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Abstract 

 

Hypoxia has been linked to the pathogenesis of hepatic steatosis in murine and 

human models. There is an abundance of data suggesting that HIFs play a central 

role in regulating hepatic lipid metabolism. This study suggested that hypoxia-

induced hepatic lipid accumulation is through de novo lipogenesis and free fatty 

acid uptake, and is dependent on hypoxia inducible factors 1α and 2α.  On the 

contrary, hepatitis C infection reduced de novo lipogenesis and free fatty acid 

uptake in both normoxic and hypoxic conditions in vitro, and this inhibition is 

viral strain-dependent. In the clinical setting, chronic hepatitis C (CHC) and non-

alcoholic fatty liver diseases (NAFLD) are associated with hepatic steatosis and 

insulin resistance. Using an integrative physiological approach that measures 

lipid and carbohydrate flux in vivo we demonstrated that patients with CHC had 

modest increase in insulin resistance and that the relative contribution of tissue 

specific insulin sensitivity in patients with CHC and NASH varied. Furthermore, 

curing HCV infection improved hepatic and subcutaneous adipose tissue insulin 

resistance. The improvement in hepatic and adipose tissue insulin resistance was 

more pronounced in patients infected with genotype 3 HCV, whilst the 

improvement in skeletal muscle insulin resistance was more evident in genotype 

1 infection, demonstrating a genotype-specific effect in the metabolic 

perturbation in CHC. Further studies are required to confirm that genotype 

specific effect of HCV on insulin resistance and its link with NASH. 
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1.0 INTRODUCTION  
 

1.1 General Introduction 

 

1.1.1 Liver zonation and physiological oxygen gradient  

 

The morphology and function of hepatocytes vary with position along the liver 

sinusoids from the portal triad (composed of the bile duct, portal vein and 

hepatic artery), to the central vein. They receive their supply of nutrients 

through the portal vein, and delivers metabolized products to other organs 

through the central vein. The hepatic artery located adjacent to the portal vein, 

within the portal triad, supplies the liver with blood enriched in oxygen. The 

directional flow of mixed oxygenated and deoxygenated blood towards the 

central vein of the hepatic lobule creates a physiological oxygen gradient from 

the periportal to the perivenular areas of the parenchyma, with an oxygen 

pressure of 60-65mmHg (~8%) to 30-35mmHg (~4%) (2, 3). The definition of 

‘normoxia’ and ‘hypoxia’ depends on the normal oxygen tension to which the 

hepatocyte is exposed. Despite the variable oxygen tensions in the liver, a 

hypoxic response is rarely observed in a normal healthy liver (4, 5), but modest 

changes in oxygen tension that can occur in various liver diseases are enough to 

promote a hypoxic response that stabilizes HIFs (2, 6-8).  
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1.1.2 Liver zonation and metabolic functions 

 

In 1996, Jungermann demonstrated that hepatocytes were specialized, and their 

function differed depending on their position along the porto-central axis of the 

liver cell plate (9, 10). Blood flow within the liver determines the organization of 

the anatomical unit of the hepatic parenchyma. The hepatocytes lined up in a 

sponge-like arrangement between the sinusoids show a remarkable 

heterogeneity with respect to the biochemical and physiological functions they 

perform. Hepatic glutamine synthesis (via glutamine synthetase) shows a very 

peculiar and stable pericentral localization in less than 3 rows of hepatocytes 

surrounding the central veins (11). This dynamic structural and functional 

heterogeneity is known as metabolic zonation (12). More recently, Harpern et al 

characterized the zonation profiles of all liver genes with high spatial resolution 

and found that around 50% of liver genes are significantly zonated. They also 

challenged the traditional binary classification of liver into periportal and 

pericentral hepatocytes and revealed multiple roles for the intermediate lobule 

coordinates (13). These include a spatial order of bile acid biosynthesis enzymes 

that matches their position in the enzymatic cascade. This structure carries out 

metabolic functions mostly through specialized hepatocytes, which either act in 

isolation, or together with non-parenchymal cells (14). The role for β-catenin in 

establishing metabolic zonation in the liver was based on the complementary 

distribution patterns of active β-catenin in perivenular hepatocytes seen in 

murine model (15). The zonal metabolic pathways affected by changes in β-

catenin signaling include those mediating ammonia metabolism and glutamine 

synthesis (15, 16). 



3 
 

 

Glucose metabolism in the liver is based on the reversible shift between glycogen 

synthesis and degradation as well as between glycolysis and gluconeogenesis. It 

is thought that these shifts are not only regulated by blood levels of substrates 

and products, hormones and the activity of the autonomic nervous system (14, 

17); but also by liver zonation. The model of metabolic zonation proposes that 

gluconeogenesis occurs predominantly in the periportal, and glycolysis in the 

perivenous hepatocytes; based on studies, which showed zonal distribution of 

glucogenic and glycolytic enzymes (18-20). It also became apparent that Wnt/b-

catenin signaling plays a dominant role in controlling zonation of many aspects 

of carbohydrate metabolism (15, 21, 22). Findings on the possible zonation for 

lipid metabolism in the liver are more controversial (9, 23).  This may be due to 

the relatively shallow gradients of pathway activities, and a greater variability in 

different physiological states. Gene expression study has shown higher 

expression of apolipoprotein CII, in the periportal region in mouse and this 

preferential localization was also seen in rats (24). Lipogenesis occurs 

predominantly in the perivenular region and fatty acid degradation in the 

periportal regions (9, 25). Cyp7a1-medicated synthesis of bile acids derived from 

cholesterol, showing clear PV zonation (25, 26), and the metabolism of several 

amino acids (25). 
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Colnot, S. et al. Molecular Pathology of Liver Diseases  

 

 Fig 1-1. Structure of the zonated liver lobule. (a) Three dimensional structure of the liver lobule. 

The liver lobule is centred around a branch of the centrilobular vein, limited at each end by the 

portal triad consisting of a branch of the portal vein, the hepatic artery, and a bile duct. (b) The 

liver cell plate, with blood circulation indicated in red. Bile is shown in green and circulates in the 

opposite direction to blood. The concentration of oxygen and hormones decreases along a 

continuous gradient from the periportal to the perivenular area.   
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1.1.3 Hypoxia-inducible factors (HIFs) and their regulation 

 

Hypoxia-inducible factors (HIFs) are transcription factors that respond to 

changes in available oxygen in the cellular environment. There are three HIF 

transcription factors (HIF1, HIF2 and HIF3) that act as heterodimers comprising 

of alpha and beta subunit.  

 

Oxygen-dependent regulation of HIFs 

 

The alpha subunit is regulated via oxygen-induced proteolytic degradation, 

whereas the beta subunit is constitutively expressed. Under normoxia, HIF1α is 

hydroxylated by proline hydroxylases (PHD1, 2 and 3) in the presence of 

oxygen, Fe2+, 2-oxoglutarate (2-OG) and ascorbate. Hydroxylated HIF1α (OH) is 

recognised by pVHL (the product of the von Hippel–Lindau tumour suppressor 

gene), which, together with a multi-subunit ubiquitin ligase complex, tags HIF1α 

with polyubiquitin; this allows recognition by the proteasome and subsequent 

degradation [Fig 1-2]. Acetylation of HIF1α also promotes pVHL binding (27). 

Under hypoxia, PHD activity is reduced and hydroxylation is impaired and HIFα 

is stabilized, and translocated into the nucleus to form HIF complex, which then 

binds to hypoxia-responsive elements (HRE) to promote transcription (28). 

Certain pathological conditions expose the liver to extended periods of low 

oxygen, resulting in a HIFα dependent feedback loop which increases PHD 

expression, leading to a reactivation of HIFα hydroxylation and degradation 

(29). HIF1α expression can represent an acute response to low oxygen pressure, 
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whereas HIF2α levels may increase over time in hypoxia and play a role during 

chronic hypoxia (30).  

 

PHDs belong to the family of deoxygenase enzymes that require oxygen, iron 

and 2-OG for their catalytic activity. They have low affinity to oxygen, which is 

about 2 to 10 times higher than physiological oxygen concentrations that enable 

the enzymes to act as oxygen sensors (31). Isoforms PHD1, PHD2 and PHD3 and 

their substrates are known to be quite diverse and isoform-specific (32).  PHD2 

is considered critical in regulating the HIF pathway, although its hydroxylase 

activity is also necessary for regulating other signaling pathways including 

cofilin phosphorylation and the NDRG3 protein degradation (33, 34). PHD1 and 

PHD3 have also been shown to regulate HIFs and that, at least for PHD3, the 

contribution may be as great or greater than that of PHD2 under appropriate 

conditions (35). Aprelikova et al examined the roles of HIF factors on HIF target 

genes and found that PHD2 was specifically induced by HIF1α, whereas PHD3 

was responsive to HIF2α as well as HIF1α (36). 

 

In addition to HIF, factor inhibiting HIF (FIH) also regulates HIF1α expression. 

FIH hydroxylases an asparaginyl residue in the C-terminal transactivation 

domain of HIF1α (N803) and inhibits the binding of the heterodimer of HIF1α to 

its transcriptional coactivator p300 (37). It is thought that PHD inactivation 

occurs under moderate hypoxia, and both PHD and FIH inactivation occur under 

severe hypoxia (38). 
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Oxygen-independent regulation of HIFs. 

 

In addition to the above regulators of HIF activity, other factors such as growth 

factors, cytokines and signaling molecules can stabilize HIFα subunits in the 

presence of oxygen – a phenomenon known as ‘pseudohypoxia’ [Fig 1-3]. 

Activation of phosphatidyl inositol-4,5-bisphosphate-3-kinase (PI3K) 

upregulates HIF1α protein translation (39-41). PI3K regulates protein synthesis 

through its target protein kinase B (Akt) and downstream component 

mammalian target of rapamycin (mTOR). Certain growth factors activate RAS 

which in turn stimulates RAS/RAF/MEK/ERK kinase cascade (40). It has also 

been reported that inhibitors of heat shock protein 90 (Hsp90) could nullify 

HIF1α levels regardless of the availability of oxygen (42). Hsp90 binds directly to 

HIF1α to induce conformational changes in its structure, which couples with 

HIF1β to initiate its transactivation (43). Hsp90 can also stabilize HIF1α against 

its non-VHL dependent degradation.  
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 Fig 1-2. Oxygen-dependent HIF signaling. Under normal oxygen tension, the cellular oxygen 

sensors prolyl hydroxylases (PHD1–3) and factor inhibiting HIF (FIH) hydroxylate specific 

residues of HIFα subunits (HIF1α and 2α for PHDs and HIF1α for FIH). Hydroxylated HIFα is 

recognized by the von Hippel-Lindau (pVHL) E3 ubiquitin ligase that polyubiquitinates HIFα 

resulting in proteasomal degradation. Under low oxygen, PHD and FIH activity is inhibited 

resulting in stable HIFα expression and nuclear translocation where it dimerizes with its beta 

subunit. With the help of co-activators, including Cbp/p300, the HIF complex acts a transcription 

factor by binding to specific DNA sequences defined as hypoxia responsive elements (HREs), 

activating the transcription of genes involved in an array of signaling events including tumour 

metastasis, cell survival, metabolism and immune functions. The HIFα signaling pathway is self-

regulatory, nuclear HIF-1α promotes PHD expression resulting in a negative feedback loop that 

ensures the pathway is not constitutively active. Wilson et al. Journal of Hepatol 2014 (1). 
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Fig 1-3. Oxygen-independent HIF signaling. HIFα can be constitutively expressed 

irrespective of oxygen tension due to loss of PHD and FIH function, a state defined as 

pseudohypoxia. This can occur as a result of virus infection or aberrant kinase signaling. 

For example, binding of a growth factor to its cognate receptor activates the MAPK 

pathway that stabilizes HIFα. Similarly mitochondrial dysfunction can promote reactive 

oxygen species (ROS) production that acts on MAPK to stabilize HIFα. Wilson et al. 

Journal of Hepatol 2014 (1). 
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1.1.4 Lipid metabolism and insulin resistance 

 

 

Lipid flux in the liver 

 

Triglycerides are formed from the esterification of three non-esterified fatty 

acids (NEFA) to a glycerol backbone. Five major pathways determine liver fat 

volume: (i) the uptake of free fatty acids (FAs) and triglycerides from the diet; (ii) 

de novo lipogenesis (DNL); (iii) FAs oxidation; (iv) the export of triglycerides as 

very low density lipoprotein (VLDL) into the bloodstream; and (v) the flux of FAs 

released from adipose tissue through lipolysis. Dietary fats are taken up by the 

intestine and packaged into chylomicrons for delivery to the systemic circulation. 

The majority of the triglyceride in the chylomicrons is hydrolysed to release 

NEFA for peripheral uptake. Approximately 20% is delivered directly to the liver 

(44) [Fig 1-4].  

 

Lipogenesis is the process by which intramitochondrial acetyl-CoA is converted 

to fatty acids. Acetyl-CoA can be derived from the degradation of carbohydrates 

and a number of amino acids. It encompasses both the processes of fatty acid and 

triglyceride synthesis (where fatty acids are esterified with glycerol to form fats) 

(45). The products are then secreted from the liver in the form of VLDL. Insulin 

stimulates sterol regulatory element binding protein-1c (SREBP-1c), whereas 

glucose stimulates carbohydrate responsive element-binding protein (ChREBP). 

Both of these transcription factors promote DNL, a highly regulated pathway that 

converts excess carbohydrate into fatty acids that are then esterified to storage 
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triacylglycerols. SREBP-1c and ChREBP promote DNL via activation of key rate-

limiting enzymes, namely acetyl-CoA carboxylase (ACC) and fatty acid synthase 

(FAS) (44, 46).  

 

β-oxidation is the catabolic process by which fatty acid molecules are broken 

down to generate acetyl-CoA (47). Fatty acids primarily enter a cell via fatty acid 

protein transporters on the cell surface. Once inside, fatty acyl-CoA synthase 

(FACS) adds a CoA group to the fatty acid. Carnitine palmitoyltransferase 1 

(CPT1) then converts the long-chain acyl-CoA to long-chain acylcarnitine. The 

fatty acid moiety is transported by carnitine translocase (CAT) across the inner 

mitochondrial membrane. CPT2 then converts the long-chain acylcarnitine back 

to long-chain acyl-CoA. The long-chain acyl-CoA can then enter the fatty acid β-

oxidation pathway, resulting in the production of one acetyl-CoA from each cycle 

of β-oxidation. This acetyl-CoA then enters the tricarboxylic acid (TCA) cycle. 

NEFA are released from adipose tissue in the fasting and insulin resistant states 

via lipolysis. Lipolysis is the hydrolysis of NEFA and glycerol from triglyceride.  

 

Hepatic steatosis occurs when an excess of triglyceride accumulate in 

hepatocytes, which arises from an imbalance between triglyceride synthesis 

(uptake) and utilization (export). This can result from an excess in the delivery of 

NEFA via adipose tissue lipolysis as a consequence of (1) adipose insulin 

resistance and/or excess dietary consumption, (2) excess in endogenous 

synthesis via DNL, (3) decrease in FFA breakdown via β-oxidation in the 

mitochondria, or (4) decreased export via packaging with apolipoprotein (apo-B) 

into VLDL. 
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Fig 1-4. Model of lipid flux in the liver. DNL indicates new fat synthesis from dietary 

carbohydrate; chylomicrons are lipoproteins made in the intestine, which carry dietary 

fat. TAG=triglyceride, VLDL=very low density lipoprotein, NEFA=non-essential fatty acid. 
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Insulin receptor signaling pathway and insulin resistance 

 

Insulin is synthesized in the β cells of the pancreatic islets and is the major 

hormone controlling critical energy functions such as glucose and lipid 

metabolism. Insulin activates the insulin receptor (IR) tyrosine kinase, which 

phosphorylates and recruits different substrate adaptors such as the insulin 

receptor substrate (IRS) family of proteins. Tyrosine phosphorylated IRS then 

displays binding sites for numerous signaling partners. Among them, 

phophoinositide 3-kinase (PI3K) has a major role in insulin function, mainly via 

the activation of the Akt/Protein kinase B (PKB) and the PKCζ cascades. 

Activated Akt induces the translocation of glucose transporter type 4 (GLUT-4) 

from intracellular compartments to the cell surface where it is required for 

glucose uptake (48). Akt also induces glycogen synthesis through inhibition of 

glycogen synthase kinase 3 (GSK-3); protein synthesis via mammalian target of 

rapamycin (mTOR) and downstream elements [Fig 1-5]. Akt phosphorylates and 

directly inhibits FoxO transcription factors, which regulate metabolism and 

autophagy. Inversely, 5' AMP-activated protein kinase (AMPK) is known to 

directly regulate FoxO3 and activate transcriptional activity.  

 

There are several mechanisms underlying increased glucose production. These 

include production of free glucose by increased glycogenolysis in the liver, 

increased gluconeogenesis, activation of forkhead box transcription factor 

(FoxO1) and insulin-glucagon hormonal imbalance (49). Several factors 

contribute to elevated gluconeogenesis in diabetes, namely increased supply of 
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glucogenic precursors to the liver (glycerol, amino acids, free fatty acids), 

increased lipid content, increased cytokines and adipokines, and decreased 

insulin receptor (IR) signaling in hepatocytes (49). Accumulation of ectopic lipid 

metabolites, activation of the unfolded protein response (UPR) pathway, and 

innate immune pathways have all been implicated in the pathogenesis of insulin 

resistance (50).   UPR, also known as endoplasmic reticulum stress response is 

initiated with the accumulation of unfolded proteins with the ER lumen. 

Activation of the UPR provides cells the ability to adapt to different physiological 

demands, which can sometimes be overwhelmed in insulin resistant states (51, 

52), or be maladaptive (53). 

 

The effects of insulin vary according to the physiological function of the tissues 

and organs. Tissues defined as insulin dependent, based on intracellular glucose 

transport, are principally skeletal muscle and adipose tissue. Glucose uptake into 

skeletal muscle is via GLUT4, and accounts for 60-70% of whole-body insulin 

mediated uptake (54). In the fed state insulin promotes glycogen synthesis via 

activation of glycogen synthase. Muscle cells do not rely on glucose for energy 

during the basal state, when insulin levels are low. Insulin suppresses protein 

catabolism while insulin deficiency promotes it, releasing amino acids for 

gluconeogenesis. In insulin resistance, muscle glycogen synthesis is impaired, 

and this results in reduced intracellular glucose translocation (55).  

 

Glucose uptake into adipocytes in the postprandial state is also via GLUT4, and it 

is estimated to account for 10% of whole-body insulin-mediated glucose uptake 

(54). In adipose tissue, insulin stimulates glucose uptake, promotes lipogenesis 
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and suppresses lipolysis, and promotes free fatty acid flux into the bloodstream. 

Similar to muscle cells, adipocytes do not rely on glucose in the basal state, and 

intracellular energy is supplied by fatty acid oxidation in insulin-deficient states. 

In insulin resistance, there is increased free fatty acid availability and delivery to 

the liver, promoting hepatic VLDL production (56). Lipoprotein lipase activity is 

insulin-dependent and suppressed in insulin resistance, and peripheral uptake of 

triglycerides from VLDL is also diminished. In addition to FFAs, adipose tissue 

also secrete cytokines which worsen insulin resistance, such as interleukin (IL)-

6, tumour necrosis factor (TNF)-6, plasminogen activator inhibitor (PAI)-1, 

angiotensinogen and leptin (57).  

 

In the liver, glucose uptake is not insulin dependent, and accounts for 30% of 

whole body insulin-mediated glucose disposal (54).  GLUT-2 is highly expressed 

in the liver, and can efficiently transport glucose (58, 59). Insulin mediates 

glycogen and protein synthesis and lipoprotein metabolism (60). It also inhibits 

gluconeogenesis. Alteration in lipoprotein metabolism is a major hepatic 

component of insulin resistance, resulting in increased FFA delivery, reduced 

VLDL catabolism by insulin resistant adipocytes, and subsequently increased 

hepatic triglyceride synthesis (61). 
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Fig 1-5. Insulin and its mechanism of actions. Insulin binds to α-subunit of the insulin 

receptor, resulting in a conformational change in the membrane-bound tyrosine kinase 

domains on each β-subunit. The tyrosine kinase activity causes phosphorylation of the 

MAP-kinase and PI-3K kinase responsible for expressing the mitogenic and metabolic 

actions of insulin.  MAP=mitogen-activated protein kinase; PI-3K=phosphoinositide 3-

kinase; IR= insulin receptor, IRS=insulin receptor substrate; P=phosphate; ACC=acetyl 

co-A carboxylase; GSK3= glycogen synthase kinase-3 
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1.2 HIFs and hepatic lipid accumulation 

 

Metabolism under hypoxia is significantly different from that under normoxia. It 

has been well elucidated that HIFs play a central role in regulating lipid 

metabolism under hypoxia (2, 62). Increased DNL coupled with an increase in 

FFA uptake has also been shown in perivenular cells in mice (63), supporting a 

role for low oxygen in the regulation of hepatic lipid metabolism. The role and 

contribution of HIF1 and HIF2 in steatosis have also been explored. HIF1α 

promotes LDL and VLDL uptake through the regulation of VLDL receptor gene 

expression under hypoxia (64). More recently, HIF1α and HIF-2α have been 

shown to be critically involved in hypoxia-induced lipid accumulation in 

hepatocytes through the reduction of proliferator-activated receptor-Υ 

coactivator-1α (PGC-1α)-medicated fatty acid β-oxidation (65). Activation of 

HIF1α in ethanol-fed cre-lox mouse model induced hepatocyte steatosis and 

increase in triglyceride levels, and HIF1α deletion prevented lipid accumulation 

(5). On the contrary, Nishiyama et al. showed that there was an increase in lipid 

accumulation in hepatocyte specific HIF1α knockout mice fed an ethanol diet 

(66), whilst Kim et al. reported that activating HIF1α or HIF2α had a minimal 

effect on lipid accumulation (67). Therefore the contribution of HIF1α or HIF2α 

in promoting hepatic lipid accumulation remains to be elucidated.  

 

Obstructive sleep apnoea (OSA) is a condition defined by recurrent obstruction 

of the upper airway during sleep leading to apneic-hypopnoeic episodes. The 

prevalence of metabolic syndrome in severe OSA is as high as 80%. In addition, 

those with severe OSA are three times more likely to develop metabolic 
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syndrome, after adjustment for body mass index (BMI) (68). Emerging evidence 

suggests that OSA may play a role in the progression of hepatic steatosis and 

NASH and it has been linked to the elevation of liver enzymes and the 

development of hepatic steatosis, lobular necrosis and fibrosis by liver biopsy, 

which was associated with increased morbidity and mortality (69-71). 

Treatment of OSA with continuous positive airway pressure (CPAP) may have 

beneficial effect on lipid profile (72-74). Results from animal studies 

unambiguously show that intermittent hypoxia is a direct cause of 

hyperlipidaemia and that it increases total cholesterol, HDL-C and triglycerides 

after 5 days, and LDL cholesterol after 4 weeks (75, 76). The level of 

hyperlipidaemia correlates to the severity of the hypoxic stimulus (76). Others 

have also linked the severity of nocturnal hypoxia and progression from fatty 

liver to non-alcoholic steatohepatitis (77, 78).  Intermittent hypoxia induces 

dyslipidaemia via the (1) upregulation of key hepatic transcription factor of lipid 

biosynthesis SREBP-1c, SREBP-1c-regulated enzyme and sterol coenzyme A 

desaturase 1 (SCD-1) (75, 76, 79, 80); (2) induction of adipose tissue lipolysis 

(81) and (3) inhibition of VLDL clearance, by suppressing lipoprotein lipase 

activity (82).  
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1.3 CHC, steatosis and insulin resistance 

 

1.3.1 Hepatitis C viral structure and life cycle 

 
Hepatitis C virus (HCV) is a hepatotropic RNA virus of the genus Hepacivirus in 

the Flaviviridae family. HCV is a positive-sense, single-stranded enveloped RNA 

virus approximately 9600 nucleotides in length. Due to the error prone RNA 

polymerase, HCV displays remarkable genetic diversity that promotes viral 

escape from host immune responses and antiviral drugs (83). There are 6 major 

HCV genotypes (1-6) that vary by over 30% in nucleotide sequence (84). The 

HCV open reading frame encodes a single polyprotein that is cleaved by host and 

viral proteases into 10 individual viral proteins with various characteristics (85).  

 

The structural proteins consist of core protein, E1, E2 and ion channel protein p7 

[Fig 1-6]. HCV core is the viral nucleocapsid protein with numerous functions 

including: RNA binding, immune modulation, cell signaling, oncogenic potential 

and autophagy. The core protein associates with the lipid droplets and directs 

particle assembly that includes the incorporation of E1 and E2 envelope. The 

HCV envelope glycoproteins are targets for the humoral immune response and 

the resulting neutralizing antibodies can exert a selective pressure on viral 

quasispecies (86-88). The small ion channel protein p7 is required for viral 

assembly and release. Non-structural proteins consist of NS2, NS3, NS4A, NS4B, 

NS5A and NS5B and are the minimal viral proteins components required for RNA 

replication (89, 90). The C-terminal of NS3 is a superfamily 2 helicase that is 

essential for virus replication (91). NS4A is a transmembrane protein that acts as 
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a cofactor for NS3 protease, and is important in the regulation of replicase 

activity (92, 93). NS4B contains multiple transmembrane segments and remodels 

the endoplasmic reticulum membrane (94), a common feature of many positive-

strand RNA viruses (95). NS5A is a multifunctional zinc-binding phosphoprotein, 

which has become a promising drug target (96). NS5B is the RNA-dependent 

RNA polymerase with a C-terminal membrane-anchoring segment (97). 

 

The assembly of HCV requires a platform of cellular lipid droplets and 

interactions between NS5A and the core protein (98) (Fig 5). Thus, most HCV-

associated metabolic alterations in hosts involve core (99-104) and NS5A (105-

108) proteins. Assembled particles bud into the endoplasmic reticulum (ER) and 

traffic through the secretory pathway, from which they are exported from the 

cell in conjunction with lipoprotein secretory pathways (109, 110) [Fig 1-7]. 
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Fig 1-6. Hepatitis C viral genome. Hepatitis C virus is a single-stranded RNA virus, and its 

genomic organization shows highly conserved 5’ and 3’ non-structural proteins. 

UTR=untranslated region, C=core protein, E1 and E2=envelope glycoprotein 1 and 2, NS=non-

structural protein.  



22 
 

 

Chang ML World J Gastroenterol 2016 

 

 

 

 

 

 

Fig 1-7. Life cycle of hepatitis C virus in the hepatocyte. HCV LVPs enter hepatocytes via 

receptor-mediated endocytosis. Released viral RNA is translated at the endoplasmic reticulum 

(ER), producing a single polyprotein precursor that is cleaved by host and viral proteases. The 

viral NS proteins form RNA replication complexes in lipid rafts, where positive-strand RNA is 

replicated via a negative-strand intermediate. Newly synthesized positive-strand RNA is 

encapsidated by the HCV core protein in close proximity to LDs, and envelope glycoproteins 

are acquired through budding into the ER lumen. LVPs mature in the ER through interactions 

with lipoproteins and exit the cell via the cellular golgi apparatus. LD=lipid droplet, 

LVP=lipoviral particle, Golgi=golgi apparatus 
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1.3.2 Mechanisms of HCV-induced lipid accumulation. 

 

 
The association of HCV infection and steatosis is shown in studies demonstrating 

that the virus hijacks the lipid-producing machinery of hepatocytes for its benefit 

(106, 111). The HCV core protein has been studied at length in both cell culture 

and in transgenic mice. Intracellular lipid build-up seems to occur when HCV 

core protein is highly expressed (111). The core protein localizes at the surface 

of lipid droplets within the cytoplasm in cells transfected with HCV (112). HCV 

core protein-transgenic mice develop hepatic steatosis due to impaired β-

oxidation caused by mitochondrial damage (113). Amongst individuals with CHC, 

those with genotype 3 CHC have the highest prevalence of hepatic steatosis 

(114). The proposed mechanisms for this are outlined below. 

 

Increased de novo lipogenesis  

 

In vitro, core protein interacts with the cell machinery involved in lipid 

metabolism such as apolipoproteins A1 and A2, which are involved in 

triglyceride accumulation and storage in the hepatocytes (111). HCV core protein 

also up-regulates sterol regulatory element binding protein 1c (SREBP-1c), a 

transcriptional factor that mediates several lipogenic genes in lipid metabolism 

(115-117) as well as binds to DNA-binding domain of retinoid X receptor alpha 

(RXRα), a nuclear receptor that regulates several genes involved in cellular lipids 

synthesis, thus promoting DNL (103). 
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Decreased VLDL secretion 

 

HCV core protein also inhibits microsomal triglyceride transfer protein (MTP) 

activity. As this is a rate-limiting enzyme playing a key role in the very low 

density lipoproteins (VLDL) assembly, the direct and likely consequence of its 

inactivation is accumulation of unsecreted triglycerides, hence steatosis (118). 

Core protein may also accumulate in mitochondria, impairing electron transport 

and thus increasing the production of oxygen reactive species (ROS) (119). 

Oxidative stress leads to peroxidation of lipids and structural proteins, 

disturbing the cellular traffic apparatus and VLDL secretion (120). 

 

 

Decreased fatty acid oxidation 

 

Recent studies have demonstrated a diminished PPARα (peroxisome 

proliferators-activated receptor alpha) expression induced by HCV core protein 

(121, 122). PPARα regulates the transcription of mitochondrial carnitine 

palmitoyl acyl-CoA transferase 1 (CPT1A), which is a rate-limiting enzyme in 

mitochondrial β-oxidation mediating the entry of fatty acids into the 

mitochondria. Other studies have shown that HCV interact with mitochondria to 

induce reactive oxygen production (123) and also the α and β-subunits of the 

mitochondrial trifunctional protein, both thought to decrease β-oxidation. 

Human studies confirmed these in vitro findings by showing that HCV-infected 

patients had lower total ketone body concentration than their healthy uninfected 

counterparts (124), indicating that mitochondrial lipid β-oxidation is impaired in 
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livers of HCV-infected patients, because ketogenesis is a liver-specific 

metabolism that occurs in mitochondria and is directly coupled to mitochondrial 

lipid β –oxidation [Fig 1-8]. 

 

 

 
 
 
 
 
 

 
 
 
 

Fig 1-8. HCV-induced alterations in lipid metabolism and steatosis. SREBP-1c  

=sterol regulatory element binding protein 1c, PPARα = peroxisome proliferators-

activated receptor alpha, MTP = microsomal triglyceride transfer protein, VLDL =very 

low density lipoproteins.  

Gulam et al. Trends in Endocrinology and Metabolism. 2009 
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1.3.3 Mechanisms of HCV-induced insulin resistance 

 

HCV directly perturbs insulin signaling by modulating the insulin receptor and 

IRS-1 and down-regulating PI3K (125). HCV core protein expression in 

hepatocytes upregulates Ser312 phosphorylation status of IRS-1 and modulates 

downstream Akt activity by inhibiting Thr308 phosphorylation (126). Ser312 

and Ser1101 phosphorylation of IRS-1 inhibits its association with the insulin 

receptor, promoting its degradation (127), and subsequently blocking Tyr- 

phosphorylation of IRS-1 and Thr308 phosphorylation of Akt for the inhibition of 

glucose uptake. Knockout of the IRS-1 and 2 genes in murine models induces 

insulin resistance and compensatory hyperinsulinaemia, indicating the 

importance of IRS-1 and 2 as mediators of insulin action (128, 129). Down-

regulation of IRS-1 and IRS-2 was also seen in HCV core-transgenic mice livers 

(130).  

 

HCV also induces insulin resistance via the up-regulation of suppressor of 

cytokine signaling-3 (SOCS-3), SOCS-7, TNFα and proteasome-activator 28-

gamma (PA28γ), and down-regulation of peroxisome proliferator-activated 

receptor-gamma (PPARγ) (130-132). HCV core protein of HCV genotype 3a 

promotes IRS-1 degradation through the downregulation of PPARγ and by 

upregulating the SOCS7, and the core protein of genotype 1b activates mTOR 

(131). In addition, HCV activates mTOR/S6K1 signaling pathway in inhibiting 

IRS-1 function and perturbs glucose metabolism via downregulation of GLUT4 

(127). Knobler and Schattner have suggested that CHC patients with more severe 

liver diseases may have an exaggerated intrahepatic TNFα response, resulting in 
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insulin resistance and a higher risk of developing diabetes (133). TNFα induces 

insulin resistance by interfering with the insulin signaling pathway, particularly 

inhibiting tyrosine phosphorylation of the insulin receptor and IRS-1 in 

adipocytes (134) and inhibiting the effect on insulin action in the liver (132, 135, 

136). This ultimately results in a reduction in glucose uptake in muscle, and an 

increase in hepatic glucose production.   

 

In human studies, liver biopsy specimens obtained from non-obese, non-diabetic 

HCV-infected patients demonstrated that HCV inhibited the insulin-stimulated 

tyrosine phosphorylation of hepatic IRS-1, resulting in inhibition of the PI3K-Akt 

pathway (125, 130). Other studies proposed that impairment of fatty acid β-

oxidation was responsible for the hepatic steatosis associated with CHC (124). 

There have been reports that HCV genotypes might play an important role in 

deciding the pathway by which it impairs insulin signaling.  

 

The target tissues of HCV-related metabolic disturbances are thought to be not 

just the liver [19], but also skeletal muscle (137, 138). Some studies showed that 

patients with CHC without fibrosis and metabolic syndrome had an endogenous 

glucose production more than three times the normal and an abnormal muscle 

uptake of glucose, with a normal suppression of lipolysis (137).  The presence of 

hepatic insulin resistance results in an increase in glucose production, while 

peripheral insulin resistance results in a reduction in glucose uptake. Vanni et al. 

confirmed the predominant role of muscle in the development of insulin 

resistance, with an approximate 80% of peripheral contribution, demonstrating 

a higher glucose disposal during clamp in controls compared to patients with 
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CHC (137). It is evident that the insulin resistance in CHC is different, but often 

super-imposed to the host metabolic derangements and that the two conditions 

influence and enhance each other.  

 

 

1.3.4 Clinical implications of HCV-induced hepatic steatosis and insulin 

resistance 

 
 
Several epidemiological studies report that metabolic disease was more 

prevalent in patients with CHC than in those without (139). These results were 

confirmed by several other cross-sectional studies linking CHC with insulin 

resistance (140-143).  The degree of insulin resistance has been shown to 

correlate with the grade of inflammation in HCV infected patients (144). HCV-

induced insulin resistance impacts on treatment response to interferon-based 

therapy and exacerbates hepatic fibrosis, leading to hepatocellular carcinoma 

(145).  

 

An association between steatosis and the severity of fibrosis has been observed 

irrespective of HCV genotype (146-149). Fartoux et al. showed that while insulin 

levels were predictive of fibrosis in their univariate analysis, subsequent 

multivariate analysis confirmed steatosis, but not insulin levels, to be 

independently associated with fibrosis (150). Steatosis is associated with 

increased production of reactive oxygen species which initiate lipid peroxidation, 

resulting in hepatic stellate cell activation (151). However, in non-CHC aetiology 
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such as NASH, disease progression is recognised as being slower than that 

observed in patients with CHC and steatosis. Thus it is likely that the coexistence 

of HCV and steatosis aggravates and accelerates the injury induced by each alone. 

In this setting, hepatic inflammation induced by the host response, together with 

the increased production of several proinflammatory and profibrotic cytokines, 

provide the substrate for the “second hit” in the steatotic liver. Also, the ability of 

the virus itself to induce oxidative stress and promote lipid peroxidation may 

further aggravate the pathogenic process induced by steatosis. It is also plausible 

that fat may render HCV infected liver more vulnerable to injury. Livers with 

steatosis are more sensitive to TNFα mediated inflammation and liver injury 

(152). Moreover, in HCV livers with steatosis, apoptosis activity has been noted 

to be increased compared with infected livers without steatosis (153). 

 

 

1.4 HIFs and Chronic hepatitis C 

  

The studies on HIFs in CHC started from models exploring the role of viral 

oncogenesis (154-158). HIF activity is induced in response to viral infection, but 

accumulating evidence suggests that the net consequence can favour the 

pathogen rather than the host. Certain viruses have evolved mechanisms to 

stabilize HIF1α to exert an anti-apoptotic effect that promotes survival of the 

infected cell (155, 159-161). Hepatitis C virus stabilizes HIF1α and promotes a 

pseudohypoxic state (6, 162). HCV-infected Huh-7 cells release angiogenic 

factors such as vascular endothelial growth factor (VEGF) as a consequence of 
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HIF1α stabilization (6, 8, 163, 164), and this is mediated by HCV core protein 

(165). Hypoxia also promotes HCV replication, and inhibition of HIF1α activity 

reduced viral replication, suggesting a key role for HIF-regulated genes in 

potentiating the HCV lifecycle (8, 166).  

 

Recent development of high-troughput metabolomics has provided new insights 

into how viruses disrupt metabolic homeostasis (167, 168). Metabolic profiling 

of HCV infected cells revealed a shift from a catabolic to an anabolic state, 

promoting the survival of infected cells (169). Ripoli et al. demonstrated that 

HCV protein expression activated HIF1α, and as a consequence, upregulated the 

expression of HIF-controlled genes, including those coding for glycolytic 

enzymes (162). Given the role of HIF1α in regulating lipid and glucose 

metabolism (170, 171) and that the liver microenvironment is affected by 

hypoxia (2, 9, 172), HCV stabilization of HIF1α may have a positive effect on viral 

replication via the induction of a transformed metabolic phenotype.  

 

 

1.5 Non-alcoholic fatty liver disease (NAFLD) 

 
 

Non-alcoholic fatty liver disease is defined as an accumulation of lipids in 

hepatocytes that exceed 5% of the weight of the liver, after excluding hepatitis B 

and C virus infection and ethanol intake of more than 20g per day.  It 

encompasses a spectrum ranging from steatosis to steatohepatitis and fibrosis 

(173).  NAFLD is often associated with insulin resistance, obesity, diabetes 
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mellitus, hyperlipidaemia, visceral adiposity and other cardiometabolic 

alterations (174-178).  Most patients with NAFLD develop metabolic syndrome, 

so it is thought that NAFLD is a hepatic manifestation of metabolic syndrome 

(179, 180).  

 

1.5.1 Prevalence and pathophysiology of NAFLD 

 

The growing epidemic of obesity and type 2 diabetes has seen an 

unprecedented rise in the prevalence of NAFLD (181), which is estimated to be 

20-30% in the general population in the Western counties (182-185) and 15% 

in Asian countries (186-188). In Europe, 40-60% of liver fibrosis is caused by 

NAFLD [3], and is one of the leading indications for liver transplantation (189).  

 

Fat accumulates in the liver mainly in the form of triglycerides, although several 

other lipid species are present. Similar to HCV-induced steatosis, accumulation of 

triglycerides in NAFLD is the result of the expansion of the intrahepatic pool of 

FFAs. FFA influx is dependent on the dietary fat via chylomicron metabolism, 

DNL and the amount of FFA released by adipose tissue due to insulin resistance 

and excessive lipolysis (as described earlier in the chapter). More than half of the 

FFA pool is derived from excess adipose tissue lipolysis (190). Although NASH 

occurs in the context of a fatty liver, it is debatable whether steatosis per se is a 

predictor of the presence of NASH. Experimental studies have shown that 

interference with triglyceride accumulation and effective decrease of steatosis 
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was not only ineffective in ameliorating NASH, but could even worsen the 

condition (191, 192).   

 

The “two-hit hypothesis” in NAFLD pathogenesis was first described in 1998 

(193). The first hit, hepatic steatosis, makes the liver more susceptible to injury 

mediated by the second hits, such as inflammatory cytokines/adipokines. These 

in turn, activate lipid peroxidation which are key mediators of 

necroinflammation and fibrosis in NASH (194). This theory has been questioned 

in recent years due to the availability of data to suggest that circulating NEFA and 

their metabolic by-products (diacylglycerol/triacylglycerol) induce direct 

lipotoxic injury to key metabolic organs, such as the pancreas, skeletal muscle 

and liver (195-198). As the majority of NEFA originates from the adipose tissue 

in NAFLD, it is now the current belief that the initial insult occurs in the adipose 

tissue.  

 

1.5.2 NAFLD and insulin resistance 

 

Systemic insulin resistance is recognized as one of the main features of NASH 

(199, 200). Several studies have also identified the liver (200, 201) as well as the 

skeletal muscle (200-202) as the sites of insulin resistance in patients with 

NAFLD. In fact, Kato et al. suggested that hepatic steatosis per se, is a central 

pathological surrogate indicative of skeletal muscle insulin resistance in NAFLD, 

and this cross-talk between the organs maintains whole body metabolic 

homeostasis (202).  More recently, adipose tissue insulin resistance has been 
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implicated in the metabolic disarray observed in NAFLD (203). Adipose tissue is 

recognized as an important source of fatty acids for the liver, in driving lipid 

synthesis (190). In an insulin-sensitive state, insulin promotes lipid storage, 

through fatty acid uptake, re-esterification and de novo lipogenesis, and inhibits 

triglyceride lipolysis, the process whereby triglycerides are hydrolysed to 

release NEFAs. In patients with NASH, circulating serum NEFAs are elevated in 

both fasting and insulinaemic states (203-206). This lipotoxicity can in turn, 

induce both hepatic and skeletal muscle insulin resistance [14]. Traditionally, 

visceral adipose tissue was thought to be the major contributor of insulin 

resistance seen in NASH, due to its close proximity to the portal vein and 

abundance of pro-inflamamtory mediators [16 17]. More recently, Armstrong et 

al. showed that patients with NASH had profound abdominal subcutaneous 

adipose tissue dysfunction by measuring their interstitial glycerol release 

assessed using microdialysis, (201).  

 

 

 

 

 

 

 

 

 

 

 



34 
 

1.6 HYPOTHESIS AND AIMS 

 

Hypotheses:  (1) Hypoxia-inducible factors (HIFs) regulate hepatocellular lipid 

metabolism and play a role in chronic hepatitis C-induced hepatocellular lipid 

accumulation. (2) Adipose tissue insulin resistance is the cardinal feature of the 

metabolic abnormalities associated with chronic hepatitis C and this improves 

following viral eradication. The relative contribution of tissue specific insulin 

resistance to the metabolic syndrome differs in patients with CHC and NASH. 

 

Aims: 

 

1. To elucidate the metabolic impacts of hypoxia on human hepatocyte models, 

and to explore novel mechanistic pathways at the transcriptional and 

functional level 

 

2. To define the mechanisms by which HCV affects hepatic lipid homeostasis in 

vitro 

 

3. To define global and tissue specific changes in insulin sensitivity in chronic 

hepatitis C before and after viral eradication by measuring changes in 

systemic, liver and adipose tissue insulin sensitivity 

 

4. To compare global and tissue specific changes in insulin sensitivity between 

healthy subjects, CHC and NASH patients 

 



35 
 

2.0 MATERIALS AND METHODS  
 

 

2.1 Tissue culture 

 

Huh 7 (American Type Culture Collection, VA, USA) and HepG2 (Charles Rice, The 

Rockefeller University, New York, NY) hepatoma cells were maintained in 

Dulbecco’s modified Eagle’s medium (DMEM) (Gibco, USA), supplemented with 

10% foetal bovine serum (FBS), 1% L-Glutamine, 1% non-essential amino acids 

(NEAA) and 50 units/ml penicillin/streptomycin (Gibco) in a humidified 

atmosphere at 37C, in 20% oxygen and 5% carbon dioxide. When the cells were 

70-80% confluent, they were incubated under 1% oxygen and 5% carbon 

dioxide or treated with drugs (detailed in Table 4) for a further 24 hours before 

RNA, protein and lipid extraction.   

 

Freezing cells 

 

Stored cells were preserved in liquid nitrogen. After pelleting the cells as above 

cells were resuspended in freezing media (95% FBS, 5% DMSO [Sigma-Aldrich]) 

and transferred into cryovials for freezing. Cryovials were placed in Mr Frosty 

freezing container (Wessington Cryogenics) and transferred to an -80C freezer. 

After overnight storage the cryovials were transferred to liquid nitrogen.  
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When cells were required for experiments, cryovials were removed from liquid 

nitrogen, thawed, washed in PBS and centrifuged to remove cellular debris. Cells 

were then counted and viability assessed using trypan blue exclusion. Cells were 

resuspended in appropriate culture media and plated on (coated) tissue culture 

plastic. 

 

2.2 Antibodies and treatment 

The antibodies and treatments used in this study are listed in the following 
tables. 
 
 

Table 2-1: PRIMARY ANTIBODIES 

Antibody 
name 

Antigen Type Specificity Species Source 

Anti-CD81 
(2s131) 

Human 
CD81 

Purified IgG Monoclonal Mouse In house 

9E10 HCV NS5A Hybridoma 
supernatant 

Monoclonal Mouse Charles Rice, 
Rockefeller 
University, 
NY 

NS5A S38 HCV NS5A Purified Polyclonal Mouse In house 
Anti-HIF-1α 
(Clone 67) 

Human 
HIF-1α 

Purified Monoclonal Mouse Novus 
Biologicals, 
Europe 

Anti-HIF-2 α Human 
HIF-2α 

Unpurified Monoclonal Mouse Peter 
Radcliffe, 
University of 
Oxford 

Phospho-
Akt 
(Thr308) 

Human 
phospho-
Akt 

Purified Polyclonal Rabbit Cell Signaling 
Technology, 
UK 

Akt Human 
Akt 

Purified Polyclonal Rabbit Cell Signaling 
Technology, 
UK 

Anti-β-actin Human β-
actin 

Purified Monoclonal Mouse Sigma 
Aldrich, MO, 
USA 
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Table 2-2: SECONDARY ANTIBODIES 

Antibody 
name 

Antigen Type Specificity Species Source 

Rabbit 
Alexa Fluor 
488 

Rabbit IgG Purified 
IgG (H+L) 

Polyclonal Goat Molecular 
Probes, 
Invitrogen, 
CA 

Mouse 
Alexa Fluor 
488 

Mouse IgG Purified 
IgG (H+L) 

Polyclonal Goat Molecular 
Probes, 
Invitrogen, 
CA 

Rat Alexa 
Fluor 488 

Rat IgG Purified 
IgG (H+L) 

Polyclonal Goat Molecular 
Probes, 
Invitrogen, 
CA 

Anti-Rabbit 
HRP 

Rabbit IgG Purified 
IgG 

Polyclonal Donkey GE 
Healthcare, 
PA 

Anti-Mouse 
HRP 

Mouse IgG Purified 
IgG 

Polyclonal Sheep GE 
Healthcare, 
PA 

 

Table 2-3: ANTIBODIES CONCENTRATION  

Antibodies Application Working concentration 
(μg/ml) 

Anti-CD81 (2s131) IF, WB 1 
 

9E10 IF 2 
 

NS5A S38 IF 1 
 

Anti-HIF-1α (Clone 67) IF, WB 0.25 
 

Anti-HIF-2α IF, WB 1 
 

Anti-β-actin WB 0.5 
 

Alexa Fluor 488 IF 1/500 
 

Anti-Rabbit HRP WB 1/1000 
 

Anti-Mouse HRP WB 1/1000 
 

IF=Immunofluorescence; WB=Western blotting 
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Table 2-4: DRUGS USED IN THIS STUDY 

Name Source Working 
concentration  

Median toxicity 

NSC0134754, HIF-
pathway inhibitor 

Margaret 
Ashcroft, 
University College 
London 

0.02uM 2uM 

VX-950 - target LKT laboratories, 
United States 

5ug/mL N/A 

FG4592, PHD 
inhibitor 

Cayman 
Chemicals, UK 

10uM N/A 

CCT6-84 Peter Radcliffe, 
University of 
Oxford, UK 

10uM N/A 

Insulin Soluble 
Human 

Sigma, Aldrich, 
MO, USA 

10 or 100nM N/A 

Sodium acetate Sigma, Aldrich, 
MO, USA 

10uM N/A 

HIF=hypoxia-inducible factor, PHD=prolyl hydroxylases  

 

 

2.3 Virus genesis, infection and transfection 

 

Table 2-5: PLASMIDS 

Name Source 

HCVcc J6/JFH-1 Charles Rice, Rockefeller University, 
NY 

HCVcc SA13/JFH-1 Jens Bukh, Copenhagen Hospital, 
Denmark 

HIF-1α Daniel Tenant, School of Cancer 
Sciences, Birmingham 

HIF-2α Daniel Tenant, School of Cancer 

Sciences, Birmingham 

HRE-luciferase reporter Margaret Ashcroft, Royal Free and 

University College, London  
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2.3.1 Generation of cell culture HCV (HCVcc)  

 

HCVcc viruses are based on the non-structural (replicase) proteins of HCV JFH-1 

strain, a unique isolate that is able to produce infectious particles in Huh-7 cells. 

All subsequent HCVcc strains incorporate JFH-1 non-structural proteins and 

differ only by the structural proteins.  

 

 

RNA synthesis 

 

RNA transcripts of HCV genomes J6/JFH and SA13/JFH were produced using the 

T7RNA Polymerase Kit (Promega, UK) according to the manufacturer’s 

instructions. In brief, 5ug of plasmid containing a cDNA clone of the HCV genome 

was linearized by restriction digest using the XbaI enzyme (New England 

Biolabs, UK). 1ug of the linearized plasmid was used as template for RNA 

transcription; this was achieved by incubating the reaction mix (t7 RNA 

polymerase mix from the manufacturer’s kit) at 37°C for 4 hours. Thereafter, the 

RNA was purified using the RNAeasy MiniElute Kit (Qiagen, Netherlands) 

according to the manufacturer’s instructions. RNA quality was assessed by gel 

electrophoresis on a 1% agarose gel (Bioline, UK). RNA yields were quantified 

using a spectrophotometer (Amersham, UK) with typical yields between 100-

1500ng/μl. 
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Electroporation 

 

Early passage (passage 1-35) Huh 7 cells were grown in T175 tissue culture 

flasks until 80-90% confluent. Cells were trypsinized and resuspended in DMEM. 

Thereafter, cells were washed with ice-cold PBS and pelleted by centrifugation at 

25000rpm for 5mins at 1°C; this process was repeated and pellets were 

resuspended in ice-cold PBS at 1.5x107cells/ml. 400ul of the cell suspension was 

mixed with 5ug of HCV genomic RNA and transferred to electroporation cuvettes 

(Sigma). Electroporation was carried out at 600 volts in an Electro Square 

Porator (Harvard Apparatus, USA). Electroporated cells were allowed to stand 

for 5 minutes at room temperature to rest before transferring them into 10mls of 

pre-warmed Iscove’s Modified Dubelcco Medium (IMDM) + 10% human serum, 

1% L-glutamine and penicillin/streptomycin. 

 

8mls of the cell suspension was transferred to a T75 tissue culture flask and the 

remainder placed into wells of a 24 well tissue culture plate for the monitoring of 

HCV protein expression. Cells were incubated at 37°C in a category 3 

containment laboratory and the media was replaced with DMEM+3% FBS the 

following day. At 72 hours post electroporation, viral replication was quantified 

by staining the cells seeded in 24 well plates with mouse S38 anti-NS5A 

monoclonal antibody (mAb) for NS5A using immunofluorescence. Providing 60-

80% of cells expressed NS5A, HCVcc particles were harvested from the T75 

flasks between 4 and 14 days post electroporation after which cells were 

discarded. Cells were methanol fixed and NS5A positive cells were determined 
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by immunofluorescence with S38 antibody as described in section 2.4.5. Viral 

infectivity was enumerated by counting NS5A foci or individual infected cells 

using a fluorescence microscope.  

 

 

 

 

2.3.2  Virus (HCVcc) infection assay  

 

Harvested virus from electroporation was used to infect target hepatoma cells 

seeded at 4 x 104 cells/ml on a 48 well tissue culture plate 24 hours before 

infection. To infect cells, the media was removed and replaced with 100ul of 

Fig 2-1. HCV NS5A positive foci Huh7 cells were infected with HCVcc SA13/JFH-1, at 48 hours 

post infection cells were fixed with methanol and stained for HCV NS5A (green) using S38 

monoclonal antibody and an Alexa Flour 488 secondary antibody. Scale bar represents 10um. 
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HCVcc virus diluted in DMEM with 3% FBS, L-glutamine and 

penicillin/streptomycin.  

 

Cells were incubated for 8 hours at 37°C, the HCVcc inoculum was removed and 

cells washed with PBS to remove any unbound virus. The cells were cultured in 4 

mls serum free DMEM with L-glutamine and penicillin/streptomycin and media 

containing secreted virions harvested at 4-hour intervals and pooled. Harvested 

virus was clarified by centrifugation at 3000rpm for 5 minutes and stored at -

80°C. infection allowed to proceed for 48-72 hours at 37°C.  

 

 

2.3.3  Plasmid luciferase assay  

 

A full-length human HIF-1a and HIF-2a expression constructs (pCMVβ-HA-HIFα) 

was provided by Dr. Daniel Tennant (Department of Cancer Sciences, University 

of Birmingham, UK). The pGL-HRE luciferase reporter construct contains a triple 

repeat of the iNOS HRE binding sequence and was kindly provided by Dr. 

Margaret Ashcroft (University College London). The pGL3-basic and control 

vectors were obtained from Promega (Southampton, United Kingdom). 

 

Cells were seeded at 1.5X105 cells/ml in p6 wells. Once settled, cells were 

transfected with 2 μg of pGL3/HRE-Luc, and/or 8 μg of pHIF-1a or pHIF-2a per 

well using FuGENE™ 2000. At 24 h after transfection, cells were trypsinised and 

reseeded onto smaller wells for lipogenesis and FFA uptake (sections 2.5.1 and 
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2.5.2), protein/RNA analysis (sections 2.4.1 and 2.4.2) and luciferase 

measurement. Luciferase activity was measured using the luciferase assay 

system (Promega, Madison, WI, USA) with a luminometer according to the 

manufacturer's instructions.  

 

2.4 Other techniques 

2.4.1  Protein extraction and Western blotting 

 
Cell lysates were prepared from adherent cells seeded at 4 x 104 cells/ml in 24 

well plates and maintained in culture for 24 or 48 hours. Cells were incubated 

under normoxia or hypoxia (1% oxygen) in the presence or absence of insulin 

(10nM), NSC (0.02uM) or FG4592 (50uM). Culture media was removed and cells 

washed in PBS. RIPA or Urea/SDS lysis buffer supplemented with protease and 

phosphate inhibitors (Roche, UK) was added and cells incubated on ice for 30 

minutes. The lysate was centrifuged at 15000rpm for 20 minutes at 4˚C to 

separate nuclei and insolubilized cell membranes from protein. The supernatant 

was collected and stored at -20˚C. Protein concentration was determined using 

the BCA Protein Assay Kit (Thermo Scientific, USA) according to the 

manufacturer’s instructions. Briefly, 100μl of each sample or BSA standard were 

mixed with 200μl of BCA Working Reagent in a 96 well plate in triplicates and 

incubated at 37˚C for 30 minutes. The plate was allowed to cool at room 

temperature and the absorbance read at 490nm using a Multiskan Ascent plate 

reader (Thermo Electron Corporation). Protein concentration of each sample 

was determined using a standard curve.  
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Samples were prepared by adding defined amounts of protein to 3x Laemmli 

loading dye (H2O, 30% v/v Glycerol, 6% w/v SDS, 0.2% v/v Bromophenol Blue 

and 0.2M Tris-HCV; pH 6.8), with 10% 2-β-mercaptoethanol. The total volume 

was adjusted to 25ul with H2O and samples were denatured by heating at 95˚C 

for 5 minutes followed by cooling at room temperature before loading.  

 

 

Proteins were separated by gel electrophoresis using the Mini Protean 3 System 

(Bio-Rad laboratories, USA) according to the manufacturer’s instructions. Briefly, 

20ug of protein lysates were loaded onto 8% sodium dodecyl sulphate-

polyacrylamide gels (SDS-PAGE) and gels run at 200 volts constant for 30 

minutes.  Proteins were then transferred to polyvinylidene membranes 

(Millipore, USA) using a Mini Trans-Blot Electrophoresis Transfer System (Bio-

Rad). Briefly, polyvinulidene membranes were cut to appropriate sizes to match 

the diameter of the gel and pre-treated with methanol for 2 minutes, rinsed with 
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H2O and incubated in transfer buffer (25mM Trizma Base, 0.2M Glycine, 200ml 

methanol and 10% SDS) at room temperature for 5 minutes. Gels were 

equilibrated in transfer buffer to prevent shrinking and transfer was carried out 

at 350mA for 90 minutes at room temperature.  

 

 

Immuno-blotting and chemiluminescent detection of proteins. 

 

Following successful transfer, membranes were placed in 50ml falcon tubes; to 

block non-specific antibody binding, membranes were incubated in antibody 

buffer (10mM Trizma base, 0.1M Sodium Chloride, 10% v/v Tween-20 and 5% 

Marvel dry milk) for 45 minutes at room temperature. The antibody blocking 

buffer was removed and the membranes were incubated in primary antibodies 

(table 2.1) diluted with antibody buffer overnight in 50ml falcon tubes and gentle 

agitation on a tube roller (Barloworld Scientific, UK) at 4˚C. 

 

The following day, membranes were washed 4 times for 5 minutes each with 

washing buffer (10mM Trizma base, 0.1M Sodium Chloride and 10% v/v Tween; 

pH 7.5). Incubation with HRP-conjugated secondary antibodies was carried out 

for 1.5 hours at 4˚C followed by excess washing. Chemiluminescent detection of 

HRP-conjugated antibodies was achieved with an ECL Western Blotting 

Detection System (Amersham, UK). Briefly, membranes were incubated in ECL 

detection reagent for 1 minutes, wrapped in plastic and exposed to CL-Xposure 

X-Ray Films (Thermo Scientific) or using the PXi machine for 5-30 minutes 

(depending on the proteins). 
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2.4.2  Trypan blue assay 

 

The Trypan blue assay is a dye exclusion staining assay, which is based on uptake 

of trypan blue dye by dead cells due to loss of membrane integrity, so the dead 

cells appear darker than viable cells. The assay was measured by previously 

described method (207). In brief, one to three days after cell plating under 

normoxia and hypoxia, cells were detached by trypsinization and the number of 

viable cells were counted using a Trypan blue stain reagent and 

hematocytometer.  

 

2.4.3 RNA extraction and quantitative RT-PCR 

 

HCV genome copy number was measured by qRT-PCR, using a Cells Direct Kit 

(Invitrogen) according to the manufacturer’s instructions. Quantitative PCR was 

carried out using Applied Biosystems reagents and expression assays (Qiagen). 

PCRs for genes of interest and for housekeeping gene GAPDH were carried out in 

singleplex (i.e. reactions carried out in separate wells). For the gene of interest in 

a single reaction (100wells) the following components were added: 750µl of 2X 

PCR Mix, 25µl GAPDH, 30µl RT-Tag enzyme mix and 400µl nuclease free water. 2 

ul of RNA sample was added into each well. Samples were run using 7500 real-

time PCR system (Applied Biosystems, Warrington, UK). Data were expressed as 

ct values (ct=cycle number at which logarithmic PCR plots cross a calculated 

threshold line) and used to determine ct values [ct = (ct of the target gene) – 
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(ct of the housekeeping gene)], lower ct values reflecting higher mRNA 

expression. Fold changes were calculated using transformation [fold increase = 

2-difference in CT].  

 

 

2.4.4 RNA interference studies 

 

Huh7 hepatoma cells were seeded at 4x104 cells/ml and transfected with 5uM of 

scrambled RNA/control, 5uM of HIF-1α or HIF-2α small interfering RNA (siRNA) 

oligonucleotides using the FuGENE™ (Promega) and Dharmafect 4 (Dharmacon) 

transfection reagents according to the manufacturer’s protocols. 24 hours after 

transfection, cells were exposed to serum starvation for 8 hours and then 

incubated under normoxia or hypoxia for a further 24 hours. 16 hours into 

incubation, media was replaced with fresh media containing 1-[14C]-acetic acid 

[0.12 µCi/L] with unlabeled sodium acetate [10 µM] and cells were lysed for lipid 

or protein analysis. The following siRNA oligonucleotides were purchased 

through Qiagen’s prevalidated siRNA database: ARNT siRNA target sequence, 

GAAGUCAGAUGGUUUAUUU; HIF-1 HP validated siRNA, catalog no. SI02664053; 

HIF-2 HP validated siRNA, catalog no. SI02663038. Control siRNAs were 

purchased from Dharmacon siGENOME nontargeting siRNA pool 2 

(D0012061405). 
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2.4.5 In-direct immunofluorescence 

 

Fluorescent microscopy 

 

Cells were seeded at 4 x 104 cells/ml in 24 well plates (Becton Dickinson) and 

fixed prior to staining by incubation with ice-cold methanol (Fisher Scientific, 

UK) or 4% PFA (TAAB, UK) for 5 minutes and 20 minutes, respectively. Cells 

were blocked for 20 minutes with PBS + 0.5% BSA and permeabilized with PBS + 

0.5% BSA + 0.01% of permeabilization detergent (saponin or Triton X-100). 

Primary antibody staining was performed by incubation (1 hour) at room 

temperature with antibody or control isotype diluted in the appropriate buffer. 

The antibody concentrations used in this study are listed in tables 1-3. 

 

The antibody diluents were removed by aspiration after an hour, and washed 

with PBS. This process was repeated twice. Secondary antibody staining was 

achieved with a fluorescent conjugated antibody diluted in the appropriate 

buffer and incubation in the dark at room temperature for 1 hour. Cells were 

washed in PBS as described, the nuclei were counterstained by incubation in 

4’,6-diamidino-2-phenylindole [DAPI] 10ug/ml (Sigma, UK) for 1 minute at room 

temperature. Stained cells were visualized using a fluorescent microscope 

(Nikon TE200, Japan) and images were taken using a digital camera (Hammatsu, 

Japan). 
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2.5 Lipid flux assay 

 

2.5.1 De novo lipogenesis (DNL): Acetyl-CoA carboxylase (ACC) assay 

 

Principle 

 

DNL is a key component of lipid accumulation within the liver and adipocytes. 

DNL encompasses fatty acid synthesis and subsequent triglyceride (TG) 

synthesis (when fatty acids are esterified with glycerol to form fats). A key step 

of fatty acid synthesis is the conversion of acetyl Coenzyme A (CoA) to malonyl 

CoA in the cytoplasm of the cells, and its subsequent conversion to fatty acid. 

This key reaction is catalysed by the enzyme acetyl-CoA carboxylase 1 (ACC1), 

which itself is de-phosphorylated and activated by insulin. This assay measures 

the incorporation of a 1-[14C]-labeled acetic acid tracer combined with unlabeled 

(‘cold’) sodium acetate in cells (Jamdar SC, Biochem J 1978). After incubation 

cellular lipids are extracted and the retained 14C radioactivity measured by 

scintillation counting.  

 

Method 

 

DNL was measured by the amount of uptake of 1-[14C]-acetate into the lipid 

component of cells, as described previously (208). After culture in serum-free 

media, cells were incubated for a further 8 hours with media containing 1-[14C]-

http://en.wikipedia.org/wiki/Fatty_acid_synthesis
http://en.wikipedia.org/wiki/Triglyceride
http://en.wikipedia.org/wiki/Fatty_acid
http://en.wikipedia.org/wiki/Esterification
http://en.wikipedia.org/wiki/Glycerol
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acetic acid [0.12 µCi/L] with unlabeled sodium acetate [10 µM]. After incubation 

at 37 0C, cells were washed three times with ice cold PBS, scraped into 250 µl 

PBS, and transferred into glass tubes. To extract the lipid fraction, 5 mls Folch 

solvent (chloroform: methanol 2:1) was added to the cells and vortexed 

vigorously for 20 seconds, after which 1ml distilled water was added and 

vortexed for a further 1 minute. The glass tubes were then centrifuged at 300x g 

for 5 minutes to separate the sample into two distinct phases - aqueous (upper 

layer) and solvent (lower layer) - with protein collecting at the interface. The 

aqueous layer was aspirated off and the solvent was transferred to a scintillation 

tube to evaporate until dryness using a sample dryer in a fume cupboard 

overnight. Once dry, 5 mls of cold scintillation cocktail was added to each tube 

and the 14C radioactivity retained in the cellular lipid was determined by 

scintillation counting, using the liquid scintillation analyzer 2500 RT/AB 

(Packard, A Canberra Company, Oxfordshire, UK). The 14C radioactivity retained 

in the cellular lipid was expressed as disintegrations per minute (dpm)/per well. 
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2.5.2 Non-essential fatty acid (NEFA) uptake and β-oxidation  

Principles 

NEFA that are required for energy homeostasis and triglyceride synthesis in the 

liver are available from the adipose-derived NEFA plasma pool and hepatic fatty 

acid synthesis (190). The plasma NEFA concentration is derived from lipolysis in 

adipocytes, which occurs mainly in the fasting state and is repressed by insulin 

(209, 210). NEFA are taken up by hepatocytes in a facilitated fashion by specific 

binding/transport membrane proteins (i.e. fatty acid binding protein, fatty acid 

transport protein), and not by a passive process. This assay measures the 

intracellular (cytosolic) accumulation of 9,10-[3H]-labelled palmitate tracer. 

After incubation intracellular lipids are extracted and the retained 3H 

radioactivity is measured by scintillation counting. 

β-oxidation is the pathway by which fatty acids are sequentially broken down in 

the mitochondria, generating acyl-CoA molecules which enter the TCA cycle 

ultimately leading to increased ATP production. It is a rapid and effective 

metabolic pathway for the allocation of energy within the liver (especially in the 

fasted state). Prior to β-oxidation, NEFA are activated by acyl-CoA-synthase to 

fatty acid acyl-CoA substrates in the cytosol to facilitate uptake into 

mitochondria. Long-chain NEFA, such as palmitate, are transported across the 

mitochondrial membrane via CPT1 (211). In the mitochondria, acyl-CoA 

dehydrogenase catalyses the breakdown of long-chain NEFA acyl-CoA into acetyl 

CoA molecules. This assay measures β-oxidation by quantification of [3H]-

labelled H2O generated and released by the cells into the media and measured by 
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scintillation counting (212). 

Method 

 
Hepatoma cells were cultured and treated in 24-well plates and incubated with 

500ul of serum free media containing 0.1 mmol/L palmitate (9,10-[3H] palmitic 

acid (5uCi/ml) (GE Healthcare, Bucks, UK) with cold palmitate to a final 

concentration of 10uM palmitate, 2% BSA and treatments for 24 hour. After 

incubation, cells were washed with cold PBS three times before 250ul of 1% 

Triton was added. Cells were scraped and transferred to plastic scintillation vials 

with scintillation cocktail to measure NEFA uptake. 

The rate of β-oxidation was measured by the conversion of 9,10-[3H] palmitate 

(Perkin Elmer) to [3H] labeled- H2O, using a modification of the method 

described by Gathercole et al (213). After incubation for 24 hours, the 250ul of 

media was retained and precipitated twice with equal volumes of 10% 

trichloroacetic acid to remove excess labelled palmitate. The supernatants 

(0.5ml) were extracted by addition of methanol:chloroform (2:1) and 1ml of 

2mol/L KCl:HCl, followed by centrifugation at 3000 g for 5 minutes. Aqueous 

phase (0.5mL) was added to scintillation cocktail (PerkinElmer, Bucks, UK), 

Aqueous samples were counted using a Wallac 1414 Liquid Scintillation Counter 

(PerkinElmer, Bucks, UK) to measure the rate of β-oxidation. 
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Fig 2-2. NEFA uptake and β-oxidation.  This assay measures the 

intracellular (cytosolic) accumulation of 9,10-[3H]-labelled palmitate 

tracer and the conversion of 9,10-[3H] palmitate) to [3H] labeled- H2O, 

After incubation intracellular lipids are extracted and the retained 3H 

radioactivity is measured by scintillation counting. 
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2.6 Statistical analysis  

 

Results are shown as the mean ± standard deviation unless otherwise stated. 

Data compared using non-parametric statistics since normality of small samples 

cannot be readily established. For comparisons of two groups the Mann-Whitney 

U test was used. For experiments containing multiple comparisons data were 

compared with the Kruskal-Wallis test using Dunn’s correction for multiple 

comparisons. Linear regression analyses were used as indicated to explore 

relationships between continuous variables, and to calculate protein and RNA 

concentrations from standard curves. All statistical analyses were done with 

Prism 5.0 (GraphPad). 
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3.0  EFFECTS OF LOW OXYGEN ON HEPATIC LIPID 
ACCUMULATION 
 

 

3.1 INTRODUCTION 

 

Blood flow to the liver is unique in that it receives both oxygenated and 

(partially) deoxygenated blood. Blood flows from branches of the hepatic artery 

and mixes in the sinusoids to supply the hepatocytes with oxygen. This mixture 

percolates through the sinusoids and collects in a central vein which drains into 

the hepatic vein. This directional blood flow towards the central vein of the 

lobule creates a physiological oxygen gradient, resulting in a higher oxygen 

tension in the periportal area to a lower oxygen tension in the perivenous area of 

the liver parenchyma (2, 3). This is associated with liver zonation, a phenomenon 

where hepatocytes show distinct functional and structural heterogeneity across 

the parenchyma (9, 25, 214). Hypoxia-inducible factors I, II and III are 

transcription factors that enable a cell to respond to changes in available oxygen 

in its local environment. Under physiological oxygen concentration, HIFs are 

constantly degraded following hydroxylation. However, modest changes in 

oxygen tension that can occur in various liver pathologies such as viral hepatitis, 

alcoholic and non-alcoholic fatty liver disease, or carcinogenesis, promote a 

hypoxic response that stabilizes HIFs (2, 6-8).  

 

It is widely published in the literature that low oxygen induces changes in 

intracellular lipid content and triglyceride levels in hepatocytes in vitro and in 
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vivo (5, 215-217). Studies in humans and rodents have revealed several 

regulators which perturb lipid metabolism in liver diseases, namely, sterol 

response element binding protein (SREBP); a transcription factor that controls 

DNL and peroxisome proliferator-activated receptors (PPARs) which regulate 

fatty acid metabolism (218, 219). Carbohydrate response element binding 

protein (ChREBP) and X-box binding protein (XBP)-1 are also thought to regulate 

hepatic lipid metabolism (220, 221). Although these studies have elucidated 

various signaling pathways that regulate lipid metabolism in fatty liver diseases, 

little is known regarding upstream stimuli.  Clinical studies have linked 

obstructive sleep apnoea (OSA), a condition defined by the presence of apneic-

hypopnoeic episodes, to elevation of liver enzymes, derangement of lipid profile, 

development of hepatic steatosis, lobular necrosis, fibrosis and increased 

morbidity and mortality (68-71). The prevalence of metabolic syndrome in 

severe OSA is as high as 80%. In addition, those with severe OSA are three times 

more likely to develop metabolic syndrome, after adjustment for body mass 

index (BMI) (68). One study suggests that acute hypoxia suppresses lipoprotein 

lipase activity in patients with OSA, leading to lipid accumulation, although this 

was not seen in healthy subjects exposed to acute hypoxia (82). Others have 

linked the severity of nocturnal hypoxia and progression from fatty liver to non-

alcoholic steatohepatitis (77, 78).   

 

The role for hypoxia in the pathogenesis of both alcoholic and non-alcoholic fatty 

liver diseases has been studied extensively (222-224). Rats fed a continuous 

ethanol diet showed liver hypoxia (4, 223, 225), although the direct contribution 

of HIFα to alcoholic liver injury remains controversial. Other murine studies 
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show that increased de novo lipogenesis and esterification of exogenous fatty 

acids and very low density lipoprotein lipids occur in the perivenular cells with 

lower oxygen tension (63), supporting a role for low oxygen in regulating hepatic 

lipid metabolism. The relevance of hypoxia in chronic ethanol ingestion has also 

been substantiated in human studies (226, 227). Multiple lines of evidence 

suggest that HIFs play a central role in the regulation of hepatic lipid metabolism. 

Hepatocyte specific deletion of the von Hippel-Lindau (VHL) gene is 

accompanied by a phenotype of hypervascularity and steatosis (69). 

Simultaneous expression of degradation-resistant HIF1α and HIF2α resulted in a 

similar phenotype of hepatic lipid accumulation in murine models (4). However 

the relative role of HIF1 and/or HIF2 in regulating hepatic lipid metabolism is 

unclear. Whilst some studies suggest that HIF1α play a more dominant role (5, 

67, 228), others propose that HIF2α is more steatogenic (7, 229). This is 

supported by a recent study that reported an accumulation of lipids in a murine 

model of liver-specific HIF2 activation whereby HIF2α up-regulated lipid 

biosynthetic pathways, suppressed fatty acid β-oxidation, and increased lipid 

droplet surface protein ADFP (229).   
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3.2 HYPOTHESIS AND AIMS 

 

Hypothesis: Hypoxia-inducible factors regulate hepatocellular lipid 

metabolism  

 

 

Aims: 

In this chapter, we aim to elucidate the metabolic impact of hypoxia on human 

hepatocyte models and explore novel mechanistic pathways at the 

transcriptional and functional level. 
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3.3 RESULTS 

 

3.3.1 Low oxygen results in HIF stabilization 

 

 

We evaluated HIF transcriptional activity using a synthetic reporter by exposing 

Huh-7 hepatoma cells to different oxygen tension. Physiological oxygen gradient 

in a healthy liver ranges from 4 to 8%. Therefore to study the effect of low 

oxygen, and its dose-dependency, we incubated cells under two different levels 

of hypoxia, 3 and 1%. After 24 hours, cells were lysed for protein extraction. The 

induction of both HIF1 and HIF2 proteins under lower oxygen was dependent on 

oxygen tension, detected by western blot [Fig 3-1A].  

 

In a similar experimental design, Frampton et al (unpublished) assessed the 

kinetics of hypoxia-driven transcriptional activity using a hypoxic response 

element (HRE) reporter system, which consisted of a vector containing luciferase 

reporter gene downstream to a minimal promoter with a HRE whose activity is 

HIF-dependent. Huh-7 hepatoma cells were transfected to express the HRE 

luciferase reporter and incubated under 21%, 3% or 1% oxygen for up to 24 

hours. HRE activity peaked at 16 hours following low oxygen treatment, and 

there was a higher HRE activity noted in cells incubated under 1% compared to 

3% oxygen concentration after 24 hours [Fig 3-1B]. Taken together, these results 

suggest that exposure to lower oxygen tension stabilizes HIF expression and 

activity. 
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1A. 

 

1B.      

 

                              Frampton, N 

 

 

Fig 3-1. Comparison of HIF kinetics in Huh-7 cells exposed to two different hypoxic oxygen 

concentrations. Western blot detection of HIF-1α and HIF-2α from lysate of Huh-7 cells incubated 

at different oxygen tension (21, 3 or 1% oxygen) for 24 hours. A representative image is shown for 

each protein. β-actin was used as a loading control [A]. HRE luciferase assay was measured in Huh-7 

cells transfected with an HRE luciferase reporter gene and exposed to 21%, 3% or 1% oxygen for up 

to 24 hours. The data is plotted as relative fold change in activity between hypoxic and normoxic 

conditions [B]. Data are presented as mean±SE. Experiments were performed in triplicates and 

repeated thrice. 
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3.3.2 Oxygen tension regulates hepatic lipid accumulation 

 

DNL, FFA and β-oxidation were measured in hepatoma cells exposed to 21, 3 or 1 

% oxygen for 24 hours using isotope-labelled tracers measured by mass 

spectrometry. DNL was measured by 1-[14C]-acetate incorporation into lipid, 

whereas FFA uptake was defined by the amount of 3H-palmitate taken up by cells 

after 12 hours incubation with 3H-labelled and unlabelled palmitate in serum-

free media. β-oxidation was measured by the amount of 3H-water released by 

cells into the culture media.  We showed that exposure to low oxygen 

significantly increased both DNL [Fig 3-2A] and FFA uptake [Fig 3-2B], 

demonstrating that differential oxygen tensions influences hepatocellular DNL 

and FFA uptake and yet has a minimal effect on β-oxidation [Fig 3-2C].  

 

To validate the above findings, we measured de novo lipogenesis, free fatty acid 

uptake and β-oxidation in two other hepatoma cells lines, Huh-7.5 and HepG2 

alongside Huh-7. Low oxygen (1%) treatment for 24 hours increased DNL  4-fold 

in Huh-7 cells, 1.5 fold in Huh-7.5 and 2-fold in HepG2 cells compared to cells 

propagated under 21% oxygen [Fig 3-3A]. Hypoxia also increased FFA uptake, 

albeit to a lesser degree, compared to normoxia [Fig 3-3B] and had no effect on 

β-oxidation in all cell lines [Fig 3-3C]. 
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Fig 3-2. Differential oxygen tension influences hepatic lipid accumulation. [A] DNL is 

determined by measuring 1-[14C]-acetate incorporation into lipid in Huh-7, Huh-7.5 and HepG2 

hepatoma cells incubated with 14C-acetate incubated under 21% oxygen (normoxia), 3% or 1% 

oxygen (hypoxia) for 24 hours. [B] FFA uptake was defined by the amount of 3H-palmitate taken 

up by cells after 12 hours incubation with 3H-palmitate in serum-free media. [C] β-oxidation was 

measured by the amount of 3H-water released by cells into the culture media. Cells were 

incubated under these conditions for 24 hours. Data are presented as mean±SE. Experiments 

were performed in quadruplicates and repeated thrice. *p<0.05. Unpaired student’s t test 
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Fig 3-3. Hypoxia increases DNL and FFA uptake across hepatoma cell lines. DNL [A], FFA 

uptake [B] and β-oxidation [C] were measured at 21 or 1% oxygen tension. Data are presented 

as mean±SE. Experiments were performed in quadruplicates and repeated thrice. *p<0.05, 

ns=non-significant. Unpaired student’s t test. 
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3.3.3 Hypoxia-driven increase in de novo lipogenesis and free fatty acid 

uptake is dependent on the HIF-signaling pathway.  

 

In recent years, Ashcroft et al identified a compound, NSC 134754 that targets 

the HIF signaling pathway, which prevents HIF stabilization under low oxygen 

(230, 231). To ascertain whether HIF regulates the low oxygen potentiation of 

DNL and FFA uptake we observed in hepatoma cells, cells were treated with the 

HIF inhibitor, exposed to normoxia and hypoxia for 24h and DNL assessed. NSC 

at 0.02μM abrogated hypoxia-driven increase in DNL in Huh-7 [Fig 3-4A]. In a 

parallel experiment, the optimal dose of NSC required to fully reverse the effect 

of hypoxia driven lipogenesis in our cell culture system was obtained by 

measuring 14C-uptake into cells cultured under hypoxic conditions treated with 

varying doses of NSC [Fig 3-4B].  Dose at 0.02μM was adequate to fully reverse 

the effect of hypoxia-induced increase in DNL and cell viability showed that 

doses higher than 0.1μM were toxic to cells. Wilson et al demonstrated that NSC 

inhibited HIF1α expression in HepG2 cells as shown by confocal imaging and 

western blot detection (8). 

 

Prolyl hydroxylase domain inhibitors (PHDi) have been tested in vitro and in 

murine models to target HIF pathways in various medical conditions such as 

haematological, pulmonary, and renal diseases (232-235).  Four discovered 

compounds are currently in phase 3 human clinical trials (236). We used one of 

the inhibitors, FG4592 (Cayman Chemical, Michigan, USA) in our experiments. In 

the first instance, we evaluated the molecule in stabilizing HIFs in HepG2 

hepatoma cells over time. Cells were lysed and HIF protein assessed by Western 
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Blot [Frampton, N. unpulished data].  We found that a single dose of FG4592 

stabilized both HIF1α and HIF2α at 24, 48 and 72 hours (Fig 3-5A). We then 

measured 14C-acetate uptake into Huh-7 hepatoma cells treated with FG4592 

under normoxia for 24 hours. As seen in cells incubated under hypoxia, DNL was 

increased in PHDi-treated cells [Fig 3-5B & 5C], strengthening our hypotheses 

that hypoxia-driven hepatic lipid accumulation is HIF-dependent. No effect on β-

oxidation was seen [Fig 3-5D].   
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Fig.3-4 Hypoxia-driven increase in de novo lipogenesis (DNL) is dependent on HIF-

signaling pathway. Huh-7 hepatoma cells were incubated under normoxia (21%) or hypoxia 

(1% oxygen) with or without NSC, for 24 hours. [A] Hypoxia increases lipogenesis and this 

effect is completely reversed with 0.02uM of NSC. [B] Dose response of NSC was measured 

against 14C-acetate uptake into cells which were treated with 0.02uM or 0.1uM of NSC under 21 

or 1% oxygen. A dose of 0.02uM adequately reversed the effect of hypoxia on DNL. Data are 

presented as mean±SE. Experiments were performed in quadruplicates and repeated thrice. 

*p<0.05. Unpaired student’s t test. 
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Fig 3-5. Hypoxia-induced increase in DNL is HIF-dependent. [A] HepG2 cells were treated 

with FG4592 (10um) for 24, 48 or 72 hours before lysis. Lysates were measured for HIF-1α and 

HIF-2α proteins by Western blot. β-actin was used as loading control (Frampton, N). In a 

different set of experiments, cells were treated with 10uM of FG4592 and incubated under 

normoxia (21%) for 24 hours.  DNL [B], FFA uptake [C] and β-oxidation [D] were measured. 

Data are presented as mean±SE. Experiments were performed in quadruplicates and repeated 

thrice. **p<0.01, ns=non-significant. Unpaired student’s t test. 
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3.3.4 Both HIF1α and HIF2α play a role in hepatic lipid accumulation 

 

 

To confirm a role for HIF1α or HIF2α in regulating hypoxia-induced lipogenesis, 

RNA interference (RNAi) technique was used to transiently silence HIF 

expression in Huh-7 hepatoma cells. In brief, siRNAs targeting HIF1α or HIF2α 

along with a scrambled control were transfected into Huh-7 cells and incubated 

for 24 hours under normoxia. Cells were then incubated for a further 24 hours in 

21 or 1% oxygen. Silencing efficiency was analysed by measuring HIF expression 

by western blotting. HIF1α band was not seen in the siHIF1α knockdown cells 

but a faint HIF2α protein band was still visible in the HIF2α knockdown cells, 

suggesting lower silencing efficiency of the HIF2α transfection [Fig 3-6A]. HIF1α 

knockdown reduced the effect of hypoxia driven increase in lipogenesis by 40% 

compared to control cells, however, there was no effect of HIF2α silencing on 

lipogenesis [Fig 3-6B].  From this, we conclude that HIF1α played a role in 

hepatic lipid accumulation in hypoxia. However, HIF2α transfection was 

suboptimal and did not seem to alter lipogenesis in these experiments.  

 

 

The role of HIFs on lipogenesis was analyzed by over-expressing HIFs in 

hepatoma cells. The cells were transfected with plasmids encoding for HIF1α or 

HIF2α with HRE-Luc reporter and incubated under normoxic conditions for 36 

hours. Transfection efficiency was also confirmed by HIF protein expression by 

western blot [Fig 3-7A]. To determine the localization of HIFs in hepatoma cells, 

we performed immunofluorescence analysis for HIF1α and HIF2α expression in 
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the transfected cells. Following transfection, cells were probed with anti-mouse 

HIF1α (NOVUS Biologicals) or anti-mouse HIF2α (ABCAM) antibodies and 

examined by confocal microscopy. HIF1α could be readily detected in the nuclei 

of HIF1α transfected and desferoxamine or DMOG-treated cells, that were used 

as positive controls for the experiments. Localization of HIF2α was less clearly 

defined in these cells due to a high background staining observed with the 

antibody [Fig 3-7B]. HIF function in the over-expressing cells was also confirmed 

by measuring the transcript levels of known HIF-target genes, VEGF and EPO, by 

RT-PCR. VEGF and EPO were upregulated by 2 and 4 fold in the HIF1α 

transfected cells and by 2 and 6 fold in the HIF2α transfected cells, compared to 

control [Fig 3-7C]. Overexpression of either HIF1α or HIF2α significantly 

increased DNL and FFA uptake in Huh-7 hepatoma cells [Fig 3-7D & 7E].  

 

 

We had utilized several techniques to confirm transfection efficiency for 

overexpressing HIF in our cell culture system. We showed that overexpression of 

either HIF1α or HIF2α significantly increased hepatic steatosis. Taken together, 

we are convinced that both HIFs, at least in part, play a role in hepatic lipid 

accumulation.  
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Fig 3-6. Effect(s) of HIF1α- and HIF2α-knockdown on lipogenesis. [A] Huh-7 hepatoma cells 

were transfected with siRNA-mediated scrambled RNA (scRNA), HIF1 or HIF-2α for 24 hours. Cells 

were incubated at 21% or 1% oxygen for a further 24 hours.  Following this, HIF protein expression 

was determined by Western blotting from lysate. [B] Following transfection, 1-[14C]-acetate 

incorporation into lipid was measured in these cells. Data are presented as mean±SE. Experiments 

were performed in quadruplicates and repeated thrice. *p<0.05, ns=non-significant. Unpaired 

Student’s t test 
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Fig 3-7. Hypoxia-driven lipogenesis is HIF-1α and HIF-2α-dependent. Mock (pcDNA), 

HIF1α or HIF2α plasmid was transfected into Huh-7 hepatoma cells and incubated under 

21% oxygen for 36 hours. Transfection was confirmed by nuclear staining of HIF using 

confocal microscopy [A], HIF protein expressions by western blotting [B] and selected 

transcripts (VEGR and EPO) [C]. mRNA expression of lipid genes (FASN, SREBF1 and 

PPARα) was quantified by RT-PCR [C] and 1-[14C]-acetate incorporation into lipid [D], and 

FFA uptake [E] were measured in these cells. Data are presented as mean±SE. Experiments 

were performed in quadruplicates and repeated thrice. *p<0.05, **p<0.01, ns=non-

significant. Unpaired student’s t test 
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3.3.5 Low oxygen and HIF modulated genes involved in hepatic lipid 

accumulation   

 

We assessed the effect of low oxygen and FG4592 (Roxadustat) on HIF-target 

gene expression in Huh-7 hepatoma cells. Under normoxic conditions, HIF-

specific prolyl hydroxylases initiate the degradation of oxygen-sensitive HIF 

isoforms. As 2-oxyglutarate (2-OG) is a required co-factor for HIF prolyl 

hydroxylases activity, analogs of 2-OG such as FG-4592 that inhibit prolyl 

hydroxylases and catalyzes the post-translational formation of 4-hydroxyproline 

in HIF alpha proteins, prevent HIF degradation (237).  

 

The effect of low oxygen on lipid metabolism in Huh-7 hepatocyte derived cells 

was studied by performing a PCR microarray on a selected panel of known HIF-

regulated genes (n=84). This revealed an induction of many known hypoxia-

responsive genes including those encoding mitochondrial and lipid/glycolytic 

enzymes. A heatmap of the identified genes (Huh-7/control, Huh-7/hypoxia and 

Huh-7/FG4592) is shown in Figure 3-8A {Frampton et al, unpublished), where 

the colour of each section is proportional to the significance of change of genes 

(red, upregulated; green, downregulated).   

 

Pyruvate dehydrogenase kinase-1 (PDK-1), 6-phosphofructokinase liver type 

(PFKL) and hexokinase-2 (HK2) were identified as genes involved in cell lipid or 

carbohydrate metabolism [Figure 3-8B]. We found that low oxygen, but not 

FG4592, down-regulated PDK-1 25-fold. PDK-1 regulates pyruvate 

dehydrogenase (PDH) by a phosphorylation/ dephosphorylation cycle. 

https://en.wikipedia.org/wiki/Pyruvate_dehydrogenase
https://en.wikipedia.org/wiki/Pyruvate_dehydrogenase
https://en.wikipedia.org/wiki/Phosphorylation
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Phosphorylation of PDH by pyruvate dehydrogenase kinase (PDK) results in 

inactivation.  A low PDK1 activity keeps PDH in a dephosphorylated and active 

state, thus maintaining high carbohydrate fuel for lipid synthesis. Low oxygen 

and FG4592, increased PFKL and HK2, that are involved in key steps in 

glycolysis. 

 

In line with the above findings, the mRNA levels of sterol regulatory element-

binding protein 1 (SREBF1), fatty acid synthase (FASN) and peroxisome 

proliferator-activated receptor alpha (PPARα), were measured in Huh-7 

hepatoma cells [Fig 3-9].  SREBF1 regulates cholesterol biosynthesis and uptake, 

and fatty acid biosynthesis. FASN catalyzes the synthesis of palmitate (a long 

chain saturated fatty acid) from acetyl-CoA and malonyl-CoA. Activation of 

PPARα promotes uptake, utilization and catabolism of fatty acids including 

mitochondrial fatty acid β-oxidation. When compared to normoxia, hypoxia 

increased these genes by approximately 2 fold. [Fig 3-9], confirming the lipogenic 

effect of low oxygen in hepatoma cells. 
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Fig 3-8. Hypoxia and FG4592 regulate pyruvate dehydrogenease kinase-1 (PDK-1), 6-

phosphofructokinase liver type (6-PFKL) and hexokinase-2 (HK2) gene transcripts in 

Huh-7 hepatoma cells. Heatmap of Huh-7 hepatoma cells incubated under 21% oxygen, 1% 

oxygen or treated with 10um FG4592 (under 21% oxygen) for 24 hours. Rows: samples, 

Columns: genes. The colour of each sample is proportional to the significance of change of 

genes (red, upregulated; green, downregulated) [A]. Fold induction of metabolic genes from 

the PCR microarray  [B]. Data from 3 independent experiments in quadruplicates are 

presented as mean ± se fold induction compared to untreated cells and quantified relative to 

GAPDH.  **p<0.005, ****p<0.0001. Unpaired Student’s t-test 
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Fig 3-9. Hypoxia regulates sterol regulatory element-binding protein 1 (SREBF1), 

fatty acid synthase (FASN) peroxisome and proliferator-activated receptor alpha 

(PPARα) RNA transcript levels in Huh-7 cells. mRNA levels measured by RT-PCR in 

Huh-7 hepatoma cells seeded at 4x104 cells/ml and incubated under 1% or 21% oxygen 

for 24 hours. Data from 3 independent experiments in quadruplicates are presented as 

mean ± se fold induction compared to untreated cells and quantified relative to GAPDH.  

***p<0.001, ****p<0.0001. Unpaired Student’s t-test 
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3.3.6 Low oxygen does not alter the proliferative capacity of Huh-7 

hepatoma cell lines 

 
 
 
Hypoxia has been shown to alter the proliferative capacity of non-

hepatoma (238, 239) and hepatoma (240, 241) derived cell lines. To 

investigate this, Huh-7 cells were cultured under normoxia or hypoxia for 

up to 72 hours. Following 24, 48 or 72 hours of incubation, cells were 

detached by trypsinization and the number of viable cells counted using a 

Trypan blue stain reagent and a hematocytometer. Comparison was made 

between cells incubated under normoxic and hypoxic conditions at each 

time point. No significant difference in cell numbers was detected 

between these 3 time points [Fig 3-10].  It was concluded that the 

increment in DNL and FFA uptake in Huh-7 cells under hypoxia was not 

due to increased cell numbers. 
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Fig 3-10. Hypoxia does not alter the proliferative capacity of Huh-7 hepatoma cells. Huh-7 cells 

were seeded at 4x104 cells/ml and incubated under normoxia (21% oxygen) or hypoxia (1% oxygen). 

At 24, 48 or 72 hours, cells were trypsinised (approximate cell confluence 60%, 90% and 100% 

respectively), and were treated with Trypan blue and counted using hematocytometer. Data are 

presented as mean±SE. Experiments were performed in quadruplicates and repeated thrice. ns=non-

significant. Unpaired Student’s t-test 
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3.4 DISCUSSION 

 

Low oxygen has been shown to induce changes in intracellular lipid content and 

triglyceride levels both in vitro and in vivo (5, 215-217). The data described in 

this chapter showed that hypoxia-induced lipid accumulation is predominantly 

driven by de novo lipogenesis and fatty acid uptake. This is supported by our 

observation that hypoxia also upregulated the mRNA expression of SREBF-1, 

FASN and PPARα. In addition, even though hypoxia activated the PPARα RNA 

levels, it did not result in a change in β–oxidation. These findings differ from the 

study by Liu et al. which showed that hypoxia induced lipid accumulation by 

suppressing genes involved in lipid clearance and β-oxidation, as well as 

lipogenic genes SREBF1 and FASN (242). The discrepancy in the role of β-

oxidation and lipid accumulation between our study and that of Liu et al. can be 

explained by the different hepatoma cell lines used and the fact that not all 

activated genes translate into function at the cellular level. The duration of 

exposure to hypoxia also differs between the studies and this may have different 

impact on the intricate process in which hypoxia induces liver steatosis. 

 

This study suggested that the increase in hepatic lipid accumulation in hypoxia 

required the activation of both HIF1α and HIF2α. Reports regarding the roles of 

HIF1α and HIF2α on hepatic lipid accumulation are conflicting. Deletion of the 

VHL tumour suppressor gene, that mediates HIF1α and HIF2α proteasome 

degradation, results in hepatic steatosis almost exclusively by constitutive 

activation of HIF2α, suggesting a dominant role for HIF2α in regulating 

hepatocellular lipid metabolism (229, 242).  This is further supported by a study 
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showing the development of severe fatty liver in PHD2/3 double-knockout mice 

occurring in a HIF2-dependent manner (243). However, much controversy 

remains regarding the roles of HIF2 as a pro-lipogenic factor, as HIF2-deficient 

mice also exhibit hepatic steatosis (244) and forced expression of HIF1α, but not 

HIF2α in the liver stimulates hepatic steatosis in mice (67). HIF1α is also 

reported to induce neutral lipid formation, under hypoxia (245). This raises 

important issues in the understanding of the functions of HIFs in regulating liver 

metabolism, and demonstrates their complexity. Even though our present data 

suggests that both HIFs regulate lipid metabolism in vitro, it is possible that 

either HIF could have a more dominant role in regulating a specific mechanism of 

lipid accumulation in the liver. As hepatocytes have distinct metabolic properties 

depending on their locations in the liver acinus, that is, lipogenesis occurring 

perivenously and fatty acid degradation periportally (9, 25), different HIF could 

also act on different region of the liver, thus activating different metabolic 

pathways.  

 

There are important limitations to the study. Some of the Western blot images 

for HIF proteins, in particular HIF2α, were suboptimal. This is due to technical 

difficulties as well as time constraint. It is widely accepted in the field that HIF-2α 

protein is difficult to image and we believe there are much lower levels of HIF-2α 

than HIF-1α in hepatocytes or hepatoma cell lines. Therefore, these results 

require further validation before robust conclusions can be made. 

 

This study has mainly focused on “acute hypoxia” due to the practicality of our 

cell culture system. Studies have reported that acute sustained hypoxia induces 



81 
 

hypertriglyceridaemia in humans (246, 247) and animals (248). However, the 

mechanisms by which acute hypoxia induces hyperlipidaemia are less well 

studied. Jun et al. (249) showed that there are differences in the mechanisms by 

which chronic and acute hypoxia affect lipid accumulation. Whilst acute hypoxia 

decreased hepatic triglyceride secretion and decreased clearance of plasma 

triglyceride, chronic hypoxia in mice resulted in the opposite. They also showed 

that the mean FiO2 dictated the degree of triglyceride elevation, not the duration 

of exposure to hypoxia. Perhaps the chronicity of hypoxia or intervening periods 

of normoxic recovery provides an opportunity for transcriptional upregulation of 

genes involved in lipid synthesis and secretion (76), and thus, could explain 

some of the differences seen in the literature.  

 

Our study explored the lipogenic effect of hypoxia and suggested that this was 

partly via the inhibition of PHD activity, as the increase in steatosis by PHD 

inhibition was modest compared to that of low oxygen. This suggests that 

hypoxia-induced hepatic steatosis can also be activated via other oxygen-

dependent mechanisms, such as FIH inhibition; or via other non-oxygen 

dependent mechanisms. Animal studies have shown that FIH enzyme has a 

higher affinity for oxygen than that of the PHD enzymes (250, 251). This may 

indicate that different enzyme could act at different oxygen concentration and 

further investigation is required to unveil a functional relationship between the 

two.  

 

The data described so far suggest that HIF activation results in lipid 

accumulation. However, some studies have reported the contrary. Chronic intake 
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of excess alcohol is known to drive lipid accumulation in the liver and cause liver 

hypoxia concomitantly with increased oxygen consumption.   Nishiyama Y et al 

showed in a murine model that HIF1α deletion in the hepatocytes worsened 

hyperlipidaemia and hepatic lipid accumulation in response to alcohol (66). 

Furthermore, the PHD inhibitor dimethyloxalylglycine (DMOG), which stabilizes 

and activates HIFα, reduced alcohol-induced lipid accumulation in control, but 

not in HIF1α-deficient mice, confirming the anti-lipogenic role of HIFα in 

alcoholic fatty liver (66). This is perhaps not surprising as intervening episodes 

of normoxic recovery may exert different metabolic effects in the liver. As DMOG 

is likely to have many cellular off-target effects, these observations should be 

interpreted with care.  
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3.5 CONCLUSION 

 

 

Much information is now available on the cellular pathways regulating HIF 

expression and transcriptional activity that increases our understanding of these 

transcription factors in hypoxic adaptation. Although HIF-1 and HIF-2 can be 

activated simultaneously or separately by hypoxia in one cell, the consequences 

on cellular and tissue metabolism appear to differ markedly in a cell type- and 

context-dependent manner. Further investigation of the roles of HIFs in different 

cells and conditions is needed to gain a better understanding of the bigger 

picture and their physiological and pathophysiological roles. These data suggest 

that that targeting this pathway could provide a unique mechanism for 

manipulation of metabolism. 
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4.0 EFFECTS OF HEPATITIS C VIRUS (HCV) ON HEPATIC LIPID 
ACCUMULATION 

 

4.1 INTRODUCTION 

 
 

HCV belong to the Flaviviridae family, and possesses a linear, positive-stranded 

RNA genome of 9600 nucleotides (252). Genomic RNA contains a single open 

reading frame encoding a polyprotein (~3000 amino acids), which is processed 

into 10 mature proteins by both cellular and viral proteases. The mature 

proteins consist of three structural proteins (core, E1 and E2), p7 and the 

nonstructural (NS) proteins NS2, NS3, NS4A, NS4B, NS5A and NS5B (253).  

 

Chronic hepatitis C (CHC) infection is a global health problem affecting 170 

million people and is a leading cause of liver transplantation. Hepatic steatosis in 

CHC is associated with an increased risk of progressive liver diseases such as 

cirrhosis and hepatocellular carcinoma (254-256). There are distinct patterns of 

lipid alterations between patients with different genotypes of CHC after viral 

clearance (257) with hepatic steatosis being more prevalent in patients with 

genotype 3 CHC (258). Its presence in CHC associates with viral load and 

response to antivirals agents. However, our understanding of viral–induced 

hepatic steatosis largely derives from in vitro studies with infectious molecular 

clones based on the genotype 2 viral isolate, JFH-1 (259, 260). A direct 

comparison between different genotypes has rarely been performed using the 

same model and experimental conditions. Hepatic steatosis is one of the 
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histologic features of CHC and the occurrence and severity of steatosis associates 

with viral load and response to antiviral agents. 

 

Hepatic steatosis can be caused by an increase in de novo lipogenesis, fatty acid 

uptake and synthesis, a decrease in fatty acid β-oxidation, or reduced levels of 

very-low density lipoprotein secretion (46, 190, 261).  HCV hijacks the lipid-

producing machinery of hepatocytes for its benefit (106, 111). It is believed that 

HCV core protein causes intracellular lipid accumulation by altering lipogenic 

gene expression and protein activity, alongside effects on mitochondrial 

oxidative function (113, 262-265).  HCV is reported to activate sterol regulatory 

element binding proteins (SREBPs) (266, 267), essential transcriptional 

regulators of cholesterol and fatty acid metabolism (268, 269). The importance 

of genes such as peroxisome proliferator-activated receptor-alpha (PPARα) and 

the proteasome activator (PA28)-gamma in HCV-mediated steatosis has been 

elucidated from studies in genetically altered mice (270). PPARα is a known to 

regulate oxidative enzymes and fatty acid import into mitochondria via induction 

of the carnitine palmitoyl acyl-CoA transferase 1 (CPT1A) gene (121, 271). 

PA28γ is required for the up-regulation of sterol regulatory element-binding 

protein 1c (SREBF-1c) transcription by the HCV core protein and induction of 

liver steatosis (270, 272). However, the mechanistic basis of these functional 

effects remains unclear.   

 

We have shown in the previous chapter that HIFs play a role in hypoxia-induced 

lipid accumulation. Since several studies have reported that HCV infection 

stabilizes HIF (6, 165), we hypothesize that there could be a role for HIF in HCV-
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induced hepatocellular lipid regulation. HCV has been shown to induce hepatic 

lipid accumulation in human hepatoma cell lines (269, 273-275). Hence, in this 

chapter, we aim to study the link between HCV and hepatocellular lipid 

metabolism and to explore the underlying mechanism by which HCV induces 

hepatocellular lipid metabolism including relative contributions of DNL, FFA and 

β–oxidation. 
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4.2 HYPOTHESIS AND AIMS 

 

Hypothesis:  

Host factor such as hypoxia inducible factor play a role in HCV-induced 

hepatocellular lipid alteration.  

 

 

Aims: 

To define the mechanisms by which HCV affects hepatic lipid homeostasis in 

vitro.  
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4.3 RESULTS 

 

4.3.1  HCV stabilizes hypoxia inducible factors (HIFs)-1α and 2α  

 

Huh-7 hepatoma cells were infected with mock or SA13/JFH,  for 24 or 48 hours.  

We demonstrated HIF stabilisation by HCV by quantifying HIF1α and HIF2α 

proteins (western blot). This showed a time dependent increase in the expresion 

of both HIF isoforms following HCV infection [Fig 4-1A to C]. HIF stabilisation by 

HCV was functionally active with increased mRNA levels of validated HIF-target 

genes in the infected cells. mRNA expression of VEGF [4-1D] and was 

upregulated by 5 and 10 fold in Huh-7 hepatoma cells infected with HCV for 24 

and 48 hour respectively; and mRNA expression of EPO [4-1E] was upregulated 

by 2 or 4 fold respectively.  

 

HCV replication may be inhibited by cell confluence due to a decline in the 

nucleoside pool (276). To ensure cell viability following HCV infection, cells were 

detached by trypsinization after 48 hours of incubation. The number of viable 

cells stained with Trypan blue reagent was counted using a hemocytometer. No 

difference in cell numbers was detected at different multiplicity of infection 

(MOI) of HCV [Fig 4-1F].  
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Fig 4-1. HCV infection stabilizes HIF-1α and 2α.Western blot of HIF1α and HIF2α proteins 

in mock and HCV-infected Huh-7 cells. 25ug of total protein was loaded per lane. A 

representative image is shown for each protein.  β-actin was used as a loading control [A]. 

Relative quantification of respective HIF1α [B] and 2α [C] proteins from western blot, 

adjusted to loading control. mRNA expression of known hypoxia-induced transcripts:- 

vascular endothelial growth factor (VEGF) and erythropoietin (EPO) in mock and HCV-

infected Huh-7 cells [D & E]. At the end of the experiment (48 hour), the viability of cells 

infected with mock or SA13/JFH was determined by Trypan blue and counted using 

hemocytometer (F). Huh-7 hepatoma cells were seeded at 4x104 cells/ml and infected with 

SA13/JFH at MOI 0.42 FFU/cell for 24 or 48 hours. Data are presented as the mean fold 

change+SD performed in triplicate wells and quantified relative to GAPDH. Experiments were 

repeated thrice. Unpaired Student’s t-test 
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4.3.2 HCV infection regulates hepatic de novo lipogenesis and  free fatty 

acid uptake   

 

Current literature showed that HCV core protein is steatogenic and patients with 

CHC demonstrate hepatic steatosis to varying degrees (269, 277, 278). We have 

shown that SA13/JFH infection increased SREBF1 and FASN mRNA levels by two 

fold [Fig 4-2]. To examine the functional effect of HCV infection on hepatic lipid 

accumulation, we measured DNL, FFA uptake and β-oxidation in mock and HCV 

infected Huh-7 hepatoma cells using isotope-labelled tracers as described in the 

previous chapter. Surprisingly, HCV infection decreased DNL [Fig 4-3A] and FFA 

uptake [Fig 4-3B] and had no detectable effect on β-oxidation [Fig 4-3C]. This 

observation was dependent on the multiplicity of infection (MOI) of HCV 

infection. A higher MOI (10.5) was associated with the lowest DNL and FFA 

uptake in infected cells and conversely, a lower MOI (0.02) was associated with 

the highest level of DNL, which was comparable to that of control. This suggests 

that the effect of HCV on DNL and FFA uptake may be dose dependent. HCV 

infection was confirmed by NS5A immunofluorescence analysis [Fig 4-3D].   
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Fig 4-2. HCV regulates sterol regulatory element-binding protein 1 (SREBF1), fatty 

acid synthase (FASN) and peroxisome and proliferator-activated receptor alpha 

(PPARα) RNA transcript levels in Huh-7 cells.  mRNA levels measured by RT-PCR in 

Huh-7 hepatoma cells seeded at 4x104 cells/ml and infected with mock or SA13/JFH 

HCVcc for 48 hours. Data are presented as the mean fold change (+SD) of experiments 

performed in triplicate wells and repeated twice and quantified relative to GAPDH. 

*p<0.05. Unpaired Student’s t-test 
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3D. 

  

 

 

Fig 4-3. HCV infection decreases de novo lipogenesis (DNL) and free fatty acid (FFA) 

uptake in a dose-dependent manner, but does not impact β-oxidation. Huh-7 hepatoma 

cells were seeded at 4x104 cells/ml and infected with mock or SA13/JFH at an MOI of 0, 0.02, 

0.42 or 10.5 FFU/cell and incubated for 48 hours before lysis and lipid extraction. DNL was 

measured by 1-[14C]-acetate incorporation into cell [A], FFA uptake was measured by 3H-

palmitate uptake [B] into lipid in cells and β-oxidation was measured by the amount of 3H-

water released by cells into the culture media [C]. Image shows foci formation in infected 

cells at different MOI. Foci were detected by staining for HCV NS5A protein (grey). Scale bar 

represent 40um [D]. Experiments were in performed in quadruplicates and repeated thrice. 

*p<0.05. Unpaired Student’s t test 
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4.3.3 HCV perturbation of host cell lipid accumulation is dependent on 

viral replication  

 

 

Unpurified HCVcc was used to infect the Huh-7 hepatoma cell lines in our study. 

To determine whether the effect of HCV on host cell lipid accumulation was viral 

specific or dependent on viral-induced cytokines or growth factors, we measured 

DNL and fatty acid uptake in the presence or absence of a neutralizing mAb that 

targets the cellular receptor CD81, which inhibits viral entry or NS3 protease 

inhibitor VX-950 (5 ug/ml), which inhibits viral replication.  

 

We showed that incubation with either anti-CD81 antibodies or VX-950 

successfully inhibited HCVcc infection, as confirmed by marked reduction of HCV 

NS5A staining on immunofluorescense [Fig 4-4A]. SA13/JFH-infected cells 

showed a reduction in DNL [Fig 4-4B] and FFA uptake [Fig 4-4C] compared to 

mock-infected cells. These effects were reversed with anti-CD81 monoclonal 

antibodies and VX-950. No effect was seen with β–oxidation [Fig 4-4D]. This data 

suggests that HCV inhibition of hepatocellular lipid accumulation  is dependent 

on HCV entry and replication. Interestingly, there was a significant reduction in 

FFA uptake in non-infected cells incubated with either agents, when compared to 

untreated non-infected cells. A similar trend was also observed with DNL but this 

did not reach statistical significance.  
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Fig 4-4. HCV inhibition of DNL and FFA uptake in Huh-7 hepatoma cells is dependent 

on viral entry and replication. Huh-7 cells were seeded at 4x104 cells/ml and when 60-

70% confluent, were treated with or without 1ug/ml of αCD81 antibody for 1 hour. Cells 

were then inoculated with HCVcc SA13/JFH at MOI 10.5 with or without 5ug/ml of VX950 

(a protease inhibitor) and incubated for a further 48 hours. DNL [A], FFA uptake [B] and β-

oxidation [C] in cells were measured using methods described previously. Experiments 

were performed twice and in quadruplicates. [D] Image shows foci formation detected by 

staining for HCV NS5A protein (grey). Scale bar represent 20um.  *p<0.05. Unpaired 

Student’s t test 
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4.3.4 HCV inhibition of hepatocellular DNL is viral strain-dependent 

 

HCVcc isolates are grouped into seven genotypes, whereby the junction between 

the chimera is at the structural (S) – non structural (NS) protein. Accumulating 

evidence indicates that viral determinants in the core to NS2 proteins modulate 

host metabolism. To clarify this, two HCVcc isolates were used to infect two types 

of hepatoma cell lines. Chimeric HCV genotype 2a J6/JFH and genotype 5 

SA13/JFH were used as both produced high infectivity in Huh-7 and Huh-7.5 

hepatoma cells in our culture systems. 

 

Both cell lines were infected with either viral strains for 48 hours. NS5A staining 

of the infected cells showed comparable frequency of antigen expressing cells in 

J6 or SA13 infected cells with increased infection observed in the more 

permissive Huh-7.5 cells (Fig. 4-5A) (279). HCVcc SA13/JFH infection 

significantly reduced DNL [Fig 4-5B] and FFA uptake [Fig 4-5C] in both Huh-7 

and Huh-7.5 cell lines, with minimal effect on β–oxidation {Fig 4-5D]. However, 

HCVcc J6/JFH-infection had no effect on DNL, FFA uptake or β–oxidation [Fig 4-

5B to D], suggesting strain-dependent effects.  
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Fig 4-5. HCV inhibition of DNL is specific to viral strain. Huh-7.5 and Huh-7 cells were 

seeded at 5x104 cell/mL and inoculated with either HCVcc J6/JFH or SA13/JFH at MOI 0.79 

and 0.35 respectively, for 48 hours. Image shows foci formation detected by staining for 

HCV NS5A protein (grey). Scale bar represent 20um [A].  DNL [B], FFA uptake [C] and β-

oxidation [D] in  Huh-7 and Huh-7.5 hepatoma cells were quantified using methods 

described previously. Experiments were performed twice in quadruplicates. *p<0.05. 

**p<0.01, ***p<0.001. Two-way ANOVA 
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4.3.5 HCV infection decreases DNL under both normoxic and hypoxic 

conditions 

 

Physiological oxygen gradients that exists in the liver and changes to oxygen 

tension that can occur in various liver pathologies such as viral hepatitis 

infection mean that the liver microenviroment can be more “hypoxic” than the 

environment hepatoma cells are cultured in vitro. To delineate the effects of HCV 

on lipid flux under more physiological conditions, we inoculated Huh-7 

hepatoma cells with SA13/JFH  and incubated them under 21% and 1% oxygen 

for 48 hours. NS5A staining between SA13/JFH-infected cells incubated under 

21% or 1% oxygen were comparable under both conditions [Fig 4-6A].  HCV 

infection stabilized HIF1α expression in cells incubated under both atmospheric 

conditions. Higher intensity HIF1α protein band was seen in infected cells 

incubated under hypoxia, suggesting additive effects of HCV infection and low 

oxygen signals in stabilising HIF1α. A faint HIF2α protein band was seen in 

infected cells cultured  under normoxia but not in cells cultured under hypoxia. 

[4-6B]. The latter observation is likely a result of under-optimisation of the 

primary antibody targeted against HIF2α. These observations correlated with 

the relative quantification of HIF proteins showed in Fig 4-6C.  

 

We also showed that HCV infection reduced DNL under normoxic or hypoxic 

conditions. Even though hypoxia alone would increase DNL, the net effect of HCV 

infection and hypoxia was a reduction in DNL  in Huh-7 hepatoma cells [Fig 4-

6D].  
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6C. 
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Fig 4-6. HCV infection reduces DNL under normoxic (21%) and hypoxic (1% oxygen) 

conditions. Huh-7 hepatoma cells were infected with mock or SA13/JFH at MOI 8.5 and 

immediately placed under 21% oxygen or 1% oxygen. NS5A positive (infected) Huh-7 

hepatoma cells are shown in grey. Scale bar represents 10um [A]. HIF protein expressions 

were measured by western blot [B] and the density of each protein band was quantified 

against loading control [C]. Cells were lysed after 48 hours and measured for DNL by 1-

[14C]-acetate incorporation into lipid in cells [D]. Experiments were performed twice in 

quadruplicates (n=2). *p<0.05, **p<0.001. Unpaired Student’s t-test 
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4.4 DISCUSSION 

 

HCV is dependent on host lipid metabolism to complete its life cycle and this is 

largely mediated via the viral encoded core protein. We demonstrated that HCV 

infection increased the mRNA expression of lipid genes SREBF1, FASN and 

PPARα. Other studies aimed at interrogating the molecular mechanisms of HCV-

induced lipid accumulation have also linked these genes to hepatic steatosis in 

vitro (124, 269, 277, 278, 280). Even though HCV activated lipogenic gene, post-

transcriptionally, this did not translate into function at cellular level, as HCV 

reduced de novo lipogenesis and FFA uptake. As far as we know, few studies have 

utilised radio-isotopes to measure lipid flux in the setting of HCV infection in 

vitro. Amako et al. measured 3H-palmitate incorporation by Huh-7.5 cell lines and 

found that HCV JFH-1 infection reduced 3H-palmitate uptake, suggesting an 

attenuation of mitochondrial lipid β-oxidation (281). However, we did not 

observe any changes in β-oxidation between mock and HCV-infected cells in our 

model system. These discrepancies between our study and that of Amako Y et al. 

may be explained by the different hepatoma cell lines or viral strains used. As 

described in the previous chapter, HIF-2a protein can sometimes be difficult to 

image via Western blotting and therefore, further validation is required before 

robust conclusion can be drawn.  

 

Apart form DNL, FFA uptake and β-oxidation, liver fat volume is also determined 

by the export of TG as VLDL into the bloodstream, and the flux of fatty acids 

released from adipose tissue through lipolysis. The latter two were not measured 

in this study. Douglas et al showed that reactive oxygen species, which are 
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induced by HCV infection, attenuate lipid synthesis and enhanced β-oxidation in 

HCV infected Huh-7.5 cells, yet cellular lipids still accumulated during infection. 

He concluded that as serum polyunsaturated fatty acids were elevated in the 

infected cells, altered lipid import/export pathways in the cells were responsible 

for the observed increase in lipid accumulation (275). In addition, different 

lipogenic pathways are activated in different liver diseases (190, 261) and in the 

case of CHC, DNL and FFA uptake may not be the main pathways by which HCV 

affect hepatic lipid metabolism.  

 

Contrary to our findings, CHC has been shown to induce hepatocellular lipid 

accumulation in vitro (277, 281, 282). However, it is unclear whether these 

effects were virus-dependent or a consequence of host inflammatory responses. 

Even though we observed a reduction in DNL and FFA uptake following HCV 

SA13/JFH infection, that was not observed in J6/JFH infected cells suggesting 

that HCV-induced hepatocellular lipid alteration may be dependent on the viral 

strain, and specifically the viral encoded structural protein.  

 

HCV alters the host lipid metabolism to favour its own replication and virion 

production, these pathophysiological changes are shared by all viral genotypes 

clinically while steatosis is more frequent and severe in genotype 3 infections 

(283), suggesting an involvement of additional mechanisms in case of an 

infection with this genotype. Unfortunately, the differential efficiency, shown by 

the various viral genotypes, in leading to the appearance of large fat droplets has 

been poorly studied (284). To date, much of our understanding of viral–induced 

hepatic steatosis derives from in vitro studies with infectious molecular clones 
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based on the genotype 2 isolate, JFH-1, (259, 260) as is with our study.  

Moreover, a direct comparison between different genotypes has been rarely 

performed, using the same model and experimental conditions. Therefore, the 

viral strain specificity observed in this study should be interpreted cautiously. 

 

To date, as far as we are aware of, HCV-induced dyslipidaemia has been studied 

exclusively under atmospheric oxygen tension (21%). In the contrary, the role of 

hypoxia, in particular, hypoxia inducible factors (HIFs) , in the pathogenesis of 

alcoholic and non-alcoholic fatty liver diseases has been studied extensively 

(222-224). On their own, low oxygen induces hepatic lipid accumulation whilst 

HCV inhibits lipid accumulation. It is perhaps slightly surprising that the 

combined effect of low oxygen and HCV still reduced hepatocellular DNL and FFA 

uptake. This raises important questions as to the roles of HCV and other yet to be 

identified host factor(s), which regulate liver metabolism in CHC.  

 

 

4.5 CONCLUSION 

 

We are beginning to dissect the mechanisms by which HCV alters hepatocellular 

lipid metabolism. Further investigations comparing the different pathways by 

which different HCV strains alter liver fat volume is needed.  With the advent of 

directly acting antivirals, genotype three CHC is now the most difficult and 

urgent to treat and understanding the link between hepatic steatosis and CHC is 

becoming even more important. 
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5.0 METABOLIC PHENOTYPE IN CONTROL, CHC AND NASH 
 

5.1 INTRODUCTION  

 

In the past, hepatic steatosis was a histological diagnosis associated with type 2 

diabetes mellitus and obesity. The liver was essentially regarded as a target 

organ affected by either concurrent or pre-existent metabolic disorder such as 

insulin resistance and type 2 diabetes mellitus (285, 286). Several studies have 

now shown that hepatic steatosis precedes the development of metabolic 

disorder in a large proportion of cases (287-289). Non-alcoholic fatty liver 

disease (NAFLD) and chronic hepatitis C (CHC) are increasingly identified as 

diseases which are conducive to metabolic disorders (290). With the high 

prevalence rates of NAFLD and CHC, it is expected that these two diseases will 

occur together in a certain proportion of patients. Whilst the mechanism for the 

development of steatosis and insulin resistance in the setting of NAFLD is well 

understood, the mechanisms for these in CHC are less well defined.  

 

Hepatic steatosis and insulin resistance occur more frequently in patients with 

HCV infection than in the general population in the Western world (140-143, 

291-293). Type 2 diabetes mellitus (DM) is also more prevalent in patients with 

HCV-associated cirrhosis compared to other causes of cirrhosis (139). The 

macrovesicular steatosis present in patients with HCV is distributed in the 

periportal areas rather than the centrilobular region, which is more commonly 

seen in non-alcoholic fatty liver disease (294), indicating that HCV may be 
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directly inducing steatosis rather than being an unrelated finding. HCV-induced 

insulin resistance has been reported to impact on treatment response to 

interferon-based therapy and exacerbates hepatic fibrosis, leading to 

hepatocellular carcinoma (145, 295) (141, 143, 293, 296). Over the decades, 

clinicians have tried to characterize the metabolic syndrome seen in patients 

with CHC. The interaction of host and viral factors is thought to play a major role 

in hepatic steatosis and insulin resistance in CHC (106, 111, 116, 120-122, 126, 

130, 131). The main sites of insulin resistance in CHC are also thought to be both 

intra- (137) and extra-hepatic (138). The contribution of obesity to steatosis 

appears to be greater in patients with genotype 1 CHC (148).  

 

NAFLD comprises of hepatic steatosis, necro-inflammation of varying stages of 

fibrosis known as non-alcoholic steatohepatitis (NASH) and cirrhosis. It is 

prevalent and affects 30% of the general population and 70-90% of individuals 

with type 2 diabetes and/or obesity (297). Type 2 diabetes and obesity are 

independent risk factor for cirrhosis and carcinogenesis in NAFLD (298-301). 

Several pathophysiological mechanisms have been proposed for NAFLD (44, 194, 

302, 303) but despite these, it still remains unclear why some individuals 

develope steatohepatitis, cirrhosis and liver failure, whilst others do not. A 

“multi-hit” hypothesis, which incorporates the interplay of insulin resistance, 

oxidative stress, and an inflammatory cascade, has been proposed (193, 194). 

Experts believe that a complex interplay between genetic susceptibility and 

multiple environmental factors contribute to progressive disease [Day 2002], 

and it is likely that insulin resistance plays a critical role in the pathogenesis in 

NAFLD. Using hyperinsulinaemic eyglycaemic clamp techniques coupled with 
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stable isotopes, several studies have identified the liver and muscle as the key 

sites of increased insulin resistance in patients with NASH (200, 203-205, 304). 

More recently, adipose tissue has also been identified as the source of fatty acids 

which drive lipid synthesis in the liver of patients with NASH (190). The 

predominant functions of adipose tissue are either to store or mobilize lipids. 

The degree to which each of these functions is performed depends on the 

expression of cytokines, which depends on the genetic composition of the 

individual, the site of adipose tissue, the type and degree of nutrients consumed, 

humoral factors and the sites of inflammation. Armstrong et al demonstrated 

that patients with NASH have marked adipose tissue dysfunction and increased 

hepatic and skeletal insulin resistance. In particular, they also found profound 

levels of insulin resistance and lipolysis in abdominal subcutaneous adipose 

tissue, which appeared disproportionate to whole-body adipose (201).  

 

To date, no studies have compared the relative contribution of hepatic and 

peripheral tissue to the metabolic abnormalities associated with CHC vs. NASH. 

Adopting an integrative physiological approach with functional measures of lipid 

and carbohydrate flux, we aim to compare the relative contribution of tissue-

specific insulin sensitivity in patients with CHC, NASH and healthy controls. All 

three groups of patients were recruited from a single centre, but at different time 

points. A standardized protocol was used in all studies. 
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5.2 HYPOTHESIS AND AIMS 

 

 

Hypothesis: The relative contribution of tissue specific insulin resistance to the 

metabolic syndrome differs in patients with CHC and NASH. 

 

 

Aim: 

 

To compare global and tissue specific changes in insulin sensitivity in healthy 

subjects, CHC and NASH by measuring:- 

1. Change in systemic insulin sensitivity 

2. Change in liver fat and insulin sensitivity 

3. Change in adipose tissue insulin sensitivity  

 

 

 

 

 

 

 

 

 



111 
 

5.3 METHODS 

 

5.3.1 Study subjects 

 

Baseline phenotype of patients with CHC was compared to that of healthy 

volunteers from the FindIT study conducted by Hazlehurst et al. (305) and of 

patients diagnosed with NASH from LEAN study conducted by Armstrong et al. 

(306). All cohorts of patients were recruited from a single centre and underwent 

standardized physiological assessments as described below. 

 

Hepatitis C virus (HCV) cohort 

 

Between 1st October 2012 to 30th September 2014, 89 patients were screened 

and 13 patients were recruited into the study. Patients were naïve to anti-viral 

treatment, and were non-cirrhotic. Nine patients were infected with genotype 1 

and four with genotype 3 HCV. 

Inclusion criteria 

1. 18-70 years old 

2. BMI 18-34 kg/m2 

3. Eligible for antiviral treatment within 6 months of recruitment 

4. Successful viral eradication following treatment, measured by 

undetectable HCV PCR 3 months following end of antiviral treatment 

4. Good understanding of English  
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Exclusion criteria 

1. Refusal or lacks capacity to give informed consent to participate in study 

2. Evidence of liver cirrhosis shown on transient elastography or liver 

biopsy 

3. Liver diseases of other aetiologies (drug-induced, viral hepatitis, 

autoimmune hepatitis, primary biliary cirrhosis, primary schlerosing 

cholangitis, haemochromatosis, alpha-1 antitripsin deficiency, Wilsons 

disease). 

4. Current or previous insulin or oral hyperglycaemic therapy, or HbA1c 

>9.0% 

5. Pregnancy or breastfeeding 

6. Average alcohol consumption per week male >21, female >14 units  

7.  >5% weight loss within the last 6 months 

8. ALT or AST > 10x upper limit of normal 

 

Non-alcoholic steatohepatitis (NASH) patients (LEAN study) 

 

Patients with definite diagnosis of non-alcoholic steatohepatitis (NASH) 

confirmed by biopsy by two independent histopathologists were recruited 

between 2007-2009. All participants were between 18-70 years of age and have 

a body mass index (BMI) of >25kg/m2 at screening. Patients with type 2 diabetes 

had to have stable glycaemic control (HbA1c < 9.0%) and be managed by either 

diet and/or a stable dose of metformin/sulphonylurea. Patients with history or 

current significant alcohol consumption, poor glycaemic control (HbA1c > 9.0%), 

Child’s Pugh B or C cirrhosis or another liver disease aetiology were excluded 
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from the study. Those on concomitant use of drugs reported to be inducers of 

(methotrexate, amiodarone, steroids) or potential therapies for NASH (TZDs, 

vitamin E) or other known hepatotoxins were also excluded.  Physiological 

assessments in these patients were performed by by Dr M.J. Amrstrong. 

 

Healthy volunteers (FindIT study)  

 

Twelve healthy male volunteers were recruited from local advertisement 

between 2006-2009 and provided written informed consent. All were non-

diabetic, were normotensive, aged 18–65 years, and had a BMI between 20 and 

35 kg/m2. All were non-diabetic, had not been on glucocorticoid or any 

medications known to impact on glucocorticoid metabolism, within the previous 

6 months. Physiological assessments on all the volunteers were performed by Dr 

J Hazlehurst. 
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5.3.2 Study design 

 

All patients were invited to visit the Welcome Trust Clinical Research Unit at 

different time points. In all 3 studies, patient demographics, clinical and 

biochemical measures were recorded. These included anthropometry (including 

bioimpedance), fasting haematological and biochemical bloods, liver 

biochemistry and plasma glucose, which were measured using standard 

laboratory methods (Roche Modular system, Roche Ltd, Lewes, UK). Serum 

insulin and NEFA were measured using standard laboratory methods. Patients 

also underwent 2-step hyperinsulinaemic euglycaemic clamp, 2H5-glycerol 

infusion (except LEAN), adipose tissue microdialysis, magnetic resonance 

spectroscopy of the liver and dual energy absorptiometry (DXA) scans during 

each visit as part of the metabolic study. A schematic of the metabolic study is 

shown in Fig 1.   
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Fig 5-1. Schematics of metabolic study. Participants from all three studies underwent a 2-

step hyperinsulinaemic euglycaemic clamp with stable isotope tracers (13C-glucose; 2H5-

glycerol; 2H2O deuterated water) and adipose microdialysis. *Patients from FindIT did not 

have 2H5-glycerol infusion as part of the study protocol. 
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Hepatic DNL 

 

The evening prior to the clinical study, subjects visited the research facility for 

blood sampling [measuring free fatty acid (FFA), Very Low Density Lipoprotein 

(VLDL), triglycerides (TG) and insulin. They were then given a standardized 

evening meal (carbohydrates 45g, protein 23g, and fat 20g). To determine the 

rates of de novo lipogenesis, they were given oral 2H2O (3g/kg deuterated water 

in 2 divided doses) at 5pm and 10 pm, followed by drinking water enriched to 

0.4%. They then returned to the research facility the next morning in the fasting 

state (08.00). A blood sample was taken to measure; 

• VLDL and TG concentrations  

• Enrichment with 2H, and plasma water enrichment from which de novo 

lipogenesis was calculated. 

 

The percentage contribution of hepatic DNL to endogenous palmitate synthesis 

was determined by the incorporation of 2H2O in the palmitate present in the 

plasma total triglyceride pool, as previously described (208). This percentage 

was calculated from the increase in the 2H/1H ratio in the palmitate methylester 

of the total triglyceride fraction and in the water of plasma samples taken before 

(1700 hours, the evening before) and 14 hours after the initial ingestion of the 

2H2O tracer (0800 hours, before the start of the hyperinsulinaemic euglycaemic 

clamp). The following formula was used: % hepatic DNL contributes to 

endogenous palmitate synthesis = [delta 2H/1H ratio in palmitate 

methylester]/[delta 2H/1H ratio in waterpool] X (34/22) X 100%. In the 
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equation, 34 is the total number of H-atoms in palmitate methylester and 22 is 

the number of water molecules incorporated into palmitate via DNL as observed 

in previous rodent studies (Diraison et al., 1996) and currently used in human 

studies (Diraison et al., 1997). 

 

 

2-step hyperinsulinaemic euglycaemic clamp  

 
 
The 2-step hyperinsulinaemic euglycaemic clamp is the gold standard used to 

measure hepatic insulin sensitivity (endogenous glucose production) and 

peripheral, mainly skeletal muscle insulin sensitivity (glucose disposal) in vivo 

[Fig 2]. A bolus of 13C-glucose (CK Gas Ltd, Hook, UK) was administered 

(2mg/kg) over 1 minute followed by constant rate infusion of 13C-glucose (20 

µg/kg/min). Basal steady state samples were taken at 3 time points during the 

final 30 minutes of the 2 hours before insulin and glucose infusions. At 10am a 

soluble insulin infusion (Actrapid; Novo Nordisk, Copenhagen, Denmark) was 

commenced (20mU/m2/min), together with an infusion of 20% glucose enriched 

with 13C-glucose to 4%, beginning at 2 mg/kg/min through the same line. 

 

Arterialized blood samples were taken at 5-minute intervals and the glucose 

infusion rate changed to maintain fasting glycaemic levels. Steady state samples 

were taken at 3 time points in the final 30 minutes, 2 hours after starting the 

insulin infusion. The insulin infusion rate was then increased to 100mU/m2/kg) 

for 2 hours with sampling as described above.  
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The M value is defined as the average glucose infusion rate over a period of 120 

minutes from the start of the insulin infusion. The M/I ratio is the ratio of the M 

value to the average plasma insulin concentration during the same period. When 

a two-step clamp is performed the ΔM/ΔI ratio is defined as the increment of M 

produced by raising the insulin infusion rate over the corresponding increment 

of I. The use of these indices, however, makes two fundamental assumptions: 

first, that at the end of 120' of insulin infusion the experimental subject is at 

steady state with regard to glucose uptake rate; and second, that the glucose 

uptake rate increases linearly with increasing insulinaemia, either throughout 

the insulin concentration range (when using the M/I index for characterizing the 

subject's response) or between successive insulin concentrations reached in the 

two-step clamp (when using the ΔM/ΔI index).  

 

Rates of glucose production (Ra glucose) and glucose disposal were calculated 

using modified versions of the Steel equations (307, 308). In brief, the steady 

state glucose rate of appearance (Glu Ra) adjusted for insulin concentration 

(M/I) was indicative of hepatic glucose production; and the steady state glucose 

rate of disposal (Glu Rd) adjusted for insulin concentration (M/I) was indicative 

of insulin-mediated glucose uptake. 
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Measuring glucose using near-patient YSI machine 

 

Serum glucose was measured using the 2300 STAT PLUS Analyser (YSI 

Incorporated, Life Sciences, Ohio, USA). 

 

Required equipment: 

• 2 ml plastic tubes to present to the sipper 

• Rinsing buffer 

Figure 5-2. A two-step hyperinsulinaemic euglycaemic clamp from the study. The 

infusion rate of 20% glucose (+4% 13C-glucose isotope) was adapted every 5 minutes to 

maintain euglycaemia (4.65 mmol/L in current case) throughout 2 hours low-dose insulin 

(20mU/m2/min) and 2 hours high-dose insulin (100mU/m2/min) infusions. Steady-state 

samples were collected between 210-240 minutes (1st step, representing hepatic insulin 

sensitivity) and 330-360 minutes (2nd step, representing peripheral insulin sensitivity). 
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• Calibrators 

After calibration, the YSI machine was placed in ‘RUN’ mode. Serum samples 

were automatically aspirated and glucose result displayed on screen in 15-30 

seconds. The YSI automatically self-calibrates every 15 minutes when in RUN 

mode. 

 

2H5-glycerol infusion (insulin suppressed lipolysis) 

 

Principle: Measurement of glycerol appearance is useful since fatty acid flux 

underestimates the rate of lipolysis because of re-esterification. Fatty acids can 

become re-esterified within adipocytes, which prevent release of fatty acids into 

the bloodstream despite active lipolysis. However, glycerol cannot be 

reincorporated into triglycerides because glycerol kinase is absent within 

adipocytes. 

 

Whole body lipolysis was assessed, by measuring glycerol rate of appearance 

(Gly Ra) using a stable isotope method. Stable levels of 2H5-glycerol 

(0.1umol/kg/min) (CK Gas Ltd, Hook, UK) were infused alongside the 2-step 

hyperinsulinaemic euglycaemic clamp described above. The decrease in Gly Ra, 

from basal to steady-state low and high-insulin is an index of the suppression of 

lipolysis by insulin. Multiple low dose insulin steps are used to construct decay 

curves to assess the insulin concentration needed to half-maximally suppress Gly 

Ra (EC50). 
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Stable Isotope Mass Spectrometry Analysis 

 

The enrichment of U-[13C]-glucose in plasma was determined by gas 

chromatography-mass spectrometry (model 5973; Agilent technologies, 

Cheshire, UK). Deuterium enrichment of the body water pool was measured 

using H2/H2O equilibration device, coupled on-line to a ThermoFinnigan 

Deltaplus XP Isotope Ratio Mass Spectrometer (IRMS; ThermoFinnigan MAT 

GmbH, Bremen, Germany). The full methods have been previously described in 

detail (208). In brief, after adding 200μl of plasma sample and inserting platinum 

catalyst to a borosilicate sample vial, the vial is capped and automatically flushed 

with 2% H2 in He equilibration gas. After an equilibration time of 40 minutes, the 

2H/1H enrichment of the head space gas is sampled and analysed automatically 

(mean of 10-fold measurement) on the IRMS using 2% H2 in He as reference gas. 

The in house coefficient of variation of this assay is <2% for naturally enriched 

samples and <0.5% for samples with a 2H/1H ratio 0.001 > natural background. 

 

Deuterium enrichment in the palmitate fraction of total plasma triglycerides was 

measured on an automated GC/TC/IRMS system (Thermo Finnigan Delta Pus XP; 

Thermo Electron Cooperation, Bremen, Germany) (www.thermo.com). In brief, 

the lipid fraction was extracted from 1.5 ml of plasma as described by Folch et al 

(309) and the triglyceride fraction isolated by solid phase extraction Bond Elut 

NH2-Aminopropyl columns). After transmethylation of the triglyceride fraction 

(310), the 2H/2H ratio in palmitate methylester was measured via a GC 

separation of the methylated fatty acids followed by pyrolytic conversion of the 

palmitate methylester into CO and H2, followed by online continuous flow 
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measurement of the 2H/2H ratio in the separated H2 peak by the 

ThermoFinningan Deltaplus XP IRMS (Bremen, Germany). The in house 

coefficient of variation of this assay is <5% over the sample range observed in 

this study (2H/2H ratio 0.00000-0.0004 > natural background). The 2H/2H ratio 

of both the body water pool and of the palmitate fraction of total plasma 

triglyceride was corrected against enrichment curves. 

 

 

Subcutaneous adipose tissue (SAT) microdialysis 

 

Principle: The contribution of the adipose tissue in the pathophysiology of IR is 

partly based on its lipolytic activity, resulting in mobilization of free fatty acids 

and glycerol. Increased levels of free fatty acids are deleterious for glucose 

utilization and insulin action. In order to determine the impact of HCV on global 

metabolic phenotype (the absolute rate of exchange of glucose, glycerol and 

lactate), we performed adipose tissue microdialysis, which allowed the sampling 

of adipose interstitial fluid. Measurement of pyruvate and glycerol within the 

fluid can provide an assessment of insulin stimulated glucose uptake (pyruvate) 

and insulin mediated suppression of lipolysis (glycerol).  

 

A single microdialysis catheter (M Dialysis 63 40/30, Prospect Diagnostics ltd) 

was inserted under local anaesthetic (1ml of 1% lignocaine) into the 

subcutaneous adipose tissue 5cm to one side of the umbilicus. Using the CMA107 

microdialysis pump, a microdialysate solution (physiological sterile saline 

solution) was introduced into the catheter (perfusion rate = 0.3l/minute). 
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Microdialysis took place over the duration of the hyperinsulinaemic clamp 

(including the basal phase). Microdialysis samples were taken at 30-minute 

intervals for the duration of the 2-step clamp. Microdialysate fractions will be 

analyzed by mobile photometric, enzyme-kinetic, automated analyzer (CMA 

ISCUS flex) for glycerol, glucose, lactate and pyruvate.  

 

 

RNA isolation and cDNA synthesis 

 

The blood samples were collected into 15 ml tubes. Total RNA from blood 

samples was extracted using Roche High Pure PCR Template Preparation Kit 

(Catalog number; 11796828001) according to the manufacturer's instructions. 

Total RNA was reverse-transcribed into first-strand complementary DNA (cDNA) 

using a High Capacity cDNA Reverse Transcription Kit (Invitrogen, Life Sciences, 

Catalog Number: 4368814) in a tube including 2.0 μl 10X RT buffer, 0.8 μl 25X 

dNTP (100 mM), 2.0 μl 10X RT random primer, 1.0 μl reverse transcriptase 

enzyme, and 4.2 μl nuclease free water. The cycle conditions were as follows: 10 

min at 25 °C, 120 min at 37 °C, and 5 min at 85 °C.  

 

 

Serum insulin, glucose and free fatty acid measurements 

 

This is a solid phase two-site enzyme immunoassay using two monoclonal 

antibodies (abs) against separate antigenic determinants on the insulin molecule. 

Each Human and Mouse insulin ELISA kit (Mercodia, Sweden) kit contains the 
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following: 

• Mouse monoclonal anti-insulin-coated plate 

• Calibrators 0-5 containing set concentrations of recombinant human insulin 

• Enzyme Conjugate 11X (1.2ml) –mouse monoclonal anti-insulin 

• Enzyme Conjugate Buffer (12ml) – added to Enzyme Conjugate 11X to make 

Enzyme Conjugate 1X solution 

• Wash buffer 21X (50ml) – added to 1L distilled H20 to make wash buffer 1X 

solution 

• Substrate TMB (light sensitive) 

• Stop solution 

 

Methods 

 

Human serum was defrosted on ice at room temperature. Calibrators and 

samples (10μl each) in duplicate were transferred to 96-well plate. Enzyme 

conjugate 1X solution 100μl was added to each well, and samples incubated on a 

plate shaker (700-900 rpm) for 2 hours at room temperature (18-25°C). 

Reaction volume was discarded by inverting the microplate over a sink and 

plates then washed manually by adding 350μl wash buffer 1X solution to each 

well. Wash solution was discarded and the plate tapped firmly against absorbent 

paper to remove excess liquid. This step was repeated 5 times, followed by 

addition of Substrate TMB 200μl to each well. After incubation for 15 minutes at 

room temperature, 50μl Stop Solution was added and the plate placed on the 

shaker for 5 seconds to ensure mixing. Optical density of plates was measured at 

450nm on spectrophotometer. 
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Serum free fatty acids (FFA) 

 

Serum free fatty acids were measured in human serum samples using a 

commercially available kit (ZenBio, NC, US). Assessment of serum fatty acids is 

via a coupled reaction to measure non-esterified fatty acids (NEFA). The initial 

step is catalyzed by acyl-CoA synthetase (ACS), which produces fatty acyl-CoA 

thiol esters from the NEFA, ATP, magnesium and CoA in the reaction. 

Subsequently acyl-CoA esters react with oxygen in the presence of acyl-CoA 

oxidase to produce hydrogen peroxide. In the presence of peroxidase, hydrogen 

peroxide allows the oxidative consensation of 3-methyl-N-ethyl-N-(β-

hydroxylethyl)-aniline with 4-aminoantipyrine, forming a purple product which 

absorbs light at 550nm. Each kit contains the following: 

 

• Dilution buffer 100ml 

• FFA standard 

• FFA Diluent A 

• FFA Diluent B 

• FFA Reagent A 

• FFA Reagent B 

Methods 

 

A standard curve was prepared using the Standard Solution by means of serial 

dilutions with dilution buffer, with final concentrations of 0, 1.4, 4.1, 12.3, 37, 

111 and 333μM. FFA Reagent A and B was prepared by adding 50ml FFA Diluent 
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A and B respectively. 5μl of serum samples were added in duplicate to a 96-well 

plate. 45μl of dilution buffer was added to each well to give a total volume of 50μl 

(1:10 dilution). 100 μl of Reagent A was added to each well. The plate was placed 

on an orbital shaker for 10 seconds to ensure mixing, then placed in an incubator 

at 37°C for 10 minutes. 50 μl of Reagent B was next added to each well and the 

plate placed on an orbital shaker for 10 seconds to ensure mixing. The plate was 

then placed in an incubator at 37°C for 10 minutes. The plate was allowed to 

equilibrate at room temperature for 5 minutes. The optical density of each well 

was then measured at 540nm. 

 

 

Magnetic resonance spectroscopy (MRS) of liver  

 

Principle:- The current method for assessment of hepatic steatosis is with 

ultrasound or liver biopsy. These procedures are highly insensitive (ultrasound) 

or invasive and uncomfortable for patients (biopsy) limiting their use in clinical 

practice (311). Non-invasive magnetic resonance spectroscopy (MRS) protocols 

have already been applied for the quantification of hepatocellular lipid content in 

different populations and have excellent correlation with liver biopsy (312). MRS 

directly measures the triglyceride content in the liver cells and quantitatively 

analyzes the composition of fat in liver and the biochemical characteristic of lipid 

metabolism.  

 

MRS protocol: MRS of the liver was performed on a Siemens Verio 3T MRI system 
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using single-voxel PRESS-MRS, following orthogonal T1w VIBE (3D-GRE) breath-

hold localisers of the thorax and abdomen. A (20x20x20) mm3 MRS voxel was 

prescribed, localised in the central right lobe of the liver, avoiding major blood 

vessels and bile ducts. Image-based shimming was performed over a co-localised 

(40x40x40) mm3 region, with manual adjustments where necessary to achieve 

water linewidth < 40Hz. To allow T2-corrected fat fraction measurements, MRS 

was acquired without water suppression during a single breath-hold (NSA=7, 

TR=3s, preps=0), with 4 repeated acquisitions at each of 4 selected echo 

times/TE’s (TE=30,40,70,100 ms). MRS with water suppression was also 

acquired at the same TEs to further characterise the metabolite profile. All 

breath-hold scans were acquired at end-expiration with patient coaching. 

Spectra were fitted offline using Tarquin4 with a customised basis set containing 

lipid and metabolite peaks. Strict quality control (QC) criteria were applied and 

visual inspection of fits was performed. Exponential fitting was performed to 

estimate water, lipid and metabolite T2s and lipid and metabolite levels were 

calculated relative to water at each TE with and without T2 correction. 

        

 

 

Dual energy absorptiometry (DXA) scan  

 

DXA scan is recognized as the reference method to measure bone mineral 

density (BMD) and uses two X-ray energies to measure the presence of bone 

mineral, lean tissue and adipose tissue. DXA was employed for body composition 

assessment using Hologic Discovery/W DXA (software version Apex 3.0, Hologic 
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Inc.). Specific fat phenotype was measured using android, gynecoid, peripheral 

(arms and legs), and trunk regions of interest, with subsequent calculation of 

android:gynecoid and trunk:peripheral fat ratios (Gregson et al., 2013). 

 

 

 

6.3.3 Statistical analysis  

 

Continuous clinical and laboratory variables are reported as means and standard 

error (SE) as all variables had parametric distribution on D’Agostino and 

Pearson Omnibus Normality testing. Categorical variables are reported as 

number and percentages. Area under the curve (AUC) analysis was performed 

using the trapezoidal method for interstitial glycerol release during the clamp. 

For comparison of single variables, unpaired Student t-tests were used (or non-

parametric equivalents where data were not normally distributed). Where 

repeated samples were taken repeated-measures one-way ANOVA was used, 

incorporating the Dunnett’s test for multiple comparisons. The significance level 

was set at p<0.05. All analysis was performed using the GraphPad Prism 5.0 

software package.  
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Storage of clinical samples 

 

Serum and plasma samples and adipose biopsies collected were stored frozen in 

1ml aliquots at -80C at the Institute of Biomedical Research, University of 

Birmingham. The specimen storage banks hold a license from the Human Tissue 

Authority to store tissue for research purposes. 

 

 

Data handling, quality assurance, record keeping and retention 

 

Data management was undertaken according to the standard operating 

procedures of the CRCTU at the University of Birmingham, UK. The CRCTU was 

fully compliant with the Data Protection Act 1998 and the International 

Conference on Harmonisation Good Clinical Practice (ICH GCP). The CRCTU was 

responsible for monitoring the study and providing annual reports to the MHRA. 

The trial was registered with the Data Protection Act website at the University of 

Birmingham. Participant identifiable data were shared only within the clinical 

team on a need-to-know basis to provide clinical care, and to ensure good and 

appropriate follow-up. Patient identifiable data were also shared with approved 

auditors from the NRES, Competent authorities (including MHRA, EMA and FDA), 

Sponsor (University of Birmingham), NHS R&D departments and the primary 

care practitioner. All participants provided specific written-consent at trial entry 

to enable data to be shared with the above. Otherwise, confidentiality was 

maintained throughout the trial and thereafter. On completion of the trial, data 

will be transferred to a secure archiving facility at the University of Birmingham, 



130 
 

where data will be held for a minimum of 10 years and then destroyed. 

 

 

Sponsorship, Indemnity and Monitoring 

 

The University of Birmingham acted as the sponsor of the trial. As sponsor the 

University was responsible for the general conduct of the study and indemnified 

the trial centre against any claims, arising from any negligent act or omission by 

the University in fulfilling the sponsor role in respect of the study.  

 

 

Sources of funding 

 

The HCV trial was funded by the Medical Research Council (Clinical Research 

Fellowship awarded to Lim TR, 2012), and the NIHR liver BRU. The LEAN trial 

was funded by the Wellcome Trust (Clinical Research Fellowship awarded to 

Armstrong MJ, 2009), Novo Nordisk Ltd and the NIHR liver BRU. The FindIT trial 

was funded by Medical Research Council (Senior Clinical Fellowship awarded to 

Tomlinson JW, 2009).  
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5.4 RESULTS 

 

 

5.4.1 Patient characteristics and clinical parameters 

 

13 patients with CHC (nine patients with genotype 1, four patients with genotype 

3), 16 patients with NASH and 12 healthy controls were included in the analysis 

for this chapter [Table 5-1]. All healthy volunteers were male. 83.3% of patients 

from FindIT were Caucasian, compared to 69.2% in the HCV cohort and 100% in 

the NASH cohort. Median age was comparable between the three groups. BMI, 

total fat mass, truncal fat mass and blood parameters such as total cholesterol, 

HDL, triglycerides and creatinine were significantly different within the groups. 

Post hoc analysis showed that the significant variance in total cholesterol was 

between all groups, and the significant variance in BMI, total fat mass, truncal fat 

mass, HDL and triglycerides were only between NASH and HCV or NASH and 

control.  
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5.4.2 Systemic insulin resistance   

 

An analysis of variance (ANOVA) yielded significant variation in fasting glucose, 

fasting insulin and homeostatic model assessment-insulin resistance (HOMA-IR) 

within the groups [Table 5-1]. During the 2-step hyperinsulinaemic clamp, there 

was significant variation in M/I (weight-adjusted glucose infusion rates in 

response to low-dose [F=14.87, p<0.0001] and high-dose [F=24.27, p<0.0001] 

insulin infusions) [Fig 5-3A & B]. Post hoc analysis showed that the differences 

were significant between control and NASH (0.033±0.023 vs. 0.004±0.001 

Table 5-1. Demographics and clinical parameters of healthy subjects, patients with CHC 

and NASH. Blood parameters were fasted. Mean (SE), unless stated. One-way ANOVA. 
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mg/kg/min; p<0.0001; and between CHC and NASH (0.020±0.097 vs. 

0.004±0.001 mg/kg/min; p<0.0001) at low dose insulin infusion. At high dose 

insulin infusion, it was significant between all groups (0.0131±0.00564 vs. 

0.00824±0.0025 vs. 0.00397±0.0012 mg/kg/min; p<0.0001 for control, CHC and 

NASH respectively).    
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Fig 5-3. Significant variation in weight-adjusted glucose infusion rates in 

response to low dose, M/I (Step 1) and high dose, M/I (Step 2) values. M/I 

values were measured in control (n=12), HCV (n=13) and NASH (n=16) patients 

over 120-240min [A] and 240-360min [B] of the euglycaemic hyperinsulinaemic 

clamp. *p<0.05, ****p<0.0001. One-way ANOVA 
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5.4.3 Hepatic and Peripheral (muscle) insulin resistance 

 

From the 2-step hyperinsulinaemic clamp, body weight-adjusted rate of glucose 

appearance, Ra and glucose disposal rates, Gd, were calculated.  There were 

significant differences in the rate of appearance of glucose at basal [F=42.16, 

p<0.0001) and at low-dose insulin infusion, ie. endogenous glucose production, 

EGP [F=8.76, p<0.001] [Fig 5-4A to C], as well as glucose disposal at low-dose 

[F=7.54, p=0.0018] and at high-dose insulin infusions [F=7.64, p=0.0017] 

between groups [Fig 5-4D to F]. The significance for Gd during low-dose insulin 

infusion was lost when genotype 3 patients were excluded from the analysis [Fig 

5-4E]. Post hoc analysis showed that CHC and NASH differed significantly for EGP 

(0.71±0.35 vs. 1.29±0.56 mg/kg/min; p<0.005) and Gd during insulin infusions 

[low dose: 1.81±1.35 vs. 0.77±0.28 mg/kg/min; p<0.05, high dose: 6.59±3.24 vs. 

4.44±2.30mg/kg/min; p<0.005]. There was no difference in EGP and Gd between 

CHC and controls. 
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Fig 5-4. Significant difference in hepatic and peripheral (skeletal) insulin 

resistance within control, CHC and NASH groups. The degree of hepatic and muscle 

insulin sensitivity was determined by suppression of hepatic glucose production [A] and 

glucose disposal [D], respectively. Sub-analysis of Ra and Gd performed according to 

genotypes 1, n=9 [B&E] or 3, n=4 [C&F]. *p<0.05, **p<0.005, ***p<0.001, ****p<0.0001. 

Black bar=control group, light grey bar= HCV group, dark grey bar=NASH group. One-

way ANOVA. 
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5.4.4 Hepatic lipid content and de novo lipogenesis  

 

Proton density fat fraction (single echo time) measured by mass resonance 

spectrometry was significantly different between controls and patients with 

genotype 3 CHC (0.86±0.32 vs. 5.21±2.44, p=0.011). There was no difference 

between controls and genotype 1 CHC (0.86±0.32 vs. 0.83±0.20, p=0.93) [Fig 5-

5A]. No comparison was made with NASH as MRS was not part of the clinical 

protocol in the study (LEAN).  

 

The percentage contribution of de novo synthesized palmitate to plasma 

triglycerides was similar between genotype 1 and 3 CHC (6.45±1.78 vs. 

5.64±3.03, p=0.819) [Fig 5-5B]. DNL was not compared between CHC and control 

or NASH groups as the enrichment analysis was performed in different centres. 
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Fig 5-5. Increased hepatic lipid content in genotype 3 CHC. Hepatic lipid content as measured 

by magnetic resonance spectrometry (MRS), in control, genotype 1 CHC, n=9 and genotype 3 CHC, 

n=4 [A]. DNL as measured by deuterated water incorporation into plasma triglyceride palmitate 

between genotype 1 and 3 CHC [B]. Black bar=control group, light grey bar= HCV group. *p<0.05, 

ns=non significant. Unpaired Student’s t-test 
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5.4.5 Global adipose tissue insulin resistance 

 

Basal circulating NEFA levels were similar across all 3 groups [F=0.158, 

p=0.855]. However, following low dose insulin infusion, NEFA levels were higher 

in patients with NASH when compared to controls and CHC, consistent with 

adipose tissue insulin resistance [F=6.93, p=0.003]. After high dose insulin 

infusion there were no significant differences between groups [F=1.45, p=0.246]. 

Post hoc analysis of serum NEFA levels at low dose insulin infusion showed a 

significant difference between CHC and NASH (52.56±36.49 vs. 135.50±68.10 

μmol/L, p<0.0001) and control and NASH (76.60±69.31 vs. 135.50±68.10 

μmol/L, p<0.0001). No difference was observed between control and HCV 

groups (76.60±69.31 vs. 52.56±36.49 μmol/L, p=0.289)   [Fig 5-6A]. 

 

In order to determine insulin sensitivity, using regression analysis, the insulin 

concentrations causing half-maximal suppression of serum NEFA was calculated 

for each subject [Fig 5-6B]. There were significant differences in insulin 

concentrations causing half-maximal suppression of serum NEFA between the 

groups [F=11.58, p=0.0001]. Post hoc analysis revealed that insulin-1/2-maximal 

NEFA was 3-fold higher in NASH subjects compared to HCV patients 

(226.89±140.79μmol vs. 77.29±89.03 μmol/L; p<0.005). No significant 

difference was seen between control and HCV groups (65.21±54.11 vs. 

77.29±89.03 μmol/L; p=0.67). 
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Glycerol rate of appearance (Ra glycerol), which measures the global lipolytic 

rate, was suppressed by insulin in all groups. Ra glycerol was higher in CHC 

compared to control; at basal (1.811±0.880μmol/kg/min vs. 

0.26±0.11μmol/kg/min; p<0.001), low (0.14±0.17μmol/kg/min vs. 

0.68±0.38μmol/kg/min; p<0.001) and high insulin (0.12±0.15μmol/kg/min vs. 

0.62±0.31μmol/kg/min; p<0.001) [Fig 5-7].  No comparison was made between 

CHC and NASH as the patients in the latter group did not receive 2H5-glycerol 

infusion in the study.  
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Fig 5-6. Significant variation in global lipolysis within the three groups. Mean circulating 

NEFA concentrations at basal and hyperinsulinaemic phases of euglycaemic clamp were 

measured in control, CHC and NASH [A]. Concentration of circulating insulin concentrations 

(pmol/L) causing ½-maximal suppression of circulating NEFA [B]. Key: Black bar=control 

group, light grey bar= HCV group, dark grey bar=NASH group. ***p<0.01, ***p<0.0001, 

ns=non significant. One-way ANOVA. 
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Fig 5-7. CHC increases global insulin suppressed lipolysis at basal, low and high insulin 

levels. Whole body lipolysis was assessed by measuring glycerol rate of appearance (Gly Ra) in 

12 healthy controls and 13 patients with CHC (nine patients with genotype 1, four with genotype 

3). Insulin decreased Gly Ra consistent with decreased lipolysis and CHC increased Gly Ra 

consistent with increased lipolysis. Key: Black bar=control group, light grey bar= HCV group. 

**p<0.005, ***p<0.001. Unpaired Student’s t-test. 
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5.4.6 Abdominal subcutaneous adipose tissue (SAT) insulin resistance 

 

Interstitial glycerol release assessed using microdialysis, was used as a direct 

measure of abdominal SAT function [Fig 5-8A & B]. During fasting and low dose 

insulin infusion, there was no variation in the rate of interstitial glycerol release 

between the groups [basal: F=2.21 p=0.12; low dose: F=3.13 p=0.059]. The 

differences within the groups became significant at high-dose insulin [F=7.240, 

p=0.003).  

 

In post-hoc analysis, the difference in SAT glycerol level at high dose insulin was 

observed between control and NASH (102.94±61.80 vs. 175.25±82.68 

umol/kg/min, p=0.002) and between CHC and NASH (109.58±55.50 vs. 

175.25±82.68 umol/kg/min, p=0.0451). Even though no difference was seen 

between control and CHC collectively, significant difference was seen when 

comparing control and genotype 3, n=4 (102.94±61.8 vs. 160.38±45.79 

umol/kg/min p=0.019) [Fig 5-8C]. Insulin half maximal glycerol in NASH 

patients was 7-fold higher than that of CHC patients (115.48±44.42; 

682.55±32.87 p<0.005) [Fig 5-8D].  
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Fig 5-8. Patients with genotype 3 CHC and NASH have increased abdominal subcutaneous 

adipose tissue (SAT) insulin resistance. SAT interstitial fluid concentration of glycerol (%) 

during the 2-step hyperinsulinaemic euglycaemic clamp [A]. Mean levels of glycerol release 

during steady state were determined to quantify the rate of lipolysis in SAT under basal and 

hyperinsulinaemic conditions in all patients [B & C]. Concentration of circulating insulin 

concentration (pmol/L) causing ½-maximal suppression of circulating NEFA [D]. Key: Black 

bar=control group, light grey bar= HCV group, dark grey bar=NASH group. **p<0.01,  ***p<0.001, 

****p<0.0001, ns=non significant.  One-way ANOVA. 
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5.5 DISCUSSION  

 

 

We demonstrated that there was a modest increase in systemic and adipose 

tissue insulin resistance in patients with CHC. Unlike NASH, hepatic and 

peripheral insulin resistance in CHC was comparable to that of healthy controls. 

Whether the lack of effect of HCV on hepatic and muscle insulin sensitivity in this 

analysis was due to the study being underpowered or experimental design is 

unclear at this point in time. Another explanation may be that more patients with 

genotype 1 CHC were included in this analysis, and a higher prevalence of insulin 

resistance has been linked to genotype 3 CHC (144). However, exclusion of either 

genotype from the analysis did not change these observations, suggesting an 

alternative explanation to the lack of difference in insulin resistance seen 

between the CHC and controls.  

 

Obesity may have contributed to the marked differences seen between CHC and 

NASH, as mean BMI was significantly higher in the NASH group. Obesity is known 

to be associated with an increased risk of developing insulin resistance and type 

2 diabetes. In obese individuals, adipose tissue releases increased amounts of 

NEAAs, glycerol, hormones including leptin and adiponectin and pro-

inflammatory cytokines, all of which are involved in the development of insulin 

resistance (313-315). It also increases the activity of hormone-sensitive lipase, 

which enhances lipolysis in visceral adipose tissue, thus resulting in the release 

of NEFAs. NEFAs are preferentially converted to triglycerides within 

hepatocytes. The triglycerides are then hydrolyzed to release FA and glycerol. 
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The increased NEFA load can thus lead to hepatic steatosis and insulin resistance 

(316, 317). In support of these findings, Tirado et al. demonstrated that bariatric 

surgery improved insulin resistance in morbidly obese subjects (318). 

 

So does hepatic steatosis per se cause insulin resistance? Addressing the 

relationship between steatosis and insulin resistance poses considerable 

challenges. Several murine (192, 319) and human (44, 320) studies did not 

associate steatosis to insulin resistance. A recent study of the phosphoproteome 

of mouse livers treated with insulin showed hundreds of changes in 

phosphorylation in cellular proteins, many of which have not been described as 

parts of the insulin signaling network (321). It is also impossible to study the 

accumulation of a specific lipid in isolation. Any change in a lipid metabolic 

pathway induced by an experimental intervention may result in compensatory 

changes in other pathways affecting discrete lipid pools. In this study, hepatic 

and peripheral insulin resistance as well as DNL, were increased in the NASH 

cohort. Patients with genotype 3 CHC had increased baseline hepatic lipid 

content and adipose tissue insulin resistance when compared to genotype 1 CHC 

and controls. This suggests that hepatic steatosis, at least in genotype 3 CHC, may 

be the main driving force for the development of peripheral (adipose) insulin 

resistance seen in some patients with CHC.  

 

There is a growing body of evidence to suggest that adipose insulin resistance is 

linked to the onset of peripheral and hepatic insulin resistance (322, 323) in 

NASH. However, this has not been established in CHC. Despite having no effect on 

peripheral and hepatic IR, CHC resulted in an increase in Ra glycerol, indicating a 
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lack of suppression of global lipolysis by insulin. However, only those with 

genotype 3 CHC developed SAT insulin resistance and this occurred only during 

high dose insulin infusion (chapter 6). The apparent discrepancy in the Ra 

glycerol and glycerol from SAT microdialysis in the CHC cohort is explained by 

the fact that Ra glycerol measures the rate of turnover ie. balance between 

generation and utilization of glycerol. Therefore, concentrations can remain the 

same if Ra and Rd change in parallel. In addition, other fat depots may contribute 

to Ra glycerol. On the other hand, glycerol from microdialysis measures glycerol 

concentration in SAT and reflects depot-specific SAT insulin resistance.  It may 

be that other depot such as visceral adipose tissue, plays a more significant role 

in the development of insulin resistance in CHC, especially during fasting and low 

insulin infusions. In contrast to this, patients with NASH exhibited profound 

abdominal SAT insulin resistance at basal, low and high insulin infusion. There is 

also evidence to suggest that skeletal muscle dysfunction associated with NAFLD 

plays a role in its pathogenesis. In morbidly obese patients, intramyocelluar 

lipids predicts NASH and advanced fibrosis (324). However, Cuthbertson et al. 

showed that despite the higher hepatic lipid content, intramyocellular lipid 

contents and muscle mitochondrial function were similar between NAFLD and 

control groups (325).  

 

This study is not without limitations. The numbers are small and the NASH arm 

was unmatched for body weight and BMI. In addition, patients from the three 

groups were recruited at different time points. Even though a standardized 

protocol was used, direct comparison between the studies may have been 

affected by factors such as operator and time variability etc. The pathogenesis of 
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insulin resistance in CHC may differ according to the virus genotype. Therefore, 

future studies concentrating on different genotypes ought to be studied. 
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5.6 CONCLUSION 

 

We showed that patients with CHC have modest elevation in systemic, global and 

abdominal subcutaneous adipose tissue IR, with the latter only seen in genotype 

3. These observations were also “milder” than that seen in NASH. Due to small 

sample sizes, further studies and validation are required. The genotype-specific 

effect of HCV on insulin resistance and how this differs from the mechanisms 

involved in the development of insulin resistance in NASH remain to be 

elucidated. 
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6.0  HCV ERADICATION IMPROVES HEPATIC AND ADIPOSE 
TISSUE INSULIN RESISTANCE 
 
 

6.1 INTRODUCTION 

 

Despite the fact that liver is the predominant replication site for HCV, the sites of 

insulin resistance in patients with HCV infection remain elusive, with some 

studies suggesting the liver as the primary site (137, 326) while others 

suggesting extra-hepatic sites, namely adipose tissue and skeletal muscle (138). 

The mechanisms underlying the cross talk between liver and extra-hepatic sites 

also remain largely unknown.  

 

Clearance of hepatitis C virus with antiviral therapy improves insulin resistance 

(327, 328). However, most studies to date utilized homeostatic model 

assessment-insulin resistance (HOMA-IR) to quantify insulin resistance in 

patients with CHCs (329-334). This measurement does not determine hepatic vs. 

peripheral effects (335). Studies aimed to dissect the sites of insulin resistance 

are also limited (137, 138). Some have hinted at the association between HCV 

infection and alterations in adipocytokines but data have been inconclusive (280, 

336, 337). It has been suggested that the presence of adipose insulin resistance is 

associated with failed suppression of NEFA levels resulting in an increase in 

NEFA delivery and availability in the liver. We elected to study the metabolic 

effects of genotypes 1 and 3 patients with CHC with no features of metabolic 

syndrome or evidence of cirrhosis, as each of these conditions in themselves is 
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associated with insulin resistance. Genotypes 1 and 3 are also common, have 

worldwide distribution, and differ substantially in hepatic lipid accumulations. 

 

 

 

 

6.2 HYPOTHESIS AND AIMS 

 

 

Hypothesis: Adipose tissue insulin resistance is the cardinal feature of the 

metabolic abnormalities associated with chronic hepatitis C and this improves 

following viral eradication. 

 

 

Aim: 

 

To define global and tissue specific changes in insulin sensitivity in chronic 

hepatitis C before and after viral eradication by measuring:- 

1. Change in systemic insulin sensitivity 

2. Change in liver fat and insulin sensitivity 

3. Change in adipose tissue insulin sensitivity and gene expression profiles 
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6.3 METHODS 

 

The clinical protocol received full ethical approval from the National Research 

Ethics Service (NRES) Committee West Midlands, Solihull (East Midlands REC 

Centre) [REC reference 12/WM/0281]. 

 

6.3.1 Study subjects 

 

Of the 13 patients in CHC group described in the previous chapters, 8 underwent 

antiviral treatment and 7 achieved viral eradication, and were included in this 

analysis [see patient flow chart below]. The main reasons for screening failure 

for the remaining patients were ineligibility to participate in clinical trials 

offering directly acting antiviral treatment (90.8%), patient’s refusal to 

participate in the study (7.9%) and little understanding of English (1.3%). HCV 

infection was confirmed with a positive anti-HCV antibody and detectable HCV 

RNA by PCR. Patients received either interferon-containing or interferon-free 

regimen, which was decided by the clinician following discussion with the 

individual involved. The decision was largely dependent on the genotype, the 

presence of co-morbidity and contra-indication to treatment, and the 

availability/suitability of the patients for clinical trial participation (if available) 

at the time of recruitment to the study.  

 

The metabolic phenotype was studied at 2 time points:- at baseline (prior to anti-

viral treatment) and 3 to 6 months following end of treatment, to allow wash-out 
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period of the medication. Inclusion and exclusion criteria were described in the 

previous chapter. 

 

 

Patient Flow Chart 

 

 

 

6.3.2 Study design 

 

All patients were invited to visit the Welcome Trust Clinical Research Unit for the 

second time following viral eradication. Patient demographics, clinical and 

biochemical measures and metabolic studies carried out prior to antiviral 

therapy were repeated in patients with successful viral eradication. Schematic of 

experimental design [Fig 1] and metabolic study [Fig 1 of chapter 5] are 

illustrated below. 
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SAT biopsy 

 
30 minutes into commencement of low-dose insulin infusion, a subcutaneous 

adipose tissue biopsy was performed in the abdomen using aseptic technique. 

Following local anaesthetic, a small incision was made on the contralateral side 

to the microdialysis catheter of the abdomen and 1cm2 tissue is obtained. 

Metabolic gene expression will be performed using quantitative RT-PCR. The 

value of the biopsy is that we can then compare the lipid metabolic gene profile 

for the 2-time points (during HCV infection and upon successful antiviral 

treatment). 

 

 

RNA isolation and cDNA synthesis 

 

The blood samples were collected into 15 ml tubes. Total RNA from blood 

Fig 6-1. Schematics of experimental design (Visits 1 to 4) 
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samples was extracted using Roche High Pure PCR Template Preparation Kit 

(Catalog number; 11796828001) according to the manufacturer's instructions. 

Total RNA was reverse-transcribed into first-strand complementary DNA (cDNA) 

using a High Capacity cDNA Reverse Transcription Kit (Invitrogen, Life Sciences, 

Catalog Number: 4368814) in a tube including 2.0 μl 10X RT buffer, 0.8 μl 25X 

dNTP (100 mM), 2.0 μl 10X RT random primer, 1.0 μl reverse transcriptase 

enzyme, and 4.2 μl nuclease free water. The cycle conditions were as follows: 10 

min at 25 °C, 120 min at 37 °C, and 5 min at 85 °C.  

 

 

High-throughput quantitative PCR  

 

qRT-PCR is performed in two steps after total RNA purification and conversion 

to single stranded cDNA using polyT priming: the targeted genes are pre-

amplified in a single 14-cycle PCR reaction for each sample by combining 100 ng 

cDNA with the pooled primers and TaqMan Pre-Amp Mastermix (Fluidigm 

BioMark™) following conditions recommended in the manufacturer's protocol, 

and 21 Å~ 84 (samples Å~ primers) qRT-PCR reactions are performed for each 

primer pair on each sample on a 96.96 array. We used the EvaGreen detection 

assay following standard Fluidigm protocols. Primer sets amplifying the mRNAs 

of the relevant genes are presented in Table 1. Ct values were calculated from the 

system software [BioMark Real-Time PCR Analysis, Fluidigm].  
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Target Gene Full Name FP RP 

ABHD5 abhydrolase domain containing 5 GCAGCATTGACTCCCTTTAACC AGGCCTTAAACGC
TGCACTA ACACA acetyl-CoA carboxylase alpha ATCCCAGCTGATCCAGCAAA GCAGAATCTGGGA
ACCAAACC 

ADIPOQ adiponectin, C1Q and collagen domain containing CCTGGTGAGAAGGGTGAGAAA GGTTTCACCGATG
TCTCCCTTA ADRB2 adrenoceptor beta 2 ATGGACTCCGCAGATCTTCC AAGTGCCCATGAT
GATGCCTA AKT1 v-akt murine thymoma viral oncogene homolog 1 CACACACTCACCGAGAACC TCGTGGGTCTGGA
AAGAGTA 

AKT2 v-akt murine thymoma viral oncogene homolog 2 ACGGGGCCACCATGAAAA GGCCATAGTCATT
GTCCTCCA ANGPTL4 angiopoietin like 4 TCCACTTGGGACCAGGATCA AATGGCTGCAGGT
GCCAAA 

APOB apolipoprotein B AAGCCATCTGCAAGGAGCAA AGTCTGTGTCACT
TGTGCTACC APOE apolipoprotein E CCCAGGTCACCCAGGAAC TGTTCCTCCAGTT
CCGATTTGTA AQP7 aquaporin 7 GACAAAACATGGTTCAAGCATCC CTATCACGGACCA
GGAGACC 

ARNT aryl hydrocarbon receptor nuclear translocator CTGTGTGGCTACTGTTGGCTA GCTGGTCTTCAGG
ATGACAGAA ATF6 activating transcription factor 6 TTGGCAAAGCAGCAACCAA ACAGTAGGCTGAG
ACAGCAAA 

CCL2 chemokine (C-C motif) ligand 2 TAGCAGCCACCTTCATTCCC CCTCTGCACTGAG
ATCTTCCTA CCL28 chemokine (C-C motif) ligand 28 GAGCTGATGGGGATTGTGAC TTGGCAGCTTGCA
CTTTCA CD36 CD36 molecule (thrombospondin receptor) AGCAGCAACATTCAAGTTAAGCA GCGTCCTGGGTTA
CATTTTCC 

CD81 CD81 molecule GGCAGCAACATCATCAGCAA AGCAATGCCGATG
AGGTACA CIDEC cell death inducing DFFA like effector c TTGGCTGCCTGAACGTGAA TGTGGCCTGCATG
CTGAA 

CLDN1 claudin 1 TATGACCCTATGACCCCAGTCA CCAGAAGGCAGA
GAGAAGCA CPT1A carnitine palmitoyltransferase 1A (liver) TCCATGCCATCCTGCTTTACA AGTGGAATCGTGG
ATCCCAAA CXCR2 chemokine (C-X-C motif) receptor 2 ATCGGTGGCCACTCCAATAA GGTCGCTGGGCTT
TTCAC 

IL8 chemokine (C-X-C motif) receptor 2 TCTGGAGGTGTCCTACAGGT CTTCAAAGCTGTC
ACTCTCCATG DGAT1 diacylglycerol O-acyltransferase 1 ACTACCGTGGCATCCTGAAC GAAATAACCGGGC
ATTGCTCAA 

DUSP1 dual specificity phosphatase 1 AGACATCAGCTCCTGGTTCA CAGTGGACAAACA
CCCTTCC ERN1 endoplasmic reticulum to nucleus signaling 1 AGATAGTCTCTGCCCATCAACC TCGGGTTTTGGTG
TCGTACA FABP3 fatty acid binding protein 3 CTGGAAGCTAGTGGACAGCAA CCACCTGCCTGGT
AGCAAA 

FABP4 fatty acid binding protein 4 ATGTGTGATGCTTTTGTAGGTAC CCACTTTCCTGGT
GGCAAA FABP5 fatty acid binding protein 5 GACGCAGACCCCTCTCTG TTCCTTCCAGCTG
CTGAACT 

FASN fatty acid synthase GGAGGGGACAGTGCATCAA GTTTACACTCCTC
CCAGGACAA G6PC glucose-6-phosphatase, catalytic subunit TCAGGAAGCTGTGGGCATTA GCACGGAAGTGTT
GCTGTA G6PD glucose-6-phosphate dehydrogenase GGCAAGGAGATGGTGCAGAA GTGCCAAAGGGCT
CCTTGAA 

GAPDH glyceraldehyde-3-phosphate dehydrogenase GAACGGGAAGCTTGTCATCAA ATCGCCCCACTTG
ATTTTGG GLUL glutamate-ammonia ligase GTCAAGATTGCGGGGACTAA CCCATGCTGATTC
CTTCACA 

HIF1A hypoxia inducible factor 1, alpha subunit CAGTCGACACAGCCTGGATA TTCTTCTGGCTCA
TATCCCATCAA HIF3A hypoxia inducible factor 3, alpha subunit CTCCTTGCGCATGAAGAGTA CTCATATGTCCAG
AGCAGTTCA HK1 hexokinase 1 TCATTTCCCTGCCAGCAGAC CGCAGTCTGTTGC
CTTAAAACC 

HSD11B1 hydroxysteroid (11-beta) dehydrogenase  1 GAAGCAGAGCAATGGAAGCA TTGCAGAATAGGC
AGCAACC IFNA1 interferon, alpha 1 TGACTCATACACCAGGTCAC CAGGGGTGAGAG
TCTTTGAA 

IFNG interferon, gamma ACTGCCAGGACCCATATGTAA GTTCCATTATCCG
CTACATCTGAA IL10 interleukin 10 CCGTGGAGCAGGTGAAGAA GTCAAACTCACTC
ATGGCTTTGTA IFNL3 interferon, lambda 3 CTGCCACATAGCCCAGTTCAA CGGCACTTGCAGT
CCTTCA 

IL4 interleukin 4 CAGCTGATCCGATTCCTGAAA GTTGGCTTCCTTC
ACAGGAC IL5RA interleukin 5 receptor subunit alpha GATCAGCTGTTTGCCCTTCA TTCCTTCAATCTCT
GCTGTGAC 

IL6 interleukin 6 AGAGCTGTGCAGATGAGTACAA GTTGGGTCAGGG
GTGGTTA IRS1 insulin receptor substrate 1 CAGAAGCAGCCAGAGGAC AGAGGATTTGCTG
AGGTCATTTA IRS2 insulin receptor substrate 2 TGTCCCACCACTTGAAGGAG TGACATGTGACAT
CCTGGTGAT 

JAK2 Janus kinase 2 TCTGCAGTGGAGGAGATAAACC TGCAGGAAGCTGA
TGCCTA LDLR low density lipoprotein receptor CCACGGTGGAGATAGTGACAA TCTCATTTCCTCTG
CCAGCAA 

LEP leptin CACCAAAACCCTCATCAAGACAA AGCCCAGGAATGA
AGTCCAA LIPE lipase, hormone-sensitive AGTTAAGTGGGCGCAAGTCC GCCAGTGCTGCTT
CAGACA LOX lysyl oxidase ATCCAGGCGTCCACGTAC AGCAGCACCCTGT
GATCATAA 

LPL lipoprotein lipase TGGCCGAGAGTGAGAACA AGCTTCAACATGA
GTAGTTCTCC LRP10 LDL receptor related protein 10 GCAGCAAGGAACAGACTGTCA GAGAGGGGAGCG
TAGGGTTA 

MAPK1 mitogen-activated protein kinase 1 TTGGTACAGGGCTCCAGAAA TCTGCCAGAATGC
AGCCTA MTOR mechanistic target of rapamycin (serine/threonine kinase) CCAAACCCAGGTGTGATCAA TCCTCATTTCCAG
GCCACTA NFKB1 nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 CTACCTGGTGCCTCTAGTGAAA ACCTTTGCTGGTC
CCACATA 

NOX4 NADPH oxidase 4 TCCAGCTGTACCTCAGTCAA GGACGTCCTATAA
ACAGTCTTGAA 

Table 6-1. List of 84 genes involved in metabolism or inflammation and the primer sets 

amplifying the mRNAs of the relevant genes. 
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NR3C1 nuclear receptor subfamily 3 group C member 1 GCAGCAGTGAAATGGGCAAA CAGTAGGGTCATT
TGGTCATCCA OCLN occludin AACTGGCGGCGAGTCC TCCTGTAGGCCAG
TGTCAAAA 

PDHA1 pyruvate dehydrogenase (lipoamide) alpha 1 GTGCTGGTAGCATCCCGTAA CCTTCTTCCAGCC
GGTGAA PDK1 pyruvate dehydrogenase kinase 1 ACCAAGACCTCGTGTTGAGAC AAGACGTGATATG
GGCAATCCA PDK4 pyruvate dehydrogenase kinase, isozyme 4 CTACTCGGATGCTGATGAACCA CCAATGTGGCTTG
GGTTTCC 

PDP1 pyruvate dehyrogenase phosphatase catalytic subunit 1 TCCTGAAGAGCTTGCTCGAA ACGCCCCTACAAC
ATGAGAA PER1 period circadian clock 1 TGATTGCAGAGCGCATCCA TGTGTGCCGCGTA
GTGAAA 

PER2 period circadian clock 2 GCCTGATGATGGCAAAATCTGAA GTGTGTGTCCACT
TTCGAAGAC PGK1 phosphoglycerate kinase 1 GTGGAATGGCTTTTACCTTCC CTTGGCTCCCTCT
TCATCAA PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha CTGCAGTTCAACAGCCACAC ACAGGTCAATGGC
TGCATCA 

PLG plasminogen AGCTGGGAGCAGGAAGTATA CTGTTTTCAGCCA
TTATCACACA PLIN1 perilipin 1 TCACCTTGCTGGATGGAGAC ATTCGCAGGTGCC
ACTCA 

PLIN2 perilipin 2 CCTCTCATGGGTAGAGTGGAA GCAATTGCAAGAG
TACGTGAC PNPLA1 patatin like phospholipase domain containing 1 TGGAGGAACTAGGCCAAGAAC GACGGTTTCCTTC
ACATGAACC PPARA peroxisome proliferator-activated receptor alpha GACAAGGCCTCAGGCTATCA TCATACACCAGCT
TGAGTCGAA 

PPARG peroxisome proliferator-activated receptor gamma TAGATGACAGCGACTTGGCAATA TGGGCTTCACATT
CAGCAAAC PPARGC1A PPARG coactivator 1 alpha ACTTTTGTGGACGCAAGCAA TGGAAGCAGGGT
CAAAGTCA 

PPIA peptidylprolyl isomerase A (cyclophilin A) TCTGGTTCCTTCTGCGTGAA CCAGGGAATACGT
AACCAGACA PRKAA1 protein kinase, AMP-activated, alpha 1 catalytic subunit CCAACTATGCTGCACCAGAA AGAATAACCCCAC
TGCTCCA RAB18 RAB18, member RAS oncogene family GCTAACCACCCTGAAGATCC TGCAAGTTCTGGA
TCAAACGTA 

RXRA retinoid X receptor alpha AGGAAACATGGCTTCCTTCAC TCGCAGCTGTACA
CTCCATA SCARB1 scavenger receptor class B member 1 GAGATCCTGAAGGGCGAGAA GATGTTGCTTTTG
TGCCTGAAC 

SIRT1 sirtuin 1 ACAAAGTTGACTGTGAAGCTGTAC GTTCATCAGCTGG
GCACCTA SLC2A1 solute carrier family 2 (facilitated glucose transporter), member 1 ATTGTGGGCATGTGCTTCC AGAACCAGGAGC
ACAGTGAA SLC2A4 solute carrier family 2 (facilitated glucose transporter), member 4 TTCTCCAACTGGACGAGCAA GGACCGCAAATAG
AAGGAAGAC 

SOCS1 suppressor of cytokine signaling 1 CATCCGCGTGCACTTTCA GCTCGAAGAGGC
AGTCGAA SOCS3 suppressor of cytokine signaling 3 TTCAGCTCCAAGAGCGAGTA TCACTGCGCTCCA
GTAGAA 

SRD5A1 steroid-5-alpha-reductase, alpha polypeptide 1 GCCATGTTCCTCGTCCACTA CAACAGTGGCATA
GGCTTTCC SRD5A2 steroid-5-alpha-reductase, alpha polypeptide 2 TGATGGGTGGTACACAGACA AGCTGGCGCAATA
TATAGTCAC SREBF1 sterol regulatory element binding transcription factor 1 CAGCAACCAGAAACTCAAGCA GCCGACACCAGAT
CCTTCA 

TLR3 toll-like receptor 3 TCTCATGTCCAACTCAATCCA CAGCTGAACCTGA
GTTCCTA TNF tumor necrosis factor CTTCTCGAACCCCGAGTGAC ACTGGAGCTGCCC
CTCA 

UCP2 uncoupling protein 2 (mitochondrial, proton carrier) TTCCTCTGGATACTGCTAAAGTCC TCAGAATGGTGCC
CATCACA VEGFA vascular endothelial growth factor A GAGGAGGGCAGAATCATCAC GTCTCGATTGGAT
GGCAGTA VLDLR very low density lipoprotein receptor CCTAGCTCATCCTCTTGCACTA TGGCACCATAGAC
TGCTTCA 

 
 
  

 

 

 

 

 

 

 

 

 



159 
 

6.3.3 Statistical analysis  

 

Sample size justification 

 

This is an observational pilot study with no pharmacological intervention. The 

aim is to study insulin resistance and lipid metabolism during their routine NHS 

care. Assuming a difference in insulin resistance response (as measured by 

glucose infusion rate mg/kg/min) after anti-viral treatment is normally 

distributed with a standard deviation of 1.4, we will be able to detect a true 

difference in the mean response of at least 1.393 mg/kg/min. To reliably detect 

this significant 1.393 mg/kg/min change in HCV patients, with 80% power, at a 

significance level of 0.05, 20 patients would be required. However, if we allow for 

20% drop out rate in each group, 24 patients would be required to achieve a 

significant primary outcome. 

 

 

Sources of funding 

 

The trial was funded by the Medical Research Council (Clinical Research 

Fellowship awarded to Lim T, 2010), and the liver BRU. 
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6.4 RESULTS 

 

 

6.4.1 Patient characteristics and clinical parameters 

 

Seven patients achieved sustained viral response (SVR) following antiviral 

treatment, and are therefore included in the analysis in this chapter. SVR was 

confirmed with an undetectable HCV RNA three months after the end of antiviral 

treatment. The types and duration of antiviral treatment for each subject were 

listed in Table 5-2. In brief, five patients received pegylated-interferon 

containing regimen and the remaining two patients received pegylated-

interferon-free directly acting antiviral agents, either as routine NHS 

prescription [patient 1,2 and 7] or as part of a clinical trial [patient 5 & 6 ION-1; 

patients 9 & 11 –PEDESTAL]. ION-1 was a phase 3, multicenter, randomized, 

open-label study to investigate the efficacy and safety of Harvoni® 

(Sofosbuvir/Ledipasvir) Fixed-Dose Combination (FDC) +/- Ribavirin for 12 and 

24 weeks in treatment-naive subjects with CHC genotype. PEDESTAL was a 

phase 3, blinded randomized study of peg-interferon Lambda-1a and ribavirin 

compared to peg-interferon alfa-2a and ribavirin, each administered with 

telaprevir in subjects with genotype 1 CHC who are treatment-naïve or relapsed 

on treatment with peg-interferon alfa and ribavirin. The duration of treatment 

varied between 12 to 48 weeks [median 24 weeks].  
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Baseline demographics were male sex (85.7%), median age of 55.3 years, 

Caucasian (85.6%), genotype 1 (57.1%) and genotype 3  (42.9%) HCV infection. 

Viral, metabolic and liver parameters were measured before and 3 months 

following the end of antiviral treatment. BMI and total fat mass remained 

unaltered during the period of the study. Android/gynoid fat mass ratio 

decreased but this did not achieve statistical significance. Other metabolic 

parameters such as fasting glucose and insulin levels, total cholesterol and %fat 

on MRS were unchanged. As expected, liver parameters ie AST and ALT 

improved following viral eradication [Table 3]. 

 

 

 
 
 
 
 
 

Table 6-2. Types and duration of antiviral treatment. Peg=pegylated, SVR=sustained 

virological response. Telaprevir=protease inhibitor, Sofosbuvir=NS5B polymerase 

inhibitor, Ledipasvir=NS5A inhibitor. 
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Table 6-3. Demographics and clinical parameters of patients who completed antiviral 

treatment and achieved sustained virological clearance (SVR). Mean (SE), unless stated. 

Blood parameters were fasted. Comparisons of continuous variables with paired Student’s t 

test.  
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6.4.2 Systemic insulin resistance   

 

Fasting serum glucose, insulin and homeostasis model assessment of insulin 

resistance (HOMA-IR) did not alter significantly following HCV eradication with 

antiviral therapy.  There was also no difference in M/I values (weight-adjusted 

glucose infusion rates in response to low-dose and high-dose insulin) between 

those with viraemia and those without (low-dose 0.018±0.01 mg/kg/min vs 

0.031±0.020 mg/kg/min; p=0.133; high-dose 0.008±0.003 mg/kg/min vs. 

0.029±0.037 mg/kg/min, p=0.204)[Fig 6-2A & B]. This remained so after 

excluding patients who received pegylated-interferon (peg-IFN) as part of their 

antiviral regimen [Fig 6-2D & F]. The two patients who received peg-IFN free 

regimen showed an upward trend in M/I values during low and high insulin 

infusions but statistical analysis was no performed due to the small number of 

patients in the group [Fig 6-2C & 4E]. 
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Fig 6-2. No significant changes in M/I values before and after antiviral 

treatment in patients with CHC. Collective (genotype 1 & 3) M/I values were 

measured over 120-240min [A] and 240-360 [B] min of the euglycaemic 

hyperinsulinaemic clamp, and in patients who received pegylated interferon 

(peg-IFN) containing regimen, n=5 [C] & [E] or without peg-IFN regimen, n=2 [D] 

& [F]. ns=non-significant. Paired Student’s t-test. 
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6.4.3 Hepatic and Peripheral (muscle) insulin resistance 

 

From the 2-step hyperinsulinaemic clamp, body weight-adjusted rate of glucose 

appearance, Ra and glucose disposal rates, Gd, were calculated.  Endogenous 

glucose production, EGP was significantly lower following SVR (0.994±0.166 vs. 

0.718±0.180 mg/kg/min; p=0.049) [Fig 6-3C]. There was no difference in Ra at 

fasting (2.36±0.06 vs. 2.21±0.14 mg/kg/min), Gd at low insulin (1.612±1.345 vs. 

2.948±1.612 mg/kg/min; p=0.237) or at high insulin [5.972±2.601 vs. 

8.069±3.432 mg/kg/min;p=0.557) before and after SVR [Fig 6-3D]. In the sub-

analysis according to genotypes, the improvement in Ra at low insulin following 

SVR was only seen in genotype 3 CHC [Fig 6-4A & B]. Interestingly, when 

genotype 3 patients were excluded, Gd at high dose insulin infusion significantly 

increased following SVR [Fig 6-4C & D]. 
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Fig 6-3. HCV eradication improves endogenous glucose production, EGP (hepatic 

insulin sensitivity) and glucose disposal, Gd (skeletal insulin sensitivity) at low 

insulin. Circulating glucose [A] and insulin [B] concentrations during the 2-step 

hyperinsulinaemic euglycaemic clamp. The degree of hepatic and skeletal insulin 

sensitivity was determined by suppression of hepatic glucose production, Ra [C] and 

glucose disposal, Gd [D], respectively following viral eradication. Key: Black bar=prior to 

antiviral treatment, grey bar= after antiviral treatment. *p<0.05, ns=non-significant. 

Paired Student’s t-test. 
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Fig 6-4. Viral eradication improves hepatic insulin sensitivity in genotype 3 and 

peripheral insulin sensitivity in genotype 1 CHC. The degree of hepatic and skeletal 

insulin sensitivity was determined by suppression of hepatic glucose production in 

genotype 1, n=4 [A] and genotype 3, n=3 [B] and glucose disposal in genotype 1 [C] and 3 

[D], respectively. Key: Black bar=prior to antiviral treatment, grey bar= after antiviral 

treatment. ns=non-significant. *p<0.05, **p<0.01, ns=non-significant. Paired Student’s t-

test. 
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6.4.4 Hepatic de novo lipogenesis and lipid content 

 

The percentage contribution of DNL to total endogenous palmitate synthesis was 

unchanged following SVR [5.62±4.27 vs. 4.31±4.72, p=0.68] [Fig 6-5A]. This 

remained unchanged when analyzing for genotype 1 only [1.95±0.53 vs. 

5.73±3.18, p=0.11] [Fig 6-5B] or genotype 3 [10.52±7.52 vs. 8.72±5.73, p=0.84] 

[Fig 6-5C] groups. 

 

There was no change in hepatic lipid and choline content following viral 

eradication as measured by magnetic resonance spectroscopy (MRS). Mean 

baseline % fat was within normal limits (ie. <5%) and was unaltered by viral 

eradication (2.26±3.22 vs. 1.55±1.88 p=0.38) [Fig 6-4D]. Choline/water ratios 

were also unchanged before and after antiviral treatment (3.24±1.39 vs. 

3.72±1.98; p=0.92) [Fig 6-5E]. An example of an axial, sagittal and coronal 3D-GE 

T1-weighted images of the abdomen showing typical MRS voxel placement in the 

right lobe of liver of one of the patients is shown in Fig 6-5F. 
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5F.  
 

 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

Fig 6-5. No significant impact of HCV eradication on de novo lipogenesis (DNL) and hepatic 

lipid/water  & choline/water content on MRS. DNL as measured by deuterated water 

incorporation into plasma triglyceride palmitate. in all patients [A], genotype 1 [B] or genotype 3 

[C]. Hepatic lipid content percentage [D] and choline/water ratio [E] as measured by magnetic 

resonance spectrometry (MRS). Axial, sagittal and coronal 3D-GE T1-weighted images of the 

abdomen showing typical MRS voxel placement in the right lobe of liver [F] circles=pre-

treatment, squares=post-treatment. ns=non-significant. Paired Student’s t-test.  
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6.4.5 Global adipose tissue insulin resistance 

 

 

Mean fasting circulating non-essential fatty acid (NEFA) levels was significantly 

lower following viral eradication (112±41.87μmol/L vs. 80.40±38.83μmol/L; 

p<0.001). NEFA levels were suppressed in the presence of insulin although the 

low and high dose insulin-suppressed circulating NEFA levels were unchanged 

before and after SVR (low insulin: 12.85±7.91μmol vs. 10.41±8.42μmol/L; 

p=0.16; high insulin: 4.09±4.26μmol vs. 3.46±4.45μmol/L; p=0.84) [Fig 6-6A & 

B].  

 

Glycerol rate of appearance (Ra glycerol) is a measure of global lipolytic rate and 

is suppressed by insulin. There was no difference in Ra glycerol at basal 

(2.11±1.12μmol/kg/min vs. 2.23±1.16μmol/kg/min; p=0.64), low 

(0.75±0.53μmol/kg/min vs. 0.75±0.34μmol/kg/min; p-0.66) or high insulin 

(0.61±0.38μmol/kg/min vs. 0.54±0.22μmol/kg/min; p=0.83) infusion before and 

after antiviral treatment, pan-genotypically [Fig 6-7A], or in genotypes 1 and 3 

alone [Fig 6-7B & C]. 
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Fig 6-6. HCV eradication improves mean fasting circulating serum NEFA levels. 

Circulating NEFA concentrations at basal and hyperinsulinaemic phases of euglycaemic clamp 

before and after antiviral treatment [A]. To determine adipose insulin resistance at basal and 

hyperinsulinaemic conditions, mean circulating serum NEFA levels at steady states were 

measured [B]. Key: Black bar=prior to antiviral treatment, grey bar= after antiviral treatment. 

***p<0.001, ns=non-significant. Paired Student’s t-test. 
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Fig 6-7. No impact of sustained virological response (SVR) rates on whole body lipolysis 

measured by glycerol rate of appearance (Gly Ra). Whole body lipolysis was assessed by 

measuring glycerol rate of appearance (Gly Ra) in all patients, n=7 [A], and in patients with 

genotype 1, n=4 [B] and genotype 3, n=3 [C]. Insulin decreased Gly Ra consistent with decreased 

lipolysis but no differences before and after SVR or across genotype. Black bar= pre-antiviral 

treatment. Grey bar=post-antiviral treatment. ns= non-significant. Paired Student’s t-test.  
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6.4.6 Abdominal subcutaneous adipose tissue (SAT) insulin resistance 

 

Interstitial glycerol release assessed using microdialysis, was used as a direct 

measure of abdominal SAT function [Fig 6-8A & B]. During fasting, the rate of 

interstitial glycerol release was lower following viral eradication 

(260.63±128.15μmol/kg/min vs. 193.69±42.85μmol/kg/min; p<0.05). During 

low-insulin infusion, there was no difference in abdominal SAT function before 

and after viral eradication (147.93±56.83μmol/kg/min vs. 

145.21±61.93μmol/kg/min; p=0.23). Both these observations were comparable 

to the changes seen in serum NEFA levels and Ra Gly in our previous data [Fig 6-

6 & 6-7]. However, there was a significant improvement in low dose insulin 

suppressed interstitial glycerol release when genotype 1 was excluded [Fig 6-

8D]. High dose insulin suppressed interstitial glycerol release was significantly 

lower following viral eradication (98.72±22.28μmol/kg/min vs. 

70.59±25.49μmol/kg/min; p<0.05), suggesting that even though global lipolysis 

did not change, abdominal SAT function improved with viral eradication. This 

remained significant when analyzing individually genotype 3 [Fig 6-8C] or 

genotype 1 [Fig 6-8D]. 
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Fig 6-8. SVR rates following antiviral treatment improve abdominal subcutaneous adipose 

tissue (SAT) insulin resistance. [A] SAT interstitial fluid concentration of glycerol during the 2-

step hyperinsulinaemic euglycaemic clamp. [B] Mean levels of glycerol release during steady state 

were determined to quantify the rate of lipolysis in SAT under basal and hyperinsulinaemic 

conditions in all patients n=7 [B], in genotype 1 n=4 [C] and genotype 3 n=3 [D]. Continuous black 

line or black bar= pre-antiviral treatment. Dotted black line or grey bar=post-antiviral treatment. 

*p<0.05, ns=non-significant. Paired student’s t-test.  
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6.4.7 Metabolic genes  

 

 

The expression levels of several genes involved in the metabolic pathway were 

analyzed in this study using Fluidigm BioMarkTM HD System 96.96 Dynamic 

Array. We selected 84 genes involved in cellular lipid and carbohydrate 

metabolism as well as inflammatory response (Table 6-1). 15 out of 84 genes 

showed significant differences in expression levels before and after viral 

eradication. Of the fifteen genes, eight were involved in lipid synthesis [fatty acid 

binding protein 3 (FABP3), aquaporin 7 (AQP7), pyruvate dehydrogenase alpha 

1 (PDHA1), protein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1), 

very low density lipoprotein receptor (VLDLR), perilipin 1 (PLIN1), 

diacylglycerol O-acyltransferase 1 (DGAT1), sterol regulatory element binding 

transcription factor 1 (SREBF1)] (Fig 6-9A); and four in insulin signaling 

[hexokinase 1 (HK1), insulin receptor substrate 2 (IRS2), v-akt murine thymoma 

viral oncogene homolog 2 (AKT2) and pyruvate dehydrogenase kinase 1 (PDK1) 

(Fig. 6-9B). All but PDK1 gene was upregulated following viral eradication. 
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Fig 6-9. HCV eradication regulates the mRNA expression of lipogenic (A) and 

insulin signaling (B) genes. Fold change of 8 lipogenic genes and 4 insulin signaling 

genes, which showed significant differences in expression levels in pre and post viral 

eradication in HCV patients.  Data are presented as mean ± se fold induction compared to 

untreated cells and quantified relative to GAPDH. *p<0.05 . Unpaired Student’s t test 
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6.5 DISCUSSION 

 
 

This is the first longitudinal study measuring both carbohydrate and lipid flux 

before and after viral eradication in patients with CHC. We have used a variety of 

assessments including 13C-glucose infusion, 2H5-glycerol infusion, adipose tissue 

microdialysis and metabolic gene mRNA expression from adipose tissue biopsy 

to quantify peripheral, hepatic, and adipose tissue function and their response to 

insulin. We identified that the improvement in insulin resistance upon successful 

viral eradication was not systemic, but tissue specific, ie. hepatic and 

subcutaneous adipose tissue. This was not accompanied by alterations in body 

weight or in hepatic lipid content.  

 

Despite inducing more steatosis and fibrosis, it is unclear whether the degree of 

insulin resistance is linked to certain HCV genotype. Evidence presented is 

controversial, with some suggesting higher insulin resistance among patients 

with genotype 1 (338) while others showing a higher prevalence in genotype 3 

CHC (144). Some authors also presented data showing similar prevalence of 

insulin resistance in both genotypes (138, 339). Even though our study was not 

powered to compare the two groups, we observed no difference in baseline 

hepatic or skeletal IR between genotypes 1 and 3 CHC. 

 

However, the improvement in hepatic IR following viral eradication was more 

pronounced in genotype 3, which was perhaps unsurprising, as genotype 3 HCV 

is known to be more pro-steatogenic and therefore, its eradication should 
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improve hepatic steatosis and hence hepatic IR. More interestingly, in our study, 

the improvement in skeletal IR was only observed in genotype 1 CHC. This is the 

first study to show the genotype-specific impact of genotype 1 and genotype 3 

infection on steatosis and insulin resistance by studying both lipid and 

carbohydrate flux. The distinct pattern of lipid alteration between different 

genotypes has only been studied previously using patients’ serological markers 

for lipid metabolism (257). Chang et. al showed that post-SVR HDL and 

apolipoprotein A1 levels increased in genotype 2 but not in genotype 1 CHC. In 

their cohort, baseline steatosis and insulin resistance, as well as significantly 

different viral load may have different impact on the metabolic profile post SVR. 

However, as the baseline metabolic features and viral load were comparable 

between the two genotypes in our study, there may yet be an unrevealed 

mechanism of action of HCV proteins in inducing IR.  

 

We also detected no difference in hepatic DNL and hepatic lipid content in 

patients with CHC before and after viral eradication. This is different from the 

study by Lambert et.al (335) who noticed improvement in DNL in patients who 

were cured from CHC. However, his study is conducted in patients with cirrhosis, 

which in itself, may induce insulin resistance. Low baseline hepatic lipid content 

in our patients may also mask the possible improvement seen with viral 

eradication. Previous MRS studies involving HCV patients have suggested that 

levels of lipid and choline containing compounds in the liver are related to 

disease severity and choline/lipid or choline/water ratios are predictive of 

response to treatment (340, 341). As predicted, we did not detect any changes in 
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these measurements before and after antiviral therapy as all patients in our 

study are in early/pre-cirrhotic stage.  

 

To the best of our knowledge, only one other study had explored the effect of 

HCV infection on whole body lipolysis (137). Vanni et al. measured serum NEFA 

levels and mean steady state of appearance of glycerol (Glycerol Ra) following 

2H5-glycerol infusion and found no difference in whole body lipolysis between 

healthy volunteers and patients with CHC. We demonstrated a reduction in 

fasting serum NEFA levels but no change in Ra Glycerol following viral 

eradication. Direct comparison between the two studies is confounded by the 

different phenotypic and metabolic profile of the subjects in both studies.  

 

We know that both mean level of serum NEFA and 2H5-Glycerol tracer 

measurements detect whole body lipolysis and are unable to correlate whole 

body lipolysis to a specific tissue. By pairing these with abdominal SAT 

microdialysis (a reduction in mean steady state glycerol) and biopsies (increased 

expression of lipogenic and glycolytic genes), we showed an improvement in 

abdominal SAT-specific insulin sensitivity with viral eradication in CHC. 

Interestingly, genotype 3 CHC seem to show more significant improvement (at 

basal, low and high insulin infusions) compared to genotype 1 CHC (at basal and 

high insulin infusions). This supports a genotype specific mechanism underlying 

SAT IR in patients with CHC. In fact, there are clinical observations supporting a 

“fat-independent” mechanism in the development of IR in CHC, whereby patients 

with genotype 3 CHC have more extensive hepatic steatosis but a lower 

incidence of IR (144). SAT adipose tissue dysfunction has been linked to other 
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liver conditions, especially non-alcoholic fatty liver disease (306), but this is the 

first study demonstrating its importance in patients with CHC. 

 

Our study is not without limitations. 13 out of the intended 24 patients with CHC 

were recruited into the study. This is largely due to the introduction of the new 

directly acting antivirals (DAAs), which meant that most patients with CHC were 

not commenced on the conventional interferon-based antiviral treatment 

between 2011-2013. Thus, the numbers were small, making it difficult to 

extrapolate the relevance of genotype 1 vs. genotype 3 in inducing insulin 

resistance and hepatic steatosis. We were unable to directly compare 

subcutaneous and visceral adipose tissue function, as real-time assessment of 

dynamic, specific visceral adipose tissue function is not currently feasible in 

human studies. Insulin resistance likely exacerbates the HCV-induced influence 

on lipogenesis, and may explain the association between insulin resistance, 

disease progression, and nonresponse to therapy in HCV (342). One factor that 

may influence this is the use of pegylated interferon in patients with CHC, which 

has been shown to alter insulin sensitivity both in vivo and in vitro (343, 344). 

Indeed, even though a wash out period of 3 to 6 months was included in our 

design to try and eliminate the effect of interferon treatment, we still observed a 

more dramatic improvement in systemic insulin sensitivity in patients who did 

not received interferon, compared to those who did as part of their antiviral 

regimen suggesting that the effect(s) of interferon on insulin signaling may be 

more long lasting. Furthermore, treatment typically induces weight loss and 

reduced food intake, both of which can alter insulin sensitivity. However, in our 
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study, there was no change in BMI, weight or fat mass before and after viral 

eradication. 

 

6.6 CONCLUSION 

 

 

This study suggests that chronic hepatitis C (CHC) is intricately linked to insulin 

resistance and hepatic steatosis. Using state-of-the-art metabolic assessments, 

we have demonstrated that both hepatic and adipose tissue insulin sensitivity 

improved after viral eradication.  The identification of extra-hepatic effects of 

HCV infection, especially in the adipose tissue is novel and has important clinical 

relevance. Further studies are needed to evaluate the potential interaction 

between HCV and adipose tissue in inducing insulin resistance and the genotype-

specific mechanisms involved, to allow for novel and targeted therapies.  
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7.0 GENERAL DISCUSSION AND CONCLUSION 
 

7.1 Low oxygen induces hepatic lipid accumulation via HIFs 

 

 

Whilst some studies proposed that hypoxia-induced hepatic lipid accumulation is 

either predominantly driven by HIF1α (5, 66, 67, 245) or HIF2α (7, 229, 242), we 

showed that both HIFs play major roles in inducing hepatic lipid accumulation. In 

addition to the type of HIF stabilization, the degree of HIF stabilization also 

determines the metabolic outcomes in liver diseases. Murine models with whole-

body PHD1 knock out developed hepatic steatosis but not the deleterious 

metabolic effects of high fat diet (345). Liver specific stabilization of HIF2α by 

acute PHD3 deletion did not lead to hepatic steatosis, suggesting that low level of 

hepatic HIF2α stabilization, as found in the HIF-PHD2gt/gt mice, has beneficial 

effects (346), whereas extensive hepatic HIF2α stabilization leads to steatosis 

(229). The HIF-PHD2gt/gt mice had decreased serum cholesterol and acetyl-CoA 

levels, postulating that the latter may have contributed to the low serum 

cholesterol level seen (346). In addition, liver specific stabilization of HIF1α and 

HIF2α appeared to have no effect on hepatic triglyceride synthesis, but extensive 

HIF2α stabilization increases hepatic and serum cholesterol levels (229, 347). 

Taken together, the isoform and degree of HIF stabilization seem to determine 

the metabolic phenotype in liver diseases. 
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Significant efforts have been made to discover PHD inhibitors using a wide 

variety of methods. However, deleterious effects caused by PHD inhibition meant 

that tissue-specific delivery of PHD inhibition is more desirable. Since the 

expression and function of individual PHD has been shown to vary, isoform-

selective PHD inhibitors are also desirable. Future studies should identify the 

distinct roles of HIF isoforms because inhibition of specific PHDs could give rise 

to differential responses of HIF1α and HIF2α (348).  
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7.2 Hepatic steatosis and insulin resistance in CHC 

 

In the clinical studies, patients with CHC demonstrated increased hepatic lipid 

content (genotype 3 only) and DNL, when compared to control, which 

contradicted the in vitro findings. There are several reasons for the disparity 

seen between the in vitro and clinical observations. Apart from DNL, FFA uptake 

and β-oxidation, liver fat volume is also determined by the export of TG as VLDL 

into the bloodstream, and the flux of fatty acids released from adipose tissue 

through lipolysis. Both of these were not measured in the in vitro study. 

Secondly, laboratory cultured HCV viruses are diverse and may affect the host 

metabolism differently compared to human viruses. The relative contribution of 

virus and immune response on host metabolism remains to be dissected. Other 

groups have also made claims based on evidence gathered in vitro, which are also 

in conflict with the observations made in humans. For example, although 

transcription factors responsible for DNL, such as SREBF1 and SREBF2 are 

increased in HCV infected cells (266, 349-352), their levels in the liver of infected 

individual inversely correlate with steatosis severity (101). This suggests that 

their activation, albeit necessary for the HCV life cycle, may not be sufficient to 

bring about steatosis in vivo. 

 

Interaction between HCV, lipid metabolism and insulin signaling is complex and 

to some extent, genotype-specific. It is not possible to determine whether the 

increased lipogenesis seen in some patients with CHC, is due to elevated insulin, 

HCV, or a combination, but ample evidence from cellular models exists to suggest 

a primary role for HCV on lipogenesis. In this study, patients with genotype 3 
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CHC appeared to be more steatotic and insulin resistant (SAT-specific) than 

genotype 1 CHC. Hepatic steatosis has been linked to insulin resistance in human 

studies and this phenomenon is not specific to CHC (287, 288, 353). However, 

despite an increase in hepatic steatosis in genotype 3, serum triglyceride levels 

and systemic insulin resistance do not differ in genotypes 1 and 3 infections 

(354), as was found in this study. In vivo data suggested skeletal muscle (137, 

138) and visceral adipose tissue (355) as the primary sites of insulin resistance 

in CHC. We have now identified the liver and subcutaneous adipose tissue as the 

predominant sites of insulin resistance in CHC. 

 

 

Even though HCV eradication improved hepatic and adipose tissue insulin 

resistance, when we compared baseline metabolic parameters between 12 

healthy subjects and 13 patients with CHC, only those with genotype 3 CHC were 

more ‘adipose-insulin resistant’. It may be that patients with CHC, especially 

genotype 1, have “subclinical” hepatic insulin resistance, which improves with 

successful antiviral treatment. Indeed lower cut off values for HOMA-IR have 

been used in certain subgroup of patients to identify those with glucose 

intolerance (356). This concept has not been validated in patients with CHC. In 

addition, HOMA-IR measures systemic insulin resistance and does not 

differentiate hepatic vs. peripheral insulin resistance. The hyperinsulinaemic 

euglycaemic clamp is the gold standard for assessing insulin resistance [1]. The 

question of what is a “normal” M value that rules out insulin resistance is largely 

unknown but is dependent on the dose of insulin infused. Several meta-analysis 

have tried to examine M values across various hyperinsulinaemic euglycaemic 
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clamps at variable insulin infusion rates resulting in different cut-off values (357, 

358). This is the first study, which proposes that, in addition to SAT IR, patients 

with CHC may also have “subclinical” hepatic glucose intolerance, which 

improves with viral eradication. 

 

Directly acting anti-viral agents (DAAs) have been shown to be less effective in 

genotype 3 CHC. We have now identified that patients infected with the pro-

steatogenic genotype 3 HCV have increased SAT adipose tissue insulin 

resistance, and viral eradication improved both hepatic and adipose tissue 

insulin resistance in CHC. Future therapies should aim at understanding the 

cross talk between SAT and liver especially in genotype 3 CHC, as genotype 3 

HCV is now the new villain in the era of DAAs.  
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7.3 Patients with CHC and NASH have different metabolic phenotypes  

 

The presence of hepatic steatosis in the setting of another liver disease (such as 

CHC) is associated with liver disease progression. NAFLD and CHC are two 

multisystem diseases whose spectrum of clinical manifestations, seemingly as a 

result of them sharing hepatic steatosis and insulin resistance as prominent 

features, overlap (359). There are also strong arguments suggesting that the 

association of NAFLD and CHC is much more frequent than predicted by chance 

alone, proving an intricate link between the two diseases (360). There is limited 

data comparing the metabolic profile in those with NAFLD and CHC. From the 

metabolic aspect, HCV infection resembles NASH in numerous features, such as 

the presence of steatosis, serum dyslipidemia, and oxidative stress in the liver 

(361). On the other hand, there are noticeable differences between HCV and 

NASH, in the fact that HCV modulates cellular gene expression and intracellular 

signal transduction pathways, while such details have not been noted for NASH. 

 

Our data suggest that patients with NASH are more insulin resistant than 

patients with CHC, and whilst the sites of insulin resistance in NASH are both in 

hepatic and peripheral (skeletal and SAT), the insulin resistance in CHC is mainly 

in SAT.  As eluded previously, mean BMI was higher in the NASH group 

compared to CHC cohort and this may be, in part, contribute to the degree of 

insulin resistance observed in the NASH group. The prevalence of NAFLD is 

directly linked to body weight. While 10-15% of the general population has fatty 

liver, over 70% of obese individuals have hepatic steatosis (182, 362, 363). In 

CHC, obesity (BMI > 30kg/m2) was an independent negative predictor of 
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response to antiviral treatment in CHC (364). Weight loss is also associated with 

a reduction in steatosis and an improvement in liver biochemistry and fibrosis in 

the absence of any antiviral effects (365). Therefore it is not surprising that in 

our analysis, patients with CHC were less insulin resistant, as their mean BMI 

was only 26 kg/m2   vs. 34 kg/m2   in the NASH group. However, obesity cannot be 

blamed entirely for the higher insulin resistance seen in NASH patients. One 

study suggested that adipose distributed in the visceral/abdominal region 

appears to convey the greatest risk in NAFLD studies, as it has been shown to 

strongly correlate with the severity of hepatic steatosis, irrespective of whether 

the individual was lean or obese (366).  

 

This is the first study, demonstrating the differences in the degree and sites of 

steatosis and insulin resistance in CHC and NASH. Extrapolation of notions from 

NAFLD to HCV research seem relevant (256) and will pave for more studies and 

novel therapies in both liver disease. Future studies should include weight-

matched individuals with CHC and NASH, albeit difficulty in recruiting lean NASH 

patients.  
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7.4 CONCLUSION AND FUTURE RESEARCH 

 

Our data have increased our understanding of the impact of hypoxia and HCV 

infection on lipid metabolism and insulin resistance, as well delineating the 

metabolic entities between CHC and NASH, to allow for the development of novel 

therapeutic targets.  

 

Future research can be aimed at (1) identifying the different depots of adipose 

tissue insulin resistance in CHC (visceral vs. abdominal subcutaneous tissue), (2) 

defining the genotype-specific effect of HCV on insulin resistance and (3) 

targeting the different roles of HIF subtypes and their roles on different cells 

under different physiological conditions.  
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