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Abstract

Dependency Parsing is a method that builds dependency trees consisting of binary rela-

tions that describe the syntactic role of words in sentences. Recently, dependency parsing

has seen large improvements due to deep learning, which enabled richer feature representa-

tions and flexible architectures. In this thesis we focus on the application of these methods

to Transition-based parsing, which is a faster variant. We explore current architectures

and examine ways to improve their representation capabilities and final accuracies. Our

first contribution is an improvement on the basic architecture at the heart of many current

parsers. We show that using Recurrent Neural Network hidden layers, initialised with pre-

trained weights from a feed forward network, provides significant accuracy improvements.

Second, we examine the best parser architecture. We show that separate classifiers for

dependency parsing and labelling, with a shared input layer provides the best accuracy.

We also show that a parser and labeller can be successfully trained separately. Finally,

we propose Recursive LSTM Trees, which can represent an entire tree as a single dense

vector, and achieve competitive accuracy with minimal features. The parsers that we de-

velop in this thesis cover many aspects of this task, and are easy to integrate with current

methods.
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CHAPTER 1

INTRODUCTION

Dependency parsing is a central task in Natural Language Processing (NLP), which aims

to represent the syntactic structure of sentences. It builds representations of sentences by

assigning asymmetric parent/child annotations, known as dependency relations, to pairs

of words that reflect the syntactic and, to some extent, semantic relationship between any

given pair of words. Each word in a given sentence is assigned exactly one dependency

relation for which it is the child, in addition to all that word’s dependency relations with

its own child words, culminating in a directed dependency tree that preserves word order

and also describes the syntactic structure within the sentence. In addition, dependency

parsing has the ability to attach words freely to nodes within a tree, which makes it easier

to learn more flexible formulations in languages with free word order (Melčuk, 1988). An

example of a sentence represented as a dependency tree is shown in Figure 1.1.

Moreover, dependency parsing is a useful component in other major NLP applications

such as language modelling (Gubbins and Vlachos, 2013), relation extraction (Mausam

et al., 2012; Angeli et al., 2015), and semantic parsing (Surdeanu et al., 2008; Hajič

et al., 2009; Parikh et al., 2015). Because of the usefulness of dependency grammar,

much effort has been devoted to further analysing its strengths and limitations, as well

as exploring possible options for optimising and improving the accuracy of dependency

parsing systems.
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ROOT Just thought you ’d like to know

(root) (RB) (VBD) (PRP) (MD) (VB) (TO) (VB)

ROOT

adv mod

nsubj

aux

ccomp

aux

x comp

Figure 1.1: An example of a dependency tree representation of a sentence. ROOT is an
additional word conventionally added to all sentences. It acts as a placeholder for the head
of the actual root word of a sentence (in this case the root word is “thought”). The Part-
of-Speech (pos) tag of each word is shown between parentheses below each word. Each
arrow is a dependency arc, a directed dependency relation, going from the parent word
to the child word. The type of relationship is indicated by the dependency labels on the
arcs1. Note how all words have exactly one parent word, and how the whole arrangement
culminates in a directed tree with the top of the tree having the extra ROOT token as its
parent.

The pace and performance of dependency parsing has been improving over the years,

largely due to a wave of competing statistical parsers using a variety of machine learning

techniques (Yamada and Matsumoto, 2003; Zhang and Clark, 2008; Huang and Sagae,

2010b; Zhang and Nivre, 2012; Bohnet and Nivre, 2012) and vast amounts of annotated

corpora as training data. These parsers were able to provide flexible language independent

methods to model relationships between words based on their occurrence, their surround-

ing words, and their Part-of-Speech tags, and correctly identify these relationships.

The features of the sentences and words used by machine learning algorithms to achieve

this were usually hand-crafted and could number in the hundreds (Bohnet, 2010). This

challenge of feature crafting complements a core strength of Deep Learning, and so has led

to a wave of investigation into it as a possible alternative, and achieving impressive results

(Chen and Manning, 2014; Weiss et al., 2015; Andor et al., 2016; Dozat and Manning,

2016; Kuncoro et al., 2016a). A deep neural network consisting of hidden layers of neurons

determines the most useful combinations of raw features, thus shifting the burden from

feature crafting towards network architecture crafting for classification tasks.

Regardless of the learning method used, the most common statistical approach to

dependency parsing relies on supervised machine learning techniques coupled with parsing

1For simplicity we will not show the dependency labels and pos tags in any of the examples in the
rest of this thesis.
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algorithms. This avoids the problem of needing to express our complex use of language

in a rule-based manner, with new rules needing to be developed for each language. The

machine learning model sees a sentence as a set of possible dependency trees that are

scored based on their correctness, the highest scoring of which is presented as the correct

dependency tree. This approach requires a large number of correctly labelled sentences as

training data, and much effort has been dedicated to building large treebanks for various

languages (Buchholz and Marsi, 2006; Nivre et al., 2007; Mcdonald et al., 2013).

Of the various parsing algorithms to have emerged, two families remain dominant and

successful. The Graph-based parser (Eisner, 1996; McDonald et al., 2005a), represents a

graph of all the possible arcs in the input sentence, weighing all the arcs, and choosing the

highest scoring tree. This approach explores an exhaustive list of possible trees making it

very slow, but capable of producing state of the art results (Cheng et al., 2016; Hashimoto

et al., 2016; Kiperwasser and Goldberg, 2016b; Dozat and Manning, 2016).

The other main approach is the Transition-based parser (Nivre, 2003b; Yamada and

Matsumoto, 2003), which treats the parsing problem as a state-machine, with the words

of a sentence being input, and a stack (or a variation on the structure) being used to

manipulate input and attach arcs. This method attempts to parse the entire sentence in

one pass making it faster and more efficient, while still achieving competitive accuracies

compared with other approaches (Weiss et al., 2015; Andor et al., 2016; Kuncoro et al.,

2016a; Shi et al., 2017).

The application of deep learning to the dependency parsing task has evolved rapidly

and increased in complexity. Simple, but effective parsers such as (Chen and Manning,

2014) used a feed forward neural network for feature representation, hidden state encoding,

and classification. This was soon improved upon by increasing the size and number of

hidden layers in the network, and combining their output with previously successful linear

methods (Weiss et al., 2015), or by applying global training methods (Andor et al., 2016).

Other works approached the task differently, instead focusing on creating more flexible

and richer feature representation using recursive or recurrent representation (Dyer et al.,

3



2015; Kiperwasser and Goldberg, 2016a,b). Yet another direction involves improving or

reexamining the classification layer itself (Cross and Huang, 2016; Dozat and Manning,

2016).

1.1 Goals & Contributions

Our goal in this thesis is to explore the application of deep learning specifically to the

transition-based parsing task. We approach this topic from multiple angles, as has been

the case with current literature in general. We attempt to improve already established

methods by extending their hidden state modelling capabilities. We additionally scrutinise

the basic formulation of the transition-based parsing task. And finally, we consider feature

modelling, and deep learning’s promise of no feature-crafting.

Thus we cover some of the different aspects of the Transition-based parsing task,

and produce some useful insights that can be extended to improve existing architectures.

Our contributions are also capable of integrating with other important state-of-the-art

techniques, and in some cases are even potentially applicable to other tasks in Natural

Language Processing.

1.2 Thesis Questions

To address our stated goals, the work in this thesis focuses on answering the following

questions:

1. Does the configuration of a parser at one point in the parsing process hold informa-

tion that is useful to making transitions later in the parsing sequence?

2. What is the best structure for the classification task? How does this influence the

architecture of the neural networks used?

4



3. Given deep learning’s ability to learn important features and combinations from

context, how can this ability be used to increase the expressiveness of features?

And if this is possible, does this expressivness hold with fewer features?

1.3 Structure of this Thesis

Chapter 2 discusses background topics. We describe the key concepts of Transition-

based dependency parsing, notable transition systems, and our choice of Arc-Standard,

and the motivation to do so.

We additionally provide a basic overview of neural networks and how they are trained,

in addition to architecture varieties and their current application to transition-based de-

pendency parsing.

In Chapter 3 we focus more closely on the various approaches in the literature towards

using neural networks for transition-based parsing. We consider the relations between

these different works and how they solve different aspects of the dependency parsing task,

as well as how they relate to our work in this thesis.

In Chapter 4 we explore an extension of the simple feed forward neural network parser

presented by Chen and Manning (2014) using Long Short-Term Memory networks. We

additionally propose a simple alternative method to initialise Recurrent Neural Networks

in this architecture, and explore its effects on different RNN variants.

In Chapter 5 we examine the basic classification task underlying current Transition-

based parsers, with a specific focus on the effects of Hierarchical classification as observed

by Cross and Huang (2016).

We also propose a number of amended architectures to further determine the extent

of the relation between dependency parsing and arc labelling, including training separate

networks for each sub-task.

In Chapter 6 we shift our attention to feature modelling. We propose a Recursive

LSTM Tree model that is capable of representing whole dependency trees, and is capable of
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integrating with, and retaining the information from, other successful methods of feature

representation. We finally explore the minimal feature set necessary for such a robust

model to train successfully.

The thesis ends with concluding remarks in chapter 7, where we discuss the impli-

cations of our contributions and how they could be built upon in future work. We also

revisit the questions raised in Section 1.2 and discuss to what extent they have been

answered.
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CHAPTER 2

BACKGROUND

2.1 Dependency Grammar

Binary dependency relations are a feature used in many languages and is a broad field

in itself. Similar ideas can be traced as far back as the middle ages with an example the

primium-secundum relation (Covington, 1984). However, in its current form dependency

grammar is largely attributed to the work of Tesnière (1959) and was then used extensively

to model languages with free word order (Melčuk, 1988). In this Section we will only state

the basic formalisms needed for the dependency parsing task, and do not aim to examine

the linguistic background of dependency grammars themselves.

2.1.1 Components of a Dependency Structure

Dependency grammars focus on representing the relationships between the words in a

sentence. These relationships, or dependencies, are organised in such a way as to express

the role words in a sentence with respect to each other. Formally, the dependencies

within a sentence S consisting of words w1, ..., wn can be represented as a directed graph

G = (VS, A), such that

• VS = {0, 1, ..., n} is a set of nodes.

• A ⊆ VS × VS is a set of directed arcs representing dependencies.
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• A dependency arc from i→ j represents a head wi to its dependent wj.

• A dependency arc from i → j has a label li,j ∈ L, where L is the set of possible

dependency labels.

Node 0 in VS is the root node. The sentence does not require this additional node

in order for its dependencies to be fully represented, and as such it is absent from many

formal definitions. The addition of this extra node, however, is useful for parsing systems,

especially Transition-based parsers which will be introduced later. Nodes 1 through n

correspond to w1...wn in the order in which they appear in S.

The set of arcs contains pairs of nodes (i, j). The relationship between them is given a

variety of names in the literature, head/governor/parent and modifier/dependent/child.

We generally use head/dependent, however both sets are used interchangeably throughout

the literature.

ROOT John hit the ball with the bat

Figure 2.1: An example of a dependency tree from (McDonald et al., 2005b)

2.1.2 Constraints on a Dependency Structure

A dependency graph must satisfy a number of constraints in order to be considered

valid. These are not always necessary to represent the structure of a sentence fully, but

they remain important widely held assumptions necessary for parsing systems. These

constraints are:

Acyclicity There graph cannot include a directed cycle.

Connectedness There can be no isolated part within the graph.

Single governance Every word must be a dependent of exactly one head.
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Root governance Every graph must have a word act as root, with no head.

As stated earlier, the root governance constraint is modified by some systems to have

the word acting as root become a dependent of an additional root node. This approach

is adopted here as well. In addition, the acyclicity constraint limits valid dependency

graphs to trees while connectedness guarantees each sentence be represented as a single

tree and not a forest. For this reason, they will be referred to here as dependency trees,

trees, and graphs interchangeably. An example of a tree fulfilling all the characteristics

and constraints described is show in Figure 2.1.

2.1.3 Projectivity

An additional complication that arises is projectivity. Generally, a tree is considered

projective if it has no crossing dependency arcs. Non-projective sentences are more com-

mon in languages with free-word-order, but they also occur in English, especially in longer

sentences. Many dependency parsers cannot successfully parse non-projective sentences

and so place as an additional constraint that sentences be projective.

The example shown in Figure 2.2 illustrates this phenomenon. The arc from dog →

was crosses the arc saw → yesterday. This is not the case for the tree in Figure 2.1.

ROOT John saw a dog yesterday which was a Yorkshire Terrier

Figure 2.2: An example of a non-projective tree from (McDonald et al., 2005b)

2.1.4 The Parsing Process

Now that we have defined the representation of dependencies within a sentence, the task

of parsing is simply to correctly predict these dependencies between words, and decide

which type of relation each dependency is (the label on a dependency arc). The possible
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combinations of VS × VS can be rather large, but are narrowed down when constraints

such as acyclicity are taken into consideration.

2.2 Transition-based Dependency Parsing

A transition-based system processes an input sentence one word at a time in order of

appearance, with the goal of building a dependency tree describing its syntactic structure

as discussed in Section 2.1. It represents a state machine that attaches a dependency arc

to the current word or stores it until a word that can be attached is reached. The decision

to attach or store a word, to move from one state to the next, is made based on features

of the input word, its part-of-speech tag, and other features of the sentence and transition

system itself.

When training, the parsing system is presented with a correctly annotated set of

sentences (often referred to as the gold set) that the system can use to learn the correct

transitions to make, and to model the relation of the transitions with the various features.

The underlying machine-learning algorithm then produces a statistical model that is used

by the parser to build dependencies for blank sentences. When parsing an input sentence,

this model is used to score each possible transition and usually the option receiving the

highest score is chosen. This is often referred to as a greedy parser, and is the approach

we will be using throughout our work.

2.2.1 Structure of a Transition System

The approach as described above may be seen as a more flexible form of shift-reduce

parsing (Nivre, 2008), with the added complexity of natural language as opposed to

programming languages, which are perhaps the usual use cases for such an approach. A

defining advantage of this system is that it builds dependencies for the whole sentence

in a single pass, without the need for backtracking, resulting in an efficient runtime and

minimal use of memory. A pitfall, however, is the issue of error-propagation. This is
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caused by incorrect transitions made early on in the sentence, which then affect decisions

made later in the process as well (McDonald and Nivre, 2007).

In general the state of a transition system is represented as a configuration c ∈ C,

where C is the set of all possible configurations. The state changes from one configu-

ration to the next with the application of a transition t ∈ T , where T is the set of all

possible transitions and t : C → C. The whole transition system is thus defined as

S = (C, T, cs, Ct) where:

• C is the set of possible configurations in the system.

• T is the set of all possible transitions defined by the parsing strategy.

• cs ∈ C is the initial configuration of the system.

• Ct ⊆ C is the set of all terminal nodes.

And so given a transition system S, an input sentence x = (w1, ..., wn), and a transition

prediction function1 o : C → T , the complete dependency graph Gc for x can be built

using algorithm 1.

Algorithm 1 Basic Parsing Algorithm

1: function Parse(x)

2: c← cs(x)

3: while c /∈ Ct do

4: t← o(c)

5: c← t(c)

6: return Gc

2.2.2 Examples of Transition Systems

The data structures constituting a configuration depend on the transitions specified by

the parsing system. A parsing system specifies possible transitions, their effects on a

1usually referred to as the oracle
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configuration, and preconditions limiting the choice of transition. We list below examples

of popular parsing strategies.

Arc-standard parsing

Arc-Standard dependency parsing (Nivre, 2004) is a system that builds projective depen-

dency trees in a bottom-up approach. The structures defined by this strategy are:

• Stack(σ): (A first-in-last-out structure) acts as storage for words that are not yet

attached, with the head on the right of the structure. For example (σ|i) represents

a stack with the ith word of the sentence as its top item.

• Buffer(β): (A first-in-first-out structure) consists of the words in x in order of

appearance with the head on the left of the structure. For example (i|β) represents

a buffer with the ith word of the sentence as its front item.

• Arcs(A): is a set of arcs from i to j with label l, (i, l, j).

This parsing algorithm produces dependency trees by building dependency arcs be-

tween the top two items on its stack. It does not necessarily build arcs as soon as they

become possible, but instead only builds an arc when the dependent word has had all its

dependents attached throughout the sentence. And so if the top two items on the stack

are not related by a dependency relation, or the potential dependent still has children in

the buffer, the next word in the buffer is pushed onto the stack instead. The Transitions

are defined as:

Left− Arcl: (σ|i|j, β, A)⇒ (σ|j, β, A ∪ (j, l, i))

Right− Arcsl : (σ|i|j, β, A)⇒ (σ|i, β, A ∪ (i, l, j))

Shift: (σ, i|β,A)⇒ (σ|i, β, A)

Preconditions of building an arc are:
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Left− Arcl:

¬[i = 0]

The Left/Right-Arc transitions operate solely on the top two items in the stack, with the

dependent being popped from the stack. This means that after an arc is built, no more

children can be attached to the dependent, hence the constraint to only attach a head to

a word once all its dependents are attached. The only precondition to building an arc is

for the Left-Arc transition, which cannot have the ROOT token as the dependent.

Arc-eager parsing

Arc-Eager parsing (Nivre, 2003a) has a lot in common with the Arc-Standard system. It

uses the same data-structures as Arc-Standard, but instead aims to attach the heads of

a token as soon as possible. Arc-Eager adds a new transition, Reduce, which pops the

top item on the stack, for when a word has all its children and its head attached. The

transitions are:

Left− Arcl: (σ|i, j|β,A)⇒ (σ, j|β,A ∪ (j, l, i))

Right− Arcel : (σ|i, j|β,A)⇒ (σ|i|j, β, A ∪ (i, l, j))

Shift: (σ, i|β,A)⇒ (σ|i, β, A)

Reduce: (σ|i, β, A)⇒ (σ, β,A)

Preconditions of building an arc are:

Left− Arcl:

¬[i = 0]

¬∃k∃l′[(k, l′, i) ∈ A]

Reduce:

¬∃k∃l[(k, l, i) ∈ A]
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Arc-Eager Left/Right-Arc transitions build arcs between the top item on the stack

and the front item on the buffer. The Left-Arc transition pops the top item on the stack

after the arc is built, since Arc-Eager attaches arcs as soon as possible, and so the popped

item would already have all its children attached in a projective sentence. The Right-Arc

transition, on the other hand, moves the front item of the buffer onto the stack after the

arc is built.

The preconditions for Left-Arc are that the top item on the stack is not the ROOT

token and does not have a head already attached. The Reduce transition, on the other

hand, requires the top item on the stack to already have a head token attached.

List-based parsing

The list based approach introduced by (Covington, 2001) was a basis adapted later in

the development of Nivre’s algorithms (Nivre, 2008). It follows a familiar structure with

the difference being two list based memory structures instead of the stack. This enabled

both backtracking and in a subsequent version of this algorithm was used to deal with

non-projectivity. This, however, led to the algorithm having a complexity of O(n3) as a

worst case.

Nivre’s arc-standard and arc-eager strategies left out backtracking by design, and

so were much faster, having a worst case complexity of O(n). The two approaches in

the form stated above still required the projectivity constraint, but later dealt with the

issue using pseudo-projective parsing, where non-projective trees were transformed into

projective equivalents, then transformed back afterwards. A subsequent version of these

algorithms introduced the Swap transition, which could exchange the position of the

top two elements on the stack, allowing Nivre’s Algorithms to deal with non-projectivity

without pseudo-projective transformation.
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Other systems and approaches

There are other widely used transition systems, with varying levels of complexity, and

different features. Notable examples include Arc-Hybrid (Yamada and Matsumoto, 2003;

Gómez-Rodrıguez et al., 2008; Kuhlmann et al., 2011b), which shares much in common

with Arc-Standard, but with the Left-Arc transition being built with the front of the

buffer b0 as head, and the top of the stack s0 as the dependent, forcing all left dependents

to be added before right dependents. Another example is Easy-first parsing (Goldberg

and Elhadad, 2010), which maintains a list of remaining words in a sentence, but is not

constrained to access these words in order, yet still builds dependency trees in a bottom

up fashion.

2.2.3 Our choice of Transition-system

For our investigations in this thesis we chose to use the Arc-Standard system as de-

scribed in Section 2.2.2. This choice was made both for simplicity and due to certain

properties that Arc-Standard has that combine well with our work on a whole range of

neural network architectures, from the simple to the increasingly complex.

The primary feature that motivates our decision is the determinism that can be im-

posed on Arc-Standard without harming the final performance. Given that the rules of

Arc-Standard already restrict parsing to a bottom-up strategy, that only allows the at-

tachment of heads if all children are attached, the only remaining uncertainty is whether

to apply a Left-Arc transition first, or to apply a Shift followed by a Right-Arc. This

scenario assumes that the word at the top of the stack s0 still has an unattached child

as the second element of the stack s1 and a right child at the front of the buffer b1, and

potentially more children beyond them. In this case there appears to be multiple paths

that the parser can take towards the correct outcome, complicating the learning task.

To simplify the learning task, we implement a static oracle that imposes a strict

order of transition application, where all left children are added first when possible. This
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translates to giving precedence to the Left-Arc transition over the Shift transition when

generating the gold sequence of decisions for a tree. The result is a single correct sequence

for any given sentence. This set-up is particularly well suited for neural networks, on which

we provide a brief introduction in Section 2.3, as they require pairs of input/expected

output as training data, and are more suited for atomic decisions by default.

The Arc-Standard system has a lot in common with other competing approaches, such

as the Arc-Eager and Arc-Hybrid methods. These latter methods, however, are usually

trained with the help of dynamic oracles (Goldberg and Nivre, 2013), which explore

possible future choices during train time. This adds an extra layer of complication, both

regarding implementation and final analysis. We note, however, that these are commonly

used approaches in the literature, even among some of the leading neural network-based

parsers with which we compare our results. Their performance, on the other hand, remains

comparable to our Arc-Standard based models, or can sometimes even fall behind. This

can be seen in the comparisons of our results with competing systems throughout our

work, or in more direct empirical comparisons such as in Shi et al. (2017).

There are more fine-grained aspects where our choice of transition system also provides

an advantage, but we explain these in subsequent chapters as they become relevant in

context.

2.2.4 Application & Evaluation

In order to paint a clearer picture of just how this transition system is used, and what it

is that we need a machine learning system to model, we give here an example of building

a dependency tree using our chosen system, Arc-Standard.

The example parse shown in Table 2.1 highlights a few aspects of the parsing process

that were mentioned before. First, the initial configuration of the parser has a stack with

only ROOT in it, and a buffer with all the words in the sentence in order. Parsing then

terminates when the buffer is empty and ROOT is the only remaining element in the

stack once more.
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Second, is the role that our static oracle plays. In Section 2.2.3 we explain the am-

biguity that can arise if a given word has both right and left dependents that are not

yet attached, and we resolved this ambiguity by giving priority to the Left-Arc transition

over a Shift transition whenever both are possible.

Consider row 3 and rows 4-7 in Table 2.1. Both “John” and “ball” are dependents of

the word “hit”, and at the third step the parser has the choice of whether to immediately

attach “John” with a Left-Arc transition, or to pursue “ball” first. Had we not put the

additional constraint of preferring Left-Arc over Shift, the parser could have also produced

the correct dependency tree by perfoming steps 4-7, and indeed steps 8-13, before step 3.

Another thing to note, in the same ranges mentioned, is that children of hit are not

attached until their children are attached first. This is especially apparent from step 9

onwards, where the stack consists of [ROOT, hit, with], each word being a dependent of

the one beneath it on the stack. And yet the head of “with” is not attached until after

all its dependents have been added in step 13, and “hit” is not attached to ROOT until

step 14.

There are many statistics that can be calculated to assess the accuracy of a predicted

dependency tree after it has been built. But in this work (and in much of the current

literature) we rely on two metrics, Unlabelled Attachment Score (UAS), and Labelled

Attachment Score (LAS). UAS is a measure of the percentage of arcs that have been

correctly attached from head to dependent. LAS is a measure of the percentage of arcs

that are both correctly attached and have the correct dependency label assigned. It has

become a de facto standard to report these two metrics excluding punctuation, and we

follow this convention in this thesis as well.
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Table 2.1: An example of parsing a whole sentence using Arc-Standard. For each row,
the Stack & Buffer columns represent the configuration of the parser before the transition
is applied, while the dependency tree shown in the Tree column shows the effect of the
transition (if any).
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2.3 Neural Networks

Neural networks have seen wide adaptation in NLP as a consequence of successes in areas

such as computer vision, handwriting recognition, and speech recognition. Neural net-

works learn to perform classification tasks by creating statistical models defining higher

level features as weighted combinations of lower level features from raw input. The prob-

lem is simplified, somewhat, in that it becomes about learning an optimal configuration

of weights over a number of levels of varying size between the raw input and the desired

output.

Outside of neural networks, learning such deep structures required hand-crafting many

features. This process is both time-consuming and often inadequate, needing hundreds

of features that may not properly represent the parameters of the problem completely or

over-specify them leading to over-fitting. Neural networks offer the option of automatically

inferring such features leading to more generalisable solutions and models that are easier

to train.

In addition, a development that has invited attention to this technique in NLP is the

introduction of dense word vector representations (Collobert et al., 2011; Mikolov et al.,

2013). This meant that the need to represent individual words or word counts discretely

was no longer an issue, and that the problem of encountering words not in the original

training set was alleviated to an extent. This problem of sparse data, or what is called

the curse of dimensionality, was now solved and large input layers were no longer required

for many NLP applications.

Neural networks have managed to obtain state-of-the-art results in subfields of NLP

such as part-of-speech-tagging and named entity recognition (Collobert and Weston,

2008), and have recently matched or surpassed the performance of handcrafted systems

that rely on SVM and MaxEnt models for dependency parsing. This will be discussed

further, later in Section 2.5.

In this chapter will only explain the structure of a basic neural network, with addi-

tional information for evolved structures being explained along with their application in

19



Figure 2.3: A Feed Forward Neural Network. The network has a single hidden layer with
an output h, and takes input x, with the final output layer producing y.

subsequent chapters.

2.3.1 Basics of a Neural Network

The structure of a neural network rests on the definition of a neuron. A neuron acts as a

gateway between a set of inputs, an n-dimensional vector ∈ R, and the output signal. It

can be modelled as . . .

s = f(
i∑

n=1

wnxn + b)

. . . where w is a set of weights corresponding to each input, b is an overall bias controlling

the output of the neuron, and f is the activation function, mapping the input signal to a

range. A typical activation function is the sigmoid function . . .

f(x) =
1

1 + e−x

. . . which maps the input signals to a value in the range of [0,1]. With this definition, the

output of a neuron can be seen as the probability of a value on a certain input.

With this building block, neurons can be stacked horizontally to form a layer, and

layers can be stacked vertically to form a deeper structure of hidden layers, allowing

for more complicated structures to be represented before the final output layer.
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The Feedforward pass

In a fully connected neural network, where each neuron in a layer receives the output

signal from all neurons in the layer below it, the output signal s of a neuron i in layer m

is . . .

smi = f(Wm
i s

m−1 + b)

In this way, a signal propagates from the input to higher layers, where the weight matrix

W needs to be tuned in order to affect the result. In a neural network with m layers and

n possible outputs the result would be . . .

y = max(sm0 , ..., s
m
n )

For the input layer, neurons receive the raw input signals directly. The weight vector Wm
i

for each neuron is initialised with random values at the start of training and is adjusted

based on the performance on training data.

Backpropagation

With the structure outlined so far it becomes clear that achieving a functioning neural

net is a matter of optimising the weight vectors of each layer so as to find a local or global

minima of error, represented by a loss function.

The backpropagation of error was developed to address this in the case of neural

networks with multiple hidden layers. It is, as the name implies, a reversal of feedforward

propagation in that it uses the results of the output layer together with the expected result

to calculate the error and subsequently a rate of change (delta) with which to update the

weigh vectors of the output layer.

This delta is calculated based on the gradient of a loss function and is propagated

backwards to lower layers in the network where it is included in the calculation of delta
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for that layer. Simply put, the backpropagation algorithm is essentially an application

of gradient descent. A consequence of this is that the activation function used by the

artificial neurons must be differentiable.

A typical cost function is the squared error function. For a neuron in the output layer

with output s, the cost function C is . . .

C =
1

2
(t− s)2

. . . where t is the expected target output. Further breaking down the make up of s, as

stated in 2.3.1, the output of a neuron is the result of the weighted sum h of inputs with an

applied bias run through an activation function. In this example the activation function

used is the Sigmoid function σ. Thus s becomes . . .

s = σ(h)

where . . .

h =
i∑

n=1

wnxn + b

As for an inner neuron si, the cost function can be seen as the sum of errors of all neurons

so : o ∈ O, that take the output of si as input, where O is the number of neurons that

take si as input.

Ci =
O∑
o=1

C(so)

And so an optimisation problem involving finding the minimum value for C through the

adjustment of the weight vector w becomes a gradient descent problem to compute the

partial derivative ∂C
∂w

. Through applying the chain rule this becomes . . .

∂C

∂w
=
∂C

∂s

∂s

∂h

∂h

∂w
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Computing the components of this is relatively straight forward.

∂C

∂s
=

1

2

∂(t− s)2

∂w
= s− t

∂s

∂h
=
∂σ(h)

∂h
= σ(h)(1− σ(h))

∂h

∂w
=
∂(
∑i

n=1 wnxn + b)

∂w
= x

It becomes apparent from the calculation of ∂s
∂h

why the activation function used by a

neuron must be differentiable. The activation function used here, the Sigmoid function,

is represented as σ and is stated in 2.3.1. Combining the previous results . . .

∂C

∂w
= (s− t)σ(h)(1− σ(h))x

or as commonly stated . . .

∂C

∂w
= δx

δ = (s− t)σ(h)(1− σ(h))

This formulation however only applies to neurons of the output layer since, as stated

previously, inner layer neurons use a cost function that relies on that of the layer above

them. So calculating ∂Ci

∂wi
requires the calculation of ∂Ci

∂si
. . .

∂Ci
∂si

=
O∑
o=1

(
∂C(so)

∂si
) =

O∑
o=1

(
∂C

∂so

∂so
∂h

∂h

∂si
)

Note that si for the inner layer is x in the outer layer . . .

∂h

∂si
=
∂wiosi + b

∂si
= wio
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∂Ci
∂si

=
O∑
o=1

(
∂C

∂so

∂so
∂h

wio) =
O∑
o=1

δowio

Putting the result of ∂Ci

∂si
in place of ∂C

∂s
we get . . .

∂Ci
∂wi

= (
O∑
o=1

δowio)σ(hi)(1− σ(hi))xi

δi = (
O∑
o=1

δowio)σ(hi)(1− σ(hi))

Finally the change in weight ∆w by which the weight vector is updated is . . .

∆w = −α∂C
∂w

. . . where α is the learning rate. Two important things to note here. The delta receives a

negative update since we are trying to minimise error. Second, the learning rate controls

to what degree the gradient of the cost function affects the weight update. The reason

behind this is to stabilise the change from one training example to the next. If the learning

rate is too large the weights will change too rapidly around the optimum and may never

converge, while if the learning rate is too low the system may converge very slowly or may

get trapped in a local minimum.

Summary

In this Section we covered two important concepts used to train a neural network. Feed-

forward propagation, for calculating an output based on layered and weighted combi-

nations of raw input features, and Backpropagation which updates the weights in the

various layers after comparing the output of the network.

These approaches are essential because of their relative straightforwardness and ease

of implementation. It is important to note that the fact that they are so often coupled

together does not mean that they are not compatible with other approaches or network
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structures. They are however the basis for all the networks implemented in this thesis.

A simple outline of the way a neural network functions is presented in Algorithm 2.

It can be seen in this algorithm how simple it would be to exchange one update strategy

for another. In addition, the termination condition is a matter of judgement since perfect

performance is rare in practice. Commonly used termination conditions include setting

a maximum number of update passes in total and aborting after a set number of passes

with no improvement in prediction accuracy.

Algorithm 2 Illustration of a functioning Neural Network

1: function TrainNN(Examples,ExpectedOutputs,LearningRate)
2: w ← random() \\ Initialise all weights with random values
3: α← LearningRate
4: repeat
5: for all t ∈ Examples, e ∈ ExpectedOutputs do
6: predictedOutput← FeedForward(t, w)
7: ∆w ← Backpropagation(e, predictedOutput)
8: w ← UpdateWeights(w,∆w, α)

9: until Set number of passes or all predicted outputs are correct
10: return w

2.3.2 Recurrent Neural Networks

The neural network described so far is capable of learning to assign a particular classi-

fication to a given input. It does not, however, model sequences. This can be seen in

algorithm 2, line 5, where examples and expected outputs are consumed as pairs, with no

information passed between one loop and the next.

A Recurrent Neural Network (RNN), on the other hand, is structured in a way that

incorporates information from previous time-steps. This allows the network to pass along

information from the start of a sequence to future time-steps.

The most basic version of this family of networks is the Simple Recurrent Neural

Network (SRNN), of which the most prominent example is the Elman network (Elman,

1990). The structure of this network closely resembles that of the feed forward network

discussed before, but its hidden layers pass on their output to both the deeper layer in
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the network, and the same hidden layer in the next time-step. An illustration of this is

shown in Figure 2.4.

Figure 2.4: A Recurrent Neural Network (RNN)

Since we are now considering input/output pairs over a sequence of time-steps, each

signal must be qualified with the subscript t, referring to the time-step in which it is

occurring. Notice how at time t in Figure 2.4 the input to the hidden layer is both the

input for that time-step xt, and the output of the hidden layer from the previous time-step

ht−1. And so the hidden layer in an Elman network can be written as . . .

ht = f(Wxxt +Whht−1 + b)

. . . where Wx is the weight matrix corresponding to the input at the current time-step xt,

and Wh is the weight matrix for the hidden layer output from the previous time-step ht−1,

and b remains the bias term.

RNNs in general are capable of arbitrarily expanding the context being considered by a

network by propagating information between layers in different time-steps (Boden, 2002).

The cost and subsequent weight updates are calculated and backpropagated through time

(BPTT), to all incarnations of the network across the whole sequence.

To illustrate this we show an unrolled RNN across three time-steps compared to a feed

forward network over the same sequence in Figure 4.1. The figure shows how information

is passed between time-steps. Consider both the RNN and FNN at time t, for the FNN

it will receive weight updates as a consequence of the error calculation for yt. For the
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(a) Unrolled Feed Forward Network

(b) Unrolled Recurrent Neural Network

Figure 2.5: Forward and back-propagation of information for RNNs and FNNs over three
time-steps. Forward passing of information is represented by ↑ and backpropagation is
represented by ⇓ & ⇐.

RNN at time t, on the other hand, it will receive weight updates based on the error

calculation for all three time-steps, filtered through the calculations of the hidden layer

error calculation for each time-step. In a sense, the hidden layer in a future time-step

is correcting based on how useful past information was, while the hidden layer in a past

time-step is correcting in order to pass along more useful information.

Additionally, SRNNs are known to suffer from a vanishing gradient problem (Pascanu

et al., 2013), which leads to very little information backpropagating to past time-steps, an

effect that increases the longer the sequence is. This makes training on sequences beyond

a certain length unhelpful. For this reason, SRNNs are often trained with a truncated

backpropagation through time strategy, where a set limit τ determines how many time-

steps back the error is propagated. In the example shown in Figure 2.5b, the truncation

limit τ = 3. In our experiments in chapter 4 we apply this, among other tools, to deal

with the gradient vanishing problem.
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Moreover, there are other more sophisticated architectures of RNNs that are better

equipped to learn which information in a sequence to retain, and can better deal with the

gradient vanishing problem, such as Long Short-Term Memory Networks (Hochreiter and

Schmidhuber, 1997) and Gated Recurrent Units (Cho et al., 2014). While their structure

is very different to the Elman network discussed so far, they are still used in the same way.

One key difference to consider however is that more complex RNNs do not necessarily

pass along the same output to both the deeper layer in the current time-step and the next

instances of themselves in the next time-step. We explore these structures in more detail

in chapter 4.

2.4 Alternative Components

So far we have laid out a basic example of how a neural network is structured, how it

computes its outputs, and how it adjusts its weights depending on its training error. In

addition, we have described a basic improvement on that simple structure, in the form of

the Simple Recurrent Neural Network. In practice, however, there are some finer-grained

changes that we use in this thesis, and that are widespread in current literature as well.

We describe some of these differences here.

In our example we present the Sigmoid function as the activation function for

our hidden layer. While this remains widely used, it is also joined by others such as the

Hyperbolic Tangent function, tanh, and Rectified Linear Units (Nair and Hinton, 2010). . .

f(x) =


x : x > 0

0 : x ≤ 0

. . . or ReLUs, which provide a simpler to implement, and faster to calculate alternative.

This function also helps with the gradient vanishing problem for both deeper networks

and for RNNs, since its gradient is always either 1 or 0. In our work, we generally use

28



ReLUs for feed forward layers, while other activation functions are components of the

RNN architectures that we use.

Additionally, we showed in our basic network that the output layer was the same as

other feed forward layers, but with a number of neurons equivalent to the number of

classes in the given task. In practice we additionally apply a Softmax function on each

output neuron. . .

yi = softmax(si) =
esi∑n
j=1 e

sj

. . . where si is the signal from output neuron i, and a total of n output neurons/classes.

This function thus produces a vector of scores that sum up to 1, and can thus be inter-

preted as a probability score for each class.

In conjunction with the softmax output layer, we also use a negative log likelihood

loss function, instead of the Squared loss used before. . .

L(θ) = −
∑
i

log(yi)

. . . where yi is the probability of class i, which translates to the output of the ith neuron

after the softmax function is applied.

The next stage of traning was updating the weights in order to minimise the train

error. This optimisation step was done in our example using stochastic gradient descent

(SGD) (Bottou, 2012; LeCun et al., 1998), which remains the central method around

which most of the common optimisation strategies are built. In our work we mainly use

two strategies, SGD with Momentum, which accumulates previous gradients and applies

them to current weight updates at a set rate, and Adam (Kingma and Ba, 2014), which

adjusts the learning rate itself for each parameter.
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2.5 Neural Networks in Dependency Parsing

One of the first works that attempted to use neural networks for parsing was that of Titov

and Henderson (2007) which used an Incremental Sigmoid Belief Network for constituency

parsing and was later adapted for use with dependency parsing in (Garg and Henderson,

2011). The latter adaptation employed Temporal Restricted Boltzman Machines and had

the drawback of restricting vocabulary for a tractable approximation.

A simple but robust parser based on a simple feed forward network was introduced

by Chen and Manning (2014), and remains the basis for some of the best performing

transition-based dependency parsers, such as the work of Andor et al. (2016).

The more sophisticated variants of RNNs have enabled the modelling of entire com-

ponents of the parsing process, going beyond even the selection of raw features. For

example, Dyer et al. (2015) uses stack-LSTMs to model the stack and buffer, in addition

to a recursive function that models partially built trees.

RNNs were also used to model whole input sentences, such as in the works of Kiper-

wasser and Goldberg (2016b), Shi et al. (2017), and Cross and Huang (2016), who used

a bi-directional LSTM sentence representation to produce feature vectors for their neural

networks. This approach was also used for graph-based parsing by Dozat and Manning

(2016) who used the bi-directional LSTM layer as input to a biaffine attention classifier,

producing the most accurate dependency parsing results to date.

Neural networks have also been used to model the dependency trees themselves.

LSTMs were extended to be able to model tree structures by Tai et al. (2015), in so

creating Tree-LSTMs. Another more common approach involved applying neural net-

work elements recursively to model tree structures. This approach first gained ground in

constituency parsing where recursive networks were used in (Goller and Kuchler, 1996;

Socher et al., 2010) to model constituency trees.

Stenetorp (2013) trained Recursive Neural Networks for dependency parsing, however

the final performance was not competitive. More successful approaches include the recur-

sive compositional function used by Dyer et al. (2015), as well as the recursively applied
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LSTM encoding of dependency trees done by Kiperwasser and Goldberg (2016a).

Our work in this thesis touches on a number of these approaches, and is deeply tied to

an exploration of the basic neural network architecture presented by Chen and Manning

(2014), as well as a more expressive representation of a sentence and its corresponding

dependency tree.
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CHAPTER 3

ARCHITECTURE OF NEURAL
NETWORK-BASED TRANSITION-BASED

DEPENDENCY PARSERS

The general structure of a dependency parser has remained largely unchanged since neural

network based methods became the popular approach for this task. The parser first

encodes relevant features from an input sentence using some sort of feature representation

method, which is then passed to a hidden state that in turn encodes useful combinations

for the final classification layer.

In the case of transition-based dependency parsing, this classification layer is almost

always a scoring of all the shift actions together with a joint score for arc-building tran-

sitions and dependency labelling, as shown in Figure 3.1.

Hidden Layer

Softmax Layer

Feature Representation Layer

Figure 3.1: The basic neural network architecture for a transition-based dependency
parser.
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This architecture appears in Chen and Manning (2014), but also appears at the centre

of a variety of techniques that have expanded upon this approach in various ways to

produce competitive and state-of-the-art parsers. This approach is also the core around

which all of the parsers in this thesis have been devloped.

In this chapter we will outline the Chen and Manning (2014) architecture, and discuss

various subsequent works that have expanded upon it, as well as how these relate to the

work in this thesis.

3.1 The Basic Architecture

The general operation of a transition-based parser, as previously described by Algorithm 1

in Section 2.2.1, can be summarised as: 1. extract features from the parser state, 2. input

features into a prediction system, 3. apply the prediction to the parser state, and 4. repeat

until parsing is done. It is step 2 that is the focus of most of the work, and where neural

networks are used to make a prediction.

The Chen and Manning (2014) architecture, which we will also refer to interchangeably

as the basic or core architecture, uses a simple feed-forward neural network with a single

hidden layer for this task.

The hidden layer consists of 200 neurons, and uses the cubed activation function

f(x) = x3. The output layer is a softmax layer (described in Section 2.4) and produces a

score for the Shift transition, and separate Left-Arc and Right-Arc transitions for every

possible dependency label as shown in Figure 3.1.

The input layer, or feature representation layer, is a concatenation of vectors of fea-

tures. Each feature is represented by a token and a certain aspect of that token such as its

word form, its part-of-speech, or the dependency label connecting that token to its head

token in the sentence. The vectors representing these features are stored in dictionaries

relating each word/part-of-speech/dependency label to a corresponding vector. The val-

ues of the word vectors are often initialised with pre-trained values, and in the case of
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Chen and Manning (2014) they are set to the word vectors produced by Collobert et al.

(2011) for English and Mikolov et al. (2013) for Chinese. This architecture, and the rest

of the models described here, can still train successfully without these pre-trained vectors,

albeit with a drop in accuracy the extent of which varies depending on the architecture.

The vectors for part-of-speech tags, dependency labels, and word forms (in the absence of

pre-trained vectors) are randomly initialised, and their values are trained along with the

weights of other neruons in the network using the same backpropagation of error described

in Section 2.3.1.

3.2 Where Do Features Come From?

Feature modelling and selection are core challenges of any machine learning task. Before

the rise in popularity of deep learning techniques, it was necessary to hand-craft feature

combinations, which required extensive in-depth knowledge of the task and the range of

information required to model. For tasks involving natural language, the flexibility and

variety of human language makes this a daunting problem.

A key feature of deep learning is its ability to work out the necessary feature com-

binations during training. This has made for a very attractive alternative to existing

techniques, and indeed neural networks have become an important component in many

of the state-of-the-art dependency parsers in current literature. Moreover, the move from

one-hot feature representation to dense word vectors (Collobert et al., 2011; Mikolov

et al., 2013) facilitated the adoption of deep learning, since parsers could now have more

informative, dense features, that represent a broad vocabulary.

This advance, however, still leaves the task of providing enough raw features that a

neural network can then use to learn useful combinations. In the case of a transition-based

parser this means providing enough features that adequately describe the configuration c

of the parser, as well as relevant features of the partially built trees in the given sentence.

The features used in the Chen and Manning (2014) architecture, shown in Table 3.1,
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Source Features

Stack sw,t0 , sw,t1 , sw,t2

Buffer bw,t0 , bw,t1 , bw,t2

Dependency Tree rc1(S0)w,t,l, rc2(S0)w,t,l

rc1(S1)w,t,l, rc2(S1)w,t,l

lc1(S0)w,t,l, lc2(S0)w,t,l

lc1(S1)w,t,l, lc2(S1)w,t,l

rc1(rc1(S0))w,t,l, lc1(lc1(S0))w,t,l

rc1(rc1(S1))w,t,l, lc1(lc1(S1))w,t,l

Table 3.1: Features extracted from a configuration. w, t, and l are words, pos tags, and
dependency labels respectively. rcn & lcn refer to the nth rightmost/leftmost child.

are intuitive in that they encompass the words affected by the transitions that the parser

can make, in addition to some structural context around these words. This set of features

has remained with little or no change in works that expand on this architecture. Even

the more elaborate representation methods that will be discussed in Section 3.4 attempt

to keep the main features while producing more informative vectors to describe them,

instead of relying on a concatenation of word, label, or part-os-speech vectors. Noteable

exceptions to this trend are the works of Cross and Huang (2016) and Shi et al. (2017)

who used very small subsets of this set of features, while making them more expressive.

The work presented in Chapter 6 pushes in this direction even further.

As an example of how the features in Table 3.1 would be used, we present an example

in Table 3.2, which is a step from the sequence of transitions discussed earlier in Table

2.1 (Section 2.2.4). Note that some words, such as “ball” in this example, can act as two

features, and that many of the features in Table 3.1 may not be applicable at a point in

the parsing sequence, such as rc1(s0) in this case, since “ball” does not have any right

dependents.

# Stack Buffer Tree

7 [ROOT︸ ︷︷ ︸
s2

, hit︸︷︷︸
s1

, ball︸︷︷︸
s0/rc1(s1)

] [with︸︷︷︸
b0

, the︸︷︷︸
b1

, bat︸︷︷︸
b2

]
ROOT︸ ︷︷ ︸

s2

the︸︷︷︸
lc1(s1)

hit︸︷︷︸
s1

the︸︷︷︸
lc1(s0)

ball︸︷︷︸
s0/rc1(s1)

with︸︷︷︸
b0

the︸︷︷︸
b1

bat︸︷︷︸
b2

Table 3.2: Mapping the features in Table 3.1 to a configuration of a parser.
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3.3 Enhancements around the Basic Architecture

Some approaches expand the architecture of Chen and Manning (2014) by addressing

some main limitations of the basic architecture: 1. the inability of a feed-forward network

to model sequences of parsing decisions, and 2. the small size of the network, which helps

reduce train time, but is potentially less capable of modelling complex interactions.

To address the issue of sequence modelling Zhou et al. (2015) use global structured

learning (also known as structured perceptron) with early updates (Collins and Roark,

2004). The architecture and dimensions used remain the same as those in Chen and

Manning (2014), but this global training method acts as an extra layer above the final

output layer, learning to increase the likelihood of the transition sequences that appear

in the training data (usually referred to as gold sequences/transitions).

Complementing this train-time enhancement, beam-search (Zhang and Nivre, 2012)

is used during test and run-time. This search method keeps a list (beam) of the n

highest scoring transition sequences, where the score for each sequence is the sum of the

probabilities for each transition in the sequence. The items in the beam are ordered by

highest score, and each sequence is expanded by obtaining the next set of probabilities

for it from the parser. Once all items in the beam are expanded and all the new scores

are calculated, the n highest scoring sequences are kept in the beam and the rest are

discarded. Once parsing is complete, the highest scoring sequence in the beam is taken

to be the final predicted parse for the sentence.

Weiss et al. (2015) used a similar approach, but they also experimented with a range of

hidden layer sizes from 256 to 2048 neurons wide, with depths of 1 and 2 hidden layers. In

addition, they replaced the cubed activation function used by Chen and Manning (2014)

with the Rectified Liner Units (ReLUs)(Nair and Hinton, 2010) discussed in Section 2.4.

Their results showed a substantial improvement in accuracy, but with dimishing returns

for wider layers. Moreover, Weiss et al. (2015) used the structured perceptron layer on

top of the neural network’s output layer differently to Zhou et al. (2015), passing as input

the results of the output layer and the outputs of the the hidden layers. This combination
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of differences resulted in an additional improvement to the final accuracy despite using a

much smaller beam size.

Following this same line of work, Andor et al. (2016) use the refined architecture from

Weiss et al. (2015), with hidden layers of dimension 1024. A key difference, however, is

that they allow the structured perceptron layer to also tune the weights of the core network

itself. This is also the case for the work of Zhou et al. (2015), but in their case they lack

the size and improvements of the Weiss et al. (2015) model. The Andor et al. (2016)

model achieves state-of-the-art results and remains the highest scoring transition-based

dependency parser to date.

In contrast to these approaches, Kuncoro et al. (2016b) extended the basic model of

Chen and Manning (2014) by replacing the hidden layer with Long Short-Term Memory

(LSTM) (Hochreiter and Schmidhuber, 1997) units, with peephole connections1 (Gers

et al., 2002). As discussed in Section 2.3.2, LSTMs and Recurrent Neural Networks in

general are capable of passing hidden layer information to later time-steps in a sequence

of decisions, thus allowing later decisions to take previous contextual information into

account. The performance of this model was not competitive, however Kuncoro et al.

(2016b) showed in their analysis that the LSTM achieved up to 3% improvement in

accuracy for long-range dependencies2.

In Chapter 4 we build on Kuncoro et al. (2016b)’s approach, exploring the use of

multiple types of RNNs. We find that where LSTM-based models are concerned, they

can produce strong results if peephole connections are not used, with accuracies that

approach those of Zhou et al. (2015), despite not using global training or beam-search.

1Peephole connections (Gers et al., 2002) are a variant on LSTMs that give the input (i), output (o),
and forget (f) gates access to the internal state ct−1 of an LSTM. The architecture and function of these
gates and LSTMs is further discussed in Chapter 4.

2In their work Kuncoro et al. (2016b) define a long range dependency as being of length 7 words or
more.
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3.4 Enhancements to the Feature Representation Layer

The neural network-based parsers discussed so far use a combination of raw features, as

represented by their dense vector embeddings to represent features of a sentence and the

parser configuration. On the other hand, there has been substantial work on using inno-

vative architectures to build more informative feature representations instead of simply

concatenating feature embeddings.

Figure 3.2: Bi-LSTM Feature Representation. The bi-LSTM layer produces the vectors
x0−n which represent the words of a sentence in order. The input to this layer is x∗w ,
which is the word vector representation for a word, and x∗w , which is the part-of-speech
vector for that same word.

One approach has been to model the entire input sentence using bi-directional Long

Short-Term Memory Networks (bi-LSTMs) (Cross and Huang, 2016; Kiperwasser and

Goldberg, 2016b). The inputs to these bi-LSTMs are usually a concatenation of the word

vector representation, as show in Figure 3.2, and its corresponding part-of-speech (pos)

tag vector. The result is a vector for each word that encodes both its information, and

relevant information from other words in the sentence, regardless of their position. The

output of the bi-LSTMs was again passed onto a feed-forward layer to compute a hidden

state before the final output layer. This approach has produced competitive parsers, and

has even enabled fewer and more expressive features resulting in smaller feature sets than

was possible before (Cross and Huang, 2016; Shi et al., 2017).

A limitation of this representation method, however, is that bi-LSTMs only model se-
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quential information, and do not encode any hierarchical information, such as dependency

relation within a sentence. The result is that parsers that rely on this method do not use

any label features as input. In Chapter 5 we show that incorporating these label features

where relevant in addition to the vectors produced by bi-LSTMs improves the accuracy

of this method even further.

Another approach has been to represent the dependency tree itself with some form of

recursive network, either bottom-up as in (Dyer et al., 2015; Kiperwasser and Goldberg,

2016a; Stenetorp, 2013), or top-down as in (Le and Zuidema, 2014).

Vector tree representation has a long history, primarily used to model constituency

trees using Recursive neural networks (Goller and Kuchler, 1996; Socher et al., 2010).

Such networks relied on the repeat application of a feed forward layer to encode a fixed

maximum number of relations. Adapting this approach to an arbitrary number of depen-

dents results in deep narrow trees and the gradient vanishing problem. One approach to

deal with this has been the TreeLSTM model, an amended gating mechanism proposed

by Zhang et al. (2015) based on LSTMs, which estimates the probability that a certain

dependency tree is generated given a sentence.

For transition-based parsing, earlier work with recursive representation includes Stene-

torp (2013), who uses a recursive layer to model dependency trees in a manner similar

to that used in constituency parsers, but does not produce a high accuracy. Dyer et al.

(2015) use a similar method of a recursively applied feed forward layer to represent sub-

trees as part of larger parsing architecture. Chen et al. (2015) use two Gated Recurrent

Unit (GRUs) networks to represent the partially built dependency trees in the stack and

to model potential dependencies that have not been built.

Kiperwasser and Goldberg (2016a) used LSTMs recursively to represent trees, and

bi-LSTM vectors to represent the basic input words. Their work splits the sequence of a

node’s children into left and right children, with the head node itself as the first element

in both sequences, before concatenating the last output of both directions to represent

the subtree.
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Finally, the Inside-Outside Recursive model of Le and Zuidema (2014) uses a top-down

recursive representation of tree representations to re-rank a k-best list of trees produced

by the MST parser (McDonald et al., 2006), which is not a neural network-based parser.

This model achieves the highest accuracy of all the tree-modelling transition-based parsing

methods in current literature.

We explore a similar concept to Kiperwasser and Goldberg (2016a) in Chapter 6,

where LSTMs are used recursively to represent partial and full dependency trees, and

also incorporate information from a bi-LSTM layer as discussed earlier to produce a

competitive parser that relies on a minimal feature set.

3.5 Enhancements to the Classification Task

All of these works still keep the basic classification task intact, working to maximise a

neural network’s ability to both parse and label the dependencies of a sentence.

Recently Cross and Huang (2016) showed that restructuring the parser to have sepa-

rate transition and dependency label classifiers, each with its own hidden state represen-

tation, but a shared bi-LSTM positional vector representation, (a set up which they called

Hierarchical classification) produced better accuracies. This architecture, illustrated in

Figure 3.3, was also used by Kiperwasser and Goldberg (2016b) and Shi et al. (2017), but

neither examined the effect of this on parser performance.

Parser Hidden State

Softmax Layer

Feature Representation Layer

Labeller Hidden State

Softmax Layer

Figure 3.3: Hierarchical classification.
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This change meant that the parser effectively optimised a network for two sepa-

rate tasks, with one half of the network providing scores for the next parser transition

{SH,LA,RA}, and the other half only scoring the dependency labels {DEP} where ap-

plicable. All the examples of this approach also used a bi-LSTM feature representation

layer.

In Chapter 5 we investigate the usefulness of this approach versus a joint classification

architecture like that of Chen and Manning (2014), in addition to examining whether or

not its benefits are tied to the use of bi-LSTM feature represention.
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CHAPTER 4

RNN INITIALISATION WITH PRE-TRAINED
FEED-FORWARD LAYERS

4.1 Introduction

The process of transition-based parsing involves a sequence of transitions used to shift

through words in a sentence and build dependency arcs between them. Any incorrect

transitions made could lead to more mistakes further down the sequence, and ultimately

an incorrect dependency tree. Chen and Manning (2014)’s use of a feed forward network

to decide these transitions meant that there was no way to consider the wider sequence

around this transition. As discussed in Section 3.3, this problem was addressed by either

using structured global training (Zhou et al., 2015; Weiss et al., 2015; Andor et al., 2016),

or by replacing the hidden layer with a recurrent one (Kuncoro et al., 2016b).

In this chapter we build on Kuncoro et al. (2016b)’s approach by initialising the weights

of an LSTM-based dependency parser with weights of a pre-trained Feed-Forward network.

We show that this method produces a substantial improvement in accuracy scores, and

is also applicable to different kinds of RNNs. An additional contribution is a refinement

of the basic training model of Chen and Manning (2014) producing a more accurate Feed

Forward model as a baseline for our experiments.

We begin with an explanation of our baseline models; the basic FFN and LSTM-
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based models that are the centre of this work. We then explain our proposed method

for the alternative initialization of the LSTM weights, and then present the results of our

experiments with a comparison with other state-of-the-art parsers. Finally we explore the

use of GRUs and Elman networks in place of LSTMs, and show the effect of initializing

individual gates using our proposed method on the overall performance.

4.2 Baseline Models

Our proposed approach makes use of a simple feed-forward model to improve the per-

formance of an LSTM-based model. We show that the final network surpasses both of

our baselines, which are the original feed-forward network, and an LSTM model trained

with randomly initialized weights. In this section we will describe the structure of both

baselines.

4.2.1 Input Layer, Selected Features, & Output Layer

The Embeddings layer is a concatenation of the embedding vectors of select raw fea-

tures of the parser configuration. The resulting layer is a dense feature representation of

x. The features used in our implementation are the same as those shown in Table 3.1 in

Section 3.2.

We represent the configuration of the parser at a particular timestep as a number

of raw features extracted from the data structures of x. We use vector embeddings to

represent each of the raw features.

Each word (w), part of speech tag (t), and arc label (l) is represented as a d-dimensional

vector ew ∈ Rdw , et ∈ Rdt , and el ∈ Rdl respectively. And so the embedding matrices for

the different types of features are Ew ∈ Rdw×Vw , Et ∈ Rdt×Vt , and El ∈ Rdl×Vl , where d∗

is the dimensionality of the embedding vector for a feature type, and V∗ is the vocabulary

size. We add additional vectors for ”ROOT” and ”NULL” for all feature types, as well

as ”UNK” (unknown), for unknown/infrequent words.
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This embeddings layer is used as the input layer in all models described in this work.

For all models we use dropout (Hinton et al., 2012) on the input layer. We find that this

improves the final accuracy of all the networks trained.

The output layer y consists of nodes representing every possible transition, with one

node representing Shift, and a node for every possible pair of arc transitions (Left/Right-

Arc) and dependency labels. This makes the size of the output layer constant at 2Vl + 1,

regardless of the structure of the network.

4.2.2 Feed-Forward Model

For our FFN model we use the same basic structure of Chen and Manning (2014) with

a single hidden layer and a final softmax output layer. We however follow Weiss et al.

(2015) in using rectified linear units (ReLUs) (Nair and Hinton, 2010) as hidden neuron

activation functions. Finally, we use dropout on the hidden layer similar to the input

layer. The structure of the FFN is specified below.

h = max{0,Wx+ bh}

y = softmax(Whh)

Following Weiss et al. (2015) we set the initial bias of the hidden layer to 0.02 in order

to avoid having any dead ReLUs at the start of training.

4.2.3 RNN-based Model

Our RNN-based model is an extension of the basic feed forward model, with Long Short-

Term Memory (LSTM) units (Hochreiter and Schmidhuber, 1997) standing in for the

traditional feed forward hidden layers.

The change allows for the information in the parser configuration to be shared as

needed with future time-steps. This lets the network at any point in the sequence of
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transitions make a decision based on a more informative context, that is not only based

on the current configuration, or the present state of the dependency tree, but also on the

changes made to them.

(a) Feed-Forward Network (FFN)

(b) Unrolled RNN

Figure 4.1: An FNN and an RNN over 3 time-steps. The FFN shown in 4.1a only has
access to information from the current configuration as represented in x. RNNs on the
otherhand also receive information about previous configurations as encoded in the hidden
states from previous time-steps. The ht/ct refers to the external and internal hidden states
produced by an LSTM, however other types of RNN units do not necessarily maintain a
ct.

In their standard forms, RNNs are affected by both exploding and vanishing gradients

(Bengio et al., 1994), making them notoriously hard to train despite their expressive

ability. LSTMs are a variety of RNNs that maintain an internal state ct that forms the

basis for the recurrence, and is passed from time-step to the next. This direct connection is

not interrupted by any weight matrices, as would be the case in simpler RNN architectures

such as Elman networks (Elman, 1990), but is instead scaled and added to by a number of

gates that handle extracting and scaling information from the input data, and computing

a final hidden state ht at each time step to pass on to deeper layers. This uninterrupted

connection of internal states throughout the sequence is an important part of how LSTMs
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address the shortcomings of RNNs.

There have been a variety of architectures in literature referred to as LSTMs, all

bearing slight differences to the basic LSTM unit. The definition of the LSTM we use in

this work is shown below.

it = σ(Wxixt +Whiht−1 + bi)

jt = tanh(Wxjxt +Whjht−1 + bj)

ft = σ(Wxfxt +Whfht−1 + bf )

ot = σ(Wxoxt +Whoht−1 + bo)

ct = ct−1 � ft + it � jt

ht = tanh(ct)� ot

With the final softmax output layer, just as with the FNN model.

y = softmax (Whht)

Unlike Kuncoro et al. (2016b), we do not use peephole connections like those suggested

by Graves (2013). Additionally, we add a bias of 1 to the LSTM’s forget gate following

Gers et al. (2000). Finally, we also apply a dropout similar to that in Zaremba et al.

(2014).

As shown in this definition, the LSTM cell maintains an internal state ct, where the

previous internal state ct−1 is modulated at each time-step by the forget gate ft, and then

added to by a scaled selection of the current input xt by the input gates it and jt. This

new ct is then used for the external state ht and passed on to the next time-step. All

gates rely on weighted activations of the current input xt and the previous external state

ht−1.

This pair of hidden states allows the LSTM to contribute to long-term decisions with

ct, while still being able to make immediate or short-term decisions with ht, and it is this
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final calculation of ht, along with ot, that is the focus of our contribution in this work.

4.3 Initializing LSTM gates

Much has been written about the need for careful initialization of weights, often done

to complement certain optimisation methods such as gradient descent with momentum

in Sutskever et al. (2013). For deep networks, Hinton et al. (2006) and later Bengio

et al. (2007) approached initialization differently by using a greedy layer-wise unsuper-

vised learning algorithm, which trains each layer sequentially, before fine-tuning the entire

network as a whole.

Le et al. (2015) suggested replacing traditional tanh units in a simple RNN with

ReLUs, in addition to initializing the weights with an identity matrix.

As previously mentioned, Gers et al. (2000) suggested initializing the bias of the forget

gate bf of an LSTM to 1. This allowed the LSTM unit to learn which information it needed

to forget as opposed to detecting the opposite. This was later shown by Jozefowicz et al.

(2015) to improve performance of an LSTM on a variety of tasks.

Alternatively, it has become increasingly common to use tuned outputs from one

network as initialization for another. For example the use of pre-trained embeddings as

initialization for word vectors has become de facto standard procedure for tasks such as

dependency parsing, language modelling and question answering.

Following this approach, we propose initializing the LSTM weights, specifically the

Wx∗ and bias b∗ of all LSTM gates, with the weight matrix Wx and hidden bias bh of

a pre-trained, similarly structured feed-forward neural network. We also initialize the

embedding matrices used Ew,t,l and the weights of the final softmax layer Why with those

of the pre-trained feed-forward network.

To illustrate this idea we reproduce a modified version of the LSTM architecture

diagram appearing in Jozefowicz et al. (2015) in Figure 4.2, with the addition of the final

softmax layer yt. The flow of information from the current input xt to yt (as shown by
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(a) LSTM-based Model

(b) FFN-based Model

Figure 4.2: A comparison of the architecture of an FFN and an LSTM-based model.
The bold arrows represent the weight matrices that are roughly equivalent to those in
an FFN, and yt is the final softmax layer that scores each possible transition. We only
show labels for the matrices that we initialize with their FFN counterparts, Wx → Wx∗
and Wh → Wh, where ∗ ∈ {i, j, f, o}. Additionally we replace the biases of the LSTM
gates with the bias of the hidden layer of the FFN, bh → b∗, and all the FFN trained
embeddings for all feature types.
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the bold arrows) is almost identical to that in an FFN, except for the addition of ht−1 as

input to o, and the “interference” of information from ct to produce ht.

This approach rests on the 2 hidden states of the LSTM requiring different information

from the same input data. Since ht is more concerned with immediate decisions, it would

strongly benefit from the trained weights of a feed-forward network, which are tuned to

extract the maximum relevant information from the input of the current time-step, since

it has no access to prior information.

The various LSTM gates would still be able to learn to use information from ht−1 but

would be in a better position to do so with the biases and input weights closer to an

optimum configuration.

Moreover, the internal state ct would receive less severe errors early on in the training

process, owing to a better contribution from ot in the calculation of ht, and a less disruptive

result from ct due to the input and forget gates initially behaving more similarly to the

regular hidden layer of the original FFN.

This would mean less pressure on the weights of the input and forget gates to adapt to

immediate decisions while the internal state would be more capable of gradually learning

longer term patterns.

We will henceforth differentiate networks initialized in the manner described in this

section by referring to them as bootstrapped models, while we refer to the usual

randomly initialized networks as baselines models.
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4.4 Experiments

We begin by comparing the performance of our FFN and LSTM baseline networks with

our bootstrapped model. For all networks we ran a model with a single hidden layer

256 neurons/LSTM units wide. The embeddings dimensions used were dw = dt = dl =

100. We use the GloVe pre-trained embeddings produced by Pennington et al. (2014) to

initialize the word vectors.

Learning is done with mini-batch stochastic gradient descent (SGD) with momentum

to minimise negative log likelihood loss with the learning rate α = 0.05 and momentum

µ = 0.9. We also use an additional l2 regularization cost (λ = 10−8).

L(θ) = −
∑
i

log(yi) +
λ

2
‖θ‖2

Where θ represents all weight, biases, and embeddings matrices. We also set the dropout

rate to 0.3 for the embeddings layers and hidden layer for both the baselines and boot-

strapped model, and initialise all baseline weights randomly in the range [−0.01, 0.01].

For LSTM-based models we used truncated backpropagation through time (BPTT),

with a truncation limit τ = 5. This means that errors are propagated backwards to layers

in previous time steps until a limit τ is reached. In our experiments varying τ between

5 and full back propagation had a negligible effect on the final accuracy of the networks,

while using a truncation limit produced a significant speed up in training. We stress that

this insignificant difference is most likely a task and architecture specific issue, and would

probably be much more pronounced in other tasks and neural network set-ups.

For our experiments we use the Wall Street Journal (WSJ) section from the Penn

Treebank (Marcus et al., 1993). We use §2-21 for training, §22 for development, and §23

for testing. We use Stanford Dependencies (SD) De Marneffe et al. (2006) converted from

constituency trees using version 3.3.0 of the converter. As is standard we use predicted

POS tags for the train, dev, and test sets. We report unlabelled attachment score (UAS)

and labelled attachment score (LAS), with punctuation excluded.
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Network Type
Dev Test

UAS LAS UAS LAS

Feed-Forward Network
Chen and Manning (2014) 92.00 89.70 91.80 89.60
Andor et al. (2016) 92.85 90.59 92.95 91.02
Weiss et al. (2015) N/A N/A 93.19 91.18

Our FFN baseline 92.76 90.47 92.10 89.95

LSTM Network
Zhang et al. (2015) 92.66 89.14 91.99 88.69
Dyer et al. (2015) 93.2 90.9 93.1 90.9
Kuncoro et al. (2016b) N/A 87.8 N/A 87.5
Kiperwasser and Goldberg (2016a) 93.3 90.8 93.0 90.9
Kiperwasser and Goldberg (2016b) N/A N/A 93.9 91.9

Our LSTM baseline 93.23 90.94 92.77 90.64
Our bootstrapped model 93.41 91.20 93.06 91.01

Table 4.1: Final dev and test set scores on WSJ (SD). Zhang et al. (2015) do not use
pre-trained word vectors for their final result. The values given for Andor et al. (2016)
and Weiss et al. (2015) reflect only the performance of the greedy FFN models produced
in their work, with other improvements made explained briefly in section 4.1.

The results in Table 4.1 show the effect of applying dropout on the input layer for

our FFN baseline, when compared to the similarly sized Chen and Manning (2014) model

which has 200 neurons in its hidden layer. This is in addition to achieving very close dev

score accuracy results with only a single 256 neuron hidden layer when compared to the

significantly larger models of Weiss et al. (2015) with 2 layers of size 2048, and Andor

et al. (2016) with 2 layers of size 1024 layers.

Comparing our 2 baseline models shows that the LSTM-based model performs much

better than the FFN model, with an almost 0.5% gain in dev score accuracy. Our main

result is our bootstrapped model, which not only surpassed the original FFN baseline,

but also the LSTM baseline.

We note that our LSTM-baseline achieves a substantial improvement over the similar

architecture of Kuncoro et al. (2016b). The main differences in this case are a slightly

larger model and using LSTMs without peephole connections.

In addition, our bootstrapped model produces better results than all the mentioned

feed forward models in addition to most of the LSTM-based approaches in Table 4.1, with
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the exception of Kiperwasser and Goldberg (2016b), despite only having a single hidden

layer of LSTM units and making no use of bi-LSTMs, TreeLSTMs, or Stack LSTMs.

4.5 Discussion

The results of our experiments seem to lend credence to the idea that learning short and

long-term patterns separately is useful to the performance of an LSTM. To generalize

this further, one could say that a sequence modelling task where a 1-to-1 relation between

input/output pairs can be learned should first attempt this with an FFN, and then transfer

that knowledge to an LSTM as described in Section 4.3, so sequence specific information

can be further modelled.

An additional benefit of this approach is that it can be applied to previously trained

FFNs and can improve any of the models that we have compared our results with in

Table 4.1. This is also true of the LSTM-based models, where the strength of their

contributions lies in their innovative approaches to feature extraction while keeping the

rest of the network essentially the same.

For example, we can merge our work with that of Kiperwasser and Goldberg (2016b),

by first training their model; a biLSTM input layer going to a feed-forward hidden layer

followed by an output layer, and then replacing the hidden layer with an LSTM initialized

with the weights of that hidden layer.

Finally, our addition of applying dropout to the input layer can also be used here to

further strengthen the performance of this example.
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4.6 Alternative Recurrent Units

So far we have shown how to improve the performance of LSTMs by drawing parallels

between the functions of certain gates and the traditional feed-forward network. In this

section we attempted to do the same for 2 other popular forms of RNNs, the Simple

Recurrent Network, otherwise known as the Elman network (Elman, 1990), and the Gated

Recurrent Unit (GRU) (Cho et al., 2014).

4.6.1 Elman networks

The Elman network is one of the earliest and simplest RNNs found in literature. It

was the subject of much study and suffered from all the original problems of vanishing

and exploding gradients mentioned before, which later motivated the development and

adoption of more sophisticated units such as LSTMs and GRUs.

Nevertheless there have been examples where Elman networks were capable of per-

forming relatively well, notably the work of Mikolov et al. (2010) on language modelling

and an extended memory version of Elman networks in Mikolov et al. (2014).

Elman networks themselves are only a simple addition to the architecture of the tra-

ditional feed-forward network. Whereas an FFN has a hidden layer, and Elman network

has an additional context layer, that represents the output of the hidden layer in the

previous time-step. In a way, it can be compared to output gate of an LSTM, without

any additional tools to model the sequence.

In our experiment we use the ReLU activation function once more for the hidden layer

similar to Le et al. (2015), but without their initialization strategy. The precise definition

of the Elman network that we use is shown below.

h = max{0,Wxx+Whht−1 + bh}

y = softmax (Whh)
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(a) Elman-based Model

x

x

x

+

-1

(b) GRU-based Model

Figure 4.3: The architectures of an Elman and a GRU-based model. As in 4.2, the
bold arrows represent the path of information roughly equivalent to that in an FFN.
The replaced matices in the Elman-based model are Wx → Wx, and Wh → Wh. For
the GRU-based model the replaced matrices are Wx → Wx∗, where ∗ ∈ {z, r, h̃}, and
Wh → Wh. For both RNNs this is in addition to initializing the embeddings vectors with
those trained by the baseline FFN for all feature types.

54



In Figure 4.3a we illustrate the structure of this network. The simplicity of the addition

here makes it far easier to draw parallels between the function of the weight matrices in

the Elman network and in the FFN as shown in Figure 4.2b.

4.6.2 Gated Recurrent Units

Introduced by Cho et al. (2014), GRUs are an architecture often compared to LSTMs.

It also attempts to solve the gradient vanishing problem in a similar way, by keeping

the modulation and addition of information in separate gates, and avoiding any weighted

obstructions between the hidden states of one time-step and the next. A notable difference

however is the lack of an internal state. All modifications are done directly to the external

hidden state ht, potentially complicating the learning process with conflicting information

about short and long-term dependencies.

Despite this apparently simpler structure, Chung et al. (2014) found GRUs to outper-

form LSTMs on a number of tasks, and Jozefowicz et al. (2015) also found that GRUs can

beat LSTMs except in language modelling. However, Jozefowicz et al. (2015) also found

that initializing the LSTM forget gate bias bf to 1 allowed the LSTM to almost match

the performance of the GRU on other tasks. The structure of a GRU is shown below.

rt = σ(Wxrxt +Whrht−1 + br)

zt = σ(Wxzxt +Whzht−1 + bz)

h̃t = tanh(Wxh̃xt +Whh̃(rt � ht−1) + bh)

ht = zt � ht−1 + (1− zt)� h̃t

y = softmax (Whht)

The internal architecture of a GRU consists of a reset gate rt modulating the previous

state ht−1, a candidate gate h̃ computing the next addition to ht, and an update gate zt

controlling how much of the candidate h̃t is added to ht.
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In this case the candidate gate h̃t is the most analogous to the hidden layer in an FFN.

As shown by the bold lines in Figure 4.3b, this flow of information appears similar to that

of the output gate ot in an LSTM, except that the additional input here is modulated by

the rt instead of receiving ht−1, in addition to dealing with further interference from the

update gate.

4.6.3 Comparison & Results

For the experiments in this section we used the same network dimensions as in Section

4.4, as well as the same training parameters and procedure.

For each RNN type we trained 2 FFN and RNN baselines, one with GloVe pre-trained

word embeddings Pennington et al. (2014) and another with randomly initialized embed-

dings. We then trained bootstrapped models initialized with the FFN baselines. The

results are shown in Table 4.2.

As in Section 4.4, this initialization method shows a positive effect on an LSTM-

based model, again surpassing both its baselines. The Elman network is stronger than

expected and benefits greatly from this approach. Indeed, the bootstrapped Elman model

is comparable in accuracy to some of the results in Table 4.1.

This cannot be said of GRUs, however, where its baselines perform significantly worse

than other RNNs. Moreover, bootstrapped GRU models perform even worse than their

baselines, even failing to match the accuracy of the FFNs used to initialize them. This

disparity in accuracy compared to LSTMs seems to lend credence to our earlier hypothesis

that learning long-term sequences can interfere with learning to make immediate decisions

based on the input from the current time step. The architecture of an LSTM which

maintains a long-term internal state ct separate from a short-term external state ht, and

the additional improvement gained from learning these separately, as opposed to the single

common hidden state ht in GRUs, appears to provide a distinct advantage here.

The improvement achieved by a bootstrapped Elman model can thus be explained

by the fact that it suffers from gradient vanishing Bengio et al. (1994), and so sequence
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Embeddings Type UAS LAS
Random Embeddings

FFN baseline 92.21 89.85

LSTM baseline 92.16 89.87
bootstrapped LSTM 92.43 90.06

Elman baseline 91.97 89.62
bootstrapped Elman 92.40 90.06

GRU baseline 91.62 89.18
bootstrapped GRU 91.67 89.31

Pre-trained Embeddings
FFN baseline 92.76 90.47

LSTM baseline 93.23 90.94
bootstrapped LSTM 93.41 91.20

Elman baseline 92.01 89.47
bootstrapped Elman 92.87 90.52

GRU baseline 92.21 89.77
bootstrapped GRU 92.14 89.78

Table 4.2: Dev set scores on WSJ (SD) for different RNN types. The Random/Pre-
trained embedding only refers to the initial word vectors of the FFN/RNN baseline. All
other RNNs in these categories use the final trained embeddings of their respective FFN
baseline.

specific information does not affect training to the extent that it does in GRUs.

4.7 Initializing Individual Gates

Our final set of experiments is to investigate whether or not individual gates of LSTMs

and GRUs can benefit from this initialization technique. We follow the same initialization

and training procedures described previously, and for every gate we also initialize its

corresponding bias vectors. We keep the same size and parameters as in Section 4.6.3,

and also train baselines with and without pre-trained embeddings.

Bootstrapping individual LSTM gates produces mixed results, as show in Table 4.3,

especially when considering the difference in performance between the random and pre-

trained embeddings experiments.

Full bootstrapping, bootstrapping the j gate or bootstrapping the o gate seem to be
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Embeddings Type UAS LAS
Random Embeddings

FFN baseline 92.21 89.85

LSTM baseline 92.16 89.87

bootstrapped i gate 92.29 90.00
bootstrapped j gate 92.38 89.96
bootstrapped f gate 92.25 89.81
bootstrapped o gate 92.43 90.06

bootstrapped all gates 92.38 90.01

Pre-trained Embeddings
FFN baseline 92.76 90.47

LSTM baseline 93.23 90.94

bootstrapped i gate 93.20 90.96
bootstrapped j gate 93.30 91.02
bootstrapped f gate 93.42 91.22
bootstrapped o gate 93.35 91.11

bootstrapped all gates 93.41 91.20

Table 4.3: Dev set scores on WSJ (SD) for individually bootstrapped LSTM gates

the most reliable options based on these results.

Results for bootstrapping individual GRU gates, as show in Table 4.4, vary drasti-

cally, with individual gates performing very differently in their random and pre-trained

embedding experiments.

Surprisingly, bootstrapping all GRU gates achieves better results than the GRU base-

line for random embeddings, while severely hurting accuracy with pre-trained embed-

dings. All GRU experiments, bootstrapped or not, still do not perform better than the

FFN baseline.
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Embeddings Type UAS LAS
Random Embeddings

FFN baseline 92.21 89.85

GRU baseline 91.62 89.18

bootstrapped r gate 91.70 89.15
bootstrapped z gate 90.59 87.90

bootstrapped h̃ gate 91.67 89.31

bootstrapped all gates 91.73 89.20

Pre-trained Embeddings
FFN baseline 92.76 90.47

GRU baseline 92.21 89.77

bootstrapped r gate 92.22 89.79
bootstrapped z gate 92.62 90.37

bootstrapped h̃ gate 92.14 89.78

bootstrapped all gates 89.30 86.09

Table 4.4: Dev set scores on WSJ (SD) for individually bootstrapped GRU gates

4.8 Conclusion

In this chapter we have presented a simple and effective LSTM transition-based depen-

dency parser. Its performance rivals that of far more complicated approaches, while still

being capable of integrating with minimal changes to their architecture.

Additionally, we showed that the application of dropout to the input layer can improve

the performance of a network. Like our other contributions here this is simple to apply

to other models and is not only limited to the architectures presented in this work.

Finally, we proposed a method of using pre-trained FFNs as initializations for an

RNN-based model. We showed that this approach can produce gains in accuracy for both

LSTMs and Elman networks, with the final LSTM model surpassing or matching most

state-of-the-art LSTM-based models.

This initialization method can potentially be applied to any LSTM-based task, where

a 1-to-1 relation between inputs can first be modelled using an FFN. Exploring the effects

of this method on other tasks is left for future work.
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CHAPTER 5

EXPLORING THE BEST STRUCTURE FOR A
TRANSITION-BASED DEPENDENCY PARSER

5.1 Introduction

For a majority of neural network-based transition-based parsers building dependency arcs

and assigning a dependency label are done together. This can be seen in the structure of

the output layer which assigns a separate neuron/class to each combination of dependency

arc and dependency label. An exception to this is the work of Cross and Huang (2016)

who noted an increase in accuracy when separating parsing and labelling into two different

classification layers, while maintaining a join input layer.

This observation by Cross and Huang (2016) seems to indicate that dependency pars-

ing and dependency labelling are not as interdependent as a survey of the current parser

architectures might lead one to believe, at least as far as neural network-based parsers

are concerned.

This seems to go against a direction towards more joint learning of different tasks,

such as work showing improvements in parser accuracy when trained as a joint parser and

part-of-speech tagger, both for neural network-based models (Alberti et al., 2015), and

non-neural network-based models (Bohnet and Nivre, 2012), in addition to work on joint

syntactic-semantinc parsing for neural network-based models (Swayamdipta et al., 2016;
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Henderson et al., 2013) and non-neural network-based models (Björkelund et al., 2010).

In this chapter we explore whether dependency parsing and dependency labelling

are altogether independent tasks, specifically for neural network-transition-based

parsers, and if they should therefore be approached separately. To investigate this we

ask the following questions . . .

• Can the hierarchical architecture be broken down into finer grained classification

tasks?

• Is the parser transition information useful for assigning a dependency label?

• Does having a joint feature representation layer help the goals of parsing and la-

belling?

• Can a dependency parser and a dependency labeller be successfully trained without

sharing any encoding or classification layer?

To answer these questions we experiment with three neural networks that are modified

versions of the hierarchical architecture, in addition to our own implementations of a joint

state network like (Chen and Manning, 2014) and a hierarchical network like Cross and

Huang (2016). Our networks are an extended hierarchical network, that has separate

classifiers for right and left dependencies, a successive network, that passes the output of

the parsing component to the labeling component, and finally we experiment with training

the parsing and labelling components separately. In addition, we perform our experiments

using two different feature representation methods, an embeddings concatenation based

method, and a more robust bi-LSTM positional vector representation.

Our experiments do show that a dependency parser and dependency labeller can suc-

cessfully be trained independently, and the results are comparable with those in current

literature and state-of-the-art systems. We do however confirm the improvement that us-

ing hierarchical classification has over other architectures for neural network-based parsers,

and also produce better results than separately training a parser and labeller.
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Our best separately trained parser/labeller pairs achieve accuracies of (92.21/89.92) on

WSJ test set when using concatenated word embeddings, and (94.04/91.95) when using

bi-LSTM positional encoding. For our hierarchical models, we achieve a best accuracy

of (92.27/90.09) when using concatenated word embeddings, and (94.30/92.23) with bi-

LSTM positional encoding. We explore the implications of our experiments and how they

relate to the questions that we have asked, as well as offer an idea on how parsing and

labelling could be pursued further in future work in Sections 5.6 & 5.7.

5.2 Feature Representation

In order to fully understand the effects of the architectures that we explore in Section

5.3, we will be testing each architecture using 2 popular methods of feature representa-

tion. In our experiments we attempt to make the features modelled by each method of

representation as similar as possible, without impacting performance.

Embeddings vectors This method has been used in some of the earliest, as well as

the highest-scoring, neural-network based parsers in current literature (Chen and Man-

ning, 2014; Weiss et al., 2015; Andor et al., 2016). A dictionary of n-dimensional vectors

for possible words, part-of-speech tags, and dependency labels is built and used to repre-

sent features of a sentence. These vectors are typically randomly initialised, although in

the case of word vectors, pre-trained vector embeddings are frequently used.

We follow the feature scheme used by Chen and Manning (2014), which uses the

following features:

• the word and pos tags of the first 3 items from the stack and buffer, {s0−2, b0−2}

• the word, pos tags, and dependency labels of the first 2 left/right-most children of

the top 2 items on the stack, {lc0(s0,1), lc1(s0,1), rc0(s0,1), rc1(s0,1)}

63



• the word, pos tags, and dependency labels of the leftmost child of the leftmost

child, and the rightmost child of the rightmost child of the top 2 items on the stack,

{lc0(lc0(s0,1)), rc0(rc0(s0,1))}

The final output layer is a concatenation of the vectors of all these features. The values

of these vectors are simultaneously trained with the rest of the network. For the rest of this

chapter we will refer to this method simply as the Embeddings method/representation.

Positional vectors A bi-directional LSTM (Graves and Schmidhuber, 2005) is a

method used to encode a sequence using Long Short-term Memory networks (Hochreiter

and Schmidhuber, 1997) or LSTMs, in such a way that each output vector represents

both relevant information about the input at that position, but also information about

other parts of the sequence as it relates to. This is accomplished by running a forward-

LSTM on the sequence in order, and a second backward-LSTM on the sequence in reverse.

The forward and backward vectors at corresponding positions are then concatenated to

produce the final bi-directional LSTM (bi-LSTM) vector for each position in the sequence.

For transition-based parsing, modelling an input sentence using bi-LSTMs was pro-

posed by both Cross and Huang (2016) and Kiperwasser and Goldberg (2016b), and this

approach was also used to great effect by Dozat and Manning (2016) in an attention

based parser. Each word in the sentence would be represented as a concatenation of the

word’s word and pos tags, drawn from embeddings dictionaries created in the same way

discussed for the Embeddings method. Cross and Huang (2016) also realised that the

minimal feature set required when representing the sentence this way becomes as small

as the top 2 items on the stack and the front item on the buffer {s0,1, b0}, an observation

that was later confirmed empirically by Shi et al. (2017).

In our experiments however, we found that while this minimal feature set does produce

a competitive parser, adding more structural features can improve the final accuracy

further. This is in line with the findings of Kiperwasser and Goldberg (2016b) who also

used an extended feature set to improve the final results. In our case we not only use the
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bi-LSTM vectors, but also the dependency label embeddings for structural features, i.e.

features representing children or children of children. These dependency label embeddings

are concatenated as above and then used as input to the hidden state along with bi-

LSTM feature vectors. We will refer to this method in this chapter as the Positional

method/representation. This has the added benefit of bringing the feature set used more

in line with that used for the Embeddings method. The features used are as follows:

• the word and pos tags of the first 2 items on the stack and the front item of the

buffer, {s0,1, b0}

• the word, pos tags, and dependency labels of the 2 leftmost children of the top

of the stack and the 2 left/right-most children of the second item on the stack,

{lc0(s0,1), lc1(s0,1), rc0(s1), rc1(s1)}

• the word, pos tags, and dependency labels of the leftmost child of the leftmost child

of the top 2 items on the stack, and the rightmost child of the rightmost child of

the 2nd item on the stack, {lc0(lc0(s0,1)), rc0(rc0(s1))}

5.3 Architectures

To investigate the limits of the observation made by Cross and Huang (2016), that parsing

and labelling benefit from having separate classification layers and separate hidden layers,

we designed a number of parsers that approach the classification problem in ways that

are slightly different to both the popular method and that of Cross and Huang (2016).

We compare the performance of these proposed architectures to our own implementation

of published methods in Section 5.5. In this section we describe all the architectures we

use.
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Joint Hidden State

Softmax Layer

Feature Representation Layer

Figure 5.1: The Joint state architecture.

5.3.1 Joint state

This architecture is the simplest possible approach to transition-based dependency pars-

ing, and perhaps the easiest to implement. It is made up of a single hidden state and a

joint classification layer of the form {SH, {LA,RA} ×DEP}, where {SH,LA,RA} are

the Shift, Left-Arc, and Right-Arc transitions as defined in Section 2.2.2, and DEP is

the set of all possible dependency labels. This is the approach used initially by Chen and

Manning (2014) and on which a number of state-of-the-art parsers are based.

5.3.2 Hierarchical

Parser Hidden State

Softmax Layer

Feature Representation Layer

Labeller Hidden State

Softmax Layer

Figure 5.2: The Hierarchical architecture.

Hierarchical classification was independently done by both Cross and Huang (2016)

and Kiperwasser and Goldberg (2016b), however only the former explicity mentioned this

particular modification is having a notable effect on parser accuracy. This architecture
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splits the classification into two, one responsible for producing the next transition, the

other produces the dependency label. Each classification layer has its own separate hidden

state, but both still share the same feature representation layer. This means that during

training that the weights of the feature representation layer receives the backpropagated

errors from both classifiers, and ultimately encodes information to the benefit of both.

This shared layer has the potential to either improve the performance of both tasks,

since information learnt from one task could be useful to the other, or it could the learning

processes of both could be conflicting, resulting in a lower final accuracy. We already know,

given the results of the comparison done by Cross and Huang (2016), that Hierarchical

classification does produce better results than a Joint state parser, but that could possibly

be only due to the separation of the hidden states and classification layers.

5.3.3 Extended Hierarchical

Parser Hidden State

Softmax Layer

Feature Representation Layer

Left Labeller Hidden State

Softmax Layer

Right Labeller Hidden State

Softmax Layer

Figure 5.3: The Extended hierarchical architecture.

We designed this architecture in order to investigate whether or not a similar improve-

ment could be gained from separating Left-Arc labelling and Right-Arc labelling. To do

so we split the dependency labelling layer into 2, bringing the total number of output neu-

rons to be the same as for the Joint state architecture, but with a separate hidden state

for each classification layer. As with Hierarchical classification, the feature representation

layer is shared between all three classifiers.

The transition made would depend on the scores produced by the parsing output layer,

as usual, but the label given to that arc will depend on whether a right arc or a left arc
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was performed, and the final scores will be used from the appropriate labeller.

5.3.4 Successive

Parser Hidden State

Softmax Layer

Feature Representation Layer

Labeller Hidden State

Softmax Layer

Figure 5.4: The Successive architecture.

The use of only a single output layer to assign dependency labels raises the question,

how does the labeller distinguish between a left-arc and a right-arc? If it does not, does

that mean that the distinction is unnecessary? To answer this question we designed a

new architecture that is built the same as the hierarchical architecture, i.e. with a single

parsing component and a single labelling component with a shared representation layer.

However, the output of the parsing output layer is then passed to the hidden state of the

labelling component.

If this modification produces an accuracy better than that of a hierarchical parser,

then this would indicate that the labelling component is indeed dependent on the parsing

component, or at the very least can benefit further from the information that it provides.

5.3.5 Separate

Our main question in this chapter is whether Dependency Parsing and Dependency La-

belling are two separate, independent tasks. To test for this we also train two separate

networks in parallel, a parser and a labeller. This is essentially a further separation of the

two components of the hierarchical architecture, where the parsing and labelling compo-
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nents no longer share the feature representation, and so get to tune this layer to present

information only useful to them.

While both components are separate, they are still trained together. At train time

this means that the final cost function is identical to that used in the hierarchical archi-

tecture, which incorporates the scores of both components to calculate the error. While

using separate cost functions for each component is more intuitive, using a combined cost

function makes the architectures more comparable, and limits the interpretation of our

results strictly to the usefulness of encoding each task’s information separately.

During parsing time, this split means that after the parser makes a new attachment, a

dependency label is assigned to it by the labeller. Given the feature set defined in Section

5.2, there remains one small area of dependence, which is that both the parser and labeller

use structural features. These features dictate the order in which both components are

used, since the parser uses the dependency labels of some structured features as input,

which means that the next attachment cannot be decided until a dependency label has

been assigned to the current one. On the other hand, the labeller’s use of structural

features also means that it must wait for the parser to decide on a transition for the

previous step.

In order to remove the dependence of the parsing component on the labelling one,

we later experiment with a version of the parser that does not use dependency labels

as features, but keeps the rest of the feature set the same. Chen and Manning (2014)

showed in ablation studies that removing the labelling features resulted in a slight drop in

accuracy, but their model used a joint state architecture. Conversely, there are a number

of state-of-the-art parsers that do not use dependency labels as features, but depend on

a more robust feature representation layer (Shi et al., 2017; Kiperwasser and Goldberg,

2016b).

We do not attempt to remove the dependence of the labeller on structural features,

however, since the final outcome would still require either a partial or full tree, and would

need a more far reaching modification to the architecture, and so is left for future work.
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This set up can have a number of outcomes, each having separate but useful implica-

tions. We examine the broadest here and analyse them further with the final results in

Section 5.5.

If this method fails to match the accuracy of the Joint state architecture, then parsing

and labelling are indeed dependent on each other, and encode information that is beneficial

to the performance of both. If it matches or exceeds it, however, then this would mean

that parsing and labelling are in fact independent, but the implications of this would be

depend on how it compares with Hierarchical classification.

If training the two components separate networks results in accuracies that match

or exceed that of the Hierarchical architecture, then this would further support the case

for separate training, in addition to indicating that the joint feature representation layer

might hinder performance, as we speculated earlier. If this is not the case, however, then

the reverse is definitely true, that while parsing and labelling can be trained independently,

a joint feature representation layer, but not a joint hidden state, is ultimately capable of

encoding useful information for both tasks.

5.4 Implementation & Training

In our implementation we used the same dimensions of embeddings for both types of

feature representation, with both part-of-speech tags and dependency labels having di-

mensions of size 50, and word vector embeddings being of size 100. For word embeddings

we used pretrained GloVe vectors (Pennington et al., 2014), while the vectors for de-

pendency labels and part-of-speech tags were randomly initialised. For the positional

representation, we use two bi-LSTM layers, with 256 LSTM units representing each di-

rection.

All hidden states, regardless of architecture, use a single hidden layer of size 256.

The neurons in this layer use rectified linear units (ReLUs) (Nair and Hinton, 2010)

as activation functions. We set a dropout rate of 0.3 on all LSTMs (Gal, 2015) and
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the hidden layer (Hinton et al., 2012). All weights and pos tag vectors were initialised

uniformly (Glorot and Bengio, 2010).

For training we use a negative log likelihood loss function where yi is the combined

transition/dependency score for the joint state model, ti is the transition score, and di is

the dependency score. θ represents all model parameters, which includes all weights and

vector embbeddings used. We use mini-batch updates of 10 sentences, and stop training

after 40 epochs for models using the embeddings representation, and 30 epochs for models

using positional representation. We optimise the model parameters using Adam (Xu et al.,

2015) with a learning rate α = 1×10−3. The loss function for the joint state model is . . .

L(θ) = −
∑
i

log(yi)

and for all other models is . . .

L(θ) = −(
∑
i

log(ti) +
∑
i

log(di))

For hierarchical, successive, and separate architectures, we do not calculate error when

a shift transition occurs. Similarly, for the extended hierarchical architecture, we only

calculate cost for left/right-arc labels only when their corresponding transitions are made.

In addition, due to its architecture, the parser component in successive architecture

models also receives back-propagated error updates from the hidden state of the labeller

component.

We train our models using the Wall Street Journal (WSJ) section from the Penn

Treebank (Marcus et al., 1993). We use §2-21 for training, §22 for development, and §23

for testing. We use Stanford Dependencies (SD) (De Marneffe et al., 2006) converted from

constituency trees using version 3.3.0 of the converter. As is standard we use predicted

POS tags for the train, dev, and test sets. We report unlabelled attachment score (UAS)

and labelled attachment score (LAS), with punctuation excluded. The models are tuned

on the development set, with the tuning that produced the highest UAS used to obtain the
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final scores on the test set. All our models were implemented using the DyNet framework

(Neubig et al., 2017) in python.

5.5 Experiments & Results

As mentioned in Section 5.2, we use two feature representation methods in order to have

a clearer understanding of the effects of each architecture on the overall performance of

the parser/labeller. Additionally we will initially choose works from current literature as

an external baseline of comparison for our work. A more complete comparison with the

state-of-the-art is present later in Table 5.4.

For experiments using the embeddings representation we chose Chen and Manning

(2014) as our baseline, which has served as the basis for much of the work done on feed-

forward networks since (Weiss et al., 2015; Andor et al., 2016; Zhou et al., 2015). The

results of our experiments for all our architectures using the embeddings representation

are shown in Table 5.1.

Dev Test

Architecture UAS LAS UAS LAS

Joint state 92.23 89.74 91.73 89.50

Hierarchical 92.55 89.92 92.27 90.09

Ext. Hierarchical 91.51 88.86 90.73 88.38

Successive 91.80 89.25 91.51 89.04

Separate 92.53 89.81 92.08 89.82

Chen and Manning (2014) 92.00 89.70 91.80 89.60

Table 5.1: Dev and test set scores on WSJ (SD) using embeddings feature representation.

The results for our basic joint state model are very close to the baseline Chen and

Manning (2014) model, and with the exception of the UAS score on the development set,

the differences are negligible. They both use the same architecture and our model uses a

slightly larger hidden layer size of 256 versus 200 for Chen and Manning (2014).

As was expected, our hierarchical model outperforms the joint state and our cho-

sen baseline achieving a (UAS/LAS) development score of (92.55/89.92) compared to
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(92.23/89.74) for our joint state model, and a more notable difference in performance on

the test set with scores of (92.27/90.09) compared to (91.73/89.50), making for roughly

0.5% gain in the final score.

The extended hierarchical model, on the other hand, produced substantially worse

results than both the hierarchical and joint state models. The development scores of the

extended hierarchical model fell to (91.51/88.86), while the test scores fell even further to

(90.73/99.39). The result is an approximate drop of 1% in accuracy on the development set

and an almost 2% drop on the test set when compared to the hierarchical model, meaning

that its ability to generalise to data outside the development set was also impacted.

Our successive model fared slightly better, but still performed worse than both the

joint state and hierarchical models. The drop in LAS is slightly more than for UAS but,

unlike the extended hierarchical model, its generalising ability was not harmed with a

development score of (91.80/89.25) and a test set score of (91.51/89.04).

Separately training the parser and labeller seems to have been a success, surpassing

the baseline and the joint state, as well as approaching the performance of the hierarchical

model on the development set scoring (92.53/89.81), but remaining behind on the test

set scores (92.08/89.82), especially on the UAS score. This model still surpassed all the

other architectures.

For experiments using the positional feature representation, we chose the results of

Kiperwasser and Goldberg (2016b) as our baseline for comparison. We noted that Cross

and Huang (2016) explicity tested for the effects of hierarchical classification and, like

our work here, use Arc-Standard. They do, however, use a minimal number of features,

unlike Kiperwasser and Goldberg (2016b) who use an extended feature set similar to ours,

in addition to also using a hierarchical set up. We do differ, however, in our use of the

extra dependency label features, and in that we use Arc-Standard, where Kiperwasser

and Goldberg (2016b) use Arc-Hybrid (Yamada and Matsumoto, 2003; Gómez-Rodrıguez

et al., 2008; Kuhlmann et al., 2011b) with a dynamic oracle.

The results of the joint state model for this feature representation are surprisingly high
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Dev Test

Architecture UAS LAS UAS LAS

Joint state 94.04 91.95 94.13 92.17

Hierarchical 94.27 92.17 94.30 92.23

Ext. Hierarchical 94.17 92.02 94.20 92.17

Successive 94.23 92.10 94.16 92.05

Separate 94.03 91.67 94.04 91.95

Kiperwasser and Goldberg (2016b) 93.8 91.5 93.9 91.9

Table 5.2: Dev and test set scores on WSJ (SD) using positional feature representation.

when compared with the baseline, where the development scores are (94.04/91.95) com-

pared to (93.8/91.5), and the test scores are (94.13/92.17) compared to (93.9/91.9). The

joint state model scores higher than our baseline despite the use of a hierarchical architec-

ture in Kiperwasser and Goldberg (2016b). This could be a combination of two factors,

first is our use of a larger positional vector (256 LSTM-units in each direction vs 125),

and second is the difference in the parsing systems used, where Shi et al. (2017) showed

that Arc-Standard can slightly outperform Arc-Hybrid using this feature representation,

when using the same training methods.

As was the case when using the embeddings representation, our hierarchical model

outperforms both the joint state model and the baseline. It does so, however, by a smaller

margin for positional representation, achieving development scores of (94.27/92.17) and

test scores of (94.30/92.23), with difference for the test LAS being negligible.

The extended hierarchical architecture still suffered a drop in accuracy compared to

the hierarchical model, but surprisingly not by much, considering the dramatic difference

produced in the embeddings representation experiments. The positional representation

even allows the extended hierarchical architecture to slightly beat the joint state model

with (94.17/92.02) for the development set, and (94.20/92.17) for the test set. The dif-

ference in scores with the joint state model is not substantial, and so can optimistically

be seen as the positional representation providing a rich enough encoding of the sentence,

that the performance of the parser was not degraded.

For the successive architecture, the positional representation continues to prove re-
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markably resilient, achieving a development set score of (94.23/92.10) which is slightly

below that of the hierarchical model, but negligibly so. The model, however, scores

(94.16/92.05) on the test set which is less than the extended hierarchical model.

Surprisingly, separate training produced worse results than all our other architectures,

when using positional features. The model achieved a UAS score similar to the joint state,

but still fell behind on labelled accuracy with (94.03/91.67) on the development set, and

(94.04/91.95). This translates to approximately a 0.3% drop in accuracy when compared

to the hierarchical model, although this model still managed to surpass the scores of the

baseline.

As mentioned in Section 5.3.5, we also conducted experiments for the separate ar-

chitecture where the dependency label features were removed. If the performance of the

parsers is not impacted, then this would completely remove any dependence the parsing

component has on the labelling component. The results are shown in Table 5.3.

Dev Test

Feature Type UAS LAS UAS LAS

Embeddings

+ dep. labels 92.53 89.81 92.08 89.82

− dep. labels 92.53 89.93 92.21 89.92

Positional

+ dep. labels 94.03 91.67 94.04 91.95

− dep. labels 94.28 91.86 94.03 91.95

Table 5.3: Dev and test set scores on WSJ (SD) comparing parsers using a separate
architecture, with and without dependency label features, for both feature representations.

The effects of removing the dependency label features paint an interesting picture. For

the embeddings representation-based model the development scores resembled that of the

model that uses dependency label features with (92.53/89.93). It did however generalise

better to the test set scoring (92.21/89.92), which brings it closer to the hierarchical

model.

For the models using positional feature vectors, removing dependency label features

improved the accuracy on the development set to (94.28/91.86), which is a UAS score

matching that of the hierarchical model, but still lagging behind on LAS. As for test set
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scores, however, the results were almost identical to the model that uses dependency label

features, scoring (94.03/91.95), which remains below all other architectures trained that

use positional feature vectors.

Dev Test

UAS LAS UAS LAS

This work

Hierarchical + Embeddings + Dependency label features 92.55 89.92 92.27 90.09

Separate + Embeddings + Dependency label features 92.53 89.81 92.08 89.82

Separate + Embeddings − Dependency label features 92.53 89.93 92.21 89.92

Hierarchical + Positional + Dependency label features 94.27 92.17 94.30 92.23

Separate + Positional + Dependency label features 94.03 91.67 94.04 91.95

Separate + Positional − Dependency label features 94.28 91.86 94.03 91.95

Chen and Manning (2014) 92.00 89.70 91.80 89.60

Weiss et al. (2015) N/A N/A 93.99 92.05

Dyer et al. (2015) 93.2 90.9 93.1 90.9

Andor et al. (2016) 94.38 92.17 94.61 92.79

Kiperwasser and Goldberg (2016b) N/A N/A 93.9 91.9

Cross and Huang (2016) 93.67 91.48 93.42 91.36

Shi et al. (2017) 93.92 N/A 94.53 N/A

Table 5.4: A comparison of dev and test set scores on WSJ (SD) with our external
baselines and some of the highest scoring transition-based dependency parsers in the
current literature.
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5.6 Discussion

We can observe the same positive effect of the hierarchical structure over the joint state

structure for both of the feature representation methods used, confirming the results of

(Cross and Huang, 2016). The performance of our proposed architectures is also illumi-

nating in a number of ways.

The large drop in the result of the extended hierarchical model, even below that of

the joint state when using the embeddings representation, is an interesting result in itself.

The simplest explanation could be that the split labellers receive less updates than a

single labeller would, meaning that they would in effect have less training and updates.

On the other hand, the split labellers have a theoretical advantage in that the position of

the head and dependent are fixed in their input, while their position would alternate for

the single labeller in the hierarchical architecture.

This raises the question, is the dependency label relation undirected, notwithstanding

the specification of the head and dependent? Or could it be that the range of possibilities

given a pair of words is already limited? Consider words such as “a” & “the”. These words

would always be modifiers of a parent, and would never have dependents themselves. More

general patterns along these lines could conceivably be the case, making split labelling

unnecessary.

The results of the successive architecture seem to indicate that parsing and labelling

might be separate. Using the transition scores as input to the labeller did not help improve

labelling, but did not severely impact it either. In fact, its effect is almost nullified by the

use of positional feature representation.

Separately training the parser and labeller, while producing successful results, did

provide contradictory outcomes. For both feature representation methods there was a

drop compared to the corresponding hierarchical models, but it was much more substantial

for the positional representation experiment. We speculate that this is a consequence of

a combination of the denser encoding of the sentence and the use of dependency label

features.

77



The fact that models with a shared positional representation layer performed better

in this instance seems to point to the dependency features being useful to one of the

components. A further investigation with different features for each component would

shed more light on this discrepancy, and is left for future work.

Retraining the separate models without dependency label features produced mixed

results. While it definitely improved the accuracy of separate models on the develop-

ment set, it only improved the test set accuracy for embeddings-based models, with no

improvement at all for models using positional vectors. Both models still produce strong

results that beat their respective baselines, however they do not beat their hierarchical

counterparts.

This seems to point in the direction of a joint feature encoding layer, as used by

hierarchical models, being able to encode useful information for both sides, and that

helps the final model generalise better, as evidenced by how hierarchical model accuracies

on the test set outperform the separate models despite close development accuracies.

In Table 5.4 we compare our results with some of the strongest works in current liter-

ature. We, however, limit our comparison to other transition-based dependency parsers.

Despite the fluctuations of the various architectures, our positional models are generally

quite competitive, and are only beaten by Andor et al. (2016) and Shi et al. (2017). Both

of these high performing parsers use global models for training, as opposed to our greedy

models trained with only local features. Despite this, our hierarchical model comes close

to matching Andor et al. (2016) on the development set, with scores of (94.27/92.17)

compared to (94.38/92.17).

5.7 Conclusion & Future work

In this chapter we have shown that dependency parsing and dependency labelling can

be successfully trained separately. And while training a parser and labeller separately as

we have presented here does not offer any clear benefits over hierarchical classification
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in terms of accuracy scores, laying out the two tasks in this way is illuminating and has

potentially useful implications that we plan to explore in future work.

The effect of removing the dependency label features is very interesting, especially

when contrasted with the reported drop in performance when removing these features

in Chen and Manning (2014). This, together with the performance of our hierarchical

models, means that perhaps more gains can be made by changing the features extracted

from the feature representation layer for each task.

One interesting result of this split is that labelling can now be done on fully built

dependency trees, and does not need to take into account the specifics of transition parsing

itself. While the way of calculating labelled accuracy scores ensures that it cannot surpass

the unlabelled attachment score, since a label cannot be correct if the arc itself is incorrect,

training a labeller without the interference of the parser can help close the considerable

gap between the two, which can be readily observed in the scores of the state of the art

systems shown in Table 5.4.

Our separate parsers still shared one link, and that is the joint cost function that

was common between them and the other architectures used. We believe that this could

have an interesting impact since the results of the extended hierarchy, and the gain in

performance from removing dependency label features seem to point towards removing

any influence of either side on the other.

Finally our experiments were all conducted on English. Investigation into the use of

these architectures on other languages would provide a more complete picture.
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CHAPTER 6

RECURSIVE LSTM TREE REPRESENTATION

6.1 Introduction

In chapter 5 we took advantage of bi-LSTM representation to produce positional vectors,

but found that it was naturally limited to modelling sequential features of the sentence,

and was incapable of incorporating structural information relating to the dependency tree

itself. For this reason we augmented this representation method with the relevant label

embeddings that complemented the selected positional features, and achieved competitive

results.

Another approach has been to represent the dependency tree itself with some form of

recursive network, either bottom-up as in (Dyer et al., 2015; Kiperwasser and Goldberg,

2016a; Stenetorp, 2013), or top-down as in (Le and Zuidema, 2014), with the latter

achieving strong results.

In this chapter we approach feature representation in a very general manner, attempt-

ing to incorporate features from all previous work. We propose a new method of recur-

sively modelling dependency trees using LSTMs, which we call Recursive Tree LSTMs.

Our experiments show that this method of representation is very powerful, and can even

be used as an additional layer of encoding over bi-LSTM feature representation, which

results in a more informative model.

The resulting parsers show an ability to model both positional and structural infor-
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mation without the need for external augmentations, and as a consequence require even

fewer features than both existing tree representation methods and bi-LSTM represen-

tation. The final parser is capable of achieving competitive results with a feature set

consisting of only the top two items on the stack, which is the smallest feature set for an

Arc-Standard dependency parser used successfully to date.

6.2 Recursive LSTM Trees

We propose a method of representing a dependency tree as a single dense vector that

results from the repeat application of an encoding mechanism to sequences of head-

dependent pairs. The architecture of the encoding mechanism can vary and we discuss

some options in detail in Section 6.3.

Each node in the tree represents a head token’s interaction with the representations of

all of its immediate dependents. Similarly, the representations of each of these dependents

are themselves the result of the interaction between their token and the representations

of their corresponding dependents.

Each token has 2 representations, a vector representation v and a tree representation

τ . The vector representation is the raw description of a token in its sentence, which in the

most basic form can simply be the concatenation of the word and part-of-speech vectors

of that token. We do however show later in Section 6.4 that there is room to enrich v

further by using a positional vector representation.

The tree representation of a token, on the other hand, encodes the dependency infor-

mation of a token and its dependents. Consider a simple subtree consisting of a head token

h and its dependents a, b, and c as illustrated in Figure 6.1. The subtree is represented as

a sequence of pairs of head vectors (hv) and child trees (aτ , bτ , cτ ). These pairs are then

input to the encoding mechanism with the final output being the head tree vector hτ .

The first pair in the sequence representation is always (hv, < S >), where < S > has

the same size as the output size of the encoding mechanism and represents the start tag
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Figure 6.1: A compact representation showing how a subtree (left) is arranged as a
sequence to produce a tree vector for the head token hτ (right). The encoding mechanism
here is a single forward LSTM. The operation � is concatenation, ↑ is input, ⇀ is the
passing of the internal state from one LSTM step to another, and ⇑ is the output of the
LSTM.

of the sequence. This also serves as the base case for leaf nodes in the dependency tree

as well as for tokens without dependents in partially built trees while parsing, where they

would otherwise be represented with a zeroed out vector. The encoding mechanism in

this example is represented as a single forward Long Short-term Memory network (LSTM)

(Hochreiter and Schmidhuber, 1997).

Each input pair uses the same hv which is then concatenated with the tree representa-

tion of the dependent. The dependents are presented in their order of appearance in the

sentence, and the encoding mechanism output at each step can be taken to represent the

subtree of h including the dependents introduced up to that step. The recursive element

of this formulation is the repeat application of the encoding mechanism, in a bottom-up

approach, in order to produce tree representations for tokens that are then used in turn

to produce the tree representations of their corresponding heads.

An illustration of this idea is shown in Figure 6.2. Here the head token h has one

dependent who also has dependents and another which has none. bτ is represented by

the base case with (bv � < S >), while aτ requires 2 additional steps to incorporate

information from xτ and yτ .

As is apparent in Figure 6.2, aτ and bτ must be calculated first before hτ can be

produced, and by extension xτ and yτ are required first in order to calculate aτ . In this
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Figure 6.2: A deeper subtree that shows the recursive application of the encoding mech-
anism across different depths in the subtree.

way the final dependency tree representation is built recursively, bottom-up, with the final

representation being the tree representation ROOTτ , whose only dependent would be the

main verb of the sentence. An example of a full dependency tree encoding is presented in

Figure 6.3.

6.3 Sub-tree Encoding

As stated in Section 6.2, the encoding mechanism is the architecture used to convert a head

vector hv and a set of dependent subtrees {d0τ , d1τ , · · · , dnτ} into a tree representation

hτ . The structure of RLTs makes them largely independent of the method of encoding

used, so long as they can accept an arbitrary number of dependents.

Put simply an encoding mechanism should accept the sequence in Figure 6.4b and

produce an hτ which will be used to represent Figure 6.4a.
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ROOT Just thought you would like to know

Figure 6.3: An example of an RLT encoding (top) of a dependency tree (bottom).
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(a) Source subtree

{hv� < S >, hv�d0τ , hv�d1τ , · · · , hv�dnτ}
(b) Input sequence representation

Figure 6.4: The Encoding Task: A simple subtree represented as a sequence. v and τ
are the vector and tree representations respectively. < S > is the start tag, and � is the
concatenation operation.

The encoding task stated in this way allows for great flexibility in constructing an en-

coding mechanism, so we have explored the use of some of the more intuitive possibilities.

6.3.1 Forward Encoding

The examples given thus far have all used a forward LSTM to encode subtrees. The final

tree representation would be the output of the LSTM at the step where the last element

in the sequence was entered.

Figure 6.5: Forward Encoding

This method is particularly computationally cheap and quite effective when compared

with the next 2 encoding methods. If it could be assumed that dependents are added in

order, then this mechanism need only store the last state of the LSTM and hv. In practice,

however, this only holds true for RA transitions whose dependents are guaranteed to be in

order for all parsing systems discussed in Section ??. On the other hand, LA transitions

add a new left-most dependent, which translates to a new entry at the start of the sequence
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representing a subtree. This means that the whole subtree needs to be recalculated in the

event of an LA, and so the mechanism effectively must store the entire sequence.

One solution to this is to not worry about the order of the dependents in the subtree,

which would negate the need for any recalculation and we would only need to store the

last state of the LSTM. We found, however, that the order of the dependents does appear

to hold information that impacts the overall final accuracy of the RLT.

Another possible compromise is the use of the Arc-Hybrid system (Yamada and Mat-

sumoto, 2003; Gómez-Rodrıguez et al., 2008; Kuhlmann et al., 2011b) as described in

Section 2.2.2. The restriction of performing all LA transitions first would indeed ensure

that recalculation is done for the shortest possible sequences. We did find that training an

Arc-Standard parser to prioritise LA transitions was enough to approach this behaviour

without impacting its final accuracy.

6.3.2 Bi-directional Encoding

Representing a word in a sentence as the output of a bi-directional LSTM (Graves and

Schmidhuber, 2005) was shown by Cross and Huang (2016) and Kiperwasser and Goldberg

(2016b) to be a better descriptor since it took into account relevant information from other

words in the sentence. This had the added bonus of reducing the number of features

required to encode the same information. This encoding mechanism is inspired by this

same idea, except that we need to produce an encoding that represents the entire sequence

at once. To this end we run a bi-directional LSTM (bi-LSTM) over the sequence and

concatenate the output vectors at both ends to represent hτ .

6.3.3 Compositional Encoding

For this mechanism we adapt the method used by Kuncoro et al. (2016a) to encode parts of

a constituency tree. Kuncoro et al. (2016a)’s composition function was originally designed

to encode a constituency relation, in this case, however, we use the same strategy with
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Figure 6.6: Bi-directional Encoding

the start tags taking the place of the constituency relation.

This method uses forward and backward encoding of the sequence, but does not assume

that the position of the start tag at the front of the sequence is most informative. To

achieve this the forward and backward sequences are encoded separately and their outputs

are concatenated to give hτ .

Figure 6.7: Compositional Encoding

The use of a backward pass for both the bi-directional and compositional encoding

mechanisms has a few implications. The first is the doubling of the computation cost com-

pared to that of Forward encoding, since the later only requires a single forward LSTM.
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The second is that the backward pass makes both bi-directional and compositional encod-

ing incapable of producing an intermediate representation that can be carried forward to

future time-steps. This is because every addition to the tree is the first input (or second

in the case of compositional encoding) to the backward pass, which changes the outputs

for all other steps.

Given this computationaly expensive setup, the number of times that a sequence is

calculated must be reduced. Since the latter 2 mechanisms use a backward pass, the order

in which children are added does not matter since an entire recalculation of the sequence

would be needed anyway. Hence there is nothing to gain from the strict order of addition

imposed by the Arc-Hybrid system, discussed in Section 2.2.2.

Another change that can trigger a recalculation is adding dependents at a deep level

in the subtree. Such an addition not only invalidates the sequence that it has been added

to, but also invalidates every sequence that its head is dependent on. This cascading

effect can require the recalculation of significant parts of an RLT, making an expensive

operation far costlier. It is for this reason that we prefer a bottom-up parsing system,

and so have ruled out using Arc-Eager.

6.3.4 Vector Representation (v)

The encoding mechanism relies on a base representation for the head, the vector repre-

sentation v. The simplest version of this would be to simply concatenate the word vector

and part-of-speech tag vector.

hv = hw � ht

However, positional representation has been shown to be a richer, more informative feature

about a token and its position in a sentence (Cross and Huang, 2016; Kiperwasser and

Goldberg, 2016b). This approach rests on using a bi-LSTM to encode the whole sentence,

with the concatenated outputs of the forward and backward LSTMs at the token’s position
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Stack Buffer

Hidden Layer

Softmax Layer

Figure 6.8: Example of a parser configuration with features using RLTs.

taken to be its positional vector.

We experiment with both approaches and confirm that a positional vector does improve

the performance of RLTs, in addition to its properties being carried over to the RLTs

themselves, meaning that parsing can be done with minimal features.

6.4 Implementation & Training Details

We implemented our model in python using the DyNet framework (Neubig et al., 2017).

The encoding mechanisms used by the RLTs in our experiments used 2 layers of LSTMS/bi-

LSTMs, depending on the mechanism. For RLTs using Forward encoding we used LSTMs

of size 512, while for Bi-directional and Compositional encoding we used LSTMs of size

256 in each direction. For experiments using a bi-LSTM positional representation, we

also used 2 layers of bi-LSTMs of size 256 in each direction. For the basic vector repre-

sentations we used randomly initialised part-of-speech tag vectors of size 50, and for word

embeddings we used vectors of size 100 initialised using the pretrained GloVe vectors

(Pennington et al., 2014).
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The tree vectors of relevant RLTs are then concatenated and passed as input to a feed-

forward hidden layer of size 256, with rectified linear units (ReLUs) (Nair and Hinton,

2010) as activation functions. We set a dropout rate of 0.3 on all LSTMs (Gal, 2015) and

the hidden layer (Hinton et al., 2012). In our experiments we tried different dropout rates,

but the differences were too small to experiment with separate dropout rates for different

layers. The final output layer is a softmax output layer with the same structure as in the

setup of Chen and Manning (2014), in which the scores correspond to (SH, {LA,RA} ×

DEP ), where DEP is the set of all possible dependency labels. All weights and pos tag

vectors were initialised uniformly (Glorot and Bengio, 2010).

For training we use a negative log likelihood loss function where yi is the transition score.

We use mini-batch updates of 10 sentences, and stop training after 30 epochs. We optimise

the model parameters using Adam (Xu et al., 2015) with a learning rate α = 1× 10−3.

L(θ) = −
∑
i

log(yi)

We train our models using the Wall Street Journal (WSJ) section from the Penn Tree-

bank (Marcus et al., 1993). We use §2-21 for training, §22 for development, and §23 for

testing. We use Stanford Dependencies (SD) (De Marneffe et al., 2006) converted from

constituency trees using version 3.3.0 of the converter. As is standard we use predicted

POS tags for the train, dev, and test sets. We report unlabelled attachment score (UAS)

and labelled attachment score (LAS), with punctuation excluded. The models are tuned

on the development set, with the tuning that produced the highest UAS used to obtain

the final scores on the test set.

6.5 Experiments & Results

We have described 3 encoding mechanisms to produce hτ and 2 sources for the basic

vector representation hv in Section 6.3. In this section we present the results of our
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experiments with these combinations, in addition to experiments with varying feature

sets. We compare our results to initially to those of Dyer et al. (2015) and Kiperwasser

and Goldberg (2016a), since they are the closest in the literature to our approach. We

make a more complete comparison with state of the art Transition-based parsers in Table

6.4.

For our initial set of experiments we trained models that used the top 4 RLTs on the

stack, and the front 4 on the buffer as input features to the feed forward hidden layer.

This setup is influenced by work on the simple feed forward network, where successful

networks used the top 3 from each data structure as in (Chen and Manning, 2014), or the

top 4 from each as in (Weiss et al., 2015). These examples used an input layer that was

a concatenation of the word and pos vectors of these features in addition to structural

features describing dependents. This is not necessary with RLTs that model the entire

subtree and so their corresponding hτ represents all of this extended information.

Dev Test

Encoding Type UAS LAS UAS LAS

Forward 93.45 91.09 93.06 90.93

Bi-directional 93.28 91.09 93.04 91.01

Compositional 93.30 90.94 92.96 90.86

Kiperwasser and Goldberg (2016a) 93.3 90.8 93.0 90.9

Dyer et al. (2015) 93.2 90.9 93.1 90.9

Table 6.1: Dev and test set scores on WSJ (SD) using an hv that is a concatenation of
the tokens word vector and pos tag vector.

When setting hv to be the concatenation of the word and pos vectors, the

resulting accuracies of the encoding mechanisms, shown in Table 6.1, are very similar.

The Forward encoding mechanism achieves only a slightly better accuracy with dev scores

of (93.45/01.09) and test scores of (93.06/90.93), but with negligible differences between it

and other mechanisms. Nevertheless all three mechanisms largely match the performance

of Dyer et al. (2015) and Kiperwasser and Goldberg (2016a), with Dyer et al. (2015)

having a slightly better test accuracy of (93.1/90.9). It is interesting to note that neither

the backward pass, in Bi-directional and Compositional encoding, nor the alternating
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Dev Test

Encoding Type UAS LAS UAS LAS

Forward 93.85 91.67 93.61 91.65

Bi-directional 94.20 91.94 93.79 91.86

Kiperwasser and Goldberg (2016a) 93.3 90.8 93.0 90.9

Dyer et al. (2015) 93.2 90.9 93.1 90.9

Table 6.2: Dev and test set scores on WSJ (SD) using a bi-LSTM positional vector as hv.

start tag in Compositional encoding provided any benefit to modelling a sequence using

this kind of hτ . For the rest of our experiments we limit our examination to Forward and

Bi-directional encoding.

For the second set of experiments we use the bi-LSTM positional representa-

tion as hv. The results are shown in Table 6.2. The Bi-directional encoding model

clearly comes out ahead here, with dev scores of (94.2/91.94) and (93.79/91.86). Forward

encoding also benefited substantially from the richer representation reaching dev scores of

(93.85/91.67) and test scores of (93.61/91.65). Both mechanisms now well outperform the

results of Dyer et al. (2015) and Kiperwasser and Goldberg (2016a), the latter of whom

also used bi-LSTM representations as inputs to their tree.

The final set of experiments were to investigate whether or not RLTs managed to

retain the properties of the bi-LSTM representation in addition to its own, i.e., produce

an hτ that can represent a token’s special position in a sentence in addition to representing

it as the head of its own subtree.

An important property of the bi-LSTM positional representation is its ability to encode

relevant information from other parts of a sentence into a particular word’s representation.

This means that fewer features are required to do parsing, and indeed Cross and Huang

(2016) achieved successful results with Arc-Standard using only the top 2 items on the

stack and the front item on the buffer, {s0,1, b0}. (Kiperwasser and Goldberg, 2016b) also

showed that this was the case for Arc-Hybrid, but they also showed that more structural

features (up to 11 features) improved performance. (Shi et al., 2017) showed that the

minimal feature set of just the first items of the stack and buffer {s0, b0} were needed for
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Dev Test

UAS LAS UAS LAS

Forward

{s0−3, b0−3} 93.85 91.67 93.61 91.65

{s0,1, b0} 93.84 91.58 93.64 91.70

{s0,1} 93.85 91.69 93.48 91.51

Bi-directional

{s0−3, b0−3} 94.20 91.94 93.79 91.86

{s0,1, b0} 94.16 92.09 93.91 92.03

{s0,1} 93.93 92.01 93.81 91.94

Table 6.3: Dev and test set scores for different feature sets, using a bi-LSTM positional
vector as hv, for Forward and Bi-directional encoding.

a successful parser for both Arc-Hybrid and Arc-Eager.

The results shown thus far are the results of a wide feature set, the first 4 items on both

structures {s0−3, b0−3}, which was comparable to earlier features sets used by (Weiss et al.,

2015) and (Chen and Manning, 2014). The results in Table 6.3 show the performance of

our RLT models on increasingly small feature sets. Interestingly the drop in the accuracy

of RLTs with the complete removal of buffer features is negligible, with the main notable

drop being that of the dev set UAS. Our minimal feature set here consists of only the top

2 items on the stack {s0,1}, while the minimal feature set explored by Shi et al. (2017)

was the first item on the stack and buffer {s0, b0}, which worked for Arc-Hybrid/Eager

but did not work for Arc-Standard.

The accuracy scores in Table 6.3 are not impacted significantly by the change in feature

sets. The main effect appears to be on the UAS scores of the Bi-directional encoding

models on the development set, which fall from 94.20 for {s0−3, b0−3} to 93.93 for {s0,1}.

The set {s0,1, b0} achieves slightly a better test accuracy of (93.91/92.03), compared to

(93.79/91.86) for the largest set, and (93.81/91.94) for the smallest. Results for Forward

encoding largely mimic the same pattern, with the minimal set slightly underperforming

on the test set, and with {s0,1, b0} producing the best accuracy of (93.64/91.70).
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Dev Test

UAS LAS UAS LAS

This work

Forward Encoding + 8 feats. + word/pos embeddings 93.45 91.09 93.06 90.93

Forward Encoding + 4 feats. + positional vectors 93.84 91.58 93.64 91.70

Forward Encoding + 2 feats. + positional vectors 93.85 91.69 93.48 91.51

Bi-directional Encoding + 8 feats. + word/pos embeddings 93.28 91.09 93.04 91.01

Bi-directional Encoding + 4 feats. + positional vectors 94.16 92.09 93.91 92.03

Bi-directional Encoding + 2 feats. + positional vectors 93.93 92.01 93.81 91.94

Recursive Tree

Le and Zuidema (2014) N/A N/A 93.84 91.51

Dyer et al. (2015) 93.2 90.9 93.1 90.9

Kiperwasser and Goldberg (2016a) 93.3 90.8 93.0 90.9

Ballesteros et al. (2016) N/A N/A 93.56 91.42

Feed Forward

Chen and Manning (2014) 92.00 89.70 91.80 89.60

Weiss et al. (2015) N/A N/A 93.99 92.05

Andor et al. (2016) 94.38 92.17 94.61 92.79

Bi-LSTM positional representation

Cross and Huang (2016) 93.67 91.48 93.42 91.36

Kiperwasser and Goldberg (2016b) 93.8 91.5 93.9 91.9

Shi et al. (2017) 93.92 N/A 94.53 N/A

Table 6.4: Dev and test set scores on WSJ (SD) for some of the highest scoring Transition-
based Dependency Parsers in current literature. Positional vectors refer to the bi-LSTM
vector representation used for hv, and word/pos embeddings refers to the concatenation
of these vectors to represent hv. 8 feats. refers to the use of the top 4 items on the stack
and buffer, 2 feats. refers to the use of the top 2 items on the stack.

Other experiments An intuitive addition to the representation of a subtree as a

sequence is to include the dependency label. This surprisingly harmed results by up to 1%

across all encoding mechanisms. Additionally, we experimented with adding a separate

ending tag at the end of the sequence, which did not have any statistically significant

impact on the final accuracy.

6.6 Discussion

Our main comparisons have been with the work of Kiperwasser and Goldberg (2016a).

The former uses a bottom up recursive approach to build a tree representation as well,
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but separates the sequence of children into a left and a right sequence, with the head

itself being the start of both sequences, and the final representation of the subtree being a

concatenation of the output of both sequences. As in our work, Kiperwasser and Goldberg

(2016a) use bi-LSTM vectors to represent words being input to the encoding LSTM. We

note that in the case of dependents that are leaf nodes in the dependency tree, the

representation of Kiperwasser and Goldberg (2016a) models the left sequence backwards

and the right sequence forwards, and leaves no way to model information considering the

entire set of dependents.

We also compare our results with Dyer et al. (2015), who uses a bottom encoding to

represent words on the stack, and then uses a stack-LSTM to represent the stack and

buffer. The main point of interest here is a recursive composition function (not to be

confused with that of Kuncoro et al. (2016a), which was the basis for our Compositional

encoding in Section 6.3.3). This method encodes a (head, relation, dependent) tuple, and

represents heads with multiple dependents by reapplying the composition function with

the previous output as the head. The dependents are encoded into this representation

as they are added to the tree, which again means an unordered representation of depen-

dents. Our models suffered a drop in accuracy when we used an unordered sequence of

dependents, which could be an explanation for the 1% difference in accuracy scores.

Finally in the Recursive tree encoding category, our results are comparable with those

of Le and Zuidema (2014), who use a tree representation for parser re-ranking by scoring

a k-best list of parses.

The performance of RLTs show a considerable ability to encode structural information

into a single dense vector. This ability is highlighted when comparing with Weiss et al.

(2015), where the resulting accuracy scores are comparable but only with the use of a

structured perceptron. Similarly, the scores of Kiperwasser and Goldberg (2016b) improve

by using structural features in addition to the initial set of {s0−2, b0}, with the left and

right-most modifiers of the first 3 and the left-most modifier of the last, for a total of 11

positional features. In both of these cases the stack and buffer features are similar, with
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RLTs showing an ability to implicitly encode useful structural features in the final tree

vector τ .

Additionally RLTs gain much from the use of positional vectors as the base represen-

tation v. The structure of RLTs predictably is not capable of modelling the sequential

position of a word in its sentence, but it can retain the information modelled by the

bi-LSTM representation fed into it. This can be seen in the very similar accuracies of

the different feature sets for both Forward and Bi-directional encoding. We note that

Bi-directional encoding offers no benefit over Forward encoding when embedding vectors

are used for v, but are seemingly capable of extracting more information from positional

vectors.

We observe that the accuracy of the RLTs remains largely stable despite the removal

of all buffer features. We speculate that this is a consequence of 2 properties of our

model. The first is our use of the bi-LSTM feature representation, which allows the top

of the stack to also encode information from the following words in the sentence. This

alone would possibly not be enough, since the front of the buffer might not be the word

right after the top of the stack in the sentence. This could indicate the success of our

prioritisation of LA decisions during train time, allowing the Arc-Standard system to

approximate the strict behaviour of Arc-Hybrid.

Finally, our model produces competitive results with a minimal feature set that, to the

best of our knowledge, has not yet been achieved for Arc-Standard, but has been achieved

for Arc-Eager and Arc-Hybrid by Shi et al. (2017). A key difference is that our minimal

features set consisted of the top 2 items on the stack, while Shi et al. (2017) used the first

items from the stack and buffer, which did not work for Arc-Standard. This difference

could be due to the different definitions of the LA transition in particular which use the

front of the buffer as head, while Arc-Standard limits all transition effects to the stack.

Previously Shi et al. (2017) used the minimal features achieved for other parsing sys-

tems in the dynamic programming decoders of Huang and Sagae (2010a) and Kuhlmann

et al. (2011a). This approach was too expensive to perform for the smallest Arc-Standard
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feature set published by Cross and Huang (2016), but would now be possible.

Our results remain behind those of Andor et al. (2016) and Shi et al. (2017), both of

whom used global loss function, in addition to the latter’s exact decoding. This change

easily integrates with our approach and is left for future work.

6.7 Conclusion & Future Work

In this chapter we proposed a recursive tree architecture capable of modeling both subtrees

and whole dependency trees. This method exploits the ability of deep learning to model

combinations of features as needed in dense vectors, moving further away from feature

selection to more expressive architectures.

We have shown the extent to which this approach is capable of encoding wide ranging

relevant features, managing to produce competitive results with a minimal feature set for

Arc-Standard.

Furthermore, we believe this architecture is potentially useful for other applications as

well, including question answering, sentence similarity, and natural language generation.

This in addition to being applicable to other techniques that improve dependency parsing,

such as the reranking approach demonstrated by Le and Zuidema (2014). This is left for

future work.
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CHAPTER 7

CONCLUSION

In this thesis we have explored different ways in which Deep Learning is applied to the task

of Transition-based dependency parsing. Our work has included both simple architectures

that produce strong results, as well as more complex feature representation methods.

In chapter 4 we showed how using LSTMs instead of the feed forward layer in the

basic Chen and Manning (2014) model can increase its accuracy beyond that of much

larger models. In addition we proposed a method of initialisation for RNNs that was

capable of combining the immediate relationship between a configuration and a transition,

as captured by a pre-trained feed forward network, with the useful sequence modelling

abilities of an RNN.

Our results showed an improvement for both LSTMs and Elman networks, and was

successful both with the use of external embeddings and without. This two-stage training

method is potentially also applicable to other learning tasks, where both a feed forward

network and an RNN-based network can be trained.

Our investigation into the best structure for a dependency parsing model provided

some interesting insights. Based on the results of our experiments in chapter 5, Hier-

archical classification (Cross and Huang, 2016) appears to be the best structure for a

neural network-based parser so far. Our success in training a dependency parser and

a dependency labeller separately opens up possibilities for alternative training methods,

especially where improving the accuracy of labelling is concerned.
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We would like to emphasise that both the observation of the usefulness of Hierarchi-

cal classification and our separately trained parser and labeller contrast with a notable

direction in literature towards more joint learning for both neural network-based models

and non-neural network-based models. Examples of this include joint dependency pars-

ing and part-of-speech tagging (Alberti et al., 2015; Bohnet and Nivre, 2012), and joint

syntactic-semantic parsing (Swayamdipta et al., 2016; Henderson et al., 2013; Björkelund

et al., 2010). Yet Hierarchical classification features in some of the highest accuracy neu-

ral network-based dependency parsers in current literature (Kiperwasser and Goldberg,

2016b; Shi et al., 2017).

Moreover, both our hierarchical and separately trained models achieve competitive

results, that are only surpassed by globally trained models. Exluding the latter method,

the parsers built in chapter 5 are the most accurate transition-based dependency parsers

to date.

We explored feature representation for a dependency parser in chapter 6. We proposed

a novel method for representing both subtrees and whole dependency trees with a Recur-

sive LSTM Tree. This method of representation also proved capable of incorporating the

representation capabilities of a sequential bi-LSTM layer, meaning that at any node in

the tree, the resulting dense vector represents both the structural features of the word,

but also the positional features of that word in its sentence.

Our proposed Recursive LSTM Trees outperformed other bottom up tree representa-

tion techniques by a substantial margin, and also managed to surpass other methods of

tree representation, making it, to our knowledge, the highest performing tree representa-

tion mechanism in current literature.

Finally, we found that the representational abilities of Recursive LSTM Trees enabled

our Arc-Standard parser to train successfully with a minimal feature set of only the top

two items on the stack. This feature set is smaller than that asserted by Cross and Huang

(2016) and Shi et al. (2017) in their work for Arc-Standard, and is the same size as the

minimal feature sets required for other parsing strategies as found by Shi et al. (2017).
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7.1 Thesis Question Revisited

Here we consider how the work in this thesis addresses the Thesis Questions set out in

Section 1.2.

1. Does the configuration of a parser at one point in the parsing process hold informa-

tion that is useful to making transitions later in the parsing sequence?

The experiments in Chapter 4 indicate that the answer is yes, but only to a limited

extent. Our experiments show that if all other factors are kept unchanged, then

LSTMs are the only type of RNNs that are capable of extracting information from

the parser configuration in a way that benefits both the decision being made for

that configuration and for future decisions as well.

Our 2-stage initialisation method shows that learning to optimise for both current

and future decisions simultaneously can lead to worse results, but learning them

separately improves both an already successfull LSTM-based network, and propels

a previously unsuccessful Elman network to perform even better than the baseline

architecture.

2. What is the best structure for the classification task? How does this influence the

architecture of the neural networks used?

We confirmed that Hierarchical classification, independently proposed by Cross and

Huang (2016) and Kiperwasser and Goldberg (2016b), produced the best results

despite the trend towards more joint task learning in other areas of literature. We

applied this structure to different neural network architectures in Chapter 5, and

attempted to devise finer grained versions of this approach, which ultimately did

not produced better results than Hierarchical classification.

Surprisingly, our experiments also showed that dependency parsing can be learnt
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independent of the dependency labelling task, and still produce accuracies matching

the original joint model of Chen and Manning (2014), and enhanced versions of it.

While this approach does not produce better results than Hierarchical classification,

it has interesting implications for dependency labelling, and is a potential starting

point towards closing the ever present gap between Unlabelled Attachment accuracy,

and Labelled Attachment accuracy. Exploring this aspect further is left for future

work.

3. Given deep learning’s ability to learn important features and combinations from

context, how can this ability be used to increase the expressiveness of features?

And if this is possible, does this expressivness hold with fewer features?

The Recursive LSTM Trees proposed in Chapter 6 show an ability to model hierar-

chies in a contextually aware manner. This can be seen in their ability to provide

rich features to parsers relying solely on representations from the stack and buffer,

eliminating the need for structural features, such as left-most and right-most child,

since they are already encoded by our approach into the same dense vector that

represents the root of the tree.

The principle behind our solution stated simply is to reorganise a structure as a

hierarchy of sequences. The sequences are modelled by a Recurrent element, and

the hierarchy is modelled by the Recursive application of this element. In the

case of dependency trees this translates as sequences of head-dependent pairs being

arranged according to their position in the dependency tree, with LSTMs being used

to model these sequences.

Finally, the performance of this solution also relies on the expressiveness of the

basic word vector used to represent tokens in the sentence/dependency tree. We

showed that incorporating the output of positional representation increased the

expressiveness of the resulting dense vectors to the point where a competitive parser
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could be trained with only 2 input features, further demonstrating deep learning’s

ability to learn from context given the right architecture.

7.2 Summary

In summary, this thesis has covered three key areas of the classification task for transition-

based dependency parsing, the hidden state modelled by a neural network for this task

in chapter 4, the structure of the output layer and by extension the definition of the task

itself in chapter 5, and the input layer where feature representation is the key challenge

in chapter 6.

Our contributions are also easy to integrate with each other, in addition to being able

to benefit from the key strategies on which other state-of-the-art transition-based parsers

depend, namely global training and exact decoding.

Finally, both the two-stage alternative initialisation method (Chapter 4) and Recur-

sive LSTM Trees (Chapter 6) are applicable to areas outside of parsing, and potentially

outside of NLP altogether. Our Recursive LSTM Trees in particular have the potential to

contribute to areas such as question answering, sentence similarity, and natural language

generation.
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Marco Kuhlmann, Carlos Gómez-Rodŕıguez, and Giorgio Satta. Dynamic program-

ming algorithms for transition-based dependency parsers. In Proceedings of the 49th

Annual Meeting of the Association for Computational Linguistics: Human Language

Technologies-Volume 1, pages 673–682. Association for Computational Linguistics,

2011b.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong, Chris Dyer, Graham Neubig,

and Noah A. Smith. What do recurrent neural network grammars learn about syntax?

CoRR, abs/1611.05774, 2016a.

111

http://dl.acm.org/citation.cfm?id=2002472.2002558
http://dl.acm.org/citation.cfm?id=2002472.2002558


Adhiguna Kuncoro, Yuichiro Sawai, Kevin Duh, and Yuji Matsumoto. Dependency pars-

ing with lstms: An empirical evaluation. arXiv preprint arXiv:1604.06529, 2016b.

Phong Le and Willem Zuidema. The inside-outside recursive neural network model for de-

pendency parsing. In Proceedings of the 2014 Conference on Empirical Methods in Nat-

ural Language Processing (EMNLP), pages 729–739, Doha, Qatar, October 2014. As-

sociation for Computational Linguistics. URL http://www.aclweb.org/anthology/

D14-1081.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent

networks of rectified linear units. arXiv preprint arXiv:1504.00941, 2015.
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