ χ(D)
log2(2n) .

The theorem above implies that, for all C > 0 and sufficiently large k, if G is
a graph with chromatic number k and order n, where n ≤ e(log k)C/2, then every
orientation of G contains every oriented tree of order k/(log k)C . We remark
that this is typically the case. A celebrated result of Bollobás on the expected
chromatic number of the binomial random graph (Theorem 5.3, page 126) implies
that, for any fixed C with 0 < C < 1, we have |G| ≤ e(log k)C/2 for almost every
graph G.

We also extend a partial result in [1], proving that Burr’s conjecture holds
for every orientation of every star (Theorem 5.10). This result, together with
the aforementioned results for paths, suggests that there is a strong relationship
between t(T ) and q(T ). I conjecture the following.

Conjecture 1.23 (Transference conjecture). If T is an oriented tree, then

t(T ) = q(T ).

This conjecture holds for directed paths by Theorem 1.18 and was confirmed
for paths with at most two blocks (i.e., for paths with at most one non-leaf vertex
which has either no inneighbours or no outneighbours) by Addario-Berry, Havet
and Thomassé [2]; moreover, extending results of Addario-Berry, Havet, Sales,
Reed and Thomassé [1] (Lemma 5.8) we show that this conjecture holds for stars
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as well (Corollary 5.11). Conjecture 1.23 is further discussed in Chapter 6.

As long as the roots are not severed,
all is well. And all will be well in the
garden.

Chance the Gardener

The secret of getting ahead is getting
started.

Mark Twain





2 Preliminary concepts and results

We follow standard graph-theoretical notation (see, e.g., [27]). For clarity, we
define some of our notation (mostly related to directed graphs) below. More
specific terms are defined in later sections (all definitions are indexed on page 140).

A directed graph G, or directed graph,
digraph

digraph for short, is a pair (V,E) of sets: a vertex set V
and an edge set E, where each edge e ∈ E is an ordered pair of distinct vertices
(more precisely, E is a set of ordered pairs (u, v) ∈ V × V of distinct elements
of V ); the orderorder of G is |V |. We think of the edge (u, v) as being directed from u

to v, and write x→y or y←x to denote the edge (x, y); if the orientation of the
edge does not matter, we write {u, v} (or {v, u}) instead. In either case, u and v
are said to be the endverticesendvertices of {u, v}, and we also call u (respectively v) a

neighbourneighbour of v (respectively u).
In a digraph G, the outneighbourhoodoutneighbourhood N+

G (x) of a vertex x is the set { y : x→y ∈
E(G) }; the inneighbourhood N−G (x) of x is { y : x←y ∈ E(G) }. The inneighbourhood,

outdegree
outdegree

and indegreeindegree of x inG are respectively deg+
G(x) :=

∣∣∣N+
G (x)

∣∣∣ and deg−G(x) :=
∣∣∣N−G (x)

∣∣∣,
and the semidegreesemidegree deg0

G(x) of x is the minimum of the outdegree and indegree
of x. We say that G is r-regularr-regular if for all x ∈ D we have deg−(x) = deg+(x) = r.
The minimum

semidegree
minimum semidegree δ0(G) of G is the minimum of deg0

G(x) over all x ∈
V (G). For any subset Y ⊆ V (G), we write deg−G(x, Y ) for |N−G (x) ∩ Y |, the

degree in setindegree of x in Y ; the outdegree of x in Y , denoted by deg+
G(x, Y ), is defined

similarly. The semidegree in setsemidegree of x in Y , denoted by deg0
G(x, Y ), is the minimum

of those two values. We drop the subscript when there is no danger of confusion,
writing N−(x), deg0(x), and so forth. We write |G| and e(G) for the number of
vertices and edges of G respectively. For digraphs G andH, we callH a subgraphsubgraph of
G if V (H) ⊆ V (G) and E(H) ⊆ E(G); H is said to be spanningspanning if V (H) = V (G).
For any set X ⊆ V (G), we write G[X] for the subgraph of G inducedinduced by X, which
has vertex set X and whose edges are all edges of G with both endvertices in X.
If H is a subgraph of G then we write G − H for G

[
V (G) \ V (H)

]
. Likewise,

for a vertex v or set of vertices S, we write G − v or G − S for G
[
V (G) \ {v}

]
or G

[
V (G) \ S

]
respectively. Incidentally, we treat graphs as sets, writing x ∈ G

to indicate that x is a vertex of G. For disjoint subsets X, Y ⊆ V (G), where G is
a digraph, we denote by G[X → Y ], or equivalently by G[Y ← X], the subdigraph

17
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of G with vertex set X ∪ Y and edge set

E
(
G[X → Y ]

)
:= {x→ y ∈ E(G) : x ∈ X, y ∈ Y }.

Some graphs considered in this thesis areoriented oriented, meaning that there is at
most one edge between each pair of vertices and there are no loops (i.e. edges with
a single endvertex). Equivalently, an oriented graph G can be formed by assigning
an orientation to each edge {u, v} of some (undirected) graph H, i.e.: by replacing
each {u, v} ∈ E(H) by one of the possible ordered pairs (u, v) or (v, u); in this
case we refer to H as the underlying graph of G, and say that G is anunderlying graph,

orientation
orientation

of H. We refer to themaximum degree maximum degree of an oriented graph G, denoted ∆(G), to
mean the maximum degree of the underlying graph H.

Adirected path directed path of length k is an oriented graph with vertex set v0, . . . , vk

and edges vi−1 → vi for each 1 ≤ i ≤ k, and anantidirected path antidirected path of length k is
an oriented graph with vertex set v0, . . . , vk and edges vi−1 → vi for odd i ≤ k

and vi−1 ← vi for even i ≤ k (or vice versa). A digraph isstrongly connected strongly connected if
for any ordered pair (x, y) of its vertices there exists a directed path P from x

to y (i.e., all edges of P are oriented towards y). Adirected cycle directed cycle of length k is an
oriented graph with vertex set v1, . . . , vk and edges vi → vi+1 for each 1 ≤ i ≤ k

with addition taken modulo k.
A tree is an acyclic connected graph, and antree, oriented tree oriented tree is an orientation of a

tree. A leaf in a tree or oriented tree is a vertex incident to a single edge. Aleaf, star star
is a tree in which at most one vertex (the centre) is not a leaf. Acentre, subtree subtree T ′ of a
tree T is a subgraph of T which is also a tree, and we define subtrees of oriented
trees similarly. For oriented trees T and T ′ we say that T ′ is anout-subtree out-subtree
(respectively anin-subtree in-subtree) of T if both T ′ and T − T ′ are subtrees of T , and the
unique edge of T between T ′ and T − T ′ is directed towards T ′ (respectively away
from T ′). In a similar way we say that a vertex is an in-leaf orin-leaf, out-leaf out-leaf of T ; in

S1
S2

S3

T

Figure 2.1: A tree T and some of its subtrees (each formed by the vertices in
shaded areas). The tree S1 is anin-star in-star (in-subtree) of T , while both S2 and S3
areout-stars out-stars (out-subtrees). Moreover, S1 and S3 are anti-directed stars.
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particular, an anti-directed staranti-directed star is an orientation of a star S in which every vertex
has either no inneighbours or no outneighbours. Now let T be a tree or oriented
tree (see Figure 2.1).

It is often helpful to nominate a vertex r of T as the rootroot of T ; to emphasise
this fact we sometimes refer to T as a rooted treerooted tree. If so, then every vertex x other
than r has a unique parentparent; this is defined to be the (sole) neighbour p of x in the
unique path in T from x to r, and x is said to be a child of p. An child, ancestral

order
ancestral order

of the vertices of a rooted tree T is an order of V (T ) in which the root vertex
appears first and every non-root vertex appears later than its parent. Where it is
clear from the context that a tree is oriented, we may refer to it simply as a tree.

Let A1, A2, . . . be a sequence of events. We say that An holds asymptotically
almost surely

asymptotically
almost surely if P(An)→ 1 as n→∞. Likewise, in this thesis all occurrences of
the standard asymptotic notation o(f) refer to sequences f(n) with parameter n
as n → ∞. We will often have sets indexed by {1, 2, . . . , k}, such as V1, . . . , Vk,
and addition of indices will always be performed modulo k. Also, if ϕ : A→ B

is a function from A to B and A′ ⊆ A, then we write ϕ(A′) for the image of A′

under ϕ. We omit floors and ceilings whenever they do not affect the argument,
write a = b ± c to indicate that b − c ≤ a ≤ b + c, and write abc/def for the
fraction (abc)/(def). For all k ∈ N, (where N := {1, 2, . . .} is the set of natural
numbers), we denote by [k] the set {1, 2, . . . , k}, and write

(
S
k

)
to denote the set

of all k-element subsets of a set S. For any two disjoint sets A and B, we write
A ∪̇ B for their union. We use the notation x � y to indicate that for every
positive y there exists a positive number x0 such that for every 0 < x < x0 the
subsequent statements hold. Such statements with more variables are defined
similarly. We always write log x to mean the natural logarithm of x.

2.1 Trees

In many stages of our proofs we will be required to partition a tree into subtrees,
sometimes so that each piece contains a linear fraction of its edges, and sometimes
so that each piece contains a linear fraction of some given subset of vertices.

Definition 2.1. Let T be a tree or oriented tree. A tree-partitiontree-partition of T is a
collection {T1, . . . , Ts} of edge-disjoint subtrees of T such that

⋃
i∈[s]

V (Ti) = V (T ) and
⋃
i∈[s]

E(Ti) = E(T ).
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Note that any two distinct trees in a tree-partition P have at most one vertex
in common, and that if P contains at least 2 trees then each tree has at least one
vertex in common with some other tree in P . To obtain a partition of a tree we
sometimes use a result of Kühn, Mycroft and Osthus.

Lemma2.2. [51, Lemma 2.9] Let T be a tree on n ≥ 3 vertices. Then there exists
a tree-partition {T1, T2} of T such that e(T1), e(T2) ≥ e(T )/3.

We omit the proof of Lemma 2.2 because it is very similar to the proof of
the next lemma—a tree-partition lemma for splitting a ‘target’ set of vertices
(Lemma 2.3)—which we also use in our proofs.

Lemma2.3. If T is a tree and L ⊆ V (T ), then T admits a tree-partition {T1, T2}
of T such that T1 and T2 each contain at least |L|/3 vertices of L.

Note that if T has at least one vertex, then some vertex lies in V (T1)∩V (T2). In
particular, if |L| is either 1 or 2, then it is always possible to form a tree-partition
where (say) T1 is a single vertex of L and T2 = T .

For a tree T (possibly oriented), an edge e ∈ E(T ) and a vertex v ∈ e, we
write T − e for the forest we obtain by deleting e from T , and write Ce

v for the
vertex set of the component of T − e which contains v. We prove Lemma 2.3
using the following simple fact.

Fact 2.4. For all reals c, x1, . . . , xs, if
∑s
i=1 xi ≥ 3c and 0 ≤ xi ≤ c for all i ∈ [s],

then there exists i ∈ [s] such that c ≤ x1 + · · ·+ xi ≤ 2c.

Proof of Lemma 2.3. Note that we may ignore the orientation of edges and assume
that T is an undirected tree. Define ` := |L|. For each edge e = {u, v} ∈ E(T ) we
say that v is aheavy neighbour heavy neighbour of u if |Ce

v ∩L| ≥ `/3. Observe that if u and v are
both heavy neighbours of each other, then

{
T
[
Ce
u

]
, T
[
Ce
v ∪ {u}

]}
is the desired

tree-partition. We may therefore assume that for each edge e = {u, v} ∈ E(T )
either u is a heavy neighbour of v or v is a heavy neighbour of u, but not both. It
follows that some vertex v has no heavy neighbours (to see this, form an auxiliary
orientation of E(T ) with each edge directed u→ v where v is a heavy neighbour
of u, and choose v to be a vertex with no outneighbours). Let C1, . . . , Cs be
the vertex sets of the components of T − v. For each i ∈ [s] let `i := |Ci ∩ L|,
and observe that since v has no heavy neighbours we have `i < `/3; since `i is
an integer, we then have `i ≤ (`− 1)/3.

If v ∈ L, then `1 + · · · + `s = ` − 1 and by Fact 2.4 there exists j ∈ [s]
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such that (` − 1)/3 ≤ `1 + · · · + `j ≤ 2(` − 1)/3. In this case the desired
tree-partition is

{
T
[
{v} ∪ ⋃1≤i≤j Ci

]
, T
[
{v} ∪ ⋃j<i≤sCi]}, because each of these

subtrees contains v and hence contains at least (` − 1)/3 + 1 > `/3 vertices
of L. On the other hand, if v /∈ L, then `1 + · · · + `s = `, so by Fact 2.4
above there exists j ∈ [s] with `/3 ≤ `1 + · · · + `j ≤ 2`/3, and as before{
T
[
{v} ∪ ⋃1≤i≤j Ci

]
, T
[
{v} ∪ ⋃j<i≤sCi]} is the desired tree-partition.

Recall that an ancestral order of the vertices of a rooted tree T is an order
of V (T ) in which the root vertex appears first and every non-root vertex appears
later than its parent. This ancestral order is tidy ancestral ordertidy if for any initial segment I of
the order, at most log2 n vertices in I have a child not in I. (These orders were
considered in [51].)

Tidy ancestral orders have applications for tree-traversal algorithms. Indeed,
many such procedures operate on trees, one vertex at a time, so that (at any step)
the visited vertices form a connected subtree; moreover, these procedures often
keep a stack with vertices whose neighbours are yet to be visited; if we process
vertices of a tree in a tidy ancestral order, keeping a stack of the vertices which
have been processed but have at least one unvisited child, then the size of the
stack is guaranteed to grow somewhat slowly. The following lemma states that
every tree admits a tidy ancestral order.

Lemma2.5. [51, Lemma 2.11] Every rooted tree T admits a tidy ancestral order.
Moreover, if {T1, T2} is a tree-partition of T such that |T1| ≤ |T2| and the root of
T is the single vertex in T1 ∩ T2, then T admits a tidy ancestral order such that
every vertex of T1 precedes every vertex of T2 in this order.

Proof. Let T be tree with root r and order n, and let {T1, T2} be a tree-partition
of T such that r is the (sole) vertex in T1∩T2 (this tree-partition is arbitrary: take
for example the single-vertex r and T as parts). We use induction in the order of T .
The lemma is easy to check if T has at most 3 vertices. Suppose then that n ≥ 4
and let {T1, T2} be a tree-partition of T such that |T1| ≤ |T2| Let H1, . . . , Hs be
the components of T−r, labelled so that H1, H2, . . . , Hj lie in T1 and Hj+1, . . . , Hs

lie in T2, and moreover so that |Hs| ≥ |Hi| for all i ∈ {j + 1, . . . , s}. Finally, for
each i ∈ [s] let ri be the vertex in Hi which is closest to r.

Note that for all i ∈ [s − 1] we have |Hi| < (n − 1)/2, since |T1| ≤ n/2
and |Hi| ≤ |Hs| ≤ n − 1; indeed, if i ∈ [j] then |Hi| + 1 ≤ |T1| ≤ n/2 and
if i ∈ [s− 1] \ [j] then 2|Hi| ≤ |Hi|+ |Hs| ≤ |T \ {r}| = n− 1).

Also, by our choice of roots, we can combine ancestral orders H1, . . . , Hs: given
any collection {≺i}i∈[s] such that ≺i is an ancestral order of Hi we can form an
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ancestral order ≺ of T such that the restriction of ≺ to Hi is ≺i, as follows. First
comes r; then come all vertices of H1, ordered according to ≺1, followed by all
vertices of H2 ordered according to ≺2 and so on. Moreover, such combination
preserves ‘tidiness’. Indeed, suppose that ≺i is a tidy ancestral order of Hi and
that ≺ is defined as described above. Let I be an initial segment x = x1, . . . , xt

of ≺. If xt ∈ Ht′ where t′ < s, then the only vertices of I which have neighbours
outside of I are r and the vertices in some initial segment I ′ of Ht′ . Hence, by
induction, at most 1 + log2 |Ht′ | ≤ log2 n vertices in I have neighbours outside I.
On the other hand, if t′ = s, then the only vertices of I which have neighbours
outside of I form an initial segment I ′ of Hs (note that the at all neighbours
of r lie in I), and so at most log2 |Hs| < log2 n vertices in I have neighbours
outside I.

Tree-partitions play an important role in the analysis of the allocation algorithm
(Section 4.3), often through the following lemma. An important feature of the
algorithm is that distant vertices are distributed almost independently of one
another. We use Lemma 2.6 below to argue that any sufficiently large set of
vertices will be well distributed by the algorithm: roughly speaking, the lemma
states that in every tree with somewhat limited maximum degree most vertices
are ‘far apart’. We remark that this lemma is a strengthened version of [51,
Lemma 2.10].

Lemma2.6. For all C,K > 0 there exists n0 such that for every rooted tree T of
order n ≥ n0 with root r and ∆(T ) ≤ (log n)C , there exist s ∈ N, pairwise-disjoint
subsets F1 . . . , Fs ⊆ V (T ), and not-necessarily-distinct vertices v1, . . . , vs of T
with the following properties.

(i)
∣∣∣⋃i∈[s] Fi

∣∣∣ ≥ n− n5/12.

(ii) |Fi| ≤ n2/3 for each i ∈ [s].

(iii) For each i ∈ [s], each x ∈ {r} ∪ ⋃j<i Fj, and each y ∈ Fi, the path from x

to y in T includes vi.

(iv) For any i ∈ [s] and y ∈ Fi we have distT (vi, y) ≥ (K log log n)3.

The original version of this lemma [51, Lemma 2.10] had constants ∆, ε, k > 0
rather than C,K > 0, assumed additionally that ∆(T ) ≤ ∆, had n− εn in place
of n − n5/12 in (i) and had k in place of Klog log n in (iv). However, the form
of the lemma given above can be established by an essentially identical proof,
replacing each instance of k by Klog log n and each instance of ∆ by (log n)C .
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The crucial point is that we then replace the bound 3n1/3∆k3 ≤ εn by the bound
3n1/3(log n)C(K log logn)3 ≤ n5/12. These changes yield (i) and (iv) above, whilst (ii)
and (iii) are unchanged.

Proof. We first partition T into a family F of subtrees, applying Lemma 2.2
repeatedly. More precisely, we start out with F = {T}, and iterate the following
step. Let Tbig be the largest tree in F ; we stop if |Tbig| ≤ n2/3; otherwise,
let {T1, T2} be a tree-partition of Tbig such that e(T1), e(T2) ≥ e(Tbig)/3 and
replace Tbig in F by T1 and T2. Note that this process stops after at most
3n1/3 steps (indeed, when we stop each tree T ′ ∈ F will have been obtained by
partitioning a tree with at least n2/3 vertices, so |T ′| ≥ 1

3n
2/3). Moreover, this is a

tree-partition, so any two trees in F share at most a vertex of T . Let ≺ be an
ancestral order of T , and let f(F ) be the smallest vertex of F in this order, for
each F ∈ F . This induces an order T1, . . . , Ts of F such that f(Ti) ≺ f(Tj) if and
only if i ≤ j.

For each j ∈ [s] \ {1} let T<j := T
[ ⋃

i<j V (Ti)
]
. We first note that T<j is

a connected tree, as this property is preserved by any tree-split we performed
in F . Secondly, note that V (Tj) ∩ V (T<j) = vj for each j ∈ [s]. Indeed there
exists at least one vertex in this intersection, since each edge of T is contained
in precisely one member of F and since T<j+1 is connected. Furthermore, if x
and y are distinct vertices V (Tj) ∩ V (T<j), then there exists a path P from x

to y in T<j (since T<j is connected) and also a path Q from x to y in Tj (since Tj
is connected). These paths are distinct, because E(Tj) ∩ E(T<j) = ∅; it follows
that P ∪Q contains a cycle, contradicting the fact that T is a tree. These two
observations imply that for each j ∈ [s], any path from x ∈ V (T<j) to y ∈ V (Tj)
contains vj.

For each 2 ≤ j ≤ s, let Fj :=
{
x ∈ V (Tj) : dist(vj, x) ≥ (K log log n)3

}
. We

now prove that the required properties hold. Items (ii) and (iv) hold by construc-
tion. Also note that |V (Tj) \ Fj| ≤ (log n)CK(log logn)3 and that

∣∣∣⋃j∈[s] V (Tj)
∣∣∣ = n.

Then |V (T ) \ (F1 ∪ · · · ∪ Fs)| ≤ 3n1/3(log n)CK(log logn)3
< n5/12, so item (i) holds

as well. Finally, for item (iii), let j ∈ [s], x ∈ {x} ∪ ⋃i<j Fi and let y ∈ Fj. Then
since x ∈ V (T<j) and y ∈ V (Tj) the path from x to y contains vj as desired.

2.2 Regularity

Let G be a bipartite graph with vertex classes A and B. Loosely speaking,
G is ‘regular’ if the edges of G are ‘random-like’ in the sense that they are
distributed roughly uniformly. More formally, for any sets X ⊆ A and Y ⊆ B, we



24 Chapter 2. Preliminary concepts and results

write G[X, Y ] for the bipartite subgraph of G with vertex classes X and Y and
whose edges are the edges of G with one endvertex in each of the sets X and Y,
and define thedensity density dG(X, Y ) of edges between X and Y to be

dG(X, Y ) :=
e
(
G[X, Y ]

)
|X||Y |

.

Then, for any d, ε > 0, we say that G is(d, ε)-regular (d, ε)-regular if for every X ⊆ A and
every Y ⊆ B such that |X| ≥ ε|A| and |Y | ≥ ε|B| we have dG(X, Y ) = d ± ε.
The following well-known proposition is immediate from this definition.

Lemma2.7 (Slicing lemma). Fix α, ε, d > 0 and letG be a (d, ε)-regular bipartite
graph with vertex classes A and B. If A′ ⊆ A and B′ ⊆ B have sizes |A′| ≥ α|A|
and |B′| ≥ α|B|, then G[A′, B′] is (d, ε/α)-regular.

We say that G is(d≥, ε)-regular (d≥, ε)-regular if G is (d′, ε)-regular for some d′ ≥ d. Another
immediate consequence of the definition of regularity is that, for small ε, if G
is (d, ε)-regular then almost all vertices of A have degree close to d|B| in B

and almost all vertices of B have degree close to d|A| in A. We say that G is
‘super-regular’ if no vertex has degree much lower than this. More precisely, G
is(d, ε)-super-regular (d, ε)-super-regular if (A,B) is (d≥, ε)-regular and also for every a ∈ A and b ∈ B
we have deg(a,B) ≥ (d− ε)|B| and deg(b, A) ≥ (d− ε)|A|.

To complete the embedding of a spanning oriented tree in a tournament, we
will make use of the following well-known lemma, which states that every balanced
super-regular bipartite graph contains a perfect matching (a bipartite graph is

balanced balanced if its vertex classes have equal size).

Lemma 2.8. If d ≥ 2ε > 0 and G is a (d, ε)-super-regular balanced bipartite
graph, then G contains a perfect matching.

Proof. Let A and B be the vertex classes of G; let m := |A| = |B|; let S ⊆ A and
writeN(S) ⊆ B for the set of vertices ofG with a neighbour in S. If |S| < εm, then
for each a ∈ S we have deg(a,B) ≥ (d−ε)m ≥ εm > |S|, so certainly

∣∣∣N(S)
∣∣∣ ≥ |S|.

Otherwise, if εm ≤ |S| ≤ (1− ε)m, then, since G is (d≥, ε)-regular, at most εm
vertices of B have no neighbours in S, so

∣∣∣N(S)
∣∣∣ ≥ (1 − ε)m ≥ |S|. Finally,

if |S| > (1 − ε)m, then each b ∈ B has a neighbour in S, since deg(b, A) ≥
(d− ε)m ≥ εm > |A \S|, so

∣∣∣N(S)
∣∣∣ = m ≥ |S|. In each case Hall’s criterion holds

(i.e.,
∣∣∣N(S)

∣∣∣ ≥ |S| for each subset S ⊆ A), so G contains a perfect matching.

The celebrated Regularity Lemma of Szemerédi [77, 78] states that every
sufficiently large graph admits a partition such that almost all pairs of parts are
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regular in the sense we discuss here. Alon and Shapira [4] obtained a digraph
analogue of their result.

Let G be a tournament, and let X, Y ∈ V (G). We call the ordered pair (X, Y )
a directed pairdirected pair in G if there are no edges in G[X ← Y ], that is, if every edge
between X and Y is directed towards Y . Similarly, for any µ ≥ 0 we call (X, Y )
a µ-almost-directed

pair
µ-almost-directed pair if e

(
G[X←Y ]

)
≤ µ|X||Y |, so any directed pair is a

0-almost-directed pair.
Observe that the underlying graph of G[X → Y ] is a bipartite graph with

vertex classes X and Y . We say that G[X → Y ] is (d, ε)-regular
(digraph)

(d, ε)-regular (respectively
(d≥, ε)-regular or (d≥, ε)-regular

(digraph),
(d, ε)-super-regular
(digraph)

(d, ε)-super-regular) to mean that this underlying graph is (d, ε)-
regular (respectively (d≥, ε)-regular or (d, ε)-super-regular). In this way we may
apply the previous results of this subsection to directed graphs.

Lemma2.9 (Regularity Lemma for digraphs). [4] For all positive ε,M ′ there
exist M,n0 such that if G is a digraph of order n ≥ n0 and d ∈ [0, 1], then there
exist a partition V0, . . . , Vk of V (G) and a spanning subgraph G′ of G such that

(i) M ′ ≤ k ≤M ;

(ii) |V1| = · · · = |Vk| and |V0| < εn ;

(iii) deg+
G′(x) ≥ deg+

G(x)− (d+ ε)n for all x ∈ G ;

(iv) deg−G′(x) ≥ deg−G(x)− (d+ ε)n for all x ∈ G ;

(v) for all i ∈ [k] the digraph G′[Vi] has no edges ;

(vi) for all distinct i, j with 1 ≤ i, j ≤ k, the pair (Vi, Vj) is ε-regular and has
density 0 or density at least d in G′[Vi→Vj].

We refer to the sets V1, . . . , Vk as the clusters of G. For d ∈ [0, 1], the clusters, reduced
graph

reduced
graph R with parameters ε, d and M ′ of G is a digraph we obtain by applying
Lemma 2.9 to G with parameters ε, d and M ′; the digraph R has vertex set [k]
and edges i→j precisely when G′[Vi→Vj] has density at least d.

2.3 Tournaments

A tournament G is an orientation of a complete graph, and a tournament,
subtournament

subtournament of G is
a sub(di)graph of G which is a tournament. A regular tournamentregular tournament is a tournament
in which every vertex has equal indegree and outdegree; it is easily checked that
regular tournaments of order n exist for every odd n ∈ N. A transitive

tournament
transitive tournament

is a tournament whose vertices can be ordered v1, . . . , vn such that vi → vj is an
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edge for each i < j.
The following straightforward lemma shows that a tournament can only have

a few vertices of small in- or outdegree.

Lemma2.10. For each d ∈ N, every tournament contains at most 4d− 2 vertices
with semidegree less than d.

Proof. Let G be a tournament, and let X be the set of vertices x ∈ V (G) with
deg+(x) ≤ d− 1. Then(

|X|
2

)
= e

(
G[X]

)
≤
∑
x∈X

deg+(x) ≤ (d− 1)|X|,

where the central inequality holds because every edge of G[X] contributes one to
the sum. It follows that |X| ≤ 2d− 1, that is, there are at most 2d− 1 vertices
with outdegree less than d. Essentially the same argument shows that there are at
most 2d− 1 vertices with indegree less than d, so in total at most 4d− 2 vertices
have semidegree less than d.

2.4 Useful estimates and bounds

In this section we present various useful estimates, which we use many times
throughout this thesis to analyse randomised procedures. We write B(n, p) to
denote the binomial distribution (the result of n independent Bernoulli experi-
ments, each with success probability p). We write P(A) for the probability of the
event A and EX (respectively VarX) for the expectation (respectively variance)
of the random variable X.

Lemma 2.11. Suppose that 1/n� 1/k. If X := B
(
n, 1

2

)
, then for every r ∈ [k]

we have
P(X ≡ r mod k ) = 1

k
± 4√

n
.

Proof. Define pµ := maxx∈{0,...,n} P(X = x). Kühn, Mycroft and Osthus [51, proof
of Lemma 2.1] gave a straightforward proof that P(X ≡ r mod k ) = 1

k
± 2pµ,

and the result then follows from a standard estimate on the binomial distribution
(see, for example, [11, Section 1.2]) which states that pµ ∼ 1/

√
πn/2.

Another useful tool in probabilistic combinatorics (used extensively in Chap-
ters 3 and 4) is Chebyshev’s inequality (see, e.g., [5, Section 4.1]).



2.4. Useful estimates and bounds 27

Theorem 2.12 (Chebyshev’s inequality). For each positive λ, if X is a real-
valued random variable then

P
(
|X − EX| ≥ λVarX

)
≤ 1
λ2 .

We also use the Chernoff bounds below (see, e.g., [45, Theorem 2.1]).

Theorem2.13. For all t ≥ 0 and all p such that 0 < p < 1, if X := B(n, p), then

P(X ≥ np+ t) ≤ exp
(
− t2

2(np+ t/3)

)
; and (2.1)

P(X ≤ np− t) ≤ exp
(
− t2

2np

)
(2.2)

Let N be an n-element set, and letM ∈
(
N
m

)
be a subset of N with m elements.

If we choose S ∈
(
N
k

)
uniformly at random, then the random variable X = |S∩M |

is said to have hypergeometric
distribution

hypergeometric distribution with parameters n,m and k. Note that
the expectation of X is then EX = km/n.

Theorem2.14. [45, Corollary 2.3 and Theorem 2.10] For every 0 < a < 3/2, if X
has binomial or hypergeometric distribution, then

P
(
|X − EX| ≥ aEX

)
≤ 2 exp(−a2EX/3).

We use the following Azuma-type concentration result for martingales, due
to McDiarmid [63] (and in the form stated by Sudakov and Vondrák [74]), to
analyse some randomised algorithms (Lemmas 3.3 and 4.15).

Lemma2.15. [63, 74] Fix n ∈ N and let X1, . . . , Xn be random variables taking
values in [0, 1] such that for each i ∈ [n] we have E(Xi | X1, . . . , Xi−1 ) ≤ ai.
If µ ≥ ∑n

i=1 ai, then for every δ with 0 < δ < 1 we have

P
( n∑
i=1

Xi > (1 + δ)µ
)
≤ e−δ2µ/3.

We also use the well-known Cauchy–Bunyakovsky–Schwarz inequality.
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Theorem2.16. All real u1, v1, . . . , un, vn satisfy(
n∑
i=1

uivi

)2

≤
(

n∑
i=1

u2
i

)(
n∑
i=1

v2
i

)
,

with equality if and only if (a) u1 = · · · = un = 0 or (b) v1 = · · · = vn = 0 or
(c) there exists α 6= 0 such that ui = αvi for all i ∈ [n].

When this is a strict inequality, we will be interested in the difference

∆err :=
(

n∑
i=1

u2
i

)(
n∑
i=1

v2
i

)
−
(

n∑
i=1

uivi

)2

=
∑

1≤i,j≤n
(u2

i v
2
j − uiviujvj).

Note that

∆err = 1
2

∑
1≤i,j≤n

(u2
i v

2
j + u2

jv
2
i − 2uiviujvj) = 1

2
∑

1≤i,j≤n
(uivj − ujvi)2. (2.3)

2.5 Homomorphisms, allocation, embedding

Our strategy for finding a spanning tree T in a digraph G consists grosso modo
of two phases: allocation (assigning pieces of T to pieces of G) and embedding
(refining the assignment into an embedding). Correspondingly, at the core of the
proofs of the next chapters lie two algorithms, which we introduce here.

Let H and G be digraphs. A homomorphism ϕ : H → G is an edge-preserving
map from V (H) to V (G), so that every edge u→v ∈ E(H) is mapped to an
edge ϕ(u)→ϕ(v) ∈ E(G). Theϕ-indegree ϕ-indegree deg−ϕ (v) of v ∈ H in G is

∣∣∣ϕ(N−H(v)
)∣∣∣;

the ϕ-outdegree deg+
ϕ (v) of v is defined similarly. Theϕ-outdegree,

maximum degree
maximum degree of ϕ is

∆(ϕ) := maxv∈H deg−ϕ (v)+deg+
ϕ (v). Note that vertices in ϕ

(
N−H (v)

)
∩
(
ϕ(N+

H (v)
)

are counted twice.
Let R be a digraph of order k which is a ‘reduced graph’ of G, where 1/n� 1/k,

so each vertex of R corresponds to a set of approximately n/k vertices of G and
the edges of R correspond to regular pairs of clusters of G. If T is a tree whose
order is close to n, then it is natural to look for copies of T in G by mapping many
edges of T ‘along’ edges of R; in other words, to seek a homomorphism ϕ : T → R.
This is precisely the role of the allocation algorithm. If this can be done, then
we embed T to G using a (deterministic) embedding algorithm which ‘follows’
the homomorphism embedding in turn each vertex x ∈ T to a vertex in the
cluster ϕ(x), relying on the fact edges of R correspond to regular pairs.

Recall that in our applications G is only (if at all) slightly larger than T .
Hence, for the above strategy to succeed we need to guarantee that vertices of T
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are well distributed among clusters of G, and that the embedding avoids occupying
too many neighbours of a vertex at any step.

2.5.1 Allocation

We first consider the problem of defining a homomorphism ϕ from a large oriented
tree T to a small digraph R. If T contains a large directed path P , say, with
|P | � |R|, then we must require that R contains a strongly connected component
(or, equivalently, a component with semidegree at least 1), since otherwise the
homomorphism image of P must be an isomorphic to P (which is not possible).
However, if we insist that ϕ maps roughly equally many vertices to each vertex
x ∈ R the problem becomes more subtle. In this case R itself needs to be strongly
connected—or we might get ‘trapped’ in some strongly connected component of R
as in the example above—but this alone is not sufficient, as can be seen when T
is an antidirected path and R is a long directed cycle.

Indeed, the main challenge in allocation is ensuring that the homomorphism
we produce maps the correct number of vertices of T to each cluster. We define
the homomorphism using variants of a simple randomised algorithm (described
below), which yields the desired allocation when R satisfies some expansion or
connectivity properties.

The two specific variants we use are Algorithms 3.2 and 4.14. Significantly,
the reduced digraphs R we have in Chapters 3 and 4 are quite different, and for
this reason we postpone the precise description of the allocation algorithms and
analysis to the corresponding chapters.

Randomised allocation algorithm. Roughly speaking, we process the vertices
of a rooted tree T in an ancestral order. When processing any vertex x
(other than the root), the parent p of x in T is the only neighbour of x for
which ϕ has been defined. Let Cp be the children of p. We define ϕ for
all vertices in Cp at once, as follows: first choose an inneighbour v− and
an outneighbour v+ of ϕ(p) in R uniformly at random, with choices made
independently of all other choices in the algorithm; then map each child
inneighbour of p to v− and each child outneighbour of p to v+.

Note that this algorithm still fails if T is a star, in which case the centre of T
is the only vertex mapped to some cluster. However, as the maximum degree
of T is not too high we are able to avoid this problem. Indeed, in Lemma 2.6 we
show that if ∆(T ) ≤ (log |T |)C , where 1/n� 1/C, then most vertices of T lie far
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away from one another. This lemma plays a key role in the proof of Lemmas 3.3
and 4.15.

2.5.2 Embedding

We now suppose that we are given a rooted tree T and a slightly larger tourna-
ment G, as well as a regular partition of G and a corresponding reduced graph R.
Moreover, suppose that there exists an ‘allocation’ ϕ : V (T ) → V (R) of each
vertex x ∈ T to a cluster of G. We shall embed the vertices of T one at a time,
in an ancestral order, greedily embedding each vertex x ∈ T to some vertex φ(x)
in ϕ(x).

The main difficulty in doing so is to avoid ‘stepping on our own toes’, i.e., fully
occupying the neighbourhood of φ(x) before all neighbours of x are embedded—
this is somewhat straightforward while a constant fraction of V (G) remains
unoccupied, but becomes increasingly difficult once the number of embedded
vertices passes this threshold. Suppose first that we wish to embed T to G, where
T is almost-spanning (i.e., |T | = (1− ε)|G| where 1/n� ε).

Embedding algorithm. We choose an ancestral order of T and then embed
each x ∈ T greedily to the cluster ϕ(x); at each step we reserve a set of
vertices for the children of x. (An important issue here is that not too many
vertices can lie in reserved sets: this is handled by requiring that vertices be
processed in a tidy ancestral order, see 2.1.)

If on the other hand |T | = |G|, then embedding algorithm alone cannot
completely embed T . We follow a standard approach to handle this difficulty.
Firstly, we reserve a small set X ⊆ V (G) of vertices to be used at the end; secondly,
we delete a set L ⊆ V (T ) from T , so that |L| − |X| is sufficiently large and so
that the edges incident to vertices in L have some nice properties; next we apply
the embedding algorithm to G−X and T − L (this succeeds since there is ‘room
to spare’); we complete the embedding by reintegrating X using a matching-type
result (such as Lemma 2.8).

We describe the embedding algorithm in Section 4.3.4 (page 94). A very
similar variant is used, in a simpler setting, in Section 3.3.2 (page 37).



3 Spanning Trees of Tournaments

This chapter is organised as follows. In Section 3.1 we outline the proof of
our main result of this chapter, namely that almost every tree is unavoidable.
Next, in Section 3.2 we give definitions and preliminary results which we will
use later on. These include structural results for tournaments. In Section 3.3
we prove Theorem 1.9 (‘trees with polylogarithmic maximum degree are almost
unavoidable’) by considering the ‘random embedding algorithm’ of Kühn, Mycroft
and Osthus [51] and explaining how to modify the proofs of the associated
results to obtain slightly sharper bounds; we also use these sharper bounds when
considering tournaments with a specific structure (cycles of cluster tournaments,
see Section 3.1). In Section 3.4 we consider tournaments G whose vertex set can be
partitioned into two large sets which form an almost-directed pair in G, proceeding
as outlined in the proof sketch below to show that every such tournament contains
a copy of every nice oriented tree of polylogarithmic maximum degree (this is
Lemma 3.18, which can be interpreted as proving Theorem 1.4—a sufficient
condition for unavoidability—for such tournaments). Then, in Section 3.5 we do
the same for tournaments G which contain an almost-spanning cycle of cluster
tournaments (Lemma 3.24), making use of the sharper estimates established in
Section 3.3. In Section 3.6 we prove Theorem 1.4 by combining the results of
Sections 3.4 and 3.5. We also give the proof of Theorem 1.6 (almost every tree is
nice).

3.1 Proof outline for Theorem 1.4

Roughly speaking, there are two main differences between our results and those
in [51]. Firstly, we require several (minor) modifications in their results to deal
with trees with larger maximum degree (these are mostly consequences of changes
in Lemmas 2.6 and 3.3), culminating with the proof of Theorem 1.9. Secondly,
because we are concerned with spanning trees of every tournament (rather than
almost-spanning trees), we need to proceed more carefully in order to guarantee
that the later stages of the embedding will succeed—we develop two distinct
strategies to address this problem, according to the structure of the tournament
looks like.

31
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Indeed, our proof of Theorem 1.4 uses a structural characterisation of large
tournaments (Lemma 3.1) from [51]. Loosely speaking, this shows that every large
tournament G has one of the following two possible structures. The first possibility
is that V (G) can be partitioned into two sets U and W such that almost all edges
of G between U and W are directed from U to W . We refer to such a structure
as an ‘almost-directed pair’. The second possibility is that V (G) contains disjoint
subsets V1, . . . , Vk of equal size called ‘clusters’ whose union includes almost all
vertices of G and such that the edges of G directed from Vi to Vi+1 (with addition
taken modulo k) are ‘random-like’. We refer to this structure as a ‘cycle of cluster
tournaments’. Given a tournament G on n vertices and a nice oriented tree T
on n vertices with polylogarithmic maximum degree we consider separately these
two cases for the structure of G.

Almost-directed pairs. Suppose that G admits an almost-directed pair (U,W ).
In this case we begin by identifying the set Z of ‘atypical’ vertices of G, namely
those which lie in too many edges directed ‘the wrong way’ (i.e., from W to U).
Since (U,W ) is an almost-directed pair Z must be small. We then choose a set S
of |Z| distinct vertices of T , each of which lies in an out-star of T and is adjacent
to both an in-leaf and an out-leaf of T (see Figure 1.4 on page 4). We also choose
a small set S− of vertices of T , each of which lies in an in-star of T and is adjacent
to an out-leaf of T , and a small set S+ of vertices of T , each of which lies in an
out-star of T and is adjacent to an in-leaf of T . The fact that T is nice ensures
that we can choose such sets. Having done so, we form a subtree T ′ of T by
removing one out-leaf adjacent to each vertex in S−, one in-leaf adjacent to each
vertex in S+, and one in-leaf and one out-leaf adjacent to each vertex in S. We
then embed T ′ in G; this can be achieved by ad hoc methods (Lemma 3.17) using
the fact that G has slightly more vertices than T ′ to give us a little ‘room to
spare’. Moreover, we can insist that the image P− of S− under this embedding
has P− ⊆ U , and likewise that the image P+ of S+ has P+ ⊆ W .

It then suffices to embed the removed leaves into the set Q ⊆ V (G) of vertices
of G not covered by the embedding of T ′. To do this, we first embed the removed
leaves adjacent to vertices of S so as to cover the set Z of atypical vertices of G.
This is achieved as follows. Let b be an atypical vertex of G, choose a vertex s ∈ S,
and let s+ and s− be the removed out-leaf and in-leaf (respectively) adjacent to s.
Since s is a vertex of T ′, s has already been embedded in G, say to a vertex x.
Let x+ be an outneighbour of x in Q, and let x− be an inneighbour of x in Q
(our embedding of T ′ in G will ensure that such vertices exist). Since G is a
tournament, we must have either an edge b → x or x → b in G. In the former
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case we embed s− to b and s+ to x+, and in the latter case we embed s+ to b
and s− to x−; either way we have extended our embedding to cover the atypical
vertex b.

Once we have taken care of all atypical vertices in this manner, let Q− ⊆ U

and Q+ ⊆ W be the sets of uncovered vertices in U and W , respectively. The only
vertices of T not yet embedded are the removed neighbours of vertices in S− ∪S+.
We now use the fact that all vertices of Q− and Q+ are typical to find perfect
matchings in the graphs G[P− → Q+] and G[Q− → P+] (our embedding of T ′

in G will ensure for this that we have |P−| = |Q+| = |P+| = |Q−|). Recall
that each s ∈ S− was embedded to some vertex p ∈ P−, which is matched to
some q ∈ Q+; we embed the removed outneighbour of s to q. Likewise, each s ∈ S+

was embedded to some vertex p ∈ P+, which is matched to some q ∈ Q−; we
embed the removed inneighbour of s to q. This completes the embedding of T
in G.

Cycles of cluster tournaments. Suppose that G contains an almost spanning
cycle of cluster tournaments with clusters V1, . . . , Vk of equal size. Again we begin
by identifying the small set B of atypical vertices, which in this case are those
vertices in some cluster Vi which have atypically small inneighbourhood in Vi−1 or
atypically small outneighbourhood in Vi+1, as well as those vertices not contained
in any cluster Vi. We also choose a small set L of vertices of T each of which
is adjacent to at least one in-leaf and at least one out-leaf of T (this is possible
since T is nice). Following this we split T into subtrees T1 and T2 which partition
the edge-set of T and have precisely one vertex in common, so that T1 and T2

each contain many vertices of L. Next we form subtrees T ′1 and T ′2 of T1 and T2

respectively by removing one in-leaf and one out-leaf adjacent to each vertex of L.
Finally, we embed T into G by the following two steps.

First, we embed T1 in G so that all atypical vertices are covered and also so
that the number of vertices of T1 embedded in each cluster Vi is approximately
equal (more specifically, with an additive error on the order of n

log logn). To do
this, we apply a ‘random embedding algorithm’ of Kühn, Mycroft and Osthus [51]
to embed T ′1 into G so that approximately the same number of vertices of each
cluster are covered and also so that roughly the same number of vertices of L are
embedded to each cluster. (In fact, at this point we use slightly sharper estimates
on the numbers of vertices embedded in each cluster than those given in [51]; these
arise from the same proofs). Then, by a similar argument to that used for covering
atypical vertices in the previous case, for each i ∈ [k] and each vertex x ∈ L which
was embedded in the cluster Vi we may use the fact that G[Vi] is a tournament to
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choose an atypical vertex b and an uncovered vertex y ∈ Vi so that the removed
inneighbour and outneighbour of x can be embedded to b and y. This gives the
desired embedding of T1 in G.

Secondly, to complete the embedding of T in G we embed T2 into the uncovered
vertices of G (except for the single common vertex of T1 and T2 which is already
embedded). For this we again apply the random embedding algorithm to embed T ′2
in G with approximately the same number of vertices embedded within each cluster.
We then carefully embed the removed inneighbours and outneighbours of a small
number of vertices of L to achieve the following property. Let Ui ⊆ Vi be the
set of vertices of Vi which remain uncovered, and let Pi ⊆ Vi be the image of
vertices of L embedded to Vi whose removed inneighbour and outneighbour have
not yet been embedded. We ensure that 2|P1| = · · · = 2|Pk| = |U1| = · · · = |Uk|.
Having done so, we partition each set Ui into two equal-size parts U−i and U+

i , and
use the fact that all vertices which remain uncovered are typical to find perfect
matchings in G[U−i−1 → Pi] and G[Pi → U+

i+1] for each i ∈ [k]. Then, for each
vertex x in L whose removed inneighbour and outneighbour have not yet been
embedded, let p ∈ Pi be the vertex to which x was embedded, and let q− and q+

be the vertices to which p is matched in Ui−1 and Ui+1 respectively. We may then
embed the removed inneighbour and outneighbour of x to q− and q+ respectively;
doing so for every x ∈ L completes the embedding of T in G.

3.2 Preliminaries

The following structure plays a key role in our proof. Let d and ε be positive
real numbers, and let G be a digraph whose vertex set is the disjoint union
of sets V1, . . . , Vk. We say that G is a(d, ε)-regular cycle

of cluster
tournaments

(d, ε)-regular cycle of cluster tournaments if
for each i ∈ [k] the induced subgraphG[Vi] is a tournament and the digraphG[Vi →
Vi+1] is (d≥, ε)-regular (where addition on the subscript is taken modulo k).
Likewise, we say that G is a(d, ε)-super-

regular cycle
of cluster

tournaments

(d, ε)-super-regular cycle of cluster tournaments if for
each i ∈ [k] the induced subgraph G[Vi] is a tournament and the digraph G[Vi →
Vi+1] is (d, ε)-super-regular. In either case we refer to the sets V1, . . . , Vk as
theclusters clusters of G.

The following lemma, a combination of two lemmas from [51] about so-called
‘robust outexpanders’, states that every tournament with large minimum semide-
gree either admits a partition {S, S ′} where S and S ′ are not too small and (S, S ′)
is an almost-directed pair, or contains an almost-spanning cycle of cluster tourna-
ments.
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Lemma3.1. [51, Lemmas 2.7 and 2.8] Suppose that 1/n� 1/k1 � 1/k0 � ε�
d� µ� ν � η, and let G be a tournament on n vertices. Then either

(a) δ0(G) < ηn;

(b) G contains a spanning µ-almost-directed pair (S, S ′) with |S|, |S ′| > νn; or

(c) G contains a (d, ε)-regular cycle of cluster tournaments G′ with k clusters
of equal size, such that |G′| ≥ (1− ε)n and k0 ≤ k ≤ k1.

3.3 An approximate result (Theorem 1.9)

In this section we show how to obtain somewhat sharper estimates for the random
allocation and embedding algorithms in [51] to embed oriented trees in slightly
larger tournaments.

3.3.1 Allocation around a cycle of cluster tournaments

We begin with the random allocation algorithm of Kühn, Mycroft and Osthus [51],
which is presented below as Algorithm 3.2 (page 36). Given a rooted oriented
tree T and a cycle of cluster tournaments G with clusters V1, V2, . . . , Vk, this
assigns each vertex of T to a cluster of G. We allocate vertices of T one at
a time in an ancestral order. This ensures that whenever we allocate a vertex x
other than the root, the parent p of x has previously been allocated to some
cluster Vi. We then say that x is allocated canonicallycanonically if either p → x ∈ E(T )
and x is allocated to the cluster Vi+1, or p ← x ∈ E(T ) and x is allocated to
the cluster Vi−1. Moreover, we say that an allocation of the vertices of T to the
clusters of G is semi-canonicalsemi-canonical if every vertex of T is either allocated canonically
or allocated to the same cluster as its parent, every vertex adjacent to the root
of T is allocated canonically, and for each i ∈ [k] the set Ui of vertices allocated
to Vi induces a forest F = T [Ui] in which no connected component has more
than ∆(T ) vertices.

The following lemma, a slightly modified version of [51, Lemma 3.3], states
that Algorithm 3.2 will always return a semi-canonical allocation, and moreover
that if T is sufficiently large then the allocation of vertices to clusters will be
approximately uniform.
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Algorithm 3.2: The Vertex Allocation Algorithm [51]
Input : an oriented tree T with root r and clusters V1, . . . , Vk.

1 Choose an ancestral order t1, . . . , tn of V (T ) (so in particular t1 = r).
2 for τ = 1 to n do
3 if τ = 1 then allocate r to V1.
4 else
5 Let tσ be the parent of tτ .
6 if distT (tτ , r) is odd then allocate tτ canonically.
7 else Allocate tτ to the same cluster as tσ with probability 1/2 and

allocate tτ canonically with probability 1/2, independently of all
previous choices.

Lemma3.3. Let T be an oriented tree on n vertices rooted at r. If we allocate the
vertices of T to clusters V1, . . . , Vk by applying the Vertex Allocation Algorithm,
then the following properties hold.

(a) The allocation obtained will be semi-canonical.

(b) Let u and v be distinct vertices of T such that u lies on the path from r

to v, let P be the path between u and v, and let E ⊆ V (T ) consist of
all vertices x ∈ V (P ) \ {u} for which dist(r, x) is even. If we condition
on the event that u is allocated to some cluster Vj, then v is allocated to
cluster Vj+R+F (taking addition in the subscript modulo k) where R :=
B
(
|E|, 1

2

)
and F is a deterministic variable depending only on dist(r, u)

and the orientations of edges of P (that is, F is unaffected by the random
choices made by the Vertex Allocation Algorithm).

(c) Suppose that 1/n� 1/k. Let u and v be vertices of T such that u lies on
the path from r to v, and distT (u, v) ≥ (log log n)3. Then for any i, j ∈ [k],

P( v is allocated to Vi | u is allocated to Vj ) = 1
k

(
1± 1

4log log n

)
.

(d) Suppose that 1/n � 1/k, α, 1/C and that ∆(T ) ≤ (log n)C . Let S be
a subset of V (T ) with at least αn vertices. Then with probability 1− o(1)
each of the k clusters Vi has |S|

(
1
k
± 1

log logn

)
vertices of S allocated to it.

The statement above differs from the original version of the lemma in the
following ways. Firstly, (b) was not stated explicitly, but was established in the
original proof. Secondly, the original version of (c) instead had constants 1/k � δ,
assumed that distT (u, v) ≥ k3 instead of distT (u, v) ≥ (log log n)3, and had δ in
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place of 1
log logn in the displayed equation. Finally, the original version of (d) had

constants 1/n� 1/∆, 1/k � δ, assumed instead that ∆(T ) ≤ ∆, had δ in place
of 1

log logn , was only stated for the special case S = V (T ), and only provided an
upper bound on the number of vertices allocated to each cluster. So our version
of the lemma allows the bounds in (c) and (d) to decrease with n, and ∆(T ) to
grow with n, rather than being fixed constants. We now show how the original
proof can be modified to establish our altered versions of (c) and (d). We include
the proof for completeness.

Proof. We first observe that the algorithm allocates each edge either canonically or
within a cluster. Moreover, every edge incident to r must be allocated canonically
since the neighbours of r lie at odd distance from it; finally, any component
allocated within a cluster is a star of order at most ∆(T ) composed of a (non-root)
vertex and some of its neighbours, so (a) holds.

Call an edge of P oddodd if its endpoint which lies farthest from r is at odd distance
from r; we call the edge eveneven otherwise. To prove (b), let F := fodd − bodd − beven,
where fodd is the number of odd edges of P directed towards v and bodd is the
number of odd edges of P directed towards u and beven is the number of even edges
of P directed towards u. Let R be the sum of the number of even edges of P which
are allocated canonically and the number of even edges of P which are not allocated
canonically. Then R is a random variable with binomial distribution B

(
|E|, 1/2

)
,

where E is the set of even edges of P . Since the algorithm allocates vertices in an
ancestral order, u is the first vertex of P to be allocated, and hence (conditioned
to u being allocated to Vj) the cluster to which v is allocated is Vj+F+R as desired.

To prove (c), let ` := distT (u, v), and define E as in (b), so |E| = b `2c or |E| =
d `2e. By (b) it suffices to show that P

(
B
(
|E|, 1

2

)
= r mod k

)
= 1

k
± 1

4klog logn for
each r ∈ [k], and since |E| ≥ 1

3(log log n)3 this holds by Lemma 2.11.
The proof of (d) is identical to the proof of Lemma 4.15 (d) (taking ξ = 1/2

and using the estimates above), and so is omitted.

3.3.2 Embedding around a cycle of cluster tournaments

Having applied the random allocation algorithm to allocate the vertices of T (an
oriented tree) to G (a cycle of cluster tournaments which is slightly larger than T ),
Kühn, Mycroft and Osthus proceeded to embed T in G using a vertex embedding
algorithm which successively embedded vertices of T in G following an ancestral
order of the vertices of T , with each vertex being embedded in the cluster to
which is was allocated. Studying this algorithm yields the following lemma, which
is a modified form of [51, Lemma 3.4].
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Lemma3.4. Suppose that 1/n� 1/C and that 1/n� 1/k � ε� γ � d� α,

and let m := n/k.

(1) Let T be an oriented tree on at most n vertices with root r and ∆(T ) ≤
(log n)C .

(2) Let G be a (d, ε)-regular cycle of cluster tournaments on clusters V1, . . . , Vk,
each of size at least (1 + α)m and at most 3m, and let v be a vertex of V1

with at least γm inneighbours in Vk and at least γm outneighbours in V2.

(3) Let the vertices of T be allocated to the clusters V1, . . . , Vk so that at
most (1 + α/2)m vertices are allocated to each cluster Vi, and so that the
allocation is semi-canonical.

Then G contains a copy of T in which r is embedded to v, and such that each
vertex is embedded in the cluster to which it was allocated.

The differences between Lemma 3.4 as stated above and the original version
in [51] are twofold. Firstly, the original assumption that ∆(T ) ≤ ∆ for some
(fixed) ∆ with 1/n� 1/∆� ε has been replaced by our assumption that ∆(T ) ≤
(log n)C . Secondly, we allow the cluster sizes to vary between the bounds in (2),
whereas the original form insisted that all clusters have size exactly (1 + α)n.
Neither of these changes materially affects the original proof given in [51]. We
include a sketch of the proof of this result, after introducing some auxiliary results
and definitions.

We note that the upper bound 3m on the size of clusters in Lemma 3.4 (2) is
not strictly needed, but allows for a simpler proof.

We require an upper bound on the size of a tournament containing an arbitrary
tree of order n. Below we state the best known bound which holds for all n is due
to El Sahili (but any linear bound would suffice).

Theorem3.5. [29, Corollary 2] Every oriented tree on n vertices is contained in
every tournament on 3n− 3 vertices.

Let G be a digraph such that V (G) is the disjoint union of sets V1, . . . , Vk,
each of size m. We say that S ⊆ Vi is(c, γ)-good (c, γ)-good if for all V ′i−1 ⊆ Vi−1 and all
V ′i+1 ⊆ Vi+1 with |V ′i−1| ≥ cm and |V ′i+1| ≥ cm there exist γ

√
m vertices in S

which each have at least γm inneighbours in V ′i−1 and at least γm outneighbours
in V ′i+1. The next lemma guarantees the presence of good sets in any small subset
of a cluster.
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Lemma 3.6. [51, Lemma 2.5] Suppose that 1/m� ε� γ � c, d. Let G be an
(d, ε)-regular cycle of cluster tournaments on clusters V1, . . . , Vk, each of size m.
Then for any i ∈ [k] and for any V ′i ⊆ Vi of size |V ′i | = γm/2, there exists a
(c, γ)-good set S ⊆ V ′i with |S| ≤

√
m.

With these tools in place, we may describe how to embed T . Suppose C > 0
and let T be an oriented tree on n vertices with root r, such that ∆(T ) ≤ (log n)C .
Let G be a regular cycle of cluster tournaments whose clusters V1, . . . , Vk contain
each slightly more than m := n/k vertices. Finally, suppose we are given a
semi-canonical allocation of the vertices of V (T ) to G. Our goal is to embed T to
G according to this allocation.

As outlined in Section 3.1, we shall use a greedy algorithm (described below),
which proceeds by embedding at each step a component of T formed by edges
allocated within some cluster. More precisely, we form the canonical treecanonical tree Tcanon by
contracting the edges of T which were allocated within a cluster. Each component
contains at most ∆(T ) ≤ (log n)C vertices—we say that these vertices correspondcorrespond
to the vertex resulting from these contractions. (Note that no edge incident to t1 is
contracted.) We process the vertices of Tcanon in a tidy ancestral order, embedding
at each time τ all vertices corresponding to the current vertex.

For v ∈ T , we write C−(v) for the children of v in N−T (v), C−(v), C+(v)C+(v) for the
children of v in N+

T (v) and C(v)C(v) for C−(v) ∪ C+(v). We write Sx for the star
T
[
{x} ∪ C(x)

]
induced by x and its children.

I Embedding algorithm. If at any point in the description below there is more
than one possible choice available, we take the lexicographically first of these,
so that for each input the output will be uniquely defined—thus making the
algorithm deterministic. Furthermore, if at any point some required choice cannot
be made, terminate with failure.

At each time τ , with 1 ≤ τ ≤ n, we shall embed a vertex tτ to a vertex
vτ ∈ Vϕ(tτ ); we will also reserve sets A−τ , A+

τ for the children of tτ . We say that a
vertex ts of T is openopen at time τ if ts has been embedded but some child of ts has
not yet been embedded.

I Input. An oriented tree T with ancestral order t1 ≺ . . . ≺ tn of T , a homomor-
phism ϕ : T → R, where R is a directed Hamilton cycle. Also, a digraph G, a
partition V := {Vi : i ∈ R } of V (G), a vertex v1 ∈ Vϕ(t1) and constants c and γ.

I Procedure. At each time τ , with 1 ≤ τ ≤ n, we take the following steps.

I Step 1. Define the set Bτ of vertices of G unavailable for use at time τ to consist
of the vertices already occupied and the sets reserved for the children of open
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vertices, so
Bτ := {v1, . . . , vτ−1} ∪

⋃
ts : ts is open

(
A−s ∪ A+

s

)
For each Vi ∈ V , let V τ

i := Vi \Bτ , so V τ
i is the set of available vertices of Vi.

I Step 2. If τ = 1 embed t1 to v1. Alternatively, if τ > 1:

(2.1) Let tσ be the parent of tτ (so A−σ , A+
σ were reserved for the children of tσ).

(2.2) If tσ→tτ , let W := A+
σ ∩ Vϕ(tτ ); otherwise let W := A−σ ∩ Vϕ(tτ ).

(2.3) Let i = ϕ(tσ). Choose a set Wτ ∈ W such that |Wτ | ≥ 3(log n)2C and such
that for all v ∈ Wτ

deg−G(v, V τ
i−1) ≥ γm and deg+

G(v, V τ
i+1) ≥ γm. (3.1)

(2.4) Embed the star of T corresponding to tτ into vτ (using Theorem 3.5).

I Step 3. In Step 2 we embedded tτ to a set Wτ , where Wτ ∈ Vϕ(tτ ). For each
x ∈ C−(tτ ), choose a set A−x ⊆ N−G (vτ ) ∩ V τ

ϕ(x) containing at most 2m1/2 vertices
and which is (c, γ)-good for Sx; let A−τ be the union of these sets. Similarly, for
each y ∈ C+(τ), choose a set A+

y ⊆ N+
G (vτ ) ∩ V τ

ϕ(y) containing at most 2m1/2

vertices and which is (c, γ)-good for Sy; choose these sets so that they are pairwise
disjoint and let A+

τ be their union.
I Termination. Terminate after every vertex of T has been processed, at which

point ψ(ti) = vi for each ti ∈ T is an embedding ψ of T into G, by construction.

Remarks. Briefly, this algorithm embeds the vertices of a tree in a tidy ancestral
order. At any step a vertex is embedded and sets of vertices which are ‘good’
are reserved for the children of this vertex. To deal with vertices embedded
within a cluster we use the fact that the host graph is a tournament and that
the sets of reserved vertices are sufficiently large to embed any induced substar
of the tree (using the linear bound of Theorem 3.5). We describe a very similar
version of this algorithm in Section 4.3.4 (page 94), where a complete proof of
an embedding lemma (Lemma 4.16) is given, together with a proof sketch of
Lemma 3.4. The main differences there are that R might not be a cycle, and that
the host graph no longer is a tournament, so we never embed subtrees within
clusters; in particular, the notion of (c, γ)-good sets is replaced by a more general
property of being (β, γ, ϕ,m)-good (see Definition 4.3 on page 79). Since the
proof of Lemma 3.4 (stating the correctness of the above algorithm) is very similar
to the proof of Lemma 4.16, we defer the former until Section 4.3.4 (where we
prove Lemma 4.16).
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Combining Lemma 3.3 and Lemma 3.4 immediately yields the following
corollary, a modified version of [51, Lemma 3.2], in which the original constant
bound on ∆(T ) has been replaced by a polylogarithmic bound.

Corollary3.7. Suppose that 1/n� 1/C and that 1/n� 1/k � ε� d� α ≤ 2,
and let m := n/k. Let T be an oriented tree on at most n vertices with ∆(T ) ≤
(log n)C and with root r. Also let G be a (d, ε)-regular cycle of cluster tournaments
on clusters V1, . . . , Vk, each of size (1 + α)m, and let v be a vertex of V1 with
at least d2m inneighbours in Vk and at least d2m outneighbours in V2. Then G
contains a copy of T in which r is embedded to v.

Proof. Apply the Vertex Allocation Algorithm (Algorithm 3.2) to allocate the
vertices of T to the clusters V1, . . . , Vk. Then by Lemma 3.3(a) this allocation is
semi-canonical, and by Lemma 3.3(d) at most (1 + α/2)m vertices are allocated
to each of the k clusters Vi. Next, apply the Vertex Embedding Algorithm to
T and G, giving this allocation as input. By Lemma 3.4, this will successfully
embed T in G with r embedded to v.

3.3.3 Proof of Theorem 1.9

In this section we give the complete proof of Theorem 1.9. This theorem states
that for all positive α,C, if T is a (sufficiently large) oriented tree of order n such
that ∆(T ) ≤ (log n)C and G is a tournament of order (1 +α)n then G contains T .

We said that Theorem 1.9 is a sharpened version of [51, Theorem 1.4(2)].
Indeed, we shall essentially follow the proof of [51, Theorem 1.4(2)], using Corol-
lary 3.7 above in place of [51, Lemma 3.2]. More precisely, we first derive
Lemma 3.12— an analogous statement to [51, Lemma 3.1] in which the bound
∆(T ) ≤ ∆ for constant ∆ is replaced by ∆(T ) ≤ (log n)C . The (short) derivation
of this statement is identical to that given in [51], except that Corollary 3.7 is
used in place of [51, Lemma 3.2]. We then follow the proof of [51, Theorem 1.4(2)]
in Section 6 of [51], with the only changes being that we now use this modified
version of [51, Lemma 3.1]. Other results we use (from Sections 2 and 5 of [51])
are applied exactly as they are. (We emphasise that the proofs of these results
are quite very similar the ones in [51] to the original forms, but are included here
for convenience.)

The notion of ‘almost transitive’ tournaments plays a key role in the strategy
for proving Theorem 1.9. A tournament G on n vertices is ε-almost-transitiveε-almost-transitive if
the vertices of G can be given an order v1, . . . , vn so that at most εn2 edges are
directed against the order of the vertices, that is, they are directed from vj to vi
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where i < j. The following lemma states that any oriented tree is contained in
any slightly larger almost-transitive tournament.

Lemma 3.8. [51, Lemma 5.1] For all α > 0 there exist ε0 > 0 and n0 ∈ N such
that for any ε ≤ ε0 and any n ≥ n0, any ε-almost-transitive tournament G on at
least (1 + α)n vertices contains any oriented tree T on n vertices.

We now state various other definitions and results which we use in the proof
of Theorem 1.9. We make use of the following observation from [51], that if G
is a regular cycle of cluster tournaments on clusters V1, . . . , Vk, and we select a
subset Uj ⊆ Vj uniformly at random for each j ∈ [k], then with high probability
the restriction of G to these subsets is also regular. This follows from a lemma of
Alon et al. [4] showing that ε-regularity is equivalent to almost all vertices having
the expected degree and almost all pairs of vertices having the expected common
neighbourhood size.

Lemma3.9. [51, Lemma 2.6] Suppose that 1/m� 1/k � ε� ε′ � d and that
m1/3 ≤ m′ ≤ m. Let G be a (d, ε)-regular cycle of cluster tournaments on clusters
V1, . . . , Vk, each of size m. For each i ∈ [k], choose Ui ⊆ Vi of size m′ uniformly at
random, and independently of all other choices. Then with probability 1− o(1),
G[U1 ∪ · · · ∪ Uk] is a (d/2, ε′)-regular cycle of cluster tournaments.

Let G be a digraph on n vertices, and let µ be a positive constant. For any
subset S of V (G), theµ-robust

outneighbourhood
µ-robust outneighbourhood RN+

µ (S) is the set of vertices
of G with at least µn inneighbours in S. For 0 < µ ≤ ν ≤ 1/2 we say that G
is a(µ, ν)-robust

outexpander
(µ, ν)-robust outexpander when |RN+

µ (S)| ≥ |S| + µn for each S ⊆ V (G)
with νn < |S| < (1−ν)n. The following lemma states that any tournament which
is not a robust outexpander admits a vertex partition forming an almost-directed
pair.

Lemma 3.10. [51, Lemma 2.8] Suppose that 1/n � µ � ν. Let G be a
tournament on n vertices which is not a robust (µ, ν)-outexpander. Then we
can partition V (G) into sets S and S ′ such that νn < |S|, |S ′| < (1 − ν)n
and e(G[S ← S ′]) ≤ 4µn2.

Proof sketch. IfG is not a robust outexpander, then there exists a subset S ⊆ V (G)
with νn < |S| < (1 − ν)n which ‘witnesses’ this fact, and we can argue that
{S, V (G) \ S} is the desired partition.

Kühn, Mycroft and Osthus also gave a structural property of tournaments
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which are robust expanders with high minimum semidegree, namely that such
tournaments must contain an almost-spanning cycle of cluster tournaments (essen-
tially, the proof proceeds by applying a version of Szemerédi’s regularity lemma
for digraphs, then applying a result of Kühn, Osthus and Treglown [57] to find a
directed Hamilton cycle in the reduced digraph).

Lemma 3.11. [51, Lemma 2.7] Suppose that 1/n � 1/M � 1/M ′ � ε � d �
µ � ν � η. Let G be a tournament on n vertices which is a robust (µ, ν)-
outexpander with δ0(G) ≥ ηn. Then G contains a (d, ε)-regular cycle of cluster
tournaments on clusters V1, . . . , Vk of the same size where |⋃ki=1 Vi| > (1 − ε)n
and M ′ ≤ k ≤M .

From Lemma 3.11 and Corollary 3.7 we immediately obtain the following
lemma on embedding trees of logarithmic maximum degree in robust outexpander
tournaments. This is analogous to [51, Lemma 3.1], but now the maximum degree
bound is polylogarithmic rather than constant.

Lemma3.12. Suppose that 1/n� 1/C and that 1/n� µ� ν � η � α. Let G
be a tournament on (1 + α)n vertices which is a robust (µ, ν)-outexpander with
δ0(G) ≥ ηn and let T be an oriented tree on n vertices with ∆(T ) ≤ (log n)C .
Then G contains a copy of T .

Proof. If α > 2 then G contains a copy of T by Theorem 3.5. So we may
assume that α ≤ 2. We begin by introducing new constants 1/n � 1/M �
1/M ′ � ε � ε′ � d � µ. Then by Lemma 3.11, G contains a (d, ε)-regular
cycle of cluster tournaments G′ on clusters V1, . . . , Vk, where M ′ ≤ k ≤M , and
|V1| = · · · = |Vk| ≥ (1− ε)(1 + α)n/k ≥ (1 + α/2)n/k. For each i choose V ′i ⊆ Vi

of size |V ′i | = (1 + α/2)n/k uniformly at random. By Lemma 3.9 we may fix
an outcome of these choices so that G′′ = G′[V ′1 ∪ · · · ∪ V ′k] is a (d/2, ε′)-regular
cycle of cluster tournaments. So by Corollary 3.7 G′′ contains a copy of T , so G
contains T also.

We can now give the proof of Theorem 1.9, which we first restate. The
exposition here follows essentially the one of [51, Theorem 1.4]. The main
difference is that we to use Lemmas 3.3 and 3.12 (rather then the corresponding
versions in [51]) in order to achieve a polylogarithmic bound on ∆(T ).

Theorem 1.9. For every α,C > 0 there exists n0 such that if T is an oriented
tree on n ≥ n0 vertices with ∆(T ) ≤ (log n)C and G is a tournament on at
least (1 + α)n vertices, then G contains a copy of T .
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Proof outline. An important step in the proof is arguing that every tourna-
ment G is either almost-transitive or is almost spanned by large vertex-disjoint
tournaments G[S−], G[S] and G[S+] such that G[S] is a cycle of cluster tourna-
ments and almost all edges (of G) between these subtournaments are directed
from S− to S ∪̇S+ and from S− ∪̇S to S+. (This is shown using Algorithm 3.13.)
We then proceed as follows. If G is almost-transitive, then G contains every
almost-spanning subtree T by Lemma 3.8. Otherwise, we partition V (T ) into
three sets V −, V, V + of V (T ) with sizes roughly corresponding to S−, S, S+, so
that every edge of T between these sets is directed either from V − to V ∪ V + or
from V − ∪V to V +. We then embed T to G (with the forests T [V −], T [V ], T [V +]
embedded to G[S−], G[S], G[S+], respectively). Each component of these forests
is embedded greedily to its assigned partition. Importantly, slightly more vertices
of T are placed in V . This means that we have enough ‘room to spare’ to embed
T [V −] to G[V −] and T [V +] to G[V +]; on the other hand, we use Corollary 3.7 to
embed components of T to G[S].

Proof. The proof proceeds through three steps: first we partition the vertices of
G, then we partition the vertices of T to match the partition of V (G), and finally
we embed each part of T in the corresponding part of G.

I Step 1. Let A be the set of all positive α′ for which the statement of theorem
holds. In other words, α′ ∈ A if and only if for all C > 0 there exists n0 such
that for any n ≥ n0, any tournament on at least (1 + α′)n vertices contains any
tree T on n vertices with ∆(T ) ≤ (log n)C . Note that, if α′ ∈ A and α′′ > α′ then
α′′ ∈ A, and that 2 ∈ A by Theorem 3.5. Let ainf := inf A, so Theorem 1.9 if and
only if ainf = 0. We therefore suppose, looking for a contradiction, that ainf > 0.
Let C > 0 and choose constants

1
n0
� 1

n′0
� µ� ν � η � 1

∆ � γ � ainf,
1
C
.

If we set α := ainf−µ, then α < 2 and we may assume that γ � α. Also α+2µ ∈ A,
so for all n′ ≥ n′0, every tournament whose order is at least (1 +α+ 2µ)n′ contains
every tree T of order n′ such that ∆(T ) ≤ (log n′)2C . Our goal is to prove that, if
n ≥ n0, then every tournament G whose order is at least (1 + α)n contains every
tree T of order n such that ∆(T ) ≤ (log n)C . Since the choice of C is arbitrary,
this implies that α ∈ A, which in turn contradicts the assumption that ainf > 0.

Let G be a tournament of order at least (1 +α)n. If |G| ≥ 3n then G contains
every oriented tree T of order n by Theorem 3.5, so we assume that |G| < 3n.
Our next step is to find a large subtournament G′ ⊆ G and a partition of V (G′)
with some useful structural properties. More precisely, we first obtain an ordered
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family of subsets of V (G), using Algorithm 3.13 (page 45). At any iteration,
this algorithm maintains an ordered family Sτ := (Sτ1 , . . . , Sττ ) of pairwise vertex-
disjoint subsets of V (G) as well as a set Bτ of ‘bad’ edges; if the largest element
of Sτ is Sτq , then one of the following two things happens. The algorithm stops
if |Sτq | < γn or if G[Sτq ] is a robust outexpander with linear minimum semidegree;
otherwise, Sτq is split in two sets S ′, S ′′ such that almost all edges of G[Sτq ] are
directed from S ′ to S ′′, we mark a few more edges as bad and delete vertices
incident to too many bad edges. The key observations are contained in the next
claim.

Algorithm 3.13: Vertex Partition Algorithm
Input : a tournament G on n vertices; constants µ, ν, η and γ,

with 1
n
� µ� ν � η � γ � 1.

1 Let S1 = (V (G) ), and B1 = ∅.
2 for τ = 1, 2, . . . do
3 Let Sτq be a largest member of Sτ := (Sτ1 , . . . , Sττ ).
4 if |Sτq | < γn then terminate.
5 if G[Sτq ] is a robust (µ, ν)-outexpander and δ0(G[Sτq ]) > ηn then

terminate.
6 if there exists v ∈ Sτq with deg−Sτq (v) < ηn then
7 Let S ′ = {v} and S ′′ = Sτq \ {v}.
8 else if there exists v ∈ Sτq with deg+

Sτq
(v) < ηn then

9 Let S ′ = Sτq \ {v} and S ′′ = {v}.
10 else if G[Sτq ] is not a robust (µ, ν)-outexpander then
11 Apply Lemma 3.10 to partition Sτq into sets S ′ and S ′′ such

that |S ′|, |S ′′| > ν|Sτq | and
∣∣∣E(S ′′←S ′)

∣∣∣ ≤ 4µ|Sτq |2.

12 Let Sτ+1 =
(
Sτ1 , . . . , S

τ
q−1, S

′, S ′′, Sτq+1, . . . , S
τ
τ

)
and Bτ+1 =

Bτ ∪ E
(
G[S ′ ← S ′′]

)
.

13 for i ∈ [τ + 1] do
14 Delete all vertices in Sτ+1

i incident to more than √ηn edges
in Bτ+1.
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Claim 3.14. Algorithm 3.13 terminates at a time τend with τend ≤ |G| ≤ 3n.
Moreover, if G′ := G[Sτend

1 ∪̇ · · · ∪̇ Sτend
τend

], then |G′| ≥ |G| − 8√ηn and either

(i) G′ is 2γ-almost transitive, or

(ii) G′ admits a partition {S−, S, S+} such that

(a) S is a robust (µ, ν)-outexpander, |S| ≥ γn and δ0
(
G[S]

)
> ηn;

(b) deg−G(x, S ∪̇ S+) ≤ √ηn for all x ∈ S−; and
(c) deg+

G(z, S− ∪̇ S) ≤ √ηn for all z ∈ S+.

Proof. At any step τ the algorithm either terminates at steps 4 or 5 or the
condition of one of steps 6, 8 or 10 must hold. As a consequence, if the algorithm
does not terminate at time τ , then |Sτ+1| = |Sτ |+ 1. Since each member of Sτ+1

contains at least one vertex of G, the algorithm terminates at some time τend,
with τend ≤ |G| ≤ 3n.

If at time τ the algorithm does not terminate, then it splits Sτ` in either step 7,
9 or 11. We first argue that step 11 occurs at most 3/γν times. Indeed, any set
obtained by such split has size at least γνn (since |Sτ` | ≥ γn and |S ′|, |S ′′| ≥ ν|Sτ` |),
so we can have at most |G|/γνn ≤ 3/γν such sets.

We next show that G′ contains almost every vertex of G (i.e., not many vertices
have been deleted). Note that any vertex which is deleted must lie in S ′ ∪̇ S ′′.
For each τ < τend, if we split Sτq in either step 7 or 9 then e(S ′←S ′′) ≤ ηn,
and if we split Sτq in step 11 then e(S ′←S ′′) ≤ 4µ|G|2 ≤ 36µn2 by Lemma 3.10.
Since τend ≤ 3n and step 11 happens at most 3/γν times, we have |Bτend | ≤
3ηn2 + 108µn2/νγ ≤ 4ηn2. Since B1 ⊆ · · · ⊆ Bτend and every deleted vertex lies
in at least √ηn edges of Bτend , we have that

|G′| ≥ |G| − 8√ηn. (3.2)

We now prove (i) and (ii). Suppose first that the algorithm terminated in
step 4. Then |Sτend

i | < γn for all i ∈ [τend] and we will show that G′ is 2γ-almost-
transitive. Indeed let v1, v2, . . . , v|G′| be the vertices of G′, ordered so that all
vertices in Sτend

1 appear first, followed by all vertices in Sτend
2 and so on. Then any

edge vi←vj where i < j either lies in Bτend or has both endvertices in the same set
of Sτend . In other words the number of ‘backward’ edges in this order is at most

4ηn2 +
∑

S∈Sτend

(
|S|
2

)
≤ 4ηn2 +

∑
S∈Sτend

γn|S|
2 ≤ 4ηn2 + 3γn2

2 ≤ 2γn2.

Recall that |G′| ≥ (1 + α/2)n by (3.2), so G′ is 2γ-almost-transitive and (i) holds.
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If the algorithm terminates in step 5, then for some i ∈ [τend] we have that
G[Sτend

i ] is a (µ, ν)-robust outexpander such that |Sτend
i | ≥ γn and δ0(G[Sτend

i ]) ≥
ηn. Let S− := ⋃

1≤j<i S
τend
j , let S := Sτend

i and let S+ := ⋃
i<j≤τend S

τend
j , so these

sets are disjoint and G′ = G[S− ∪̇ S ∪̇ S+]. Moreover, all edges from S ∪̇ S+

to S− lie in Bτend , and so do all edges from S+ to S− ∪̇ S. To complete the proof,
consider the ordered family (S−, S, S+). Note that by definition any vertex v ∈ G′

is incident to at most √ηn edges directed ‘against’ this order (i.e., directed from
S+ to S− ∪̇ S or from S ∪̇ S+ to S−), since otherwise the algorithm would have
removed v at some time τ < τend. Thus {S−, S, S+} satisfies (ii). �

Returning to the proof of Theorem 1.9, our approach now depends on whether
Claim 3.14 (i) or (ii) holds. In the first case, G′ (and hence G) contains a copy
of T by Lemma 3.8, so there is nothing else to do. Otherwise, we let S−, S, S+

and G′ be as in (ii) and proceed to Step 2.
I Step 2. In this step we will build a partition {V −, V, V +} of V (T ) with part

sizes corresponding approximately to the sizes in the partition {S−, S, S+} of G′,
except that V will be slightly larger. Let β, β+ and β− be such that |S| = β|G′|,
|S+| = β+|G′| and |S−| = β−|G′|, so β + β+ + β− = 1 and β ≥ γn/|G′| ≥ γ/3.

Suppose first that β+ and β− are both small. More precisely, β+, β− ≤ αβ2/20,
so β ≥ 1−α/10. In this case we embed the whole of T to G[S]. Recall that T has
order n and that G[S] is a (µ, ν)-robust outexpander with δ0(G[S]) ≥ ηn. Also,

|S| = β|G′|
(3.2)
≥ (1 + α− 8√η)(1− α/10)n ≥ (1 + α/4)n,

so G[S] contains T by Lemma 3.12.
We finally analyse what happens if either β+ or β− is greater than αβ2/20.

In this case β ≤ 1 − αβ2/20, and we partition V (T ) according to the values of
β+ and β−.

β− is large and β+ is small. More precisely, β− > αβ2/20 and β+ ≤ αβ2/20.
Fix a partition {V −, V, V +} of V (T ) such that V + is empty, |V −| = β−(1−
αβ)n and all edges of T with one endpoint in V − and another in V are
directed from V − to V . (We can form T [V ] greedily by successively removing
a vertex of out-degree 0 from T , adding it to T [V ].) Since β+ + β + β− = 1,

|T [V ]| = n−|T [V −]| = βn(1+α−αβ)+(1−αβ)β+n ≤ βn(1+α−αβ)+αβ2n/20.

β− is small and β+ is large. More precisely, β− ≤ αβ2/20 and β+ > αβ2/20.
Fix a partition {V −, V, V +} of V (T ) such that V − is empty, |V +| = β+(1−
αβ)n and all edges of T with one endpoint in V and another in V + are
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directed from V to V +. Again |T [V ]| = n − |T [V +]| ≤ βn(1 + α − αβ) +
αβ2n/20.

β+ and β− are both large. More precisely, β+, β− > αβ2/20. Fix a partition
{V −, V, V +} of V (T ) such that |V −| = β−(1− αβ)n, |V +| = β+(1− αβ)n
and that all edges of T with endpoints in distinct sets are directed as
follows: edges between V − and any other set are directed away from V −,
and edges between any set and V + are directed towards V +. Note that
|T [V ]| = β(1 + α− αβ)n.

In all three cases above we have

β(1 +α−αβ)n ≤ |V | ≤ β(1 +α−αβ)n+αβ2n/20 ≤ β(1 +α)n− αβ2n

2 . (3.3)

I Step 3. In the final step we embed the forests T [V −], T [V ], T [V +] to the tourna-
ments G[S−], G[S], G[S+], respectively, so that they form a copy of T in G. This
will complete the proof, since a copy of T in G′ is also a copy of T in G. Recall
that in the previous step we chose V to be slightly larger than a proportional
partition of T would yield. While this gives us enough room to spare (by our
choice of α) when embedding T [V −] to G[S−] and T [V +] to G[S+], this is not
the case for T [V ] and G[S]. However, crucially, G[S] is a (somewhat large) robust
(µ, ν)-outexpander of linear semidegree.

Let T−1 , . . . , T−x be the component subtrees of T [V −], let T+
1 , . . . , T

+
y be the

component subtrees of T [V +], and let T1, . . . , Tz be the component subtrees of
T [V ]. We contract each of these component subtrees to a single vertex, and call
the resulting tree thecontracted tree contracted tree Tcon of T . Let W be the set vertices of Tcon

which correspond to components Ti with order at least n/∆ (so |W | ≤ ∆) and fix
an order of the vertices of Tcon which begins with the vertices in W and such that
each vertex in this order has at most ∆ neighbours preceding it. (To do this, fix
an ancestral order of Tcon starting at a vertex in W , then move all vertices of W to
the beginning of the order.) We shall proceed greedily, as follows: we first embed
the forest corresponding to the vertices in W , and then go on to embed each
component corresponding to the remaining vertices of Tcon in the order described
above.

Note that the vertices of W correspond to a subforest F of T [V ] with order at
most |V | and such that ∆(F ) ≤ (log n)C ≤

(
log |V |

)2C
. Since G[S] is a robust

(µ, ν)-outexpander of order

β|G′|
(3.2)
≥ β(1 + α− 8√η)n

(3.3)
≥

(
1 + αβ

10

)
|V | ≥ (1 + γ2)|V |
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and such that δ0
(
G[S]

)
≥ ηn, we have that G[S] contains a copy of this forest by

Lemma 3.12 (with 2C here playing there the role of C).
Let t? be the vertex of Tcon corresponding to the next component we will embed.

If t? ∈ V , then t? corresponds to some Ti, and since Ti has not been embedded
we have |Ti| ≤ n/∆. Moreover, t? has at most ∆ neighbours preceding it in Tcon.
Let t−1 , . . . , t−p be the inneighbours of t? which have already been embedded, and
let t+1 , . . . , t+q be the outneighbours of t? which have already been embedded. Then
each t−i is a vertex of V − and hence has been embedded to a vertex v−i ∈ S−, and
each t+j is a vertex of V + which has been embedded to a vertex v+

j ∈ S+. Let S?

be the set of unoccupied vertices in S ∩ ⋃i∈[p] N
+(v−i ) ∪ ⋃j∈[q] N

−(v+
j ). We want

to embed Ti to S?. Note that

|S?| ≥ |S| − (p+ q)√ηn− |V |
(3.3)
≥ β|G′| −∆√ηn− (β(1 + α)n− αβ2n/2)

(3.2)
≥ βn(1 + α)− (8 + ∆)√ηn− β(1 + α)n+ αβ2n/2
≥ αβ2n/3 ≥ 3n/∆ ≥ 3|Ti|,

and we can embed Ti to G[S?] by Theorem 3.5.
Otherwise, if t? corresponds to some T−i , then as above the vertices of T−i

have at most ∆ already-embedded neighbours, and all of these are outneighbours
of vertices of Ti which have been embedded to S ∪̇ S+. Let v1, . . . , vr be the
vertices of S ∪̇ S+ to which these vertices were embedded, and let S? be the set
of unoccupied vertices of S− ∩ ⋃i∈[r] N

−(vi). Since at most |V −| − |T−i | vertices
of V − have been embedded to S−, we have

|S∗| ≥ |S−| − r√ηn− (|T [V −]| − |T−i |)
(3.2)
≥ β−(1 + α)n− (8 + ∆)√ηn− β−(1− αβ)n+ |T−i |
≥ β−(α + αβ/2)n+ |T−i |. (3.4)

Where we that β− ≥ αβ2/20 and β ≥ γ/3, and hence we have η, 1/∆� γ, β, β−.
We conclude that |S∗| ≥ (1 + α + 2µ)|T−i | and therefore, if |T−i | ≥ β−αn/2, then
|T−i | ≥ n′0, and we can embed T−i to G[S∗] by our choice of n′0 (since α + 2µ ∈ A
and ∆(T−i ) ≤ (log n)C ≤ (log |T−i |)2C). On the other hand, if |T−i | < β−αn/2
then |S∗| ≥ 3|T−i | by (3.4), and so we can embed T−i to G[S∗] by Theorem 3.5.

The procedure in the case where t? corresponds to some T+
i is symmetric and

we omit the calculation. We continue in this way, embedding all components
of T [V −], T [V ] and T [V +]. This completes an embedding of T to G (and the
proof).
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In the proof of Theorem 1.4 (on Section 3.6) we use the following corollary.
This is a consequence of Theorem 1.9 and El Sahili’s Theorem 3.5. Indeed, this
corollary is simple to apply since it holds for both small and large trees.

Corollary3.15. Suppose that 1/n� α, 1/C. Let T be an oriented tree on n′ ≤ n

vertices with ∆(T ) ≤ (log n)C , and let G be a tournament on at least n′ + αn

vertices. Then G contains a copy of T .

Proof. Fix α,C > 0 and choose n0 sufficiently large to apply Theorem 1.9 with 2C
in place of C, and also so that log n0 ≥

(
1 + log(2/α)

)2
. Then we may assume

that n ≥ 2n0/α. If n′ > αn/2, then n′ > n0, so G contains a copy of T by
Theorem 1.9, since G has at least n′ + αn ≥ (1 + α)n′ vertices and ∆(T ) ≤
(log n)C ≤ (log n′)2C . On the other hand, if n′ ≤ αn/2, then |G| ≥ n′ + αn ≥ 3n′,
and thus G contains a copy of T by the aforementioned theorem of El Sahili.

3.4 Almost-directed pairs

Our aim in this section is to prove Lemma 3.18 (needed for the proof of Theo-
rem 1.4), which states that every nice oriented tree T of polylogarithmic maximum
degree is contained in every tournament whose vertex set admits a partition {U,W}
into not-too-small sets U and W such that the pair (U,W ) is almost-directed.

We begin with a definition and two lemmas. If (X, Y ) is a µ-almost-directed
pair in a digraph G, we say that an edge e ∈ E(G) is areverse edge reverse edge if e ∈
E
(
G[X ← Y ]

)
(so, by definition, an almost-directed pair has at most µ|X||Y |

reverse edges). Our first lemma guarantees that we may partition the vertex set of
an oriented tree T into sets A and B so that (A,B) is a directed pair in T and so
that specific in-subtrees of T have all their vertices in A and specific out-subtrees
of T have all their vertices in B. Moreover, we may specify the sizes of A and B
(subject to the trivial necessary conditions).
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Lemma3.16. Let T be an oriented tree on n vertices. Let T − be a collection of
in-subtrees of T , and let T + be a collection of out-subtrees of T , such that the
trees in T − ∪ T + are pairwise vertex-disjoint. If a and b are integers with

a ≥
∣∣∣∣ ⋃
S∈T −

V (S)
∣∣∣∣, b ≥

∣∣∣∣ ⋃
S∈T +

V (S)
∣∣∣∣ and a+ b = n,

then there exists a partition {A,B} of V (T ) with |A| = a and |B| = b such that
(A,B) is a directed pair in T and

⋃
S∈T −

V (S) ⊆ A and
⋃

S∈T +

V (S) ⊆ B.

Proof. The key observation is that in every oriented forest there is a vertex with
no inneighbours (since a forest has more vertices than edges). Define V − :=⋃
S∈T − V (S) and V + := ⋃

S∈T + V (S), and let k := a−|V −|, so 0 ≤ k ≤ n−|V −|−
|V +|. Greedily choose distinct vertices v1, v2, . . . , vk of V (T ) \ (V − ∪ V +) such
that vi has no inneighbours in T −

(
V − ∪ V + ∪ {v1, . . . , vi−1}

)
for each i ∈ [k].

The desired partition is then A := V − ∪ {v1, . . . , vk} and B := V (T ) \ A. Indeed,
we have V − ⊆ A, V + ⊆ B, |A| = |V −|+ k = a and |B| = n− |A| = b. It remains
to show that (A,B) is a directed pair in T . So suppose that u → v is an edge
of T and v ∈ A. It then suffices to show that we must have u ∈ A as well. For
this, observe that since V + ⊆ B consists of outstars of T , and v ∈ A, we cannot
have u ∈ V +. So if v /∈ V −, then v = vi for some i ∈ [k], and by choice of vi we
then have u ∈ V − ∪ {v1, . . . , vi−1} ⊆ A. On the other hand, if v ∈ V − then v is a
vertex of some in-subtree of T , so u must be a vertex of the same in-subtree; it
follows that u ∈ A.

Suppose now that T is an oriented tree of polylogarithmic maximum degree
whose vertex set is partitioned into sets A and B which form a directed pair (A,B)
in T , and also that G is a tournament whose vertex set admits a partition into
sets U and W such that (U,W ) is an almost-directed pair in G. The next lemma
shows that if U and W are slightly larger than A and B respectively, then under
the additional assumption that every vertex of G lies in few reverse edges, we
may embed T in G so that vertices of A are embedded in U and vertices of B
are embedded in W . (Recalling the proof outline of Theorem 1.4, we will use this
lemma to embed the subtree T ′ in G.)
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Lemma 3.17. Suppose that 1/n � 1/C and that 1/n � µ � α. Let T be an
oriented tree with ∆(T ) ≤ (log n)C and let {A,B} be a partition of V (T ) such
that (A,B) is a directed pair in T . Also let G be a tournament on n vertices.
If V (G) admits a partition {U,W} such that

(i) |U | ≥ |A|+ αn,

(ii) |W | ≥ |B|+ αn,

(iii) for each u ∈ U we have deg−(u,W ) ≤ µn, and

(iv) for each w ∈ W we have deg+(w,U) ≤ µn,

then there exists a copy of T in G such that every vertex in A is embedded in U
and every vertex in B is embedded in W .

Proof. Consider the oriented forest F with F := T [A]∪T [B] (so V (F ) = V (T ) and
the edges of F are the edges of T with both endvertices in A or both endvertices
in B). Let C1, . . . , Cs be the components of F , and let T ′ be the tree we obtain
by contracting V (Cj) to a single vertex vj, for each j ∈ [s]. We may assume the
components are labelled so that v1, . . . , vs is an ancestral order of V (T ′). We will
greedily embed C1, . . . , Cs in G in that order, defining a mapping ϕ : V (T ) →
U ∪W . For each j ∈ [s], let Uj (respectively Wj) be the set of vertices of U
(respectively W ) which have not been covered by the embedding of C1, . . . , Cj−1.

If V (C1) ⊆ A, then by (i) we have |U1| = |U | ≥ |A|+αn ≥ |C1|+αn, so there
exists a copy of C1 in G[U1] by Corollary 3.15. By a similar argument using (ii)
we may embed C1 in G[W1] if V (C1) ⊆ B. Now suppose that we have already
embedded components C1, . . . , Cj−1 for some 1 < j ≤ n, so ϕ(v) is defined for
every v ∈ ⋃j−1

i=1 V (Ci). Since we assumed that v1, . . . , vs was an ancestral order
of V (T ′), there exists a unique integer i ∈ [j− 1] for which some vertex u ∈ V (Ci)
is adjacent to some vertex v ∈ Cj. Suppose first that u → v ∈ E(T ). Then Ci
has been embedded in U and Cj is a component of T [B], and we want to
embed Cj in Wj ∩N+

(
ϕ(u)

)
. Note that ϕ(u) has at most µn inneighbours in W

by (iii), so by (ii) the number of outneighbours of ϕ(u) in W which are not in
the image of ϕ (that is, which are not covered by the embedding so far) is at
least |Wj| − µn ≥

(
|W | − |B|+ |Cj|

)
− µn ≥ |Cj|+ αn− µn ≥ |Cj|+ αn/2. We

may therefore embed Cj in G[Wj] by Corollary 3.15. If instead u ← v ∈ E(T )
then Cj is a component of T [A] and we may embed Cj in G[Uj] by a similar
argument using (i) and (iv). In either case we have extended ϕ as desired, and so
proceeding in this manner gives a copy of T in G.
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We are now ready to state and prove Lemma 3.18, the main result of this
section, following the approach sketched in the proof outline of Theorem 1.4
(Section 3.1).

Lemma 3.18. Suppose that 1/n � 1/C and that 1/n � µ � α, ν. Let G be
a tournament on n vertices, and let T be an α-nice oriented tree on n vertices
with ∆(T ) ≤ (log n)C . If there is a partition {U,W} of V (G) with |U |, |W | ≥ νn

such that (U,W ) is a µ-almost-directed pair in G, then G contains a (spanning)
copy of T .

Proof. Introduce new constants ψ and β so that 1/n � µ � ψ � β � α, ν.
Since (U,W ) is a µ-almost directed pair in G, there are at most µ|U ||V | reverse
edges, so at most √µ|U | vertices of U are incident to at least √µ|W | reverse edges,
and at most √µ|W | vertices of W are incident to at least √µ|U | reverse edges.
Let Z be the set of all such vertices, so z := |Z| ≤ √µ

(
|U |+ |W |

)
= √µn. Now

let W0 := W \ Z, and let X be the set of all vertices w ∈ W0 with deg0(w,W0) <
ψn. Then by Lemma 2.10 we have |X| < 4ψn. Choose a subset Y ⊆ W0

of size ψn uniformly at random. Note that for each w ∈ W0 \ X the values
of deg−(w, Y ) and of deg+(w, Y ) then have a hypergeometric distribution with
expectation at least ψn|Y |/|W0| ≥ ψ2n, so P( deg0(w, Y ) < ψ2n/2 ) decreases
exponentially with n by Theorem 2.14. Taking a union bound over the at most n
vertices w ∈ W0 \ X we find that with positive probability every w ∈ W0 \ X
has deg0(w, Y ) ≥ ψ2n/2 ≥ 2z. Fix a choice of Y for which this event occurs
and define U ′ := U \ Z and W ′ := W0 \ (Y ∪ X). Also let n′ := |U ′ ∪ W ′|,
so n′ ≥ n− |X| − |Y | − |Z| ≥ (1− 6ψ)n. Observe that we then have the following
properties.

(a) Every vertex u ∈ U \ Z has deg−(u,W ′) ≤ √µ|W | ≤ ψn′.

(b) Every vertex w ∈ W \ Z has deg+(w,U ′) ≤ √µ|U | ≤ ψn′.

(c) Every vertex w ∈ W ′ has deg0(w, Y ) ≥ 2z.

(d) |U ′| ≥ |U |−|Z| ≥ |U |−√µn and |W ′| ≥ |W |−|X|−|Y |−|Z| ≥ |W |−6ψn.

(e) ∆(T ) ≤ (log n)C ≤ (log n′)2C .

Define t := dβne. Let S− be the set of pendant instars of T which contain
an out-leaf of T , and let S+ be the set of pendant outstars of T which contain
both an in-leaf of T and an out-leaf of T . Observe that S− ∪ S+ is then a set of
vertex-disjoint subtrees of T . Moreover, since T is α-nice, we have |S−|, |S+| ≥
αn. We define S−1 , . . . , S−t to be the smallest t members of S− and S1, . . . , S

+
t+z
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to be the smallest t + z members of S+. Since t + z ≤ 2βn we must then
have

∣∣∣⋃i∈[t] V (S−i )
∣∣∣, ∣∣∣⋃i∈[t+z] V (S+

i )
∣∣∣ ≤ 2βn/α. For each i ∈ [t] let `+

i be an out-
leaf of T in S−i and let c−i be the centre of the star S−i , and for each i ∈ [z] let `+

t+i

be an out-leaf of T in S+
t+i. Similarly, for each i ∈ [t+ z] let `−i be an in-leaf of T

in S+
i and let c+

i be the centre of the star S+
i . We can be sure that these leaves

exist by definition of S+ and S−.
We now define T ′ to be the subtree of T obtained by deleting the leaves `+

i

and `−i from T for each i ∈ [t+ z]. So L−i := S−i − `+
i (respectively L+

i := S+
i − `−i )

is an in-subtree (respectively out-subtree) of T ′ for each i ∈ [t], and L+
t+j :=

S+
t+j −{`−t+j, `+

t+j} is an out-subtree of T ′ for each j ∈ [z]. Also define a := |U | − t
and b := |W |− t−2z. Then we have a ≥ νn− t ≥ 2βn/α ≥

∣∣∣⋃i∈[t] V (L−i )
∣∣∣ and b ≥

νn−t−2z ≥ 2βn/α ≥
∣∣∣⋃i∈[t+z] V (L+

i )
∣∣∣, and also a+b = |U |+ |W |−2t−2z = |T ′|,

so we may apply Lemma 3.16 to obtain a partition {A,B} of V (T ′) with |A| = a

and |B| = b such that (A,B) is a directed pair in T ′ and so that V (L−i ) ⊆ A

for each i ∈ [t] and V (L+
i ) ⊆ B for each i ∈ [t + z]. Next, since by (d) we

have |U ′| ≥ a + βn′/2 and |W ′| ≥ b + βn′/2, by (a), (b) and (e) we may apply
Lemma 3.17 (with n′, ψ, 2C and β/2 in place of n, µ, C and α respectively) to
obtain an embedding ϕ of T ′ in G so that ϕ(A) ⊆ U ′ and ϕ(B) ⊆ W ′.

We next embed the vertices `+
t+j and `−t+j for j ∈ [z] so that all vertices of Z

are covered. Note that our embedding of T ′ in G ensured that for each j ∈ [z] the
centre c+

t+j of S+
t+j was embedded to a vertex wt+j := ϕ(c+

t+j) inW ′, so in particular
we have deg0(wt+j, Y ) ≥ 2z by (c). This means that we can greedily choose
distinct vertices y−1 , y+

1 , . . . , y
−
z , y

+
z ∈ Y so that for each j ∈ [z] the vertex y−j is an

inneighbour of wt+j and y+
j is an outneighbour of wt+j. Write Z := {q1, . . . , qz},

and for each j ∈ [z] consider the orientation of the edge of G between qj and wt+j .
If qj → wt+j ∈ E(G), then we set ϕ(`−t+j) := qj and ϕ(`+

t+j) := y+
j . Similarly,

if qj ← wt+j ∈ E(G), then we set ϕ(`−t+j) := y−j and ϕ(`+
t+j) := qj.

Observe that we have now embedded all of the vertices of T except for the
leaves `+

1 , . . . , `
+
t and `−1 , . . . , `−t . Let P− := {ϕ(c−i ) : i ∈ [t] } and P+ := {ϕ(c+

i ) :
i ∈ [t] }, so P− ⊆ U ′ and P+ ⊆ W ′. Also, let Q− be the set of uncovered vertices
of U and let Q+ be the set of uncovered vertices of W . Then |Q−| = |U | − a = t,
and |Q+| = |W | − b − 2z = t, so we have |P−| = |P+| = |Q−| = |Q+| = t.
Observe that since we already covered all vertices of Z, we also have Q− ⊆ U \ Z
and Q+ ⊆ W \ Z. Together with the fact that t = dβne, by (a) and (b) it follows
that G[P− → Q+] and G[Q− → P+] are both (1, 1

2)-super-regular, so the balanced
bipartite underlying graph of each contains a perfect matching by Lemma 2.8.
For each j ∈ [t] let ϕ(`+

j ) ∈ Q+ (respectively ϕ(`−j ) ∈ Q−) be the vertex matched
to ϕ(c−j ) ∈ P− (respectively ϕ(c+

j ) ∈ P+); this completes the embedding ϕ of T
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in G.

3.5 Cycles of cluster tournaments

Our goal in this section is to prove Lemma 3.24, which states that every sufficiently
large tournament containing an almost-spanning regular cycle of cluster tourna-
ments contains a spanning copy of every nice oriented tree T with polylogarithmic
maximum degree. Recall from the proof sketch of Theorem 1.4 that for this we
split T into two subtrees T1 and T2. We then embed T1 so that all ‘atypical’
vertices are covered and so that roughly the same number of vertices from each
cluster are covered. Since T1 covered all atypical vertices, the vertices which
remain uncovered then form a super-regular cycle of cluster tournaments, and we
use this fact to embed T2 to cover all vertices which remain uncovered and so com-
plete the embedding of T in G. In Section 3.5.1 we focus on the embedding of T1,
showing that we can find an embedding with the desired properties (Lemma 3.19).
Likewise, in Section 3.5.2 we consider the embedding of T2, and prove that we can
indeed embed T2 so as to cover all remaining vertices, as desired (Lemma 3.20).
Finally, in Section 3.5.3 we combine these results to prove Lemma 3.24 by first
splitting T into subtrees T1 and T2 and then successively embedding these subtrees
using Lemmas 3.19 and 3.20.

3.5.1 Embedding the first subtree

The subtree T1 will have polylogarithmic maximum degree and will contain many
vertices which are adjacent to at least one in-leaf and at least one out-leaf of T ,
and we wish to embed T1 into a tournament G which contains an almost-spanning
cycle of cluster tournaments so that approximately the same number of vertices
of T1 are embedded in each cluster. The following lemma states that we can
indeed do this.
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Lemma 3.19. Suppose that 1/n � 1/k � ε � d � ψ � β � α and also
that 1/n� 1/C. Let T be an oriented tree of order n, with root r and maximum
degree ∆(T ) ≤ (log n)C , which contains at least βn distinct vertices that are each
adjacent to at least one in-leaf and one out-leaf of T . Let G be a tournament which
contains a (d, ε)-regular cycle of cluster tournaments whose clusters V1, . . . , Vk

have size (1 +α)n
k
≤ |Vi| ≤ 3n

k
for each i ∈ [k], and assume additionally that B :=

V (G) \ ⋃i∈[k] Vi has size |B| ≤ ψn. Then there exists an embedding ϕ of T in G
covering B, such that r is embedded in V1 and such that for each i ∈ [k] we have

∣∣∣ϕ(V (T )
)
∩ Vi

∣∣∣ =
(
n− |B|

)(1
k
± 2

log log n

)
.

Loosely speaking the proof proceeds as follows. We begin by selecting from
each cluster Vi a large subset V ′i of vertices which each have large semidegree
in Vi\V ′i . Then V ′1 , . . . , V ′k are the clusters of a regular cycle of cluster tournaments
in G′ := G

[⋃
i∈[k] V

′
i

]
. We remove a small number of leaves from T to obtain

a subtree T ′, and embed T ′ in G′ by using the Vertex Allocation Algorithm
(Algorithm 3.2) and Lemma 3.4. Lemma 3.3 then ensures that approximately
the same number of vertices are embedded in each cluster. Finally, we extend
the embedding of T ′ in G to an embedding of T in G by embedding the removed
leaves so as to cover all vertices of B.

Proof. Define m := n
k
, so (1 + α)m ≤ |Vi| ≤ 3m for each i ∈ [k], and let δ :=

1
log logn . Let Bi be the set of all vertices x ∈ Vi such that deg0(x, Vi) < αm/20.
By Lemma 2.10 we have |Bi| < αm/4. For each i ∈ [k], pick a subset Yi ⊆ Vi of
size |Yi| = αm/4 uniformly at random with choices made independently for each i.
Note that for each i ∈ [k] and each x ∈ Vi \Bi, the random variables deg−(x, Yi)
and deg+(x, Yi) then have hypergeometric distributions with expected value
at least (αm/20)|Yi|/|Vi| > 5βm, and thus P( deg0(x, Yi) < 4βm ) decreases
exponentially with n by Theorem 2.14. Taking a union bound, we find that
there is a positive probability that for every i ∈ [k] and every x ∈ Vi \ Bi we
have deg0(x, Yi) ≥ 4βm. Fix a choice of sets Y1, . . . , Yk such that this event occurs,
and for each i ∈ [k] let V ′i := Vi \ (Yi ∪Bi), so

3m ≥ |Vi| ≥ |V ′i | ≥ |Vi| − |Bi| − |Yi| > (1 + α)m− αm

4 −
αm

4 =
(

1 + α

2

)
m

and so deg0(x, Yi) ≥ 4βm for each x ∈ V ′i . Let G′ := G[V ′1 ∪ · · · ∪ V ′k], and
observe that since V1, . . . , Vk were the clusters of a (d, ε)-regular cycle of clus-
ter tournaments in G, by Lemma 2.7 the sets V ′1 , . . . , V ′k are the clusters of a
spanning (d, 3ε)-regular cycle of cluster tournaments in G′. In particular we
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may choose a vertex v ∈ V ′1 with at least (d− 3ε)|V ′k| inneighbours in V ′k and at
least (d− 3ε)|V ′2 | outneighbours in V ′2 . The tournament G′, the clusters V ′1 , . . . , V ′k
and the vertex v then meet the conditions of Lemma 3.4 with α/2 and 3ε in place
of α and ε respectively (and with n playing the same role there as here).

Let t := dβne − 1, and choose a set W := {w1, . . . , wt} of t distinct vertices
in T so that each wi is adjacent to at least one in-leaf and at least one out-leaf of T
and so that r is not a leaf of T which is adjacent to a vertex ofW (such a set exists
by the assumptions of the lemma). For each j ∈ [t], let w−j and w+

j be respectively
an in-leaf and an out-leaf adjacent to wj. Let T ′ be the oriented tree we obtain
by deleting from T the vertices w−j and w+

j for each j ∈ [t], so |T ′| = n − 2t
and ∆(T ′) ≤ ∆(T ) ≤ (log n)C ≤ (log(n − 2t))2C . Also take r to be the root
of T ′, and apply the Vertex Allocation Algorithm (Algorithm 3.2) to allocate the
vertices of T ′ to the clusters V ′1 , . . . , V ′k . By Lemma 3.3(a) the obtained allocation
will be semi-canonical. Moreover, by two applications of Lemma 3.3(d) (with β/2
and 2C in place of α and C respectively) we have with probability 1− o(1) that
for each i ∈ [k] the number of vertices of T ′ allocated to the cluster V ′i is

(n− 2t)
(

1
k
± 1

log log(n− 2t)

)
= n− 2t

k
± 3δn

2 , (3.5)

and the number of vertices of W allocated to the cluster V ′i is

t

(
1
k
± 1

log log(n− 2t)

)
= t

k
± 3δt

2 . (3.6)

Fix an outcome of the Vertex Allocation Algorithm for which each of these events
occurs, and apply Lemma 3.4 to obtain an embedding ϕ of T ′ in G′ so that r is
embedded to v and each vertex of T ′ is embedded in the cluster V ′i to which it is
allocated. In particular r is embedded in V1, as required.

We now extend ϕ to an embedding of T inG which covers B. Let b := |B| ≤ ψn,
and let q1, . . . , qb be the vertices of B. Also let p ∈ [k] be such that b ≡ p mod k,
and for each i ∈ [k] choose Wi ⊆ W such that ϕ(Wi) ⊆ ϕ(W ) ∩ V ′i and so that
|Wi| = db/ke if i ∈ [p] and |Wi| = bb/kc if i ∈ [k] \ [p]. (Since b/k ≤ ψn/k and
ψ � β, we have that (3.6) ensures that we can indeed choose such sets.) The
sets W1, . . . ,Wk are then vertex-disjoint and |⋃i∈[k] Wi| = b, so by relabelling
if necessary we may assume that ⋃i∈[k] Wi = {w1, . . . , wb}. For each j ∈ [t]
set pj := ϕ(wj) and write ij to denote the index such that pj ∈ Vij . Greedily
choose 2t distinct vertices c−1 , c+

1 , . . . , c
−
t , c

+
t so that for each j ∈ [t] we have

that c−j , c+
j ∈ Yij , that c−j is an inneighbour of pj and that c+

j is an outneighbour
of pj . It is possible to make such choices since for each i ∈ [k] there are at most 2t/k
vertices wj with ij = i by (3.6), and because for each j ∈ [t] we have pj ∈ V ′ij
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(since wj is a vertex of T ′), so the semidegree of pj in Yij is at least 4βm ≥ 2 ·(2t/k)
by our choice of the sets Yi.

Recall that each vertex in W is adjacent to precisely one removed in-leaf w−j
of T and one removed out-leaf w+

j of T , and that these leaves have not yet been
embedded. For each s ∈ [b] we embed one of these leaves to the vertex qs and the
other to either c−s or c+

s according to the direction of the edge between qs and ps.
For each b + 1 ≤ s ≤ t we then embed the in-leaf of ws to c−s and the out-leaf
of ws to c+

s . More precisely, for all integers s with 1 ≤ s ≤ b we set ϕ(w−s ) := qs

and ϕ(w+
s ) := c+

s if qs → ps ∈ E(G), and set ϕ(w+
s ) := qs and ϕ(w−s ) := c−s

if qs ← ps ∈ E(G). Then, for all integers s with b < s ≤ t we set ϕ(w−s ) := c−s
and ϕ(w+

s ) := c+
s . Following this extension ϕ is an embedding of T in G which

covers every vertex in B. Moreover, for each i ∈ [k] the number of vertices
embedded in the cluster Vi is

∣∣∣ϕ(V (T )
)
∩ Vi

∣∣∣ =
(
n− 2t
k
± 3δn

2

)
+ 2

(
t

k
± 3δt

2

)
−
(
b

k
± 1

)

=
(
n− |B|

) (1
k
± 2δ

)

where the first term counts the number of vertices of T ′ embedded in Vi (see (3.5)),
and the second and third terms count the number of removed leaves embedded
in Vi. Indeed, by (3.6) there are t/k ± 3δt/2 vertices of W embedded in Vi, each
of which is adjacent to two removed leaves, and these removed leaves are each
embedded in Vi except for the bb/kc or db/ke leaves embedded in B.

3.5.2 Embedding the second subtree

Recall from the outline at the beginning of this section that, following the em-
bedding of the first subtree T1, the vertices which remain uncovered form a
super-regular cycle of cluster tournaments. We wish to embed the second sub-
tree T2 so that all of these vertices are covered. The following lemma demonstrates
that this is possible.

Lemma 3.20. Suppose that 1/n � 1/C and that 1/n � 1/k � ε � d � β.
Let T be an oriented tree on n vertices with root r, with maximum degree ∆(T ) ≤
(log n)C , and which contains at least βn distinct vertices that are each adjacent to
at least one in-leaf and at least one out-leaf of T . Let G be a (d, ε)-super-regular
cycle of cluster tournaments on n vertices whose clusters V1, . . . , Vk each have
size n

k
± 2n

log logn , and let v be a vertex of V1. Then G contains a (spanning) copy
of T in which r is embedded to v.
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Loosely speaking, the proof of Lemma 3.20 begins by removing a small number
of in-leaves and out-leaves of T to obtain a subtree T ′. We then select small
disjoint subsets Xi and Yi of Vi for each i ∈ [k] with the property that each vertex
in Vi has many inneighbours in each of Xi−1 and Yi−1 and many outneighbours
in each of Xi+1 and Yi+1, and so that most vertices in Vi have large semidegree
in Xi. Removing these sets from G yields a subgraph G′ of G which is a regular
cycle of cluster tournaments, and we embed T ′ in G′ using Lemmas 3.3 and 3.4.
It remains to embed the removed leaves of T so as to cover all vertices of G
which remain uncovered. We first use the fact that the image of each vertex
of T ′ embedded in Vi has large semidegree in Xi to embed a small number of
removed leaves to equalise the numbers of uncovered vertices in each cluster and
the numbers of removed leaves needing to be embedded in that cluster, before
completing the embedding by using the super-regularity of G to find perfect
matchings in appropriate auxiliary bipartite graphs.

Proof. Introduce new constants η and γ such that ε � η � γ � d. Also
define δ := 2

log logn and m := n
k
, so each cluster has size m± δn, assume without

loss of generality that β ≤ 1
4 , and let t := dβne − 1. Choose a set W of t distinct

vertices of T so that each w ∈ W is adjacent to at least one in-leaf of T and
at least one out-leaf of T and so that r is neither in W nor a leaf of T which
is adjacent to a vertex of W (our assumption on T ensures that we can choose
such a set W ). Let T ′ be the oriented tree formed by deleting from T precisely
one in-leaf and one out-leaf adjacent to each vertex of W , and take r to be the
root of T ′. Observe that T ′ then has precisely n − 2t vertices and maximum
degree ∆(T ′) ≤ ∆(T ) ≤ (log n)C ≤

(
log(n− 2t)

)2C
; in other words, T ′ meets the

conditions of Lemma 3.4 with n − 2t and 2C in place of n and C respectively.
We will embed T ′ in an appropriate subgraph of G, which we find by using the
following claim.

Claim3.21. For each i ∈ [k] there exist sets Fi, Xi, Yi ⊆ Vi with Xi, Yi ⊆ Fi such
that, writing V ′i := Vi \ Fi, we have

(i) |Fi| ≤ 3γm,

(ii) Xi and Yi are disjoint, and v ∈ V ′1 ,

(iii) for each x ∈ V ′i \ {v} we have deg0(x,Xi) ≥ ηm, and

(iv) for each x ∈ Vi we have

deg−(x,Xi−1), deg−(x, Yi−1), deg+(x,Xi+1), deg+(x, Yi+1) ≥ ηm.
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Proof. For each i ∈ [k] let Di ⊆ Vi be the set of all vertices x ∈ Vi such
that deg0(x, Vi) < γm/5, so |Di| ≤ γm by Lemma 2.10. Then deg0(x, Vi) ≥ γm/5
for all x ∈ Vi \Di. Also, since V1, . . . , Vk are the clusters of a (d, ε)-super-regular
cycle of cluster tournaments, every vertex x ∈ Vi has at least (d− ε)|Vi−1| ≥ dm/2
inneighbours in Vi−1 and at least (d − ε)|Vi+1| ≥ dm/2 outneighbours in Vi+1.
For each i ∈ [k] choose disjoint subsets Xi, Yi ⊆ Vi with |Xi| = |Yi| = bγmc
uniformly at random and independently of all other choices. Then for each i ∈ [k]
and each x ∈ Vi the random variables deg−(x,Xi−1), deg−(x, Yi−1), deg+(x,Xi+1)
and deg+(x, Yi+1) each have hypergeometric distribution with expectation at
least (dm/2)bγmc/(m + δn) ≥ dγm/3 ≥ 2ηm; if additionally x ∈ Vi \Di, then
the random variables deg+(x,Xi) and deg−(x,Xi) each have hypergeometric
distribution with expectation at least (γm/5)bγmc/(m + δn) ≥ γ2m/6 ≥ 2ηm.
The probability that any given one of these random variables is less than ηm+ 1
therefore decreases exponentially with n by Theorem 2.14, so by taking a union
bound over all of these at most 6n events we find that with positive probability
none of these random variables is less than ηm+ 1. Fix a choice of the sets Xi

and Yi with this property, then removing v from the sets X1 and Y1 if necessary
and taking F1 := (X1 ∪ Y1 ∪D1) \ {v} and Fi := Xi ∪ Yi ∪Di for each 2 ≤ i ≤ k

gives the desired sets. �

Fix sets Fi, Xi, Yi and V ′i as in Claim 3.21, and observe that

|V ′i | = |Vi| − |Fi| ≥ m− δn− 3γm ≥
(

1− β

4

)
m ≥ (1 + β) n− 2t

k
.

Let G′ := G[V ′1 ∪· · ·∪V ′k ], and note that by Lemma 2.7 G′ is then a (d, 2ε)-regular
cycle of cluster tournaments with clusters V ′1 , . . . , V ′k . Observe also that v has at
least (d−ε)|V2|−|F2| ≥ γm outneighbours in V ′2 and at least (d−ε)|Vk|−|Fk| ≥ γm

inneighbours in V ′k. In other words, G′ meets the conditions of Lemma 3.4
with n − 2t, β and 2ε in place of n, α and ε respectively (so, in particular, m
there corresponds to m− 2t/k here).

Apply the Vertex Allocation Algorithm (Algorithm 3.2) to allocate the vertices
of T ′ to the clusters V ′1 , . . . , V ′k of G′. For each i ∈ [k] let T ′i consist of all vertices
of T ′ allocated to the cluster V ′i , and likewise let Wi ⊆ W consist of all vertices
of W allocated to the cluster V ′i . By Lemma 3.3(a) the allocation we obtain from
the Vertex Allocation Algorithm will be semi-canonical. Furthermore, by two
applications of Lemma 3.3(d) (with n− 2t, 2C and β/2 in place of n, C and α
respectively) we find with probability 1− o(1) that for every i ∈ [k] we have

|Wi| := |W |
(

1
k
± 1

log log(n− 2t)

)
= t

k
± δn (3.7)
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and
|T ′i | := (n− 2t)

(
1
k
± 1

log log(n− 2t)

)
= m− 2t

k
± δn. (3.8)

Fix an allocation with these properties, and observe that this allocation then meets
the conditions of Lemma 3.4 with n− 2t and β in place of n and α respectively
(since δ � β). So we may apply Lemma 3.4 to obtain an embedding ϕ of T ′ in G′

such that each vertex of T ′ is embedded in the cluster to which it was allocated
and so that ϕ(r) = v.

For each i ∈ [k], let Ui ⊆ Vi be the set of vertices of Vi not covered by ϕ and
let U := ⋃

i∈[k] Ui. Then, since every vertex was embedded in the cluster to which
it was allocated, by (3.8) we have for each i ∈ [k] that

|Ui| = |Vi| − |T ′i | = (m± δn)−
(
m− 2t

k
± δn

)
= 2t

k
± 2δn, (3.9)

and since |G| = n and |T ′| = n − 2t we have |U | = 2t. Also, for each i ∈ [k],
let Pi := ϕ(Wi) and write P := ⋃

i∈[k] Pi. In other words, Pi (respectively P ) is
the set of vertices of G to which vertices of Wi (respectively W ) were embedded.
So Pi ⊆ V ′i and |Pi| = |Wi|, and similarly |P | = |W | = t.

Our next goal is to choose, for each x ∈ P , an inneighbour x− of x in U and an
outneighbour x+ of x in U such that the chosen inneighbours and outneighbours are
all distinct, and with this we will be able to complete the embedding. Indeed, for
each vertex w ∈ W there is a unique vertex x ∈ P with ϕ(w) = x. Let w+ and w−

denote the out-leaf and in-leaf adjacent to w which we removed when forming T ′;
we could then embed w+ to x+ and w− to x−, and doing so for each w ∈ W would
extend ϕ to an embedding of T in G, completing the proof. If for every i ∈ [k]
both G[Ui−1 → Pi] and G[Pi → Ui+1] are super-regular and |Ui| = |Pi−1|+ |Pi+1|,
then (after appropriately partitioning the sets Ui) we could apply Lemma 2.8 to
find, for each i ∈ [k] and each x ∈ Pi, vertices x− ∈ Ui−1 and x+ ∈ Ui+1 satisfying
the above properties. However, neither of these assumptions is necessarily valid.
Over the following steps of the proof we embed the removed leaves adjacent to a
small number of vertices of W so that these assumptions do indeed hold for the
remaining vertices; we then complete the embedding of T in G in the manner
described above.

I Step 1: Balancing the sets Wi and ensuring super-regularity. The first
step of this process is to embed the removed leaves adjacent to a small number
of vertices of W so that equally many vertices in each set Wi have not had their
adjacent removed leaves embedded. We also cover all vertices in each set Ui which
have too few inneighbours in Pi−1 or too few outneighbours in Pi+1; this will
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ensure that the auxiliary bipartite graphs which we consider at the end of the
proof are super-regular.

For each i ∈ [k] define si := b4εmc + |Wi| − mini∈[k] |Wi|, so by (3.7) we
have b4εmc ≤ si ≤ 4εm+ 2δn. For each i ∈ [k], let B−i be the set of vertices in Ui
with fewer than ηm inneighbours in Pi−1, and let B+

i be the set of vertices in Ui
with fewer than ηm outneighbours in Pi+1. Since G[Vi−1 → Vi] is (d≥, ε)-regular,
and |Pi−1| = |Wi−1| ≥ t/k − δn > ε|Vi−1| by (3.7), we must have |B−i | ≤ ε|Vi| ≤
2εm; likewise, since G[Vi → Vi+1] is (d≥, ε)-regular and |Pi+1| > ε|Vi+1|, we must
have |B+

i | ≤ ε|Vi| ≤ 2εm. So we may choose for each i ∈ [k] a subset Bi ⊆ Ui of
size |Bi| = si with B−i ∪B+

i ⊆ Bi.
Next, for each i ∈ [k] we proceed as follows. Let {b1, . . . , bsi} be the vertices

in Bi, arbitrarily choose distinct vertices w1, . . . , wsi ∈ Wi, and for each j ∈ [si]
let pj := ϕ(wj), so pj ∈ Pi. Since W ⊆ V (T ′) \ {r}, for each j ∈ [si] the vertex pj
was embedded in V ′i \ {v}, so by Claim 3.21(iii) we have deg0(pj, Xi \ Bi) ≥
deg0(pj, Xi) − |Bi| = ηm − si ≥ si. We may therefore choose distinct ver-
tices x1, . . . , xsi in Xi \Bi such that for each j ∈ [si], the vertex xj is an inneigh-
bour of pj if bj ∈ N+(pj), whilst xj is an outneighbour of pj if bj ∈ N−(pj). For
each j ∈ [si] let w+

j be the removed out-leaf of T adjacent to wj and let w−j be
the removed in-leaf of T adjacent to wj. If bj ∈ N+(pj) then we set ϕ(w+

j ) = bj

and ϕ(w−j ) = xj, whilst if bj ∈ N−(pj) then we set ϕ(w−j ) = bj and ϕ(w+
j ) = xj.

Observe that our choice of vertices x1, . . . , xsi ensures that these embeddings are
consistent with the directions of the edges w−j → wj and wj → w+

j .
Having carried out these steps for each i ∈ [k] we have extended the em-

bedding ϕ to cover all vertices in B1 ∪ · · · ∪ Bk. For each i ∈ [k] we now
define W 0

i := Wi \{w1, . . . wsi} and P 0
i := Pi \{p1, . . . , psi}. In other words, W 0

i is
the set of vertices of W which were embedded in V ′i and whose adjacent removed
leaves have not yet been embedded, and P 0

i is the set of vertices of G to which
vertices of W 0

i have been embedded. By (3.7) we then have

|P 0
i | = |W 0

i | = |Wi| − si = min
i∈[k]
|Wi| − b4εmc = t

k
− 4εm± δn, (3.10)

so in particular we have |W 0
1 | = · · · = |W 0

k | = |P 0
1 | = · · · = |P 0

k |. Similarly, for
each i ∈ [k] we define U0

i := Ui \ {b1, x1, . . . , bsi , xsi}. In other words, U0
i is the

set of vertices of Vi which have not yet been covered by ϕ. By (3.9) we then have

|U0
i | = |Ui| − 2si = 2t

k
− 8εm± 6δn. (3.11)

Write W 0 := ⋃
i∈[k] W

0
i , P 0 := ⋃

i∈[k] P
0
i , and U0 := ⋃

i∈[k] U
0
i . So in particular U0 is

the set of vertices of G which remain uncovered. Since there are two such vertices
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ss+ 2 s+ 1 r + 1 r r − 1

pi:

· · · · · ·
Xi ∩ Uτ

i :

· · · · · ·
K1 K1K2

Figure 3.1: This diagram illustrates how we extend the embedding ϕ at each
step of the balancing algorithm. The vertices p1, . . . , pk at the top lie in the
sets P τ

1 , . . . , P
τ
k respectively, and the shaded areas represent the sets Xi ∩ U τ

i

for i ∈ [k] (that is, the vertices of Xi not yet covered by ϕ). The extension of ϕ at
step τ then covers the vertices drawn in the shaded areas, so three extra vertices
are covered from Vr, one from Vs, and two from each other cluster.

for each vertex of W 0, and |W 0
1 | = |W 0

2 | = · · · = |W 0
k |, it follows that |U0| is

divisible by 2k.
I Step 2: Balancing the numbers of uncovered vertices. Our next step

is to embed the removed leaves adjacent to a small number of vertices of W
so that, following these embeddings, there are equally many uncovered vertices
within each cluster (while preserving super-regularity as well as the property
|W1| = · · · = |Wk| from Step 1).

We achieve this by applying the following ‘balancing algorithm’. Each iteration
of this algorithm will extend ϕ by embedding, for each i ∈ [k], the removed in-leaf
and out-leaf adjacent to some vertex in Wi.

The balancing algorithm proceeds as follows. For each time τ ≥ 0 and for
each i ∈ [k], we let W τ

i ⊆ Wi be the set of vertices of T whose adjacent removed
leaves have not yet been embedded, we let P τ

i ⊆ Pi be the set of vertices of G
to which vertices of W τ

i have been embedded, and we let U τ
i ⊆ Vi be the set of

uncovered vertices in Vi at time τ . Observe that these definitions ofW 0
i , P 0

i and U0
i

coincide with those given above. We also define the quantity M τ := 1
k

∑
i∈[k] |U τ

i |,
so M τ is the average number of uncovered vertices per cluster at time τ .

Our observation above that |U0| is divisible by 2k ensures that M0 is an
even integer, and in fact the algorithm will ensure that M τ is an even integer
at each time τ ≥ 0. At time step τ , if |U τ

i | = M τ for all i ∈ [k], then we stop
with success. Otherwise, since M τ is an integer, we may choose r, s ∈ [k] with
|U τ

r | ≥ M τ + 1 and |U τ
s | ≤ M τ − 1. Define K1 := {s + 1, s + 2, . . . , r − 1, r}

and K2 := {r+1, . . . , s} = [k]\K1, with addition taken modulo k. For each i ∈ [k],
we choose a vertex wi ∈ W τ

i , and let pi ∈ P τ
i be the vertex to which wi was

embedded. We also choose a vertex x+
i ∈ N+(pi) ∩ Xi+1 ∩ U τ

i+1 and, if i ∈ K1

then we choose a vertex x−i ∈ N−(pi)∩Xi ∩U τ
i , whilst if i ∈ K2 then we choose a
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vertex x−i ∈ N−(pi) ∩Xi−1 ∩ U τ
i−1. We make these choices so that the 2k vertices

{x−1 , x+
1 , . . . , x

−
k , x

+
k } are all distinct (if it is not possible to make such choices then

we terminate with failure, but we shall see shortly that this will not happen).
For each i ∈ [k] let w+

i be the removed out-leaf of T adjacent to wi and
let w−i be the removed in-leaf of T adjacent to wi; we then set ϕ(w−i ) := x−i
and ϕ(w+

i ) := x+
i (see Figure 3.1 for an illustration of this embedding). To

conclude this iteration of the algorithm, for each i ∈ [k] we update the setsW τ
i , P τ

i

and U τ
i by setting W τ+1

i := W τ
i \

⋃
i∈[k]{wi}, P τ+1

i := P τ
i \

⋃
i∈[k]{pi}, and U τ+1

i :=
U τ
i \

⋃
i∈[k]{x+

i , x
−
i }. Observe that we then have

|U τ+1
i | =


|U τ

i | − 3 if i = r,

|U τ
i | − 1 if i = s, and

|U τ
i | − 2 otherwise.

(3.12)

In particular it follows that M τ+1 = M τ − 2; since M τ was an even integer it
follows that M τ+1 is an even integer, as required.

Claim 3.22. The balancing algorithm described above stops with success after
at most 3kδn iterations.

Proof. We first check that we can choose vertices wi, pi, x−i and x+
i as described

whenever τ ≤ 3kδn. First observe that, for each i ∈ [k], since |W 0
i | ≥ t/2k >

3kδn by (3.10), and at most one vertex is removed from W τ
i at each step τ

of the balancing algorithm (and its image is removed from P τ
i ), there are at

least |W 0
i | − τ ≥ 1 possible choices for wi at step τ ≤ 3kδn of the balancing

algorithm. So we may choose the vertices wi and pi for i ∈ [k] as claimed. Next
observe that for each i ∈ [k] at most 2si ≤ 8εm + 4δn vertices were embedded
in Xi in Step 1. Also, each iteration of the balancing algorithm embeds at most
three vertices in Xi, so at time τ ≤ 3kδn the total number of vertices which have
so far been embedded in Xi is at most 3τ + 8εm + 4δn ≤ 9kδn + 9εm ≤ ηm/2.
Since pi ∈ V ′i , it follows by Claim 3.21(iii) and (iv) that deg−(pi, Xi−1 ∩ U τ

i−1) ≥
ηm/2, that deg+(pi, Xi+1∩U τ

i+1) ≥ ηm/2 and that deg−(pi, Xi∩U τ
i ) ≥ ηm/2. So

we may greedily choose the vertices x−i and x+
i for each i ∈ [k] as desired.

It therefore suffices to prove that the algorithm stops after at most 3kδn it-
erations and thus, because it cannot fail in these early steps, it always stops
successfully. For each τ ≥ 0 let Υτ := ∑

i∈[k]

∣∣∣|U τ
i | −M τ

∣∣∣, so Υτ is a non-negative
integer. In particular by (3.11) we have

Υ0 =
∑
i∈[k]

∣∣∣|U0
i | −M0

∣∣∣ ≤ 6kδn, (3.13)
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Also, by (3.12) we have |U τ+1
r | = |U τ

r | − 3 and M τ+1 = M τ − 2; by our choice
of r it follows that

∣∣∣|U τ+1
r | − M τ+1

∣∣∣ =
∣∣∣|U τ

r | − M τ
∣∣∣ − 1. Similarly we find

that
∣∣∣|U τ+1

s |−M τ+1
∣∣∣ =

∣∣∣|U τ
s |−M τ

∣∣∣−1 and that
∣∣∣|U τ+1

j |−M τ+1
∣∣∣ =

∣∣∣|U τ
j |−M τ

∣∣∣
for each j ∈ [k] \ {r, s}. Together these equalities imply that Υτ+1 = Υτ − 2.
Since Υτ is always non-negative, we conclude that for some τ ≤ 3kδn we must
have Υτ = 0. It follows that |U τ

j | = M τ for all j ∈ [k], and so the algorithm will
stop at step τ . �

Returning to the proof of Lemma 3.20, we conclude that the balancing algo-
rithm will stop with success at some time τend with τend ≤ 3kδn. For each i ∈ [k],
let W ∗

i := W τend
i , P ∗i := P τend

i , and U∗i := U τend
i , and write W ∗ := ⋃

i∈[k] W
∗
i , P ∗ :=⋃

i∈[k] P
∗
i , and U∗ := ⋃

i∈[k] U
∗
i . So the embedding ϕ now covers all vertices of V (G)

except for those in U∗, and the only vertices of T which remain to be embed-
ded are one in-leaf and one out-leaf of each vertex of W ∗. In particular we
have |U∗| = 2|P ∗| = 2|W ∗|. Observe that in the execution of the balancing
algorithm, at each time τ and for each i ∈ [k] precisely one vertex was removed
from W τ

i . Therefore, since we initially had |W 0
1 | = · · · = |W 0

k | by (3.10), we
now have |W ∗

1 | = · · · = |W ∗
k |. We denote this common size by L, and note that

by (3.10) we then have L ≥ t/k− 4εm− δn− τend ≥ 2t/3k. Also, since Υτend = 0,
we must have |U∗1 | = · · · = |U∗k | = M τend , so

L = |W ∗
1 | = · · · = |W ∗

k | = |P ∗1 | = · · · = |P ∗k | =
1
2 |U

∗
1 | = · · · =

1
2 |U

∗
k | ≥

2t
3k ≥

βm

2 .

(3.14)
I Step 3: Completing the embedding. We are now ready to complete the

embedding of T in G as described previously, beginning with the following claim.

Claim 3.23. For each i ∈ [k] each vertex in U∗i has at least ηm/2 inneighbours
in P ∗i−1 and at least ηm/2 outneighbours in P ∗i+1, and each vertex in P ∗i has at
least ηm inneighbours in U∗i−1 and at least ηm outneighbours in U∗i+1.

Proof. Recall that the set Bi chosen in Step 1 contained all vertices of Ui with
fewer than ηm inneighbours in Pi−1 or fewer than ηm outneighbours in Pi+1. All
vertices of Bi were covered in Step 1, so no vertex of Bi is contained in U∗i . The
first statement then follows from the fact that for each j ∈ [k] we have

|Pj \ P ∗j | = |Pj \ P 0
j |+ |P 0

j \ P ∗j | ≤ sj + τend ≤ 4εm+ 2δn+ 3kδn ≤ ηm

2 .

For the second statement observe that no vertices have yet been embedded in
any set Yj, so Yi−1 ⊆ U∗i−1 and Yi+1 ⊆ U∗i+1. Moreover, since P ∗i ⊆ Pi ⊆ Vi, by
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Claim 3.21(iv) every vertex of P ∗i has at least ηm inneighbours in Yi−1 and at
least ηm outneighbours in Yi+1. �

For each i ∈ [k] we now partition U∗i into disjoint sets U−i and U+
i each of size L

uniformly at random and independently of all other choices. Since G[Vi → Vi+1]
is (d≥, ε)-regular for each i ∈ [k], by (3.14) and Lemma 2.7 both G[U−i−1 →
P ∗i ] and G[P ∗i → U+

i+1] are then (d≥, ε′)-regular, where ε′ := 3ε/β. Also, by
Claim 3.23, each u ∈ U−i−1 has deg+(u, P ∗i ) ≥ ηm/2 ≥ ηL/2 and each u ∈ U+

i+1

has deg−(u, P ∗i ) ≥ ηm/2 ≥ ηL/2. Furthermore, for each p ∈ P ∗i the random
variables deg−(p, U−i−1) and deg+(p, U+

i+1) each have hypergeometric distribution
with expectation at least ηmL/2L ≥ ηL/2. Applying Theorem 2.14 and taking
a union bound we find that with positive probability we have for every i ∈ [k]
and every p ∈ P ∗i that deg−(p, U−i−1) ≥ ηL/4 and deg+(p, U+

i+1) ≥ ηL/4. Fix such
an outcome of our random selection; then for each i ∈ [k] the underlying graphs
of both G[U−i−1 → P ∗i ] and G[P ∗i → U+

i+1] are (η/4, ε′)-super-regular balanced
bipartite graphs with vertex classes of size L.

We may therefore apply Lemma 2.8 to obtain, for each i ∈ [k], a perfect
matching M−

i in G[U−i−1 → P ∗i ] and a perfect matching M+
i in G[P ∗i → U+

i+1].
For each i ∈ [k] and each w ∈ W ∗

i let w− be the removed in-leaf of T adjacent
to w and let w+ be the removed out-leaf of T adjacent to w. Also let p = ϕ(w)
and let q− ∈ U−i−1 and q+ ∈ U+

i+1 be the vertices matched to p in M−
i and M+

i

respectively, and set ϕ(w−) := q− and ϕ(w+) := q+. Since each p ∈ P ∗i is matched
to precisely one inneighbour in U−i−1 and precisely one outneighbour in U+

i+1, this
extends ϕ to an embedding of T in G.

3.5.3 Joining the pieces

As outlined at the start of this section, we will ‘split’ our tree T into two subtrees T1

and T2, which we embed successively in G using Lemmas 3.19 and 3.20. Recall
from Definition 2.1 that a tree-partition splits a tree T in 2 edge-disjoint trees
which together contain all vertices and edges of the original tree, and that given
any set L ⊆ V (T ) of vertices, there is a tree-split where each of the pieces contains
a third of the vertices of L (Lemma 2.3). We now state and prove the main result
of this section.
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Lemma3.24. Suppose that 1/n� 1/C and that 1/n� 1/k � ε� d� ψ � α.

Let T be an α-nice oriented tree on n vertices with maximum degree ∆(T ) ≤
(log n)C . Also let G be a tournament on n vertices which contains a (d, ε)-
regular cycle of cluster tournaments whose clusters V1, . . . , Vk have equal size such
that B := V (G) \ ⋃i∈[k] Vi has size |B| ≤ ψn. Then G contains a (spanning) copy
of T .

Proof of Lemma 3.24. Introduce a new constant β with ψ � β � α, and de-
fine m := |V1| = · · · = |Vk| =

(
n − |B|

)
/k and s := dαne. Since T is α-nice

we may choose a set L of s distinct vertices of T such that each vertex in L is
adjacent to at least one in-leaf and at least one out-leaf of T . Apply Lemma 2.3
to obtain a tree-partition {T1, T2} of T such that the subtrees T1 and T2 each
contain at least s/3 vertices of L. Let r be the unique common vertex of T1

and T2, which we take as the root of each subtree, and observe that for each
vertex x 6= r every neighbour of x is contained in the same subtree as x. So in
particular T1 contains at least s/3 − 1 ≥ αn/4 ≥ βn vertices each adjacent to
at least one in-leaf and at least one out-leaf of T1, and likewise T2 contains at
least αn/4 ≥ βn vertices each adjacent to at least one in-leaf and at least one out-
leaf of T2. Write n1 := |T1| and n2 := |T2|, so 3αn/4 ≤ n1, n2 and n1 + n2 = n+ 1.
By relabelling if necessary we may assume that n1 ≤ n2. Observe also that
∆(T1) ≤ ∆(T ) ≤ (log n)C ≤ (log n1)2C and likewise that ∆(T2) ≤ (log n2)2C .
So T1 meets the conditions of Lemma 3.19 with 2C and n1 in place of C and n
respectively, and likewise T2 meets the conditions of Lemma 3.20 with 2C and n2

in place of C and n respectively.
Next, proceed as follows for each i ∈ [k]. Define

B+
i :=

{
v ∈ Vi : deg+(v, Vi+1) < (d− ε)m

}
, and

B−i :=
{
v ∈ Vi : deg−(v, Vi−1) < (d− ε)m

}
.

Since G[Vi−1 → Vi] and G[Vi → Vi+1] are each (d≥, ε)-regular, we must then
have |B−i |, |B+

i | < εm. Let Bi be a set of 2εm vertices such that B−i ∪ B+
i ⊆

Bi ⊆ Vi and define V ′i := Vi \ Bi. It follows that for every vertex x ∈ V ′i we
have deg−(v, V ′i−1), deg+(v, V ′i+1) ≥ (d − ε)m − 2εm = (d − 3ε)m. Choose a
subset Zi ⊆ V ′i of size |Zi| = αm/5 uniformly at random and independently
of all other choices. So for each x ∈ V ′i the random variables deg−(x, Zi−1)
and deg+(x, Zi+1) have hypergeometric distributions with expectation at least
(d−3ε)αm/5. Applying Theorem 2.14 and taking a union bound we find that with
positive probability we have for every x ∈ V ′i that deg−(x, Zi−1), deg+(x, Zi+1) ≥
dαm/10. Fix an outcome of the random selections for which this event occurs.
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Define B′ := B∪⋃i∈[k] Bi, so |B′| = |B|+2kεm ≤ 2ψn. Next choose arbitrarily
a set Xi ⊆ V ′i \ Zi of size (1 + α/4)n1/k for each i ∈ [k]; this is possible since for
each i ∈ [k] we have

|V ′i \ Zi| = (1− 2ε)m− αm

5
≥
(

1− α

4

)
m ≥

(
1− α

4

)
(1− ψ)n

k
≥
(

1− α

3

)
n

k
≥
(

1 + α

3

)
n1

k
,

where the final inequality uses the fact that n1 ≤ n+ 1− n2 ≤ n+ 1− 3αn/4 ≤
(1− 2α/3)n. Define G1 := G

[
B′ ∪⋃i∈[k] Xi

]
. Since G[Vi → Vi+1] is (d≥, ε)-regular

for each i ∈ [k], and n1 ≥ 3αn/4, it follows by Lemma 2.7 that the sets X1, . . . , Xk

are the clusters of a (d, ε′)-regular cycle of cluster tournaments in G1, where ε′ :=
4ε/3α. The tournament G1, the clusters Xi and the set B′ therefore meet
the conditions of Lemma 3.19 with n1, α/3, ε′ and 2ψ in place of n, α, ε and ψ
respectively. So we may apply Lemma 3.19 to obtain an embedding ϕ of T1 in G1

so that r is embedded in X1, so that every vertex of B′ is covered, and so that for
each i ∈ [k] we have

∣∣∣ϕ(V (T )
)
∩Xi

∣∣∣ =
(
n1 − |B′|

)(1
k
± 2

log log n1

)

= n1 − |B′|
k

±
(

2n1

log log n1
− 2

)
, (3.15)

where the last equality holds with a lot of room to spare (since |B′|/ log log n1 � 2).
For convenience of notation write E := 2n2

log logn2
≥ 2n1

log logn1
. For each i ∈ [k]

define Ui := Vi \ ϕ
(
V (T )

)
, so Ui contains all vertices of Vi not covered by our

embedding of T1. Then by (3.15) we have for each i ∈ [k] that

|Ui| =
∣∣∣Vi \Bi

∣∣∣− n1 − |B′|
k

± (E − 2) = m− 2εm− n1

k
+ |B|+ 2kεm

k
± (E − 2)

= n− |B|
k

− n1

k
+ |B|

k
± (E − 2) = n2

k
± (E − 1),

where the second equality uses the fact that |B′| = |B| + 2kεm, and the final
equality uses the fact that n2 = n + 1 − n1. Let v = ϕ(r), so v ∈ X1, and
set U∗1 := U1 ∪ {v} and U∗i := Ui for 2 ≤ i ≤ k, so |U∗i | = n2

k
± E for each

i ∈ [k]. In particular, we have |U∗i | ≥ αn/2k ≥ α|Vi|/2 for each i ∈ [k], so by
Lemma 2.7 the sets U∗1 , . . . , U∗k are the clusters of a spanning (d, 2ε/α)-regular cycle
of cluster tournaments in the tournament G2 := G[U∗1 ∪· · ·∪U∗k ]. Furthermore, for
each i ∈ [k] we have Zi ⊆ U∗i ⊆ V ′i (since we chose Xi to be disjoint from Zi, and
every vertex of B was covered by the embedding of T1), so every vertex u ∈ U∗i
has deg−(x, U∗i−1), deg+(x, U∗i+1) ≥ dαm/10. So in fact the clusters U∗1 , . . . , U∗k
form a spanning (dα/10, 2ε/α)-super-regular cycle of cluster tournaments in G2.
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In other words, the tournament G2, the clusters U∗1 , . . . , U∗k and the vertex v meet
the conditions of Lemma 3.20 with dα/10, 2ε/α and n2 in place of d, ε and n

respectively. Since |G2| = |G|− |T1|+ 1 = n−n1 + 1 = n2 = |T2| we may therefore
apply Lemma 3.20 to find a spanning copy of T2 in G2 in which r is embedded
to v, and then the embeddings of T1 and T2 together form a spanning copy of T
in G.

3.6 Unavoidable trees (Theorems 1.4 and 1.6)

In this section we give the proofs of Theorem 1.4 (that every large nice oriented
tree of polylogarithmic maximum degree is unavoidable) and Theorem 1.6 (that a
random labelled oriented tree is nice asymptotically almost surely).

3.6.1 A class of unavoidable trees (Theorem 1.4)

We begin by combining the results of the previous two sections to prove Theo-
rem 1.4. The main task is to use Lemma 3.1 to show that we can find either
an almost-directed pair in G which partitions V (G) or an almost-spanning cycle
of cluster tournaments in G. In the former case we then embed T in G using
Lemma 3.18, whilst in the latter case we embed T in G using Lemma 3.24.

Proof of Theorem 1.4. Introduce new constants k0, k1, ε, d, µ, η, ω and γ such that

1
n
� 1

k1
� 1

k0
� ε� d� µ� η � ω � γ � α.

We may also assume that 1/n � 1/C. Let G be a tournament on n vertices,
and let T be an α-nice tree on n vertices such that ∆(T ) ≤ (log n)C . We begin
by finding an almost-spanning subgraph of G induced by three vertex-disjoint
subsets X, Y, Z of V (G). We will argue that either (i) G[Y ] is a large (d, ε)-regular
cycle of cluster tournaments (and hence T ⊆ G by Lemma 3.24) or (ii) one of the
pairs (X, Y ∪ Z), (X ∪ Y, Z) is large and almost-directed (and hence T ⊆ G by
Lemma 3.18).

We choose vertex-disjoint subsets X, Y, Z ⊆ V (G) such that

(a) X ∪ Y ∪ Z = V (G),

(b) |Y | ≥ n/3, and

(c) e
(
G[Y→X]

)
+ e

(
G[Z→X]

)
+ e

(
G[Z→Y ]

)
≤ min

(
η
(
|X|+ |Z|

)
n, 3γηn2

)
.
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Moreover, we make this choice so that |Y | is minimal among all choices of X, Y
and Z which satisfy (a)–(c) above (taking Y = V (G) and X = Z = ∅ shows that
such subsets do exist).

Suppose first that |Y | ≤ (1−2γ)n. Then we have either |X| ≥ γn or |Z| ≥ γn.
If |X| ≥ γn then, taking A := X and B := Y ∪ Z, we have a partition {A,B}
of V (G) into sets |A|, |B| ≥ γn such that the number of edges directed from B

to A is e
(
G[Y→X]

)
+ e

(
G[Z→X]

)
≤ 3γηn2 ≤ ω|A||B| by (c), so (A,B) is

an ω-almost-directed pair in G. If instead |Z| ≥ γn then a similar argument
shows that taking A := X ∪ Y and B = Z gives a partition {A,B} of V (G) into
sets |A|, |B| ≥ γn such that (A,B) is an ω-almost-directed pair in G. Either way,
we may then apply Lemma 3.18 (with ω and γ in place of µ and ν respectively)
to find a copy of T in G.

Now suppose instead that |Y | > (1 − 2γ)n, and write G′ := G[Y ]. Ob-
serve in particular that we then have |X| + |Z| = n − |Y | < 2γn, so (c) states
that e

(
G[Y→X]

)
+ e

(
G[Z→X]

)
+ e

(
G[Z→Y ]

)
≤ η

(
|X| + |Z|

)
n. If there ex-

ists a vertex y ∈ Y with deg−G′(y) < ηn, then moving y from Y to X would
increase e

(
G[Y→X]

)
by less than ηn whilst increasing |X| by one and leaving

e
(
G[Z→X]

)
+e
(
G[Z→Y ]

)
and |Z| unchanged. The resulting sets would then sat-

isfy (a), (b) and (c) with a smaller value of |Y |, contradicting the minimality of |Y |
in our choice of X, Y and Z. So every vertex y ∈ Y must have deg−G′(y) ≥ ηn.
Likewise, if there exists a vertex y ∈ Y with deg+

G′(y) < ηn, then we obtain a simi-
lar contradiction by moving y from Y to Z. We conclude that every vertex y ∈ Y
must have deg+

G′(y) ≥ ηn, so δ0(G′) ≥ ηn ≥ η|Y |. Now suppose that there
exists a partition {S, S ′} of Y such that (S, S ′) is a µ-almost-directed pair in G′.
Observe that moving all vertices of S from Y to X would increase e

(
G[Y→X]

)
by at most e(S ′ → S) ≤ µ|S||S ′| ≤ γη|S|n whilst increasing |X| by |S| and
leaving e

(
G[Z→X]

)
+ e

(
G[Z→Y ]

)
and |Z| unchanged. So if |S| ≤ n/2, then

at least |Y | − n/2 ≥ n/3 vertices would remain in Y , and so the resulting sets
would satisfy (a), (b) and (c) with a smaller value of |Y |, again contradicting the
minimality of |Y |. On the other hand, if |S| > n/2 then |S ′| ≤ n/2, and we obtain
a similar contradiction by moving all vertices of S ′ from Y to Z. We conclude that
no such partition {S, S ′} of Y exists. Therefore by Lemma 3.1 there is an integer k
with k0 ≤ k ≤ k1 such that G′ contains a (d, ε)-regular cycle of cluster tournaments
with clusters V1, . . . , Vk of equal size such that |⋃i∈[k] Vi| > (1− ε)|Y | ≥ (1− 3γ)n.
We may therefore apply Lemma 3.24 (with 3γ in place of ψ) to obtain a copy
of T in G.
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3.6.2 Most oriented trees are nice (Theorem 1.6)

We now turn to the proof of Theorem 1.6, for which we use the following classical
result, known as Cayley’s theorem.

Theorem3.25 (Borchardt 1860; Cayley 1889). There exist precisely nn−2 dis-
tinct labelled oriented trees or order n.

A cherry is a path of length two, and its cherry, centrecentre is the vertex of degree two. In
an oriented tree T we refer to an in-subtree (respectively out-subtree) which is
an (oriented) cherry as an in-cherry (respectively in-cherry, out-cherryout-cherry). Our next lemma
states that most labelled undirected trees have many pendant cherries. This is
a special case of a much more general result for simply generated trees due to
Janson [44]. For completeness, we include a proof of the particular statement that
suffices for our purposes.

Lemma 3.26. Fix ε > 0, and let T be a tree chosen uniformly at random from
the set of all labelled undirected trees with vertex set [n]. Then asymptotically
almost surely T contains (1± ε) e−3

2 n pendant cherries.

Proof. For each set S ∈
(

[n]
3

)
, let Ŝ be the indicator random variable which has

value 1 if S spans a pendant cherry in T and 0 otherwise. We first note that

P( Ŝ = 1 ) = 3(n− 3)(n− 3)n−5

nn−2 = 3
n2

(
1− 3

n

)n−4
.

Indeed, there are three possible choices for the centre of the cherry, this centre
is adjacent to one of the n − 3 vertices in [n] \ S, and by Theorem 3.25 there
are (n − 3)n−5 distinct possibilities for the undirected labelled tree spanned
by [n] \ S, giving the numerator, whilst the denominator is simply the total
number of labelled undirected trees on n vertices (again by Theorem 3.25). The
number of pendant cherries in T is X := ∑

S∈([n]
3 ) Ŝ, so by linearity of expectation

it follows that

E(X) =
∑

S∈([n]
3 )

P(Ŝ = 1) =
(
n

3

)
3
n2

(
1− 3

n

)n−4
=
(
1 + o(1)

)e−3

2 n. (3.16)

It therefore suffices to show that X is concentrated around E(X). Consider any
distinct S, S ′ ∈

(
[n]
3

)
, and note that if S intersects S ′ then we must have Ŝ · Ŝ ′ = 0.

On the other hand, if S and S ′ are disjoint then by a similar argument as above
we have

E
(
Ŝ · Ŝ ′

)
= P( Ŝ = Ŝ ′ = 1 ) =

[
3(n− 6)

]2
(n− 6)n−8

nn−2 = 9
n4

(
1− 6

n

)n−6
,



72 Chapter 3. Spanning Trees of Tournaments

so

E(X2) = E
( ∑
S∈([n]

3 )
Ŝ2 +

∑
S,S′∈([n]

3 )
S 6=S′

Ŝ · Ŝ ′
)

=
∑

S∈([n]
3 )

E(Ŝ) +
∑

S,S′∈([n]
3 )

S∩S′=∅

E
(
Ŝ · Ŝ ′

)

=
(
n

3

)
3
n2

(
1− 3

n

)n−4
+
(
n

3

)(
n− 3

3

)
9
n4

(
1− 6

n

)n−6
. (3.17)

Combining (3.16) and (3.17) we find that

Var(X) =
(
n

3

)
3
n2

(
1− 3

n

)n−4
+
(
n

3

)(
n− 3

3

)
9
n4

(
1− 6

n

)n−6

−
[(
n

3

)
3
n2

(
1− 3

n

)n−4]2

=
(
1 + o(1)

)e−3

2 n+
(
1 + o(1)

)e−6

4 n2 −
((

1 + o(1)
)e−3

2 n

)2

= o(n2).

(3.18)

By Theorem 2.12 (Chebyshev’s inequality), (3.16) and (3.18) it follows that

P
( ∣∣∣X − E(X)

∣∣∣ > ε

2 · E(X)
)
≤ Var(X)(

εE(X)/2
)2 = o(1),

which together with (3.16) proves the lemma.

We can now prove Theorem 1.6 (almost all labelled oriented trees are 1
250 -nice).

Proof of Theorem 1.6. Let Tn be the set of all labelled oriented trees with vertex
set [n]. Note that we can select an oriented tree T uniformly at random from Tn
using the following two-step random procedure: first select a tree T0 uniformly
at random from the set of all labelled undirected trees with vertex set [n], then
form a labelled oriented tree T by orienting each edge e of T0 uniformly at random
and independently of all other choices. Indeed, since there are nn−2 possibilities
for T0 by Theorem 3.25, and every tree in Tn has n − 1 edges, the probability
that any given labelled oriented tree T is selected by this two-step procedure
is n2−n21−n; in other words, this is a uniformly-random selection of T ∈ Tn.

Let C be the number of pendant cherries of T0, let X be the number of pendant
in-cherries of T which contain an out-leaf of T , and let Y be the number of pendant
out-cherries of T which contain both an in-leaf and out-leaf of T . Observe that
the probability that a fixed pendant cherry of T0 contributes to X is 3/8, and
likewise the probability that a fixed pendant cherry of T0 contributes to Y is 1/4.
So X ∼ B(C, 3/8) and Y ∼ B(C, 1/4). Since by Lemma 3.26 we have C ≥ n/50
asymptotically almost surely (where we use the fact that e−3/2 > 1/50), it follows
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by Theorem 2.14 that we also have |X|, |Y | ≥ C/5 ≥ n/250 asymptotically almost
surely. Since no pendant cherry of T can be counted by both X and Y , it follows
that T is 1

250 -nice.

That government is not a necessary
good but an unavoidable evil

Lyn Nofziger

If luck weren’t involved, I’d win every
tournament!

Phil Hellmuth

There’s always going to be
comparisons, and that’s unavoidable.

Raymond E. Feist

Mistakes in themselves are
unavoidable.

Ernest Mandel





4 Spanning Structures via Semidegree

This chapter is organised as follows. We begin in Section 4.1 by outlining the
proof of our main result (Theorem 1.13, a sufficient condition for a tree to be
contained in every digraph of high minimum semidegree). Section 4.2 introduces
notation and auxiliary results. Section 4.3 is devoted to analysing the randomised
allocation algorithm, and Section 4.3.4 deals with the embedding algorithm and
its analysis. Next, Section 4.4 contains the proof of Theorem 1.13 for trees
with many bare paths, while Section 4.5 contains the proof for trees with many
leaves. We combine these results in Section 4.6, proving Theorems 1.12 (that
every large digraph with high minimum semidegree contains every spanning tree
with bounded maximum degree), 1.13 and 1.15 (an extension of Theorem 1.12 for
tree-like spanning digraphs).

4.1 Proof outline for Theorem 1.13

Our proof of Theorem 1.13 builds on the ideas of the previous chapter. The fact
that G has large semidegree will provide us with a useful structure in the reduced
graph (a regular expander), which will be crucial to achieving a good distribution
of vertices among clusters in the allocation phase. Our goal is to allocate vertices
of T evenly to clusters in that structure, following which we embed T using a
greedy algorithm.

More precisely, the main difference in allocation is due to the fact that we
can no longer embed edges of T ‘within’ clusters. A major consequence of this is
that the allocation cannot simply proceed along a cycle in the reduced graph R,
because doing so could no longer distribute vertices evenly. The high semidegree
of G, however, guarantees that the reduced graph has good expansion properties,
and thus the allocation proceeds mapping edges of T to edges of an expander
subdigraph J of R.

Loosely speaking, if G is a large directed graph of high semidegree, then we
may partition V (G) into clusters V1, . . . , Vk of the same size plus a small set V ?

of atypical vertices such that many pairs of clusters form super-regular pairs.
Moreover, we may insist that the pairs along a cycle of clusters V1, V2, . . . , Vk, V1

are super-regular (in the direction 1→· · ·→k→1). Also, every large tree T either

75
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contains many leaves or contains a collection of many ‘bare paths’ of bounded
length. For every large digraph of order n and semidegree at least (1/2 + α)n,
and for every oriented tree of order n with maximum degree (log n)C we consider
separately the two cases for the structure of T .

Suppose first that T contains many such bare paths. To define a homomorphism
(i.e., an allocation) from T to the reduced graph R of G, we select three disjoint
collections PA,PB,PC of vertex-disjoint bare paths of order 7 in T such that all
paths in PA ∪̇ PB ∪̇ PC lie in a small subtree T ′ of T . We then contract all edges
in these paths and apply a randomised algorithm to define a homomorphism of
the contracted T ′ to the reduced graph of G. Next, we extend this mapping to all
contracted edges so that the mapping of these paths satisfies useful properties (this
completes a homomorphism of T ′). In particular, we are careful when mapping
the contracted paths, and use the fact that the reduced graph has very large
semidegree to (A) force the paths in PA to go through all atypical vertices of G;
(B) ensure that many edges of bare paths in PB are allocated along the cycle
V1→· · ·→Vk→V1; and (C) ensure that bare paths in PC are mapped with freedom
to be ‘shifted around’ while preserving the homomorphism. Now, having ‘coerced’
the homomorphism in this manner may have produced a somewhat uneven map
of T ′ over the reduced graph. These ‘imbalances’ are too big to be fixed with (C),
so instead we apply a weighed version of the allocation algorithm to the remaining
vertices of T which (combined with the homomorphism of T ′) yields an almost even
map of T over the reduced graph, with much smaller imbalances. We conclude
the allocation by modifying the mapping of the vertices in PC so make the map
even.

We embed most vertices of T using a greedy algorithm, and complete this with
perfect matchings. This algorithm is guaranteed to work if G is slightly larger
than the tree we are embedding, so a preliminary step is to delete a few vertices
from T , obtaining a tree T ′′ which is slightly smaller than G. Roughly speaking,
the embedding algorithm processes each vertex of T ′′ in a tidy ancestral order,
embedding at each step the current vertex t and all of its siblings according to
their allocation. When this is done, appropriate sets are reserved for the children
of the vertices just embedded. This algorithm works so long as there is room to
spare. To conclude we reintegrate the removed vertices, arguing as in Chapter 3
to show that the required matchings exist. (The allocation of bare paths in PA

and PB plays a crucial role here: the embedding is done somewhat differently as we
approach vertices mapped to V ?, and the edges allocated along the super-regular
cycle are used for the final matchings.)

If T has many leaves—more precisely, if T has many vertex-disjoint edges
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incident to leaves—the proof proceeds very similarly, with leaf-edges playing the
role of bare paths. In particular, the ‘shifting’ which we required in order to
balance the allocation follows the same ideas of the ‘cluster balancing algorithm’
of Section 3.5.2 (see Figure 3.1 on page 63), with the difference that this shifting
is not done along the cycle, but using a structure defined in Section 4.2.4.

4.2 Preliminaries

The following concepts and results play an important role in the proofs in this
chapter.

4.2.1 Bare paths

Let T be a tree. A path decompositionpath decomposition P of a tree T is a collection of edge-disjoint
subpaths of T such that each edge of T is contained in precisely one path of P;
we say that P is bare path

decomposition
bare if each path of P is bare. In other words, two paths in a

bare path decomposition are only allowed to intersect at their endvertices. We
write p(T ) for the smallest size of a bare path-decomposition of T , and `(T ) for
the number of leaves of T . In particular, if T is a path then p(T ) = 1, and if T is
a star then p(T ) = `(T ).

Lemma4.1. If T is a tree which is not a path, then `(T ) ≤ p(T ) ≤ 2`(T )− 3.

Proof. Let T be a tree which is not a path. Then each bare path of T contains
at most 1 leaf of T (since bare paths intersect only at endvertices), and thus
p(T ) ≥ `(T ). By replacing bare paths by edges, we obtain a tree T ′ with no vertex
of degree 2. Note that each bare path of T ′ is a single edge, so p(T ) = e(T ′) and
that `(T ) = `(T ′). So it suffices to show that e(T ′), the number of edges of T ′,
is at most 2`(T )− 3. Consider the sum of degrees of the vertices in T ′, writing
e := e(T ′), ` := `(T ′) and p := p(T ′). Then |T ′| = e+ 1 and

`+ 3
(
p+ 1− `

)
= `+ 3

(
e+ 1− `

)
≤
∑
v∈T ′

degT ′(v) = 2e = 2p,

so p(T ) = p(T ′) ≤ 2`(T ′)− 3 = 2`(T )− 3 as required.

The bounds in Lemma 4.1 are sharp in the sense that there exist trees attaining
each of the bounds. Stars match the lower bound; for the upper bound, suppose
T ′ is a tree on e+ 1 vertices and ` leaves in which every vertex has degree either 1
or 3; it follows that the displayed equation in the proof above holds with equality.
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4.2.2 Regularity

The next lemma will be used in the proofs of Lemmas 4.20 and 4.23 to obtain the
reduced graph required by the allocation algorithm (described in Section 4.3).

Lemma 4.2. Suppose that 1/n � 1/k � ε � d � η � α. If G is a digraph of
order n with δ0(G) ≥

(
1
2 + α

)
n, then there exists a partition V0 ∪̇ V1 ∪̇ · · · ∪̇ Vk of

V (G) and a digraph R? with V (R?) = V0 ∪̇ [k] such that

(a) |V0| < εn and m := |V1| = · · · = |Vk|;

(b) The pairs (Vi, Vi+1) are (d, ε)-super-regular for each i ∈ [k] (where k+1 = 1);

(c) For each i ∈ [k] we have (Vi−1, Vi) and (Vi, Vi+1) are (d, ε)-super-regular;

(d) For all i, j ∈ [k] we have i→j ∈ E(R?) precisely when (Vi, Vj) is (d, ε)-
regular;

(e) For all v ∈ V0 and all i ∈ [k] we have v←i ∈ E(R?) precisely when
deg−(v, Vi) ≥ (1/2 + η)m, and v→i ∈ E(R?) precisely when deg+(v, Vi) ≥
(1/2 + η)m ;

(f) For all i ∈ [k] we have deg0
R?(i, [k]) ≥ (1/2 + η)k; and

(g) For all v ∈ V0 we have deg0
R?(v, [k]) > αk.

Proof. We use a standard argument using regularity to establish (a) and (b) as
well as

(i) For each i ∈ [k] there exist N−, N+ ⊆ [k] such that |N−|, |N+| ≥
(

1
2 + η

)
k

and for all j− ∈ N−, j+ ∈ N+ we have that (Vi, Vj+) and (Vj− , Vi) are
(d, ε)-regular;

(ii) For each x ∈ V0 there exist N−, N+ ⊆ [k] such that |N−|, |N+| > αk

and for all j− ∈ N−, j+ ∈ N+ we have that
∣∣∣N−G (x) ∩ Vj−

∣∣∣ > |Vj−|/2 and∣∣∣N+
G (x) ∩ Vj+

∣∣∣ > |Vj+|/2;

Indeed, we first introduce constants ε′, d′ with ε′ � ε � d � d′ � α, apply
the digraph version of the Regularity Lemma (Lemma 2.9) to G and obtain a
partition V (G) = V ′0 ∪̇ V ′1 ∪̇ · · · ∪̇ V ′k satisfying (a) with ε′ in place of ε and also
satisfying (b) with (ε′, d′) in place of (d, ε). For each i ∈ [k] the set Vi contains at
most ε′n/k vertices which have less than (d− ε′)|V ′i+1| outneighbours in V ′i+1 and
at most ε′n/k vertices which have less than (d− ε′)|V ′i−1| inneighbours in V ′i−1. By
moving ε′n/k vertices (including all vertices with atypical degrees) from each V ′i
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to V ′0 we can ensure (a) and (b) hold (as stated in the lemma), and that (i) holds
as in the claim statement. Finally, (ii) follows by the rather large semidegree of G.

To conclude, let R? be a digraph with vertex set V0 ∪̇ [k] and edges as follows.
For all distinct i, j ∈ [k] we have i→j ∈ E(R?) if (Vi, Vj) is (d, ε)-regular; for all
v ∈ V0 and all i ∈ [k], we have v→i ∈ E(R?) if deg+

G(v, Vi) ≥ (1/2 + η)m and
v←i ∈ E(R?) if deg−G(v, Vi) ≥ (1/2 + η)m. Then (d) and (e) hold. It is immediate
from (i) and (ii) that for all i ∈ [k] we have deg0

R?(i, [k]) ≥ (1/2 + η)k and for all
v ∈ V0 we have deg0

R?(v, [k]) > αk, so (f) and (g) hold as well.

Our embedding algorithm described in Section 4.3.4 relies on a key property
of large dense digraphs, stated in the next lemma. The form in which it is stated
here is a generalisation of [51, Lemma 2.5]. We begin with a definition.

Definition 4.3. Let β, γ,m > 0, let G and R be digraphs and let S be an
oriented star with centre c. Also, Let ϕ be a homomorphism from S to R and
let {Vi : i ∈ R } be a partition of V (G). Finally, let J− := ϕ

(
N−S (c)

)
and let

J+ := ϕ
(
N+
S (c)

)
, so |J−|+ |J+| = ∆(ϕ). A subset V ⊆ Vϕ(c) is (β, γ, ϕ,m)-good(β, γ, ϕ,m)-good

for S if for every collection

V = {V −j ⊆ Vj : j ∈ J− } ∪ {V +
j ⊆ Vj : j ∈ J+ }

of sets of size at least βm there exists V ′ ⊆ V such that |V ′| ≥ γm1/∆(ϕ) and such
that every vertex v ∈ V ′ satisfies the following

• for all j ∈ J− we have deg−(v, V −j ) ≥ γm, and

• for all j ∈ J+ we have deg+(v, V +
j ) ≥ γm.

Here is some motivation for Definition 4.3. We will embed the vertices of
the tree one by one, and, after embedding a vertex x ∈ T , we reserve sets of
vertices for the children of x. If the reserved sets are always good, then this greedy
embedding strategy will succeed. The next lemma states one sufficient condition
(on β, γ,G,R,m, S and ϕ) for this to occur.

Lemma4.4. Suppose 1
m
� ε� γ � 1/q, β, d, let G and R be digraphs and let S

be an oriented star with centre c. Let ϕ be a homomorphism from S to R and
let {Vj : j ∈ R } be a partition of V (G) into sets of size m. If ∆(ϕ) = q and for
each edge i→j ∈ E(S) the pair (Vϕ(i), Vϕ(j)) is (d, ε)-regular, then every subset
V c ⊆ Vϕ(c) such that |V c| = γm/2 contains a subset V of order at most m1−1/∆(ϕ)

which is (β, γ, ϕ,m)-good for S.
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Proof. Note that the definition of (β, γ, ϕ,m)-good is not affected whether the
number of in-leaves (respectively out-leaves) of S to a fixed x ∈ R is precisely 1 or
another positive integer. Hence, by removing leaves if necessary, we may assume
that S has no two distinct in-leaves x, y with ϕ(x) = ϕ(y), as this cannot weaken
the statement we are trying to prove; moreover, this implies that S has precisely
q leaves.

Let x1, . . . , xq be an enumeration of the leaves of S, starting with the in-leaves.
For each i ∈ [q], let Si := S

[
{c, x1, . . . , xi}

]
, so Sq = S. Fix V c ⊆ Vϕ(c). If t ∈ [q]

and t̄ = (v1, . . . , vt) is a t-tuple of distinct vertices vj ∈ Vj ⊆ G for each j ∈ [t],
and if V ⊆ V c, we write NSt(t̄, V ) for the set of v ∈ V such that for each j ∈ [t]
the map (xj, c) 7→ (vj, v) is a homomorphism from the edge between xj and c,
which lies in S, to an edge between vj and v, which lies in G; we call NSt(t̄, X)
theSt-neighbourhood St-neighbourhood of t̄ in V. Finally, let T be the set of tuples (v1, . . . , vq)
with vi ∈ Vi for each i ∈ [q]; call t̄ ∈ T bad if

∣∣∣NS(t̄, V c)
∣∣∣ < |V c|(d/3)q andbad, good good

otherwise.
Let V 0 := V c. For each i ∈ [q], in ascending order, we proceed as follows. Sup-

pose that xi ∈ N−S (c). Note that |V i−1| ≥ |V 0|(3/d)i−1, and therefore (Vϕ(xi), V
i−1)

is (ε′(3/d)i−1, d/2)-regular. So at most ε′m(3/d)i−1 vertices vi ∈ Vϕ(xi) have less
than |V i−1|(d/2− ε′(3/d)i−1) ≥ |V i−1|d/3 outneighbours in V i−1. Let

Bi :=
{
vi ∈ Vϕ(xi) : deg+(vi, V i−1) < |V i−1|d/3

}
,

fix vi ∈ Vϕ(xi) \Bi and let

V i := NSi
(
(v1, . . . , vi), V i−1

)
,

so |V i| ≥ |V i−1|d/3 ≥ |V ′|(d/3)i. We proceed similarly if xi ∈ N+
S (c).

Let B := { t ∈ T : t̄ bad }. By the construction above, each bad t contains at
least one vertex from B1 ∪ · · · ∪Bq and thus

|B| ≤ mq−1∑ |Bi| ≤ 2εmq(3/d)q+1/γ. (4.1)

Claim 4.5. There exists V ⊆ V c such that |V | ≤ m1−1/q and such that for at
most |B| tuples t̄ ∈ T we have

∣∣∣NSq(t̄, V )
∣∣∣ < m1−1/q(d/3)q/4.

Proof. Let ε′ := 2ε/γ. Choose V ∈ V c at random by including each v ∈ V c

with probability p = 1/γm1/q independently of all other vertices. By (2.2), with
probability 1−o(1) we have that |V | < 2p|V c| ≤ m1−1/q. Let us call this event E1.

If t̄ ∈ T is good, then the probability that∣∣∣NS(t̄, V )
∣∣∣ < p|V c|(d/3)q/2 = m1−1/q(d/3)q/4
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decreases exponentially with m by (2.1), whereas |T \ B| = O(mq). Thus, by
a union bound, with probability 1 − o(1) the randomly selected set V has the
property that at most |B| tuples t̄ ∈ T are such that

∣∣∣NS(t̄, V c)
∣∣∣ < m1−1/q(d/3)q/4.

Call this event E2. We may therefore fix a choice of V ⊆ V c such that both E1

and E2 hold. �

Fix V as in the claim above. It remains to show that V is (β, γ, ϕ,m)-good
for S. Indeed, let V ′ = {V ′i ⊆ Vϕ(i) : i ∈ [q] } be a collection of sets such that
|V ′i | = βm for each i ∈ [q], and let T ′ be the set of tuples (v1, . . . , vq) with vi ∈ V ′i
for each i ∈ [q]. Then by (4.1) there exist at least

βqmq − 2εmq(3/d)q+1/γ ≥ (βm)q/2

tuples of vertices t̄ = (v1, . . . , vq) ∈ T ′ such that
∣∣∣NSq(t̄, V )

∣∣∣ ≥ m1−1/q(d/3)q/4. So
there exist at least(

(βm)q/2
)(
m1−1/q(d/3)q/4

)
= (βd/3)qmq+1−1/q/8

pairs (v, t̄) where t̄ ∈ T ′, v ∈ V and v ∈ NS(t̄, V ). In particular, at least(
(βd/3)qmq+1−1/q/8

)
/2
∣∣∣T ′∣∣∣ ≥ γm1/q vertices v? ∈ W must lie in the neighbour-

hood of at least (βd/3)qmq/16 tuples t̄ ∈ T ′—otherwise there would be fewer
than

|T ′| ·
(
(βd/3)qmq+1−1/q/8

)
/2
∣∣∣T ′∣∣∣+ |V |(βd/3)qmq/16 ≤ (βd/3)qmq+1−1/q/8

such pairs (v, t̄). So each of these vertices v? has at least (βd/3)qmq/16mq−1 ≥ γm

neighbours in each V ′i ∈ V ′, as required.

4.2.3 Matchings

The next simple lemma is used in the proofs of Lemmas 4.8, 4.18 and 4.22.

Lemma4.6. Let G be a bipartite graph with vertex classes V andW, and suppose
every vertex in V has degree at least ε|W |. Then there exists a spanning subgraph
H ⊆ G such that

(i) degH(v) = 1 for each v ∈ V ,

(ii) degH(w) ≤ 1 + |V |
ε|W | for each w ∈ W .

Proof. Let n := |V |. We build H iteratively, starting with an empty graph with
vertex set V ∪W , and proceeding greedily through the vertices v1, . . . , vn of V ,
as follows. For each i ∈ [n], let wi ∈ W be a neighbour of vi in G with minimum
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degree in the graph Hi := (V ∪W,⋃j∈[i−1]{viwi}), and let H := Hn. Clearly every
v ∈ V has degree 1 in H, by construction. Moreover, if w ∈ W is connected to a
vertex in V and j is the largest index such that vjw ∈ E(H), then, by construction,
every vertex in Wj := NG(vj) has degree at least degHj(w) − 1 = degH(w) − 1
in Hj; since |Wj| ≥ ε|W | we have that

ε|W |(degH(w)− 1) ≤
∑

w′∈Wj

degHj−1(w′) ≤
∑

w′∈Wj

degH(w′) ≤ |V |,

and it follows that degH(w) ≤ 1 + |V |/ε|W |; this completes the proof since the
choice of w is arbitrary.

Fact 4.7. [12, Exercise 16.1.6] Let M and N be edge-disjoint matchings of a
graph G. If |M | > |N |, then there exist disjoint matchings M ′ and N ′ of G such
that |M ′| = |M | − 1, |N ′| = |N |+ 1 and M ′ ∪N ′ = M ∪N .

Proof. Note that the components C1, . . . , Cs of the subgraph of G formed by the
edges in M ∪N are either single edges or cycles; moreover, since |M | > |N |, there
must be some component Ci such that∣∣∣E(Ci) ∩M

∣∣∣ =
∣∣∣E(Ci) ∩N

∣∣∣+ 1.

To obtain the desired matchings, it suffices to ‘swap’ the edges in Ci, i.e.: define:

M ′ := M ∪ (N ∩ Ci) \ (M ∩ Ci) and N ′ := N ∪ (M ∩ Ci) \ (N ∩ Ci).

4.2.4 Diamond-paths

The definitions of this Section play an important role in the proof of Lemma 4.18;
they will be used to ensure that our vertex allocation covers exceptional vertices
and also that many identically oriented bare paths are allocated along a Hamilton
cycle in the reduced graph.

Let T be an oriented tree and ≺ be an ancestral order of T . Note that ≺
induces a unique ancestral order on each (oriented) subtree T ′ of T , namely, the
restriction of ≺ to the vertices of T ′. We shall also write ≺ to refer to the orders
induced by ≺ on each of these subtrees. We say that the oriented trees T1, T2

with ancestral orders ≺1 and ≺2 respectively are≺-isomorphic ≺-isomorphic if there exists an
isomorphism ρ : V (T1)→ V (T2) which preserves order.

Let ≺ be an ancestral order of (an oriented tree) T and suppose that P and Q
are paths of T of order 7, each rooted at a leaf, labelled so that V (P ) = { pi : i ∈
[7] }, V (Q) = { qi : i ∈ [7] } and that p1 ≺ p2 ≺ . . . ≺ p7 and q1 ≺ q2 ≺ . . . ≺ q7
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root root

Figure 4.1: Left: a (◦→•←•)-diamond. Right: a (◦←•←•)-diamond (◦ denotes
the root of the path).

(so p1 is the root of P , q1 is the root of Q, and the edges of these paths connect
vertices with indexes differing by 1). The prefix sectionprefix section prefix(P ) of P is the
(rooted) path induced by its 3 first vertices p1, p2, p3; the middle sectionmiddle section middle(P )
of P is the path induced by its ‘middle’ vertices p3, p4, p5; and the suffix sectionsuffix section
suffix(P ) of P is the path induced by p5, p6, p7—so, the prefix, middle and suffix
sections of P are edge-disjoint rooted subpaths of P of order 3 each, whose union is
P . We say that P and Q have the same middle sectionsame middle section if their middle sections are
≺-isomorphic. In other words, P and Q have the same middle section if mapping
p3 7→ q3, p4 7→ q4 and p5 7→ q5 is an isomorphism—note that this definition would
make little (if any) sense if P and Q were not oriented paths.

Note that these definitions depend on which ancestral order is considered, but
this order will always be clear from context. The centrecentre c(P ) of a path P of odd
order is the vertex v ∈ P which is equidistant to the two leaves of P .

Let P be an oriented path of order 3. A P -diamondP -diamond is the digraph formed
from P by blowing up its middle vertex into 2 vertices. So if P is a→b→c then
the digraph H with V (H) = {u, v, v′, w} and E(H) = {u→v, u→v′, v→w, v′→w}
is a P -diamond (see Figure 4.1). The paths uvw and uv′w are the branchesbranches of the
diamond. If ≺ is an ancestral order of P , say with a ≺ b ≺ c, then we say that
the P -diamond H has prefix u, middle {v, v′} and prefix, middle,

suffix
suffix w, and we shall denote

the (rooted) P -diamond by u v
v′

w. If P and ≺ are clear from context, we write
diamond instead of P -diamond. A diamond,

P -diamond path
P -diamond path in a digraph D is a sequence

of P -diamonds
(
ui

vi
v′i

wi
)t
i=0

such that vi = v′i−1 for each i ∈ [t]; we say that
this path connects v0 and v′t. Finally, a graph G is connected (by

diamond path),
P -connected

P -connected if there exists a
P -diamond path connecting each pair u, v ∈ G.

Lemma 4.8 (P -connected subgraphs). Suppose 1
n
� α. Let D be a digraph

with of order n such that δ0(D) ≥
(

1
2 + α

)
n. If P is a rooted oriented path of

order 3, then D contains a spanning P -connected subdigraph H which is the
union of n− 1 diamonds and such that ∆0(H) ≤ 4/α.
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Proof. We may assume without loss of generality that V (D) = [n]. Let i ∈ [n−1];
we write ♦i for the set of all P -diamonds with middle {i, i + 1}. Let Bpref

be a bipartite graph with vertex classes ♦ := {♦1, . . .♦n−1} and [n], with an
edge between ♦i and x ∈ [n] if x is a prefix of a P -diamond in ♦i. Note that
deg

(
♦i, [n]

)
≥ αn. Therefore, by Lemma 4.6, there exists Hpref ⊆ Bpref such that

each vertex of ♦ is covered by precisely one edge of Hpref and each vertex of [n] is
covered by at most 1/α edges of Hpref . We define Bsuff similarly for suffixes and
obtain the corresponding graph Hsuff . We define the spanning subgraph H ⊆ D

as follows. For each i ∈ [n− 1], let pi be the neighbour of ♦i in Hpref and let si
be the neighbour of ♦i in Hsuff . Then pi i

i+1 si is a P -diamond. Let E(H) be
the union of the edges in the gadgets pi i

i+1 si. Note that H is P -connected.
Moreover, the maximum underlying degree of x ∈ H is 4/α (because each edge of
Hpref and Hsuff corresponds to 2 edges of D).

The next lemma explains the importance of P -connectedness (see Figure 4.2).
Let T be a rooted oriented tree with many induced paths ≺-isomorphic to P ,
and let D be a digraph containing a spanning P -connected subgraph which is
the union of P -diamonds

(
xi

yi
wi

zi
)t
i=1

. If a homomorphism ϕ : T → D maps a
linear number of copies of P to each of the paths xiyizi and xiwizi rooted at xi,
then we can transform ϕ into a homomorphism % where the number of vertices
mapped to each vertex of D is slightly different. This will be an important tool
when adjusting the allocation.

Lemma 4.9. Suppose that 1
n
� 1

k
� η � λ < 1. Let P be a rooted path of

order 3; let T be a rooted oriented tree of order n which contains a collection
P of λn induced subgraphs isomorphic to P ; let R be a digraph of order k, and
let H be a P -connected spanning subgraph of R. Finally, for each v ∈ R, let
δv be an integer, with |δv| < n

logn and such that ∑v∈R δv = 0. If there exists a
homomorphism ϕ : T → R such that for each diamond xi yi

wi
zi in H there are

at least ηn/k3 paths in P which are mapped to xiyizi and at least ηn/k3 paths
which are mapped to xiwizi, then there exists a homomorphism % : T → R such
that |%−1(v)| = |ϕ−1(v)|+ δv for all v ∈ R.

Proof. We proceed greedily, as follows. Let u, v ∈ R be such that δv < 0 < δu,
and consider the P -diamond path from u to v. Let

(
xi

yi
wi

zi
)t
i=1

be the sequence
of diamonds in this path, so u = y1 and v = wt. For each i ∈ [t], select a path
in T which is mapped to xiyiwi, and modify the mapping of this path so that it
is now mapped to xiwizi (see Figure 4.2). The resulting mapping %′ is such that
|%−1(u)| = |ϕ−1(u)| − 1 and |%−1(v)| = |ϕ−1(v)|+ 1, whereas |%−1(x)| = |ϕ−1(x)|
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for all x ∈ R \ {u, v}. Note that this procedure reduces by at most 1 the number
of paths mapped to each diamond branch. Hence, by iterating this procedure
at most ∑v |δv| ≤ kn/ log n times, we can ‘shift weights’ as needed to obtain
the desired mapping %. Note that it is indeed possible to carry out these steps,
because each diamond has at least ηn/k3 paths allocated to each of its branches
(and each step changes the size of preimage of any x ∈ R by at most 1).

We remark that the quantity ηn/k3 in the previous lemma is much larger
than necessary—the proof works with no modifications if this is replaced by
kn/ log n—but this version will suffice for our purposes.

4.3 An approximate result

In this section we discuss the allocation and embedding algorithms which lie at
the core of our proofs. The main results of this section are Lemmas 4.15, 4.16
and Theorem 4.17 (see below).

Lemma 4.15 states that the randomised allocation algorithm (Algorithm 4.14)
allocates roughly the same number of vertices to each cluster in the reduced graph.
This algorithm will be applied to regular graphs with good expansion properties.
To prove that the algorithm works, we begin by introducing regular expanding
digraphs and proving that every (sufficiently large) digraph of high semidegree
contains one such subgraph. We then show that a particular kind of random
walk in these digraphs (according to a non-homogeneous Markov chain) converges
quickly to a uniform stationary distribution. Finally, we deduce some properties
of the randomised algorithm.

x0

y0

w0

z0 x1

y1

w1

z1 x2

y2

w2

z2 x3

y3

w3

z3u vϕ :

 

x0

y0

w0

z0 x1

y1

w1

z1 x2

y2

w2

z2 x3

y3

w3

z3u v%′ :

Figure 4.2: Weight-shifting from vertex u to vertex v using P -diamond.
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Lemma 4.16 then states that if G is a digraph with an appropriate reduced
graph R, and if we are given an appropriate allocation (such as the one guaranteed
by Lemma 4.15) of a tree T to R, then the embedding algorithm successfully finds
a copy of T in G.

Finally, Theorem 4.17 combines these lemmas, showing that if T is a tree with
maximum degree bounded by a polylogarithmic function of |T |, and if G is a
digraph with high semidegree and order slightly grater than |T |, then G contains
a copy of T .

4.3.1 Existence of regular expander subdigraph

We begin with a definition. A digraph D is anexpander expander if∣∣∣N−(S)
∣∣∣, ∣∣∣N+(S)

∣∣∣ > |S| for all nonempty proper S ⊆ V (D).

Lemma 4.10. Suppose that 1/n � 1/f, α. Let G be a digraph of order n with
δ0(G) ≥ (1

2 +α)n. If F ⊆ G is a subgraph of G with ∆0(F ) ≤ f , then G contains
a spanning d-regular subdigraph H such that

(i) H contains F ,

(ii) d ≤ 25n2/3/α, and

(iii) H is an expander.

Proof. We first form a spanning subgraph Hp ⊆ G by keeping each edge of G
with probability p := n−1/3 independently of all other edges.

Claim 4.11. With probability 1− o(1)

(a) every vertex of Hp has in- and outdegree at most 4n2/3, and

(b) if S is a nonempty proper subset of V (G), then
∣∣∣N−Hp(S)

∣∣∣, ∣∣∣N+
Hp(S)

∣∣∣ > |S|.
Proof of claim. Let x ∈ Hp. Note that deg−Hp(x) and deg+

Hp(x) are binomial
random variables with expectation between (1

2 +α)n2/3 and n2/3. By Chernoff (2.1)
(applied with t = n2/3/2) we have

P
(
deg−Hp(x) > 4n2/3

)
≤ exp

(
−n2/3

)
and

P
(
deg+

Hp(x) > 4n2/3
)
≤ exp

(
−n2/3

)
.

(4.2)

By a union bound over all n vertices, we have that (a) holds with probability
1 − o(1). To prove (b), let S ⊆ Hp be proper and nonempty. We will show
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that |N+
Hp(S)| > |S|; the argument showing that |N−Hp(S)| > |S| is symmetric.

We consider four cases. If |S| < n1/2, then for each vertex x ∈ S the expected
outdegree of x is a binomial random variable with expectation at least (1

2 +α)n2/3,
and by Chernoff (2.2) (applied with t = np/2) we have, for any y ∈ S, that

P
(
|N+

Hp(S)| ≤ |S|
)
≤ P

(
deg+

Hp(y) < np

2

)
≤ exp

(
−n

2/3

8

)
, (4.3)

If n1/2 ≤ |S| < n/2, then
∣∣∣N+

Hp(S)
∣∣∣ ≤ |S| if and only if there exists T ⊆ V (Hp)

such that |T | ≥ n− |S| and N+
Hp(S)∩T = ∅. Since |S| < n/2, we have |T | ≥ n/2

and thus each vertex x ∈ S has at least αn outneighbours in T . In particular,
the number eHp(S, T ) of edges from S to T in Hp is a binomial random variable
with expectation at least |S|αn2/3 ≥ αn7/6. By Chernoff (2.2), applied with
t = αn7/6/2, we have P

(
eHp(S, T ) = 0

)
≤ exp

(
−αn7/6/8

)
. So if BT is the event

‘eHp(S, T ) = 0’ then

P
(∣∣∣N+

Hp(S)
∣∣∣ ≤ |S|) = P

( ⋃
|T |≥n−|S|

BT

)

≤ 2n exp
(
−αn

7/6

8

)
≤ exp

(
−αn

7/6

10

)
.

(4.4)

If n/2 ≤ |S| < n − n1/2, then, as before,
∣∣∣N+

Hp(S)
∣∣∣ ≤ |S| if and only if there

exists T ⊆ V (Hp) such that |T | ≥ n − |S| ≥ n1/2 and N+
Hp(S) ∩ T = ∅. Since

|S| ≥ n/2 for all x ∈ G we have deg−G(x, S) ≥ αn. In particular, the number
eHp(S, T ) of edges from S to T is a binomial random variable with expectation at
least |T |αn2/3 ≥ αn7/6, and thus (4.4) holds. Finally, if |S| ≥ n− n1/2, then for
all x ∈ Hp we have deg−G(x, S) ≥ n/2, and thus deg−Hp(x, S) is a binomial random
variable with expectation at least n2/3/2. By Chernoff (2.2)

P
(
N+
Hp(S) 6= V (Hp)

)
≤

∑
x∈Hp

P
(

deg−Hp(x) ≤ n1/2
)
≤ exp

(
−n

2/3

40

)
. (4.5)

For all proper and nonempty S ∈ V (Hp), let PS := P
(
|N+

Hp(S)| ≤ |S|
)
. By a

union bound, we obtain

P
(
(b) does not hold

)
=
∑

0<|S|<√n
PS +

∑
√
n≤|S|<n−√n

PS +
∑

n−√n≤|S|<n
PS

≤ 3
(
n

n1/2

)
exp

(
−n

2/3

40

)
(4.3) and (4.5)

+2n exp
(
−αn

7/6

10

)
(4.4)

= o(1),

where the sums are over proper and nonempty subsets S ⊆ Hp and we use the
bound

(
n√
n

)
≤ (
√
n e)

√
n ≤ exp

(√
n lnn

)
. Therefore (b) holds with probability

1− o(1), as desired. �
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We now come back to the proof of the lemma. By the claim above, we
can fix an outcome Hp of the random choices such that (a) and (b) both hold.
LetH ′ := Hp∪F . We will build a regular digraphH which containsH ′ and satisfies
(ii). Note that H will satisfy (iii) as well, by (b). Since ∆0(H ′) ≤ 4n2/3+f ≤ 5n2/3,
there exists a proper equitable edge colouring of H ′ using at most 5n2/3 +1 colours
(by Lemma 4.7). In other words, there exists a partition M of E(H ′) into at
most 5n2/3 + 1 matchings with sizes as equal as possible; in particular, since∣∣∣E(H ′)

∣∣∣ ≤ 5n5/3, each matching in this partition contains at most 5n5/3 ≤ n edges.
We choose an equitable partition M1, . . . ,Md of the edges of H ′ (refiningM) so
that for each i ∈ [d] the matching Mi has at most αn/6 edges and d ≤ 32n2/3/α.

Let G0 := G−E(H ′). For each i ∈ [d], we proceed as follows. Greedily choose
a cycle Ci in Gi−1∪Mi, such that Ci has length 3|Mi| and covers all edges inMi; let
C ′i be a Hamilton cycle in Gi−1 \ V (Ci) and let Gi := Gi−1 \

(
E(Ci)∪E(C ′i)

)
. We

set H := ⋃
i∈[d](Ci ∪ C ′i). Note that H ′ ⊆ H and that H is the union of spanning

regular subdigraphs Ci ∪ C ′i of G, so H is a spanning regular subgraph of G.
Furthermore, for each vertex x ∈ H we have deg−H(x) = deg+

H(x) = d ≤ 32n2/3/α.
We need to argue that it is indeed possible to carry out the steps above. It

suffices to show that Ci and C ′i exist. Let i ∈ [d], let r := |Mi| ≤ αn/6 and let
uj→vj be the edges in Mi for each j ∈ [r]. Note that

δ0(Gi) ≥ δ0(G0)− d ≥ (1/2 + 3α/4)n,

so, for each pair of vertices x, y ∈ Gi there exists at least 3αn/4 vertices z such
that z ∈ N+

Gi
(x)∩N−Gi(y). We can therefore choose distinct vertices zj ∈ N+

Gi
(vj)∩

N−Gi(uj+1) (addition modulo r), which form the cycle Ci: u1v1z1u2, . . . urvrzru1.
Since |Ci| < 3|Mi| ≤ αn/2, it follows that δ0

(
Gi \ V (Ci)

)
≥ (1/2 + α/4)n and

thus Gi \ V (Ci) contains a directed Hamilton cycle C ′i.

4.3.2 Random walks

Let D be a digraph, let P be an oriented path rooted in one of its leaves, and
let v0, v1, . . . , vr be an ancestral order of P . For each v ∈ D, arandom P -walk random P -walk
WP,D(v) on D, starting at v, is a random walk X0, X1, . . . , Xr starting at X0 = v

and such that for each i ∈ [r] we choose Xi+1 as follows: if vi+1 is an outneighbour
of vi in P , then choose Xi+1 uniformly at random from N+

D (Xi); otherwise choose
Xi+1 uniformly at random from N−D (Xi), with all choices made independently for
all i. (This random walk is a non-homogeneous Markov chain.) The following
lemma will be used to establish a crucial property of random P -walks.
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Lemma4.12. Let D be an expander digraph of order n ≥ 3, let f : V (D)→ [0, 1]
and let M := maxx,y∈D f(x) − f(y). If M > 0, then there exists u, x, y ∈ D

such that x, y ∈ N−(u) and f(y)− f(x) ≥M/(n− 1) and, similarly there exists
v, w, z ∈ D such that w, z ∈ N+(v) and f(w)− f(z) ≥M/(n− 1).

Proof. We prove only the existence result for u, x, y, the statement for v, w, z
follows by symmetry. Let S1, . . . , Sr be a partition of V (D) such that for all
x, y ∈ D we have f(x) = f(y) if and only if x, y ∈ Si for some i ∈ [r]. Clearly,
1 < r ≤ n. Since f is a constant in each set of this partition, we write f(i)
for the common value of f over all x ∈ Si. We can assume that the sets are
labelled so that f(i) < f(j) whenever i < j. Note that M = f(r) − f(1), and
therefore f(j + 1) − f(j) ≥ M/(r − 1) ≥ M/(n − 1) for some j ∈ [r − 1]. Let
X := S1 ∪ · · · ∪ Sj and let Y := Sj+1 ∪ · · · ∪ Sn. Since D is an expander, we have
that

∣∣∣N+(X)
∣∣∣ > |X| and ∣∣∣N+(Y )

∣∣∣ > |Y |. Because |X|+ |Y | = n there must be a
vertex u ∈ N+(X) ∩N+(Y ). Let x ∈ X and y ∈ Y be inneighbours of u. Then
f(y)− f(x) ≥ f(j + 1)− f(j) ≥M/(n− 1) as desired.

Lemma4.13. Let D be an d-regular expander digraph of order k. Also, let P be
an oriented path of order n, rooted in one of its leaves. Then for all v ∈ V (D), if
X0, . . . , Xn is a random P -walk WP,D(v), then

max
x∈D

(
P(Xn = x)− 1

k

)2
≤
(

1− 1
2k3

)n
. (4.6)

In particular, for all x ∈ V (D) we have that P(Xn = x)→ 1/k as n→∞.

Proof. For a random variable X with range D, define

m(X) :=
∑
x∈D

(
P(X = x)− 1

k

)2
,

so m(X) = 0 if and only if P(X = x) = 1/k for all x ∈ D. We first prove that

m(X) ≤ (1− 1/k)2 + (k − 1)/k2 = 1− k−1 < 1. (4.7)

Proof of (4.7). Note that 1− 1/k is the value m(·) attains at a random variable
which concentrates all ‘weight’ in a single vertex of D. Let X be a random
variable which maximises m(X) over all random variables with range D and
suppose, looking for a contradiction, that there exist distinct u and v in D with
‘positive weight’, i.e., such that P(X = u),P(X = v) > 0; we may assume, by
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averaging, that 0 < P(X = u) ≤ 1/k and 1/k ≤ P(X = v) < 1. Now consider the
random variable Y defined as

Y =

X if X 6= u

v otherwise

then m(Y ) > m(X) + 2
(
P(X = u) − 1/k

)2
> m(X), contradicting the choice

of X. �

We now return to the proof of the lemma. Let µ be a probability distribution
over D, let v ∈ D be selected according to µ, and let X0, . . . , Xn be a random
P -walk WP,D(v). We will show that for all i ∈ [n]

m(Xi−1) ≥ m(Xi),

with strict inequality if m(Xi−1) > 0. Let i ∈ [n], suppose that vi−1 is an
inneighbour of vi in P and define f(y) := P(Xi−1 = y)− 1/k for all y ∈ D. Then

m(Xi) =
∑
x∈D

(
P(Xi = x)− 1

k

)2
=
∑
x∈D

( ∑
y∈N−D (x)

P(Xi−1 = y)
d

)
− 1
k

2

=
∑
x∈D

( ∑
y∈N−D (x)

f(y)
d

)2 (\)
≤

∑
x∈D

y∈N−D (x)

d

(
f(y)
d

)2
(])=
∑
x∈D

f(x)2 = m(Xi−1)

Where (\) follows by Theorem 2.16 (with ui = 1/d and vi = f(y)) because
|N−D(x)| = d for all x ∈ D and (]) because D is d-regular (so the term f(y)
appears precisely d times for each y ∈ D). In particular, it also follows by
Theorem 2.16 that equality holds in (\) if and only if there exists α 6= 0 such that
f(y) = α/d for all i—that is, if and only if Xi−1 is uniformly distributed over D.
Moreover, let Mi := maxx∈D

∣∣∣f(y)
∣∣∣. We have that

m(Xi) =
∑
x∈D

( ∑
y∈N−D (x)

f(y)
d

)2

(2.3)=
∑
x∈D

 ∑
y∈N−D (x)

d

(
f(y)
d

)2

−
∑

z,w∈N−D (x)

(
f(z)− f(w)

)2

2d2


= m(Xi−1)−

∑
x∈D

z,w∈N−D (x)

(
f(z)− f(w)

)2

2d2 ≤ m(Xi−1)− M2
i

2d2

where the inequality follows from Lemma 4.12. Note that if m(Xi−1) = ε then
|f(x)|2 ≥ ε/k for some x ∈ D, and thus M2

i ≥ ε/k, so

m(Xi) ≤ m(Xi−1)− ε/2kd2 ≤ m(Xi−1)(1− 1/2k3).
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Therefore,

max
x∈D

(
P(Xn = x)− 1

k

)2
≤ m(Xn) ≤ m(X0)

(
1− 1

2l3
)n

(4.7)
≤
(

1− 1
2k3

)n
.

4.3.3 Allocation algorithm

Let F,R be digraphs. An allocationallocation of F to R is a homomorphism from F to
R, i.e., a map ϕ : V (F ) → V (R) such that every edge u→v ∈ E(F ) is mapped
to an edge ϕ(u)→ϕ(v) ∈ E(R). In our applications, R will usually be a suitable
reduced digraph of the host graph G.

Algorithm 4.14 below is a randomised procedure which defines an allocation of
a rooted tree T to a digraph D, and is inspired by the Vertex Allocation Algorithm
[51, Section 3.2]. The algorithm in [51], however, is only applied when D is a
directed cycle with loops in every vertex (i.e., v→v ∈ E(D) for all v ∈ D),
whereas here there are no loops but we require that δ0(D) ≥ 1. Essentially,
Algorithm 4.14 steps through the vertices of T in an ancestral order, and defines
the homomorphism ϕ : T → D uniformly at random at each step, with the
restriction that siblings (i.e., vertices with the same parent) are mapped to the
same vertex if the edge between them and the parent has the same orientation.

Algorithm 4.14: The Vertex Allocation Algorithm
Input : an oriented tree T of order n with root r, an ancestral order

r = t1, . . . , tn of T , a digraph D with δ0(D) ≥ 1 and x1 ∈ V (D).
1 for τ = 1 to n do
2 if τ = 1 then define ϕ(r) := x1.
3 else if ϕ(tτ ) is undefined then
4 Let tσ be the parent of tτ and let xσ = ϕ(tσ).
5 Choose x+

τ ∈ N+
D (xσ) and x−τ ∈ N−D (xσ) uniformly at random

independently of all other choices.
6 Let t1τ , . . . , tsτ be the children of tσ.
7 for i = 1 to s do
8 if tiτ ∈ N+

T (tσ) then define ϕ(tiτ ) := x+
τ .

9 else define ϕ(tiτ ) := x−τ .

The next lemma states that Algorithm 4.14 will always build a homomorphism
and, moreover, that if T is sufficiently large and D is a regular expander, then
roughly the same number of vertices of T is mapped to each vertex of D.
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Lemma4.15. Let T be an oriented tree of order n rooted at r, let D be a regular
expander digraph of order k, and let x ∈ D. If ϕ is the allocation we obtain
by applying the Algorithm 4.14 to T and D, then the following properties hold.

(a) ϕ is a homomorphism ϕ : T → D and ∆(ϕ) ≤ 3.

(b) Let u, v ∈ V (T ), where u lies on the path from r to v, let P be the path
between u and v, and let W := V (P ) \ {u}. For all j ∈ D, the allocation
of W , conditioned on the event ‘ϕ(u) = j’ is a random P -walk on D.

(c) Suppose that 1/n� 1/k. Let u, v ∈ V (T ) be such that u lies on the path
from r to v, and distT (u, v) ≥ 5k3 log log log n. Then for all i, j ∈ D,

P( v is allocated to i | u is allocated to j ) = 1
k

(
1± 1

4log log n

)
.

(d) Suppose that 1/n � 1/k, ζ, 1/C and that ∆(T ) ≤ (log n)C . Let S be
a subset of V (T ) with at least n2/3+ζ vertices. Then with probability 1−o(1)
each of the vertices of D has |S|

(
1
k
± 1

log logn

)
vertices of S allocated to it.

(e) Suppose that 1/n � 1/k, β, 1/C, that D is d-regular, and let Q ⊆ E(D).
If S ⊆ E(T ) contains at least βn vertex-disjoint edges, then ϕ allocates at
least |S|/4kd edges of S to each edge of Q with probability 1− o(1).

Proof. Note that every edge of T is mapped to an edge of D; moreover, for
all v ∈ T , the neighbours of v fall in 3 categories: parent, in- or outchild of v,
and all vertices in each of these categories are allocated to the same cluster, so
(a) holds. In particular, (b) also holds, since the allocation of vertices along any
path match the choices that would be made in a random P -walk. From this point
onward, let us assume V (D) = [k]. We now prove item (c). Suppose 1/n� 1/k.
Let P (u, v) be the path from u to v in T , and let ` be the length of P (u, v), so
` ≥ 5k3 log log log n. Let u = v0, v1, . . . , v` = v be the vertices of P (u, v). Suppose
that u has been allocated to x0 ∈ D, and for all i ∈ {0, 1, . . . , `} let Xi be the
vertex to which vi is allocated (so X0 = x0). These variables form a random
P -walk (by the previous item), and therefore by Lemma 4.13 for all x ∈ D we
have that

P(Xn = x) = 1
k
±
(

1− 1
2k3

)`/2
= 1
k
± e−`/4k3 = 1

k

(
1± 1

4 log log n

)
,

which proves (c).
We now prove (d). By Lemma 2.6, there exists an integer s ≤ 3n1/3,

vertices v1, . . . , vs ∈ V (T ) and pairwise-disjoint subsets F1, . . . , Fs of V (T ) such
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that |⋃si=1 Fi| ≥ n − n5/12 and |Fi| ≤ n2/3 for each i ∈ [k], such that if j < i,
then any path from r or any vertex of Fj to any vertex of Fi passes through the
vertex vi, and also such that dist(vi, Fi) ≥ 5k3 log log log n. Write δn := 1

log logn ;
we shall prove that

(†)
with probability 1− o(1), for all j ∈ [k] at most |S|( 1

k
+ δn

2k ) vertices
from ⋃

i∈[s] Fi ∩ S are allocated to cluster Vj.

Note that (†) implies (d). Indeed, since the number of vertices of T not contained
in any of the sets Fi is at most n5/12 ≤ δn|S|/2k, if (†) holds then for any j ∈ [k]
in total at most |S|(1 + δn)/k vertices of S are allocated to Vj. It follows that at
least |S| − (k − 1)|S|(1 + δn)/k ≥ |S|(1/k − δn) vertices of S are allocated to Vj,
so (d) holds.

To prove (†), define random variables Xj
i for each i ∈ [s] and j ∈ [k] by

Xj
i := # of vertices of Fi ∩ S allocated to cluster Vj

n2/3 ,

so each Xj
i lies in the range [0, 1]. Then since the cluster to which a vertex x of T

is allocated is dependent only on the cluster to which the parent of x is allocated
and on the outcome of the random choice made when allocating x, we have for
each q ∈ [k] that E(Xj

i | X
j
i−1, . . . , X

j
1 , vi ∈ Vq ) = E(Xj

i | vi ∈ Vq ), where we
write x ∈ Vq to denote the event that x is allocated to Vq. So for any i ∈ [s]
and j ∈ [k] we have

E(Xj
i | X

j
i−1, . . . , X

j
1 ) ≤ max

q∈[k]
E(Xj

i | X
j
i−1, . . . , X

j
1 , vi ∈ Vq )

= max
q∈[k]

E(Xj
i | vi ∈ Vq ) = max

q∈[k]

∑
x∈Fi∩S P(x ∈ Vj | vi ∈ Vq )

n2/3

(c)
≤
(

1
k

+ δn
4k

)
|Fi ∩ S|
n2/3 .

We apply Lemma 2.15 with

µ :=
(

1
k

+ δn
4k

)
|S|
n2/3 ≥

(
1
k

+ δn
4k

) ∑
i∈[s]

|Fi ∩ S|
n2/3 ,

to obtain

P
(∑
i∈[s]

Xj
i > (1 + δn/8)µ

)
≤ exp

(
−(δn/8)2µ

3

)

= exp
(
−δ

2
n(1 + δn/4)|S|

192kn2/3

)
≤ exp

(
−nζ/2

)
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where the second inequality holds since we assumed that 1/n� 1/k, ζ. Taking a
union bound, we find that with probability 1− o(1) we have for each j ∈ [k] that

n2/3 ∑
i∈[s]

Xj
i ≤ n2/3(1 + δn/8)µ ≤ |S|

(
1
k

+ δn
2k

)
.

In other words, for each j ∈ [k] there are at most |S|
(

1
k

+ δn
2k

)
vertices of ⋃ri=1 Fi∩S

allocated to Vj, so (†) holds.
To conclude, let ≺ be an ancestral order of T and, for each edge e ∈ S, let xe

and ye be the endvertices of e, labelled so that xe ≺ ye. At least half of the edges
in S have the same orientation with respect to ≺, so let S ′ be a subset of S with at
least |S|/2 edges which are all oriented, say, from xe to ye. Let u1→v1, . . . , uq→vq
be the edges in Q. By item (d), with probability 1 − o(1) there are at least
|S ′|

(
1
k
± 1

log logn

)
vertices xe ∈ e ∈ S ′ allocated to each uj for all j ∈ [q]. Let us call

this event E1. Conditioned on the occurrence of E1, and for each j ∈ [q], let Zj be
the number of edges of S ′ which are allocated to uj→vj ; then, for any fixed j ∈ [q],
since D is d-regular (and d is bounded), it follows that Zj is a binomial random
variable with expectation at least |S ′|/d, so the probability that Zj < |S ′|/2d
decreases exponentially with n. By a union bound (over these q events), it
follows that with probability 1− o(1) we have that Zj ≥ |S ′|/2d ≥ |S|/4kd for all
j ∈ [q]; we call this event E2. Since both E1 and E2|E1 (i.e., E2 conditioned on
the occurrence of E1) happen with probability 1− o(1), we conclude that item (e)
holds as required.

4.3.4 Embedding

In this section we describe an algorithm for embedding trees in dense digraphs.
This algorithm will be used (with a few modifications) in the proof of many of
our results (such as Lemmas 4.23 and 4.20 and Theorem 1.15). It receives as
input a tree T , digraphs G (where T is to be embedded) and R (a reduced graph
of G), a partition V := {Vi : i ∈ R } of V (G), and a homomorphism ϕ : T → R.
It embeds vertices greedily, one at a time, so that each vertex x ∈ T is embedded
to the set Vϕ(x). The main result of this section is Lemma 4.16, which (roughly
speaking) states that if ∆(ϕ) is bounded, the number of vertices ϕ maps to any Vi
is always somewhat smaller than |Vi|, and if the edges of R correspond to regular
pairs in G, then the algorithm successfully embeds T to G.

This algorithm has grown out of an embedding algorithm used by Kühn,
Mycroft and Osthus [51] in their solution to Conjecture 1.7, to embed trees in
tournaments. In their application, however, R was always a cycle (so ∆(ϕ) ≤ 2)
and some edges were embedded within the Vi.
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For v ∈ T , we write C−(v) for the children of v in N−T (v), C−(v), C+(v)C+(v) for the
children of v in N+

T (v) and C(v)C(v) for C−(v) ∪ C+(v). We write Sx for the star
T
[
{x} ∪ C(x)

]
induced by x and its children.

I Embedding algorithm. If at any point in the description below there is more
than one possible choice available, we take the lexicographically first of these,
so that for each input the output will be uniquely defined—thus making the
algorithm deterministic. Furthermore, if at any point some required choice cannot
be made, terminate with failure.

At each time τ , with 1 ≤ τ ≤ n, we shall embed a vertex tτ to a vertex
vτ ∈ Vϕ(tτ ); we will also reserve sets A−τ , A+

τ for the children of tτ . We say that a
vertex ts of T is openopen at time τ if ts has been embedded but some child of ts has
not yet been embedded.

I Input. An oriented tree T with ancestral order t1 ≺ . . . ≺ tn of T , a digraph R,
a homomorphism ϕ : T → R. Also, a digraph G, a partition V := {Vi : i ∈ R } of
V (G), a vertex v1 ∈ Vϕ(t1) and constants β and γ.

I Procedure. At each time τ , with 1 ≤ τ ≤ n, we take the following steps.
I Step 1. Define the set Bτ of vertices of G unavailable for use at time τ to consist

of the vertices already occupied and the sets reserved for the children of open
vertices, so

Bτ := {v1, . . . , vτ−1} ∪
⋃

ts : ts is open

(
A−s ∪ A+

s

)
For each Vi ∈ V , let V τ

i := Vi \Bτ , so V τ
i is the set of available vertices of Vi.

I Step 2. If τ = 1 embed t1 to v1. Alternatively, if τ > 1:

(2.1) Let tσ be the parent of tτ (so A−σ , A+
σ were reserved for the children of tσ).

(2.2) If tσ→tτ , let W := A+
σ ∩ Vϕ(tτ ); otherwise let W := A−σ ∩ Vϕ(tτ ).

(2.3) Choose vτ ∈ W such that

deg−G(vτ , V τ
i ) ≥ γm for all i ∈ ϕ

(
C−(tτ )

)
,

deg+
G(vτ , V τ

j ) ≥ γm for all j ∈ ϕ
(
C+(tτ )

)
.

(4.8)

(2.4) Embed tτ to vτ .

I Step 3. In Step 2 we embedded tτ to a vertex vτ ∈ W . For each x ∈ C−(tτ ),
choose a set A−x ⊆ N−G (vτ ) ∩ V τ

ϕ(x) containing at most 2m1−1/∆(ϕ) vertices and
which is (β, γ, ϕ,m)-good for Sx; let A−τ be the union of these sets. Similarly, for
each y ∈ C+(τ), choose a set A+

y ⊆ N+
G (vτ ) ∩ V τ

ϕ(y) containing at most 2m1−1/∆(ϕ)
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vertices and which is (β, γ, ϕ,m)-good for Sy; choose these sets so that they are
pairwise disjoint and let A+

τ be their union.

I Termination. Terminate after every vertex of T has been processed, at which
point ψ(ti) = vi for each ti ∈ T is an embedding ψ of T into G, by construction.

Lemma4.16. Suppose that 1/n� 1/C, that 1/n� 1/k � ε� γ � β � d�
α ≤ 2 and let m := n/k.

(i) Let T be an oriented tree of order at most n with root t1 and ∆(T ) ≤ (log n)C ,
and let ≺ be a tidy ancestral order of T .

(ii) Let R and G be digraphs, with |R| = k, and suppose there exists a partition
{Vi : i ∈ R } of V (G) such that (1 + α)m ≤ |Vi| ≤ 3m for each i ∈ R.

(iii) Suppose that ϕ is a homomorphism from T to R such that each edge
x→y ∈ E(T ) is mapped to an (d, ε)-regular pair G[Vϕ(x)→Vϕ(y)], such that
∆(ϕ) ≤ 4 and which maps at most (1 + α/2)m vertices to each Vi.

(iv) Let v1 ∈ Vϕ(t1) be a vertex such that deg−G(v1, Vϕ(x)), deg+
G(v1, Vϕ(y)) ≥ γm

for all x ∈ C−(t1) and all y ∈ C+(t1).

Under these assumptions, the embedding algorithm (with parameters β, γ) suc-
cessfully embeds T to G.

We remark that any fixed constant q with α � 1/q could replace 4 in the
bound ∆(ϕ) ≤ 4 in (iii) above.

Proof. The Vertex Embedding Algorithm will only fail if at some point it is not
possible to make a required choice. We will show this is never the case, hence the
algorithm succeeds.

Consider the set of unavailable vertices Bτ at some time τ . Since the algorithm
embeds each vertex x ∈ T to Vϕ(x), we know that at most (1 + α/2)m vertices
of each Vj are already occupied. Furthermore, suppose that a vertex tσ ∈ T is
open at time τ . Then σ < τ and tσ has a child tρ with τ ≤ ρ. Since we are
processing the vertices of T in a tidy order, there can be at most ∆(T ) log2 n of
these children vertices tρ ∈ T .

Recall that each reserved set has size 2m1−1/∆(ϕ), and thus, at any time τ , the
total number of vertices in reserved sets is at most (2m1−1/∆ϕ)∆(T )(log2 n) ≤
αm/4. So for any cluster Vj, at any time τ at most (1 + α/2)m+ αm/4 vertices
of Vj are unavailable, and so |V τ

j | ≥ αm/4.
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We now argue that all required choices can be made. Indeed, in Step (2.3) we
choose vτ ∈ W satisfying (4.8). But W is (β, γ, ϕ,m)-good for Stτ —it has been
reserved at Step 3 when processing vertex tσ. In particular, W contains at least
γm1/∆(ϕ) vertices z such that deg−G(z, V τ

ϕ(x)) ≥ γm and deg+
G(z, V τ

ϕ(y)) ≥ γm for
all x ∈ C−(tτ ) and all y ∈ C+(tτ ). Moreover, tσ has been open since time σ < τ

and hence the only vertices which have been embedded to W are children of tσ
(of which there are at most ∆(T ) < γm1/∆(ϕ)/2), so we can choose vτ as required.

In Step 3 we wish to choose A−x ⊆ N−G (vτ ) ∩ V τ
ϕ(x) and A+

y ⊆ N+
G (vτ ) ∩ V τ

ϕ(y)

for each x ∈ C−(tτ ) and each y ∈ C+(tτ ), such that A−x is (β, γ, ϕ,m)-good for
Sx and A+

y is (β, γ, ϕ,m)-good for Sy. By (4.8), vτ has at least γm inneighbours
in V τ

ϕ(x) for each x ∈ C−(tτ ) and at least γm outneighbours in V τ
ϕ(y) for each

y ∈ C+(tτ ); for τ = 1 this holds by our hypothesis (iv) instead.
Since

∣∣∣C−(tτ )
∣∣∣ +

∣∣∣C+(tτ )
∣∣∣ ≤ ∆(T ), the total number of vertices which are

reserved in Step 3 (at any given time τ) is at most ∆(T )2m1−1/∆(ϕ) ≤ γm/3.
Therefore, for each x ∈ C−(tτ ) we have that at any point during Step 3, V τ

ϕ(x) ∩
N−G (vτ ) contains at least γm− γm/3 > γm/2 unreserved vertices. Similarly, for
each y ∈ C+(tτ ) we have that at any point during Step 3, V τ

ϕ(y) ∩N
−
G (vτ ) contains

at least γm− γm/3 > γm/2 unreserved vertices. Hence, by Lemma 4.4, it follows
that for all x ∈ C−(tτ ) and all y ∈ C+(tτ ) there exist (β, γ, ϕ,m)-good sets for
Sx and Sy, each of size at most 2m1/∆(ϕ) and containing only unreserved vertices
of V τ

ϕ(x) and V τ
ϕ(y), respectively. Hence all choices in Step 3 can be made.

As promised (in Section 3.3.2), we now sketch of the proof of Lemma 3.4,
since this is based on the argument above. We recall that Lemma 3.4 states
that given a semi-canonical allocation of a tree T (whose maximum degree is at
most polylogarithmic on |T |) to a cycle of cluster tournaments, there exists an
embedding of T which respects this allocation.

A key difference to the proof above (related to the fact that in Lemma 3.4 is
that we sometimes embed edges within clusters) is that ∆(Tcanon) ≤ (log n)2C , so
the components of T corresponding to vertices of Tcanon are small; this ensures the
crucial property that the number of vertices in reserved sets remains is sublinear
at any step (see embedding algorithm and discussion on page 39).

Proof sketch (Lemma 3.4). As mentioned above this proof proceeds by arguing
(as in Lemma 4.16) that the choices required by the algorithm can always be made.
Informally, the argument goes as follows: at any step of the algorithm, there are
many unused vertices; moreover, the sets reserved for the children of any vertex
are large enough that we can always find (c, γ)-good sets in them; moreover, these
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good sets are large enough that we can embed any star of T corresponding to the
currently processed vertex of Tcanon.

We build Tcanon as described above, letR be the directed cycle 1→2→· · ·→k→1,
let β = c and m = n/k, and note that with these definitions a (β, γ, ϕ,m)-good
(Definition 4.3 on page 79) set is precisely a (c, γ)-good set (since R is a directed
cycle). To deal with components of T which are embedded within a cluster,
we apply Theorem 3.5. More precisely, our modified version of the embedding
algorithm only fails if we cannot find a copy of S in the unused vertices reserved
for v. But this star contains at most ∆(T ) ≤ (log n)C vertices, and as argued
in the proof of Lemma 4.16 there are at least γm1/4/2 ≥ 3|S| unused vertices in
the reserved set; this means that we can find the desired copy of S in the unused
vertices reserved for v, by Theorem 3.5.

4.3.5 An approximate result (Theorem 4.17)

As a corollary of Lemmas 4.15 and 4.16 we obtain an approximate result for
embedding almost-spanning trees in digraphs of high semidegree.

Theorem4.17. For all positive α, ε, C with ε� α there exists n0 such that the
following holds for all n ≥ n0. If G is a digraph of order (1 + ε)n and minimum
semidegree at least (1/2 + α)n, then G contains every oriented tree of order n
and maximum degree at most (log n)C .

Proof. Let G be a digraph of order (1 + ε)n such that δ0(G) ≥ (1/2 + α)n. We
introduce constants ε′, d, k, η such that 1

n
� 1

k
� ε′ � d � η � α, ε, C, and

apply Lemma 4.2 to obtain a partition V0 ∪̇ V1 ∪̇ · · · ∪̇ Vk and a digraph R?

with V (R?) = [k] such that

(a) |V0| < ε′n and m := |V1| = · · · = |Vk|;

(b) For each i ∈ [k] we have G[Vi−1→Vi] and G[Vi→Vi+1] are (d, ε′)-super-
regular;

(c) For all i, j ∈ [k] we have i→j ∈ E(R?) precisely when G[Vi→Vj] is (d, ε′)-
regular.

(d) For all i ∈ [k] we have deg0
R?(i, [k]) ≥ (1/2 + η)k.

We also introduce constants β, γ such that 1/n � 1/k � ε′ � γ � β, d � η.
Note that R? contains a regular expander D by Lemma 4.10, and also that
m = (1 + η)n/k. Fix a vertex r ∈ T and a vertex x ∈ D. Then T, r,D and x

satisfy the hypothesis of Lemma 4.15, so if we apply the Algorithm 4.14 we
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obtain a homomorphism ϕ : T → D such that ∆(ϕ) ≤ 3 and such that for
all i ∈ [k] we have

∣∣∣ϕ−1(Vi)
∣∣∣ ≤ n/k ± n/ log log n ≤ (1 + η/2)n/k. Moreover,

by Lemma 4.4 there exists a vertex v1 ∈ Vϕ(r) such that for each x ∈ C−(r) we
have deg−G(x, Vϕ(x)) ≥ γm and for each y ∈ C+(r) we have deg+

G(y, Vϕ(x)) ≥ γm.
Hence, T, x,G, v1, D, ϕ and the constants above (with η here as α) satisfy the
hypothesis of Lemma 4.16, so if we apply the embedding algorithm with these
parameters it successfully finds a copy of T in G.

4.4 Trees with many bare paths

Our goal is to prove Lemma 4.20, which is a version of Theorem 1.13 for trees with
‘many bare paths’. Our main tools are the Allocation Algorithm (Algorithm 4.14)
and the Embedding Algorithm (described in Section 4.3.4). However, since the
trees here will be spanning trees of the host graph, we need to adapt both
procedures. Lemma 4.18 below guarantees the existence of a special allocation
of vertices; the proof of Lemma 4.20 describes how to modify the embedding
algorithm.

4.4.1 Allocation

Roughly speaking, Lemma 4.18 states that given a tree T (containing many vertex-
disjoint bare paths), a graph R? on V0 ∪̇ [k] (with linear minimum semidegree
in [k]), and a Hamilton cycle H ⊆ R?

[
[k]
]
, there exists a homomorphism ϕ from

T to R? which satisfies many properties: ∆(ϕ) is bounded and maps a large
collection of ≺-isomorphic bare paths of T evenly along H; ϕ covers V0 bijectively,
mapping to V0 centres of bare paths and, moreover, ϕ distributes the neighbours
of the vertices mapped to V0 somewhat evenly over [k]; and

∣∣∣ϕ−1(i)
∣∣∣ =

∣∣∣ϕ−1(j)
∣∣∣

for all i, j ∈ [k].
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Lemma4.18. Suppose 1
n
� 1

k
� ε� λ� η � α and that 1

n
� 1

C
. Let T be an

oriented tree of order n such that ∆(T ) ≤ (log n)C . Suppose that there exists
a collection P of λn vertex-disjoint bare paths of T with order 7. Let R? be a
graph with vertex set V0 ∪̇ [k], such that |V0| < εn, where n − |V0| ≡ 0 mod k,
and such that for each i ∈ [k] we have deg0

R?(i, [k]) ≥ (1/2 + η)k and for each
v ∈ V0 we have deg0

R?(v, [k]) > αk. Suppose also that H is a directed Hamilton
cycle in R?

[
[k]
]
. Then there exists a tidy ancestral order ≺ of T , disjoint subsets

P0,PH ⊆ P and a homomorphism ϕ : T → R? such that

(i) ∆(ϕ) ≤ 4;

(ii) |P0| = |V0| and for each P ∈ P0 the centre of P is mapped to V0;

(iii) ϕ maps precisely one vertex of T to each v ∈ V0;

(iv) ϕ maps at least λn/24k centres of paths in PH to each i ∈ [k];

(v) If N := {N−T (x) ∪ N+
T (x) : ϕ(x) ∈ V0 } are the neighbours of vertices ϕ

maps to V0, then ϕ maps at most 2εn/αk vertices of N to each i ∈ [k];

(vi) For each P ∈ PH , the restriction of ϕ to middle(P ) is a homomorphism
from middle(P ) to H;

(vii)
∣∣∣ϕ−1(1)

∣∣∣ =
∣∣∣ϕ−1(2)

∣∣∣ = · · · =
∣∣∣ϕ−1(k)

∣∣∣.
The proof is divided in four stages, which we now outline. In the setup we fix

a tree partition {T1, T2} of T such that T1 contains a collection P ′ of many bare
paths whose middles are ≺-isomorphic to some rooted path Pref . We also fix a
partition P ′ = P0 ∪̇ PH ∪̇ P� such that |P0| = |V0| and |PH |, |P�| ≥ |P ′|/4, and
map middle(P ) for each path in P ′ in the following manner. For each P ∈ P0,
we map middle(P ) so that c(P ) is mapped (bijectively) to a vertex in V0 and the
neighbours of such vertices are mapped to vertices in [k] somewhat evenly. For
each P ∈ PH , we map middle(P ) along H so that the same number of centres are
mapped to each i ∈ [k]. Next, we find a spanning subgraph J� of R?

[
[k]
]
which

is Pref-connected, and map middle(P ) for all P ∈ P� so that for each diamond
x y

w
z ∈ J� a linear number of (middles of) paths is mapped to xyz and a linear

number of (middles of) paths is mapped to xwz—this will be useful in the last
stage of the proof. Finally, we let T ′1 be the tree we obtain by contracting all
edges in each path P ∈ P ′.

In phase 1 we apply Lemma 4.10 to find a regular expander J ⊆ R? and
then allocate T ′1 to J using Algorithm 4.14. We concatenate this allocation to the
maps defined in the setup and complete (greedily) the allocation of the contracted
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paths, obtaining a homomorphism of T1 into R?. By Lemmas 4.6 and 4.15, this
allocation of T1 is almost uniform over [k], with error O(λn/ηk).

In phase 2 we apply Algorithm 4.14 again, this time allocating T2 to a
regular expander Jblow which is a subgraph of a weighted blow-up of R?

[
[k]
]
.

The allocation we obtain is again almost uniform, but biased so as to correct
the linear errors introduced in the setup stage when embedding paths in P ′.
Altogether, the maps we defined form an allocation of T to R?. We argue that
the resulting allocation of T satisfies all of the properties stated in the lemma,
except perhaps (vii). However, by Lemma 4.15, we have at most sublinear errors
in the order of the preimages of each i ∈ [k].

To conclude the proof, in phase 3 we modify the mapping of the centres of
paths in P� along J�, so as to ensure (vii). This requires only a sublinear number
of changes, and thus is possible by Lemma 4.9.

Proof. As outlined above, this proof is divided in four parts.
I Setup. By Lemma 2.3, there exists a tree-partition {T1, T2} of T such that
|T1| ≤ 2n/3 and we may assume, without loss of generality, that T1 contains λn/2
paths of P. Let r be the common vertex of T1 and T2; by Lemma 2.5 we can
fix a tidy ancestral order ≺ of T starting with r and such that each vertex of T1

precedes all vertices in V (T2) \ {r} in this order.
Let P ′ be a collection of at least λn/16 and at most λn/8 paths of P in T1

whose middle sections are ≺-isomorphic to some rooted path Pref of order 3. For
each P ∈ P ′ we write vP1 , vP2 , . . . , vP7 to denote the vertices of P , labelled so that
vP1 ≺ vP2 ≺ · · · ≺ vP7 .

Fix (arbitrarily) a partition P ′ = P0 ∪̇ PH ∪̇ P� such that |P0| = |V0| < εn ≤
|P ′|/3, such that |PH |, |P�| ≥ |P ′|/3, such that |PH | ≡ 0 mod k and such that
|P�| ≡ 0 mod 2(k − 1). We shall define a homomorphism ϕ mapping the middle
of each path P ∈ P ′ to R?. We do this separately for P0,PH and P�, as follows.

Let ϕ0 : { c(P ) : P ∈ P0 } → V0 be an arbitrary bijection. For each P ∈ P0,
we proceed as follows. Write cP := ϕ0(vP4 ), so cP ∈ V0. We shall map each
{vP3 , vP5 } to [k], extending ϕ0 so that the preimage of each i ∈ [k] has size at most

∣∣∣(ϕ0)−1(i)
∣∣∣ ≤ 2|V0|

αk
. (4.9)

To do so, let B3 be a bipartite graph with vertex classes V0 and [k], with an edge
connecting i ∈ [k] to cP ∈ V0 if mapping vP3 7→ i would create a homomorphism
from P

[
{vP3 , vP4 }

]
to R?. Note that each x ∈ V0 has degree at least αk, so, by

Lemma 4.6, there exists a subgraph B′3 of B3 containing V0, such that each x ∈ V0

has degree 1 and each vertex in [k] has degree at most |V0|/αk in B′3. For each
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edge icP ∈ E(B′3), where i ∈ [k] and cP ∈ V0, we set ϕ0(vP3 ) = i. We proceed
similarly to define ϕ0(vP5 ) for each P ∈ P0. Note that ϕ0 satisfies (iii) and (v).

Fix a partition PH = PH1 ∪̇ · · · ∪̇ PHk with parts of equal size. Note that for
each P ∈ PH and for each i ∈ [k] there is a unique homomorphism ϕH,P from
middle(P ) to H such that ϕH,P

(
c(P )

)
= i. We set ϕH to be the union of all

homomorphisms ϕH,P . Note that ϕH satisfies (iv) and (vi).
By Lemma 4.8, R? contains a Pref-connected subgraph J� with ∆(J�) ≤

4/η which is the union of Pref-diamonds
(
xi

yi
wi

zi
)k−1

i=1
. We fix a partition

P� = Py1 ∪̇ Pw1 ∪̇ · · · ∪̇ P
y
k−1 ∪̇ Pwk−1 with parts of equal sizes, that is of size

|P�|/2(k − 1) ≥ |P�|/3k each. For each i ∈ [k − 1], each P y ∈ Pyi and each
Pw ∈ Pwi , we define ϕ� as the unique ≺-isomorphisms from middle(P y) to xiyizi
and from middle(Pw) to xiwizi. Note that for each i ∈ [k] we have that the size
of the pre-image (ϕ�)−1(i) is

∣∣∣(ϕ�)−1(i)
∣∣∣ ≤ ∆(J�) |P�|

2(k − 1) ≤
8
η

(2
3 |P

′|
) /

2(k − 1) ≤ λn

2ηk (4.10)

To conclude the setup, we define ϕ as the disjoint union of the maps ϕ0, ϕH

and ϕ� (this definition will be extended later), and form a tree T ′1 by contracting
the edges of each path in P ′ (so that each path becomes a single vertex). If the
endvertices of a path P so contracted were vP1 and vP7 , we write vP1,7 for the vertex
resulting from the contraction.

I Phase 1. By Lemma 4.10, R? contains a 25k2/3/η-regular expander J . We apply
Algorithm 4.14 to T ′1 and J . This yields a homomorphism %1 from the former
to the latter. For each P ∈ P ′, we proceed as follows. Recall that ϕ(vP3 ), ϕ(vP4 )
and ϕ(vP5 ) have already been defined in the setup stage, i.e., that middle(P ) has
already been mapped. We define ϕ(vP1 ) = ϕ(vP7 ) = %1(x), where cP = vP1,7 is the
vertex resulting from the contraction of P .

We complete the mapping of T1 by defining ϕ(vP2 ) and ϕ(vP6 ) greedily, using
Lemma 4.6, as follows. We form an auxiliary bipartite graph B2 with classes
P ′ and [k], with edges joining j ∈ [k] to P ∈ P ′ whenever setting ϕ(vP2 ) = j

completes a homomorphism from P
[
{vP1 , vP2 , vP3 }

]
to Rk := R?

[
[k]
]
. Note that

each P ∈ P ′ has at least ηk neighbours in [k], so by Lemma 4.6 there exists
B′2 ⊆ B2 which contains P ′, such that each P ∈ P ′ has degree 1 and each j ∈ [k]
has degree at most |P ′|/ηk ≤ λn/8ηk. We can thus extend ϕ by setting ϕ(vP2 ) = j

for each edge Pj in B′2. We proceed similarly to define ϕ(vP6 ) for all P ∈ P ′

(i.e., define an auxiliary bipartite graph B6, apply Lemma 4.6 and then set ϕ(vP6 )
according to the subgraph B′6 thus obtained). Let P2,6 := ⋃

P∈P ′{vP2 , vP6 }, and
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note that for each i ∈ [k] we have
∣∣∣ϕ−1(i) ∩ P2,6

∣∣∣ ≤ λn

4ηk . (4.11)

Claim 4.19. For each i ∈ [k] we have
∣∣∣ϕ−1(i)

∣∣∣ = |T1| ± 6λ|T2|/ηk.

Proof. Let PX := { vPx ∈ P : x ∈ X and P ∈ P ′ }; we shall abuse notation,
writing Pi for P{i} and Pi,j for P{i,j}. We partition the vertices of T1 into five
sets: A := {A,P7, P2,6, P3,5, P4}, where A := P1 ∪̇ (T ′1 ∩ T ) (so, in other words, A
consists of all vertices of T1 except for vPi such that i ∈ {2, 3, . . . , 7} and P ∈ P ′).
For each i ∈ [k], and each S ∈ A, let m(S) := minj∈[k]

∣∣∣ϕ−1(j) ∩ S
∣∣∣, let δi(S) :=

|ϕ−1(i) ∩ S| −m(S) and δi := ∑
S∈A δi(S); so. Since |S| ≥ λn/8 for all S ∈ A, we

have

0 ≤ δi ≤
2|T ′1|

k log log |T ′1|
+ 2λn
k log log(λn)

A,P7: Lemma 4.15

+

P2,6, P3,5: (4.11) + (4.9) + (4.10)

λn

4ηk + 2εn
αk

+ λn

2ηk + λn

2ηk
P4: (4.10)

≤ 2λn
ηk
≤ 6λ|T2|

ηk
.

(4.12)

Let us go through the calculations above. We distribute vertices of A roughly
uniformly by Lemma 4.15 (d), since ϕ is an allocation of T [A] obtained by the
randomised allocation procedure; moreover, also by Lemma 4.15 (d), the vertices
in P1 are allocated quite evenly (recall that P1 ⊆ A), and so are the vertices
in P7 (since their allocation is the same as the vertices in P1). We have already
calculated the ‘unevenness’ in the allocation of P2,6 in (4.11). Things are a little
more complicated for the allocation of the vertices in P3,5: their allocation may
have larger deviations from the uniform distribution and moreover these deviations
depend on whether the vertices lie in a path in P0 (calculated in (4.9)) or P�

(calculated in (4.10)) or PH (no error because these are allocated symmetrically
along H). Finally, vertices in P4 are distributed evenly if they come from paths
in P0 ∪ PH ; otherwise the error is given by (4.10) as well. This completes the
proof of the claim since

∣∣∣ϕ−1(i)
∣∣∣ = |T1| ± δi. �

I Phase 2. We now define ϕ for the remaining vertices of T . We first find a
homomorphism %2 from T2 to a weighted blow-up of R?

[
[k]
]
. For each i ∈ [k],

define
δi :=

∣∣∣ϕ−1(i) ∩ V (T1)
∣∣∣−min

j∈[k]

∣∣∣ϕ−1(j) ∩ V (T1)
∣∣∣
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(as in the claim above) and

fi :=

|T2|/k − δi if i 6= 1,

|T2|/k − δi + 1 otherwise,

so fi = |T2|(1±6λ/η)/k by (4.12). Note that fi is precisely the number of vertices
of T2 that ϕ should map to cluster i if we are to satisfy (vii). We use an auxiliary
graph B which is a blow-up of R?

[
[k]
]
, where each i ∈ [k] is replaced by a set Bi,

and x→y ∈ E(B) for all x ∈ Bi and all y ∈ Bj such that i→j ∈ E(R?). In fact,
we will restrict our attention to a regular expander subgraph Jblow of B.

Choose numbers b1, . . . , bk as follows. Let n′ := |T2| and `̀̀ (n′) := log log log n′.
For each i ∈ [k], set bi := fi `̀̀ (n′)/n′. Consider the digraph B which is a blow-up
of R?

[
[k]
]
, as described above, where vertex i is replaced by a set Bi of bi vertices.

Note that |B| = `̀̀ (n′) and that fi ≥ (1− 6λ/η)n′/k, so

δ0(B) ≥ δ0
(
R?
[

[k]
])
k
fi `̀̀ (n′)
n′

≥
(1

2 + η
)
k

(1− 6λ/η)`̀̀ (n′)
k

≥ |B|2

(
1 + η

2

)
,

and therefore B contains an expanding regular subdigraph Jblow by Lemma 4.10.
We allocate vertices of T2 to vertices of Jblow as follows. Choose a vertex xr in

Bϕ(r) (where r is the root of T2, the unique vertex in T1 ∩ T2, and also the unique
vertex of T2 for which ϕ has been defined). Recall that we have an ancestral order
≺ of T2; we apply the Allocation Algorithm 4.14, which produces a homomorphism
%2 : T2 → Jblow mapping approximately the same number of vertices to each
x ∈ Jblow and such that %2(r) = xr. Indeed, by Lemma 4.15, it follows that the
number of vertices allocated to each vertex of Jblow is n′

(
1

|Jblow| ±
1

log logn′
)
. Since

|Jblow| = |B| = `̀̀ (n′), the number of vertices allocated to Bi is

bi ·
n′

`̀̀ (n′)

(
1± `̀̀ (n′)

log log n′

)
= fi

(
1± `̀̀ (n′)

log log n′

)
.

Using %2 we define a homomorphism ϕ′ : T2 → R?
[

[k]
]
as follows: for each

x ∈ T2, set ϕ′(x) = i if %2(x) ∈ Bi. Notice that ϕ(r) = ϕ′(r), and thus, setting
ϕ(x) = ϕ′(x) for all x ∈ T2 we obtain the desired extension of ϕ.

I Phase 3. To conclude the proof we slightly modify ϕ so as to satisfy (vii), by
changing ϕ(vP4 ) for P ∈ P� while preserving the other properties. Let ∆min :=
mini∈[k]

∣∣∣ϕ−1(i)
∣∣∣ and for each i ∈ [k] let ∆i :=

∣∣∣ϕ−1(i)
∣∣∣ − ∆min. We proceed

greedily, as follows. Suppose that i, j ∈ [k] maximise
∣∣∣ϕ−1(j)

∣∣∣ − ∣∣∣ϕ−1(i)
∣∣∣ > 0.

Choose a Pref-diamond path
(
xs

ys
ws

zs
)s?
s=1

in J� connecting i and j, and for each
s ∈ {1, i+ 1, . . . , s?} select a path P ∈ P� whose middle vxs vws vzs is ≺-isomorphic
to Pref and such that ϕ(vxs ) = xs, ϕ(vws ) = ws and ϕ(vzs) = zs. We change ϕ
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so that ϕ(vws ) = ys along this diamond path. This decreases ∑i ∆i by 2 and
changes the allocation of at most k paths in P�. Furthermore, since at the start
∆i ≤ n`̀̀ (n′)/k log log n′ for all i ∈ [k], we can reduce all ∆i to 0 in at most∑

i k∆i/2 ≤ k2n`̀̀ (n′)/ log log n′ ≤ λn/25k iterations. Since |Pyi |, |Pwi | ≥ λn/24k
for all i ∈ [k], these changes can be done, and the modified ϕ satisfies (vii).

It remains to show that ∆(ϕ) ≤ 4. We first note we that T ′1 and T2 are
allocated according to the allocation algorithm, so, considering only the restriction
of ϕ to T

[
V (T ′1) ∪ V (T2)

]
we have that ∆(ϕ) is at most 3. This accounts for all

edges of T except those of paths in P ′, so, to conclude, we consider the mapping
of these bare paths. Let P ∈ P ′ and let v1 ≺ · · · ≺ v7 be the vertices of P . Note
that the ϕ-degree of any vertex is bounded above by their total degree, hence the
interior vertices v2, . . . , v6 have ϕ-degree at most 2 (because P is a bare path). As
for v1 and v7, their ϕ-degree is at most 4, since their ϕ-degree in T

[
V (T ′1)∪V (T2)

]
is at most 3 but their neighbour in P may have been allocated to a different vertex
of R? in Phase 1; therefore (i) holds as well.

4.4.2 Proof of Lemma 4.20

We now describe how to modify the embedding algorithm of Section 4.3.4 and
prove Lemma 4.20, which states that we can always embed T (a tree with
polylogarithmic maximum degree and many bare paths of order 7) to G (a digraph
with high semidegree). Roughly speaking, all sufficiently large digraphs with
large semidegree admit a regular partition with a ‘suitable reduced graph’ R?

satisfying the hypothesis of Lemma 4.18. We apply Lemma 4.18 to obtain a
special homomorphism ϕ : T → R?, and then apply the embedding algorithm
described in Section 4.3.4 (with some modifications), to obtain an embedding of
almost all of T in G. Finally, we complete the embedding using perfect matchings.

Lemma 4.20. Suppose that 1/n � 1/C and that 1/n � λ � α. Let T be an
oriented tree of order n and maximum degree ∆(T ) ≤ (log n)C , and let G be
a digraph of order n with minimum semidegree δ0(G) ≥

(
1
2 + α)n. If T contains

a collection P of λn vertex-disjoint bare paths of order 7, then G contains a
(spanning) copy of T .

Here is a brief outline of the proof. We first use Lemma 4.2 to define an
auxiliary graph R? which satisfies all properties required by the allocation lemma.
Next, we allocate vertices of T (Lemma 4.18). Before embedding the tree, we
reserve small subsets in each cluster for dealing with exceptional vertices and for
the final matching, and choose v1 ∈ G where the embedding will begin. We then
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apply a slightly modified version of the Embedding Algorithm (we skip centres of
some paths and embed paths covering exceptional vertices in a different manner);
this successfully embeds almost all of T following the chosen allocation (this is
similar to the proof of Lemma 4.16). We complete the embedding with perfect
matchings (Lemma 2.8).

Proof of Lemma 4.20. Let G be a digraph of order n such that δ0(G) ≥ (1/2+α)n.
We introduce constants ε, d, k, η such that 1

n
� 1

k
� ε � d � λ � η � α. We

apply Lemma 4.2 to obtain a partition V0 ∪̇ V1 ∪̇ · · · ∪̇ Vk and a digraph R?

with V (R?) = V0 ∪̇ [k] such that

(a) |V0| < εn and m := |V1| = · · · = |Vk|;

(b) For each i ∈ [k] we have G[Vi−1→Vi] and G[Vi→Vi+1] are (d, ε)-super-regular;

(c) For all i, j ∈ [k] we have i→j ∈ E(R?) precisely when G[Vi→Vj] is (d, ε)-
regular.

(d) have v←i ∈ E(R?) precisely when deg−(v, Vi) ≥ (1/2 + η)m, and v→i ∈
E(R?) precisely when deg+(v, Vi) ≥ (1/2 + η)m

(e) For all i ∈ [k] we have deg0
R?(i, [k]) ≥ (1/2 + η)k; and

(f) For all v ∈ V0 we have deg0
R?(v, [k]) > αk.

Let P be a collection of λn vertex-disjoint bare paths of T with order 7 and
let H be the Hamilton cycle 1→2→ . . .→k→1 in R?. Note that H,P , R? and T
satisfy the conditions of Lemma 4.18, and hence we may fix a tidy ancestral order
≺ of T , disjoint sets P0,PH ⊆ P and a homomorphism ϕ : T → R? with the
following properties

(i) ∆(ϕ) ≤ 4;

(ii) |P0| = |V0| and for each P ∈ P0 the centre of P is mapped to V0;

(iii) ϕ maps precisely one vertex of T to each v ∈ V0;

(iv) ϕ maps at least λn/24k centres of paths in PH to each i ∈ [k];

(v) If N := {N−T (x) ∪ N+
T (x) : ϕ(x) ∈ V0 } are the neighbours of vertices ϕ

maps to V0, then ϕ maps at most 2εn/αk vertices of N to each i ∈ [k];

(vi) For each P ∈ PH , the restriction of ϕ to middle(P ) is a homomorphism
from middle(P ) to H;

(vii)
∣∣∣ϕ−1(1)

∣∣∣ =
∣∣∣ϕ−1(2)

∣∣∣ = · · · =
∣∣∣ϕ−1(k)

∣∣∣.
Finally, before we embed T , we reserve some sets of vertices of G with good

properties. We introduce a new constant γ, with 1/n� 1/k � ε� γ � d.
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Claim 4.21. There exist v1 ∈ V1 and, for each i ∈ [k], disjoint sets Xi, Yi ⊆ Vi

with |Xi| = |Yi| = λm/50 such that

(i) If U ⊆ Vi with |U | ≥ λm/24, then G[Xi−1→U ] and G[U→Xi+1] are both(
50ε
λ
, d32

)
-super-regular;

(ii) For all x ∈ ϕ−1(V0), if ϕ maps an inneighbour of x to Vj, then

deg−
(
ϕ(x), Yj

)
≥ λm/200 ;

(iii) For all y ∈ ϕ−1(V0), if ϕ maps an outneighbour of y to Vj, then

deg+
(
ϕ(y), Yj

)
≥ λm/200 ;

(iv) For each y ∈ C−(t1) and each z ∈ C+(t1) we have

deg−(v1, Vϕ(y)) ≥ γm and deg+(v1, Vϕ(z)) ≥ γm.

Proof. Choose Zi ⊆ Vi with |Zi| = λm/25 uniformly at random, independently
for each i ∈ [k]; choose Xi ⊆ Zi with |Xi| = λm/50 uniformly at random and
independently of all other choices and let Yi := Zi \Xi. We will show that with
high probability these sets satisfy all required properties.

Let i ∈ [k]. Recall that G[Vi−1→Vi] and G[Vi→Vi+1] are both (d, ε)-super-
regular, so for each x ∈ Vi−1 and each y ∈ Vi+1 we have that deg+(x,Xi) and
deg−(y,Xi) are random variables with hypergeometric distribution and expec-
tation at least |Xi|(d− ε)/2 ≥ λdm/100. By Lemma 2.14, the probability that
any one of these random variables has value strictly less than λdm/200 decreases
exponentially with n. By a union bound (over 2n events) it follows that with
probability 1− o(1) all these random variables have value at least λdm/200, and
thus (i) holds with probability 1− o(1).

Let v ∈ V0, let t := ϕ−1(v) and let x be a neighbour of t in T . If x ∈ N−T (t), then
deg−(v, Vϕ(x)) ≥ m/2, so deg−(v, Yϕ(x)) is a random variable with hypergeometric
distribution and expectation at least |Xi|/2 = λm/100 and by Lemma 2.14
the probability that deg−(v, Yϕ(x)) is less than λm/200 decreases exponentially
with n. Similarly, if x ∈ N+

T (t), then the probability that deg+(v, Yϕ(x)) is less
than λm/200 decreases exponentially with n. Again by a union bound (ii) and (iii)
both hold with probability 1− o(1).

Let I ⊆ [k] be such that all children of t1 are mapped to Vi with i ∈ I. Let
S be the star consisting of t1 and its children. Since ∆(ϕ) ≤ 4, we have that
|I| ≤ 4, and so by Lemma 4.4 (applied with S and new a constant β such that
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1/n� 1/k � ε� γ � β, d) there exists v1 ∈ V1 which satisfies (iv). �

Returning to the proof of the lemma, we introduce a constant β (as above)
with 1/n� 1/k � ε� γ � β, d� λ. We next greedily embed almost all of T
to G. Recall that the embedding algorithm processes the vertices of T in a tidy
ancestral order, reserving good sets (as in Definition 4.3) for the children of each
vertex. We would like to apply the embedding algorithm of Section 4.3.4, but
Lemma 4.16 (which guarantees the success of the algorithm) cannot be immediately
used, for two reasons: firstly, |T | = |G|, so there is no room to spare; secondly, the
edges of R? between [k] and V0 do not correspond to regular pairs. To take care of
these issues, we slightly modify the algorithm so it successfully embeds all vertices
of T (except centres of some bare paths) according to ϕ. The changes only affect
how the algorithm processes a small set of bare paths of T : we do not embed
the centres c(P ) of paths in PH and also use a different procedure to embed
the middle sections of paths P ∈ P0. More precisely, we apply the embedding
algorithm with input T,≺, R?, ϕ,G\⋃i∈[k] Xi,V := {Vi \Xi : i ∈ R? }, v1, γ and β
with the changes detailed below. For each x ∈ ϕ−1(V0) we write P x ∈ P0 for the
bare path with centre x, and write px1 ≺ · · · ≺ px7 for the vertices of P x, so x = px4 .

Step 1. For each i ∈ [k] write Y τ
i for the available vertices of Yi, write V τ

i for
the available vertices in Vi \ Yi, and change the definition of Bτ so that
it now includes Y τ

1 ∪ · · · ∪ Y τ
k , i.e. let

Bτ := {v1, . . . , vτ−1} ∪ Y τ
1 ∪ · · · ∪ Y τ

k ∪
⋃

ts : ts is open

(
A−s ∪ A+

s

)
,

so for all τ ≥ 1 and all i ∈ [k] we have V τ
i ∩ Yi = ∅.

Step 2. If tτ is a centre of some P ∈ PH , then we skip it (rather than embedding
it) and proceed to Step 3.

If tτ is the ‘second vertex’ of a path P x ∈ P0, that is, if tτ = vx2 for
some x ∈ ϕ−1(V0), then instead of steps (2.3) and (2.4) we embed all
vertices of P x at once, as follows. For simplicity, we suppose that P x is
a path with vertices tτ = px1 , p

x
2 , p

x
3 , x = px4 , p

x
5 , p

x
6 , p

x
7 with px1 ≺ · · · ≺ px7

and whose edges are directed from pxs to pxs+1 for each s ∈ [6]; the
argument proceeds similarly otherwise. When px1 was embedded—say to
a vertex u1—we reserved a good set A+

px2
⊆ Vϕ(px2 ) ∩N+(px1) for px2 . Let

U3 := N−
(
ϕ(x)

)
∩Y τ

ϕ(px3 ). Note that the only vertices embedded to Yϕ(px3 )

are py3, py5 for some P y ∈ P0, and there are at most 2εm/α ≤ λm/400
of these by item (v) of Lemma 4.18. Hence, by (ii) and (iii), it follows
that |U3| ≥ λm/400. Since A+

px2
is (β, γ, ϕ,m)-good for Svx2 , we conclude



4.4. Trees with many bare paths 109

that A+
px2

contains a vertex u2 with high outdegree in U3. Let u3 be a
vertex in U3 ∩N+

G (u2). Note that u1→u2→u3→u4 is an embedding of
half of P x. Let U5 := N+

(
ϕ(x)

)
∩ Y τ

ϕ(px5 ). Note that the only vertices
embedded to Yϕ(px5 ) are py3, py4 for some P y ∈ P0, and there are at most
2εm/α ≤ λm/400 of these by item (v) of Lemma 4.18. Hence, by (ii)
and (iii), it follows that |U5| ≥ λm/400.

We can embed the second half of P x using the original embedding
algorithm, iterating steps 2 and 3 for the remaining vertices of P x.
Briefly, we do the following. We reserve a set A+

px5
⊆ U5 containing at

most 2m3/4 vertices and which is (β, γ, ϕ,m)-good for Spx5 , and choose
a vertex u5 ∈ A+

px5
with at least γm outneighbours in V τ

ϕ(px6 ). Then, we
reserve a set A+

px6
⊆ V τ

ϕ(px6 ) containing at most 2m3/4 vertices and which is
(β, γ, ϕ,m)-good for Spx6 , and choose a vertex u6 ∈ A+

px6
with at least γm

outneighbours in V τ
ϕ(px7 ). Finally, we reserve a set A+

px7
⊆ V τ

ϕ(px7 ) containing
at most 2m3/4 vertices and which is (β, γ, ϕ,m)-good for Spx7 , and choose
a vertex u7 ∈ A+

px7
such that for each z ∈ C−(px7) we have that ϕ(px7) has

at least γm inneighbours in Vϕ(z) and for each w ∈ C+(px7) we have that
ϕ(px7) has at least γm outneighbours in Vϕ(w). (We do not reserve any
sets for the children of this vertex, as this will be done in Step 3.) We
set ϕ(pxi ) := ui for all i ∈ [k] and note that this extends the embedding
of T while embedding P x.

Step 3. If in Step 2 we embedded a parent tτ of a vertex v ∈ T which is the
centre of some P ∈ PH , then we reserve a set for the only child y

of v (rather than the child of tτ ) as follows: if y ∈ C−(v) we choose a
set A−y ⊆ N−G (v) ∩ V τ

ϕ(x) containing at most 2m3/4 vertices and which
is (β, γ, ϕ,m)-good for Sy, and let A−τ be the union of these sets; if
y ∈ C+(τ) we choose a set A+

y ⊆ N+
G (v) ∩ V τ

ϕ(y) containing at most
2m3/4 vertices and which is (β, γ, ϕ,m)-good for Sy, and let A+

τ be the
union of these sets.

If in Step 2 we embedded a path P x ∈ P0 then tτ = vx2 and for
each z ∈ C−(px7) we know that ϕ(px7) has at least γm inneighbours in
Vϕ(z), and for each w ∈ C+(px7) we know that ϕ(px7) has at least γm
outneighbours in Vϕ(w). We reserve good sets for the children of vx7 as
in the original algorithm (i.e., proceed as the original algorithm would
if tτ was vx7 ).

To prove that this procedure works, let F := { c(P ) : P ∈ PH } be the centres
of paths in PH and recall that |ϕ(F ) ∩ Vi| = |PH |/k for all i ∈ [k]. These are the
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sole vertices which are not embedded by the modified algorithm. Let T ? be the
tree we obtain from T by contracting the 3 vertices in the middle section of each
path in PH and the vertices px2 , . . . , px7 of each path P x ∈ P0 so that each bare path
induced by those vertices becomes a single vertex. We now argue that all other
vertices of T are successfully embedded by this modified version of the embedding
algorithm. Since the paths P x ∈ P0 are bare, the number of open vertices at any
step is not greater than the number of open vertices we would have by applying
the original algorithm to T ?, so (as in the proof of Lemma 4.16) the number of
vertices in reserved sets at each time τ is at most (2m3/4)(log2 n)∆(T ) ≤ εm.
Note also that since we never embed a vertex of F it follows that for all τ ≥ 1
and all i ∈ [k] we have |V τ

i | ≥ |PH |/k − |Xi| − |Yi| ≥ λm/50 vertices in Vi which
are available for the embedding (recall that V τ

i is the set of vertices which were
neither used nor reserved for children of open vertices). Finally, because each
edge i→j of R?

[
[k]
]
corresponds to an (ε′, d′)-regular pair (Vi, Vj) in G, we can

indeed reserve sets in Step 3 as required (this follows from essentially the same
argument we used in the proof of Lemma 4.16).

At this point, every vertex has been embedded according to ϕ, and the only
vertices yet to be embedded are the centres of paths in PH, i.e., the vertices in F .
For each i ∈ [k], let Mi be the unused vertices in Vi (so Mi contains Xi); let Ui
be the set of vertices to which we embedded the parents of vertices in F , and
let Wi be the set of vertices to which we embedded the children of all vertices
in F . By Claim 4.21 (i) we have that (Mi−1, Ui), (Mi+1,Wi), (Ui,Mi+1) and
(Wi,Mi+1) are super-regular, and by items (vi) and (iv) of Lemma 4.18 we have
that |Ui−1| = |Mi| = |Wi+1|. By Lemma 2.8, there exists a perfect matching of
edges oriented from Ui−1 to Mi and another perfect matching of edges oriented
from Mi to Wi+1. These matchings complete the embedding of T to G.

4.5 Trees with many leaves

This section has the same structure as the previous one. The main difference
here is that leaf-edges will take the place of middle-sections of bare-paths: we use
them to ensure the embedding covers exceptional vertices, as well as to set the
matchings at the end of the embedding.

Let T be an oriented tree with polylogarithmic maximum degree and many
vertex disjoint leaf-edges and let G be a digraph with δ0(G) ≥ (1/2 + α)n, where
|T | = |G| = n and 1/n � α. The main result of this section is Lemma 4.23,
which states that Theorem 1.13 holds for such T . To prove this we also prove an
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auxiliary lemma, Lemma 4.22, which states that there exists a ‘suitable’ allocation
of T to an extended reduced graph of G.

4.5.1 Allocation

A leaf-edgeleaf-edge of an oriented tree T is an edge containing a leaf vertex.

Lemma 4.22. Suppose that 1/n � 1/k � ε � λ � α and that 1/n � C. Let
R? be a digraph with vertex set V0 ∪̇ [k], where |V0| < εn and n − |V0| ≡ 0
mod k, and such that for all i ∈ [k] and all v ∈ V0 we have deg0(i, [k]) ≥
(1/2+α)k and deg0(v, [k]) ≥ αk. Also, suppose thatH is a cycle 1→2→· · ·→k→1
in R?

[
[k]
]
. If T is an oriented tree of order n with ∆(T ) ≤ (log n)C and at least

λn vertex-disjoint leaf-edges, then there exists a homomorphism ϕ : T → R? and
a collection E of vertex-disjoint leaf-edges of T such that the following hold.

(i) Either all edges in E are oriented towards the leaf vertex, or all edges in E
are oriented away from the leaf vertex.

(ii) ϕ maps precisely one leaf of T to each v ∈ V0;

(iii) ϕ maps at least λn/32k leaf edges in E to each edge of H; and

(iv)
∣∣∣ϕ−1(1)

∣∣∣ =
∣∣∣ϕ−1(2)

∣∣∣ = · · · =
∣∣∣ϕ−1(k)

∣∣∣.
Proof. We assume that T contains at least λn/2 vertex-disjoint leaf-edges which
are oriented towards their leaf-vertex—we call these out-leaf-edgesout-leaf-edges—the proof is
symmetric otherwise.

Apply Lemma 2.3 to obtain a partition {T1, T2} of T such that |T1|, |T2| ≥ λn/6
and such that V (T1) contains a set E ⊆ E(T1) of at least λn/7 vertex-disjoint
out-leaf-edges of T . (To do so, consider the vertex-disjoint leaf-edges of T and
let P be the collection of non-leaves of T in those edges; apply Lemma 2.3 to T
and P .) Let r be the intersection of T1 and T2. We can assume that |T1| ≤ |T2|.
Let E1 and E2 be disjoint subsets of E with |E1| = |E2| = λn/15; for each
j ∈ {1, 2}, let P j be the set of parents of leaves of T in Ej, and let Lj be the set
of leaves of T in Ej. Let T ′ = T1 \ L1.

By Lemma 4.8, R?
[
[k]
]
contains a subgraph Js such that ∆(Js) ≤ 8/α and

such that for all i ∈ [k − 1] there exists vij ∈ [k] with i, i + 1 ∈ N+
R?(vij). By

Lemma 4.10, R?
[
[k]
]
contains a spanning regular expander subgraph J which

contains Js as a subgraph and such that ∆(J) ≤ 25n2/3/α.
Apply the allocation algorithm to T ′, J and x1 = 1; and let ϕ1 : T ′ → J

be the allocation it generates. By Lemma 4.15 (e) (applied with 2C in place
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of C and |L2|/n as β), at least |L2|α/100k5/3 ≥ n/k2 leaf-edges are mapped to
each edge of Js; moreover, by Lemma 4.15 (d) (applied with 2C in place of C
and ζ = 1/3), for each i ∈ [k] at least |L1|/2k parents of leaves in L1 are mapped
to i. Let Pi := ϕ−1

1 (Vi)∩P 1 be the set of parents of leaves in L1 which are mapped
to i. By Lemma 4.15, for all i ∈ [k] we have that

∣∣∣ϕ−1
1 (i)

∣∣∣ = |T ′|
(

1
k

+ 1
log log |T ′|

)
. (4.13)

We next extend ϕ1, defining the allocation of some leaves in L1 so that they are
mapped to V0 bijectively. First, note that by Lemma 4.6 there exists a bipartite
subgraph B0 of R? with vertex classes [k] and V0 such that for all i ∈ [k] and
all v ∈ V0 we have deg−B0(v, [i]) = 1 and deg+

B0(i, V0) ≤ εm/2α. For each edge vj
of B0, where v ∈ V0 and j ∈ [k], we proceed as follows: let p ∈ Pj be a parent
of a leaf-edge e ∈ E1 such that the leaf x of T in e has yet to be allocated; we
set ϕ1(x) = v.

At this point, all vertices of T1 except for some leaves in L1 have been allocated.
We shall allocate the remaining out-leaf-edges of T1 along H. Note that, for
each i ∈ [k], there are at least |L1|/2k− εm/2α ≥ λm/32 vertices p ∈ Pi in edges
p→y ∈ L1 such that ϕ1(y) has yet to be defined; we set ϕ1(y) = i + 1 for all
such y (so p→y is allocated along an edge of H). Note that ϕ1 : T1 → R? is a
homomorphism and that (i)–(iii) hold for ϕ1.

We now define an allocation ϕ2 : T2 → R?; our goal will be to combine
ϕ1 and ϕ2 to form the desired allocation ϕ. We first obtain an allocation %2

from T2 to a weighted blow-up of R?
[
[k]
]
(as in the proof of Lemma 4.18). Let

µ := mini∈[k]
∣∣∣ϕ−1

1 (i)
∣∣∣ and, for each i ∈ [k], let δi :=

∣∣∣ϕ−1
1 (i)

∣∣∣− µ, so
0 ≤ δi ≤

2|T ′|
k log log |T ′| + εm

2α ≤
λn

2k ≤
λ|T2|
2k . (4.14)

For each i ∈ [k], define

fi :=

|T2|/k − δi if i 6= 1,

|T2|/k − δi + 1 otherwise,

so fi = |T2|(1± λ/2)/k by (4.14). Note that fi is precisely the number of vertices
of T2 that we should map to cluster i if ϕ1 together with ϕ2 are to satisfy (iv).
We use an auxiliary graph B which is a blow-up of R?

[
[k]
]
, where each i ∈ [k]

is replaced by a set Bi, and x→y ∈ E(B) for all x ∈ Bi and all y ∈ Bj such
that i→j ∈ E(R?). In fact, we will restrict our attention to a regular expander
subgraph Jblow of B.
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Choose numbers b1, . . . bk as follows. Let n′ := |T2| and `̀̀ (n′) := log log log n′.
For each i ∈ [k], set bi := fi `̀̀ (n′)/n′. Consider the digraph B which is a blow-up
of R?

[
[k]
]
, as described above, where vertex i is replaced by a set Bi of bi vertices.

Note that |B| = `̀̀ (n′) and that fi ≥ (1− λ/2)n′/k, so

δ0(B) ≥ δ0
(
R?
[

[k]
])
k
fi `̀̀ (n′)
n′

≥
(1

2 + η
)
k

(1− 6λ/η)`̀̀ (n′)
k

≥ |B|2

(
1 + η

2

)
,

and therefore B contains an expanding regular subdigraph Jblow by Lemma 4.10.
We allocate vertices of T2 to vertices of Jblow as follows. Choose a vertex

xr in Bϕ(r) (where r is the root of T2, the unique vertex in T1 ∩ T2, and also
the unique vertex of T2 for which ϕ has been defined). Recall that we have an
ancestral order ≺ of T2; we apply the Allocation Algorithm 4.14, which produces
a homomorphism %2 : T2 → Jblow mapping approximately the same number of
vertices to each x ∈ Jblow and such that %2(r) = xr. Indeed, by Lemma 4.15
(applied with 2C in place of C), it follows that the number of vertices allocated
to each vertex of Jblow is n′

(
1

|Jblow| ±
1

log logn

)
. Since |Jblow| = |B| = `̀̀ (n′), the

number of vertices allocated to Bi is

bi ·
n′

`̀̀ (n′)

(
1± `̀̀ (n′)

log log n

)
= fi

(
1± `̀̀ (n′)

log log n

)
.

Using %2 we define a homomorphism ϕ2 : T2 → R?
[

[k]
]
as follows: for each

x ∈ T2, set ϕ2(x) = i if %2(x) ∈ Bi. Note that ϕ1(r) = ϕ2(r), and thus, setting
ϕ(x) = ϕ1(x) for all x ∈ T1 and ϕ(y) = ϕ2(y) for all y ∈ T2 we obtain a
homomorphism ϕ : T → R? which satisfies (i)–(iii).

The only property ϕ still might lack is (iv). Our final step is to adjust ϕ,
changing the allocation of some leaf-edges mapped to edges of Js, proceeding as
we do in the proof of Lemma 4.9. For each i ∈ [k], let γi :=

∣∣∣ϕ−1(i)
∣∣∣−m, so γi is

positive if ϕ allocates too many vertices to i and negative if ϕ allocates too few
vertices to i; in particular, all γi are zero if and only if the allocation satisfies (iv).
Note that γi ≤ n/ log n and ∑i∈[k] γi = 0.

We proceed greedily, as follows. Let u, v ∈ [k] be such that γv < 0 < γu;
let (ui, wi, vi)ti=0 be a sequence of vertices in [k], where t < k, such for all
i ∈ {0, 1, . . . , t} we have that wi→ui, wi→vi ∈ E(Js), and u = u0, v = vt and also
that vi−1 = ui for all j ∈ [t] For each j ∈ [t], select an out-leaf-edge in T which is
mapped to wi→ui, and modify the mapping of this path so that it is now mapped
to wi→vi. The modified map ϕ̂ we obtain is such that |ϕ̂−1(u)| = |ϕ−1(u)|−1 and
|ϕ̂−1(v)| = |ϕ−1(v)|+ 1, whereas |ϕ̂−1(x)| = |ϕ−1(x)| for all x ∈ R? \ {u, v}. Note
that this procedure reduces by at most 1 the number of out-leaf-edges mapped to
each edge of Js. Hence, by iterating this procedure at most ∑v |δv| ≤ kn/ log n
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times, we can ‘shift weights’ as needed to obtain the desired mapping ϕ. (Note
that it is indeed possible to carry out these steps, because each edge of Js has at
least ηn/k3 out-leaf-edges allocated to it.) After these changes, ϕ satisfies (iv)
and still satisfies (i)–(iii).

4.5.2 Proof of Lemma 4.23

In this section we describe how to modify the embedding algorithm of Section 4.3.4
so that it successfully embeds a spanning tree T with many vertex-disjoint leaf-
edges to a digraph G of high semidegree (thus proving Lemma 4.23).

Lemma4.23. Suppose that 1
n
� λ� α and that 1

n
� 1

C
. If T is an oriented tree

of order n with ∆(T ) ≤ (log n)C and at least λn vertex-disjoint leaf-edges, and if
G is a digraph of order n with minimum semidegree (1

2 + α)n then G contains a
(spanning) copy of T .

Proof. As in the proof of Lemma 4.20, we begin by constructing a suitable regular
partition of G. We introduce constants ε, d, η with 1/n � 1/k � ε � d �
λ� η � α and apply Lemma 4.2 to obtain a partition V0 ∪̇ V1 ∪̇ · · · ∪̇ Vk and a
digraph R? with V (R?) = V0 ∪̇ [k] such that

(a) |V0| < εn and m := |V1| = · · · = |Vk|;

(b) For each i ∈ [k] we have G[Vi−1→Vi] and G[Vi→Vi+1] are (d, ε)-super-regular;

(c) For all i, j ∈ [k] we have i→j ∈ E(R?) precisely when G[Vi→Vj] is (d, ε)-
regular.

(d) For all v ∈ V0 and all i ∈ [k] we have v←i ∈ E(R?) precisely when
deg−(v, Vi) ≥ (1/2 + η)m, and v→i ∈ E(R?) precisely when deg+(v, Vi) ≥
(1/2 + η)m ;

(e) For all i ∈ [k] we have deg0
R?(i, [k]) ≥ (1/2 + η)k; and

(f) For all v ∈ V0 we have deg0
R?(v, [k]) > αk.

Let H ⊆ R? be the directed cycle 1→2→· · ·→k→1. Note that H,T and R?

satisfy the conditions of Lemma 4.22 (applied taking the value of η for α there,
with remaining constants as here), so there exists an allocation ϕ of the vertices
of T such that

(i) Either all edges in E are oriented towards the leaf vertex, or all edges in E
are oriented away from the leaf vertex.

(ii) ϕ maps precisely one leaf of T to each to v ∈ V0;
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(iii) ϕ maps at least λn/32k leaf edges in E to each edge of H; and

(iv)
∣∣∣ϕ−1(1)

∣∣∣ =
∣∣∣ϕ−1(2)

∣∣∣ = · · · =
∣∣∣ϕ−1(k)

∣∣∣.
We assume that all edges in E are oriented towards the leaf vertex; the proof is
similar otherwise. Let L0 := ϕ−1(V0) be the set of leaves which are mapped to V0,
and let P 0 be the set of parents of those leaves, so |V0| = |L0|. For each i ∈ [k],
let Li be a set containing precisely λm/32 leaves mapped to Vi whose parents have
been mapped to Vi−1, let Pi be the set of parents of Li, and let LH = ⋃

i∈[k] Li.
We embed T ′ := T \ LH to G by applying a (slightly modified) version of the

vertex embedding algorithm. Before doing so, we reserve some sets of vertices
of G which have good properties and which we will use to complete the embedding
later on. We introduce a new constant γ with 1/n � 1/k � ε � γ � d. For
each i ∈ [k] reserve sets Xi (for the final matching) and Yi for parents of whose
leaves will be embedded to V0.

Claim 4.24. There exist v1 ∈ V1 and, for each i ∈ [k], disjoint sets Xi, Yi ⊆ Vi

with |Xi| = |Yi| = λm/100 such that

(i) If U ⊆ Vi with |U | ≥ λm/24, then G[Xi−1→U ] and G[U→Xi+1] are both(
100ε
λ
, d32

)
-super-regular;

(ii) For all x ∈ ϕ−1(V0), if ϕ maps an inneighbour of x to Vj, then

deg−
(
ϕ(x), Yj

)
≥ λm/400 ;

(iii) For all y ∈ ϕ−1(V0), if ϕ maps an outneighbour of x to Vj, then

deg+
(
ϕ(y), Yj

)
≥ λm/400 ;

(iv) For each y ∈ C−(t1) and each z ∈ C+(t1) we have

deg−(v1, Vϕ(y)) ≥ γm and deg+(v1, Vϕ(z)) ≥ γm.

Proof. This Claim (and its proof) are almost identical to Claim 4.21, so the proof
is omitted. �

Returning to the proof of the lemma, (as in the proof of Lemma 4.20) we
introduce a constant β (as above) with 1/n � 1/k � ε � γ � β, d. We next
apply the embedding algorithm to T ′ := T \ LH to allocate T ′ to G \ ⋃i∈[k] Xi

(being careful when close to V0 to embed in the sets Yi all parents of leaves
mapped to V0). Roughly speaking, as in Lemma 4.20, we embed each vertex of
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T ′ to G′ := G \ ⋃i∈[k] Xi according to the allocation ϕ as dictated by the vertex
embedding algorithm, except for the leaves in L0 and their parents in P 0, which
we embed to V0 and ⋃i∈[k] Yi, respectively. More precisely, we apply the following
changes to the embedding algorithm.

Step 1. For each i ∈ [k] write Y τ
i for the available vertices of Yi, write V τ

i for
the available vertices in Vi \ (Xi ∪̇ Yi) and change the definition of Bτ

so that it now includes Y τ
1 ∪ · · · ∪ Y τ

k , i.e. let

Bτ := {v1, . . . , vτ−1} ∪ Y τ
1 ∪ · · · ∪ Y τ

k ∪
⋃

ts : ts is open

(
A−s ∪ A+

s

)
,

so for all τ ≥ 1 and all i ∈ [k] we have V τ
i ∩ Yi = ∅.

Step 2. Nothing changes in this step.

Step 3. We only modify this step if tτ is either a vertex in P 0 or a parent of
such vertex, otherwise we proceed as in the original algorithm.

If in Step 2 we embedded tτ ∈ P 0 to a vertex vτ , then tτ is adjacent to
a leaf ` ∈ L0 with w` := ϕ(`) ∈ V0; moreover, tτ was embedded to an
inneighbour of w` in Y τ

ϕ(tτ ). We reserve a set A+
` := {w`} for the child

of tτ , and let A−τ and A+
τ be the union of the sets reserved for the other

children of tτ , which we select as in Step 3 of the original algorithm.

If in Step 2 we embedded a vertex tτ which is a parent of a vertex
p ∈ P 0, we reserve sets for the other children of tτ , as in the original
algorithm, but reserve the set A+

p (or A−p ) for p in a different manner,
so that it is guaranteed to lie in Y τ

ϕ(p) ∩N−
(
ϕ(`)

)
, where ` is the only

leaf in L0 connected to p in T : if p ∈ C−(tτ ), choose a set A−tτ ⊆
N−G (vτ )∩Y τ

ϕ(p) ∩N−
(
ϕ(`)

)
containing at most 2m3/4 vertices and which

is (β, γ, ϕ,m)-good for Sp; and if p ∈ C+(tτ ), choose a set A+
tτ ⊆

N+
G (vτ )∩Y τ

ϕ(p) ∩N−
(
ϕ(`)

)
containing at most 2m3/4 vertices and which

is (β, γ, ϕ,m)-good for Sp. (In either case we let A−τ and A+
τ be the union

of the sets reserved for the children of tτ , as in the original algorithm.)

If neither of these conditions apply, we follow Step 3 of the original
algorithm.

We now argue that the modified embedding algorithm successfully embeds
T ′ to G \ (X1 ∪ · · · ∪Xk) and that every vertex of P 0 is embedded to a vertex
in Y1 ∪̇ · · · ∪̇ Yk. Note first that every vertex is embedded according to ϕ (i.e.,
for all x ∈ T we embed x to ϕ(x) if ϕ(x) ∈ V0, and embed x to a vertex in Vϕ(x)

otherwise). Following the proof of Lemma 4.16 all that we need to prove is that
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the choices of the embedding algorithm can be carried out as required. Note that
if the choices in Step 3 can be done, then all choices in Step 2 (all of which are
made according to the original algorithm) can be made; as a consequence, we
only need to consider what happens in Step 3. Recall that T ′ has none of the
leaves in LH and that for each i ∈ [k] we have |ϕ(LH) ∩ Vi| = |LH |/k; therefore,
for all τ ≥ 1 and all i ∈ [k] we have |V τ

i | ≥ |Li| − |Xi| − |Yi| ≥ λm/50; moreover,
for each p ∈ P 0 connected to a leaf ` ∈ L0, the number of vertices in reserved
sets at any time τ is at most 2m3/4(log n)∆(T ) ≤ εm ≤ |Y τ

ϕ(p) ∩ N−
(
ϕ(`)

)
|/2.

When the algorithm reaches Step 3, we have just embedded a vertex tτ ∈ T ′ to a
vertex vτ ∈ G \

⋃
i∈[k] Xi. We consider the following 3 cases.

If tτ ∈ P 0, then tτ is adjacent to a single leaf ` ∈ L0, and this leaf is mapped
to a vertex w` := ϕ(`) ∈ V0. Since ϕ−1(w`) = {`} and vτ→w` ∈ E(G) we can
reserve the desired set A+

` . Moreover, since |V τ
i | ≥ |Li| − |Xi| − |Yi| ≥ λm/50

we can apply Lemma 4.4 to find and reserve good sets for each of the remaining
children of tτ .

Now suppose tτ is a parent of a vertex p ∈ P 0. As before, p is adjacent
to a single leaf ` ∈ L0, and this leaf is mapped to a vertex w` := ϕ(`) ∈ V0.
We wish to reserve sets for the children of tτ with the restriction that the set
reserved for p should lie in Y τ

i ∩ N−G (w`). Recall that the only vertices we
ever embed to Yi lie in P 0, so the number of vertices of Yi unavailable for
embedding is at most |P 0| + 2m3/4(log2 n)∆(T ) ≤ 2εm. By (ii), it follows
that |Y τ

i ∩N−G (w`)| ≥ λm/400− 2εm ≥ γm, so we can reserve a set for p which
is good for Sp as required as well.

Lastly, if neither of the previous conditions holds, then we reserve sets for the
children of tτ as in the original algorithm; this can be done since

|V τ
i | ≥ |Li| − |Xi| − |Yi| ≥ λm/50.

Since it is always possible to reserve the desired sets, we conclude that the modified
embedding algorithms successfully embeds T ′ to G \ ⋃i∈[k]Xi.

Let Pi−1 be the parents of Li, so |Pi| = |Li| and, every vertex in Pi−1 has been
embedded to i − 1. For each i ∈ [k], let Wi be the set of vertices of Vi ⊆ G to
which no vertex has been embedded yet, and let Ui be the set of vertices to which
the vertices in Pi have been embedded. Since |Wi| = |Li| = |Ui−1| and Xi ⊆ Li

we have that there exists a perfect matching of edges directed from Ui−1 to Wi by
Claim cl:reserve-again (i) and Lemma 2.8. This completes the embedding of T
to G.
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4.6 Proof of Theorems 1.12, 1.13 and 1.15

Suppose that 1/n� λ� α and let G be a digraph of order n with semidegree
at least (1/2 + α)n. We conclude this chapter with the proofs of Theorems 1.13,
1.12 and 1.15 (see below). The two first are simple consequences of Lemmas
4.20 and 4.23.

We begin with Theorem 1.13, which states that G contains every spanning
oriented tree T of order n with ∆(T ) ≤ (log n)C if T contains either λn vertex-
disjoint bare paths of order 7 or λn vertex-disjoint edges incident to leaves.

Proof of Theorem 1.13. Suppose that 1/n � 1/C and that 1/n � λ � α. Let
G be a digraph of order n with δ0(G) ≥ (1/2 + α)n. Let T be an oriented
tree of order n with ∆(T ) ≤ (log n)C . If T contains λn vertex-disjoint bare
paths of order 7, then G contains T by Lemma 4.20; otherwise, if T contains λn
vertex-disjoint edges incident to leaves, then G contains T by Lemma 4.23.

Theorem 1.12 asserts that if 1/n� ∆, then G contains every oriented tree T
of order n with maximum degree at most ∆.

Proof of Theorem 1.12. Let T be an oriented tree of order n with ∆(T ) ≤ ∆ and
let G be a digraph with δ0(G) ≥ (1/2+α)n. We introduce new constants λ and λ′

with 1/n� λ� λ′ � α,∆. If T contains at least λ′n leaves, then T contains at
least λ′n/∆ > λn edge-disjoint leaf-edges, so T ⊆ G by Lemma 4.23. Otherwise,
by Lemma 4.1, T contains a bare path decomposition into at most 2λ′n paths.
Let x1, . . . , xs be the lengths of these paths (i.e., the number of edges in each of
them), so x1 + · · ·+ xs = n− 1. Then, for all t > 0, we have

s∑
i=1

⌊
xi
t

⌋
≥

s∑
i=1

(
xi
t
− 1

)
= n− 1

t
− s.

Choosing t = 8, it follows that T contains are at least (n−1)/8−2λ′n ≥ n/10 bare
paths of length 8 (and order 9). Therefore, T contains at least n/10 vertex-disjoint
bare paths of order 7, so T ⊆ G by Lemma 4.20.

Theorem 1.15 states a sufficient condition which ensures that a tree-like
digraph H is a spanning subgraph of every digraph with high semidegree. Its
proof combines ideas from all previous sections.

4.6.1 Tree-like spanning subdigraphs

We conclude this chapter by discussing how the method we developed can be used
to embed tree-like spanning digraphs. We note that the next theorem is stated so
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as to demonstrate how the ideas can be applied, and thus the bounds we obtain
are not best possible, and the class of digraphs we embed is not the most general
possible either. We discuss how the statement can be strengthened after sketching
the proof.

Theorem 1.15. Suppose that 1/n � α � C. Let G be a digraph of order n
with δ0(G) ≥ (1/2 + α)n. If Q is a subdivision of a graph Qunder such that

(i) |Qunder| ≤ (log n)C ;

(ii) each edge of Qunder has been subdivided at least log n times; and

(iii) |Q| = n;

then G contains every orientation of Q.

We include below only a proof sketch of Theorem 1.15 because it is quite
similar to the proofs in the previous sections.

Proof sketch. We fix an orientation of Q and, abusing notation, write Q to denote
this oriented subdivision.

As in the proofs of Lemmas 4.20 and 4.23, we begin by constructing a suitable
regular partition of G. We introduce constants ε, d, η with 1/n � 1/k � ε �
d � λ � η � α and apply Lemma 4.2 to obtain a partition V0 ∪̇ V1 ∪̇ · · · ∪̇ Vk
and a digraph R? with V (R?) = V0 ∪̇ [k] such that

(a) |V0| < εn and m := |V1| = · · · = |Vk|;

(b) For each i ∈ [k] we have G[Vi−1→Vi] and G[Vi→Vi+1] are (d, ε)-super-regular;

(c) For all i, j ∈ [k] we have i→j ∈ E(R?) precisely when G[Vi→Vj] is (d, ε)-
regular.

(d) For all v ∈ V0 and all i ∈ [k] we have v←i ∈ E(R?) precisely when
deg−(v, Vi) ≥ (1/2 + η)m, and v→i ∈ E(R?) precisely when deg+(v, Vi) ≥
(1/2 + η)m ;

(e) For all i ∈ [k] we have deg0
R?(i, [k]) ≥ (1/2 + η)k; and

(f) For all v ∈ V0 we have deg0
R?(v, [k]) > αk.

Let H ⊆ R? be the directed cycle 1→2→· · ·→k→1.
Let x1, . . . , xq be the vertices of Q which ‘correspond’ to vertices in Qunder:

that is, these are vertices which do not arise from the subdivision of the edges
of Qunder. By relabelling if necessary we may assume without loss of generality
that V (Qunder) = {x1, . . . , xq}. For each edge xixj ∈ E(Qunder) where i < j,
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write Pij for the path from xi to xj in Q. (Note that this is an oriented path.)
Let {P 1

ij, P
2
ij} be a tree-partition of Pij such that P 1

ij contains xi and P 2
ij contains xj ,

and moreover choose this tree-partition so that each path has at least |Pij|/2
vertices and so that |P 1

ij| ≤ |P 2
ij|. Also, let cij be the sole vertex in P 1

ij ∩ P 2
ij.

We let x1 be the root of Pij and P 1
ij, let cij be the root of P 2

ij, and let ≺ be
the (unique) ancestral order of Pij. Note that P 1

ij contains a collection Pij of at
least λ|Pij| vertex-disjoint bare paths of order 7 whose middles are ≺-isomorphic,
and moreover we may assume that none of these paths contains xi. Note that
for all distinct e, e′ ∈ E(Qunder), for all P ∈ Pe and all P ′ ∈ Pe′ the middle
sections of P and P ′ are vertex-disjoint, and so we shall (again) abuse notation
and say that these middle sections are ≺-isomorphic whenever they are isomorphic
according to the respective ancestral orders ≺e and ≺e′ of Pe and Pe′ respectively.

Claim 4.25. There exists a subset Egood of E(Qunder) such that Pgood, defined as
Pgood := ⋃

e∈Egood Pe is a collection of at least λn/4 vertex-disjoint bare paths of Q
whose middles are pairwise ≺-isomorphic.

Proof. Let P ′ := ⋃
e∈E(Qunder)Pe. Since this is a collection of vertex-disjoint bare

paths of Q, we have |P ′| ≥ ∑e∈E(Qunder) λ|Pe| ≥ λn. Note that ‘being ≺-isomorphic’
is an equivalence relation and that there are only four possible distinct orientations
for the middle of any path in P ′; it follows (by averaging) that at least λn/4 of
these paths are pairwise ≺-isomorphic to some rooted path Pref of order 3. We
therefore define Egood to be the set of edges e ∈ E(Q) such that Pe contains paths
≺-isomorphic to Pref , completing the proof. �

Returning to the proof of the lemma, let Egood and Pgood be as in the claim,
and fix a partition {V e

0 }e∈Egood of V0 such that |V e
0 | = |Pe||V0|/|Pgood|, i.e., such

that each part contains a number of vertices proportional to the number of
paths Pe contributes to Pgood. Since |Pgood| ≥ λn and |V0| < εn, we have
that |V e

0 | ≤ |Pe|εn/λn ≤ λ|Pe|/5.
With this partition in place, our strategy is as follows. Firstly, allocate all ver-

tices x1, . . . , xq to V1 and fix another cluster Vr such that G[V1→Vr] and G[V1←Vr]
are both (ε, d)-regular. Secondly, allocate all paths of Q which correspond to
‘bad’ edges of Qunder, i.e., paths Pe for all e ∈ E(Qunder) \ Egood. These paths are
allocated to R?

[
[k]
]
using Algorithm 4.14, with the only restriction that x1, . . . , xq

are allocated to V1 and any neighbour of a vertex in {x1, . . . , xq} is allocated to Vr.
Note that these paths are long (compared to k), and hence they are allocated
quite evenly: more precisely, the total error in allocating all bad paths is at
most 4n/ log log n (by Lemma 4.15).
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Then each good path Pe (where e ∈ Egood) is allocated following closely the
four stages in the proof of Lemma 4.18. Begin by defining a (possibly uneven)
allocation of P 1

e , as follows. We partition the ≺-isomorphic bare paths in Pe in
three groups P0

e ,PHe and P�e , each containing a fraction of the bare paths in Pe.
(Recall that all those paths lie in P 1

e .) Again as in Lemma 4.18, the centres of
paths in P0

e are used to cover exceptional vertices (more precisely, the exceptional
vertices in V e

0 ) so that the neighbours of these exceptional vertices are mapped to
adequate vertices in [k]; moreover middles of paths in PHe are allocated along the
cycle 1→· · ·→k→1 and the middles of paths in P�e are allocated to diamonds in a
diamond-connected subgraph J� of R?. We complete the allocation of P 1

e by first
contracting the bare paths in Pe and then applying the allocation algorithm to the
path arising from this contraction—this produces an almost even allocation, which
we extend using the prefix and suffix of each path in Pe to obtain an allocation
of P 1

e . This allocation of P 1
e may be somewhat uneven (due to the ‘jumping

around’ to reach middles of paths in Pe and to connect the path to Vr at the
end). Crucially, we fix this imbalance by allocating P 2

e to a weighted blow-up
of R?

[
[k]
]
, which compensates for the uneven usage of clusters. By doing so we

complete an allocation of the whole path Pe which is almost even, with error at
most 4|Pe|/ log log |Pe| (by Lemma 4.15 and an argument similar to the proofs of
Lemmas 4.18).

After all paths of Q (bad and good) have been allocated, we have the following
situation: ϕ : Q → R? is a homomorphism which maps precisely one vertex
to each exceptional vertex, a linear number of ≺-isomorphic middles of paths
is allocated along H and a linear umber of ≺-isomorphic middles of paths is
allocated to the ‘switching diamonds’. However, the allocation is not perfect, and
some clusters may have too few or too many vertices allocated to them. Still, ϕ is
‘close enough’ to being perfect, as the total error in the allocation of the whole
of Q is at most 8n/ log log n. We can therefore use the diamond-switching strategy
we applied in the Lemma 4.18, modifying ϕ to obtain a ‘perfect’ allocation of Q
to R?.

Again mimicking the approach in Section 4.4, we proceed to embed these
paths, now following closely the proof of Lemma 4.20. The key difference is that
rather than having a single root vertex for the embedding we now have the whole
set {x1, . . . , xq}. We choose vertices v1, . . . , vq in V1 such that each one of these
has very large semidegree in Vr, and reserve good sets of vertices in Vr for the
neighbours of each xi. We also reserve sets of vertices to help embed neighbours of
vertices allocated to V0 and some sets of vertices to be used in the final matching.
Recall that many centres of ≺-isomorphic paths were embedded along H: let WH
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be the set of these centres. We apply the vertex embedding algorithm, skipping
vertices in WH and being careful to embed neighbours of vertices mapped to V0

to the correct reserved sets; we are also careful when embedding neighbours
of x1, . . . , xq: these should be embedded to reserved sets in Vr. Since we never
embed vertices in WH , the algorithm proceeds with enough ‘room to spare’ and
hence the embedding succeeds: we embed each vertex according to the allocation,
while avoiding sets reserved for the final matching. Our final step is to embed
the vertices in WH so that the required perfect matchings exist, completing the
embedding of Q to G. 4

We note that a much larger class of spanning digraphs can be handled with a
method similar to the one discussed above. For example, suppose that 1/n �
λ� α,C, let G be a digraph of order n with δ0(G) ≥ (1/2 + α)n and let Q be a
digraph of order n with ∆(Q) ≤ (log n)C . Suppose that there exists a small set S
of V (Q), say with |S| ≤ n1/3 and a component Q′ of Q− S such that

• Q[S] has no edges,

• each component of Q− S is a tree,

• for all x, y ∈ S we have dist(x, y) ≥ 7,

• some component Q′ of Q− S contains at least n1/2 vertices, and

• Q′ contains either λn vertex-disjoint leaf edges or λn vertex-disjoint bare
paths of order 7.

Remark. Note that the hypothesis of Theorem 1.15 imply all of the above. On
the other hand, there are many ways in which this generalises Theorem 1.15:
for instance, we may form Q (as in Theorem 1.15) from a graph Qunder with
order at most (log n)C and subdivide every edge at least 7 times (rather than
log n times); another example is form Q from a forest F of trees with maximum
degree at most (log n)C which contains at least one tree satisfying the hypothesis
of Theorem 1.13 and join these trees by at most n1/3 vertex-disjoint paths of
order at least 7 each. In either case, every orientation of Q can be shown to be
contained in a digraph G of high semidegree by the argument we outline below.

Under these assumptions, we can follow a strategy very similar to the proof of
Theorem 1.15 and conclude that Q is a spanning subgraph of G. Let Q1, . . . , Qp

be the components of Q − S, labelled so that |Q1| ≤ · · · ≤ |Qp| and let s
be such that Qs = Q′. We introduce ε, d with 1/n � 1/k � ε � d � λ

and apply the Regularity lemma (Lemma 4.2) to the host graph G to obtain a
partition V0 ∪̇V1 ∪̇ · · · ∪̇Vk of V (G), a reduced graph R? with V (R?) = V0 ∪̇ [k], and
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a super-regular cycle H ∈ R?
[
[k]
]
of clusters (so G[Vi→Vi+1] is (ε, d)-super-regular

for all i ∈ [k] with addition modulo k). Next, we define an allocation of V (Q): the
vertices in S are allocated to V1 and some cluster Vr is chosen for the neighbours
of vertices in S (this is possible since no short cycle of Q involves a vertex in S
and also because the high semidegree of the reduced graph ensures that each
vertex lies in a 2-cycle). Note that p (the number of components of Q − S)
satisfies p ≤ ∆(Q)|S|, and hence at most 2∆(Q)|S|(log n) ≤ 2(log n)C+1n1/3

vertices of Q may lie in components Qi of order less than log n. Let j be the
largest index such that |Qi| < log n for all i ≤ j. For each i ≤ j we allocate the
vertices of Qi greedily with the sole restriction that vertices in S are allocated
to V1 and their neighbours to Vr. The allocation of these components is likely
to be uneven, but the total imbalance they create is sublinear. We embed each
larger component (except for Qs) using the random allocation algorithm, while
respecting the allocation of S and their neighbours. To conclude the allocation,
we follow the proof of either Lemma 4.18 or 4.22: we first split the tree, then use
either bare paths or leaves to (a) cover exceptional vertices, (b) prepare switching
devices (diamonds or leaves) and (c) set up edges allocated along H; we allocate
the second half of the tree so as to decrease imbalances, making them sublinear
(we can consider imbalances of the whole allocation when setting the weights
for the blow-up of R?

[
[k]
]
) and finally use the switching devices to make this

allocation perfect.
The embedding algorithm also proceeds as outlined in the proof sketch above:

in a preliminary step we reserve vertices for the final matching, for embedding
each vertex of S, and for the neighbours of the vertices in S. The embedding
then follows the greedy vertex embedding algorithm, except that we skip vertices
for the final matching and that we embed neighbours of vertices of S to the
appropriate reserved sets. Since we embed each vertex according to its allocation,
we may complete the embedding using a perfect matching.

Mad, adj. Affected with a high degree
of intellectual independence.

Ambrose Bierce

A tree that is unbending, is easily
broken.

Lao Tzu





5 Subdigraphs via chromatic number

For every graph G, let D(G)D(G) denote the family of all orientations of G. In this chap-
ter we investigate a few questions related to Burr’s conjecture (Conjecture 1.17),
which broadly fall under the following theme.

Question 5.1. Which digraphs H must be contained in every D ∈ D(G)?

Since all graphs admit an acyclic orientation, it follows that any such H must
be acyclic. We are mostly interested in the case when H is a tree, but we first
consider the general setting.

In Section 5.1 we gather results related (either by statement or proof) to
random orientations of graphs. We give an upper bound on the largest integer k
such that every tournament of order n contains a k-chromatic acyclic subgraph,
and obtain a probabilistic result about the order of trees which must be contained
almost surely in an orientation of a graph with given chromatic number.

In Section 5.2 we prove two non-probabilistic results, the first is an approximate
result towards Burr’s conjecture (Theorem 1.22) and the second is a proof of
Burr’s conjecture for stars (Theorem 5.10).

5.1 Typical behaviour

We begin with an observation from [1], whose proof we include because it illustrates
a technique which we use in other results of this section.

Lemma5.2. [1] Each digraph D contains an acyclic subgraph H with

χ(H) ≥
√
χ(D).

Proof. Fix an order v1, . . . , vn of the vertices of D, and paint each edge vi→vj
red if i < j and blue otherwise; let R be the digraph formed by the red edges
and let B be the one formed by the blue edges, and note that both R and B are
acyclic. Note that χ(R) · χ(B) ≥ χ(D): indeed, if cR is a proper colouring of R
with χ(R) colours and cB is a proper colouring of B with χ(B) colours, then the
colouring c : x 7→

(
cR(x), cB(x)

)
for all x ∈ D is a proper colouring of D with

125
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at most χ(R) · χ(B) colours. It follows that either R or B must have chromatic
number at least

√
χ(D).

If H is contained in every D ∈ D(G), how high can χ(H) be, as a function
of χ(G)? A natural approach to this question is to use the probabilistic method
and consider a ‘typical’ orientation: does a random orientation of G contain an
acyclic digraph with ‘high’ chromatic number? We obtain a simple sublinear
bound for the highest integera(k) a(k) such that every orientation of a k-chromatic
graph contains an acyclic subgraph with chromatic number a(k), by considering
random tournaments. More precisely, the next lemma implies that for every ε > 0
and sufficiently large k

inf
G

max
{
q : each D ∈ D(G) contains some HD with χ(HD) ≥ q

}
≤ (1+ε) k

2 log k .

where the infimum is taken over all graphs G with χ(G) = k.

Theorem 1.20. For all ε > 0 there exists a tournament D such that if H is an
acyclic subgraph of D then

χ(H) ≤
(1

2 + ε
)

χ(D)
logχ(D) .

To prove this theorem we use a celebrated result due to Bollobás [10] about the
chromatic number of the binomial random graph G(n, p). Thebinomial random

graph
binomial random

graph G(n, p) is the random labelled graph of order n which is constructed by
including each possible edge with probability p, with choices made independently
for each edge.

Theorem5.3. [10] For all p, with 0 < p < 1, we have that

χ
(
G(n, p)

)
=
(1

2 + o(1)
)

log
(

1
1− p

)
n

log n

with probability at least 1− 2n exp
(
−Θ(n2)

)
.

Proof of Theorem 1.20. Let G be the complete graph Kk of order k and fix a
total order v1 ≺ · · · ≺ vk of V (G). For any orientation D′ of G, we paint each
edge vi→vj of D′ red if i < j and blue otherwise. Let R be the underlying
(undirected) graph formed by the red edges and B be the underlying graph formed
by the blue edges. (Note that these graphs depend on the choice of ≺ and D′).

If we choose D′ uniformly at random, by setting the orientation of each
edge independently of all other edges, and if we define R and B as above, then
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R and B are identically (but not independently) distributed as the binomial
random graph G(k, 1/2). For any fixed order ≺ and ε > 0, let E≺ε be the event
that ‘max{χ(R), χ(B)} > (1/2 + ε)k/ log k’. Then, for all ε > 0 and all ≺ we have

P(E≺ε ) ≤ 2k+1 exp
(
−Θ(k2)

)
as k →∞

by Theorem 5.3. Note that there are k! ≤ kk = exp(k log k) possible total orders
of V (G) and thus, using a union bound over every order of V (G) we have that

P
(⋃
≺
E≺ε

)
≤
∑
≺

(2k)k exp
(
−Θ(k2)

)
≤ exp

(
k ln(2k2)−Θ(k2)

)
= o(1),

and so with positive probability we have max≺{χ(R), χ(B)} ≤ (1/2 + ε)k/ log k
where ≺ ranges over all total orders of V (G). To conclude, note that if A is an
acyclic subdigraph of D′, then for some order ≺ we have that the underlying
graph of A is a subgraph of R. This means that for some orientation D of the
edges of Kk the maximum chromatic number of an acyclic subgraph of D is
at most (1

2 + ε)k/ log k.

Next, we narrow our focus to the case when H is a tree. More precisely, let
G be a graph: what is the largest integer t such that each D ∈ D(G) contains
every oriented tree of order t? Recall that q(T ) is the smallest integer such that
every orientation of a q(T )-chromatic graph contains a copy of T . Addario-Berry,
Havet, Sales, Reed, Thomassé [1] have obtained the following useful lemma.

Lemma5.4. [1] Every acyclic digraph G contains all oriented trees of order χ(G).

It follows immediately from Lemmas 5.2 and 5.4 that every orientation of a
graph G contains every oriented tree of order

√
χ(G), but there is still quite a

big gap between this value and the value χ(G)/2 + 1 in Burr’s conjecture. In
an effort to advance towards the conjecture, we again investigate the typical
behaviour using the probabilistic method: what trees do we find (almost surely)
in a uniformly-random orientation of a graph G?

Theorem 1.21. For all positive ε and sufficiently large k, the following holds
for every graph G with δ(G) ≥ k − 1. If D is an orientation of G formed by
orienting each e ∈ E(G) uniformly at random, independently for each edge, then
D contains every oriented tree of order (1− ε)k/ log k almost surely as k →∞.

Remark. The theorem above is related to chromatic number through the following
fact: every graph G contains a subgraph G′ with δ(G′) ≥ χ(G)− 1.
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Proof. Fix ε with 0 < ε < 1 (we may assume the upper bound as otherwise
the lemma is trivial). For each v ∈ V (G), let Wv ⊆ N(v) be a set of k − 1
neighbours of v, chosen arbitrarily. Let x ∈ V (G), and let t be a positive integer
to be chosen later. Let V0 := {x}, and for each i ∈ [t] let Vi := ⋃

y∈Vi−1 Wy.
Let D be an orientation of G formed by assigning an orientation to each of
its edges uniformly at random and independently from all other edges. We
will show that almost surely D contains a subgraph D′ which contains every
oriented tree of order (1− ε)k/ log k. Let i ∈ {0, . . . , t− 1} and y ∈ Vi, and define
X+
y := |N+

D (y)∩Wy| andX−y := |N−D (y)∩Wy|. Therefore the semidegree of y in Vi+1

is at least min{X+
y , X

−
y }, and X+

y , X
−
y ∼ Bin

(
k − 1, 1

2

)
, so EX+

y = EX−y = k−1
2 .

Note that for each i ∈ {0, . . . , t− 1} and each y ∈ Vi we have

P[X+
y < t] ≤ P

[
EX+

y −X+
y > EX+

y − t
]

≤ P
[
|EX+

y −X+
y | > EX+

y − t
]

≤ 2 exp
(
−2

(EX+
y − t)2

k − 1

)
where the last inequality follows by the Chernoff bound (Theorem 2.13). Now,
let V := V0 ∪ · · · ∪ Vt−1. Then |V | ≤ (k − 1)t = exp

(
t ln(k − 1)

)
. By the union

bound,

P

 ⋂
y∈V
{X+

y ≥ t}

 ≤ 1−
∑
y∈V

2 exp
(
−2

(EX+
y − t)2

k − 1

)

≤ 1− 2 exp
(
t ln(k − 1)− 2

(k−1
2 − t)

2

k − 1

)

≤ 1− 2 exp
(
t ln(k − 1)− k − 1

2 · exp
( 4t
k − 1

))
.

We now choose t so that this probability tends to 1. It suffices to show that the
exponent in the last expression above tends to −∞. If t = k−1

2ω(k) where we think
of ω as a function which tends slowly to infinity, we have

t ln(k − 1)− k − 1
2 · exp

( 4t
k − 1

)
= k − 1

2

(
ln(k − 1)
ω(k) − exp

(
2

ω(k)

))
.

Note that setting ω(k) = ln k/(1− ε′) for any constant ε′ with 0 < ε′ < 1 gives us
the desired limit, and note that we cannot take ω to be sublogarithmic. Moreover
a similar calculation (with ω(k) = ln k/(1− ε′)) yields

P

 ⋂
y∈V
{X−y ≥ t}

→ 1 as k →∞.

So if t = (1− ε) k
ln k , then for each i ∈ {0, . . . t− 1} and each v ∈ Vi the semidegree

of v in Vi+1 is at least t asymptotically almost surely. Let D′ := D[V0 ∪ · · · ∪ Vt].
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Claim5.5. If T is an oriented tree on t vertices, then D′ contains T almost surely.

Proof. Suppose we fix an outcome of the random orientation such that for each
i ∈ {0, . . . t − 1} and each v ∈ Vi the semidegree of v in Vi+1 is at least t. Let
x0, x1, . . . , xt−1 be an ancestral order of V (T ). We shall embed T to D′ greedily.

We first embed x0 to the single vertex v0 ∈ V0. Now suppose that we have
embedded all vertices up to xi−1, and wish to embed xi. Then xi has a single
neighbour x which has already been embedded, say to some vertex v ∈ Vj. The
semidegree of v in Vj+1 is at least t, and at most i− 1 < t neighbours of v have
been used by vertices already embedded, so v has at least one inneighbour and
one outneighbour in Vj which have not been used. This means we can embed vi to
some unused vertex in Vj, extending the embedding. Proceeding in this manner
we obtain a copy of T in D′. Since the random orientation almost surely has the
required properties, the claim follows. �

The claim above implies that if t = (1− ε)k/ ln k then a random orientation
of G contains a copy of every oriented tree on t vertices almost surely.

5.2 Non-probabilistic results

To conclude this chapter, we prove two results for specific classes of graphs
and trees. In Theorem 1.22 we consider graphs G such that χ(G) is at least a
polylogarithmic function of |G|, and in Theorem 5.10 we verify Burr’s conjecture all
but two orientations of every star, which—together with a Lemma in [1]—implies
that Burr’s conjecture holds for every orientation of a star.

To prove Theorem 1.22 we require a few definitions and two auxiliary lemmas.
Let D be a digraph. If S ⊆ V (D), then we write N+(S)N+(S) for the set of vertices
in D − S which have an inneighbour in S, and N−(S) for the set of vertices
in D−S which have an outneighbour in S. If N+(S) = D−S then we say that S
is a dominating set of D; similarly, if N−(S) = D−S then S is an dominating set,

anti-dominating set
anti-dominating

set of D. Our first lemma shows that we can always find an independent set with
‘large’ outneighbourhood.

Lemma5.6. Every digraph D on n vertices contains a maximal independent set
S such that |N+(S)| ≥ |N−(S)|.

Proof. Fix an enumeration v1, . . . , vn of V0 := V (D) which maximises the number
of forward arcs, i.e., of arcs vi → vj where i < j. For each i ≥ 1, if Vi−1 6= ∅,
proceed as follows. Let si be the vertex vj of minimum index j in Vi−1 and
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let Vi = Vi−1 \
(
{si} ∪ N+(si) ∪ N−(si)

)
. Finally, let S be the set of all si. By

constructionD[S] is a maximal independent set ofD. Furthermore, by the labelling
of the vertices, we have that |N+(S)| ≥ |N−(S)|, since the outneighbourhood of
si in Vi−1 is at least as large as its inneighbourhood in Vi−1, otherwise si could
be moved to the end of the order, yielding an order with more forward edges, a
contradiction.

By applying this lemma repeatedly, we obtain the following.

Lemma5.7. Let D be a digraph on n vertices. Then there exists a dominating
set S of D such that χ

(
D[S]

)
≤ log2 n+ 1. Furthermore, D[S] is acyclic.

Proof. This follows by induction on n := |V (D)|. If n = 1 the lemma holds
trivially, so suppose n > 1. By Lemma 5.6, D contains an maximal independent
set I such that |N+(I)| ≥ |N−(I)|, that is |N−(I)| ≤ (n− |I|)/2. Let

D′ := D −
(
I ∪N+(I)

)
= D

[
N−(I) \N+(I)

]
,

where the second inequality follows by the maximality of I. By induction there
exists S ′ ⊆ V (D′) such that D′[S ′] is acyclic and χ(D′[S ′]) ≤ log2(|V (D′)|) + 1 ≤
log2(n/2) + 1 and such that S ′ is a dominating set of D′. Let S := D[I ∪ S ′].
Clearly S is a dominating set of D and χ(D[S]) ≤ 1 + χ(D[S ′]) ≤ log2 n + 1.
Moreover, since V (D′) = N−(I) \N+(I), every edge between S ′ and I is directed
towards the latter; so any directed cycle in D[S] must lie entirely in D[S ′]. Since
D[S ′] is acyclic, we conclude that D[S] is acyclic as well.

Theorem 1.22. If D is a digraph of order n, where n ≥ 1, then D contains every
oriented tree of order χ(D)/ log2(2n), that is,

q−1(D) ≥ χ(D)
log2(2n) .

Proof. Let D be an oriented graph on n ≥ 1 vertices and let T be an oriented tree
on t vertices, where t ≤ χ(D)/ log2(2n). We will show that D contains a copy of T .
The proof is by induction on n. The theorem is trivial if t = 1 (since every digraph
with one vertex contains a copy of a tree with at most 1 vertex), and so we suppose
that t > 1. Suppose further that T contains an out-leaf (respectively, in-leaf) v. By
Lemma 5.7, there exists an anti-dominating (respectively, dominating) set S of D
such that χ(D[S]) ≤ log2(2n). Let D′ = D−S, and n′ := |V (D′)| = n−|S|. Note
that since t > 1 we have n′ ≥ χ(D)− log2(2n) > 0 and χ(D′) ≥ χ(D)− log2(2n).
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By induction, D′ contains a copy of every oriented tree on χ(D′)/ log2(2n′) vertices.
Note that

χ(D′)
log2(2n′) ≥

χ(D)− log2(2n)
log2

(
2(n− |S|)

) ≥ χ(D)− log2(2n)
log2(2n) ≥ χ(D)

log2(2n) − 1 ≥ t− 1,

and thus D′ contains a copy of T−v. Since every vertex of D′ has an outneighbour
(respectively, inneighbour) in S, it follows that D contains a copy of T .

5.2.1 Burr’s conjecture holds for stars

As noted in [1], every graph G with χ(G) = 2t− 2 contains a subgraph G′ with
minimum degree 2t− 3. So for every orientation D of G′ we have that the average
out-degree of D is

∑
v∈V (D)

deg+
D(v)

|V (D)| ≥
|E(D)|
|V (D)| ≥ t− 1− 1

2 ,

and thus D contains a vertex with outdegree at least t−1, and (by symmetry) also
a vertex of in-degree at least t− 1. Therefore, every orientation of G contains the
two anti-directed stars of order t (i.e., a star in whose centre has either outdegree
t− 1 or indegree t− 1). To complement this result, we introduce some notation.
Let S(a, b) be an oriented star on a+b+1 vertices whose centre has in-degree a and
out-degree b. The observation above can be stated as the following lemma—note
that since |S(0, r)| = |S(r, 0)| = r + 1, this establishes Burr’s conjecture for these
two types of stars.

Lemma 5.8. [1] Let D be a digraph such that χ(D) ≥ 2r. Then D contains a
copy of S(r, 0) and a copy of S(0, r).

We also need the following fact.

Fact 5.9. If G is a graph such that V (G) = A1 ∪ A2 ∪ · · · ∪ Ak, then

χ(G) ≤
k∑
i=1

χ
(
G[Ai]

)
.

Using Lemma 5.8 and Fact 5.9 we can give a simple proof of Burr’s conjecture
for all remaining orientations of stars.

Theorem 5.10. Let a and b be positive integers. If D is a digraph such that
χ(D) ≥ 2(a+ b+ 1)− 3 = 2(a+ b)− 1, then D contains a copy of S(a, b).
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Proof. For all S ⊆ V (D), we write χ(S) for χ(D[S]). Let A be the set of vertices
of D which have in-degree less than a, let B be the set of vertices of D which have
out-degree less than b, and let C = V (D) \ (A ∪ B). We will show that C 6= ∅,
and thus D contains a copy of S(a, b). By Lemma 5.8 we have that χ(A) ≤ 2a− 1
and χ(B) ≤ 2b− 1, so by Fact 5.9

χ(D) ≤ χ(A) + χ(B) + χ(C) ≤ 2a− 1 + 2b− 1 + χ(C) = 2(a+ b)− 2 + χ(C).

Therefore χ(C) > 0, and so C 6= ∅, completing the proof.

Corollary 5.11. Burr’s conjecture holds for every orientation of a star.

You are so much more than your
orientation, you know it and I know it.

Adam Lambert

Certainly, as a guitarist, I was aware of
descending chromatic lines and
arpeggios long before 1968.

Jimmy Page



6 Further directions

Spanning trees are a central topic in graph theory. The area is full of open
problems, some of which seem to require a substantially different approach when
transferred to the digraph setting. We discuss a few directions for further research.

6.1 Trees in tournaments

Recall that Theorem 1.4 states that all large nice oriented trees of polylogarithmic
maximum degree are unavoidable. Together with Moon’s theorem on the maximum
degree of a random labelled tree (Theorem 1.5) and our proof that almost all
labelled oriented trees are nice (Theorem 1.6) this established Theorem 1.2, that
almost all labelled oriented trees are unavoidable.

The same method can be used to show that other classes of random oriented
trees are asymptotically almost surely unavoidable. More precisely, let T be a
class of undirected trees, let Tn consist of all members of T with n vertices, and
let T be a tree selected uniformly at random from Tn. If we can show, for some
constants C and ξ, that

(a) ∆(T ) ≤ (log n)C asymptotically almost surely, and

(b) T has at least ξn pendant stars asymptotically almost surely,

then by a similar argument to the proof of Theorem 1.6 it follows that a uniformly-
random orientation T ∗ of T is asymptotically almost surely α-nice (where α� ξ),
and therefore by Theorem 1.4 that T ∗ is asymptotically almost surely unavoidable.
Following the methods of Janson [44] it is not hard to show that (a) and (b) hold
for many classes T of simply-generated random trees, such as uniformly-random
ordered trees (see [44, Example 10.1]), binary trees (see [44, Example 10.3])
and d-ary trees for a fixed integer d ≥ 3 (see [44, Example 10.6]) In the same
way Theorem 1.4 directly shows that for many fixed trees T , such as not-too-
unbalanced d-ary trees for a fixed integer d ≥ 3, a random orientation of T is
unavoidable asymptotically almost surely. Finally we note that for many oriented
trees it is straightforward to check directly that the conditions of Theorem 1.4
are satisfied, for instance in the case of balanced antidirected binary trees, in

133
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which every non-leaf vertex has one child as an inneighbour and one child as an
outneighbour.

However, there do exist oriented trees which are not nice but which are
unavoidable, such as the paths and claws discussed in Chapter 1. In this context
it is natural to ask whether the property of being unavoidable can be succinctly
characterised or easily tested.

Question 6.1.

(i) Is there a concise characterisation of unavoidable oriented trees?

(ii) Can we determine in polynomial time if an oriented tree is unavoidable?

We suspect that it would be very difficult to establish such a characterisation.
As a more attainable goal, it would be interesting to establish further classes
of unavoidable oriented trees. For example, say that an oriented tree T with
root r isoutbranching outbranching if for every vertex v ∈ V (T ) the path in T from r to v is
directed from r to v. In particular, if the root of T is not a leaf then T then has
no in-leaves at all, so T is not α-nice for any α > 0.

Problem 6.2. What conditions are sufficient to ensure that an outbranching
oriented tree T is unavoidable?

To shed some light on this problem it may help to consider the outbranching
balanced binary trees Bd on 2d+1 − 1 vertices, in which every non-leaf vertex has
two children as outneighbours and every leaf is at distance precisely d from the
root.

Conjecture 6.3. Bd is unavoidable for d sufficiently large (maybe d > 1 suffices).

It seems that further new ideas and techniques would be necessary to prove
Conjecture 6.3, since the existence of both many in-leaves and many out-leaves of T
is crucial to our approach. In a similar vein, Lu, Chang, Wang, Lin and Wong [61]
have shown that for every integer k every sufficiently large tournament contains
at least one spanning k-ary tree (ak-ary tree k-ary tree is an outbranching where every
non-leaf vertex has out-degree precisely k except perhaps one, which is allowed to
have smaller out-degree).

Finally, recall that in Chapter 3 we defined g(T ) for an oriented tree T to
be the smallest integer such that every tournament on g(T ) vertices contains a
copy of T . So T is unavoidable if and only if g(T ) = |T |. As noted earlier, if T is
an anti-directed star on n vertices then g(T ) ≥ 2n− 2, and Kühn, Mycroft and
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Osthus’s proof of Conjecture 1.7 for large trees shows that this is the maximum
possible value of g(T ) for large n. That is, every oriented tree T on n vertices,
where n is large, has g(T ) ≤ 2n − 2. The following ‘double-star’ construction
due to Allen and Cooley (see [51]) also yields an oriented tree T for which g(T )
is significantly larger than |T |. Fix a, b, c ∈ N with a + b + c = n, and let T be
the oriented tree on n vertices formed from a directed path P on b vertices by
adding a new vertices as inneighbours of the initial vertex of P and adding c new
vertices as outneighbours of the terminal vertex of P . Now take disjoint sets of
vertices A,B and C of sizes 2a− 1, b− 1 and 2c− 1 respectively, and let G be the
tournament in which G[A] and G[C] are regular tournaments, G[B] is an arbitrary
tournament, and all remaining edges of G are directed from A to B, from B to C
or from A to C. So G has 2a+ b+ 2c− 3 = 2n− b− 3 vertices, but G does not
contain a copy of T , since then (as |B| < b) either the initial vertex of P would
be in A, which cannot occur since each vertex of A has only a− 1 inneighbours,
or the terminal vertex of P would be in C, which cannot occur since each vertex
of C has only c− 1 outneighbours. So g(T ) ≥ 2n− b− 2 (and it is not too hard
to check that in fact g(T ) = 2n− b− 2).

For any ∆, n ∈ N, taking a = c = ∆ − 1 and b = n − 2∆ + 2 in the
above construction yields an oriented tree T on n vertices with ∆(T ) = ∆
and g(T ) = n + 2∆ − 4. In other words, for any n ∈ N and any ∆ ≥ 3 there
exist oriented trees on n vertices with maximum degree at most ∆ which are
not contained in some tournament on n + 2∆− 5 vertices. On the other hand,
Theorem 1.9 shows that every oriented tree whose maximum degree is at most
polylogarithmic in n is contained in every tournament on n+ o(n) vertices. Kühn,
Mycroft and Osthus [51] asked whether this o(n) term can be replaced by a
constant for oriented trees whose maximum degree is at most a constant ∆, and
the previous construction shows that a constant of 2∆− 4 would be best possible.
More generally it would be interesting to know whether the previous construction
is extremal for any bound on ∆(T ) (as a function of n), with the exception of the
antidirected paths P̌3, P̌5 and P̌7 on 3, 5 and 7 vertices respectively — as described
in the introduction, these three paths are avoidable and so are not contained in
any tournament on the same number of vertices.

Question 6.4. With the exception of P̌3, P̌5 and P̌7, is every oriented tree T on n
vertices contained in every tournament on n+ 2∆(T )− 4 vertices?
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6.2 Trees in digraphs via semidegree

The main theorems in Chapter 4 describe large families of spanning trees which
must be contained in every digraph G whose semidegree is slightly above the
minimum threshold for connectivity. We prove, among others, Theorem 1.12—a
digraph analogue of Komlós, Sárközy and Szemerédi’s classical theorem (The-
orem 1.11). We also prove an approximate result for almost spanning trees T
(of every such G), where ∆(T ) is allowed to be a polylogarithmic function of T .
Finally, we demonstrate how our techniques can be used to embed spanning
tree-like digraphs with polylogarithmic maximum degree.

It would also be interesting to clarify whether the polylogarithmic bound
we require for the degree of the trees in many of our results could be improved
without a substantially different approach. I believe that the bottleneck for such
improvement is related to the limits of Lemma 2.6: this is a tree-partition lemma
which lies at the core of our analysis of the allocation algorithm (Algorithm 4.14).
While this bound on the degree is sufficient high to encompass almost every tree,
the polylogaritmic bound on the degree is still far from the known bounds for
graphs (see below).

Another natural question is whether similar results hold when the minimum
semidegree of the host graph G is closer to n/2. Csaba, Levitt, Nagy-György
and Szemerédi [21] have shown that this is possible for bounded-degree (undirected)
trees.

Theorem6.5. [21] For all ∆ there exists n0 and c∆ (which both depend only on ∆)
such that the following holds for all n ≥ n0. If T is a tree of order n and maximum
degree ∆ and G is a graph of order n and minimum degree δ(G) ≥ n/2 + c∆ log n,
then T ⊆ G. Furthermore, the bound on δ(G) is tight: for sufficiently large n,
there exists a graph G with δ(G) ≥ n/2 + log n/17 such that the complete ternary
tree of order n is not a subgraph of G.

Many variations and extensions of Theorem 1.11 have been developed for
graphs. These include, among others, allowing ∆(T ) to be O(n/ log n) [50]
and generalising the class of spanning subgraphs to graphs with bounded band-
width [14] and arrangeability [15]. The presence of spanning trees has also been
studied in resilience [6], random perturbation [13, 64] and maker-breaker [20]
scenarios. It is very natural to ask which of these proofs can be adapted to the
realm of digraphs (and which cannot), and, conversely, whether techniques such
as those described in this thesis could help describe further classes of spanning
(undirected) graphs.
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6.3 Trees via chromatic number

Let T be an oriented tree. Recall that t(T ) is the smallest integer such that every
tournament on t(T ) vertices contains a copy of T , and that q(T ) is the smallest
integer such that every orientation of a q(T )-chromatic graph contains a copy of
T . Then t(T ) ≤ q(T ). I conjecture the following.

Conjecture 1.23 (Transference conjecture). If T is an oriented tree, then

t(T ) = q(T ).

This is known to hold for any path P with at most 2 blocks [2, 32, 38, 69, 28,
82] (where t(P ) = q(P ) = |V (P )| by Lemma 5.8) and for anti-directed stars [1]
(that is, for stars S such that each vertex has either no inneighbours or no
outneighbours, in which case we have t(S) = q(S) = 2|S| − 2). In Chapter 5 we
completed the proof for stars with Theorem 5.10, showing that Conjecture 1.23
holds for every orientation of a star (where if S is a star which is not antidirected
then t(S) = q(S) = 2|S| − 3).

To see why these results settle cases of Conjecture 1.23, it suffices to argue
that Lemma 5.8 and Theorem 5.10 are best possible. Indeed, since a regular
tournament on 2r − 3 vertices does not contain a copy of the antidirected stars
S(0, r), S(r, 0) of order r + 1, it follows that Lemma 5.8 is best possible. As
for Theorem 5.10, consider the following construction. Let A and B be regular
tournaments on 2a−1 and 2b−1 vertices respectively and construct a tournament
T on 2(a+ b+ 1)− 4 vertices by taking vertex-disjoint copies of A and B, and
adding all edges from A to B; then every vertex of A has in-degree less than a
and every vertex in b has out-degree less than b, so T contains no copy of S(a, b).

Theorem6.6. The transference conjecture holds for every oriented star.

Conjecture 1.23, if confirmed, transfers many of the results discussed in this
thesis (such as Theorems 1.2 and 1.9) from the realm of tournaments into results
towards Burr’s conjecture. In particular, it would imply that Burr’s conjecture
holds for sufficiently large values of n.

We note that a similar question has been considered by Bialostocki and Gyárfás
recently [9]. Following their terminology, we define ‘Ramsey niceness’ as follows.
If F is a family of graphs, we write Rk(F) to denote the smallest integer n such
that every k-colouring of Kn contains a monochromatic copy of some F ∈ F . The
family is k-nicek-nice if for every graph G with χ(G) = Rk(F) and every k-colouring



138 Chapter 6. Further directions

of E(G) there exists a monochromatic copy of some F ∈ F . Aharoni et. al. [3]
have since provided some support for the following conjecture: for every F , there
exists an infinite set of values of k (perhaps even all k ≥ k0(F)) for which F
is k-nice. This is very similar in spirit to the numbers captured by t(T ) and q(T ),
with colourings in place of orientations and by considering families of graphs
rather than trees.

The greater our knowledge increases
the more our ignorance unfolds.

John F. Kennedy

All you need in this life is ignorance
and confidence, and then success is
sure.

Mark Twain

If ignorance is bliss, there should be
more happy people.

Victor Cousin
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(d, ε)-super-regular cycle of cluster

tournaments, 34
(d, ε)-regular, 24
(d, ε)-regular cycle of cluster

tournaments, 34
(d, ε)-super-regular, 24
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k-ary tree, 134
k-nice, 137
q(T ), 12
q−1(G), 14
r-regular, 17
t(T ), 5

allocation, 91

ancestral order, 19
anti-directed star, 19
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digraph, 17
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directed pair, 25
directed path, 18
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even, 37
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heavy neighbour, 20
hypergeometric distribution, 27

in-cherry, 71
in-leaf, 18
in-star, 18
in-subtree, 18
indegree, 17
induced, 17
inneighbourhood, 17

leaf, 18
leaf-edge, 111

maximum degree, 18, 28
middle, 83
middle section, 83
minimum semidegree, 17

neighbour, 17

odd, 37
open, 39, 95
order, 17
orientation, 18
oriented, 18
oriented tree, 18
out-cherry, 71
out-leaf, 18
out-leaf-edges, 111
out-stars, 18
out-subtree, 18
outbranching, 134
outdegree, 17
outneighbourhood, 17

parent, 19

path decomposition, 77
pendant, 3
perfect tiling, 7
prefix, 83
prefix section, 83

random P -walk, 88
reduced graph, 25
regular tournament, 25
reverse edge, 50
root, 19
rooted tree, 19

same middle section, 83
semi-canonical, 35
semidegree, 17
semidegree in set, 17
simple digraph, 7
spanning, 17
star, 18
strongly connected, 18
subgraph, 17
subtournament, 25
subtree, 18
suffix, 83
suffix section, 83

tidy ancestral order, 21
tournament, 25
transitive tournament, 25
tree, 18
tree-partition, 19

unavoidable, 1
underlying graph, 18

‘When I use a word,’ Humpty Dumpty
said in rather a scornful tone, ‘it
means just what I choose it to
mean—neither more nor less.’

Lewis Carroll
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