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ABSTRACT

The correct semantic interpretation of mathematical formulae in electronic mathematical

documents is an important prerequisite for advanced tasks such as search, accessibility

or computational processing. Especially in advanced maths, the meaning of characters

and symbols is highly domain dependent, and only limited information can be gained

from considering individual formulae and their structures. Although many approaches

have been proposed for semantic interpretation of mathematical formulae, most of them

rely on the limited semantics from maths representation languages whereas very few use

maths context as a source of information.

This thesis presents a novel approach for principal extraction of semantic information

of mathematical formulae from their context in documents. We utilise different super-

vised machine learning (SML) techniques (i.e. Linear-Chain Conditional Random Fields

(CRF), Maximum Entropy (MaxEnt) and Maximum Entropy Markov Models (MEMM)

combined with Rprop- and Rprop+ optimisation algorithms) to detect definitions of simple

and compound mathematical expressions, thereby deriving their meaning. The learning

algorithms demand annotated corpus which its development considered as one of this

thesis contributions. The corpus has been developed utilising a novel approach to extract

desired maths expressions and sub-formulae and manually annotated by two independent

annotators employing a standard measure for inter-annotation agreement. The thesis

further developed a new approach to feature representation depending on the definitions’

templates that extracted from maths documents to defeat the restraint of conventional

window-based features. All contributions were evaluated by various techniques including

employing the common metrics recall, precision, and harmonic F-measure.
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CHAPTER 1

INTRODUCTION

The correct semantic interpretation of mathematical formulae that are recognised in doc-

uments is significant in several areas such as improving the precision of systems that

translate documents into speech or other formats. It is also important in improving the

accessibility of maths documents and precision of existing maths search systems. For

instance, the formula in Equation 1.1 could be understood as f, a and b are variables, +

is the traditional addition operation, and there is an invisible multiplication between f

and the opening bracket.

f(a+ b) (1.1)

Therefore a possible interpretation of Equation 1.1 would be

f(a+ b) = f.a+ f.b (1.2)

Another possibility is that f is a function to be applied to the variable a+b. Indeed both

semantic meanings are perfectly legal, but it depends on the context or the document the

maths formula has been extracted from. Also, if we have the formula

H 6 G (1.3)

and we know that the context of this formula is in the domain of Group Theory, then we

can interpret Equation 1.3 as H is a subgroup of a group G.
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There is an unlimited number of maths symbols which have unlimited usage, and

mathematicians use them in different ways. Therefore, it is crucial to understand how

mathematicians use maths symbols and formulae and how they tend to define them. More-

over, it is noticeable and acceptable that a maths symbol is used before being precisely

declared within its context [70]. In general, when mathematicians write a document, they

tend to define some of the used maths symbols and formulae in the context and leave

some others without definitions. This usage is summarised in three possibilities:

• A maths expression is never defined within the document. This is because

the undefined maths expressions have well-known meanings either in general such

as the symbol = or in a particular maths field such as 6 which means a subgroup

of a group in the field of Group Theory.

• A maths expression is defined once within the document. This means that

the expression has a unique definition throughout the document.

• A maths expression is defined several times within the document. This

means that the definition of this expression is changing throughout the document

such as starting with a particular definition and later in the document adding some

restrictions on the initial definition. In this case, it is vital to determine the scope

of each definition of the math expression.

In recent years many approaches have been proposed for semantic interpretation of

mathematical formulae. Most of them have relied on the limited semantics from maths

representation languages in order to be used for various tasks, for example, semantical

enrichment of mathematical markup languages like producing Content MathML from Pre-

sentation MathML. However, there have been limited attempts made using maths context

as a source of semantic information.
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Our research aims to narrow the gap between what an expert mathematician can

interpret and what a machine can interpret. Therefore, we developed an approach to

determine the semantics of mathematical formulae by analysing both the mathematical

formulae and their context. To ease the start of our research, we restricted our data to

maths documents from a specific maths domain; in particular, Elementary Number The-

ory. Nevertheless, this restriction could be released afterwards to extend the research.

In this thesis, a novel approach is proposed for extracting semantic information from

maths context by adapting supervised machine learning; in particular, statistical learning

algorithms. In our approach, the maths context information is used to distinguish and

extract the defined maths formulae within a document alongside their definitions. We

demonstrate our approach for building MathExtractor, a tool to extract the desired maths

expression depending on their properties such as type, position and font. Moreover,

we present our approach to build a gold standard corpus (GSC) that required by the

statistical algorithms. Alongside the research, all the contributions were evaluated both

quantitatively and qualitatively employing different techniques.

1.1 The scientific questions

In this thesis I address the following scientific questions:

• How can the maths formulae be recognised and extracted from the XML format of

documents depending on maths formulae properties?

• How can one extract semantic information for a particular mathematical formula

from the context information?

• How can one adapt supervised machine learning techniques for text analyses in the

presence of mathematical formulae?

• Which probabilistic model (i.e. classifier) is the most efficient for extracting the

3



defined maths formulae with their definitions from maths documents?

• What are the instructive features that can be obtained from mathematical docu-

ments to be utilised by the probabilistic model?

1.2 Contributions

A summary of the contributions of this thesis is as follows:

1. Describing a novel approach for developing MathExtractor, a tool that extracts

mathematical formulae from the XML format of the documents depending on for-

mulae properties such as type, position and font.

2. Demonstrating the possibility of adapting the supervised machine learning tech-

niques for text analyses in the presence of mathematical formulae by abstracting

mathematical documents from maths formulae and replacing them with unique IDs.

3. Demonstrating a novel approach for extracting the semantic information for math-

ematical formulae from the context information by adapting supervised machine

learning techniques; in particular, statistical learning algorithms. I apply three

classifiers; Maximum Entropy Markov Models (MEMM), Maximum Entropy (Max-

Ent) and Linear-Chain Conditional Random Fields (CRF) combined with Rprop-

and Rprop+ optimisation algorithms, to extract semantic information from maths

context. I evaluate and compare their performance to investigate the sufficient one

among them for our task.

4. Developing a manually-created gold standard corpus (GSC), which its documents

are mathematical that harvested from the ArXive.

5. Developed a new approach for feature representation relying on the definitions’ tem-

plates that extracted from maths documents to defeat the restraint of conventional

window-based features; and therefore, enhancing the performance of the classifier.
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6. Describing the extraction of basic semantic information such as font, maths style

and the syntactic and semantic roles from the representation of maths formulae;

which is the internal representation of LATEXML.

1.3 Publications

Part of this thesis is based on published work in conferences and workshops as follows:

• Almomen, R. and Sorge, V., Semantic Understanding of Mathematical Formulae

in Documents. In Automated Reasoning Workshop 2015 Bridging the Gap between

Theory and Practice ARW 2015.

In Writing Papers:

• Almomen, R. and Sorge, V., A Gold Standard Corpus for Mathematical Documents.

In Writing.

• Almomen, R., Alotaibi, Fahd S. and Sorge, V., Towards Context-based Extraction

of Mathematical Formulae. In Writing.

1.4 Thesis Overview

This thesis consists of four parts which include eight chapters (not including the intro-

duction). The thesis is structured as follows:

Part I: Background

Chapter 2 provides an overview of different markup languages for representing mathe-

matical formulae. Also, it provides an overview of some tools for different tasks: LATEX to

XML converter and annotation tool. It is presenting an overview of information extrac-

tion (IE) methods and different approaches for evaluating IE systems.

Chapter 3 provides an overview of some research that related to the work presented in

this thesis.
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Part II: Resource Creation

Chapter 4 provides an overview of our system architecture. It demonstrates the method-

ology for extracting maths expressions from the documents. Also, it demonstrates our

approach to build a gold standard corpus using mathematical documents.

Chapter 5 provides an overview of our implementation methodology.

Part III: Mathematical Semantic Recognition

Chapter 6 presents our approach for extracting the semantic information of maths formu-

lae from two different sources; the representation of maths formulae and maths context

where we utilised supervised machine learning techniques.

Chapter 7 discuss our approach to improve the extraction of maths definitions from their

context by enhancing the performance of the classifiers.

Part IV: Evaluation

Chapter 8 presents different quantitative and qualitative evaluation techniques for each

stage of our approach.

Chapter 9 concludes the thesis and presents some future work to improve and extend our

research.
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Part I

Background
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CHAPTER 2

RESEARCH BACKGROUND

In this chapter, we provide an overview of different markup languages concerning repre-

senting mathematical formulae and some tools for different tasks: LATEX to XML converter

and annotation tool. We also provide an overview of information extraction methods and

different approaches for evaluating IE systems. Besides, we discuss building a gold stan-

dard corpus.

2.1 Representation of Mathematics

A mathematical markup language is computer documentation that represents mathemat-

ical expressions. There are different mathematical representation markup languages; as

some of them are software dependent relying on particular semantic interpretation systems

such as computer algebra systems. On the other hand, some general markup languages

are primarily concerned with the syntax side such as LATEX and Presentation MathML.

Others are more concerned with the semantic side, such as Content MathML, OpenMath

and the internal representation of LATEXML for maths formulae.

2.1.1 Syntactic Representation

There are some markup languages such as LATEX and Presentation MathML that are

concerned with the layout structures of mathematical formulae. Therefore, they illustrate

8



Table 2.1: Examples of presentation MathML
b+ 2 I2 =

∫
x dx

<math >

<mrow >

<mi >b</mi>

<mo >+</mo>

<mn >2</mn>

</mrow >

</math >

<math >

<mrow >

<mrow >

<msup >

<mi >I</mi>

<mn >2</mn>

</msup >

</mrow >

<mo >=</mo>

<mrow >

<msubsup >

<mo >&int;</mo >

</msubsup >

<mrow >

<mi >x</mi>

<mo >&dd;</mo >

<mi >x</mi>

</mrow >

</mrow >

</mrow >

</math >

how mathematical formulae appear regarding characters used, size, colour and the precise

positioning of each character [53, 9].

Such markup languages are useful in case the display of maths formulae is an important

issue such as using maths on a web page for reading only. [69].

For instance, Equation 2.1 and Equation 2.2 would be written in Presentation MathML

as shown in Table 2.1

b+ 2 (2.1)

I2 =

∫
x dx (2.2)

However, this representation of Equation 2.2 is read as: I, second power, equals, integral

sign, x, d, x. So Presentation MathML illustrates only the way of presenting the formula

rather than its actual meaning.
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On the other hand, LATEX is the typesetting system that is the most popular and

powerful in the scientific world. It assists the user in rendering mathematical formulae to

a high level of typographic [26, 2]. However, Equation 2.1 and Equation 2.2 are written

in LATEX respectively as:

\[ b+ 2 \]

and

\[ I ∧ 2 = \int x \, \mathrm{d}x \]

2.1.2 Semantic Representation

Several markup languages represent mathematical formulae and concern themselves more

with the semantic side. This sub-section presents a summary of the three primary ex-

amples, Content MathML, OpenMath and the internal representation of LATEXML for

mathematical expressions.

2.1.2.1 Content MathML

Content MathML is a general markup language that represents mathematical formulae

according to their logical meaning [69]. Its main goal is as a bridge between the layout

of formulae and their semantics [68]. Content MathML is useful when the mathematical

meaning is an important issue such as displaying maths expressions on a web page where

users can copy and past these expressions [69]. The markup language is composed of

approximately 140 elements and 12 attributes. Table 2.2 shows the content MathML

representation of the Equation 2.1 and Equation 2.2. Indeed Equation 2.2 is read as I

to the second power is equal to the integral of x with respect to x. Content MathML

successfully conserves the semantics of math formulae.

2.1.2.2 OpenMath

OpenMath is a general markup language that represents mathematical formulae with

their semantics [12]. “OpenMath is aimed at encoding the semantics of mathematics and,
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Table 2.2: Examples of content MathML
b+ 2 I2 =

∫
x dx

<math >

<apply >

<plus/>

<ci >b</ci>

<cn >2</cn>

</apply >

</math >

<math >

<apply >

<eq/>

<apply >

<power/>

<ci >I</ci>

<cn >2</cn>

</apply >

<apply >

<int/>

<bvar >

<ci >x</ci>

</bvar >

<ci >x</ci>

</apply >

</apply >

</math >

via its extensible Content Dictionary mechanism, may be applied to arbitrary areas of

mathematics without the need for any central agreement to change the language” [64].

Equation 2.1 is written in OpenMath as:

<OMOBJ>

<OMA>

<OMS cd = ” a r i t h 1 ” name=”plus”/>

<OMV name=”b”/>

<OMI>2</OMI>

</OMA>

</OMOBJ>

2.1.2.3 Internal Representation of LATEXML

LATEXML is the LATEX to XML/HTML/MathML converter [43]. By using LATEXML to

convert the mathematical documents from LATEX format into XML format, we can have

the maths expressions represented in Presentation MathML or the internal representation
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of LATEXML format which is concern about the semantics of these expressions.

In the internal format of LATEXML, all the representation of formula is stored in a Math

element which serves as the primary repository for this representation. The Math element

has an attribute ‘mode’ that determine whether the formula to be inline or on display.

However, the element Math is looked at as an inline maths, and if the expression should

be in a display mode, then Math is contained in another element such as ‘equation’ or

‘equationgroup’. Figure 4.2 and Figure 2.1 show examples of using Math element as inline

and as in display mode contains in an equation tag, respectively.

The representation of sub-expressions are given different tags. In the following list we

show the main tags:

• XMApp: The tag to presents “the generalized application of some function or

operator to arguments” [4]. The first child node presents the operator while the rest

nodes present the arguments.

• XMTok: The tag to provide information about a mathematical symbol which

possibly includes text [4].

• XMDual: Integrates the first child which is the content’s representation, and the

second child which is the presentation [4].

• XMWrap: Confirm the predictable subexpression’s role or type which might be

hard to determine its intended meaning [4].

Each of these tags may have extra attributes such as name, font and style for the tag

XMTok.
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Figure 2.1: I0 ≥ xπ−1(n)− 2k[49] in LATEXML representation format

<equation xml:id="S3.Ex7">

<Math mode=" display" xml:id="S3.Ex7.m1" tex="I_{0}\ geq x{\

pi}^{ -1}(n) -2^{k}." text="I _ 0 &gt;= x * pi ^ (- 1) * n

- 2 ^ k">

<XMath >

<XMApp punctuation =".">

<XMTok meaning ="greater -than -or-equals" name="geq"

role="RELOP">?</XMTok >

<XMApp >

<XMTok role=" SUBSCRIPTOP" scriptpos =" post2"/>

<XMTok role=" UNKNOWN" font=" italic">I</XMTok >

<XMTok meaning ="0" role=" NUMBER">0</XMTok >

</XMApp >

<XMApp >

<XMTok meaning ="minus" role=" ADDOP">-</XMTok >

<XMApp >

<XMTok meaning ="times" role=" MULOP">?</XMTok >

<XMTok role=" UNKNOWN" font=" italic">x</XMTok >

<XMApp >

<XMTok role=" SUPERSCRIPTOP" scriptpos =" post2"/>

<XMTok name="pi" possibleFunction ="yes" role="

UNKNOWN" font=" italic">?</XMTok >

<XMApp >

<XMTok meaning ="minus" role=" ADDOP">-</XMTok >

<XMTok meaning ="1" role=" NUMBER">1</XMTok >

</XMApp >

</XMApp >

<XMTok close =")" open ="(" role=" UNKNOWN" font="

italic">n</XMTok >

</XMApp >

<XMApp >

<XMTok role=" SUPERSCRIPTOP" scriptpos =" post2"/>

<XMTok meaning ="2" role=" NUMBER">2</XMTok >

<XMTok role=" UNKNOWN" font=" italic">k</XMTok >

</XMApp >

</XMApp >

</XMApp >

</XMath >

</Math >

</equation >
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2.2 Information Extraction

2.2.1 An Overview of IE

Information extraction is defined by Moens [44] as “the identification, and consequent

or concurrent classification and structuring into semantic classes, of specific information

found in unstructured data sources, such as natural language text, making the informa-

tion more suitable for information processing tasks”.

This definition means that the IE is utilised to obtain information from unstructured

data [59]. Unstructured data refers to the information that presented in a format which

is hard for a computer to decide its intended meaning instantly such as text, images,

audio and video. Our research is concerned about IE from a text as unstructured data;

therefore, the other type of unstructured data will be disregarded in this section.

An IE system is employing a group of obtained patterns that formulated manually or

learned automatically to get information from text and express it in a structured for-

mat [44]. The most common IE tasks incorporate named entity recognition, i.e. identify-

ing already defined types of named entities such as organisations, person names, date, time

and locations [51]. Other tasks are event extraction; which detect events and their details

and constructions, and relation extraction which recognises the relations between entities

in the text [51]. Besides, some domain dependent tasks are popular such as extracting sci-

entific information from publications, extracting the indications and treatments of disease

from patient records [44].

2.2.2 Approaches to IE

The approaches to information extraction are categorised into two main streams: hand-

crafted rule-based IE and machine learning (ML) based IE [59]. The ML is categorised

into supervised, semi-supervised and unsupervised ML [73]. The approaches that used in

the course of this research are reviewed in this section.
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2.2.2.1 Handcrafted Rule-Based IE

Handcrafted rule-based systems concern about formulating and implementing syntac-

tic extraction patterns and employ available information to recognise the targeted en-

tities [73]. For instance, a rule for finding emails could be “an email is three list of

characters X, Y and Z that have an ‘@’ between X and Y and a ‘.’ between Y and Z. For

example, X could be randa, Y could be gmail and Z could be com; therefore the email

‘randa@gmail.com’ can be identified by such a rule.

In the literature, some known rule-based systems that recognise names entities using

cautiously handcrafted regular expressions such as FASTUS [7]. Also, some rule-based

systems extract candidate entities using substantial lookup lists of names of entities and

grammar rules such as LaSIE II [31].

The rule-based IE systems are functional for fields that have a particular formalism for

the expressions’ structures [73]. The biology is an example of such fields where there are

some related works done as in [20, 56].

Nevertheless, the crucial shortcoming of handcrafted rule-based systems is their excessive

cost as they require experts in the domain, in the language and in programming as well

to recognise and extract patterns manually [44]. Consequently, the researchers’ attention

has switched to machine learning approaches.

2.2.2.2 Machine-learning Based IE

Machine Learning is defined as “the field of study that gives computers the ability to

learn without being explicitly programmed” [58]. There are three types of approaches

to machine learning (ML); supervised, semi-supervised (SSL) and unsupervised learning.

The supervised machine learning (SML) uses training (i.e. labelled) data in order to build

a trained model and use it to predict labels for unseen data. Whereas the unsupervised

ML determines patterns and essential structures in new (i.e. unseen) data without a need

for training data but using a descriptive model. Thus, the SSL is learning by using both

labelled data and unlabeled data.
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Because our focus is on using an SML in an IE task, we will discuss the concept of SML

in more detailed in this section. Supervised machine learning has two types of techniques:

• Classification: which is aiming at the discrete data such as whether a word is a

noun or not.

• Regression: which is aiming at the data that changing continually such as tem-

perature.

The problem of classification in SML can be solved by using a variety of algorithms

such as logic-based algorithms and statistical learning algorithms [34]. Researchers have

handled IE employing SML as the sequence tagging has been approached in part of speech

(POS) and text chunking. It is essential to choose the appropriate type of algorithm

depending on the task and requirement such as speed, memory usage and indeed the

domain specifications as one of the constituents that influence the execution of an SML

system is the probabilistic model.

2.2.2.2.1 Probabilistic Models

In the literature, many various probabilistic models have been used to develop IE systems

such as Support Vector Machine, Maximum Entropy Models (MaxEnt), Hidden Markov

Models, Conditional Random Fields (CRF), Maximum Entropy Markov Models (MEMM)

and Decision Rules and Trees.

• Maximum Entropy (MaxEnt)

MaxEnt is a discriminative model that categorise a character or a chain of characters

into a class by integrating an extensive range of evidence [10]. Suppose an input

sequence of words w = (w1, w2, ..., wn) and a defined set of m tags t = (t1, t2, ..., tm).

The mission is to explore the most functional sequence of tags with the highest

conditional probability between the possible tag sequences. The highest conditional

probability appointed to tag ti is regarded as a required class that wi belongs to

statistically;

ti = arg max p(tm1 |wi)
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The constraints that imposed by the training set on the model are symbolised by

the state feature functions that depend on the current state only and defined as:

fj(wi, ti) =


1, if (wi, ti) satisfies a certain constraint

0, otherwise

(2.3)

The MaxEnt sequence labelling formula is defined as:

p(ti|wi) =
1

Z
exp

(
k∑
j=1

λjfj(wi, ti)

)
, 0 < λj <∞

Where λj are variables that customised to model the observed statistics

and Z is a normalising constant such that:

Z =
∑
y

exp

(
k∑
j=1

λjfj(wi, ti)

)

• Maximum Entropy Markov Models (MEMM)

MEMM is a probabilistic model that used for different text-related tasks such as

information extraction and determining semantic role tags [10], yet it is performing

better than the MaxEnt on such tasks [41]. MEMM is permitting symbolising obser-

vations as arbitrary overlapping features and determining the restricted possibility

of state sequences given observation sequences, i.e. it is “a conditional model that

represents the probability of reaching a state given an observation and the previous

state” [41].

Suppose S is a set of states such that s and s′ are current and previous state ∈ S;

respectively, and O is a set of possible observations. Then for each pair < a, s >

where a is a binary feature of the observation, the transition feature functions that
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depend on the previous and current states are defined as:

f<a,s>(oi, si) =


1, if a(oi) is true and s = si

0, otherwise

The MEMM sequence labelling formula is defined as:

ps′(s|o) =
1

Z(o, s′)
exp

(∑
k

λkfk(o, s)

)
,

where k =< a, s >, λk are parameterised features, and Z(o, s′) is a normalising

constant which makes the distribution sum to one.

• Linear-Chain Conditional Random Fields (CRF)

CRF is the state-of-the-art for sequence labelling tasks [36]. It is a discriminative

model that offers a flexible and robust technique to employ arbitrary sets of fea-

tures while dependent on the surrounding words’ tags [59]. Given a sequence of

observations, a CRF determines the probabilities of likely tag concatenation [36].

Besides the previously defined state feature function Equation 2.3, transition feature

function; which rely on the previous and current states is defined as:

f(yi−1, yi, x, i) =


1, if yi−1 , yi and x satisfies certain constraints

0, otherwise

Where x is an input sequence, i an input position and yi−1 and yi are class tags.

Thus, the CRF is defined as:

p(y|x) =
1

Z
exp

(
k∑
j=1

n∑
i=1

λjfj(yi−1, yi, x, i)

)
,
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where λj are parameterised features and Z is a normalising constant such that:

Z =
∑
y

exp

(
k∑
j=1

n∑
i=1

λjfj(yi−1, yi, x, i)

)

2.2.2.2.2 Optimisation Algorithms

The backpropagation algorithm that applies the principle of gradient descent is the

learning rule of the widely prevalent supervised learning systems [57].

Adjusting gradient-based algorithms with an independent step-sizes attempt to defeat

the complexity of choosing the proper learning rates. This achieved by constraining the

weight update for all connections in the course of the learning progress to reduce the

oscillations to the minimum and to increase the update step-size to its maximum [32].

Let E be an arbitrary error measure which is differentiable with respect to the weights

and wij be the weight from neuron j to neuron i. During each learning iteration, the

weights are specified by:

w
(t+1)
ij = w

(t)
ij + ∆w

(t)
ij

The learning algorithm halts as particular ending specifications are met.

Resilient backpropagation (Rprop) is an efficient learning algorithm in which the ori-

entation of weight update is established on the sign of the partial derivative ∂E/∂wij ;

where a “step-size ∆ij, i.e., the update amount of a weight wij, is adapted for each weight

individually” [32].

Rprop algorithm proposed by Riedmiller and Braun is a robust, precise and rapid algo-

rithm in contrast with different supervised learning approaches [32].

The principal distinction about Rprop systems is that the step-sizes are not influenced

by the partial derivatives’ absolute value does not influence the step-sizes. Therefore, the

step-sizes are calculated as follow:

∆w
(t)
ij = −sign

(
∂E

∂wij

(t)
)

∆
(t)
ij
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Thus, the step-size ∆ij is modified for each weight wij as:

∆
(t)
ij =


min(η+∆

(t−1)
ij ,∆max), if ∂E

∂wij

(t−1) ∂E
∂wij

(t)
> 0

max(η−∆
(t−1)
ij ,∆min), if ∂E

∂wij

(t−1) ∂E
∂wij

(t)
< 0

∆
(t−1)
ij , otherwise

(2.4)

There are some variations of the Rprop algorithm such as Rprop+ [55] and Rprop- [54].

• Rprop+:

Its idea is enhancing network training (weight-backtracking); in other words, for

some or the whole weights, retracting a prior update. Following modifying the

step-sizes in line with Equation 2.4, the weight updates wij are specified. The two

recognised possibilities are:

– if there is no difference in the sign of the partial derivative, then a regular

weight update is carried out as:

if
∂E

∂wij

(t−1) ∂E

∂wij

(t)

≥ 0 then ∆w
(t)
ij = −sign

(
∂E

∂wij

(t)
)

∆
(t)
ij (2.5)

– If the sign of the partial derivative has changed, the former weight update is

reverted:

if
∂E

∂wij

(t−1) ∂E

∂wij

(t)

< 0 then

{
∆w

(t)
ij = −∆w

(t−1)
ij ;

∂E

∂wij

(t)

= 0

}

• Rprop-:

It is a Rprop without weight-backtracking. In other words, The weight-backtracking

is excluded and the right-hand side of Equation 2.5 is employed in all situations.

Therefore, keeping the previous weight updates is no longer needed.

To sum up, Rprop+ and Rprop- algorithms employ the gradient to detect a right search

path, but not to select the action to make in that path. Moreover, they do not require
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parameter tuning to accomplish great predictions [55, 52].

2.2.2.3 Hybrid Based IE

In hybrid approaches, different systems are integrated into a single model. The objec-

tive of such approaches is to take advantage of the integrated systems in addition to

the possibility of vanishing disadvantages to some extent by the usefulness [28]. For in-

stance, the expert knowledge deficiency in the rule-based may clear up to some extent by

integrating a statistical approach. In general, the prosperous rule-based models mostly

comprise a hybrid model of handcrafted rule-based and automated systems [59]. The

systems in [13, 18, 19, 33] are examples of hybrid models.

The hybrid approach in this thesis refers to a model that employs handcrafted rules to

extract patterns from a text, then convey these patterns into a statistical model. The two

concerns that have significant consequences on this approach is that the rules extraction

task demands linguistic knowledge in the targeted domain; in addition to generalising the

rules to evade the issue of overfitting.

2.2.3 Gold Standard Corpora

Gold Standard Corpora is annotated data with a standard level of reliability [27]. Having

Gold Standard Corpora (GSC) is an essential requirement for a classifier [23, 27, 73].

This annotated data is enriched text with the needed information which can not replace

the original text [23] and stands like a model that the machine learning algorithms are

following to be trained and tested [73]. The annotation should be carried out by field

experts to assure the valuable standard that will be learnt from [73]. Different experts are

producing different annotations, as research shows [30]. Therefore, it is crucial to assess

the reliability of annotations that are made by two or more annotators using the inter-

annotator agreement. There are many different methods to measure the inter-annotator

agreement such as F-measure [29] and Kappa statistic (κ-statistic) [14]. κ-statistic takes

into consideration the possibility of agreement occurring by chance between annotators
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and can be calculated as:

κ =
P (A)− P (E)

1− P (E)
(2.6)

where P (A) is the number of actual agreement and P (E) is the number of chance

agreements [14].

Although Hripcsak and Rothschild [29] claimed that F-measure could be used to measure

the inter-annotator agreement, it is known in the literature to measure a test’s accuracy

as illustrated in Section 2.2.5.

2.2.4 Annotation tools

Annotation tools are needed to ease the annotation process. There are various tools which

depend on the desire annotation [17, 23]. Mainly, the annotations can be divided into two

styles [23]:

• Dynamic annotations: which is associated with the text.

• Static annotations: which is associated with a specific location in the text pages.

The dynamic annotations are functional for the tasks of IE; therefore, the static an-

notations will be neglected in this thesis. In this section, we will exhibit the dynamic

annotation tool Brat [62] which is used in our research as it is advocating structured

annotations that are necessary for tasks involving both syntactical and semantical text

properties.

Brat is “a web based structured annotation tool for text documents” [23]. It has two

simple predetermined classifications:

• Tagset: which contain the tags that can be assigned to words in the text to be

annotated.

• Relations: which is to connect the tags that are given to the words (i.e. tokens).
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For example, Figure 4.7 shows the sentence “Let Zn denote the ring of integers modulo

n.” [60] annotated in Brat. In this example, expression and definition are the tags from

tagset. The definition on the arrow is a relation from expression to a definition. Figure 4.8

is another example showing a segment of text annotated in Brat.

Brat has useful administration functionalities such as an individual address for each label

and an excellent searching tool for labelling.

2.2.5 Evaluation of IE

As a system in information extraction is built, it is essential to evaluate it to perceive

its acting in comparison with a gold standard and other available systems [44]. In the

literature, several metrics commonly used to evaluate the performance of IE systems such

as the standard metrics: accuracy, recall, precision and F-measure. These metrics are

defined as follows:

• Accuracy is “the percentage of correct predictions divided by the total number of

predictions” [34].

i.e.

A =
correct and found items + not correct and not found items

total number of predictions made
(2.7)

• Recall is the number of “relevant items that we identified” [10].

i.e.

R =
correct and found items

correct items
(2.8)

• Precision is the number of “items that we identified were relevant” [10].

i.e.

P =
correct and found items

found items
(2.9)
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• F-measure is a harmonic metric that combining both recall and precision as follows:

Fβ =
(1 + β2)PR

(β2P ) +R
(2.10)

Where β is controlling the weight of precision in this equation; i.e. setting β to be

one is allowing a balanced weight for both precision and recall.

The error in labelling is prevalently analysed using a confusion matrix mainly if the

classification task contains more than two classes [40]. The confusion matrix express for

each pair of classes <c1, c2> the number of tokens from class <c1> was incorrectly allo-

cated to class <c2> and contrariwise. Therefore, it assists in discovering the opportunity

to improve the performance of the system; by precisely determine the type of the most

frequent error in tagging. For instance, Table 2.3 shows that the IE system accomplishes

to differentiate the three classes: expression (exp), definition (def), and a first part of the

definition (p1D) while producing errors within two classes. This number of errors could

be reduced by providing different features that differentiate between def and p1D.

Table 2.3: An example of confusion matrix for a IE system that classify tokens into three
classes (i.e. exp, def, and p1D)

exp def p1D
exp 20 0 0
def 0 12 2
p1D 0 4 5
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CHAPTER 3

RELATED WORK

In order to understand mathematical content, we need to study both the mathemati-

cal formulae and their context in addition to any background knowledge. For instance,

consider the following fragment:

... Let f be a function such that f(x) = x2 + 1, x ∈ R ...

The reader can intuit the interpretation of some symbols in this formula. As + is the

standard addition, ∈ means “belong to”, = means “equals” and so on. Indeed there are

some polysemous symbols and characters such as 6 in Equation 1.3 which could be un-

derstood either by interpreting the context or from the domain of the document.

Nevertheless, recently there have been some efforts to analyse the maths formulae and

their context in order to automate the understanding of the interpretation of maths ex-

pressions, and we will discuss some of these approaches in this chapter.

3.1 Extracting Semantic and Structural Information

from Mathematical Formulae

It is possible to understand maths formulae up to a certain level by analysing the formulae

themselves without taking account of their context. One approach of doing this is by

analysing the surrounding whitespace of the sub-formula within a PDF file by using fonts

information and character spacing [8]. Nonetheless, this approach provides very limited,
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and in some cases, inaccurate semantics as it classifies maths entities into one of the

following categories as stated in [8]:

• Ord: Ordinary symbol, such as Roman or Greek letters, digits.

• Op: Large operators, such as sum or integral signs.

• Bin: Binary operator, such as plus or minus signs.

• Rel: Relational operator, such as equality or greater than signs.

• Open: Opening punctuation, such as opening brackets.

• Close: Closing punctuation, such as closing brackets.

• Punct: Other punctuation, such as commas, exclamation marks.

• Inner: Fractional expression, such as an ordinary division.

Another approach to extract semantics of maths expressions is by analysing the ex-

pressions themselves in their LATEX format to enrich their presentation MathML format

semantically [63] using some grammar rules. This approach is combining several stages;

initially, the document in LATEX format is parsed with the SGLR parser [66]. This followed

by a series of rewriting of the parse tree that maintains all the syntactical features of the

mathematical formula and then unparsing the previously constructed XML parse tree to

construct an XML document. Finally, the resulted XML document is passed into the

Mozilla tool to present it in the representation MathML format. However, this approach

is limited to a particular maths area and project, yet can be extended to other domains

or different mathematician’s writing by engineering the used grammar in a particular

way that suits the targeted project. Besides, with this approach, there are some cases

where the maths could not be treated automatically such as the case with the formula∫ ∫
·· ·
∫
f(t)(dt)n.

The method proposed by Nghiem et al. [47] aimed at enriching the presentation

MathML of maths expressions semantically to produce their content MathML format.

Their approach is incorporating automatic discovering of rules’ fragment and statistical

machine translation (SMT); where the used dataset is mathematical formulae from The

Wolfram Functions Site [5] which provides the maths formulae in Presentation MathML
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along with Content MathML format. For the evaluation, they contrast their results with

a baseline model that built utilising the SMT on the original Wolfram maths expressions

using the Translation Error Rate metric. Their utilisation of the fragment rules decreased

the error rate by 10%. However, two critical issues with this approach; that the SMT

does not fully meet the demand of the translation for long-distance reordering in addition

to the severe difficulty with translating the long and intricate math formulae.

In general, the approach of interpreting maths by analysing the expressions in isolation

from their context and domain information generates limited and sometimes inaccurate

semantic information as it uses the maths expressions alone without considering their

context and domain which carries crucial semantic information.

3.2 Extracting Semantic Information from Mathe-

matical Context

In recent years, there have been limited attempts to use mathematical context information

in order to interpret mathematical formulae. Yokoi et al. [72] presented an approach that

interpreted maths formulae utilising semantic analysis of the maths context. The dataset

is a 100 computer science papers that published by the Information Processing Society of

Japan [6]. The initial step is to convert all maths formulae that included in the dataset

into presentation MathML format. This followed by annotating the dataset manually so

that each maths expression is connected to its name and definition, where for the easiness,

the mathematical references nominees are restricted to the compound nouns only. Finally,

the maths expressions with their interpretations are recognised in three different ways as

follows:

• Baseline Model: In this experiment, the aim is to recognise phrases which refer to

maths formula’s interpretation to serve as a baseline model. Starting by parsing the

sentences that comprise desired maths formulae, then obtaining the noun phrases
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(NP) employing simple extraction rules. Subsequently, a binary classification is

employed for each NP to conclude if it is correlated to the desired maths formula

within the same sentence.

• Pattern Matching Based Approach: The objective of this approach is to illus-

trate in what way is getting the mathematical references; by some typical patterns

that connect maths formulae and their references, useful. The most common eight

patterns are obtained manually from five papers chosen from the same source of

the dataset but different from them. Finally, the obtained patterns are utilised by

a binary classifier to recognise the maths expressions with their connected NP that

identical to any of these patterns.

• Machine Learning Based Approach: In this approach, a supervised machine

learning (SVM) model is employed as a binary classifier to recognise the mathe-

matical formulae’s names and definitions following the same scheme as the pattern

matching based method to discover utilising the fundamental patterns in addition

to some linguistic information. They employed four strains of features are: the eight

previously obtained patterns, some tokens that determine the sentences’ construc-

tion to recognise the relation between NP and maths formula within the sentence,

the surrounding tokens of both the NP and maths formula and finally the depen-

dency that is connecting the NP and the expressions.

For the evaluation, they used the metrics recall, precision and F1-measure for each model.

In general, the evaluation shows that the machine learning based approach achieved higher

metrics’ values than the pattern matching based approach. The best accomplishment re-

sulted when the ML method with the dependency analysis features are employed. More-

over, they expected that their suggested approach could be usable in different languages

as a result of the way that the mathematical expressions patterns follow.

Another approach presented by Stathopoulos and Teufel [61] to automate the recog-
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nition of mathematical definitions in documents. They used the term ‘type’ to refer to a

mathematical definition and described it as “any technical term that is (a) perceived by

mathematicians to refer to mathematical objects, algebraic structures and mathematical

notions and (b) can be instantiated in the discourse in the form of a variable” [61], where

it is mostly confined as noun or prepositional phrases. Moreover, the recognised maths

definitions were used to build a dictionary that plays an important rule in several aspects

such as the mathematical information retrieval systems. In this approach, they started

by extracting the candidate maths definitions utilising the C-Value algorithm [22] which

integrates a statistical and a linguistic to recognise ‘multi-word technical terms’. Then,

the technical terms that are most probably be definitions are selected and comprised in

a dictionary of maths definitions that consist of 10601 definitions. This approach was

evaluated qualitatively employing a gold standard collection of definitions that created

by five expert mathematicians. For the task of recognising the maths definitions, they

reported 81.8% recall, 73.9% precision and 77.7% F-measure, as for the greater part judg-

ment. Also, the inter-annotator agreement was measured applying Fleiss’s Kappa [21],

which had an intermediate range as K = 0.65.

Grigore et al. [25] have proposed an approach to exploratory investigate the disam-

biguation of a particular group of mathematical formulae in maths documents. They

targeted the mathematical expressions that occur after a noun. They accumulated ‘Term

Clusters (TC)’ from OpenMath Content Dictionaries and determined the nominee tar-

get maths expressions. Then, the ‘corpus-based similarities’ were calculated for every

TC. Ultimately, each target formula was disambiguated relaying on their context and the

TCs. For the performance assessment, the metrics recall, precision, F0.5 and mean recip-

rocal rank (MRR) were used. The F0.5, which is weighing precision twice as recall, was

used as the correct disambiguation is preferable to coverage in the task of maths formula

disambiguation. Moreover, two baselines were build to be used tor the evaluation task.

The first baseline is trivial that solely allocated a random order of classes and has no
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context information. Whereas, In the second baseline, restricted context information was

employed as just the noun (NN) that occurs directly before the target maths expression

was considered as a candidate for disambiguation. As there were restricted admittance on

the baselines for the baselines, to context information, the performance of the two base-

lines was poor. Thus, despite the limited linguistic information employed in the stated

method, the results are encouraging as the lexical context being beneficial to the task.

The approach presented in [25] was extended in [71] where they aim at simple maths

expressions i.e. those with ‘high- level structure’. Discovering the semantics of mathemat-

ical formulae have been performed over three main steps: Firstly, they preprocessed the

documents and distinguished the simple math expressions. Next, the similarity between

the linguistic context of identified maths expressions and all the collections of maths terms

in the lexical resource were determined for each identified simple expression. Eventually,

a scoring function was employed to specify the simple maths expressions’ interpretation.

To determine the semantic similarity among lexical contexts, the co-occurrence statistics

were computed by applying the following: firstly, the bounded context of maths formula

that being analysis (‘local discourse’) in addition to the appropriate parts of the docu-

ment (‘global discourse’). Secondly, collections of phrases of a built lexical source. A

gold standard of maths expressions and their interpretations was produced by expert

mathematicians to be utilised for the evaluation task of interpreting maths expressions.

They employed two metrics for the evaluation measurement; precision and mean recipro-

cal rank (MRR). The estimated precision values promoted additional research, especially

with more investigation regarding the linguistic information. Moreover, the results of this

experiment confirmed that integrating the utilisation of both local and global context

performed better than the utilisation of each of them separately.

In the literature, there have been some efforts to use mathematical context informa-

tion in order to enrich mathematical markup languages such as converting Presentation
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MathML into Content MathML. Nghiem et al. [46] have presented an approach that pro-

duces Content MathML format of maths formulae while having the input maths in the

Presentation MathML format that was collected from The Wolfram Functions Site [5]

which provides different levels of categorisation for each maths formulae. Therefore, in

this approach, they do not have the actual maths context. They adapt Support Vector

Machine classifier and use the categories of Wolfram to disambiguate the content of the

identifier (mi) in the Presentation MathML. However, they claimed that if maths context

is available, it will be used in a boolean way to judge whether an identifier has assigned

a correct content or not.
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Part II

Resource Creation
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CHAPTER 4

GOLD STANDARD CORPUS GENERATION

In this chapter, we will demonstrate our approach to build a gold standard corpus which

is an essential requirement for a probabilistic model. In Section 4.1 we will provide an

overview of our approach to extract the semantic information of maths formulae from their

context. The remaining of this chapter will demonstrate the methodology to build the

gold standard corpus which includes collecting the data, extracting the maths formulae,

preparing the data and finally annotating the data.

4.1 System Architecture

The architecture diagram in Figure 4.1 shows the main components of our system which

are in three phases; building the corpus, the training phase and testing phase. In this

chapter, we will demonstrate our approach to build the GSC. Whereas, the training and

testing stages are the schemes for the experiments which will be discussed in Chapter 6.

However, each of these phases consists of several steps as follows:

4.1.1 Building the Corpus

In this phase, we built a gold standard corpus (GSC). We started from the source code of

the documents which are in LATEX format and produced annotated data with a standard

level of reliability in text format. This has been done in five stages as follows:
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Figure 4.1: System architecture
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1. Collecting the Input Data

Maths documents in the field of Elementary Number Theory are collected randomly,

and their source codes which are in LATEX format are used as the initial input.

2. Conversion into XML

The input as LATEX format is converted into XML format in which each maths

expression has a unique XML ID.

3. Maths Extraction

All maths expressions are extracted and saved into XML files to facilitate dealing

with the expressions such as accessing and editing.

4. Data Preparation

In this stage we prepared the data for the labelling, i.e. annotating stage by the

following steps:

i) Generating unique ID

A unique ID is generated for each unique maths expression. By unique expres-

sions we mean the expressions without repetitions. For example, if we have in
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a document the following expressions:

F,G, x, x+ y, x+ y, F, y + x, F,G,G, y, y, y

Then, the total number of maths expressions is 13 while the unique maths

expressions are six which are F,G, x, y, x+ y and y + x.

ii) Abstracting XML from maths

At this step, we abstract the documents in XML format from the math expres-

sions. This means each maths expression’s node in the XML files is replaced

by a node containing its XML ID together with its generated new unique ID.

iii) Abstracting XML from the tags

All the XML tags are stripped from XML files, leaving the text of the docu-

ments with maths IDs instead of the maths expressions themselves.

5. Data Annotating

The data is annotated by two expert mathematicians using a text annotation tool.

During this stage, the annotators found and labelled the expressions which are

defined in the context and determined their definitions. Also, to ensure the reliability

of the annotations, the inter-annotator agreement is measured using κ-statistic.

4.1.2 Training Phase

In this phase, we used the labelled corpus, i.e. GSC which is built in the former stage to

train a statistical classifier. This stage consists of three steps as follows:

1. Preprocessing the training data by cleaning and preparing it to be fed into the

classifier.

2. Extracting some features from the data in the step that we believe has its influence

on the prediction that is produced by the classifier.

3. Building the trained model, by learning the classifier from the training data.
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4.1.3 Testing Phase

In the testing phase, we used the trained model resulting from the former stage to create

a prediction for the testing data. This phase consists of three steps:

1. Preprocessing the testing data to make it ready to be used by the classifier.

2. Predicting the defined maths formulae and their definitions by the classifier on

unseen data (testing data).

3. Evaluating the performance of the classifier by using different metrics.

A detailed explanation is shown in Section 6.2.

4.2 Documents Collection and Conversion

The data we used is a collection of maths documents which was randomly collected from

the e-prints arXiv [3]. To ease the start of our research, we restricted the maths documents

to be in a particular maths domain; Elementary Number Theory, where this restriction

can be released afterwards. We collected ten maths documents from different authors

(Table 4.1 shows the title, authors’ names and the number of pages for each of these

documents) with a total of 108 pages (100 without the references part) consisting of 2136

sentences. The data contains a total of 4001 maths formulae with 2569 of them being

unique and 441 expressions are explicitly defined in the documents with 396 definitions.

We started from the source code of the documents which are in LATEX format to ease

converting the documents into XML format which has the advantage of usability. Using

the XML format makes it easy to process the documents as data, obtain information from

it and edit it cleanly. The documents in LATEX format are converted into XML format

using the converter LATEXML [43] (LATEXML is the LaTeX to XML/HTML/MathML

converter which is explained in Section 2.1.2.3).
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Table 4.1: The maths documents which are used to build GSC

Document’s title Author Number of pages reference
An elemetary proof of an
estimate for a number of primes
less than the product of the first
n primes

Romeo
Meštrović

9 [42]

An infinite family of
multiplicatively independent
bases of number systems in
cyclotomic number fields

Manfred
Madritsch and
Volker Ziegler

10 [38]

Construction of normal numbers
via generalized prime power
sequences

MG Madritsch
and Robert F
Tichy

13 [39]

Elementary results on the binary
quadratic form a2 + ab+ b2

Umesh P. Nair 11 [45]

Finding Almost Squares II Tsz Ho Chan 4 [16]
Generalized Brouncker’s
continued fractions and their
logarithmic derivatives

Olga Kushel 17 [35]

On Additive Combinatorics of
Permutations of Zn

Nitin Singh,
Deepak
Rajendraprasad
and L Sunil
Chandran

9 [60]

On the Average of Triangular
Numbers

Mario Catalani 7 [15]

The Period Length of Euler’s
Number e

Kurt Girstmair 11 [24]

Updating An Upper Bound Of
Erik Westzynthius

Gerhard R.
Paseman

17 [49]

4.3 Maths Formulae Extraction

Maths expressions in the XML files that are produced by LATEXML [43] have a special

format which is the presentation of LATEXML for maths as explained in Section 2.1.2.3.

The XML files have been studied carefully, which allow precise maths’ extraction. The

main issues noted are with the multiline equations. These issues are explained in detail

in Section 5.2.

We have two types of extraction as follow:
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1. Extract all maths expressions

Using a recursive function based on All math extraction algorithm; Algorithm 5.2,

which assures there is no duplicated maths. All math extraction algorithm is im-

plemented in the Python language, and the extracted maths expressions are saved

in XML format which facilitates handling the maths formulae such as accessing and

editing. A detailed explanation of All math extraction algorithm, its implementa-

tion and the format of its result will be discussed in Section 5.2.1.

2. Extract desired maths expressions

MathExtractor allows extraction of chosen maths expressions using a generic select

function, Extraction algorithm, which uses XPath algorithms to extract the inter-

esting expressions or subexpressions. Therefore, looking at maths expressions as

trees, we can identify and extract maths expressions according to what we defined

as an atomic structure which is either at leaf nodes or composite structures. In

the Extraction algorithm, a predicate is determining which maths formula is to be

extracted by using XPath functions implemented in the Python language, which

will be explained in Section 5.2. By using the right predicate, we can obtain specific

maths expressions such as accented characters like Ĥ or subscriptive expressions

like Pi. Furthermore, we can extract maths expressions depending on the attributes

of their nodes such as obtaining all maths symbols which have specific font or role.

For example, using the predicate //XMTok[text()] we extracted all single maths

symbols, i.e. atomic expressions in the form of leaf nodes; such as Z in the node

<XMTok font="blackboard"role="UNKNOWN">Z</XMTok>

Another example is the maths formula in Equation 4.1 from [38].

p̃d ≤ p̃d+1 (4.1)

This formula is represented in the XML format; which is produced by LATEXML,

as shown in Figure 4.2. Looking at its tree view in Figure 4.3 we can extract the
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atomic p̃; which is in a composite structure format of atomic, i.e. a node that has

two leaf children using the predicate:

.//*[not(*/*) and count(*) = 2]

Also, single symbols such as ∼ or p; which are leaf nodes, can be extracted by using

the predicates:

.//*[not(child::*)]

The results of applying these predicates are shown in Figure 4.4 and Figure 4.5;

respectively.

4.4 Data Preparation

At this stage, our data is documented in LATEX, and XML format and as explained in

previous sections we have all maths expressions extracted. To be able to annotate this

data we need to prepare it in a particular way that serves our need as follows:

1. Generating a unique ID for each unique maths expression

Firstly, the unique maths expressions (i.e. expressions without repetitions as ex-

plained in Section 4.1) are determined and then for each of them a unique ID is

generated. The new IDs are in the form “mathi” where i is a unique number for

each unique expression and different from its XML ID. Note that the same expres-

sion occurring in many positions within a document will have the same generated

ID but a different XML ID which allows us to link the similar expressions in later

stages.

2. Abstracting XML from Maths Expressions

The abstracting is done by replacing each maths expression with its ID which is

a combination of its generated unique ID and its original XML ID in the form of

mathi-XML ID .

3. Abstracting the XML format from its tags
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Figure 4.2: p̃d ≤ p̃d+1 in LATEXML representation format

<Math mode=" inline" xml:id="S2.p2.m8" tex="\ tilde{p}_{d}\leq\

tilde{p}_{d+1}" text ="( tilde@(p)) _ d less= (tilde@(p)) _

(d + 1)">

<XMath >

<XMApp >

<XMTok meaning ="less -than -or -equals" name="leq" role="

RELOP"> ≤</XMTok >
<XMApp >

<XMTok role=" SUBSCRIPTOP" scriptpos =" post2"/>

<XMApp >

<XMTok name="tilde" role=" OVERACCENT" stretchy ="

false">~</XMTok >

<XMTok role=" UNKNOWN" font=" italic">p</XMTok >

</XMApp >

<XMTok role=" UNKNOWN" font=" italic">d</XMTok >

</XMApp >

<XMApp >

<XMTok role=" SUBSCRIPTOP" scriptpos =" post2"/>

<XMApp >

<XMTok name="tilde" role=" OVERACCENT" stretchy ="

false">~</XMTok >

<XMTok role=" UNKNOWN" font=" italic">p</XMTok >

</XMApp >

<XMApp >

<XMTok meaning ="plus" role=" ADDOP">+</XMTok >

<XMTok role=" UNKNOWN" font=" italic">d</XMTok >

<XMTok meaning ="1" role=" NUMBER">1</XMTok >

</XMApp >

</XMApp >

</XMApp >

</XMath >

</Math >
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Figure 4.3: p̃d ≤ p̃d+1 in tree view mode

At this step, all the XML tags are stripped so that the data becomes the text of the

maths documents with the maths expressions’ IDs in place of the maths expressions
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Figure 4.4: Results of using XPath predicates on the formula p̃d ≤ p̃d+1 to select p̃

<XMApp >

<XMTok name=" tilde" role=" OVERACCENT" stretchy ="false">~</

XMTok >

<XMTok font=" italic" role=" UNKNOWN">p</XMTok >

</XMApp >

<XMApp >

<XMTok name=" tilde" role=" OVERACCENT" stretchy ="false">~</

XMTok >

<XMTok font=" italic" role=" UNKNOWN">p</XMTok >

</XMApp >

Figure 4.5: Results of using XPath predicates on the formula p̃d ≤ p̃d+1 to select all single
symbols

<XMTok meaning ="less -than -or -equals" name="leq" role=" RELOP">

(*$\leq$*) </XMTok >

<XMTok role=" SUBSCRIPTOP" scriptpos =" post2"/>

<XMTok name="tilde" role=" OVERACCENT" stretchy ="false">~</

XMTok >

<XMTok font=" italic" role=" UNKNOWN">p</XMTok >

<XMTok font=" italic" role=" UNKNOWN">d</XMTok >

<XMTok role=" SUBSCRIPTOP" scriptpos =" post2"/>

<XMTok name="tilde" role=" OVERACCENT" stretchy ="false">~</

XMTok >

<XMTok font=" italic" role=" UNKNOWN">p</XMTok >

<XMTok meaning ="plus" role=" ADDOP">+</XMTok >

<XMTok font=" italic" role=" UNKNOWN">d</XMTok >

<XMTok meaning ="1" role=" NUMBER">1</XMTok >
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themselves. Therefore, these resulting documents contain text only without any

maths expressions which form the corpus to be annotated as will be explained in

the following section.

For example, applying these three steps to the definition “Let Zn denote the ring of

integers modulo n.” [60] transform it into “Let math35-m2 denote the ring of integers

modulo math24-m3 .” as shown in Table 4.2. The implementation of the preparation

steps is discussed in detail in Section 5.3.

4.5 Data Annotation

The annotation step is about tagging each word in the data with the appropriate category

from a predetermined tagset to build a gold standard corpus. The aim is to determine

both the maths expressions that are defined in the documents and their definitions. This

task has been done by two expert mathematicians using the annotation tool brat [62]

which is explained in Section 2.2.4.

There are two types of definitions:

• The standard way of defining an object and the most common one where either the

expression is mentioned first followed by the definition or the other way around as

in “Let Zn denote the ring of integers modulo n.” and “define an integer N . . .”.

• The second type is where the definition starts before the expression and finishes

after it as in the definition “a subspace S of V ” where the expression S is defined

as a subspace of V . We call such definitions ‘divided definitions’.

In our data, there are 396 explicit definitions of maths formulae; 368 of them are of the

first type and 28 of them are of the second type.

This annotation task is a multi-class classification problem containing a one-level tagset

as shown in Table 4.3. The tag “exp” is used to annotate each defined maths expression,

and the tag “def” is used to annotate definitions. However, in the case of the second type
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Table 4.2: Preparing documents for annotation, example from [60]
PDF Let Zn denote the ring of integers modulo n.

Original
XML

Let

<Math mode=" inline" xml:id="m2" tex="\ mathbb{Z}_{n}"

text="Z _ n">

<XMath >

<XMApp >

<XMTok role=" SUBSCRIPTOP" scriptpos =" post3"/>

<XMTok role=" UNKNOWN" font=" blackboard">Z</XMTok >

<XMTok role=" UNKNOWN" font=" italic">n</XMTok >

</XMApp >

</XMath >

</Math >

denote the ring of integers modulo

<Math mode=" inline" xml:id="m3" tex="n" text="n">

<XMath >

<XMTok role=" UNKNOWN" font=" italic">n</XMTok >

</XMath >

</Math >.

Generated
unique ID

ID "math35" for the expression:

<Math mode=" inline" xml:id="m2" tex= ... </Math >

ID "math24" for the expression:

<Math mode=" inline" xml:id="m3" tex= ... </Math >

Combination
of unique ID
with XML ID

math35-m2

math24-m3

Abstract
XML from
maths

Let

<expression >_math35 -m2_ </ expression >

denote the ring of integers modulo

<expression >_math24 -m3_ </expression >.

Strip XML
tags

Let math35-m2 denote the ring of integers modulo math24-m3 .
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of definitions, the tag “p1D” is used to annotate the first part of the definition that occurs

before the defined maths expression while “def” is used for the rest of the definition that

occurs after the expression.

There are three relations between the tags as shown in Table 4.4.

For example, the definition “a subspace S of V ” [60] is annotated as shown in Figure 4.6,

where each maths expression is replaced with its ID as explained in the former section (i.e.

the expressions S and V are represented by their IDs; math11-S2.Thmdefn2.p1.m13 and

math58-S2.Thmdefn2.p1.m14 , respectively).

Another example is the definition in “Let Zn denote the ring of integers modulo n.” [60]

which is illustrated in Table 4.2. This sentence is annotated in brat tool as shown in

Figure 4.7.

Table 4.3: The one-level tagset

Entities Label
expression exp
definition def

part1Definition p1D

Table 4.4: The relations between entities

Relations Arg1 Arg2
definition exp def
definition exp p1D

partOfDefinition p1D def

Figure 4.6: Example of brat annotation for the divided definitions
“a subspace S of V ” [60]

However, brat produces an annotation file for each annotated document which contains

the entities and relations and their positions in the text. The annotation information for

the example in Table 4.2 is as follows:
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Figure 4.7: Example of annotation on brat of the first type of definition
“Let Zn denote the ring of integers modulo n.” [60]

T1 expression 86 97 math35−m2

T2 definition 109 144 ring of integers modulo math24−m3

R1 Definition Arg1 : T1 Arg2 : T2

Initially, the annotators were provided with guidelines that stated precisely the at-

tributes of different classes. They started with a training session where they annotated

only 10% of the documents to be able to observe the restraint that could occur during

the annotation process. Following that, they annotated the rest of the papers. Figure 4.8

shows part of the annotation of the article [38].

The inter-annotator agreement is evaluated using kappa statistic (κ-statistic) to assure

the level of annotation reliability. The calculated metric is κ = 0.9334 which is high

enough to proceed with the annotation.
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Figure 4.8: Sample of annotated document
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4.6 Chapter Summary

In this chapter, we provided an overview of our system architecture. Also, we demon-

strated our approach to build our gold standard corpus starting from the source code of

mathematical documents in LATEX format then converted them into XML format. We

extracted all maths expressions, determined the unique ones among them and generated

a unique ID for each one. Then the XML format of documents was abstracted from maths

expressions followed by stripping all XML tags which produced the text files that were

ready to be annotated. Subsequently, two expert mathematicians annotated the data by

finding the maths expressions that are defined in documents and determined their def-

initions. Moreover, κ-statistic is used to evaluate the inter-annotator agreement which

showed that the annotation is reliable. Therefore, our GSC was built and ready to be

used by a probabilistic model.
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CHAPTER 5

IMPLEMENTATION

The architecture diagram in Figure 4.1 shows the principal segments of our system which

are three phases; building a gold standard corpus, the training phase and the testing

phase. In this chapter, the implementation of three steps of the first phase is discussed;

converting the LATEX format of maths documents into XML, extracting maths expressions

and preparing the data to be annotated.

We used the pipeline architecture where we have some consecutive stages. One step’s

output is the input for the following step. All the implementation has been done by using

the functional programming language Python.

However, the evaluation of the implemented algorithms will be discussed in Chapter 8.

5.1 Converting LATEX into XML using LATEXML

There are two ways to convert LATEX format into XML format using LATEXML:

• Using maths expression:

The first option is transforming a TeX/LaTeX maths expression into various formats

such as presentation MathML, content MathML, openMath and LATEXML’s internal

format. However, this option is not useful for our task as it does not read files but

only accepts maths expressions in LATEX format.

• Using file in LATEX format:
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This option transforms a TeX/LaTeX file into XML file which has the maths for-

mulae in the LATEXML’s internal format and it is the one that is used for converting

our text files. We use it as

latexml –output=outputFile.xml inputFile.tex

A sample of the XML resulting file is shown in Appendix B

5.2 Maths Formulae Extraction

The XML files contain maths formulae in the LATEXML’s internal format. To be able to

extract maths precisely we studied these XML files especially the maths format. There-

fore, we noticed that the multi lines equations are written using align environment in the

LATEX files and as equationgroup node in the XML files. The equationgroup node format

is shown in Figure 5.1 and we have two issues with it.

• The children nodes of equationgroup node:

An equationgroup node contains an equation node which contains a Math node for

each line of the original equation. This means that we do not want to extract the

Math node only or the equation node only as this will result in having each line of

the equation as a standalone maths formula among the extracted formulae and not

having the whole equation together. Instead, we extracted the whole equationgroup

as one maths expression without diving into it and extracting sub expressions sepa-

rately to prevent repetition. This issue is considered when designing the extraction

algorithm.

• MathBranch nodes:

An equationgroup node contains an equation node for each line of the original

equation which includes a MathBranch node. The MathBranch node contains two

children nodes; one for each side of the current equation. We chose to remove the

MathBranch nodes from the children of equationgroup nodes as they are not needed

and have no different information but duplication. To delete the mathBranch nodes

50



Figure 5.1: Format of equationgroup node in LATEXML representation

<equationgroup >

<equation refnum ="2.1" xml:id="S2.E1">

<MathFork >

<Math ...>
...

</Math >

<MathBranch >

<td align =" right">

<default:Math ...>
...

</default:Math >

</td>

<td align ="left">

<default:Math ...>
...

</default:Math >

</td>

</MathBranch >

</MathFork >

</equation >

<equation xml:id="S2.Ex1">
...

</equation >

<equation xml:id="S2.Ex2">
...

</equation >

</equationgroup >
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from equationgroup nodes, we used our MathBranch elimination algorithm Algo-

rithm 5.1.

Algorithm 5.1: MathBranch elimination

Input:

XML f i l e inF

Output:

XML f i l e F

Method:

1 l e t S = s e t o f a l l nodes with tag = ‘ equationgroup ’

2 foreach N ∈ S do

3 foreach C ∈ chi ldNodes (N) do

4 i f tag (C) == ‘ MathBranch ’ then

5 d e l e t e C

6 end

7 done

8 done

As explained in Section 4.3, we have two type of extraction: extraction of all maths

expressions and extraction of desired maths expressions which will be discussed in the

following two subsections.

5.2.1 Extract all Maths Expressions

The extraction of all maths expressions has been done by using a recursive algorithm;

All math extraction algorithm, which is shown in Algorithm 5.2. Using this algorithm

assures that there are no duplicated maths extracted. Our implementation saved maths

expressions into XML files such that each file contains all maths extracted from one

document of our data. Each created XML file has a root node with the document’s

name and an xmlID node for each maths expression of this document. By saving maths
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Figure 5.2: Example of the format of the XML file resulting from implementing
All math extraction algorithm

<file_name fileName ="0109" >

<xmlID idName ="A0.EGx1">

<equationgroup ...>
...

</equationgroup >

</xmlID >

<xmlID idName ="I1.i3.p1.m12">

<Math ...>
...

</Math >

</xmlID >
...

</file_name >

expressions in XML format we make it easy to deal with them such as accessing or editing

them. An example of this format is shown in Figure 5.2.

Algorithm 5.2: All math extraction

Input:

XML f i l e inF

Output:

XML f i l e F

Method:

1 l e t inR = inF . root

2 l e t R = F. root

3 l e t S = s e t o f a l l inR . chi ldNodes

4 foreach C ∈ S do

5 i f tag (C) == ‘ equationgroup ’ or ‘ equation ’ or ‘Math ’ then

6 append C to R

7 e l i f chi ldNodes (C) 6= n u l l then

8 l e t S2 = s e t o f a l l C. chi ldNodes
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9 foreach L ∈ S2 do

10 go to s tep 4

11 done

12 end

13 done

5.2.2 Extract Desired Maths Expressions

MathExtractor is a tool we built using a generic select function to allow extraction of cho-

sen maths expressions. In this function a predicate is determining which maths formula

is to be extracted taking advantage of the XPath functions; see Algorithm 5.3. XPath

functions travel through the XML nodes using the predicate as a path to the targeted

nodes. Using MathExtractor gives us a choice to determine the desired maths expres-

sion such as all single symbols, atomic expressions or even expressions with a particular

attribute like font or role. Thus, using the right predicates allow us to extract specific

maths expressions. For instance, for the math expression “S(Zn)” [60] which has an XML

representation as shown in Figure 5.3 we can extract the atomic expression Zn using the

predicate:

.//*[not(*/*) and count(*) = 3]

which selects nodes shown in Figure 5.4.

Algorithm 5.3: Extracting desired maths expressions

Input:

L : L i s t o f Math nodes

X : XPath exp r e s s i on

Output:

E: Node L i s t o f Math e x p r e s s i o n s

Method:

1 l e t E = l i s t [ ]
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Figure 5.3: S(Zn) in LATEXML representation format

<Math mode=" inline" xml:id="S1.p1.m7" tex ="{\ cal S}(\ mathbb{Z

}_{n})" text="S * Z _ n">

<XMath >

<XMApp >

<XMTok meaning ="times" role=" MULOP"></XMTok >

<XMTok possibleFunction ="yes" role=" UNKNOWN" font="

caligraphic">S</XMTok >

<XMApp close =")" open ="(">

<XMTok role=" SUBSCRIPTOP" scriptpos =" post2"/>

<XMTok role=" UNKNOWN" font=" blackboard">Z</XMTok >

<XMTok role=" UNKNOWN" font=" italic">n</XMTok >

</XMApp >

</XMApp >

</XMath >

</Math >

Figure 5.4: Results of using XPath predicates on the formula S(Zn) to select Zn in XML
format

<XMApp close =")" open ="(">

<XMTok role=" SUBSCRIPTOP" scriptpos ="post2"/>

<XMTok font=" blackboard" role=" UNKNOWN">Z</XMTok >

<XMTok font=" italic" role=" UNKNOWN">n</XMTok >

</XMApp >

2 foreach C ∈ XPath . eva l (X) do

3 append C to E

4 end

5 r e turn E

5.3 Data Preparation

There are several steps involved in preparing our data to be annotated. For each document

we have the LATEX format, the XML format and all maths expressions extracted and stored

in XML format. Preparation of the data to be annotated using a text annotation tool

55



involves three steps as follows:

1. Generating a unique ID for each unique maths expression. By unique expressions,

we refer to the expressions with no repetitions as explained in Section 4.1. Note

that some expressions are similar; nonetheless, they have different unique IDs due

to the different fonts specifications. For example:

<XMTok role="UNKNOWN">n</XMTok>

and

<XMTok font="italic"role="UNKNOWN">n</XMTok>

are similar expressions, but the first node is embedded in text that is all in italic

font.

The implementation of this step requires determining the unique expressions first

then generating a new unique ID for each one of them. For this task, we implemented

our Uniqueness new ID algorithm; Algorithm 5.4, in Python.

Algorithm 5.4: Uniqueness new ID

Input:

XML f i l e inF

Output:

XML f i l e F

Method:

1 l e t d i c = d i c t i o n a r y {} , i = 1 , f requency = 0

2 l e t l i s t L = a l l e x p r e s s i o n s in document D

3 l e t s = length o f L

4 foreach e1 ∈ L do

5 l e t p = index ( e1 )

6 l e t id1 = xmlID ( e1 )

7 foreach j in range (p+1, s ) do

8 i f e2 ∈ L and index ( e2 ) = j then

9 l e t id2 = xmlID ( e2 )
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10 compare e1 and e2

11 i f e1 == e2 then

12 i f e1 ∈ d i c then

13 d i c [ e1 ] ( f requency ) = frequency + 2

14 append id1 and id2 to d i c [ e1 ]

15 else

16 i = i + 1

17 f r equency = 2

18 append ( e1 , ’math−i ’ , id1 , id2 , f requency ) to d i c

19 end

20 e l i f e1 6= e2 then

21 i f e1 ∈ d i c then

22 d i c [ e1 ] ( f requency ) = frequency + 1

23 append id1 to d i c [ e1 ]

24 else

25 i = i + 1

26 f r equency = 1

27 append ( e1 , ’math−i ’ , id1 , f requency ) to d i c

28 end

29 i f e2 ∈ d i c then

30 d i c [ e2 ] ( f requency ) = frequency + 1

31 add id2 to value d i c [ e2 ]

32 else

33 i = i + 1

34 f r equency = 1

35 append ( e2 , ’math−i ’ , id2 , f requency ) to d i c

36 end

37 end
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38 end

39 done

40 done

However, step number 10 in the Uniqueness new ID algorithm ( Algorithm 5.4) is

a function that compares two expressions, i.e. two XML nodes. Obviously, this

comparison does not include the attributes xmlID as this is unique for each maths

expression. Yet the comparison consists of comparing nodes’ type, tag, depth, at-

tributes except xmlID, text and nodes’ children.

2. Abstracting XML from Maths Expressions. In this step, we replace maths expres-

sions with their ID in the XML files. Maths ID here refers to a combination of the

generated unique ID and the original XML ID. This is a straightforward task done

by implementing our algorithm XML Doc no Math; Algorithm 5.5, in Python.

Algorithm 5.5: Abstracting XML from Maths Expressions

Input:

XML f i l e inF

Output:

XML f i l e F

Method:

1 l e t EG = a l l nodes with tag = ‘ equationgroup ’

2 l e t E = a l l nodes with tag = ‘ equation ’

3 l e t M = a l l nodes with tag = ‘Math ’

4 foreach eg ∈ EG do

5 i f chi ldNodes ( eg ) 6= n u l l

6 d e l e t e chi ldNodes ( eg )

7 i f ‘ xmlID ’ ∈ eg [ a t t r i b u t e ] then

8 l e t a t t = eg [ a t t r i b u t e = ‘ xmlID ’ ]

9 end
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10 d e l e t e eg [ a t t r i b u t e ]

11 l e t tag ( eg ) = ‘ expre s s i on ’

12 append at t to eg [ t ex t ]

13 end

14 done

15 foreach e ∈ E do

16 r epeat s t ep s 5 to 13

17 done

18 foreach m ∈ M do

19 r epeat s t ep s 5 to 13

20 done

3. Abstracting XML from the tags. This step is done by stripping all the XML

tags which leads to the text of the documents with the maths ID being in place

of the maths expressions. However, we notice that the reference nodes in our

XML data look like: <ref labelref=“LABEL:C”/> and by stripping the XML

tags we will lose such references. Therefore; to keep such reference in our data

we edited the reference nodes before stripping the tags by appending the value of

attributes labelref and bibrefs to the node’s text which makes them look like: <ref

labelref=“LABEL:C”>“LABEL:C”</ref>.
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5.4 Chapter Summary

In this chapter, we discussed our methodology for implementing part of our system and

some important science aspects that related to the implementation. These discussions

included the stages of converting LATEX into XML using LATEXML, the stage of extracting

maths formulae which consist of extracting all maths formulae and the robust extraction of

desired maths expressions in addition to the stage of preparing the data for the annotating

step. We adopted the pipeline architecture for implementation; where we have some

consecutive stages and the output of one stage is the input for the following one.
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Part III

Mathematical Semantics Recognition
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CHAPTER 6

EXTRACTING SEMANTICS OF FORMULAE

In this chapter, we will present our approach for extracting the semantic information

of maths formulae from two different sources; the representation of maths formulae and

maths context. In Section 6.1 we will discuss our approach for obtaining the basic semantic

information for maths formulae from its representation; which is the internal represen-

tation of LATEXML. Section 6.2 will demonstrate extracting maths semantic information

from their context using supervised machine learning (SML) techniques. This includes

addressing the preprocessing step, the dataset and the feature selection approach. In

addition, in Section 6.2.4 we will develop a baseline model based on the MaxEnt clas-

sifier. In Section 6.2.5, we will learn different classifiers such as MEMM and CRF. The

effect of using different features with the CRF will be discussed in Section 6.2.6. Finally,

Section 6.2.7 will explore the influence of using a hybrid approach by injecting rule-based

features into the statistical model. The evaluation of all the experiments will be discussed

in Chapter 8.

6.1 Basic Semantic Information in the Representa-

tion of Maths Formulae

One of our aims is to extract the primary semantic information for each maths expression

from its representation. As we used LATEXML [43] to convert our source code of the
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documents into XML format, we have the maths expressions in the representation of

LATEXML which is explained in Section 2.1.2.3. By studying the XML format of our

documents, we found that the required semantic information for each maths expression

is stored in the attributes of that expression’s node. The attributes may specify different

aspects of maths expressions such as font, maths style and the syntactic and semantic roles

of them. Our targeted basic semantic information included in the attributes ‘meaning’,

‘possibleFunction’ and ‘role’; although ‘role’ could be ‘UNKNOWN’ if LATEXML could not

categorise the symbol’s role, Appendix C shows a sample of these attributes. Indeed these

attributes’ values are not always reliable, but it is of interest to compare and combine them

with the definitions extracted from the context. Therefore, we extracted such semantic

information from the nodes’ attributes of maths expressions using the MathExtractor tool

which is addressed in Section 4.3.

6.2 Semantic Information in the Maths Context

In this section, we will demonstrate our methodology to extract the semantic information

of maths formulae from their context using SML techniques. In Chapter 4 we presented

our approach for building a GSC which will serve as the data for the statistical learning

algorithms. We will rely on the system architecture that presented in Figure 4.1 to develop

the probabilistic model.

For sequence labelling task, we depend on a rapid discriminative toolkit called Wapiti [37]

which has MaxEnt, MEMM and CRF statistical learning algorithms implemented and

enclosed with variance optimisation algorithms. Wapiti is advocated over other toolkits

for its fastness, and it has been used in several sequence labelling tasks such as in [11]

and [48].
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6.2.1 Preprocessing

The gold standard corpus (GSC) that built as explained in Chapter 4 is used in this step.

As the annotated documents resulted from stripping XML tags from the XML format

of the documents, our data was not correctly formatted. Therefore, we ensured that the

labelled data is in a format that is easy to deal with in the later stages by preprocessing

it as follows:

1. Data Cleansing: This is a crucial step in which we cleaned and prepared our GSC

for the processing step. For instance, some sentences were split by needless empty

lines and some other sentences were concatenated without a space between them.

Therefore, we looked into the data and edited it to assure that it is correctly for-

matted.

2. Conversion of the text data into CoNLL format: The CoNLL structure so it can be

processed by the classifier; which is a single word (i.e. token) per line followed by a

space separation then the value of the annotation tag and sentences are separated

by empty lines. For instance, for the sentence “Let Zn denote the ring of integers

modulo n.” [60]; the LATEX, XML, the abstracted text format, the annotation result

and the CoNLL format are shown in Table 6.1. The first four formats resulted

from previous steps that are discussed in Chapter 4 and Chapter 5. In the CoNLL

format, B-expression and B-definition refer to the beginning of the expression and

definition, respectively. Where I-definition refers to the rest of the definition.

6.2.2 Dataset

It is a prevalent method in the literature to split the data equally into training and testing.

However, one of the problems with this approach is overfitting which results in poor per-

formance of the classifier, i.e. the trained model is poorly generalised. Overfitting occurs

whenever excessive features are used in particular if the dataset is relatively small [10]. To
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Table 6.1: Example from the data demonstrating the steps from the input until CoNLL
format
PDF Let Zn denote the ring of integers modulo n.
LATEX Let $\mathbb{Z} n$ denote the ring of integers modulo $n$.

XML

Let

<Math mode=" inline" xml:id="m2" tex="\ mathbb{Z}_{n}"

text="Z _ n">

<XMath >

<XMApp >

<XMTok role=" SUBSCRIPTOP" scriptpos =" post3"/>

<XMTok role=" UNKNOWN" font=" blackboard">Z</XMTok >

<XMTok role=" UNKNOWN" font=" italic">n</XMTok >

</XMApp >

</XMath >

</Math >

denote the ring of integers modulo

<Math mode=" inline" xml:id="m3" tex="n" text="n">

<XMath >

<XMTok role=" UNKNOWN" font=" italic">n</XMTok >

</XMath >

</Math >.

Abstracted
text

Let math35-m2 denote the ring of integers modulo math24-m3 .

T1 expression 86 97 math35-m2
Annotation
results

T2 definition 109 144 ring of integers modulo math24-m3

R1 Definition Arg1:T1 Arg2:T2

CoNLL

Let O

_math35 -m2_ B-expression

denote O

the O

ring B-definition

of I-definition

integers I-definition

modulo I-definition

_math24 -m3_ I-definition

. O
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overcome the problem of overfitting, the K-fold cross-validation technique is used, where

the dataset is divided into k subsets; k = 10. Every time, one of the k folds is used

as testing data and the remaining nine are used as training data. Therefore we trained

and tested the classifier k times (i.e. ten times). The conventional way to do this is by

randomly dividing the dataset into ten equivalent folds. However, this task is slightly

tricky as the division could be expected to occur in the middle of a sentence. In this case,

the division took place at the end of that sentence. This dataset is used in all subsequent

experiments that discussed in this chapter.

6.2.3 Features Selection

The used features are a significant factor that influences the outcome of sequence labelling

algorithms regarding accuracy and reliability. Using all the extracted features may result

in noisy data that causing the statistical algorithms to perform deficiently. Therefore,

selected features are employed in this task. For feature selection, we used the Stepwise

Regression technique where features are added or removed consecutively up to the point

where the resulting prediction is not improved any more.

6.2.4 Baseline Model Based on Maximum Entropy

Since there is no equivalent work done using the same dataset as the one used in this

research and to ensure the conducting sound comparison experiments, a baseline model

is developed using MaxEnt in combination with the Rprop+ optimisation algorithm to

function as a bottom line performance to evaluate our approach. The MaxEnt model is

chosen as it is commonly employed in IE [44]. It also does not require a long time or a

large memory to run.

6.2.4.1 Features Extraction

The used features influence the functionality of the machine learning algorithms. Superb

functionality of the learning algorithms resulted when they are integrated with features
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that provide useful information.

Contextual features, i.e. the features associated with the context are used for the baseline

model. The contextual features refer to the window size of the neighbouring tokens (i.e.

words) and the position of the token in a sentence. We used the window size features;

where we consider the current token, before and after tokens in a particular range. For

instance, considering the window size -/+1 means if we let the current word Wi, then the

window of one word in two directions (before and after) would be Wi − 1, Wi, Wi + 1.

For the baseline model, the basic unigram features with the window of two words in two

directions (-/+ 2) are selected according to the Stepwise Regression technique as discussed

in Section 6.2.3.

6.2.4.2 Results of the Baseline Model

The results of training the MaxEnt while using the optimisation algorithm Rprop+ and

the selected basic features predict maths definitions with average metrics as presented

in Table 6.2. The results show that the average precision is about 41% whereas the

average recall is about half of it which results in a low average F-measure, 27.16%.

Table 6.2: Average metrics (%) for the results of the baseline model based on MaxEnt
combined with the Rprop+

A P R F
94.6 41.27 20.76 27.16

6.2.5 Using MEMM and CRF as Different Classifiers

One of the important aspects that influence IE systems is the used probabilistic model.

As the efficiency of the MEMM model is better than the MaxEnt’s on text-related IE

applications [41] and the fact that the CRF is the state-of-the-art for sequence labelling

tasks [36], we experimented to learn the best practice which can be employed into our

task. In this experiment, the MEMM and CRF discriminative sequence labelling models
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in combination with the Rprop+ and Rprop- optimisation algorithms are used with the

identical features and strategy that used in the baseline model. Moreover, the MaxEnt

combined with the Rprop- is used under the same conditions.

Table 6.3 presents the results of these experiments and show the baseline in green colure.

The MEMM performed better than the MaxEnt, yet the CRF performance is the best.

However, using the optimisation algorithm Rprop- improved the performance over the

Rprop+ as the results of F-measure shows. It is noticeable that generally, the recall

scores are very low in comparison with the precisions’ scores which exhibit that the used

classifiers are very selective and missing lots of definitions; nevertheless, most of the

recognised definitions are correct definitions. The best record for the F-measure is achieved

by CRF when combined with Rprop- as F = 33.8% which is better than the result of the

baseline model by 6.64%.

Table 6.3: The results of the CRF, MEMM and MaxEnt in combination with the Rprop+

and Rprop- using the same features as used in the baseline model

Classifier Metric Optimisation Algorithm
(%) Rprop+ Rprop-

A 94.6 94.62
R 20.76 20.55

MaxEnt P 41.27 42.96
F 27.16 27.33
A 94.65 94.81
R 19.76 20.74

MEMM P 67.94 65.96
F 29.95 31.02
A 94.66 94.85
R 22.19 23.06

CRF P 66.72 71.46
F 32.62 33.8

6.2.6 Using Different Features with the CRF

The Conditional Random Fields (CRF) when combined with the Rprop- performed the

best in the previous experiment. Therefore; we conduct a set of experiments and play

68



with the features involved which are the contextual window size.

Table 6.4 presents the results of these experiments which shows that the best performance

with F = 38.36% when using a -/+ 1 window size. Moreover, increasing the window size

is resulting in a more mediocre performance of the classifier.

Table 6.4: The results of the CRF in combination with the Rprop- using different features

window size F-measure (%)
Unigram (-/+ 1) 38.36
Unigram (-/+ 2) 35.84
Unigram (-/+ 3) 23.67

Unigram (-/+ 1), Bigram (-/+ 2) 36.32
Unigram (-/+ 1), Bigram (-/+ 3) 34.21

Unigram (-/+ 1), Bigram (-/+ 2), Trigram (-/+ 1) 33.72
Unigram (-/+ 1), Bigram (-/+ 2), Trigram (-/+ 3) 31.86
Unigram (-/+ 2), Bigram (-/+ 5), Trigram (-/+ 3) 29.16

6.2.7 Exploiting Hybrid Approach

A hybrid approach is used in this experiment by injecting rule-based features into the

statistical model that used in the previous experiment; which used the CRF with the

Rprop- and the contextual window size features, aiming to gain the usefulness of both

approaches.

The rule-based features refer to definitions’ templates which are extracted by expert math-

ematicians (the annotators) as they studied and analysed the context of maths formulae

within our data.

6.2.7.1 Templates’ Morphological Features

We detected different definitions’ templates in the data and used them as features that

enrich the gold standard corpus. The total of 33 templates are detected in the data, some

of them are used more frequently than the others. Table 6.6 shows these templates and

their frequency in our data. The most popular template is “def exp” as in “. . . vectors
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u, v ∈ V . . .” which is used 108 times among the total of 396 definitions. The second most

frequent template is “let exp be def” as in “Let V be an n-dimensional vector space over

the field F” which is used 77 times within the data. Nevertheless, there are 12 templates

that each is used only once in the whole corpus.

The extracted features are fed into the corpus as an extra column per feature inserted

between the words’ column and the value of the annotation tag’s column. However,

not all the detected templates were used as features. In the step of features selection

(explained in Section 6.2.3), we recognised the desirable features which led to the best

prediction. The recognised definitions’ templates and some examples of them from the

data are shown in Appendix A. For example, the sentence “Let Zn denote the ring

of integers modulo n.” [60] is used in Table 6.5 to show a fragment of the annotated

corpus after it is enriched with features. However, in this table Temp1 (tl1) refers to

the first template in the features’ set; which is “Let exp denote def”, and Exp refers to

the expressions which are defined in the context. One of the substantial contributions of

this thesis is advocating some definitions’ templates as novel features to improve context

classification and therefore maths understanding.

Table 6.5: An example of annotated text after enriched with features

Token Temp1 Exp Tag
Let tl1 O O

math35-m2 tl1 exp B-expression
denote tl1 O O

the tl1 O O
ring tl1 O B-definition
of tl1 O I-definition

integers tl1 O I-definition
modulo tl1 O I-definition

math24-m3 tl1 O I-definition
. O O O
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Table 6.6: Template’s frequency

Template abbreviation Frequency
def exp td1 108

let exp be def tl3 77
exp is/are/be def te1 46

where exp is/are def te72 38
for def exp td33 24

exp def te2 22
let exp and/with exp be def tl4 12

let exp denote def tl1 8
def exp for/of def td2 8

permutation exp of/in exp t2 6
exp denotes def te8 6

subspace exp of exp t3 4
denoting by exp def te12 4
when exp is/are def te71 4

with def exp td32 3
collection exp of . . . exp t4 3

assume (that) exp is/are def te73 3
def is denoted by exp td4 2

consider def exp td35 2
exp stands for def te9 2

subset exp of . . . exp t1 2
set exp to be def te11 1

exp as def te3 1
with exp and exp as def and def respectively te6 1

let us call exp as def tl2 1
relation exp on def t5 1

use exp for def te13 1
factors exp of def t6 1

define exp to be def te5 1
define exp as def te4 1

suppose (that) exp is/are def te74 1
let exp stand for def tl6 1

let def be denoted by exp tl5 1
Total 396

6.2.7.2 Results of the Hybrid Approach

In this experiment, we investigated combining the rule-based features (i.e. templates’

morphological features) and the contextual window size features in one approach to gain
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the greatest advantages from both models. The best results obtained when involving

the following window size: unigram -/+ 2, bigram -/+ 5 and trigram -/+ 3 in combina-

tion with some of the extracted definitions’ templates. It is noticeable that some of the

templates are not beneficial to the classifier but creating more noise. The best results

accomplish when employing some of the most frequent definitions’ templates presented

in Table 6.7, which shows a significant improvement in the averages of both recall and

precession which enhance the F-measure score.

Table 6.7: The results of the hybrid approach using window-based and templates’ mor-
phological features

A P R F
97.27 94.21 71.55 81.10
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6.3 Chapter Summary

In this chapter, we illustrated the methodology for extracting the semantic information

from the representation of maths formulae. On the other hand, we demonstrated different

approaches to extract mathematical semantic information from their context using SML

techniques. We discussed learning the MaxEnt probabilistic model in combination with

the Rprop+ optimisation algorithm to develop a baseline model using the contextual

window size features. Subsequently, we learnt different probabilistic models; CRF and

MEMM in combination with the Rprop+ and Rprop- optimisation algorithms. However,

as the CRF combined with the Rprop- performed the best over the other classifiers,

a further experiment was conducted to investigate the impact of different window size

features on its performance. Ultimately, in a hybrid approach, we explore the influence

of injecting rule-based features; i.e. definitions’ templates, into the statistical model.

Chapter 8 will discuss the evaluation of all the experiments that demonstrated in this

chapter.
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CHAPTER 7

VARIATIONS OF THE APPROACH TO EXTRACT
SEMANTICS OF FORMULAE

In this chapter, we will demonstrate our approaches to improve the extraction of maths

definitions from their context by enhancing the classifier’s performance. Thus, we will

present the conducting a series of experiments using the same scheme as the used in

the hybrid approach (see Section 6.2.7); i.e. CRF statistical model based on the Rprop-

optimisation algorithm, the contextual window size features and the rule-based features

(definitions’ templates). Section 7.1 will present the experiment of removing the stop

words from our data. Section 7.2 will describe the experiment of extending the used tagset.

Lastly, the effect of adding part of speech tags as features will be discussed in Section 7.3.

The detailed evaluation of the three experiments will be discussed in Chapter 8.

7.1 The Experiment of Removing the Stop Words

In this section, we investigate the performance of our hybrid approach when removing

the words that are very frequently used (stop words) such as: ‘a’, ‘an’ and ‘the’ from the

data. In natural language processing research, there is no comprehensive record of stop

words; hence, we relied on the Natural Language Toolkit (NLTK) list of stop words [10].

Therefore, the stop words are eliminated from both testing and training data. Then the

exact scheme and features that used in Section 6.2.7 are used.

The results of this experiment as shown in Table 7.1 is boosted over the results when
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having the stop words, with 1.7% and 0.61% increase in the average of both precision and

recall, respectively. Thus, 1.01% improvement in the F-measure average is reported.

Table 7.1: The results of the CRF classifier when removing the stop words from the data

A P R F
96.92 95.91 72.16 82.11

7.2 Extending the Annotation’s tagset

In Section 4.5, we presented the tagset that utilised in our approach and explained the

use of ‘p1D’ tag in tagging the divided definitions, which are the definitions that starting

before the defined maths formulae and ending after them, i.e. when the defined maths

expression is embedded in its definition as the example in Figure 4.6 shows. In this case,

the definition is divided by the formula into two parts; the first part which is before the

expression and tagged with ‘p1D’ (which means part one of the definition) and the second

part that comes after the expression and tagged with ‘definition’.

In this section, we examine the influence of extending the tagset to include a tag named

‘p2D’, for the second part of such definitions, on the performance of the hybrid approach

that discussed in Section 6.2.7. Therefore, the targeted type of definitions is re-annotated

using the extended tagset (that include the tag ‘p2D’).

Table 7.2 presents the average metrics resulted from conducting this experiment which

shows a slight enhancement that varies between 0.14% and 0.35%.

Table 7.2: The results of the CRF classifier when including ‘p2D’ in the tagset

A P R F
97.41 94.56 71.81 81.39
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7.3 Future Experiment, Injecting Part of Speech as

Features into the Hybrid Approach

Part-of-Speech (POS) tag is a class that is allocated to a word according to its syntactic

functions in the context. In the English language, common classes incorporate noun,

pronoun, preposition, verb, adjective, adverb and others. In the literature, there are

various sets of POS tags; such as the Universal POS tagset [50] and The Brown Corpus

tagset [67], to be employed by different tools (taggers) such as the Stanford Part-of-Speech

Tagger [65], Tree Tagger [1] and the Natural Language Toolkit (NLTK) [10].

Utilising POS as features may have a significant impact; either positive or negative, on

the performance of the classifier. Therefore, injecting POS as features into our hybrid

approach is an experiment that intended to be conducted as future work to inspect the

effect of utilising such features on predicting mathematical definitions.
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7.4 Chapter Summary

In this chapter, we presented our investigation to enhance the extraction of maths defi-

nitions from their context employing the CRF statistical algorithm in combination with

the Rprop- optimisation algorithm and utilising the same features that used in our hybrid

approach (see Section 6.2.7). In Section 7.1, we explored the effect of eliminating the stop

words from our data. In Section 7.2, we investigated extending the tagset to include an

extra tag for the divided definition (i.e. when the defined maths expression is embedded

in its definition). Subsequently, in Section 7.3 we presented our approach to injecting

the POS tags into the features that employed in our hybrid approach as future work.

The evaluation of all the experiments that demonstrated in this chapter will be discussed

in Chapter 8.
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CHAPTER 8

EVALUATION

The evaluation of IE is a significant stage to investigate the performance sufficiency of

the IE process. We evaluated our approach progressively throughout the research as each

step is evaluated at a time. We used different evaluation techniques for different tasks as

follows:

• In the corpus building phase:

– The extraction of maths formulae was evaluated by building a ground truth

and comparing the extracted results with it.

– The reliability of the annotation was quantitatively evaluated using κ-statistic

to measure the inter-annotator agreement.

• In the testing phase:

– Performance of the statistical learning models was quantitatively evaluated

using conventional metrics; accuracy, recall, precision and F-measure.

– The error in labelling is analysed using a confusion matrix which exhibits the

variance between the correct and predicted labels.

– The resulted predictions were qualitatively evaluated by inspecting and com-

paring them with the GSC.

These evaluation techniques will be discussed in this chapter.
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8.1 Maths Formulae Extraction

To be able to evaluate the performance of our implementation of the algorithms which are

used to extract maths formulae (maths formulae extraction was discussed in Section 4.3

and Section 5.2), we built a ground truth of a number of representative documents which

eventually we compared to it the extracted maths expressions. The ground truth was built

by manually annotating a randomly selected 10% of the collected data (collecting data

was discussed in Section 4.2). The annotation in this step involved determining maths

expressions within the selected context. Therefore, the maths expressions extracted by

our algorithms were visually compared with this annotation. Our approach to automated

maths expressions extraction achieved 100% of all the metrics; accuracy, recall and pre-

cision.

8.2 Data Annotation

A reliable annotation is essential to building a GSC. Therefore, we started the annotation

step (discussed in Section 4.5) by providing the annotators with guidelines that stated

precisely the attributes of different classes. They began with a training session where they

annotated only 10% of the documents to be able to observe the restraint that could occur

during the annotation process. Following that, they annotated the rest of the documents.

Moreover, we evaluated the reliability of our annotation by measuring the inter-annotator

agreement. For this measurement, we used the robust qualitative metrics κ-statistic. The

result achieved is κ = 0.9334% which is high enough to proceed with our annotation.

80



8.3 Extract the Semantic Information of Maths For-

mulae from their Context

To extract the semantic information from the maths context we used SML; in particular,

we used statistical algorithms. To evaluate the performance of the classifiers, we applied

the standard quantitative metrics; accuracy, recall, precision and F-measure. In addition,

the K-fold cross-validation (where k = 10) model was adopted to avoid the overfitting

problem. Therefore, we applied these metrics ten times, once at each round of the 10-fold

then their average was calculated.

The averages of accuracy for all our experiments (see Section 6.2) are floating between

94.6% and 97.3%. These numbers are generally high which is expected as the set of

defined maths and their definitions is relatively small in comparison with the entire text.

Moreover, to evaluate the performance of the classifiers and express the differentiation

between the correct annotations and the predictions, we used an error analysis method

which is a confusion matrix.

8.3.1 Evaluation of the Baseline Model Based on MaxEnt

In this experiment, we trained the MaxEnt model in combination with the Rprop+ optimal

algorithm; using basic unigram contextual window size features. Table 6.2 present the

resulted metrics for this experiment which shows a low recall average (about 20.8%) and

about twice it is the precision average. Consequently, a low average of F-measure has

resulted; F = 27.2%.

8.3.2 Evaluation of Using MEMM and CRF as Different Clas-

sifiers

We conducted a set of experiments where the same features and scheme that used in

the baseline model is used, yet with different classifiers and optimisation algorithms. In
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these experiments, the MEMM and CRF statistical models combined with the Rprop+

and Rprop- optimisation algorithms are used; in addition to the MaxEnt which is used

for the baseline model but in this experiment, it is combined with the Rprop-. The

results presented in Table 6.3 show that using Rprop- optimisation algorithm is slightly

improving the performance of the classifiers over the Rprop+. Indeed, CRF functioning

better than MEMM and also the MaxEnt models. In general, all models achieved low

recall in contrast with their high precision; which indicates that the classifiers are very

selective and omit most of the definitions even though the recognised ones are correct.

Among the used classifiers, CRF combined with the Rprop- achieved the best F-measure

result as F = 33.797%.

8.3.3 Evaluation of Using Different Features with the CRF

In the previous experiments, we inspected the performance of different classifiers when

combined with different optimisation algorithms. The CRF model when integrated with

the Rprop- decision function achieved the best results among the other used classifiers.

Consequently, we contrived a series of studies using the CRF with the Rprop-, yet play-

ing with the used features which are the contextual window size. The results of these

experiments are presented in Table 6.4 which shows that as the window size is extended,

the performance of the classifier is getting poorer. The highest average of F-measure is

achieved when using a -/+ 1 window size as F = 38.36%.

8.3.3.1 Error Analysis (Confusion Matrix)

A confusion matrix is a method to assess and show the diversity among the predicted

and targeted tags. For each class, it presents the number of times it was predicted rightly

or wrongly. Table 8.1 presents the confusion matrix of using the CRF\Rprop- statistical

model employing a -/+ 1 window size features. The numbers in magenta show the accurate

labelling. For instance, the class ‘exp’ has been accurately prophesied 160 times, while

it has been inaccurately prophesied three times as ‘def’ and 272 as ‘O’ which means it
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was not be able to be prophesied 272 times. Also, the class ‘def’ has been correctly

predicted 211 times, only four times predicted as ‘exp’ and 1092 times was not be able to

be predicted. Interestingly, the class ‘p1D’ failed to be predicted at all, and thus it has

been predicted 40 times as ‘O’.

Table 8.1: Confusion Matrix of using CRF with Rprop- and the contextual window size
features

Prediction
exp def p1D O

T
ar

ge
t

exp 160 3 0 272
def 4 211 0 1092
p1D 0 0 0 40
O 32 116 0 27824

8.3.4 Evaluation of the Hybrid Approach

In this experiment, we injected rule-based features; which are the templates’ morpholog-

ical features, into the CRF statistical model to benefit the most from both models. It is

observed that the templates that have a low frequency (see Table 6.6) rose the noise in

the data and not adding any benefit to it. Table 6.7 presents the best results achieved in

this experiment where not all of the extracted templates’ features used and the window

sizes are between -/+ 2 and -/+ 5. Injecting the rule-based features into the statistical

model has certainly boosted both recall and precision; from about 28% to 71.5% and from

62% to 94%, respectively, which enhance the F-measure score to be F = 81.1%.

8.3.4.1 Error Analysis (Confusion Matrix)

The confusion matrix for the hybrid-based approach is presented in Table 8.2. It shows

a significant improvement in tagging the class ‘exp’ as 423 were correctly predicted and

only 12 failed to do so. For the class ‘def’, there is a considerable refinement over the

previous experiment (evaluated in Section 8.3.3), as 592 were rightly predicted, nine were
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wrongly predicted as ‘exp’ and 706 were failed to be predicted. However, none of the

‘p1D’ tags was prophesied which means it was predicted as ‘O’.

Table 8.2: Confusion Matrix of the hybrid-based experiments

Prediction
exp def p1D O

T
ar

ge
t

exp 423 5 0 7
def 9 592 0 706
p1D 0 0 0 40
O 0 14 0 27958

8.3.5 Evaluation of the Experiment of Removing the Stop Words

In this study, the stop words were removed from our data, and the same scheme as the

one used in the hybrid approach is used to predict maths definitions. The results of this

experiment are presented in Table 7.1 and show an advanced performance of the model.

Although withdrawing the stop words from the text may result in losing information

when extract information from the text, this is not the case in our task. Comparing

with the results of the hybrid approach (see Section 8.3.4), the results show 1.7% and

0.61% increment in the average of precision and recall, respectively, which led to 1.01%

improvement in the F-measure average over the hybrid results.

8.3.5.1 Error Analysis (Confusion Matrix)

The confusion matrix for the experiment of removing the stop words from the data while

employing the hybrid approach is presented in Table 8.3. It suggests that the classifier

shows a distinguish difficulty in tagging the ‘def’ class as approximately half of the correct

tags were failed to be predicted; despite this, it still shows improved over the hybrid model

performance. There are nine of the ‘def’ tag that predicted as ‘exp’ which are originally

maths expressions that are part of definitions, i.e. they are not targeted as expressions

but as definitions. For the class ‘exp’, the classifier is slightly impair as 13 expressions
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were mistakenly predicted as definitions, and 21 expressions were unsuccessfully predicted

(i.e. tagged as ‘O’); Nevertheless, 400 of ‘exp’ were accurately prophesied. Moreover, as

in all the previous experiments, none of the ‘p1D’ tags was predicted.

Table 8.3: Confusion Matrix of the hybrid-based experiments when removing the Stop
words

Prediction
exp def p1D O

T
ar

ge
t

exp 400 13 0 21
def 8 488 0 467
p1D 0 0 0 36
O 0 12 0 17404

8.3.6 Evaluation of Extending the Annotation’s tagset

We inspected the performance of our hybrid approach (Section 6.2.7) while extending the

used tagset to include the tag ‘p2D’ as explained in Section 7.2. Table 7.2 presents the

average metrics of the performance of this experiment. It shows an insignificant improve-

ment; comparing with the hybrid approach, overall the used metrics with 0.35%, 0.26%

and 0.29% increased in the average of the precision, recall and F-measure, respectively.

8.3.6.1 Error Analysis (Confusion Matrix)

Table 8.4 presents the confusion matrix of the experiment of extending the used tagset.

It shows that 21 of the ‘exp’ tags and 577 of the ‘def’ tags have been mispredicted. It also

shows that the classifier still has the same confusion of the second type of the mathematical

definitions that tags with ‘p1D’ and ‘p2D’ as none of them were predicted. This result

suggests more investigation for different approaches to extract such maths definitions.
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Table 8.4: Confusion Matrix of the hybrid-based experiments when extending the tagset

Prediction
exp def p1D p2D O

T
ar

ge
t

exp 414 12 0 0 9
def 9 644 0 0 568
p1D 0 0 0 0 40
p2D 0 0 0 0 85
O 0 24 0 0 27949

8.4 Qualitative Evaluation

To qualitatively evaluate our approach, we inspected the predictions that resulted from

our different experiments and compared them with our GSC. This evaluation led to various

observations:

• We explained in Section 4.5 the use of ‘p1D’ tag where we have a divided defini-

tion, i.e. when the maths expression is embedded in its definition as the example

in Figure 4.6 shows. In this case, the definition is divided by the expression into

two parts; the first part which is before the expression and tagged with ‘p1D’ and

the second part that comes after the expression and tagged with ‘def’.

We have 28 definitions of this kind; however, none of them was predicted. I believed

that this could be improved by extending the tagset. Therefore, in Section 7.2, we

conducted an experiment trying to improve this results by extending the tagset to

include a tag called ‘p2D’ that used for the second part of such definitions. Never-

theless, none of such definitions was predicted.

• The classifier never predicts a definition without its expression; which is the right

behaviour. However, 31% of the predicted expressions have no predicted definitions

which means that the classifier successfully predicted some of the defined maths

expressions but failed to predict their definitions.

• If a sentence contains only one definition, it has a higher chance of being predicted;
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56.6% of such definitions were predicted.

• Nested definitions, where a definition is embedded in another definition, are a prob-

lem and were not predicted.

• The confusion matrices presented in Section 8.3 showed that a large number of

the ‘def’ tag was mispredicted and labelled with the ‘O’ tag. Part of this could

be a result of the restricted boundary of the predicted definitions that we applied

throughout our experiments.

In general, the resulted predictions for the definitions of maths expressions are reasonably

good and promising and could be improved significantly. Improving the performance of

our approach will be discussed in Section 9.2.1.
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8.5 Chapter Summary

This chapter presented different evaluation techniques for different stages in our approach;

both quantitative and qualitative evaluation, which we used alongside the progress of our

research. A ground truth of a number of representative documents was built to evaluate

the maths extraction algorithms and its implementation. To evaluate the reliability of

our annotation, we measured the inter-annotator agreement using the qualitative metric

κ-statistic which validated our annotation. Moreover, K-fold cross-validation was used to

improve the performance of the classifier and to overcome the problem of overfitting. To

evaluate the performance of the different classifiers used, we applied the standard quan-

titative metrics; accuracy, recall, precision and F-measure; in addition to the confusion

matrix as an error analysis of tagging. Finally, the resulted predictions were qualita-

tively evaluated by inspecting them and comparing them with the GSC. Therefore, we

distinguished some shortcomings of our approach, that could be overcome by applying

some suggestions which will be discussed in Section 9.2.1. The overall evaluation process

demonstrates that our approach for extracting semantic information from maths docu-

ments is acceptable and promising.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

In this thesis, we have presented an approach for determining and extracting the semantics

of mathematical formulae in mathematical documents by analysing both the representa-

tion of mathematical formulae and their context. To ease the challenge, we restricted

our research on the math documents in a specific domain; which is Elementary Number

Theory. Nonetheless, this restriction could be released afterwards to extend the research.

This thesis answered the following research questions:

• How can the maths formulae be recognised and extracted from the XML format of

documents depending on maths formulae properties?

• How can one extract semantic information for a particular mathematical formula

from the context information?

• How can one adapt supervised machine learning techniques for text analyses in the

presence of mathematical formulae?

• Which probabilistic model (i.e. classifier) is the most efficient for extracting the

defined maths formulae with their definitions from maths documents?

• What are the instructive features that can be obtained from mathematical docu-

ments to be utilised by the probabilistic model?
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We developed a novel approach for developing MathExtractor, which is a tool that

extracts mathematical formulae from the XML format of the documents depending on

the properties of the formulae; such as type, position and font. MathExtractor has the

advantage of the powerful XPath functions which are based on travelling through the

XML nodes using a predicate as a path to the targeted nodes; i.e. maths expression. The

MathExtractor tool was evaluated by visually compared its extractions with a manually

built ground truth of a number of representative documents, which achieved 100% of all

the metrics; accuracy, recall and precision.

Moreover, we described the methodology of extracting the basic semantic information;

such as font, maths style and the syntactic and semantic roles, from the representation of

maths formulae; which is the internal representation of LATEXML.

Also, we demonstrated the possibility of adapting the supervised machine learning

techniques for text analyses in the presence of mathematical formulae. Such an obstacle

has been removed by abstracting mathematical documents from maths formulae and

replacing them with unique IDs.

A gold standard corpus (GSC) is an essential requirement of the machine learning

algorithms. Therefore, we have developed a manually-created GSC, which its mathemat-

ical documents are harvested from the ArXive. The annotation of the documents was

carried out by two expert mathematicians. The reliability of the annotation was evalu-

ated by measuring the inter-annotator agreement using the κ-statistic, which computed

as κ = 0.9334%.

We have demonstrated a novel approach for extracting the semantic information of

mathematical formulae from the context information by adapting supervised machine

learning techniques; in particular, statistical learning algorithms. A series of experiments

were conducted as follows:

• A baseline model is developed using Maximum Entropy (MaxEnt) in combination

with the Rprop+ optimisation algorithm to function as a bottom line performance

to evaluate our approach. The MaxEnt model is chosen as it is commonly employed

90



in IE and it does not require a long time or a large memory to run.

• We learnt different probabilistic models; MaxEnt in combination with the Rprop-,

CRF and MEMM in conjunction with both Rprop+ and Rprop- optimisation algo-

rithms. The evaluation of these classifiers using the four metrics accuracy, recall,

precision and F-measure showed that the CRF classifier combined with Rprop- is

the most efficient for extracting the defined maths formulae with their definitions

from maths documents.

• Since the CRF classifier combined with the Rprop- performed the best over the other

classifiers, a further experiment was conducted to investigate the impact of different

window size features on its performance. The results of this experiment showed that

as the window size is extended, the performance of the classifier is getting poorer.

• We investigated the influence of injecting rule-based features; i.e. definitions’ tem-

plates, into the CRF statistical model to benefit the most from both models. In

this approach, the performance of the classifier was boosted from 38.36% (before

injecting the rule-based features) to 81.10% F-measure.

• Employing the hybrid mathod, we investigated the impact of removing the stop

words from our corpus. This has shown an improvement in the prediction of the

defined maths formulae and their definitions.

• The divided definitions are the type of definitions that failed to be predicted by the

employed classifiers. We investigated the influence of extending the used tagset to

include a new tag that assigned to the second part of such definitions. Extending

the tagset have no effect on the predictions of this type of definitions as none of

them was predicted. However, this experiment showed a minor improvement in the

prediction of the standard kind of definitions.

We developed a new approach for feature representation relying on the definitions’

templates that extracted by expert mathematicians from maths documents to defeat the

91



restraint of conventional window-based features; and therefore, enhancing the performance

of the classifier as shown in the hybrid model.

9.2 Future Work

The substantial research presented in this thesis is currently the basis of ongoing research

work to integrate recognised definitions into a semantic enrichment procedure that aims to

improve the display and accessibility of mathematics in web documents. In particular, the

results of the machine learning process can be exploited to inform better the presentation

of formulas when rendered aurally using screen reading software, by drawing reference

links to definitions of components in mathematical expressions.

Nevertheless, we have also identified some shortcomings of our approach for extracting

semantic mathematical formulae in documents and composed a list of suggestions to

improve its performance. Furthermore, it highlights the need for a plethora of work in

other related areas.

9.2.1 Improving our Approach

This section suggests some ideas to improve the performance of our approach, and there-

fore improve the semantics understanding of mathematical formulae in documents.

• The dataset which we used in our system is relatively small. Increasing the size of

the dataset will influence the predicted performance. Therefore, this is an aspect to

be investigate.

• Two identified types of definitions never been predicted by the classifiers; that are

the divided definitions and the nested definitions where a definition is embedded

in another one. We inspected the impact of extending the tagset on predicting the

divided definitions, and it does not solve the difficulty. Therefore, we suggest a new

approach that is dividing the experiment into several classifier experiments to predict
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each type of definitions in a separate phase; i.e. have the standard definitions, the

divided and the embedded form of definitions predicted each in one classifier goes.

• In the step of features extraction, we extracted two types of features; the contextual

window size features and the templates’ morphological features. Extracting addi-

tional types of features such as word stemming, part of speech and representation

of the base phrase chunk such as noun phrase (NP) and a verb phrase (VP) could

be beneficial. Thus, there is a need to conduct a series of experiments to inspect

the effect of employing such features on the classifier.

• We restricted the boundary of the predicted definitions throughout our experiments.

We suggest experiments with a soft boundary, which could improve the predictions

of maths definitions.

9.2.2 Future Research Areas

The extensive research presented in this thesis is inspiring a number of areas for future

work. Indeed, these areas have their influences on our approach and accomplishing any

of them would lead to better performance of our system.

• Developing a framework to represent the interpretation of maths formulae which

resulting from our system in a way that can be used by other existing systems such

as maths searching systems and maths display engines.

• In our approach, we restricted our data to mathematical documents from the domain

of Elementary Number Theory to ease the start of our research. However, this

restriction could be released to extend the study and generalise the work.

• Developing an efficient annotation tool that facilitates annotating mathematical

documents semantically. Such a tool would enhance building gold standard corpora.

• In maths documents, not all the used maths expressions are defined within the

context. The usage of maths symbols and expressions can be viewed as one of the
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following:

– A maths expression is never defined within the document as it has well-known

meanings either in general such as the symbol = or in particular maths field

such as 6 in the field of Group Theory.

– A maths expression is defined once within the document, i.e. it has a unique

definition throughout the document.

– A maths expression is defined several times within the document. This means

that the definition of this expression is changing throughout the document such

as starting with a particular definition and later in the document adding some

restrictions on the initial definition. In this case, it is essential to determine

the scope of each definition of the math expression.

Therefore, it is an interesting area to explore and find the limits to distinguish

different levels of knowledge that actually given in the documents.
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APPENDIX A

SAMPLE OF SOME DEFINITIONS’ TEMPLATES

Table A.1: Let templates

Shortcut Templates Example

tl1 Let exp denote def Let Zn denote the ring of integers modulo n.
tl2 Let us call exp as def let us call 2i as the little end.
tl3 Let exp be def Let V be an n-dimensional vector space over

the field F .
tl4 Let exp and/with exp be

def
Let a = (0, . . . , an−1) and b = (b0, . . . , bn−1)
be distinct permutations of the set
{0, . . . , n− 1} such that the component-wise
sums ci = ai + bi are all distinct.

tl5 Let def be denoted by exp Let the sizes be denoted by s(n) and t(n)
respectively.

tl6 Let exp stand for def Let π(x) stand for the number of primes less
than or equal to x.

Table A.2: Other templates

Shortcut Templates Example

te1 . . . exp is/are/be def . . . . . . k is a power of 2,3 or 5 . . .

te2 . . . exp def For n odd, we prove . . .
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te3 exp as def. . . . thus we can regard the permutations Ai as

vectors in n-dimensional vector space (Zn)n.

te4 define exp as def. define L(n) as the largest integer l so that . . .

te5 define exp to be def. define g(n) to be the smallest positive integer

m such that . . .

te6 with exp and exp as def

and def respectively.

. . . with + and . as addition and multiplica-

tion modulo n respectively.

te7- te71 when / te72 where /

te73 assume (that) / te74

Suppose (that) exp is/are

def.

• . . . when n is even . . .

• . . . where k is the number of distinct

prime divisors of n.

• assume that N is odd prime.

• Suppose that s is odd.

te8 exp denotes def

• . . . recall that Z×n denotes the set of in-

vertible elements of Zn

• . . . where the ci denote all integers co-

prime to (totatives of) n in increasing

order.

• The letter p will always denote a prime.

te9 exp stands for def y stands for the fractional part of y.

te11 set exp to be def set J to be greatest length of . . .
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te12 denoting by exp def Denoting by Zn the sequence of the conver-

gents . . .

te13 use exp for def We use ω(n) for the number of distinct (pos-

itive) prime factors of the positive integer n.

t-

• t1 subset/ t2 permu-

tation/ t3 subspace/

t4 collection exp of

. . . exp.

• t5 relation exp on def

. . .

• t6 factors exp of def

. . .

• We are interested in obtaining bounds

on the maximum size of a subset P of

S(Zn) in the case when . . .

• if for any two distinct permutations σ, τ

in P , . . .

• For a subspace S of V . . .

• A collection P of permutations of Zn

. . . of Zn, . . .

• define a relation ∼ on the set of per-

mutations of Zn

• We list the prime factors qi of n . . .

td1 . . . def exp . . .

• . . . vectors u, v ∈ V . . .

• . . . the sets Ai and Bi . . .
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td2 . . . def exp for/of def . . .

• . . . linear functions fi : (Zn)r → Zn for

i = 1, . . . , n− r such that . . .

• . . . an interval [y, x] of length L . . .

• The symbol || separates the first half

of the period from the second.

td3- td31 define/ td32 with/

td33 for/ td34 suppose/

td35 consider def exp . . .
• define an integer N . . .

• . . . with the standard inner product 〈, 〉.

• For any/some odd number k . . .

• Suppose the edges of the complete

graph Kn, n ≥ 2 are . . .

• consider the nonhomogeneous recur-

rence wn = w(k, r, s)

td4 def is denoted by exp. The set of all invertible elements of Zn is

called the unit group of Zn and is denoted

by Z×n .

td5 def will be called exp. . . . u = (u1, . . . , un) and v = (v1, . . . , vn) will

be called the standard inner product on V .
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APPENDIX B

SAMPLE OF XML FILES

Figure B.1: Sample of XML files
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APPENDIX C

SOME ATTRIBUTES OF ELEMENTS IN THE
REPRESENTATION OF LATEXML FOR MATHS

EXPRESSIONS

(‘argclose’, ‘)’)

(‘argclose’, ‘]’)

(‘argclose’, ’|’)

(‘argclose’, ’}’)

(‘argclose’, ’e’)

(‘argclose’, ’c’)

(‘argclose’, ’〉’)

(’argopen’, ’(’)

(’argopen’, ’[’)

(’argopen’, ’{’)

(’argopen’, ’|’)

(’argopen’, ’d’)

(’argopen’, ’b’)

(’argopen’, ’〈’)

(’close’, ’)’)

(’close’, ’]’)

(’open’, ’(’)

(’open’, ’[’)

(’font’, ’blackboard upright’)

(’font’, ’bold italic’)

(’font’, ’caligraphic upright’)

(’font’, ’medium’)

(’mathstyle’, ’display’)

(’mathstyle’, ’inline’)

(’mathstyle’, ’script’)

(’mathstyle’, ’text’)

(’meaning’, ’1’)

(’meaning’, ’absent’)

(’meaning’, ’absolute-value’)

(’meaning’, ’annotated’)

(’meaning’, ’approximately-equals’)

(’meaning’, ’assign’)

(’meaning’, ’asymptotically-equals’)

(’meaning’, ’binomial’)
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(’meaning’, ’ceiling’)

(’meaning’, ’closed-interval’)

(’meaning’, ’closed-open-interval’)

(’meaning’, ’conditional-set’)

(’meaning’, ’cosine’)

(’meaning’, ’cotangent’)

(’meaning’, ’divide’)

(’meaning’, ’element-of’)

(’meaning’, ’equals’)

(’meaning’, ’equivalent-to’)

(’meaning’, ’exists’)

(’meaning’, ’exponential’)

(’meaning’, ’factorial’)

(’meaning’, ’floor’)

(’meaning’, ’for-all’)

(’meaning’, ’formulae’)

(’meaning’, ’gcd’)

(’meaning’, ’greater-than’)

(’meaning’, ’greater-than-or-equals’)

(’meaning’, ’hyperbolic-cosine’)

(’meaning’, ’infinity’)

(’meaning’, ’integral’)

(’meaning’, ’intersection’)

(’meaning’, ’less-than’)

(’meaning’, ’less-than-or-equals’)

(’meaning’, ’limit’)

(’meaning’, ’list’)

(’meaning’, ’logarithm’)

(’meaning’, ’maps-to’)

(’meaning’, ’maximum’)

(’meaning’, ’minimum’)

(’meaning’, ’minus’)

(’meaning’, ’modulo’)

(’meaning’, ’much-greater-than’)

(’meaning’, ’much-less-than’)

(’meaning’, ’multirelation’)

(’meaning’, ’natural-logarithm’)

(’meaning’, ’not-divides’)

(’meaning’, ’not-element-of’)

(’meaning’, ’not-equals’)

(’meaning’, ’not-equivalent-to’)

(’meaning’, ’nth-root’)

(’meaning’, ’open-closed-interval’)

(’meaning’, ’open-interval’)

(’meaning’, ’parallel-to’)

(’meaning’, ’partial-differential’)

(’meaning’, ’perpendicular-to’)

(’meaning’, ’plus’)

(’meaning’, ’plus-or-minus’)

(’meaning’, ’product’)

(’meaning’, ’set’)

(’meaning’, ’set-minus’)

(’meaning’, ’similar-to’)

(’meaning’, ’sine’)

(’meaning’, ’square-root’)

(’meaning’, ’subset-of’)
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(’meaning’, ’subset-of-or-equals’)

(’meaning’, ’sum’)

(’meaning’, ’supremum’)

(’meaning’, ’times’)

(’meaning’, ’vector’)

(’name’, ’Delta’)

(’name’, ’Gamma’)

(’name’, ’Lambda’)

(’name’, ’Longleftrightarrow’)

(’name’, ’Phi’)

(’name’, ’alpha’)

(’name’, ’approx’)

(’name’, ’asymp’)

(’name’, ’beta’)

(’name’, ’blacksquare’)

(’name’, ’bmod’)

(’name’, ’cap’)

(’name’, ’cdot’)

(’name’, ’cdots’)

(’name’, ’colon’)

(’name’, ’delta’)

(’name’, ’dots’)

(’name’, ’ell’)

(’name’, ’epsilon’)

(’name’, ’equiv’)

(’name’, ’eta’)

(’name’, ’forall’)

(’name’, ’gamma’)

(’name’, ’geq’)

(’name’, ’gg’)

(’name’, ’in’)

(’name’, ’infty’)

(’name’, ’int’)

(’name’, ’lambda’)

(’name’, ’langle’)

(’name’, ’ldots’)

(’name’, ’leq’)

(’name’, ’list’)

(’name’, ’ll’)

(’name’, ’longmapsto’)

(’name’, ’longrightarrow’)

(’name’, ’mapsto’)

(’name’, ’mid’)

(’name’, ’mu’)

(’name’, ’neq’)

(’name’, ’nmid’)

(’name’, ’not-equiv’)

(’name’, ’not-in’)

(’name’, ’nu’)

(’name’, ’omega’)

(’name’, ’overline’)

(’name’, ’partial’)

(’name’, ’perp’)

(’name’, ’phi’)

(’name’, ’pi’)

(’name’, ’pm’)
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(’name’, ’pmod’)

(’name’, ’prime’)

(’name’, ’prime2’)

(’name’, ’prod’)

(’name’, ’psi’)

(’name’, ’qquad’)

(’name’, ’quad’)

(’name’, ’rangle’)

(’name’, ’rho’)

(’name’, ’rightarrow’)

(’name’, ’sigma’)

(’name’, ’sim’)

(’name’, ’smallsetminus’)

(’name’, ’square’)

(’name’, ’subset’)

(’name’, ’subseteq’)

(’name’, ’tau’)

(’name’, ’theta’)

(’name’, ’tilde’)

(’name’, ’to’)

(’name’, ’varepsilon’)

(’name’, ’varphi’)

(’name’, ’xi’)

(’name’, ’zeta’)

(’name’, ’‖’)

(’possibleFunction’, ’yes’)

(’punctuation’, ’,’)

(’punctuation’, ’.’)

(’role’, ’ADDOP’)

(’role’, ’ARROW’)

(’role’, ’BIGOP’)

(’role’, ’CLOSE’)

(’role’, ’OPEN’)

(’role’, ’FENCED’)

(’role’, ’ID’)

(’role’, ’INTOP’)

(’role’, ’LIMITOP’)

(’role’, ’METARELOP’)

(’role’, ’MODIFIEROP’)

(’role’, ’MULOP’)

(’role’, ’NUMBER’)

(’role’, ’OPERATOR’)

(’role’, ’OPFUNCTION’)

(’role’, ’OVERACCENT’)

(’role’, ’PERIOD’)

(’role’, ’POSTFIX’)

(’role’, ’PUNCT’)

(’role’, ’RELOP’)

(’role’, ’STACKED’)

(’role’, ’SUBSCRIPTOP’)

(’role’, ’SUMOP’)

(’role’, ’SUPERSCRIPTOP’)

(’role’, ’SUPOP’)

(’role’, ’TRIGFUNCTION’)

(’role’, ’UNKNOWN’)

(’role’, ’VERTBAR’)
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(’rpadding’, ’1.7pt’)

(’scriptpos’, ’mid’)

(’scriptpos’, ’post’)

(’separators’, ’, ,’)

(’separators’, ’,’)

(’separators’, ’. .’)

(’separators’, ’.’)

(’separators’, ’:’)

(’separators’, ’; ;’)

(’separators’, ’;’)

(’stretchy’, ’false’)

(’thickness’, ’0.0pt’)
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