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ABSTRACT

This thesis addresses the problem of active module identification in biological networks.

Active module identification is a research topic in network biology that aims to identify

regions in network showing striking changes in activity. It is often associated with a given

cellular response and expected to reveal dynamic and process-specific information.

The key research questions for this thesis are the practical formulations of active

module identification problem, the design of effective, efficient and robust algorithms to

identify active modules, and the right way to interpret identified active module.

This thesis contributes by proposing three different algorithm frameworks to address

the research question from three different aspects. It first explores an integrated approach

of combining both gene differential expression and differential correlation, formulates it

as a multi-objective problem, and solves it on both simulated data and real world data.

Then the thesis investigates a novel approach that brings in prior knowledge of biological

process, and balances between pure data-driven search and prior information guidance.

Finally, the thesis presents a brand new framework of identifying active module and

topological communities simultaneously using evolutionary multitasking, accompanied

with a series of task-specific algorithm designs and improvements, and provides a new

way of integrating topological information to help the interpretation of active module.



CONTENTS

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 How to formulate the problem of active module identification? . . . 4

1.2.2 How to design and improve algorithms to identify active module? . 4

1.2.3 What is the right way to interpret identified active module? . . . . 5

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Contribution of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Publication Resulting from the Thesis . . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review on Active Module Identification 10

2.1 Modular Structure in Biological Networks . . . . . . . . . . . . . . . . . . 10

2.1.1 The Development of Network Biology . . . . . . . . . . . . . . . . . 10

2.1.2 Structural Features of Biological Networks . . . . . . . . . . . . . . 12

2.2 Active Module Identification in Biological Networks . . . . . . . . . . . . . 14

2.2.1 Categories of Active Module Identification Methods . . . . . . . . . 15

2.2.1.1 Significant-Area-Search Methods . . . . . . . . . . . . . . 16

2.2.1.2 Diffusion-Flow and Network-Propagation Methods . . . . 16

2.2.1.3 Clustering-based Methods . . . . . . . . . . . . . . . . . . 18

2.2.2 Representative Significant-Area-Search Methods . . . . . . . . . . . 19

2.2.2.1 Heuristic Search Based Methods . . . . . . . . . . . . . . 20

2.2.2.2 Mathematical Programming Based Methods . . . . . . . . 25



2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Motivations and General Issues of Active Module Identification 28

3.1 Motivation of Multi-Objective Formulation for Differential Expression and

Differential Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Motivation of Introducing Prior Knowledge and Multi-Objective . . . . . . 30

3.3 Motivation of Introducing Community Detection and Multitasking . . . . . 32

3.4 General Issues in Designing Active Module Identification Approach . . . . 33

4 Integration of Node and Edge Information for Active Module Identifi-

cation using Multi-Objective Approach 35

4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Formulation of Node Score . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.2 Formulation of Edge Score . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.3 Multi-objective Optimisation Algorithm as Search Strategy . . . . . 38

4.2 Experimental Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1.1 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1.2 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1.3 Performance Assessment . . . . . . . . . . . . . . . . . . . 43

4.2.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2.1 Method Comparison on Simulated Data . . . . . . . . . . 44

4.2.2.2 Application on Real Data . . . . . . . . . . . . . . . . . . 46

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Prior Knowledge Guided Active Modules Identification through Multi-

Objective Optimisation 52

5.1 A Novel Framework of Prior Knowledge Guided Active Modules Identifi-

cation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Formulation of Active Module Score . . . . . . . . . . . . . . . . . 53



5.1.2 Assessment of Prior Knowledge Enrichment . . . . . . . . . . . . . 54

5.1.3 Algebraic Connectivity as A Constraint for connectivity . . . . . . . 55

5.1.4 Multi-objective Optimisation Algorithm as Search Strategy . . . . . 56

5.2 Experimental Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Construction of Experimental Networks . . . . . . . . . . . . . . . . 60

5.2.1.1 Network 1: A Small Molecular Interaction Network on

Galactose Utilization Pathway . . . . . . . . . . . . . . . . 60

5.2.1.2 Network 2: Yeast Drug Reaction Network Constructed

from Differential Analysis and Interactome Mapping . . . 60

5.2.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.2.1 Analysis of Network 1 . . . . . . . . . . . . . . . . . . . . 61

5.2.2.2 Analysis of network 2 . . . . . . . . . . . . . . . . . . . . 67

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Simultaneous Detection of Active Module and Topological Community

through Multifactorial Evolution 71

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.1 Evolutionary Multitasking . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.2 Modularity Optimisation Methods in Community Detection . . . . 75

6.3 A Novel Framework of Multifactorial Evolution for Active Module and

Topological Community Detection . . . . . . . . . . . . . . . . . . . . . . . 78

6.3.1 Basic Structure of Multifactorial Evolution . . . . . . . . . . . . . . 78

6.3.2 Definition of Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.3 A Unified Genetic Representation for Multiple Tasks and Problem-

Specific Decoding Scheme . . . . . . . . . . . . . . . . . . . . . . . 81

6.3.4 Task-Specific Mutation Operator . . . . . . . . . . . . . . . . . . . 82

6.3.5 Uniform Crossover Operator . . . . . . . . . . . . . . . . . . . . . . 86

6.3.6 Improvement of Output Solution . . . . . . . . . . . . . . . . . . . 87



6.4 Experimental Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4.1 Modularity Optimisation Task . . . . . . . . . . . . . . . . . . . . . 87

6.4.1.1 Experimental Results on Classic Community Detection

Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4.1.2 Experimental Results on Yeast Molecular Interaction Net-

work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4.2 Active Module Identification Task . . . . . . . . . . . . . . . . . . . 96

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 Conclusions and Future Work 103

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

List of References 107



LIST OF FIGURES

2.1 A brief workflow for active module identification. . . . . . . . . . . . . . . 15

4.1 BUM model estimation on p-values for simulated networks. . . . . . . . . . 44

4.2 Pareto front in every 10 generations from applying proposed algorithm on

simulated network 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Comparison of performance for proposed algorithm on simulated networks

with different mutation operators. . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Pareto front from applying proposed algorithm on rat network. . . . . . . 48

5.1 BUM model estimation on p-values in network 1. . . . . . . . . . . . . . . 62

5.2 Network 1 with active modules detected by jActiveModule. . . . . . . . . . 63

5.3 Visualisation of extreme point solution and knee point solution detected

by the proposed algorithm in network 1. . . . . . . . . . . . . . . . . . . . 65

5.4 BUM model estimation on p-values in network 2. . . . . . . . . . . . . . . 68

5.5 Visualisation of module 3 identified by the proposed algorithm in network 2. 69

6.1 A simple example of the chromosome encoding and decoding scheme for

two tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Modularity Q of Zachary’s karate club network. . . . . . . . . . . . . . . . 90

6.3 Visualisation of communities detected by proposed algorithm on Zachary’s

karate club network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4 Modularity Q of bottlenose dolphins network. . . . . . . . . . . . . . . . . 92



6.5 Visualisation of communities detected by proposed algorithm on dolphins

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.6 Modularity Q of yeast network. . . . . . . . . . . . . . . . . . . . . . . . . 94

6.7 Visualisation of communities detected by proposed algorithm on yeast net-

work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.8 Visualisation of active module detected by proposed algorithm on yeast

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



LIST OF TABLES

2.1 Biological networks and interaction databases . . . . . . . . . . . . . . . . 12

4.1 Performance comparison of proposed algorithm and three other methods

on simulated networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Gene ontology results for the active module identified by proposed algo-

rithm in rat network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Parameters for experimental networks. . . . . . . . . . . . . . . . . . . . . 61

5.2 Gene ontology results of modules detected by jActiveModule in network 1. 64

5.3 Gene ontology results of 3 modules on Pareto front detected by the pro-

posed algorithm in network 1. . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Gene ontology results of 3 modules on Pareto front detected by the pro-

posed algorithm in network 2. . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1 Comparison of modularities for the network division found by the proposed

algorithm and some published algorithms. . . . . . . . . . . . . . . . . . . 96

6.2 Gene ontology results for the whole active module identified by proposed

algorithm in yeast network. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Gene ontology results for fractions in active module divided by community

structure in yeast network. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4 Representative gene ontology results for communities in the yeast network. 101



LIST OF ALGORITHMS

2.1 Combinatorial Algorithm for Connected Maximum Coverage Problem by

HotNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Seeding and Annealing Based Biclustering Algorithm by cMonkey . . . . . . 20

2.3 Simulated Annealing Based Search Strategy by jActiveModule . . . . . . . . 22

2.4 Basic Structure of Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Decode Module from Individual Representation . . . . . . . . . . . . . . . . 39

4.2 Probabilistic Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Initialisation Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Clearing Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Basic Structure of Multifactorial Evolutionary Algorithm . . . . . . . . . . . 79

6.2 Chromosome Decoding Scheme for Task 1 . . . . . . . . . . . . . . . . . . . 82

6.3 Chromosome Decoding Scheme For task 2 . . . . . . . . . . . . . . . . . . . 84

6.4 Apply mutation with local search steps to chromosomes specialised in task

1 ( skill factor τ == 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.5 Apply mutation with random community merging to chromosomes spe-

cialised in task 2 ( skill factor τ == 2) . . . . . . . . . . . . . . . . . . . . . 86

6.6 Uniform Crossover to generate two child individuals . . . . . . . . . . . . . 86

6.7 Solution Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



CHAPTER 1

INTRODUCTION

This chapter gives an introduction of active module identification in biological networks

as the research topic of this thesis and an overview of the whole thesis. The rest of this

chapter is organised as follows. Section 1.1 discusses the general research background

of active module identification. Section 1.2 presents the research questions this thesis is

aiming at. Section 1.3 provides the outline of the subsequent chapters. Section 1.4 and

Section 1.5 list the contributions and publication from this thesis.

1.1 Background

Active module identification is a research area in network biology, a discipline that applies

knowledge and approaches in network theory to biological data and tries to reveal the

underlining mechanisms of biological activities by abstract them using network models.

The increasing interest in network biology is driven by the fast development of high-

throughput biological data collection technologies. Exponential amount of data accu-

mulate year by year concerning the complete DNA sequence of an organism’s genome,

the information of an organism’s RNA transcripts under certain conditions, the entire

set of proteins produced by organism, the molecular metabolite profiles that reflects spe-

cific cellular process, and a bunch of other types of information measuring the biological

components and processes. A main challenge for researchers is how to cope with this
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unprecedentedly huge amount of data and dig for the information that precisely reflect

the targeted states, mechanisms or activities of the organisms against background noises.

Network biology offers a highly abstract model of networks to characterise various

levels of biological systems and provides insights into the intrinsic characteristics of these

systems through the utilisation of concepts and methodologies in graph theory [6, 5].

Graph theory has been applied to study many complex systems such as the social net-

works, the transportation networks, or the Internet. It has successfully shown that many

complex systems share the same set of essential architectural features and behaviour pat-

terns that help reveal sights into the evolution and operation mechanisms of the systems

[60].

Studies on network biology mainly focus on the following aspects:

• The construction of networks from biological data. The quality of network

representation, i.e. whether the constructed network faithfully reflects the activities

and interactions among biological components represented by this network, directly

decides the qualities of all following research based on it. Widely adopted types

of biological networks are protein-protein interaction networks, metabolic networks,

regulatory networks and gene co-expression networks. More studies construct net-

works by integrating existing interaction database with conditional specific gene

expression profiles in order to construct more interesting and informative networks.

• The structural features of biological networks. Biological networks share

a bunch of structural features and behaviour patterns with other complex sys-

tems. Research on these properties has revealed some insights into the relationships

between biological components, the formation of biological systems, the reaction

process in response to internal or external stimuli. Commonly studies structural

features include degree distribution, clustering coefficient, shortest path and small-

world property [79], scale-free property [4], modularity [65] and network robustness

[1].
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• The interpretation of biological meaning from network analysis. Stud-

ies on the network models of biological system eventually have to fall back to the

interpretation of biological meaning. Whether an identified structural module as-

sociates with certain functional groups, whether an interesting path in the network

corresponds to some metabolic pathway, or whether a change in the topological pa-

rameters of the network indicates a cellular response, all have to be validated. There

have been a number of database storing the experimental validated or deduced in-

formation concerning the relationships, functions, pathways in biological systems,

e.g. the BioGRID [9] for protein, chemical, and genetic interactions or the KEGG

[41] as an encyclopedia of genes and genomes.

Active module, first defined and formulated by Ideker in 2002 [34] is a region in network

that shows striking changes in molecular activity or phenotypic signatures associated

with a given cellular response [54]. It is expected to reveal dynamic and process-specific

information that is correlated with cellular or disease states.

A number of computational techniques have been developed to identify active modules,

mainly falling in three categories: significant-area-search methods [34, 51, 87, 26, 15] that

often formulate active module identification as a maximum scoring subgraph identification

problem, diffusion flow and network propagation methods [84] that model the influence

or information flow in biological network as the diffusion process of fluid or heat flow in a

network of pipes, and clustering-based methods [71, 70, 52] that use biclustering to find

a subset of genes only showing activity under a subset of experimental conditions.

The exact quantitative formulation of active module varies from problem to problem.

It can be based on node score annotation [34], or edge score [26], or a combination of both

[87, 51]. Statistics used to generate the score also differs. As the formulated problem is

often NP-hard, heuristic optimisation [34, 33, 43, 56, 48, 45] that aims to find high scoring

region but does not guarantee a maximum score is widely used as the search algorithm.

Nevertheless, exact approaches [15, 92, 3] using mathematical programming have also

been developed.
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1.2 Research Questions

The following key research questions clarify the main objectives to be investigated and

addressed by this thesis. The motivations and formal definitions of these objectives will

be presented again in details in the following chapters where they are addressed with

algorithms proposed by this thesis, accompanied with a series of experimental studies.

1.2.1 How to formulate the problem of active module identifi-
cation?

As introduced above, whether network representation faithfully reflects the process and

activity of biological system has an essential effect on the accuracy and reliability of

following experimental results. Similarly, the formal formulation of an active module

shall be very carefully designed to highlight the specific signals in target cellular response

and decrease background noises. Many studies use p-values from differential expression

analysis and formulate a scoring function based on a variety of different statistical models.

Fold-changes are also widely used because of its simplicity yet often satisfactory results.

In addition, information and knowledge from existing interaction database is incorporated

into the pure data driven method by some research. The differences in the specific problem

formulation are often a result of different definitions for active module under certain

contents.

Research Question 1: How to build a practical formulation of active module iden-

tification problem that faithfully reflects the dynamic changes of cellular activities and

helps reveal new insights compared to other existing methods?

1.2.2 How to design and improve algorithms to identify active
module?

After a formal definition of the active module, the next step is to design an appropriate

algorithm to identify it. Heuristic algorithms are common choices for solving this NP-
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hard problem. Details and problem specific modifications need to be carefully designed

and improved for problems with different structures. For example, in active module

identification methods using genetic algorithms, the representations of a solution and the

genetic operators may vary for different problems. In simulated annealing, it is essential to

define the state for a system. Besides, the accuracy, efficiency, scalability and robustness

are often taken into consideration when assessing an algorithm.

Research Question 2: How to develop effective, efficient and robust algorithms to

identify active modules that are truly biological meaningful?

1.2.3 What is the right way to interpret identified active mod-
ule?

This question rises in the process of our research. A widely accepted way of interpreting

active module is to apply functional annotation on it. It gives a description on functions

enriched in given module in a hierarchical structure and the significance of each enrichment

term. However, due to the complexity of biological system and the hierarchical structure

of functional groups, such functional annotation can have limited results, mainly in the

following two aspects.

• Criteria to choose the most representative modules in network. Many

methods identify more than one active module at a time with similar scores, over-

lapping areas, and slightly differences in the biological interpretations. It is worth

discussing on how to choose the most representative module as the final result.

• Ambiguity in interpreting module with large size. Functional annotation

given by an relatively large size of active module is often too general and sometimes

ambiguous as it contains a number of network members. There have been some

research that try to control the size of the module by changing the parameters in

network construction, scoring function formulation, or explicitly constraining the

size in algorithm design. These methods, although have been proven to be effective,
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sometime can be unnatural or have difficulties in applying to other formulations.

This thesis also aims to find a better way for interpretation and avoid the above issues.

Research Question 3: What is the right way to interpret identified active module?

Especially, how to choose the most representative module in a bunch of results? Is there

any better way to deal with the size problem for identified active module other than

setting a hard constrain?

1.3 Outline of the Thesis

This thesis is trying to answer the research questions listed in Section 1.2. The rest of

this thesis is organised as follows.

Chapter 2 gives an introduction of biological networks and its structural properties

as the research background of active module, and a review of widely used definitions and

approaches for active module identification. Representative approaches in the three major

categories of active module identification methods, i.e. significant-area-search methods,

diffusion flow and network propagation methods and clustering-based methods are intro-

duced, with a focus on their problem formulation and algorithm design. Different scoring

strategies and algorithm development for significant-area-search methods are further re-

viewed.

Chapter 3 introduces the motivation and general issues for novel research presented in

this thesis. Especially, it explains the motivation of formulating multi-objective problem

for integrating differential expression and differential correlation associated with Chapter

4, of introducing prior information guidance in the traditional pure data driven active

module identification methods associated with Chapter 5, and of incorporating topological

community detection as a multitasking scheme associated with Chapter 6. It illustrates

the issues encountered when we are trying to address the formulated problems.

Chapter 4 proposes an integrated approach for active module identification that con-

sider both the differential expression of each gene and the differential correlation between
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genes. We adopts two classic measurements for active module detection, and incorporates

the two objective functions using a multi-objective evolutionary algorithm. By formulate

the problem as a multi-objective problem, this approach avoids the weight parameter for

balance between objectives in traditional integrated methods, and provides meaningful

results that otherwise cannot be detected using single measurement.

Chapter 5 propose a prior information guided active module identification approach

aiming at identifying modules that are both active and enriched by prior knowledge. We

formulate the active module identification problem as a multi-objective optimisation prob-

lem, design a novel constraint based on algebraic connectivity to ensure the connectivity

of the identified active modules, and solve it using a modified approach based on NSGA-

II. Experimental studies show that integrating knowledge of functional groups into the

identification of active module is an effective method and provides a flexible control of

balance between pure data-driven method and prior information guidance.

Chapter 6 proposes a novel algorithm framework of detecting active module and topo-

logical communities simultaneously using evolutionary multitasking. A series of task-

specific algorithm designs and improvements have been made based on the original frame-

work of evolutionary multitasking algorithm, including a unified genetic representation

and problem-specific decoding methods for the two tasks, task-specific mutation opera-

tors with local search strategy, and an extra solution improvement step. The proposed

algorithm is first applied on some classic community structured networks to test its per-

formance on community detection, and then on biological networks to simultaneously

run both tasks. Experimental studies show that the proposed algorithm is able to de-

tect network divisions with values of modularity comparable or even better than classic

community detection algorithms, and also able to identify active modules with consider-

ably high scores. By mapping the community structure to the active module and further

dividing the module into smaller fractions, this algorithm provides a new way to better

interpreter the biological meaning of active module.

Chapter 7 givens conclusions for the thesis and some discussion on the future work.
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1.4 Contribution of the thesis

By addressing the research questions listed above, this thesis presents the following con-

tributions.

• A multi-objective formulation of active module measurements that com-

bines differential expression of each gene and the differential correlation

between genes.

• A novel formulation of prior information guided active module that pro-

vides a flexible control of balance between pure data-driven method and

prior information guidance.

• A multi-objective optimisation framework modified for the problem and

uses a novel constraint to ensure the connectivity of the identified active

modules.

• A novel framework of detecting active module and topological commu-

nities simultaneously using evolutionary multitasking with a series of

task-specific algorithm designs and improvements.

• An inspiring way of integrating topological community information to

help the interpretation of active module.

1.5 Publication Resulting from the Thesis

• Published journal paper

– Chen W, Liu J, He S. Prior knowledge guided active modules identification:

an integrated multi-objective approach[J]. BMC systems biology, 2017, 11(2):

8.

– This paper is associated with Chapter 5.
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• Submitted paper

– Chen W, Zhu Z, He S. Mumi: multitask module identification for biological

networks. Submitted to IEEE Transactions on Evolutionary Computation.

– This paper is associated with Chapter 6.

• Paper in preparation

– Chen W, He S. Combined measurements for active module identification using

multi-objective method.

– This paper is associated with Chapter 4.
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CHAPTER 2

LITERATURE REVIEW ON ACTIVE MODULE
IDENTIFICATION

This chapter is a literature review on the research topics in biological networks and rep-

resentative approaches for active module identification. The first section provides a quick

review on the development and research interest in network biology and several essential

structural features in biological networks that help reveal the dynamics and mechanism

of biological systems. The second section introduces the concept of active module and

further gives a concrete review on the mainstream categories of active module identifica-

tion, especially the significant-area-search methods that includes heuristic search based

algorithms and mathematical programming based algorithms.

2.1 Modular Structure in Biological Networks

2.1.1 The Development of Network Biology

With the development of high throughput data collection technologies, vast amounts of

omics data that cover different species and different levels of biological activities have

accumulated exponentially. There are genomics that analyse the complete DNA sequence

of an organism’s genome, transcriptomics that collect the information of an organism’s

RNA transcripts and thus generate related gene expression profiles under a given con-
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dition, proteomics that focus on the entire set of proteins produced by organism and

involved in every biological activity, and metabolomics that study the molecular metabo-

lite profiles that reflect specific cellular process. These varied omics data provide valuable

information concerning the intrinsic mechanisms underlining biological processes. With

the accumulation of large data sets, one of the most essential challenges for researchers is

that how to properly interpret these data.

Techniques and methods have developed rapidly during the past several decades, both

in high throughput data collection level and interpretation and analysis level. As a fast-

growing interdisciplinary field, computational biology has gradually learned, explored and

absorbed analysis approaches from many other disciplines, e.g. mathematical modelling,

statistic inference, or computational simulation. Take gene expression data analysis as an

example, methods have evolved from the simple single or multivariate statistical analysis,

e.g., calculation of fold-change [80], identification of differential expressed genes [72], to

integrated approaches that integrate prior knowledge and different data set [2]. As a re-

search field driven by those integrated approaches, network biology has gained popularity

recently years.

Network biology offers a highly abstract model of networks to characterise various

levels of biological systems and provides insights into those system by taking advantages of

network theory [6, 5]. The development of network biology is based on the awareness that

as a complex system, biological interaction networks share many essential architectural

features and behaviours with other complex systems that have been long studied [60], such

as the social networks or the Internet. Graph theories that help reveal the formulation

and evolution principles of these systems can also be applied to biological networks in the

hope of discovering and characterising the functions and mechanisms behind biological

activities.
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2.1.2 Structural Features of Biological Networks

A network can be simply viewed as a collection of nodes with pair-wise interactions called

edges among them. There are a bunch of different ways to model complex biological

systems as networks. For the purpose of simplicity, in each type of networks there is only

one or two specified types of molecular components selected as the nodes. Interactions

or relations between the components are measured as edges. These interactions are often

physical or chemical interactions like the interaction between two protein, or metabolic

interactions between metabolites. A list of commonly used biological types and related

public databases is shown in Table 2.1. Aside from direct construction of network using

interaction databases, integrative approaches that combine existing interaction maps and

experimental condition specific data are also widely adopted. Gene co-expression net-

work [91, 78] for example, is consist of genes as nodes and edges indicating a significant

co-expression relationship between genes, most commonly Pearson correlation. Other

network construction methods are varied from calculating pair-wise correlation coefficient

of expression data (correlation network [48]), filtering from existing interaction database

(protein-protein interaction network [26, 87, 56, 51]), or integrated approaches based on

both expression data and metabolic models (tissue specific metabolic network [75]).

Network Type Node Type Edge Type Representative
Databases

Protein-protein
interaction
networks

Protein Binary
protein-protein
interactions

the MIPS database
[53], the BioGRID
[9], the STRING
[77]

Metabolic networks Metabolite Metabolic and
transport reaction

KEGG[41]

Regulatory
networks

Protein or DNA Protein-DNA
interactions

UniPROBE [82],
JASPAR [37]

Table 2.1: Biological networks and interaction databases

Modelling biological system as networks provides quantitative measurements and anal-

ysis approaches to study the activities and features of the system. Structural features that
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are commonly used to describe a network includes degree distribution, clustering coeffi-

cient, shortest path and small-world property [79], scale-free property [4], modularity [65]

and network robustness [1]. Researches have shown that, despite the high complexity of a

living organism, its network architecture follows a few simple universal laws that govern

a broad range of network systems graph theory has been investigating into.

One of the most important discoveries is the scale-free property of cellular networks.

Scale-free property describes a type of network whose node degree follows a power-law

distribution, i.e. the the probability of a node with degree k follows P (k) ∼ k−γ where

γ is the degree exponent [4]. This property is proved to be the consequence of network

expanding by connecting new node to its existing nodes with probability proportional to

node degree. It has been observed in a wide range of complex networks including social

networks, transportation networks, business networks and biological networks. Network

with scale-free property tends to have highly connected nodes and form small groups of

highly connected nodes called hubs. The phenomenon that scale-free property and hubs

are commonly observed in biological networks provides sights and supports in the research

of molecular evolution in biological system [85].

Another important characteristic of biological network is the modular structure. Cel-

lular functions are carried out by functional unites called modules [30]. These modules

are made up of different types of molecules and have relatively independent functions that

arise from the interactions among their components. Through proper way of mapping,

components in the same functional modules can be located in the same neighbourhood

in biological network, forming a densely connected topological module where nodes are

more likely to interact with each other than with nodes from outside the module. The

reverse method is often used to help identify functional modules or disease modules [5] in

network medicine, whose basic assumption is that the topological, functional and disease

module overlap.

There are, however, some challenges confounding the analysis of biological network

and its structural features. One major challenge comes from the complexity of biological
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system itself: how to properly convert data containing activities of a huge number of

molecules into a model that nicely reflects the functions and changes the system is under-

going. Considering that there are often tens of thousands of molecules and interactions,

carefully designed simplification or reduction is necessary so that the core components

and functions can be preserved. Technological biases in high-throughput approaches also

effects signal accuracy and generate false positives and false negatives, which triggers the

arising of research and techniques in high-throughput data processing.

Although currently biological networks are not able to fully capture the diversity and

dynamics of complex biological system[25], it is still one of the most promising and fast

developing research area in modern biology. Many studies have been performed on the

construction of networks from biological systems and the structural and functional features

that may respond to related biological information.

2.2 Active Module Identification in Biological Net-

works

Modular structure is one of the essential characteristics that reveal information about

the relationship and interaction among components in the network. In biological net-

works, modules are considered as the functional units of cellular process and organisation

[30]. Varied definitions of module have been proposed and numerous methods have been

developed to identify those modules [38, 32], all aiming to reveal essential biological mech-

anisms [54, 31]. Among them, active module detection is a successfully applied integrative

approach.

Active module is a region in network that shows striking changes in molecular activity

or phenotypic signatures, which is often associated with a given cellular response [54].

Such response-specific regions are expected to reveal dynamic and process-specific infor-

mation that is correlated with cellular or disease states. In some literature active modules

are alternatively described as network hotspots, or responsive subnetworks. In this thesis
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we will use the term active module.

Figure 2.1: A brief workflow for active module identification. This figure is redrawn from
Figure 1 in reference [54].

2.2.1 Categories of Active Module Identification Methods

A number of computational techniques have been developed to identify active modules

in biological network. Many of them have been packaged as convenient tools available

for public use. A general procedural workflow for active module identification is shown

in Figure 2.1. Network data usually comes from public interaction database like those

listed in Table 2.1. Molecular profiles are incorporated to provide quantified information

of molecular activities that can be converted into scores for network annotation. After

network activity is annotated, algorithms are applied to the network for the identification

of active modules based on a variety of strategies. The extracted modules are tested

for statistical significance. Method validation and improvement is also performed in this

step. After that, active modules that are statistical significant will be used for biological

interpretation and analysis. Mainstream methods for active module identification can be

roughly classified into three categories described as following.
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2.2.1.1 Significant-Area-Search Methods

A typical significant-area-search method annotates the nodes or edges in network with

scores indicating the level of molecular activity, formulates a scoring function to calculate

the module score that is able to measure the overall activity of a selected network region,

and finally applies a search strategy that identifies the region with optimised module

score, indicating an active module. This is the type of methods that we will use for

the research presented in this thesis. A detailed review of representative significant-area-

search methods is presented in Section 2.2.2.

2.2.1.2 Diffusion-Flow and Network-Propagation Methods

This type of methods adopts the concepts of diffusion flow and network propagation. It

assumes that the spread of information in biological network is analogous to the fluid

or heat flow in a network of pipes. Thus in biological system, network flow is diffused

from source nodes with high level of differential expression or known disease genes, flows

outwards along network edges, and gets accumulated in certain regions. Regions accumu-

lating the maximum flow, i.e. the maximum influence from neighbouring nodes, are then

detected as active modules.

In one such method called HotNet [84] that is designed to detect significant mutated

pathways in cancer, an influence graph is constructed by using a diffusion flow on the

interaction network to define influence between gene pairs. The influence of gene gs on

gene gi is calculated as the amount of fluid f si when fluid is pumped into the source gs at

a constant rate, lost from each node at a constant first-order rate, and the system reaches

the equilibrium. The diffusion process is related to certain random walks on graph. After

computing the diffusion flow for all tested genes, an influence graph GI is constructed

where nodes are the set of tested genes, and the weight of an edge e(gj, gk) is given by

w(gj, gk) = min(f jk , f
k
j ) for all pairs of tested genes as the influence is not symmetric.

After defining the influence measure, the method formulates the problem of finding a

connected subgraph of k genes that are mutated in the largest number of samples as
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connected maximum coverage problem defined below.

Problem 2.1 (Connected Maximum Coverage Problem). Given a graph G defined on a

set of n nodes V = {v1, v2, ..., vn}, a set I, a family of subsets p = {P1, P2, ..., Pn}, with

Pi ∈ 2I associated to vi ∈ V , and a value k, find the connected subgraph C = {vi1, ..., vik}

with k nodes in G so that | ∪kj=1 Pij| is maximised.

In this case, graph G is the influence graph GI , and subsets Pi is the sets of samples in

which gene gi is mutated. As the connected maximum coverage problem is NP-hard even

for simple network, HotNet proposes a combinatorial algorithm that runs in polynomial

time and gives O(1
r
) approximation where r is the radius of the optimal solution. The

detailed description of this algorithm is shown in Algorithm 2.1.

Algorithm 2.1: Combinatorial Algorithm for Connected Maximum Coverage Prob-
lem by HotNet

Input: Influence graph GI , threshold δ, size k
Output: Connected subgraph C with k nodes

1 Construct GI(δ) by removing edges with weight w < δ from G ;
2 C ← ∅ ;
3 for each node v ∈ V do
4 Cv ← {v} ;
5 for each node u ∈ V \ {v} do
6 pv(u)← shortest path from v to u in GI(δ)
7 end
8 while |Cv| < k do
9 lv(u)← set of nodes in pv(u);

10 Pv(u)← elements of I covered by lv(u) ;
11 PCv ← elements covered by Cv;
12 PC ← elements covered by C;

13 u← argmaxu∈V \Cv ;|lv(u)∪Cv |≤k{
|Pv(u)\PCv |
|lv(u)\Cv | } ;

14 Cv ← lv(u) ∪ Cv
15 end
16 if |PCv | > |PC | then
17 C ← Cv
18 end

19 end
20 return C

The HotNet algorithm is successful in detecting pathways that are known to play an
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essential role in cancers and is also able to identify additional pathways that have not yet

previously reported as mutated.

2.2.1.3 Clustering-based Methods

The third group of methods simultaneously clusters network components and the corre-

sponding conditions under which those components become active, based on a concept

called biclustering. Biclustering is the clustering performed on the row and column di-

mensions of the data matrix simultaneously.

The motivation of applying biclustering algorithms for biological data analysis is that

the results from standard clustering methods are sometimes limited because the activity

of genes may not be correlated in all of the experimental condition [52]. A gene expression

profile is usually presented in a data matrix whose rows correspond to genes and columns

correspond to conditions. Analysis on expression data is either aiming at revealing the

expression patterns of genes by comparing rows of the matrix, or expression patterns of

sample conditions by comparing columns. Because there often exists a subset of genes

that show compatible expression patterns under a subset of experimental conditions [70],

biclustering algorithms that are able to detect submatrices have been broadly applied in

finding these subgroups of genes or subgroups of conditions.

As summarised in a comprehensive survey [52], biclustering algorithms are particularly

suitable for the following situations:

• Only a subset of genes are activated in target cellular process.

• Target cellular process is only activated in a subset of experimental samples or

conditions.

• The activation state of multiple pathways that a single gene participate in may not

be highly correlated across all samples.

Given a data matrix A with the set of rows X and set of columns Y , AIJ = {I, J} rep-

resents the submatrix of A where I ⊆ X and J ⊆ Y are the subsets of rows and columns.
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A bicluster is the submatrix whose rows exhibit similar behaviour across columns, and

columns exhibit similar behaviour across rows. The problem addressed by biclustering

algorithms is given below.

Problem 2.2 (Biclustering Problem). Given a data matrix A, find a set of k biclus-

ters Bk = (Ik, Jk) such that each bicluster Bk satisfies some specific characteristics of

homogeneity.

The characteristics of homogeneity are differently defined by each approach. Some

biclustering algorithms directly analyse numeric values in data matrix and try to find

constant or coherent values, while some other algorithms are designed to find coherent

evolutions across rows or columns instead of the exact values. As the complexity of

the biclustering problem is NP-complete, heuristic search strategies are broadly used to

address it.

One of the biclustering algorithms, cMonkey [71], defines the probabilities of each

gene or condition belonging to a given bicluster as p-values based upon individual data

likelihoods, which are then calculated from the correlation of gene expression, similarity

of upstream sequences, and association network topology. The algorithm uses a variety

of seeding methods to start the procedure of clustering, e.g. seeding with a single random

gene, with an existing cluster or bicluster, with a highly connected node or with a mo-

tif. It iteratively improves a newly seeded bicluster by adding genes or conditions with

high membership probability and dropping those with low membership probability. The

workflow of this algorithm is shown in Algorithm 2.2.

2.2.2 Representative Significant-Area-Search Methods

This section gives a review of several representative significant-area-search methods for

active module identification. As the problem of finding the maximal-scoring connected

module has proven to be NP-hard (non-deterministic polynomial-time hard) [34], heuris-

tic algorithms are broadly used to approximately search for high scoring modules than
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Algorithm 2.2: Seeding and Annealing Based Biclustering Algorithm by cMonkey

Input: data matrix, membership probabilities for each gene and condition,
maximum number of clusters kmax

Output: biclusters

1 k ← 0;
2 while k ≤ kmax and significant optimisation is still possible do
3 seed a new bicluster;
4 repeat
5 search for motifs in bicluster;
6 compute conditional probability that each gene or condition is a member of

the cluster;
7 perform moves sampled from the conditional probability;

8 until the cluster does not change;

9 end
10 return biclusters detected

finding the maximally scoring module. Commonly used heuristic approaches are simu-

lated annealing [34], greedy search [33], and evolutionary algorithm [43, 56]. Nevertheless,

exact approaches that guarantees to identify maximally scoring module have also been

explored and developed [15, 92, 3].

2.2.2.1 Heuristic Search Based Methods

The jActiveModule [34] method proposed by Ideker in 2002 is considered as the first to

formulate active module search task into an optimisation problem. It takes p-value pi

representing the significance of expression change for each gene i and converts it to a

z -value-score zi through

zi = Φ−1(1− pi) (2.1)

where Φ−1 is the inverse normal cumulative distribution function. For randomly dis-

tributed data p-values are uniformly distributed between 0 and 1, thus z -scores follow a

standard normal distribution. The aggregate z -score zA for a given module A of k nodes

is then given by

zA =
1√
k

∑
i∈A

zi (2.2)
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zA also follows a standard normal distribution assuming zi are independently drawn from

a standard normal distribution, making modules of different sizes comparable to each

other under this scoring system.

To calibrate z -score against the background distribution, this algorithm uses a Monte

Carlo approach to estimate average scores µk and standard deviation σk for randomly

selected modules of size k. The module score sA of size k after background correction is

calculated by

sA =
zA − µk
σk

(2.3)

A higher sA score indicates a higher module activity. This scoring system can be extended

for gene expression changes measured over multiple conditions by sorting zA scores across

all conditions, computing the significance of the j-th highest score through a binomial

order statistic, and converting it back into a standard normal z -score.

After the formulation of active module score sA, the jActiveModule uses an approach

based on simulated annealing to find the maximal-scoring connected module. Simulated

annealing is a heuristic algorithm that allows probabilistic transitions to an inferior state

in order to avoid getting stuck in local optima. It is inspired by the cooling process of

molten materials down to the solid state where in the process of seeking a minimum-

energy state, there is a probability of transition from a lower energy state to a higher

energy state that correlates with the energy gap and decreases when the temperature gets

lower [76]. The search strategy used by jActiveModule is shown in Algorithm 2.3.

The jActiveModule method by Ideker is among the earliest to identify active modules

on molecular interaction networks. In real work the simulated annealing based search con-

verges relatively slow and is not easy find a satisfactory solution for large scale network.

Besides in the literature it shows no guarantee for the connectivity of detected module.

In the source code implemented as a jAcitveModule plug-in for network visualisation

and analysis software Cytoscape, the algorithm maintains an additional HashMap storing

nodes and their connected components, and checks whether the connectivity of subgraph

Gw would be affected every time a node is to be toggled, which effects the running speed
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Algorithm 2.3: Simulated Annealing Based Search Strategy by jActiveModule

Input: A graph G = (V,E), a number N of iterations, a temperature function Ti
that decreases geometrically from Tstart to Tend

Output: A subgraph Gw of G

1 Initialise Gw by setting each v ∈ V as active or inactive by probability 0.5 ;
2 for i = 1 to N do
3 Randomly select a node v ∈ V and toggle its activation state ;
4 Computer the background corrected score si for current subgraph Gw;
5 if si > si−1 then

// if the state increases score, jump to it

6 keep v toggled

7 else
// if the state decreases score, jump to it with probability

related to the gap of two scores

8 keep v toggled with probability p = e
si−si−1

Ti

9 end

10 end

of the algorithm. Nevertheless, as the first research to formulate active module identi-

fication problem and present a feasible optimisation method to solve it, jAcitveModule

has influenced a number of following research in the form of problem formulation and the

choice of search strategy.

Another method adopts similar formulation and search strategy to identify active

modules in protein-protein interaction network, but instead of annotating activity score

to nodes, it uses edge score to measure the module activity [26]. In this method, the edge

score Score(e(x, y)) for an edge e(x, y) between two proteins x and y is calculated as

Score(e(x, y)) = Cov(x, y) = Corr(x, y)std(x)std(y) (2.4)

where Corr(x, y) is the Pearson correlation coefficient of the expressions levels between x

and y. The overall expression variation std(x) and std(y) are used as the measurement of

the differential expressions of corresponding genes. Then the aggregated score for a given
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subgraph Gw = (Vw, Ew) is given by

T (Gw) =
∑
e∈Ew

Score(e) (2.5)

Similar to the background correction used by jActiveModule, this algorithm randomly

samples subgraph of size k and estimates average scores µk and standard deviation σk for

background subgraph. Eventually the standardised score for a subgraph Gw of size k is

Score(Gw) =
T (Gw)− µk

σk
(2.6)

This scoring method also guarantees that the scores of modules with different size follow

the same distribution, and thus are comparable to each other. This method again uses

simulated annealing based search algorithm.

In addition to optimisation methods based on node score or edge score, there are

also formulations that combine both node and edge score [87, 51]. The COSINE method

[51], proposed to identify active modules based on gene expression profiles, uses a scoring

function that considers the differential expression of individual genes and the differential

correlation of gene pairs together. It uses the F -statistic to measure the changes of

gene expression as node scores, and the expected conditional F -statistic to calculate the

changes in gene co-expressions across different groups as edge scores. Both node score

and edge score are adjusted against background mean score and standard deviation same

as the two methods described above. For a given subgraph G = (V,E) of size k, COSINE

calculates the activity score of G as

Score(G) = λ

∑
e∈E EdgeScore(e)√(

k
2

) + (1− λ)

∑
v∈V NodeScore(v)

√
k

(2.7)

where λ(0 ≤ λ ≤ 1) is a weight parameter to control the fraction of contributions from

edge score and node score to the integrated score, and the denominator is an adjustment

for the size of module.
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COSINE formulates the highest scoring module identification problem as an optimisa-

tion problem of finding a binary vector of length |V | to maximise the active module score

Score(G), where the i-th position of the vector being 1 represents that the corresponding

i-th node is included in the module. It uses genetic algorithm to search for the module

with highest score.

The genetic algorithm is a population based global search algorithm that gets inspira-

tion from evolution and natural selection. During the reproduction of organisms, crossover

occurs in parental chromosomes to generate offspring chromosomes that contain the in-

heritable genetic characteristics from both parents. Sometimes random mutations occur

when passing chromosomes from one generation to the next generation, increasing the

diversity of genotypes in the whole population. If one genotype is suitable for the current

environment, the individual has higher probability to survive and reproduce, otherwise it

is more likely to die without leaving any offspring. Through this selection pressure, the

population of organisms evolves towards the direction of having genetic variations with

high fitness to the environment.

Algorithm 2.4: Basic Structure of Genetic Algorithm

Input: population size pop, maximum generation genmax
Output: solution

1 population ← initialisation of population with pop solutions ;
2 evaluate the fitness of every individual in population ;
3 gen← 0 ;
4 while gen ≤ genmax or other termination criteria are not satisfied do
5 apply crossover and mutation to population to generate offspring ;
6 evaluate the fitness of every individual in offspring ;
7 intermediate-population ← Union(population, offspring);
8 population ← selecting fittest individuals from intermediate-population ;
9 gen = gen+ 1;

10 end
11 return solution with highest fitness in population

For a given problem, genetic algorithm maintains a population of solution candidates

as individual chromosomes. The representation form of solution depends on the charac-

teristics of the problem. Problem-specific objective functions are defined to calculate the
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fitness of individuals. For each generation, genetic operators like crossover and mutation

are applied to produce the offspring population. Selection is performed to preserve solu-

tions with higher fitness. The algorithm iterates until the maximum number of generation

is produced or other termination criteria are satisfied. The workflow of a basic genetic

algorithm is given in Algorithm 2.4. In the design of genetic algorithms, the representa-

tion form of solution, the choice on genetic operators and the type of selection process

vary from problem to problem and can have different effects on the performance of the

algorithm.

There have been some criticism on genetic algorithm, mainly focused on its scalability

with complexity and slow convergence for nontrivial problems [76]. In the condition when

crossover and mutation operator cannot make good use of problem-specific structure,

reproduction process generates a large proportion of inferior solution, which leads to slow

convergence. Due to the population based strategy, it often has high space complexity

and a high number of repeated fitness function evaluation. Nevertheless, it is still used in

a broad range of optimisation problems.

2.2.2.2 Mathematical Programming Based Methods

In 2008, Dittrich and Klau [15] proposed an integer-linear programming based approach

to find the optimal solution to the maximal scoring subgraph problem, which is the first

exact approach for active module identification. This approach formulates an additive

score for each node based on a beta-uniform mixture distribution model proposed by an

earlier research [69] of approximating and partitioning the empirical distribution of p-

values in microarray analysis. As we adopt the formulation of this score in our research,

a further description and related equations are given in Section 4.1.1.

The scoring function used in this method is based on signal-noise decomposition where

positive value indicates signal content and negative value indicates background noise.

After assigning scores to each node, the score for measuring activity for a given module

is simply the sum of scores of every individual node in the module. Thus the problem
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of active module identification in this context is defined as a maximum-weight connected

subgraph problem stated below.

Problem 2.3 (Maximum-Weight Connected Subgraph Problem, MWCS). Given a con-

nected undirected node weighted graph G = (V,E,w) with weights w : V → R, find a

connected subgraph T = (VT , ET ), VT ⊆ V,ET ⊆ E that maximises the score w(T ) =∑
v∈VT w(v).

Given an instance of MWCS problem G = (V,E,w) with positive and negative node

weights, let wmin = minv∈Vw(v) be the lowest value of node weight, the instance can

be transformed to an instance G = (V,E, c, p) of prize-collecting Steiner tree problem

shown below by setting node profits p(v) = w(v) − wmin for all v ∈ V and edge costs

c(e) = −wmin for all e ∈ E.

Problem 2.4 (Prize-Collecting Steiner Tree Problem, PCST). Gvien a connected undi-

rected node and edge weighted graph G = (V,E, c, p) with node profits p : V → R≥0 and

edge costs c : E → R≥0, find a connected subgraph T = (VT , ET ), VT ⊆ V,ET ⊆ E that

maximises the profit

p(T ) =
∑
v∈VT

p(v)−
∑
e∈ET

c(e) (2.8)

The method has proved that a maximum-weight connected subgraph in G = (V,E,w)

corresponds to the optimal prize-collecting Steiner tree in its transformed version G =

(V,E, c, p). Thus after converting the MWCS problem into the well-known PCST prob-

lem, the method is able to solve it through mathematical programming that finds provably

optimal solution to the active module identification problem.

2.3 Summary

This chapter has presented a review on the literature background of active module iden-

tification as the topic of this thesis. We have introduced the biological network as a
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main research topic in network biology, the fundamental structural features of biologi-

cal network, and the active module as a region showing significant changes in molecular

activity or phenotypic signatures in biological network. We have presented a series of

works on active module identification, whose approaches are roughly divided into three

categories: significant-area-search methods that formulate active module identification as

a high scoring subgraph detection problem, diffusion-flow and network-propagation meth-

ods that model the flow of information or influence in network as fluid or heat diffusion

process, and clustering-based methods that use biclustering to discover a subset of genes

of a subset of conditions sharing similar expression patterns. A further detailed review

on significant-area-search methods is given as it is the main type of method this thesis

will use for novel algorithm frameworks proposed later. In significant-area-search, score

annotation can be node score, edge score, or a combination of both. Heuristic algorithms

like simulated annealing and genetic algorithms are often applied as the search strategy

for high scoring subgraph. Exact methods that transform the active module identification

problem into forms that are solved in mathematical programming are also developed.
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CHAPTER 3

MOTIVATIONS AND GENERAL ISSUES OF
ACTIVE MODULE IDENTIFICATION

Chapter 1 introduces the key research questions this thesis is aiming at, among which the

first one is the formulation of active module identification problem that faithfully reflects

the dynamic changes of cellular activities and helps reveal new insights compared to other

existing method. In chapter 2, a variety of problem definitions and objective formulations

for active module identification and their corresponding algorithms are reviewed. The

differences in the design of these algorithm framework are often because of the differences

in research interest and research questions. The detailed formulation of active module

problem can be very flexible in a given context.

This chapter gives the research interest and intuitions behind the design of the al-

gorithms proposed by this thesis. It explains the motivation of combining differential

expression and differential correlation using a multi-objective optimisation approach in

Chapter 4, motivation of introducing prior knowledge and using a multi-objective formu-

lation in Chapter 5, and the motivation of incorporating topological communities under

a multitasking scheme in Chapter 6. It also briefly introduces several general issues in

designing an active module identification framework.
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3.1 Motivation of Multi-Objective Formulation for

Differential Expression and Differential Correla-

tion

The idea of combining differential expression and differential correlation itself is not new.

Back to 2011, COSINE [51] was proposed as one of the earliest to consider both active

module measurements simultaneously. It used a weight parameter λ to balance between

differential expression as node score and differential correlation as edge score, resulting in

one combined objective function, which is then optimised through evolutionary algorithm.

A simplified version of its objective function is shown as below. More details of objective

function formulation proposed by COSINE can be found through equation 2.7 and its

related contents.

Score(module) = λ ∗ EdgeScore+ (1− λ) ∗NodeScore (3.1)

However, although the choice of parameter λ is essential for objective function and

final results, it’s not easy to choose its value. COSINE designed a whole set of rules to

choose λ that requires considerable amount of calculation and random sampling. Upon

seeing the objective function, it came to us that the explicit weight parameter can actually

be avoided using a multi-objective formulation.

A multi-objective problem is an optimisation problem that optimises multiple com-

peting objective functions simultaneously. As these functions conflict with each other,

there is seldom a single, perfect solution. Instead the optimisation of a multi-objective

problem gives a set of alternative solutions whose objective function values can not be

simultaneously improved any more. They are considered equivalent without further infor-

mation concerning the priority of objectives [20]. Such a set is called the Pareto-optimal

set, or the Pareto front. Pareto optimality means no objective value can be improved

without degrading any other objective values. In the Pareto front, no solution is better

than any other solution across all objectives. In practise, however, there can be a pref-
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erence in the trade-offs between different objectives. On the other hands, all solutions

in the Pareto front dominate any other solution that is not in Pareto front. A solution

dominates another solution if it is not worse than the other in all objectives and has a

least one objective that is strictly better.

From the objective function proposed by COSINE it’s obvious that the two mea-

surements for active module, i.e. node score and edge score, are conflicting. Thus a

multi-objective formulation is feasible. The balance between node score and edge score

can still be controlled as the multi-objective optimisation returns not a single best solu-

tion, but a Pareto front containing a series of ”equally good” Pareto solutions that ranges

from high node score to high edge score. Instead of setting weight parameter before the

search, preference for the two kinds of activity measurements is fulfilled by selecting pre-

ferred solutions on Pareto front. Chapter 4 provides detailed description of this approach

and experimental results.

3.2 Motivation of Introducing Prior Knowledge and

Multi-Objective

The integration of prior knowledge is inspired by the concept of functional module which

corresponds to a statistically significant segregation of nodes with similar or related func-

tions in the same network neighbourhood[5]. Functionally related nodes tend to interact

with each other and get activated simultaneously in a given cellular response, thus nodes

known to be in the same or related functional group have higher potential to form an

active module. On the other hand, considering that there are still genes whose function

is not revealed clearly yet, it would be interesting to search for a module that is both

active in terms of differential expression and enriched in particular functional groups. By

investigating into genes assembled in such a module, potential relation among genes may

be uncovered.

In chapter 5 we again use a multi-objective framework to formulate this problem. The
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reason why finding an active module enriched in prior knowledge is conflicting is that for

a given cellular response, only a small fraction of functional groups related in this biolog-

ical process get activated while a number of other function groups do not participate in

a significant level. Thus purely enriching prior knowledge only gives a collection of ex-

isting functional pathways that do not contain much information for the cellular activity.

Meanwhile, purely searching for high active score modules omits a fact that some tran-

scription factors that serve as an important regulator in cellular response may not show

very significant differential expression level. Similarly it is questionable whether a whole

response related functional process that may have different level of differential expression

can be discovered by a purely data driven method. Thus we combine the two conflicting

objectives together to design a new framework as a prior knowledge guided active module

identification.

We first formulate the problem as a multi-objective optimisation problem, which not

only maximises the activity score as defined by Dittrich and Klau [15] but also max-

imises the prior knowledge contained in the active module. The intuition behind this

multi-objective formulation is to use prior knowledge to guide the search of novel infor-

mation from data, i.e., active modules. The Pareto solutions from this multi-objective

optimisation problem are then the optimal trade-off between known knowledge and novel

information.

In order to solve this multi-objective problem, we proposed a modified multi-objective

genetic algorithm. One of the important details omitted in many papers of active module

identification is how to ensure the connectivity of the solutions. Without this connectivity

constraint, the optimal solution is trivial, i.e., the top genes with largest node scores.

In order to ensure the connectivity of the identified active modules, we design a novel

constraints based on algebraic connectivity. The algorithm is applied to a small molecular

interaction network that was used by Ideker [34] and then applied to a large Protein-

Protein Interaction (PPI) network constructed from microarray data on drug toxicity and

resistance.
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3.3 Motivation of Introducing Community Detection

and Multitasking

Identifying modules from biological networks is important since modules can reveal essen-

tial mechanisms and dynamic processes in biological system. Existing algorithms focus on

identifying either active modules or topological modules (communities), which represent

active functional and topological units in the network, respectively.

Community detection is a mature research area that discovers the densely connected

local regions in network which often reveal the topological property and member relation-

ships of the network. There are also studies that try to identify putative disease modules

through detecting topological core modules in biological network [48]. As the traditional

active module purely depends on the differential expression data, introducing communi-

ties as topological information may help further in the identification and interpretation

of active modules.

Active modules or topological modules often overlap with each other, which reveal the

interactions between active functional units and topological units. These overlaps shed

lights on the biological mechanisms that cannot be revealed by these two modules alone.

Therefore, it is important to identify and study both active modules and communities.

However, despite its importance, there are no existing methods to do so.

In Chapter 6 we propose a novel multitask module identification algorithm to detect

active modules and communities simultaneously. By search for these two types of mod-

ules simultaneously, the algorithm can exploit their latent complementarities to obtain

new insights into the dynamic biological mechanisms. We will investigate into the rela-

tionship between active module and community, and improve precision of the functional

annotations by integrating structural information into active module.

Multifactorial evolution is an evolutionary multitasking paradigm that maintains mul-

tiple search spaces corresponding to different tasks that may or may not be independent

to each other [28]. Multitasking generally does not impose any strict constraint on the

relationships between tasks, which is different from multi-objective problem whose ob-
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jectives conflict with each other. Multitasking is inspired by the observation that in the

parallel execution of multiple tasks, every task contributes a unique factor to the evolu-

tion process of one singe population. An important design for multitasking dealing with

cross-domain optimisation problems is a unified representation scheme. In evolutionary

multitasking environment it is also necessary to have a method to compare the relative

performance of individual solutions in a population.

A fundamental difference between multifactorial evolution and multi-objective opti-

misation is that the former aims at finding the global optima for each task while the

latter attempts to resolve conflicts among competing objectives and results in a Pareto

front with trade-offs between objectives. We use multitasking to solve the active module

identification problem and community detection problem simultaneously as it does not

have strict constraint on the relationship between the two tasks.

3.4 General Issues in Designing Active Module Iden-

tification Approach

There are several general issues to be clarified and addressed in the design of an active

module identification method.

• Scoring function. The formulation of scoring function determines the formal

problem definition of an approach. Scoring is often based on a statistic model

for given data, such as the uniform distribution model for random data used by

jActiveModule [34], or the beta-uniform mixture model for for p-values in differential

expression analysis used by Dittrich and Klau [15]. An appropriate scoring function

reflects the activity of module and decreases the influence from background noises.

In the research we use the additive score formulated by Dittrich and Klau [15].

• Connectivity. A subgraph must be connected in order to be considered as one

active module. When the connectivity is not directly guaranteed in the solution
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representation, additional designs are required to ensure it. As previously reviewed,

jActiveModule maintains an additional HashMap storing nodes and their connected

components, and checks whether the connectivity of current solution would be af-

fected in each iteration of the algorithm. In an evolutionary algorithm based method

[56], depth first search is performed every time crossover operator is performed on

two solution to make sure the offspring solutions are connected. In the research we

use two different strategies to ensure connectivity for the two proposed algorithms.

In the algorithm presented by Chapter 5, a constraint is formulated based on alge-

braic connectivity. In another two algorithms, solution representation is decoded in

a way that generates a connected module directly.

• Size control. As discussed before, a relatively large size of active module leads

to ambiguity in interpreting through functional annotation. In the design of scor-

ing function by Dittrich and Klau, positive score indicates the activity signal and

negative score indicates background noise, thus by setting a threshold to control

the proportion of positive and negative scores, the size of identified active module is

controlled. In the second proposed algorithm, we further present a topological struc-

ture based method to divide large active module into fractions before performing

functional annotation on it, which also nicely addresses the size problem.
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CHAPTER 4

INTEGRATION OF NODE AND EDGE
INFORMATION FOR ACTIVE MODULE

IDENTIFICATION USING MULTI-OBJECTIVE
APPROACH

In this chapter, an integrated approach of combining node and edge information is pro-

posed for active module identification. It considers both the gene differential expression

and differential correlation, formulate it into a multi-objective problem, and solves it using

evolutionary algorithm. A beta-uniform-mixture model is used to estimate the distribu-

tion of p-values and generate node attributes for activity measurement. Probabilistic

mutation is designed to accelerate the search process.

The algorithm is first applied to a series of simulated data. Performance comparison

is made among the proposed algorithm and several other methods, showing that the

algorithm is able to identify active module from data with mixed pattern distribution.

It is then applied to real biological networks and successfully detects active module with

related function.

4.1 Methods

The network G is represented as G = (V,E) with pi ∈ (0, 1) for vi ∈ V , Corr(i, j) ∈ [0, 1]

for i, j ∈ V , where V is the set of nodes, E the set of edges, pv the assigned p-value from
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differential expression analysis for each node v, and Corr(i, j) the Pearson correlation

coefficient for the gene pair i and j. In the proposed algorithm there are two objectives

for a given module A:

• Node score SA indicating significant changes in gene expression for a given module,

to be maximised during search.

• Edge score Se indicating significant changes in gene correlation for a given module,

to be maximised during search.

4.1.1 Formulation of Node Score

Microarray analysis studies showed that expression data can be effectively estimated by

many mixture-model methods that divide genes into two or more groups, one group

contains genes that are differentially expressed, and other(s) not differentially expressed

[2]. Among those many methods, Pounds and Morris proposed a beta-uniform mixture

(BUM) model that very accurately describes the distribution of a large set of p-values

produced from an microarray experiment [69]. The BUM model considers the distribution

of p-values as a mixture of a special case of beta distribution (b = 1) and a uniform(0,

1) distribution, with a mixture parameter λ. The p-values under the null hypothesis are

assumed to have a uniform distribution. Under the alternative hypothesis the distribution

of p-values will have a high density for small p-values and can be described by B(a, 1).

A general beta distribution B(a, b) is given by

f(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 (4.1)

where Γ(.) denotes the gamma function. As Γ(1) = 1, the probability density function of

BUM model is then reduced to

f(x|a, λ) = λ+ (1− λ)axa−1 (4.2)
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for 0 < x ≤ 1, 0 < λ < 1 and 0 < a < 1. Given a set of p-values the two parameters of

BUM distribution λ and a can be calculated by maximum likelihood estimation.

Following the idea of Dittrich and Klau [15] to decompose signal component from back-

ground noise, an additive score to measure the significance of gene’s differential expression

is calculated as

SFDR(x) = log
B(a, 1)(x)

B(a, 1)(τ)

= log
axa−1

aτa−1

= (a− 1)(log x− log τ) (4.3)

where τ is a threshold to determine the significance of a p-value. In order to control the

estimated upper bound of the false discovery rate (FDR) introduced by Benjamini and

Hochberg [8], τ could then be selected to ensure that FDR ≤ α for some predefined α

using the following equation

τ = (
π̂ − αλ
α(1− λ)

)
1

(a−1) (4.4)

where π̂ = λ + (1 − λ)a, meaning the maximum proportion of the set of p-values that

could arise from the null hypothesis.

After assigning score to each of the genes, the overall score for a given module A is

then the summation of all genes’ scores in it, given by

SA =
∑
x∈A

SFDR(x) (4.5)

4.1.2 Formulation of Edge Score

Edge-based scoring system follows the design proposed by Guo in reference [26]. Edge

score Scoree for a given edge e connecting nodes i and j is assigned as the covariance of
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expression levels between gene i and j. Thus we have

Scoree = Cov(i, j) = Corr(i, j)σ(i)σ(j) (4.6)

The overall edge score for a given module A is simply the summation of Scoree for all

edges in the module. Monte Carlo approach is used to calibrate the edge score of a module

against background distribution. For all possible number of edges m in a network, 10,000

edge sets of size m are randomly sampled from the entire network edge list and used

to derive estimates mean µm and standard deviation σm for edge score. Eventually the

corrected edge score for a given module A with m edges is given by

Se =

∑
e Scoree − µm

σm
(4.7)

and it also follows standard normal distribution.

4.1.3 Multi-objective Optimisation Algorithm as Search Strat-
egy

As the search of highest scoring module is a NP-hard problem (see reference [34] for

more details), we choose to use evolutionary algorithm as the optimisation strategy. In

order to perform multi-objective optimisation to maximise both node score Sv and edge

score Se simultaneously, a multi-objective evolutionary algorithm modified from NSGA-II

(non-dominated sorting genetic algorithm II, for more details see [14]) is applied as search

strategy for module detection.

• Solution representation

A solution is represented as a binary vector of length n, where n = |V | is the size

of network, i.e. total number of nodes. Adding or deleting a node is performed

through simply flip one bit of the vector at corresponding site. Thus for the i-th
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individual Li in population, we have

Li = {l1i , l2i , ..., lni } (4.8)

where lji ∈ {0, 1} for j = 1, 2, ..., n.

To ensure the connectedness of module, the largest connected component among all

the nodes labelled by 1 in the individual is calculated and selected as the module

represented by this individual. Decoding procedure is described in Algorithm 4.1.

Algorithm 4.1: Decode Module from Individual Representation

Input: Individual l, adjacency matrix G of the whole network
Output: Connected node set of active module VS

1 subgraph Al ← G(l, l) ;
2 get all the k connected components {V1, V 2, ..., Vk} in Al ;
3 S = argmaxi{|Vi|}, i ∈ {1, 2, ..., k} ;
4 return VS

• Fitness function

Node score SA and edge score Se are used as two objectives. As the implementation

of the algorithm is aimed at minimisation both objectives, scores calculated from

above equations would be given an extra negative sign.

• Genetic Operators The search algorithm starts by initialising individuals as ran-

dom binary vector drawn from uniform distribution. Uniform crossover is used to

generate two child individuals from two parent individuals. Mutation is performed

on the generated child individuals and is designed in a probabilistic way to add or

delete nodes. It is inspired from simulated annealing that allows the solution to go

to a less satisfactory state with some probability in order to avoid being trapped in

local optima. The mutation operator contains two stages: probabilistic subgraph

expanding and probabilistic negative weighted node deletion. In the first stage, it

each tests whether adding a node would decrease individual’s node score SA and
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edge score Se and make choices with probability. Details of the mutation is shown

in Algorithm 4.2.

• Parent selection

Binary tournament selection is applied for selecting parents to reproduce. In some

cases when the population converges too fast, this step is skipped to decrease selec-

tion pressure, thus the whole population would be used for reproduction.

• Sorting and replacement

The algorithm uses fast non-dominated sorting and crowding distance assignment

proposed by Ref [14] to generate new population from the combined population

efficiently and preserve solution diversity. As we have introduced in Section 3.1,

multi-objecitve optimisation generates the so called Pareto front where no solution

is better than any other solution across all objectives. Non-dominated sorting pro-

posed by NSGA-II is a simple approach that compares each solution with all other

solutions in given population, puts all non-dominated solutions into a Pareto front,

then repeats the process in the rest of the population until all solutions are di-

vided into different layers of solution front. Crowding distance is used to determine

crowded solutions in the objective space and remove them when necessary in order

to maintain diversity of solutions.

4.2 Experimental Studies

The proposed algorithm is aiming at identification of modules that are both showing

activity in differential expression and in differential correlation. To better assess its per-

formance, simulated data from multivariate normal distributions are generated and sim-

ulated networks are constructed. Several existing methods and the proposed algorithm

are applied on these test networks and compared with each other using F-score measure-

ment. Then the algorithm is applied to real biological network to investigate its ability
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Algorithm 4.2: Probabilistic Mutation

Input: Individual Li, adjacency matrix A of the whole network, a list of SFDR(v)
assigned to each node

Output: Individual Li after mutation

1 node set of subgraph S is given by VS ← {Vj|Lji > 0}, j = 1, 2, ..., n ;
2 Vneighbours ← all neighbouring nodes of VS;
// Stage 1: probabilistic subgraph expanding

3 for every node vj in Vneighbours do
// include node depending on node score

4 if SFDR(vj) ≥ 0 then
// if the neighbour vj is assigned with positive SFDR(vj),

include it

5 Lji ← 1

6 else
// if the neighbour vj is assigned with negative SFDR(vj),

include it with probability exp(SFDR(vj))
7 if exp(SFDR(vj)) > random() then

8 Lji ← 1
9 end

10 end
// include node depending on edge score

11 New individual Lnew ← add node vj to Li ;
12 if Se(Lnew) > Se(Li) then

// if edge score of new individual is higher, include node vj
13 Li ← Lnew ;

14 else
// if edge score of new individual is lower, include node vj

with probability exp(Se(Lnew)− Se(Li))
15 if exp(Se(Lnew)− Se(Li)) > random() then
16 Li ← Lnew ;
17 end

18 end

19 end
// Stage 2: probabilistic negative weighted node deletion

20 update node set of subgraph S by VS ← {Vj|Lji > 0}, j = 1, 2, ..., n ;
21 for every node vj in VS do

// if the node vj is assigned with negative SFDR(vj), delete it

with probability 1− exp(SFDR(vj))
22 if exp(SFDR(vj)) < random() then

23 Lji ← 0
24 end

25 end
26 return Li
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of revealing biologically meaningful results.

4.2.1 Experimental Data

4.2.1.1 Simulated Data

To better assess the performance of the algorithm, simulated data are generated following

the design pattern of simulated data in COSINE [51]. For each condition, data for a

total of 500 genes, each with 20 samples are generated. The simulated data are drawn

independently from multivariate normal distribution with specified parameter setting. Let

µ be the mean and ρ the Pearson correlation coefficient. Details for data sets are listed

as following.

• Data Set 1 µ = ρ = 0 for all 500 genes.

• Data Set 2 For genes 1 to 50, µ = 0.75, ρ = 0.6. For other 450 genes, µ = ρ = 0.

• Data Set 3 For genes 1 to 50, µ = 0.75, ρ = 0. For other 450 genes, µ = ρ = 0.

• Data Set 4 For genes 1 to 50, µ = 0, ρ = 0.6. For other 450 genes, µ = ρ = 0.

• Data Set 5 For genes 1 to 25, µ = 0.75, ρ = 0.6. For genes 26 to 50, µ = −0.75, ρ =

0.6. ρ = −0.6 between any gene from 1 to 25 and any gene from 26 to 50. For other

450 genes, µ = ρ = 0.

Data set 1 is the control group. Each of the data sets 2 to 5 is compared with

control group through two-sample t-test to generate p-values for each node. Network is

constructed based on the covariance matrix. Edges with weight less than 0.6 are deleted

to generate a sparse network. The 4 networks are referred to as simulated network 2 to

5, depending on the data sets they are generated from.
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4.2.1.2 Real Data

Transcriptional profiles of rodent hippocampal CA1 tissue during ageing and cognitive

decline [55] are used for real data study. The source data come from research on rat that

are behaviourally characterised on the Morris water maze. Rats are divided into 5 groups

depending on their age, i.e. 3, 6, 9, 12 and 23 months. In our study we use 3-month

group as the control group and 23-month group as the experimental group. Differential

expression analysis between 23-month group and 3-month group is performed using the

on-line tool GEO2R [58], with p-value adjustment set to Benjamini and Hochberg false

discovery rate control. After deleting genes with adjusted p-value larger than 0.01, a set

of differential expressed genes is generated. Network is constructed by computing the

covariance matrix of the differential expressed gene list and removal of edges with weights

less than 0.8. This netowrk is referred to as the rat network.

4.2.1.3 Performance Assessment

Performance of algorithm on simulated data is directly measured through recall, precision

and the combined F-score. Let TP (true positive) be the number of correctly identified

genes in active module, FN (false negative) be the number of genes in active module that

algorithm fails to identify, and FP (false positive) be the number of genes that are not

in active module but mistakenly identified as in it. Then the three measurements can be

given by recall = TP
TP+FN

, precision = TP
TP+FP

and F − score = 2×recall×precision
recall+precision

.

Performance of algorithm on real data is not as straightforward as on simulated data.

With no knowledge of the true active module, measurement based on true positive and

false negative is no longer feasible. Instead, module detected in the real biological network

is enriched with gene ontology annotation, indicating specific functions and processes the

module is enriched with. This kind of assessment often requires related biological knowl-

edge in order to tell if the enriched annotations match with the experimental condition.
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4.2.2 Experimental Results

4.2.2.1 Method Comparison on Simulated Data

To estimate distribution for p-values in simulated networks, the parameters of BUM model

a and λ are estimated by R package BioNet [7]. Figure 4.1 shows the fitted model for 4

networks. The distribution of p-values in network 4 differs from 3 other networks because

it is the only one that has the same mean value µ = 0 with control group. Nevertheless,

all 4 networks show distributions that can be properly estimated by BUM model.

(a) Simulated network 2 (b) Simulated network 3

(c) Simulated network 4 (d) Simulated network 5

Figure 4.1: BUM model estimation on p-values for simulated networks. In each of the 4
sub-figures, left figure is a histogram of p-values with fitted beta-uniform-mixture model
distribution. Blue line indicates the uniformly distributed noises and red line the signals
as beta distribution B(a, 1). Right figure is a Q-Q plot of the fitted distribution versus
the empirical p-values.

The proposed algorithm is applied to the 4 simulated networks. Population size is

set to be 50, and generation number 60. Generation is relatively small as the algorithm

optimises very fast on simulated data. A typical optimisation process in simulated network

2 in shown in Figure 4.2. Clear Pareto fronts are shown in every 10 generations, indicating

that the two objectives, node score SA and edge score Se are indeed conflicting with each
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other. Convergence of the algorithm can be told from the shape of convex hulls drawn by

Pareto front and the origin point, which becomes stable at around 40 generations.

Figure 4.2: Pareto front in every 10 generations from applying proposed algorithm on
simulated network 2. Stars represent the fitness of population at generation 1, 11, 21, 31,
41 and 51. Convex hulls drawn by the fitness points and the origin point show that the
Pareto front becomes stable after 40 generations, indicating that the algorithm converges
fast on simulated networks.

From the Pareto fronts generated by proposed algorithm, the first solution is selected

to assess the algorithm’s performance by calculating its recall, precision and F-score. The

algorithm is repeated for 50 runs on each simulated network and the distributions of

assessment results are shown through boxplots in Figure 4.3a. The proposed algorithm

gets steady and high recall, precision and F-score on simulated network 2 and 5, proving its

satisfactory performance to identify a combined feature of both differential expression and

differential correlation. It is still able to detect differential expression alone to some extent,

as shown by the boxplots for network 3. However for network 4 with only differential

correlation and the same expression level, the proposed algorithm doesn’t gain a good

score for any of the three assessment. One possible reason is that the design of objective

function for edge score doesn’t well distinguish the module with differential correlations

from the rest.

To show the necessity of probabilistic mutation operator described in Algorithm 4.2, a
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performance assessment experiment is made following exact the same way described above,

using the same algorithm with the same parameters, only that its probabilistic mutation

operator is replaced by a standard bitwise mutation. The results are shown in Figure

4.3b. It is clear that the performance of bitwise mutation is defeated by probabilistic one

from network 3 to 5 as it has much lower scores and higher variances. Interestingly in

network 2 the bitwise mutation is able to gain higher precision and has an overall similar

performance with probabilistic mutation, showing that it can handle one single pattern of

differential expression and differential correlation. Yet in network 5 with mixed patterns,

it again doesn’t perform as well as probabilistic one. The comparison provides strong

evidence for the power of probabilistic mutation operator.

To make a comparison of proposed algorithm with other active module identification

algorithms, the averaged values of assessment scores from the 50 runs are compared with

the results from three methods, COSINE[51], jActiveModule [34] and another method

that combines information from both nodes and edges denoted as Local [86]. The F-

measurements data are directly from reference [51] as it uses the same way of data sim-

ulation. Performance comparison of the 4 algorithms on 4 simulated networks is shown

in Table 4.1. From the table we can see that due to the complexity of varied data distri-

butions, no singe algorithm is able to achieve best performance across all 4 networks for

all 3 kinds of measurements. Nevertheless, the proposed algorithm shows averagely good

performance, and has high performance in several slots highlighted in bold. Experiment

on simulated data shows that the formulation of information from gene differential ex-

pression and differential correlation as multi-objective problem is feasible. It also proves

that the proposed algorithm is able to identify active module from data with complicated

distribution in a relatively reliable level.

4.2.2.2 Application on Real Data

The proposed algorithm is applied to the rat network, with parameters population size set

to 100, and generation number 100. The Pareto front generated is shown in Figure 4.4.

46



(a) Performance of algorithm with probabilistic mutation operator.

(b) Performance of algorithm with bitwise mutation operator.

Figure 4.3: Comparison of performance for proposed algorithm on simulated networks
with different mutation operators. Figure 4.3a is the performance of algorithm with
probabilistic mutation operator and figure 4.3b is the one with standard bitwise mutation.
G2 to G5 represents simulated network 2 to 5. Algorithms are repeated for 50 runs on each
network. Performance assessment is done through selecting the first solution in generated
Pareto front.
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Table 4.1: Performance comparison of proposed algorithm and three other methods on
simulated networks. Method jActiveModule is from reference [34]. Method Local is from
reference [86]. Data for proposed algorithm is the mean value from 50 runs on each
simulated network. Records for proposed algorithm are the averaged value from 50 runs.

Measurements Networks COSINE jActiveModule Local proposed algorithm
Recall 2 0.98 1 0.82 0.82

3 0.24 0.98 0.7 0.40
4 0.86 0.86 0.06 0.19
5 0.92 1 0.74 0.3

Precision 2 0.86 0.12 0.65 0.72
3 0.92 0.13 0.69 0.42
4 0.45 0.1 0.04 0.14
5 0.61 0.125 0.84 0.81

F-score 2 0.92 0.21 0.73 0.76
3 0.38 0.23 0.69 0.41
4 0.59 0.18 0.05 0.16
5 0.74 0.22 0.79 0.86

Unlike in simulated data where solutions are distributed on the Pareto front in a relatively

even way, Pareto solutions from rat network are more sparse and unevenly distributed.

The reason behind might be related to some intrinsic properties of the real data, which

we will not further explore in this chapter.

Figure 4.4: Pareto front from applying proposed algorithm on rat network.

In order to analyse the performance of proposed algorithm on real data, we select

the solution on top left corn of Pareto front as an example. It is the extreme point
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with maximised node score SA. Gene ontology analysis through the online tool of Gene

Ontology Consortium [23] for biological process is performed on the decode module, shown

in Table 4.2. As gene ontology (GO) terms are given in a hierarchical structure, for

simplicity only the top level of GO terms are selected to display.

Because the ageing and cognitive decline process is very complicated and involves a

broad range of functional units, the gene annotation for detected module, also contains

considerable number of terms. Literature [39] has figured out that the brain ageing process

is closely related to the sequential cascade change in metabolic alterations, inflammation,

and down regulation of energy-dependent pathways that are necessary to sustain cogni-

tive functions. Looking up the annotations in Table 4.2, we can find terms related to

immune response, immune development, and positive or negative regulations on a series

of pathways.

4.3 Summary

An integrated approach has been proposed for active module identification to combine

information from both node weights and edge weights. The algorithm is motivated by

the formulation of objective function COSINE that uses a weight parameter to balance

between node and edge score. Our proposed algorithm formulates the problem in a

multi-objective optimisation that avoids explicit use and redundant calculation for weight

parameter and provides more flexibility in choosing multiple solutions on Pareto front.

We have also designed a probabilistic mutation to accelerate the search process.

We first applied our algorithm and several other methods to a series of simulated data.

Performance assessment through F-score comparison shows that the proposed algorithm

has satisfactory performance in identifying active module from data with complex dis-

tributions. Then the algorithm is applied to a network constructed on rats brain ageing

and cognitive decline data. The algorithm is able to identify active module with some

biologically meaningful annotations. However, one drawback is that the number of gene
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Table 4.2: Gene ontology results for the active module identified by proposed algorithm
in rat network. This module has 55 nodes, with node score SA = 33.09 and edge score
Se = 3.47. p-value gives the statistical significance of corresponding GO term’s enrichment
in the gene set after FDR correction.

Typical GO terms p-value
positive regulation of type IIa hypersensitivity 1.59× 10−02

Fc receptor mediated stimulatory signaling pathway 2.01× 10−02

regulation of type I hypersensitivity 1.98× 10−02

platelet degranulation 2.61× 10−02

antigen processing and presentation of exogenous peptide antigen via
MHC class II

8.61× 10−05

neutrophil activation involved in immune response 3.50× 10−02

Fc-gamma receptor signaling pathway 3.47× 10−02

Bergmann glial cell differentiation 3.91× 10−02

regulation of complement activation 3.30× 10−02

positive regulation of myeloid leukocyte cytokine production involved
in immune response

4.92× 10−03

complement activation, classical pathway 9.02× 10−03

phagocytosis, engulfment 1.60× 10−02

platelet aggregation 2.20× 10−02

positive regulation of receptor-mediated endocytosis 3.30× 10−02

negative regulation of leukocyte apoptotic process 3.85× 10−02

positive regulation of phagocytosis 3.93× 10−02

regulation of blood coagulation 1.13× 10−02

negative regulation of T cell activation 2.21× 10−02

positive regulation of ERK1 and ERK2 cascade 2.02× 10−02

regulation of lymphocyte proliferation 2.31× 10−02

negative regulation of secretion 3.10× 10−02

innate immune response 1.98× 10−03

regulation of metal ion transport 8.59× 10−03

chemotaxis 3.88× 10−02

immune system development 2.27× 10−02

regulation of cell migration 1.33× 10−02

negative regulation of multicellular organismal process 2.77× 10−03

response to hormone 3.38× 10−02

cellular response to chemical stimulus 5.44× 10−03

regulation of molecular function 3.21× 10−02

animal organ development 2.37× 10−02
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ontology terms is too large to have a very good and deep interpretation. This issue,

commonly shared by a number of active module identification methods, will be further

explored and addressed in Chapter 6.
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CHAPTER 5

PRIOR KNOWLEDGE GUIDED ACTIVE
MODULES IDENTIFICATION THROUGH
MULTI-OBJECTIVE OPTIMISATION

In this chapter, a prior information guided active module identification approach is pro-

posed to detect modules that are both active and enriched by prior knowledge. We formu-

late the active module identification problem as a multi-objective optimisation problem,

which consists two conflicting objective functions of maximising the coverage of known

biological pathways and the activity of the active module simultaneously. Network is

constructed from protein-protein interaction database. A beta-uniform-mixture model is

used to estimate the distribution of p-values and generate scores for activity measure-

ment from microarray data. A multi-objective evolutionary algorithm is used to search

for Pareto optimal solutions. We also incorporate a novel constraint based on algebraic

connectivity to ensure the connectivity of the identified active modules.

Application of proposed algorithm on a small yeast molecular network shows that it

can identify modules with high activities and with more cross-talk nodes between related

functional groups. The Pareto solutions generated by the algorithm provides solutions

with different trade-off between prior knowledge and novel information from data. The

approach is then applied on microarray data from diclofenac-treated yeast cells to build

network and identify modules to elucidate the molecular mechanisms of diclofenac toxicity

and resistance. Gene ontology analysis is applied to the identified modules for biological
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interpretation.

Experiments showed that integrating knowledge of functional groups into the identi-

fication of active module is an effective method and provides a flexible control of balance

between pure data-driven method and prior information guidance.

5.1 A Novel Framework of Prior Knowledge Guided

Active Modules Identification Approach

The network G is represented as G = (V,E) with pv ∈ (0, 1) for v ∈ V where V is the

set of nodes, E the set of edges, and pv the assigned p-value from differential expression

analysis for each node v. In the proposed algorithm there are two objectives and one

constraint for a given module A:

• Active module score SA indicating significant changes in gene expression for a given

module, to be maximised during search.

• KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway coverage score RA

for the number of covered metabolic pathway by genes in module, to be maximised.

• Algebraic connectivity to check whether a given subgraph is connected or not, used

as a constraint to ensure connectivity.

5.1.1 Formulation of Active Module Score

For a given protein-protein interaction network with p-values indicating the gene dif-

ferential expression level assigned to each node v, an additive score SFDR(v) based on

beta-uniform distribution can be calculated using equation 4.3 (see Section 4.1.1 for more

details). The active module score SA is simply the summation of SFDR(v).
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5.1.2 Assessment of Prior Knowledge Enrichment

KEGG is an integrated database of high level functions and utilities of biological systems

[40]. KEGG PATHWAY is a collection of manually drawn pathway maps representing

the knowledge on the molecular interaction and reaction networks. Mapping of pathway

information mainly relies on molecular data set, especially large-scale data set such as

genomics, transcriptomics, proteomics, and metabolomics. Genes involved in the same

KEGG pathway are considered as functionally related to each other. In the experiment

KEGG pathway coverage score RA is formulated as the second objective to measure the

enrichment of functional groups in a given module A.

The KEGG pathway information is retrieved from the KEGG REST-style entry for

Saccharomyces cerevisiae (yeast) [42]. Each entry of the mapping data records one gene

and its corresponding pathway. The records are then split into different groups labelled

by the pathways. For the i-th pathway, Vi stands for the set of genes it contains. Given

a module A with VA as the set of genes, its KEGG pathway cover rate Ri over the i-th

pathway is calculated as

Ri =
|Vi ∩ VA|
|Vi|

(5.1)

meaning the percentage this pathway is covered by given module. The cover rate Ri is then

compared with a threshold Rratio to determine whether this pathway can be considered as

enriched in the given module. The threshold shall be selected carefully. A too high value

of Rratio leads to a tiny group of connected pathways genes with positive active module

score as the search could not expand to other area under such stringent condition. On

the contrary, a very low Rratio could not reflect the meaning for the second objective. In

practice, Rratio is set to a series of values for preliminary experiment. The results are

analysed and compared to decide a suitable value. The total enriched pathway count RA

is given by

RA = |{Ri|Ri > Rratio}|, i ∈ P (5.2)

where P stands for total number of pathways.
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5.1.3 Algebraic Connectivity as A Constraint for connectivity

Let G = (V,E) be an undirected edge weighted graph with node set V = {v1, ..., vn}

and non-negative weights aij ≥ 0 for two nodes i and j. aij = 0 means there is no edge

connection between the two nodes. The weighted adjacency matrix A of the graph is

given by the matrix A = (aij)i,j=1,...,n and aij = aji for all i, j = 1, ..., n as the graph is

undirected. The degree of a node vi ∈ V is given by

di =
n∑
j=1

aij (5.3)

The degree matrix D is defined as the diagonal matrix with the degrees d1, ..., dn on the

diagonal. The unnormalized Laplacian matrix L of graph G is then calculated as

L = D − A (5.4)

Let 0 = λ1 ≤ λ2 ≤ ... ≤ λn be the eigenvalues of the Laplacian matrix L, then the

algebraic connectivity α(G) of the graph G is given by α(G) = λ2, i.e. the second-

smallest eigenvalue of the Laplacian matrix of G. The algebraic connectivity α(G) is zero

if and only if the graph G is not connected, otherwise it is greater than zero indicating

that G is a connected graph.

Besides from being an indication of connectivity, α(G) has also been used as a measure

of the robustness in complex networks [36]. It has been long proved that for a non-

complete graph α(G) ≤ v(G) and we also have v(G) ≤ e(G) [19] where v(G) denotes for

vertex connectivity as the minimal number of nodes whose removal would result in losing

connectivity of the graph, and e(G) denotes for edge connectivity defined in a similar way

to vertex connectivity. However, there is also research showing that although α(G) is the

lower bound of both vertex and edge connectivity, its relationship to the graph robustness

to node and link failures is not trivial.

In the proposed algorithm algebraic connectivity α(G) is calculated for given subgraph
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and used as a constraint to ensure its connectivity.

After introducing the formulation of two objectives and one constraint, the overall

problem of finding a prior knowledge enriched active module is defined as following.

Problem 5.1 (Prior Knowledge Enriched Active Module Identification Problem). Given

a network G = {V,E} where V denotes for the set of nodes, E denotes for the set of edges,

n = |V | is the number of nodes and each node vi ∈ V, i = 1, 2, ..., n is assigned with node

weight SFDR(vi) and labelled with zero, one or multiple pathway groups, find a subgraph

A = {VA, EA}, VA ∈ V,EA ∈ E so that both SA and RA are maximised, constrained to

α(A) > 0.

5.1.4 Multi-objective Optimisation Algorithm as Search Strat-
egy

In order to perform multi-objective optimisation to maximise both active module score and

KEGG pathway coverage score simultaneously, a multi-objective evolutionary algorithm

modified from NSGA-II (non-dominated sorting genetic algorithm II, see [14]) is applied

as search strategy for module detection.

• Solution representation

A solution is represented as a binary vector of length n, where n = |V | is the size

of network, i.e. total number of nodes. Adding or deleting a node is performed

through simply flip one bit of the vector at corresponding site. Thus for the i-th

individual Li in population, we have

Li = {l1i , l2i , ..., lni } (5.5)

where lji ∈ {0, 1} for j = 1, 2, ..., n, lji = 1 means the j-th node is in the module.

• Fitness function
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Active module score SA and KEGG coverage score RA are used as two objectives.

As the implementation of the algorithm is aimed at minimisation both objectives,

scores calculated from above equations would be given an extra negative sign.

• Initialisation

The search starts by randomly initialising a group of small cores in network. Nodes

with high SFDR(x) scores are selected as seeds of potential modules to begin with.

Number of seed nodes is decided by the population parameter for evolutionary

algorithm. For instance, if population is set to 50, nodes with top 50 SFDR(x)

scores are selected as seeds. In the case when the population size exceeds network

size, every node will be selected as a seed. In initialisation stage, neighbouring nodes

of a seed with positive scores are added to the module in which the seed represents.

A detailed description is shown in Algorithm 5.1.

Algorithm 5.1: Initialisation Stage

Input: population number pop, adjacency matrix A of the whole network, a list of
SFDR(v) assigned to each node

Output: Initialised population

1 {v1, v2, ..., vn} ← sort nodes by SFDR(v) in descending order ;
2 for i← 1 to pop do
3 Li ← zeros of length n ;
4 k ← mod(i, n) ;
5 lki ← 1 ;
6 node set Vneighbours ← neighbouring nodes of seed vk with positive scores;
7 for vj ∈ Vneighbours do

// neighbouring nodes of a seed with positive scores are added

to the module

8 lji ← 1 ;

9 end

10 end
11 population ← {L1, ..., Lpop};
12 return population

• Parent selection

Binary tournament selection is applied for selecting parents to reproduce. In some
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cases when the population converges too fast, this step is skipped to decrease selec-

tion pressure, thus the whole population would be used for reproduction.

• Reproduction

Single point crossover is applied to selected parents. Mutation is performed by

adding neighbouring nodes with positive SFDR(x) score or in a pathway into current

module each time. Offspring generated is added to parental population to form a

combined population with twice the size, waiting to be sorted and selected.

• Clearing procedure

An extra clearing procedure is applied after reproduction and before non-dominated

sorting. The step is introduced because in practise the algorithm tends to generate

a number of replicated solutions when converging towards global optima. However,

considering the natural property of our optimisation problem, it is reasonable to

obtain multiple optima, both those global on the non-dominated Pareto front and

those dominated local optima, each representing the most significantly changed

modules and modules that do not change that significantly, but still worth looking

into. This procedure, inspired and simplified from Petrowski [68], detects replicated

solution groups, preserves one copy, and resets all other individuals as infeasible

solutions which will soon be eliminated after sorting and replacement. A detailed

description is shown in Algorithm 5.2.

• Sorting and replacement

The algorithm uses fast non-dominated sorting and crowding distance assignment

as detailed in Ref [14] to generate new population from the combined population

efficiently and preserve solution diversity.

• Constraint handling

To ensure the connectivity of detected module after crossover, algebraic connectivity

α(G) is used as a constraint. Solution with non-positive algebraic connectivity vio-
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Algorithm 5.2: Clearing Procedure

Input: Current population, population size pop
Output: Population cleaned

1 population ← sort input population by SA in ascending order;
2 Mark individual Lm ← L1 ;
3 for i← 2 to pop do
4 if SA(Li) == SA(Lm) then
5 set Li as infeasible;
6 else
7 Lm ← Li;
8 end

9 end
10 return population

lates the constraint, indicating itself a disconnected subgraph and thus an infeasible

solution. Replicated solutions are also marked infeasible in the clearing procedure.

Infeasible solutions are dominated by all feasible solutions.

5.2 Experimental Studies

The proposed algorithm is aiming at identification of modules that are both showing ac-

tivity in expression (i.e. having high active module scores) and enriched with metabolic

pathways. To test its performance, two networks are selected as experimental networks.

Network 1 is the network that Ideker used [34] to show the experimental results of jAc-

tiveModule. It has a relatively suitable size for visualisation, contains a portion of genes

that show significant changes in expression level, and can be viewed as a nice model of

yeast galactose utilization pathway. Network 2 is constructed from mapping differential

analysis results to the whole Interactome Network. In such a network, a large number of

unrelated pathway information would be included, which is a challenge for the proposed

algorithm to target on the pathways that are most relevant to the active modules.
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5.2.1 Construction of Experimental Networks

5.2.1.1 Network 1: A Small Molecular Interaction Network on Galactose
Utilization Pathway

A small molecular interaction network once used by Ideker [34] is used as a test network.

The molecular interaction networks visualisation software Cytoscape [74] provides jAc-

tiveModule as a plugin to find expression activated modules. The tutorial in Cytoscape

App Store [35] provides samples data consists of a network edge list file as a model of the

galactose utilisation pathway in yeast and a companion expression file contains p-values to

describe the significance of each observed change in expression. p-values under condition

labelled as GAL80R are extracted and overlaid to network file, resulting in a network

with 330 genes.

5.2.1.2 Network 2: Yeast Drug Reaction Network Constructed from Differ-
ential Analysis and Interactome Mapping

Gene expression data on yeast’s reaction to diclofenac is downloaded from GEO (NCBI

Gene Exprssion Omnibus) database [88]. Diclofenac is a widely used analgesic drug

that can cause serious adverse drug reactions [83]. Yeast is used as model eukaryote

to capture the cellular changes under the treatment of diclofenac. The data provides

the microarray expression for diclofenac-treated yeast cells and control cells, each with 5

replicates. Differential expression analysis between diclofenac-treated group and control

group is performed using the on-line tool GEO2R [58], with p-value adjustment set to

Benjamini and Hochberg false discovery rate control. After deleting genes with adjusted

p-value larger than 0.05, a set of differentially expressed genes is generated for interactome

mapping.

Protein-protein interaction data is download from BioGRID [9], an integrated and

up-to-date public database that archives and disseminates genetic and protein interaction

data from model organisms and humans. To be specific, the downloaded file is BIOGRID-

ORGANISM-LATEST.tab2.zip that separates interactions into distinct files based on
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Organism and was released on June 30, 2016. File for interactions of Saccharomyces

cerevisiae is extracted for use. As the whole interaction data contains tens of thousands

of proteins and millions of interaction records, a considerable amount of proteins have no

corresponding records in given expression data or show no differential expression. Those

proteins shall be excluded from the final network in order to avoid the waste of both

computational resource and analysis attention. According to the filtering method applied

by Muraro and Simmons [56], interactions containing at least one differentially expressed

gene are selected as an attempt to include indirect interactions. The resulting network

concerning yeast cellular reaction to diclofenac consists of 1803 nodes and 3356 edges.

Table 5.1: Parameters for experimental networks.

Parameters Network 1 Network 2
nodes 330 1803
edges 359 3356
a 0.113 0.280
λ 9.07× 10−2 0.168

α (FDR) 1× 10−4 1× 10−4

τ 1.76× 10−4 7.71× 10−6

Rratio 0.6 0.8

5.2.2 Experimental Results

5.2.2.1 Analysis of Network 1

To estimate distribution for p-values, the parameters of BUM model a and λ are estimated

by R package BioNet [7]. Figure 5.1 shows the fitted model. As the majority of genes in

yeast network have a very significant p-value, threshold τ is calculated at an extremely

stringent FDR level as an attempt to control the size of detected module. Parameter

details are shown in table 5.1.

As a benchmark, the jActiveModule method is applied to the network via Cytoscape

plugin, generating 5 active modules by default. Figure 5.2 gives a visualisation of the

network by Cytoscape, with detected active modules mapped on it. To understand the
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Figure 5.1: BUM model estimation on p-values in network 1. Left figure is a histogram
of p-values with fitted beta-uniform-mixture model distribution. Blue line indicates the
uniformly distributed noises and red line the signals as beta distribution B(a, 1). Right
figure is a Q-Q plot of the fitted distribution versus the empirical p-values for network 1.

biological function of modules, gene ontology (GO) annotation for biological process is

applied to modules by enrichment analysis tools provided on Gene Ontology Consortium

[13]. The tool only asks for a submission of gene list, GO type (biological process, molec-

ular function, cellular component) and species. The results is shown in Table 5.2. Among

the 5 modules, 3 modules are enriched in the GO term galactose catabolic process via

UDP-galactose with p-values from 4.85× 10−05 to 3.42× 10−04. Other 2 modules are too

tiny to have accurate explanation.

The proposed algorithm is applied to network 1 with threshold Rratio = 0.6 for KEGG

pathway coverage score, resulting in a set of 13 Pareto solutions. As a feature for multi-

objective optimisation, all the modules in the same Pareto front are equally good. No

one out performs another. In order to show the difference of those modules in trade-offs

between two objectives, we selected 3 modules from the 13 Pareto solutions:

• Module 1: the extreme point on the Pareto front with maximum active module

score SA = 393.41.
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Figure 5.2: Network 1 with active modules detected by jActiveModule. Each node de-
notes for one gene. Node colour is a continuous mapping of the p-value generated from
differential expression analysis. Red colour indicates a significant change with small p-
value and green colour means no significant difference. The point where colour will change
between red and green is set to the threshold τ = 1.76× 10−4 that is used as a parameter
for the proposed algorithm. Colour of nodes near the changing point is white. Modules
identified by jActiveModule are highlighted with black node border. Modules may overlap
with each other.

• Module 2: at the knee point of the Pareto front, which represents the optimal

trade-off between active score (SA = 268.96) and KEGG pathway coverage score

(RA = 19)

• Module 3: the extreme point on Pareto front with maximum KEGG pathway cov-

erage RA = 25.

GO analysis for biological process is performed on the three modules. The results

together with the objective function values are tabulated in Table 5.3. We also visualise
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Table 5.2: Gene ontology results of modules detected by jActiveModule in network 1. SA
and RA are the objective functions of active module score and KEGG pathway coverage
score, respectively. The values are calculated by the proposed objective functions using
the same parameters setting as the proposed algorithm. τ = 1.76×10−4 and Rratio = 0.6.

module size SA RA typical GO terms p-value

1 26 250.39 1 galactose catabolic process via
UDP-galactose

3.42× 10−04

glycolytic fermentation to ethanol 2.72× 10−03

amino acid catabolic process to alcohol
via Ehrlich pathway

1.25× 10−02

2 5 58.21 0 response to heat 2.16× 10−03

3 16 270.79 2 galactose catabolic process via
UDP-galactose

4.85× 10−05

4 18 169.89 2 galactose catabolic process via
UDP-galactose

1.15× 10−04

cellular carbohydrate metabolic process 3.27× 10−02

5 4 37.05 0 None Not available

Modules 1 and 2 in Figures 5.3.

By comparing the results in Table 5.3 with those in Table 5.2, we found that Module

1 identified by the proposed algorithm have better active module score (SA) and KEGG

pathway coverage score (RA) than all the modules found by jActiveModule algorithm.

Such results indicate that by incorporating the prior knowledge, we can guide the algo-

rithm to search areas in the network with more significant activity.

From Figure 5.3 and Table 5.3, we found that compared with jActiveModule that

searches for small and separated modules, the proposed algorithm tends to identify a

large connected subgraph. Even for Module 1 where the active module score is maximised,

because of the integration of the prior knowledge, highly active areas are more likely to

be connected together by intermediate nodes that might not be significantly differential

expressed, but serve as a bridge for cross-talk between neighbouring functional areas.

By visualisation of those Pareto solutions (figures not shown), we found that as the

solution on Pareto front moves from maximum active score to maximum pathway coverage

score, such intermediate nodes appear with higher frequency. We also found that, as RA

gets higher, detected module expands from a small core area with high activity to a broad
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Figure 5.3: Visualisation of extreme point solution and knee point solution detected by
the proposed algorithm in network 1. Module 1 is drawn by triangle shaped nodes and
module 2 is highlighted with black border. Node colour is set in the same way as figure
5.2. Module 1 is the extreme point on Pareto front with maximised active score SA. It
contains the majority of red nodes that are connected densely, indicating high activity.
Notice that compared to small separated modules identified by jActiveModule shown in
figure 5.2, this module tends to connect small areas of red nods by including linkage nodes
with white or light green colour. Although these intermediate nodes shows only modest
changes in expression, they serve as bridges for cross-talk between functional groups, or as
transcription factors that regulate other genes. Module 2 is the knee point of the Pareto
front with optimal trade-off between SA and RA. Compared to module 1, this module
expands broader as RA gets higher.
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Table 5.3: Gene ontology results of 3 modules on Pareto front detected by the proposed
algorithm in network 1. Module 1 is the extreme point with maximised active score SA.
Module 2 is a balanced solution between SA and RA. Module 3 is the other extreme point
with maximised pathway coverage score RA.

module size SA RA typical GO terms p-value

1 65 393.41 9 galactose catabolic process via
UDP-galactose

5.15× 10−03

negative regulation of mating-type
specific transcription from RNA
polymerase II promoter

1.21× 10−02

glycolytic fermentation to ethanol 4.05× 10−02

pheromone-dependent signal transduction
involved in conjugation with cellular
fusion

6.39× 10−03

cellular carbohydrate metabolic process 4.16× 10−02

2 92 268.96 19 negative regulation of mating-type
specific transcription from RNA
polymerase II promoter

4.67× 10−04

galactose catabolic process via
UDP-galactose

1.63× 10−02

regulation of transcription during mitosis 7.19× 10−03

gluconeogenesis 1.84× 10−04

glycolytic process 2.87× 10−02

pyruvate metabolic process 4.20× 10−02

response to pheromone involved in
conjugation with cellular fusion

3.93× 10−06

3 126 181.3 25 negative regulation of mating-type
specific transcription from RNA
polymerase II promoter

1.80× 10−03

galactose catabolic process via
UDP-galactose

4.48× 10−02

C-terminal protein lipidation 1.62× 10−02

gluconeogenesis 1.36× 10−03

ADP metabolic process 2.47× 10−04

pyruvate metabolic process 7.73× 10−05

response to pheromone involved in
conjugation with cellular fusion

1.47× 10−02

ribonucleoprotein complex assembly 5.31× 10−03
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area with more varied functional groups while still keeping overall activity. This result

indicates that by using prior knowledge, we are able to reveal underlying mechanisms that

link different activities in the network.

While all the three modules are significantly enriched in the GO term “galactose

catabolic process via UDP-galactose” (corresponding p-value 5.15 × 10−03, 1.63 × 10−02

and 4.48 × 10−02, respectively), annotations for Module 1 (the extreme point with max-

imum activity score SA) are more densely related with galactose metabolic process. On

the other hand, for Module 3 with maximum KEGG pathway coverage score RA, core

annotations remain the same while additional annotations concerning essential biologi-

cal processes increases. However, it is worth noting that, all the additional annotations

can be reasonably related to the cellular response to disturbance in galactose utilisation

pathway.

The most interesting module is Module 2, which represents the optimal trade-off be-

tween prior knowledge and novel information from data. It is worth noting from Tables

5.3 and 5.2 that, even it is a knee point solution, Module 2 has a slightly worse SA but

much higher RA than all the modules identified by JActiveModule. We can also observe

from Table 5.3 that, module 2 has a range of slightly broader annotations concerning

metabolic process of galactose, pyruvate and gluconeogenesis, which are highly relevant

to galactose utilisation pathways [81].

5.2.2.2 Analysis of network 2

Parameters of BUM model a and λ to fit p-value distribution are estimated as shown

in Figure 5.4. Threshold τ is calculated at given FDR level. See Table 5.1 details of

parameters.

The proposed algorithm is applied to network 2 with threshold Rratio = 0.8 for KEGG

pathway coverage score, resulting in a set of 12 Pareto solutions. Solutions on the Pareto

front are chosen for gene ontology analysis on biological process. Surprisingly, all iden-

tified modules shows a high consistency in the annotation on drug reaction, which ex-
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Figure 5.4: BUM model estimation on p-values in network 2. Histogram of p-values with
fitted BUM model and a Q-Q plot of estimated and empirical distribution of p-values for
network 2. As the network size increases, estimation becomes more accurate.

actly reflects the cellular response for yeast under the diclofenac treatment. Three genes

(YDR406W, YOR153W and YOR153W, all act as ATP-binding transporter, for detailed

functional explanation, see caption in Figure 5.5) that play an important role in the

cellular reaction and resistance to drug treatment are discovered in all the 12 modules,

indicating the accuracy and robustness of searching algorithm.

Similar to the analysis methods for results in network 1, 3 representative modules on

Pareto front with different trade-off between active score SA and pathway coverage score

RA are select for gene ontology annotation (see Table 5.4) and visualisation (Figure 5.5).

From Table 5.4 we can see that as pathway score RA increases, size of module increases

and the annotation includes a larger range of biological processes. As drug reaction is

considerably complicated response that involves a series of up or down regulation in related

function groups such as protein kinase pathway, ribosome biogenesis, rRNA processing and

zinc-responsive genes [83], the enriched annotation in modules with higher RA provides

a guidance of deciding which functional groups to look into as it combines both prior

knowledge from existing interaction database and novel information from gene expression
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Figure 5.5: Visualisation of module 3 identified by the proposed algorithm in network
2. Each node represents for a gene. The setting for node colour is the same with figure
5.2. The turning point between red and green is set to the value τ = 7.71× 10−6. Three
rectangle shaped nodes with black border are genes involved in drug export and are highly
consistent in all modules. YDR406W is an ATP-binding cassette multi-drug transporter.
YDR011W is a ATP-binding cassette transporter. YOR153W is also an ATP-binding
cassette multi-drug transporter. The three genes serve as an important role in yeast’s
resistance to diclofenac.

data specific for given experimental conditions.

5.3 Summary

An integrated multi-objective approach has been proposed for active module identifica-

tion. The algorithm is motivated by the idea that incorporating prior information into

data-driven method would provide new insights into sophisticated biological processes.

We have also designed an constraint based on algebraic connectivity to ensure the con-

nectivity of the identified active modules.

We first applied our algorithm on a small molecular interaction network, which iden-

tified a set of Pareto solutions that represents different trade-off between prior knowledge
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Table 5.4: Gene ontology results of 3 modules on Pareto front detected by the proposed
algorithm in network 2.

module size SA RA typical GO terms p-value

1 34 91.01 0 drug export 1.79× 10−03

cellular response to drug 4.71× 10−02

2 39 57.56 4 drug export 2.84× 10−03

3 62 46.332 8 drug export 1.21× 10−02

amino acid catabolic process to alcohol
via Ehrlich pathway

8.65× 10−09

ethanol metabolic process 3.71× 10−06

NADH oxidation 3.73× 10−03

glycolytic process 4.34× 10−03

fermentation 1.40× 10−02

macromolecule metabolic process 2.51× 10−02

and novel information from data. Gene Ontology analysis results show that it successfully

identifies modules with relevant and reasonable biological interpretations. The algorithm

was applied to the second network, The approach is then applied on a microarray data

set from diclofenac-treated yeast cells and identify modules to elucidate the molecular

mechanisms of diclofenac toxicity and resistance. The algorithm identifies accurate and

consistent modules with biological function densely related to given cellular response,

proving that the integrated approach for network construction is feasible and that the

proposed algorithm is able to identify biologically meaningful modules in large scale net-

work.
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CHAPTER 6

SIMULTANEOUS DETECTION OF ACTIVE
MODULE AND TOPOLOGICAL COMMUNITY
THROUGH MULTIFACTORIAL EVOLUTION

In this chapter, a novel algorithm framework of detecting active module and topological

communities simultaneously using evolutionary multitasking is proposed to improve the

computational outcome of active module detection and help the interpretation of biological

meaning. This algorithm uses an additive node score for measuring activity of module,

and searches for network division through modularity maximisation.

A series of task-specific algorithm designs and improvements are made based on the

original framework of evolutionary multitasking algorithm. We have developed a unified

genetic representation and problem-specific decoding methods for the two tasks. Task-

specific mutation operators are designed for individuals specialised in different tasks. In-

dividuals talented in active module identification task are applied with probabilistic local

search to approach the optimisation of active module score, and individuals specialised

in topological community detection task are performed with community merging strat-

egy as an imitation of classic fast bottom-up community detection algorithms. Uniform

crossover is adopted to preserve the diversity of population, help explore solution space,

and avoid being stuck in local optima. Extra solution improvement step is designed to

further enhance the value of modularity by fixing the connectivity problem for detected

communities.
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The proposed algorithm is first applied on some classic community structured net-

works to test its performance on modularity optimisation and compare with some other

published algorithms. It is then applied on a yeast molecular interaction network to

simultaneously run both tasks.

Results show that the proposed algorithm has satisfactory performance on both tasks.

It is able to detect network divisions with values of modularity comparable or even better

than classic community detection algorithms. It also successfully identifies active modules

with considerably high scores. By mapping the community structure to the active module

and further dividing the module into smaller fractions, this algorithm provides a new

way to better interpreter the biological meaning of active module. Gene annotation

analysis results show that the fractions from one active module have more specific and

clear meanings than the usually general and ambiguous interpretation for the whole active

module.

6.1 Background

Topological modules, also known as communities, are locally dense neighbourhoods with

more inner interactions than outside interactions. In biological networks, communities are

used to approximate the functional units of cellular process and organisation [30]. This

is because biological components exert functions by interacting with each other. This

components organised as functional units that overlap with communities. Therefore, by

identifying communities [38], we can identify (part of) functional modules [5]. Further-

more, by comparing functional modules at different disease stages, we can reveal essential

biological mechanisms [48, 31, 54]. However, communities do not consider network activ-

ities such as gene expression of each gene in a biological network. With this drawback,

communities cannot fully depict the dynamic mechanisms of biological systems.

Active modules, on the other hand, consider network activities. They have been pro-

posed to depict the dynamic mechanisms of biological systems. An active module is
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a region (sub-network) in a biological network that show striking changes in molecular

activity. These active modules are often associated with a given cellular response [54].

However, existing active module identification algorithms do not consider modular struc-

ture. As a result, it is difficult to associate the identified active modules with functional

units. Hence, active modules cannot precisely depict the how functional units are acti-

vated. Because of this drawback, the dynamic mechanisms reveal by active modules are

not accurate.

As mentioned above, both communities and active modules reveal some aspects of

the underlying biological mechanisms. It is desirable to identify and study both of them,

especially their overlaps, which are important to reveal the interactions between structure,

activities and functions. Naively, we can apply algorithms to identify communities and

active modules separately. However, we hypothesise that by identifying communities and

active modules simultaneously, we are able to reveal new insights that cannot be achieved

through identifying them separately. This hypothesis is based on the fact that these two

types of modules overlap with each other in structure, and complement each other in

illustrating functions and dynamics of networks. By searching both types of modules

simultaneously, we could exploit their latent complementarities, which will lead to new

insights.

To test our hypothesis, we propose a novel multitask module identification algorithm

based on multifactorial evolution, which is a evolutionary algorithm that simultaneously

solves multiple tasks that may or may not be interdependent [28]. Different from multi-

objective evolution in which tasks are conflicting with each other, multifactorial evolution

requires no prior knowledge of inter-task dependencies and doesn’t aim at optimal trade-

offs. During the evolutionary search each task contributes a special factor to the search

space, encouraging the transfer of unique genetic materials between tasks, which makes

multifactorial evolution more powerful than separately performing single task search.

To our best knowledge, this is the first evolutionary multitasking algorithm that can

identify both communities and active modules simultaneously. We have designed a novel
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unified genetic representation for multiple tasks, problem-specific decoding scheme, and

task specific genetic operators. Through experimental tests on both tasks we have proved

that our method has satisfactory performance on both tasks. More importantly, it help us

to gain insights into biological mechanisms that cannot be obtained by community detec-

tion and active module identification algorithms alone. Supplementary materials including

MATLAB source code, formatted input data and experimental results are available via

https://github.com/WeiqiChen/Mumi-multitask-module-identification.

6.2 Related Work

6.2.1 Evolutionary Multitasking

Evolutionary multitasking investigates into the implicit parallelism of evolutionary opti-

misation problems. An introductory study [28] on evolutionary multitasking shows that

it allows for implicit transfer of genetically encoded information across multiple optimi-

sation tasks. This process, also known as transfer learning, improves the efficiency and

convergence speed of evolutionary multitasking on computationally expensive problems.

The idea of accelerating convergence via information transfer between objectives is

not newly invented by multitasking. Previous researches on multi co-objective evolu-

tion [44] and memetic search [17, 18] have already shown that the knowledge transfer and

reuse across objectives is able to improve search performance of evolutionary algorithm on

computationally expensive problems. In the context of computational intelligence, memes

are referred to as recurring patterns or knowledge embedded in computational represen-

tations [67]. In an early study [18] that formulates transfer learning as computational

operators, knowledge learned in previous problem-solving process is transferred in the

form of memes as building blocks, and helps accelerate future search. A similar study [47]

on re-usable knowledge extraction proposes the concept of simultaneous problem learning

that emphasises on the interaction between optimiser and problem learning.
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Research on evolutionary multitasking is strongly triggered by the need in fast devel-

oping cloud computing industry where cross-domain optimisation must be handled with

high efficiency. Different to traditional multi-objective optimisation that has one single

search space, multitask optimisation is capable of dealing with multiple search spaces,

each corresponding to an individual optimisation task [66]. Dependency among tasks are

not required for multitasking. The essential point is that it handles cross-domain opti-

misation through a unified solution representation scheme [28, 66] for objectives across

domain. Research [66] has shown that genetic operator applied to the unified genetic space

is able to drive knowledge transfer between different optimisation tasks across domain,

thus proven that evolutionary multitasking indeed works.

Evolutionary multitasking has a broad range of application that are not restricted to

cloud computing or solely cross-domain multitasking. It has been applied to a series of

classic combinatorial optimisation problems [89] as well as real world problems like man-

ufacturing process design [29], neural network training [11], bi-level optimisation [27], etc.

Nevertheless, it is still a new emerging field that has far not been fully explored. The

development of more efficient evolutionary multitasking algorithms and further applica-

tion to numerous complicated real world problems are promising and attractive future

directions in this field.

6.2.2 Modularity Optimisation Methods in Community Detec-
tion

Modular or community structure is an essential structural property that reflects relation-

ships among members of a network. It’s also one of the most studied network features

[60, 21]. A community is usually viewed as a densely connected region in network that

has more inner connections than outer connections. Detection of community structures

have been studied for many decades under different terminologies like graph partitioning,

network division, hierarchical clustering, or block modelling [64].

One of the most successful methods is the modularity optimisation proposed by New-
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man and Girvan [65]. In their work, a scalar measurement called modularity, which is

based on their previous work on assortative mixing [59], is formulated to assess the quality

of a given division of an undirected network. They designed an algorithm that divides a

network into communities by iterative removal of edge with the highest betweenness score

in remaining edges. Edge with high betweenness score is a sign for bottleneck in traffic

moving in a network, thus less likely to be located inside a community. Modularity, also

denoted as Q, is then used as a guidance for choosing the number of communities a net-

work should be divided into. The value of Q falls between 0 and 1. If the network division

is no better than random, then Q = 0. An increase in the value of Q indicates a better

community structure. In their experimental results it’s clear that as the edges gradually

get removed from network, forming different level of split of network, modularity typically

first increases and then decreases. Usually there are only one or two peaks during the

whole process, indicating the strongest community structure that ever appears.

The algorithm based on the removal of edges with high edge betweenness is able

to find densely connected local areas and has been widely used. However, the major

drawback of this algorithm is the high computational demand. In the worst case it runs

in time O(m2n) on a network with m edges and n nodes, or O(n3) on a sparse network.

Thus the application of this algorithm is limited to only small scale networks. To fix this

problem, later on Newman proposed a fast algorithm for community detection that adopts

a different strategy [62] and runs in time O((m + n)n), or O(n2) on a sparse network.

Opposed to the previous algorithm which is a top-down removal and division method, this

fast algorithm starts from assigning each node in the network as an isolated community,

and gradually join two communities together by the criteria that modularity Q can be

increase the most or at least decrease the least. According to the experimental results

on both computer generated and real world networks, this algorithm generates excellent

results and can be thousands of times faster than previous one.

The bottom-up greedy search based agglomerative strategy is also adopted by another

work using a different algorithm [12] for finding community structure in very large net-

76



work. This algorithm takes advantage of some shortcuts in the optimisation problem.

Instead of maintaining the adjacency matrix and calculating the change of modualrity

when joining two communities, it only store and update a matrix of changes in modu-

larity. It also maintains some sophisticated data structure to ensure the running speed.

This algorithm runs in time O(mdlogn) where d is the depth of the dendrogram describ-

ing the network. For many real-world networks that are sparse and have a hierarchical

structure, the algorithm has approximately linear running time O(nlog2n). In addition,

an other influential algorithm called fast unfolding [10] uses a similar bottom-up merging

method, only that it is divided into two phases, each repeatedly merging individual nodes

or existing small communities. It has been proven to be able to run in huge network with

more than 100 million nodes.

Besides from those top-down and bottom-up search strategies, there is an algorithm

that maximises the value of modulairty based on an two partitioning strategy [16]. This

heuristic search algorithm starts by dividing the whole network into two random partitions

with equal number of nodes. Every connected components in the partition is considered

as one community. A fitness measuring the contribution of an individual node to the value

of modularity is calculated depending on current community division. In each iteration

node with the lower fitness is moved from one partition to the other. The algorithm

terminates when the modularity could not be improved any more, indicating an optimal

state with a maximised value of modularity.

Although there have been researches showing that community detection by modularity

optimisation may suffer from resolution limit and thus fail to identify communities that

are smaller than a scale depending on some network parameters [22], optimisation of

modularity Q is still one of the most successful and widely used community detection

methods. By simply mapping a weighted network to an unweighted multigraph, it is

showed that modularity works on weighted network as well [61]. As exhaustive search for

highest modularity in network is intractable, a variety of approximate methods [46, 73, 16,

10] have been applied to modularity optimisation. Among those methods Newman showed
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that the modularity can be expressed in terms of eigenvectors of a so called modularity

matrix, and thus the optimisation of modularity is converted to the problem of finding

the leading eigenvector of the modularity matrix and get a two-community partitioning

according to the signs of elements in the eigenvector. Each partition is again divided

through this method until all the signs in leading eigenvector is the same, indicating that

current partition can no longer be dividied. The spectral algorithm [63] is highly efficient

for community detection. It is later shown that spectral modularity maximisation is an

optimal method for community detection using modularity approach [57].

6.3 A Novel Framework of Multifactorial Evolution

for Active Module and Topological Community

Detection

In this section we give a formal description of a novel algorithm framework to identify

active modules and community structures simultaneously in a node weighted biological

network. It is so far as we know the first to formulate the two widely studied problems into

one multifactorial evolution paradigm. In the aim of achieving multitasking in the same

algorithm scheme, we have developed a unified genetic representation acting as a general

solver for the two different tasks and corresponding task-specific decoding method. We

have also designed task-specific mutation and local search operators in order to improve

the algorithm performance. A final solution modification strategy has been developed

and applied to the output solution by the evolutionary algorithm to again enhance the

values of objective functions and produce results of higher quality.

6.3.1 Basic Structure of Multifactorial Evolution

We use the technique proposed by Gupta et. al [28] to compare the fitness of individual

solutions in a multitasking context. The core concepts of this technique is the definition

of scalar fitness ϕ and skill factor τ for an individual. In the initialisation stage, every
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individual in the population is evaluated with respect to every optimisation task in the

multitasking environment. For each task Tj an individual Li has a factorial rank rij

corresponding to the rank of the individual’s objective fitness for this task in the whole

population. The lower number the rank is, the better performance individual shows in

specified task. For K number of tasks an individual Li is assigned with a list of K factorial

ranks {ri1, ri2, ..., riK}. The scalar fitness ϕi of individual Li is based on its best rank among

all the tasks, given by

ϕi =
1

minj∈{1,...,K}{rij}
(6.1)

The skill factor τi of individual Li is then given by

τi = argminj{rij}, j ∈ {1, 2, ..., K} (6.2)

meaning the task individual Li is most effective. A basic structure of multifactorial

evolutionary algorithm is described in Algorithm 6.1. More details on concept definition

and multifactorial evolutionary algorithm scheme can be found in reference [28].

Algorithm 6.1: Basic Structure of Multifactorial Evolutionary Algorithm

1 Population initialisation as current-pop ;
2 Evaluate every individual with respect to every optimisation task ;
3 Compute the skill factor τ of every individual ;
4 while stopping criteria not satisfied do
5 Apply Crossover and Mutation on current-pop to generate offspring-pop ;
6 Evaluate offspring individuals for selected optimisation tasks ;
7 intermediate-pop ← Union(current-pop, offspring-pop);
8 Update the scalar fitness ϕ and skill factor τ for every individual in

intermediate-pop ;
9 current-pop ← fittest individuals in intermediate-pop

10 end

6.3.2 Definition of Tasks

This multitasking problem contains two tasks: identification of active modules and di-

vision of network into structural communities. For a given protein-protein interaction
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network with p-values indicating the gene differential expression level assigned to each

node v, an additive score SFDR(v) can be calculated using equation 4.3 (see Section 4.1.1

for more details). The active module identification problem is formulated as following.

Problem 6.1 (Active Module Identification Problem). Given a network G = {V,E}

where V denotes for the set of nodes, E denotes for the set of edges, n = |V | is the number

of nodes and each node vi ∈ V, i = 1, 2, ..., n is assigned with node weight SFDR(vi), find a

connected subgraph S = {VS, ES}, VS ∈ V,ES ∈ E so that
∑

vi∈VS S
FDR(vi) is maximised.

For a given division on network with adjacency matrix Aij, the modularity defined

by Newman and Girvan [65] and modified to be suitable for edge weighted network is

calculated as

Q =
1

2m

∑
(Aij −

kikj
2m

)δ(ci, cj) (6.3)

where

m =
1

2

∑
ij

Aij (6.4)

is the number of edges in the network, and the δ function δ(u, v) is 1 if u = v and 0

otherwise. ci is the label of community to which node i is assigned in this division. ki

denotes the degree of the i-th node. The intuition of modularity Q is to measure the

difference between edge density inside communities given a community division in the

network and the same quantity for a network with the same community division but

randomly distributed edges.

The community detection problem through modularity maximisation is formulated as

following.

Problem 6.2 (Community Detection Problem). Given a network G = {V,E} where V

denotes for the set of nodes and E for the set of edges, divide the set of nodes V into

m mutually exclusive subsets {V1, V 2, ..., Vm}, Vi ∈ V, Vi 6= ∅ for i = 1, 2, ...,m, and

∪mi=1Vi = V, Vi ∩ Vj = ∅ for i 6= j, so that the value of modulairty Q is maximised.

In the previous chapter, we have already shown how to solve problem 6.1 through a
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binary vector encoding scheme constrained by algebraic connectivity in a multi-objective

evolutionary algorithm. In order to include problem 6.2 in an environment of evolution-

ary multitasking, we propose a new unified genetic representation as a general solver for

both problems. For the purpose of simplicity, in the following content, especially in algo-

rithm description, task 1 refers to active module identification task and task 2 community

detection task.

6.3.3 A Unified Genetic Representation for Multiple Tasks and
Problem-Specific Decoding Scheme

For a network G = V,E of size n = |V |, an individual solution is encoded as an integer vec-

tor of length n, each integer representing the label of community to which corresponding

node is assigned, i.e. for the i-th individual Li in population, we have

Li = {l1i , l2i , ..., lni } (6.5)

where lji ∈ {0, 1, ..., n − 1} for j = 1, 2, ..., n, meaning the available label of communities

ranges from 0 to n− 1.

In this algorithm algebraic connectivity is no longer used as a constraint to ensure

the connectivity of detected active module. Instead the collection of positions assigned

with positive integers is interpreted as a subgraph whose connected component S with

highest
∑

v∈VS S
FDR(v) is identified as the active module this individual represents. This

connected components finding based decoding scheme is inspired by the work of Li et al.

[45]. Details of the chromosome decoding scheme for active module identification task is

described in Algorithm 6.2.

In the context of community detection, individual Li is interpreted in a different way.

Integer in the j-th position of Li denotes for the label of community to which the j-th node

is assigned. During the whole evolutionary algorithm, connectivity for each community

is not explicitly required in algorithm implementation, however the process of modularity
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Algorithm 6.2: Chromosome Decoding Scheme for Task 1

Input: Individual Li, adjacency matrix A of the whole network, a list of SFDR(v)
assigned to each node

Output: Connected node set of active module VS, active module score∑
v∈VS S

FDR(v)

1 binary vector l← Li > 0 ;
2 subgraph Al ← A(l, l) ;
3 get all the k connected components {V1, V 2, ..., Vk} in Al ;
4 Smax ← negative infinity ;
5 VS ← ∅ ;
6 for j ← 1 to k do
7 Sj ←

∑
v∈Vj S

FDR(v) ;

// get the active module score Sj of the j-th connected components

Vj
8 if Sj > Smax then
9 Smax = Sj ;

10 VS ← Vj ;

11 end

12 end
13 return VS, Smax

maximisation implicitly drives the network division towards densely connected solutions.

A detailed chromosome decoding scheme for community detection task is described in

Algorithm 6.3.

Figure 6.1 gives a simple example of how to decode given chromosome representation

for two tasks. In a network with 12 nodes and 13 edges (Figure 6.1a), the chromosome

is encoded as [1, 1, 1, 1, 2, 2, 2, 0, 3, 0, 3, 3] (Figure 6.1b). Visualisation of decoding scheme

under two tasks can be seen in Figure 6.1c and 6.1d.

6.3.4 Task-Specific Mutation Operator

In order to improve the performance of the algorithm and provide better guidance in

searching the solution space, we have mutation and local search operators specially de-

signed for the two different tasks. Upon taking in an individual, the mutation operator

first checks its skill factor to decide the task in which this individual is more effective,

then it applies different mutation strategy accordingly.
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(a) Sample network (b) Genetic representation

(c) Decoding for network division
(d) Decoding for active module identifica-
tion

Figure 6.1: A simple example of the chromosome encoding and decoding scheme for two
tasks. Figure 6.1a: Visualisation of the sample network with 12 nodes and 13 edges.
Figure 6.1b: The genetic representation of one individual, an integer vector of length 10,
each integer representing the community label of corresponding node. The vector S(FDR)
gives the active node score. Figure 6.1c: Network is divided into 4 communities labelled
from 0 to 3 according to the individual. Figure 6.1d: Subgraph formed by all nodes
with non-zero labels. Nodes are labelled by active score S(FDR). Module score S(A)
is calculated for each connected component in the subgraph. In this example, connected
component 2 with a higher active module score S(A) = 2.3 is selected as the decoded
active module.
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Algorithm 6.3: Chromosome Decoding Scheme For task 2

Input: Individual Li, adjacency matrix A of the whole network
Output: Network Division {V1, V 2, ..., Vm}, Modularity Q

// get labels of communities

1 labels ← unique elements of Li ;
2 m← length(labels) ;
3 for j ← 1 to m do
4 label ← labels(j) ;
5 Vj ← ∅ ;
6 for k ← 1 to n do

// get all the nodes in j-th community

7 if Lki == label then
8 Vj = Vj ∪ vk
9 end

10 end

11 end
// Now network division represented by Li is decoded

12 calculate modularity Q for given network division {V1, V 2, ..., Vm} ;
13 return {V1, V 2, ..., Vm}, Q

Individual specialised in active module identification goes through a subgraph expand-

ing stage and a node deletion stage. In the first stage, neighbouring nodes with positive

weight are added to the subgraph while those with negative weight also have probabilities

to be included. In the second stage, negative weighted nodes in subgraph go through a

similar probabilistic deletion process. A detailed description is shown in Algorithm 6.4.

Individual specialised in network division is applied with a completely different mu-

tation strategy called random community merging. This mutation is an imitation of

bottom-up merging strategy in quite a few community detection algorithms. In initial-

isation stage, every individual is assigned with a random permutation of integers 0 to

n− 1, meaning that every node is the sole member of one of n communities. When such

mutation strategy is applied to an individual, two connected communities are randomly

selected to be joined together to form a new larger community. As evolution goes on,

small communities are gradually merged into large communities, accompanied with a sig-

nificant increase in modularity Q. In the late stage of evolution the value of Q becomes

stable, indicating the algorithm has reached the optima in modularity maximisation task.

84



Algorithm 6.4: Apply mutation with local search steps to chromosomes specialised
in task 1 ( skill factor τ == 1)

Input: Individual Li, adjacency matrix A of the whole network, a list of SFDR(v)
assigned to each node

Output: Individual Li after mutation

// individual Li is more effective in task 1

1 node set of subgraph S is given by VS ← {Vj|Lji > 0}, j = 1, 2, ..., n ;
2 Vneighbours ← all neighbouring nodes of VS;
// get labels of communities

3 labels ← unique elements of Li ;
// Stage 1: probabilistic subgraph expanding

4 for every node vj in Vneighbours do
5 if SFDR(vj) ≥ 0 then

// if the neighbour vj is assigned with positive SFDR(vj),
include it

6 Lji ← randomly select one label from labels (cannot be 0)

7 else
// if the neighbour vj is assigned with negative SFDR(vj),

include it with probability exp(SFDR(vj))
8 if exp(SFDR(vj)) > random() then

9 Lji ← randomly select one label from labels (cannot be 0)
10 end

11 end

12 end
// Stage 2: probabilistic negative weighted node deletion

13 update node set of subgraph S by VS ← {Vj|Lji > 0}, j = 1, 2, ..., n ;
14 for every node vj in VS do

// if the node vj is assigned with negative SFDR(vj), delete it

with probability 1− exp(SFDR(vj))
15 if exp(SFDR(vj)) < random() then

16 Lji ← 0
17 end

18 end
19 return Li
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A detailed description of community merging mutation is shown in Algorithm 6.5.

Algorithm 6.5: Apply mutation with random community merging to chromosomes
specialised in task 2 ( skill factor τ == 2)

Input: Individual Li, adjacency matrix A of the whole network
Output: Individual Li after mutation

// individual Li is more effective in task 2

1 randomly select one community label c1 in Li ;
2 node set of community c1 is given by Vc1 ← {vk|Lki == c1}, k = 1, 2, ..., n ;
3 Vneighbours ← all neighbouring nodes of Vc1;
4 if Vneighbours contains community label different from c1 then
5 randomly select another community label c2 in Vneighbours;

// merge all nodes in community c1 into community c2
6 Li(Li == c1)← c2
7 end
8 return Li

6.3.5 Uniform Crossover Operator

This algorithm uses uniform crossover to generate two child individuals from two parent

individuals. Although uniform crossover has a higher probability to destroy community

structures that are already detected than simple one-point or two-points crossover, in

practise it is proven to be an effective way to preserve the diversity of population, help

explore solution space, and avoid being stuck in local optima. Uniform crossover is also

very simple to implement. Pseudocode is shown in Algorithm 6.6 below.

Algorithm 6.6: Uniform Crossover to generate two child individuals

Input: Parent individuals L1, L2

Output: Offspring individuals Child1, Child1

// randomly generate a binary mask vector with the same length of

individuals

1 mask ← RandomBinary(1, length(L1)) ;
// uniform crossover between two parent individuals

2 Child1 ← L1 ;
3 Child1(mask == 1)← L2(mask == 1) ;
4 Child2 ← L2 ;
5 Child2(mask == 1)← L1(mask == 1) ;
6 return Child1, Child1

86



6.3.6 Improvement of Output Solution

The multifactorial evolutionary algorithm scheme we used for solving Problems 6.1 and 6.2

is already able to provide satisfactory results in terms of objective evaluation. However,

because the connectivity of communities is not explicitly required in the design of genetic

representation, interpretation or algorithm implementation, the output solutions directly

generated from the evolutionary algorithm sometimes still contain communities that are

not connected. In a typical solution that fails to ensure connectivity there is one sole

node separated from other community members. To solve this issue we designed an extra

solution improvement step containing two stages. In the first stage, community with

more than one connected components is assigned with new community labels for each of

the extra components. This often results in communities with one sole node. Then in

the second stage, this one node community is merged to its most frequent neighbouring

community. Details of solution improvement is shown in Algorithm 6.7.

6.4 Experimental Studies

In this section, we give a few applications of our algorithm to real world networks. The first

several experiments solely evaluate the algorithm’s performance on community detection

task because these networks have no features that can be formulated as an active module

problem. Then we will apply the algorithm to biological network which allows for tackling

community detection and active module identification simultaneously.

6.4.1 Modularity Optimisation Task

We first test the performance of our algorithm on modularity optimisation task to check

whether the design of genetic representation and mutation scheme is suitable for this

task. Some classic networks for community structure analysis are chosen as benchmark

networks to compare the value of modulairty Q from this algorithm and other classic
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Algorithm 6.7: Solution Improvement

Input: Individual Li, adjacency matrix A of the whole network
Output: Individual Li after improvement

// Stage 1: assign disconnected community with different labels for

each connected component

1 labels ← unique elements of Li ;
// new label starts from n+ 1 to avoid overlap with all original

labels

2 newLabel ← n+ 1 ;
3 for j ← 1 to length(labels) do
4 get subgraph Aj of the j-th community labels(j) ;
5 get all the k connected components {V1, V 2, ..., Vk} in Aj ;
6 if k > 1 then
7 for ii← 2 to k do
8 Li(Vk)← newLabel ;
9 newLabel ++ ;

10 end

11 end

12 end
// Stage 2: merge one-node community to neighbouring community

13 labels ← unique elements of Li ;
14 for j ← 1 to length(labels) do
15 if j-th community has only one node vj then
16 find community labels of all neighbouring nodes ;
17 assign vj with the most frequent neighbouring community label ;

18 end

19 end
20 return Li
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modularity optimisation algorithms. For those networks node weights are assgined with

random values. Then the yeast molecular interaction network that has been tested in the

previous chapter for active module identification is used for optimising both tasks. In this

section the results for topological structure detection is analysed.

6.4.1.1 Experimental Results on Classic Community Detection Networks

The first experimental network for community detection comes from one of the classic

studies in social network analysis. It is often named as Zachary’s karate club network as

it was first described by Wayne Zachary in the 1970s as a friendship network between 34

members of a karate club in a university [90]. Edges between members were based on

their social interactions both inside and outside of the club. During his research period,

a dispute accidentally appeared between the the club’s administrator and main karate

teacher, resulting in a split of the original club into two smaller clubs. Figure 6.3a shows

the karate network and the two groups it was divided. This network has been widely used

in community detection and modularity optimisation research as benchmark.

Figure 6.2a shows how the value of modularity Q changes after each generation. The

algorithm is performed repeatedly for 10 times. It clearly shows the optimisation process

during which the modularity gradually increases and becomes stable, although the final

objective values slightly differ from each other due to the randomness of this algorithm.

Figure 6.2b shows the value Q of the same group of solutions before and after solution

improvement, proving that Algorithm 6.7 is able to improve the final solution.

From the 10 running results, solution with the highest post-improvement modularity

is selected to visualise, shown in Figure 6.3b. Other than the two-group division in real

world, a total of 4 communities are detected by proposed algorithm, with modularity Q

equal to 0.4172. Notably this community structure is actually a further split based on the

original division, with node 10 as an mistakenly classified exception. However, from the

purely computational objective fitness view, modularity Q of the original network division

is only 0.3715, a value lower than most Q values from the 10 runs of proposed algorithm.
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(a) Maximisation process of modularity Q
in 10 runs.

(b) Modularity Q before and after solution
improvement.

Figure 6.2: Modularity Q of Zachary’s karate club network. Figure 6.2a: 10 running
records for value of modularity Q in karate network. Algorithm parameters are 100
populations and 100 generations. Figure 6.2b: Q1 group is the results directly generated
from the 10 runs of multifactorial evolution, Q2 group is modularities of the same set of
solutions after improvement.

As a comparison, modularities for the network divisions found by edge removal algorithm

(Giran and Newman [24]) on this network is 0.401, by merging strategy based algorithm

(Clauset et al. [12]) is 0.381, by extremal optimisation (Duch et al. [16]) is 0.419, and by

Newman’s spectral algorithm [63] is 0.419. Results have shown that the performance of

proposed algorithm on karate network is comparable to classic modularity optimisation

algorithms.

The second experimental network is the social network of 62 bottlenose dolphins living

in Doubtful Sound, constructed by Lusseau [49, 50] for behavioral ecology and sociobiol-

ogy research. Edges between two dolphins are constructed from observation of frequent

association. Similarly, proposed algorithm is performed repeatedly for 10 times on this

network. Maximisation process of modularity Q in the 10 runs and after solution im-

provement is shown in Figure 6.4.

In the 10 running results, the solution with highest Q after solution improvement is

not the one ranking highest before that. To better illustrate the effect of improvement

step, we pick this solution and visualise its network division before and after improvement
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(a) Karate network and the two smaller clubs it was divided.

(b) Community structure in karate network detected by proposed algorithm.

Figure 6.3: Visualisation of communities detected by proposed algorithm in Zachary’s
karate club network. Figure 6.3a: The social network between 34 individuals in the
karate club studied by Zachary. The two different node colours represent two smaller
clubs it was divided into. Figure 6.3b: Visualisation of the 4 communities detected by
proposed algorithm. Communities are distinguished by different node colours. Node 10
pointed by grey arrow is the only node that is wrongly classified according to real world
conditions.
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(a) Maximisation process of modularity Q
in 10 runs.

(b) Modularity Q before and after solution
improvement.

Figure 6.4: Modularity Q of bottlenose dolphins network. Figure 6.4a: 10 running records
for value of modularity Q in dolphins network. Algorithm parameters are 200 populations
and 160 generations. Figure 6.4b: Q1 group is the results directly generated from the
10 runs of multifactorial evolution, Q2 group is modularities of the same set of solutions
after improvement.

in Figure 6.5. The value of modularity Q is 0.5118 before improvement, and is increased

to 0.5242 after that. Modularity for the split on this network given by Newman and Giran

[65] is also 0.52.

6.4.1.2 Experimental Results on Yeast Molecular Interaction Network

The yeast molecular interaction network once used by Ideker [34] is again used as an

experimental network. It has 330 nodes assigned with p-values which are converted to

the additive score SFDR(x) as a module activity measurement. Figure 6.6a shows the

maximisation process of both active module score (denoted as task 1 objective) and mod-

ularity Q (task 2 objective) in 800 generations for 10 repeated runs. Effect on modularity

Q by applying solution improvement to the same group of 10 solutions is shown in Figure

6.6b. The overall improvement for Q in this network is more significant largely due to the

many small connected components.

Figure 6.7 is the visualisation of network division with the highest modularity Q 0.8636

in the 10 runs of proposed algorithm on yeast network. In order to avoid having too many

confusing colours in the network, node colours representing communities are manually se-
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(a) Visualisation of communities before solution improvement.

(b) Visualisation of communities after solution improvement.

Figure 6.5: Visualisation of communities detected by proposed algorithm in dolphins net-
work. Communities are distinguished by different node colours. Figure 6.5a: Visualisation
of 4 communities detected directly from multitasking evolution process without solution
improvement. Node TR88 pointed by grey arrow is separated from other members in the
same community coloured in yellow, resulting in a disconnected community. Figure 6.5b:
After solution improvement step, node TR88 is classified into its neighbouring community
coloured in red, resulting in an increase of Q from 0.5118 to 0.5242.
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(a) Maximisation process of active module
score SA and modularity Q in 10 runs.

(b) Modularity Q before and after solution
improvement.

Figure 6.6: Modularity Q of yeast network. Figure 6.6a: 10 running records for value
of active module score and modularity Q in yeast network. Algorithm parameters are
300 populations and 800 generations. Active module score (shown in the left) gets to its
optima much faster than modularity Q (in the right), in about 100 generations, while
Q gets stable after about 500 generations. Figure 6.6b: Q1 group is the results directly
generated from the 10 runs of multifactorial evolution, Q2 group is modularities of the
same set of solutions after improvement.

lected based on the rule that neighbouring communities that have at least one linking

edge cannot be labelled with the same colour. Eventually a network division with 45

communities is carefully labelled by 5 colours. All of the 25 small connected components

listed in the bottom of the figure are successfully classified as isolated communities. In

the largest connected component, densely connected local areas are nicely classified into

different communities. There are, however, three small communities that don’t seem to

be reasonably classified, shown in the figure by circles and arrows. Modularity Q can

be further increased when those three communities are merged with their neighbouring

communities. Nevertheless, this experiment on real-world biological network with a num-

ber of connected components again shows that the proposed algorithm has a satisfactory

performance in identifying community structures.

To make a straightforward comparison between the performance of proposed algorithm

and some other published algorithms, we use the clustering functions implemented in

R igraph package to get the modularities values for network division found by different

algorithms. The results are shown in Table 6.1. This comparison shows that the proposed
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Figure 6.7: Visualisation of communities detected by proposed algorithm on yeast net-
work. Nodes in neighbouring communities are filled with different colours. Modularity Q
can be increased from 0.8636 to 0.8708 if the three tiny communities pointed by arrows
are merged to their neighbouring communities.
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algorithm is able to find network divisions with modularites comparable to the classic

modularity optimisation algorithms.

Table 6.1: Comparison of modularities for the network division found by the pro-
posed algorithm and some published algorithms. All the results for published algo-
rithms are from running corresponding clustering functions implemented in igraph pack-
age in R. References and the function names of these algorithms are: GN [65], clus-
ter edge betweenness; MNC [12], cluster fast greedy; Louvain [10], cluster louvain; spec-
tral [63], cluster leading eigen. Proposed algorithm is repeated for 10 times on each
network, giving minimum, maximum and average modularity in the table. Clustering
functions in R give stable results for repeated runs, thus only one single result is listed
for each network.

network size GN MNC Louvain spectral proposed algorithm (10 runs)
min max average

Karate 34 0.4013 0.3807 0.4188 0.3934 0.3674 0.4172 0.3875
Dolphins 62 0.5194 0.4955 0.5158 0.4912 0.4478 0.5242 0.4796

Politics Books 105 0.9977 0.9977 0.9977 0.9977 0.9977 0.9977 0.9977
Football 613 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984

Yeast 330 0.8784 0.8825 0.8827 0.8379 0.8308 0.8708 0.8502

6.4.2 Active Module Identification Task

This section shows the results of proposed algorithm on active module identification. The

aim of our study is to demonstrate that our algorithm can not only identify high quality

active modules but also provides more informative biological interpretation by combining

the active modules with communities.

The maximisation process of active module score on yeast network in 10 runs is al-

ready displayed in Figure 6.6a. Active scores range from 529.8 to 549.9, all of those are

significantly higher than the same scores for active modules identified by jActiveModule

method (see Table 5.2 for details) of which the highest one is only 270. Figure 6.8 visu-

alises the active module with the highest active module score among the 10 runs. Note

that all the coloured nodes form one connected active module, with different colours in-

dicating the labels of structural communities the nodes belonging. The network division

is in accordance with the one shown in Figure 6.7. Labels of communities are also shown

in the figure. By mapping nodes in active module to different communities and dividing
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it to smaller fractions we will demonstrate that the structural information helps get more

accurate and specific biological interpretation for the identified module.

Gene ontology analysis through the online tool of Gene Ontology Consortium [23] for

biological process is performed on the whole active module, shown in Table 6.2. As gene

ontology (GO) terms are given in a hierarchical structure, for simplicity only the top

level of GO terms are selected to display. Similar to the gene ontology results of modules

detected by jActiveModule 5.2, our algorithm is also able to identify active modules

relevant to the yeast galactose utilisation activities in the experiments, supported by GO

terms like galactose metabolic process, ATP and ADP metabolic process, and pyruvate

metabolic process. Other related activitiees such as catabolic process and response to

stimulus are also found in the terms.

However, because the whole modules from both algorithms consist large number of

genes, the GO annotation terms are too general, which cannot provide specific inter-

pretation for the active modules. Because of the complexity of biological activities, the

same group of metabolic components may play roles in a series of metabolic processes

and have different annotation terms, which often causes ambiguous explanations for the

active module. Next we will show one way to fix this problem through the utilisation of

structrual property of network.

Table 6.2: Gene ontology results of the whole active module identified by proposed al-
gorithm in yeast network. This module has 93 nodes and active module score equal to
549.9. p-value gives the statistical significance of corresponding GO term’s enrichment in
the gene set.

Typical GO terms p-value
galactose metabolic process 3.64× 10−05

ADP metabolic process 5.62× 10−03

regulation of generation of precursor metabolites and energy 4.15× 10−02

pyruvate metabolic process 2.73× 10−02

ATP metabolic process 3.78× 10−03

carbohydrate catabolic process 1.48× 10−02

small molecule catabolic process 3.29× 10−02

energy derivation by oxidation of organic compounds 4.41× 10−03

cellular carbohydrate metabolic process 4.26× 10−02

response to abiotic stimulus 2.78× 10−02
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Figure 6.8: Visualisation of active module detected by proposed algorithm on yeast net-
work. This one active module is shown by all coloured nodes, different colours indicating
different structural communities. Nodes in active module that are classified in the same
community are circled by curve and pointed with a grey arrow showing the label of com-
munity.
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The main advantage of our algorithm is it can combine active modules and commu-

nities to divide the large active module into smaller fractions based on the community

structure detected using proposed algorithm. Instead of performing GO annotation on

the whole set of genes in the active module, we perform annotation on these fractions

separately. Of all the 13 fractions, 3 of them have no significant functional enrichment,

other 10 have annotation terms shown in Table 6.3. From this table it is easy to find that

the functional annotation becomes more specific and clear. Every fraction has only one

top level GO term or a small set of closely related terms. For example, the fraction 63

is specialised in glycolytic process, fraction 126 is targeted in galactose catabolic process

via UDP-galactose, and fraction 54 in glutamine family amino acid metabolic process,

all of those are highly relevant to galactose metabolic process. Other several fractions

might not be directly related to the process, but serve as an assistance or as essential

cellular activities, such as vesicle fusion from fraction 77, response to heat from fraction

348, and regulation of reproductive process from fraction 355. As a contrast, GO terms

for whole active module shown in Table 6.2 contain a variety of metabolic process such as

galactose, pyruvate, ATP, ADP, and carbohydrate catabolic process, yet could not further

distinguish between these high level functions.

Our results demonstrated that, by combining the structure information, i.e., mapping

nodes in active module to different communities and dividing it to smaller fractions, we

can obtain more accurate and specific biological interpretation.

To investigate whether structure information, i.e., communities alone can provide the

same accurate interpretation, we performed GO analysis on each of the 42 communities.

Of all the 42 communities, 20 have no significant annotation. We selected three repre-

sentative communities with significant annotations in Table 6.4. The results show that

the annotations for each community are too general or ambiguous due to many mixed

function terms. As a comparison, the active module fractions from our algorithm with

the same labels have only one annotated function each as shown in Table 6.3. It is clear

that communities cannot reflect the biological activity the system is going through accu-
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Table 6.3: Gene ontology results for fractions in active module divided by community
structure in yeast network. It uses the same label set as shown in Figure 6.8. Size gives
the number of nodes in each fraction. Only top level GO terms are selected and displayed
in the table.

label size Typical GO terms p-value
54 7 glutamine family amino acid metabolic process 5.95× 10−04

63 14 glycolytic process 2.20× 10−02

77 11 vesicle fusion 5.93×10−04

126 11 galactose catabolic process via UDP-galactose 1.11× 10−04

201 6 box C/D snoRNP assembly 4.77× 10−02

271 4 negative regulation of macroautophagy 4.74× 10−03

negative regulation of glycogen biosynthetic process 4.74× 10−03

negative regulation of sequence-specific DNA binding
transcription factor activity

7.47× 10−03

332 3 romatic amino acid family catabolic process to alcohol via
Ehrlich pathway

3.74× 10−03

L-phenylalanine catabolic process 5.38× 10−03

glycolytic fermentation to ethanol 5.38× 10−03

tryptophan catabolic process 1.49× 10−02

branched-chain amino acid catabolic process 1.81× 10−02

335 8 regulation of protein dephosphorylation 5.67× 10−04

glycogen metabolic process 6.91× 10−03

regulation of mitotic sister chromatid segregation 4.68× 10−02

348 5 response to heat 2.88× 10−03

355 13 regulation of reproductive process 4.21× 10−03
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rately. The main reason is that communities fail to incorporate activities, e.g., differential

expression information to reveal the essential function changes of the system.

Table 6.4: Representative gene ontology results for communities in the yeast network. It
also uses the label set generated directly form original results. Size gives the number of
nodes in each fraction. As a contrast, the three fractions labelled as 54, 63 and 77 contain
only one precisely described ontology term in Table 6.3. GO terms for all communities
are shown in supplementary table.

label size Typical GO terms p-value
54 15 urea cycle 3.14× 10−02

heteroduplex formation 4.61× 10−02

telomere maintenance via recombination 1.58× 10−02

glutamine family amino acid metabolic process 6.34× 10−03

alpha-amino acid biosynthetic process 2.99× 10−03

aromatic compound biosynthetic process 1.35× 10−02

heterocycle biosynthetic process 1.26× 10−02

organic cyclic compound biosynthetic process 1.56× 10−02

63 28 cellular response to phosphate starvation 1.01× 10−02

egulation of glycolytic process by positive regulation of
transcription from RNA polymerase II promoter

1.72× 10−02

gluconeogenesis 1.62× 10−04

glycolytic process 1.95× 10−05

cytoplasmic translation 2.23× 10−04

77 14 urea cycle 1.99× 10−02

’de novo’ pyrimidine nucleobase biosynthetic process 1.31× 10−02

arginine biosynthetic process 1.39× 10−02

6.5 Summary

A multifactorial evolution algorithm framework for detecting active module and topolog-

ical communities simultaneously has been proposed in this chapter. We have introduced

the motivation of inducing topological structure information in active module identifica-

tion, the algorithm designs and improvements developed specific for the tasks, including a

unified genetic representation and task-specific decoding scheme, mutation operator with

local search or community merging operations targeting individuals specialised in different

tasks, and an extra solution improvement step.

Experimental results have shown that the proposed algorithm is able to achieve high
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objective values for both tasks. Functional annotation further shows that mapping com-

munity to the identified active module produces smaller fractions that have more precise

biological interpretations.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This chapter concludes the thesis and discusses some future work related to the work

presented in this thesis.

7.1 Conclusions

This thesis is dedicated to active module identification in biological networks. To be more

specific, it aims to address three key research questions introduced in Chapter 1: How

to build a practical formulation of active module identification problem that faithfully

reflects the dynamic changes of cellular activities and helps reveal new insights? How to

design effective, efficient and robust algorithms to identify active module? What is the

right way to interpret identified active module? The thesis proposes three novel algorithm

frameworks to answer the research questions from three different aspects. A brief review

of the thesis content is given as following.

Chapter 2 gives an introduction on research background of active module and reviews

representative algorithms for active module identification, mainly focusing on the problem

definition and algorithm design. The formulation of the problem is highly flexible and

subject to change in specified context or for special research interest.

Chapter 3 explains the motivations of the novel research work to be proposed and fig-

ures out several general issues to be addressed when designing algorithms. We explain the
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intuition of introducing prior knowledge to reveal new insights and why it is a conflicting

objective with pure data driven active module identification. We introduce community

detection which often reveal the topological property and member relationships of the

network, and why multifactorial evolution is used in the context. We briefly describe the

general issues of scoring function, connectivity and size control in designing active module

identification algorithms.

Chapter 4 proposes an integrated approach for active module identification through

balancing between differential expression of each gene and the differential correlation

between genes. In order to answer the research questions, we formulate differential ex-

pression as node score, differential correlation as edge score, and combine them using a

multi-objective approach.

Chapter 5 proposes a novel prior information guided active module identification ap-

proach. In order to answer the research questions, we build a formulation of prior knowl-

edge enriched active module that is able to reflect the activity of cellular process and reveal

intermediate genes that serve as bridges for cross-talk between neighbouring functional

areas. Due to the conflicting of two objectives, we formulate the identification of target

module as a multi-objective optimisation problem and solve it effectively using modified

algorithm based on NSGA-II. We select modules with different trade-offs between two

objectives on the Pareto front to perform functional annotation and show that the algo-

rithm is able to identify biologically meaningful modules in both small and large scale

networks.

Chapter 6 proposes a novel algorithm framework of detecting active module and topo-

logical communities simultaneously. In order to answer the research questions, we for-

mulate the problem as an evolutionary multitasking problem and develop a series of

task-specific algorithm designs and improvements for the problem. We present a new way

to better interpreter the biological meaning of active module by mapping the community

structure to the active module and further dividing the module into smaller fractions.
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7.2 Future Work

This final section briefly discusses several aspects of potential future work based on the

research presented by this thesis.

• Modification on scoring function.

Although the proposed algorithms are applied on molecular interaction networks

or integrated protein-protein interaction networks, the problem definition and al-

gorithm framework can be easily extended to other types of biological networks as

there is no strict constraint on the type of biological network. There are, however,

some issues to consider. One important assumption for the active module score we

use is that the p-values annotated for each node in the network follow a beta-uniform

mixture distribution. In the experimental networks the quantile-quantile plots of

empirical and estimated p-value distribution prove that it is a good match. It is

not always the case in other types of networks. In gene co-expression network with

some cutting off threshold, the proportion of nodes with low p-values is increased

as the threshold becomes stringent, thus beta-uniform model is not that suitable.

Besides, some types of networks are edge weighted instead of node weighted. In

these cases, we need to consider a new formulation of scoring functions.

• Acceleration of algorithm speed.

A major criticism on genetic algorithm is the scalability with complexity and slow

convergence, mainly due to its population based strategy and a large proportion

of inferior solutions generated by genetic operators that cannot make good use of

problem-specific structure. For networks with hundreds of nodes, the proposed al-

gorithms are able to give satisfactory results in a few hundred generations. When

dealing with large scale networks with thousands of nodes, the algorithms take much

longer generation to converge as the search space grows quickly. Improvement of

the algorithm speed can be considered by adding data structures to store interme-

diate variables in order to reduce the times of solution evaluation or useless genetic
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operation, or by choosing a different optimisation framework.

• Improvement of validation methods.

A common problem of research in an interdisciplinary field is that we often have

to face the challenges from two sides. In the development of computational tools

for understanding complex biological system, no matter how far we can push the

boundary of algorithm efficiency and performance score, eventually we will go back

to the real biological meaning. Gene ontology annotation is a widely used method

to explain the actual sense of module as a collection of genes. Aside from it, there

is plenty of room for other various validation methods. How would the different

linkages of gene pairs inside a module effect its function? Would the exploration of

interactions between modules bring any new insights? In chapter 5 we have incor-

porated pathway information into the active module, can we use knowledge from a

bunch of other biological information database for search guidance or validation as

well?

• Formulation of active module identification in evolving networks.

There have been a number of works on active module identification in static net-

works, but a limited number of studies on evolving network which is consist of

multiple slices of networks corresponding to different time point. The dynamics and

consistency of active modules in an evolving network is interesting as the network is

not limited to a snapshot of biological system, but contains time course data that can

reflect certain cellular process from beginning to end. Current methods for analysing

evolving network often simply apply existing static network analysing methods to

each slice of the network, and match the results across layers. It is worth develop-

ing specific methods for handling active module identification in evolving networks

directly.
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