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Abstract 

 
Inappropriate use of antibiotics is a key factor in the development of antimicrobial 

resistance (AMR). UK national guidance has been ineffective in standardising the 

management of infections in the community. Many community prescribers are 

sceptical that their actions have an effect on AMR in their locality.  

As part of this study, routine surveillance of AMR in a large regional population was 

established. To help interpret surveillance data, two surveys were undertaken: a 

survey of laboratory methods, and a survey of GP sampling and prescribing 

protocols. Using these survey results, surveillance tools were developed to provide 

hospital and community prescribers with data on antibiotic resistance in bacteria 

within their locality; and enable laboratories to compare methods for determining 

antibiotic susceptibility.  

The results of this thesis demonstrated that routine AMR surveillance can be used to 

monitor key antibiotic resistance, detect emergence of new or unusual resistance 

mechanisms, and enable the bench-marking of laboratory methods. This study was 

also able to demonstrate that small increases in antibiotic prescribing by individual 

GPs increases the number of non-susceptible bacteria isolated from specimens 

taken from their practice population. Results from this thesis provides supporting 

evidence to those developing strategies to combat AMR in the community. 
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1.1 Background  

Antimicrobial resistance (AMR) is a serious and growing public health problem that 

has been recognised as one of the greatest threats to human health (World Health 

Organisation, 2012). Since the introduction of penicillin, a little over 70 years ago, we 

are now faced with the prospect of a world with few effective antibiotics, where 

patient outcomes in specialties such as oncology, transplant and complex surgery 

may deteriorate as infections become untreatable (Chief Medical Officer, 2013). 

Such a prospect may result in higher mortality, longer duration of illness and 

increased healthcare costs, ultimately contributing to a depletion of the global 

economy (World Health Organisation, 2016b). AMR is a complex subject with many 

contributing factors. This introduction section will introduce the concept of antibiotics, 

the development of resistance, the epidemiology of urinary-tract infections, and will 

conclude with a summary of the surveillance of antimicrobial resistance. 

In Europe, approximately 25,000 patients die annually from infections with multi-

resistant bacteria, including: methicillin-resistant Staphylococcus aureus (MRSA), 

vancomycin-intermediate-resistant and vancomycin-resistant S. aureus 

(VISA/VRSA), vancomycin-resistant Enterococcus spp. (VRE), penicillin-resistant 

Streptococcus pneumoniae (PRSP), third-generation cephalosporin-resistant 

Enterobacteriaceae and carbapenem-resistant Enterobacteriaceae or non-

fermentative Gram-negative bacteria (European Centre for Disease Prevention and 

Control (ECDC) and European Medicines Agency (EMEA), 2009). These bacteria 

are not only frequently responsible for bloodstream infections but are also associated 

with resistance to multiple antibiotics. The estimated annual associated costs of 
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these infections is around EUR 1.5 billion (European Centre for Disease Prevention 

and Control (ECDC) and European Medicines Agency (EMEA), 2009). 

The estimated increase in cost in the United States for patients with infections 

caused by antimicrobial-resistant bacteria is between US$6,000 and $30,000 more 

than those infected with susceptible bacteria (Maragakis et al., 2008). Approximately 

23,000 people die each year in the USA as a result of an infection with antimicrobial-

resistant bacteria, at a cost as high as $20 billion in direct healthcare, with potential 

societal costs as high as $35 billion each year (CDC, 2014). A review commissioned 

by the UK government in 2014 estimated that by 2050 AMR would account for 10 

million lives a year worldwide, with a cost of $100 trillion in lost productivity 

(Wellcome Trust and UK Department of Health, 2016).    

The inappropriate use of antibiotics for human health, animal welfare and the 

production of food is a major factor leading to the development of AMR (CDC, 2014). 

The bulk of worldwide sales of antibiotics occur in animal health and food production 

sectors. It is estimated that 70% (by weight) of antibiotics defined as important for 

human health that are sold in the USA are for use in agriculture or farming 

(Wellcome Trust and UK Department of Health, 2016). It has been suggested that 

the increasing use of third-generation cephalosporins in food animal production is 

associated with the emergence and spread of MDR bacteria in poultry, cattle and 

pigs; which may be a threat to humans by transmitting resistant strains via the food 

chain (Department of Health, 2012). The use of antibiotics in food production, animal 

and human health has led to resistant genes being released to the environment in 

the form of waste products. Antibiotics released into the soil may be transported to 

surface or ground water, and cycled within the environment (Wellington et al., 2013).  
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Antibiotic selective pressure is exacerbated by inadequate prevention and control of 

bacterial infections, and a lack of new treatment options (World Health Organisation, 

2012). In terms of human health, over-prescribing, easy access to over-the-counter 

drugs and internet sales are factors driving the increased use of antibiotics (Morgan 

et al., 2011).  

In the last 20 years, increasing trade and people mobility has led to the spread of 

antibiotic genes across the world (Hawkey, 2015). The resulting global nature of 

AMR means that it is difficult for any single nation or organisation to manage the 

problem alone (World Economic Forum, 2013). In September 2016 a declaration 

was signed by all 193 United Nation members to endorse a WHO Global Action Plan 

(World Health Organisation, 2016b) which requires nation states to address AMR by 

developing national action plans, implementing antimicrobial stewardship and 

strengthening AMR surveillance (United Nations, 2016). The guiding principles of the 

Global Action Plan are: 

1) Whole-of-society engagement including a one-health approach 

2) Prevention first (involving sanitation, hygiene and other infection prevention 

measures) 

3) Access – equitable access to and appropriate use of antibiotics 

4) Sustainability - plan for required resources to implement surveillance, 

research, training etc. 

5) Produce incremental targets for implementation 
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Several countries have influenced these guiding principles with national AMR 

initiatives. In the USA the Obama administration issued a plan for combating 

antibiotic resistance in 2015 that was founded on a ‘one-health’ approach to tackle 

both human and animal pathogens. This plan called for stronger partnerships with 

foreign governments and aggressive action to achieve significant reductions in 

antibiotic resistance (The White House, 2015).   

In England the Chief Medical Officer, in her first annual report (Chief Medical Officer, 

2013) and the subsequent UK five-year antimicrobial resistance strategy 

(Department of Health, 2013), made a series of recommendations aimed at 

conserving the effectiveness of existing antimicrobial treatments, improving the 

antimicrobial development pipeline and improving surveillance of both AMR and 

antimicrobial consumption. 

The epidemiology of AMR has also changed in the last 20 years, with the increasing 

incidence of Gram-negative multi-drug resistant (MDR) pathogens, such as those 

producing extended-spectrum beta-lactamases (ESBLs). MDR has been defined by 

the European Centre for Disease Prevention and Control (ECDC) and the US Center 

for Disease Control and Prevention (CDC) as ‘acquired non-susceptibility to at least 

one agent in three or more antimicrobial categories’ (Magiorakos et al., 2011). 

Increasing numbers of MDR Gram-negative bacterial infections has led to a reliance 

on carbapenems as antibiotics of ‘last-resort’ (Nordmann et al., 2009). As a 

consequence, carbapenemase-producing bacteria have emerged which demonstrate 

high levels of resistance to carbapenem antibiotics (Nordmann et al., 2011). The 

situation is exacerbated by the fact that no new classes of antibiotics active against 
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Gram-negative bacteria have been discovered in the last 25 years (Department of 

Health, 2013).   

In the following sections of this chapter, the discovery of antibiotics, their 

development and their various modes of action are described. This is followed by a 

review of the mechanisms of antibiotic resistance that have evolved to enable 

bacteria to combat the effects of different classes of antibiotics currently available for 

the treatment of bacterial infections.   

 

1.2 Antibiotics 

 

1.2.1 Discovery and development 

Although the word antibiotic is formed from the classical Greek words anti (against) 

and bios (life), the essence of antibiotic action is that they act selectively against 

bacterial life (Gould, 2016). Bacteria are prokaryotes, being structurally and 

metabolically different from eukaryotic cells, and therefore can be killed or inhibited 

from growth by agents that do not affect animal cells (Skold, 2011). Although 

mechanisms of action were not understood, in ancient history treatment for infections 

included honey, herbs, soil and moulds (Gould, 2016). Traces of the antibiotic 

tetracycline have been detected in thousand-year-old old Nubian mummies (Levy, 

2002). The occasional efficacy of these treatments may have been due to 

metabolites or chemicals harmful to bacteria, such as antibiotics from mould /soil 

extracts or the substantial levels of hydrogen peroxide in honey (Gould, 2016).  
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The age of antibiotics started in 1889 when Rudolf Emmerich and Oscar Loew 

performed clinical trials of a substance they named pyocyanase (Gould, 2016). This 

chemical was produced by Pseudomonas aeruginosa and was found to inhibit the 

growth of a range of bacteria. The trials of this compound at the time of discovery 

had some success against common infections; however, the instability of 

pyocyanase and its toxicity led to the agent being abandoned as a treatment option 

(Levy, 2002). Paul Ehrlich coined the term ‘chemotherapy’ after experimenting with 

chemical dyes (Levy, 2002). In 1909 he found a dye, salvarsan, that was 

successfully used to treat syphilis infections (Levy, 2002). Although toxicity issues 

limited its usefulness, this work led Gerhard Domagk to discover another dye, 

Prontosil rubrum in 1935, for which he was awarded the Noble prize (Ryan, 1992). 

Although the dye showed activity against bacterial infections in animals, it was the 

clear colourless metabolite of this chemical, sulphanilamide, that was the anti-

bacterial substance (Ryan, 1992). Chemically synthesised sulphonamides became 

widely available in the 1940s as a treatment for Gram-positive and Gram-negative 

bacteria, and reportedly saved the life of Winston Churchill in 1943 when he 

contracted bacterial pneumonia (Skold, 2011)   

Although the inhibiting effect of fungi on bacterial growth had been observed by Sir 

John Scott Burdon-Sanderson (1870), Joseph Lister (1871) and Dr John Tyndall 

(1875), it was not until Alexander Fleming returned from holiday in 1928 to observe 

this phenomenon on one of his agar plates that the significance of these 

observations were fully appreciated (Gould, 2016). Fleming showed that the mould 

contaminating his agar plate, Penicillium notatum, was producing a substance small 

enough to diffuse through agar and lyse the bacterium Staphylococcus aureus. He 
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called this substance penicillin and by extracting filtrates from the mould, 

demonstrated the powerful antibacterial properties against a range of bacteria. 

(Fleming, 1929). It is not clear why Fleming ended his research on penicillin after just 

six months, but the inability at the time to purify the antibiotic, along with an observed 

short half-life have been cited as factors (Gould, 2016;Skold, 2011). It was not until 

Howard Florey and Ernst Chain in 1940 purified sufficient quantities to treat 

infections caused by Streptococcus pyogenes in animal models that the therapeutic 

potential of penicillin was realised (Skold, 2011).    

The following 20 years became the golden era for antibiotic discovery. The discovery 

of streptomycin in 1944, which is produced by a soil bacterium (Streptomyces 

griseus) led to a widespread search for other potential bacteria from the environment 

(Ryan, 1992). At this time, most of the new antibiotics discovered were those 

produced by other microorganisms; however, soon advances in chemistry led to 

modifications of existing antibiotics to improve their effectiveness, such as the 

development of the first penicillinase-resistant beta-lactam antibiotic, methicillin in 

1959, the development of semi-synthetic penicillins in the 1950s and 1960s, and the 

chemical synthesis of new antibiotic molecules such as trimethoprim and quinolones 

in the 1960s (Wright et al., 2014) (Figure 1.1).    
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1.2.2 Mechanisms of action 

Antibiotics can be classified by their chemical structure, which is related to their 

mode of action. Antibiotics can either kill the bacteria (bactericidal), for example 

beta-lactam antibiotics, or slow their growth or reproduction (bacteriostatic) for 

example macrolide antibiotics (Shanson, 1999). Table 1 lists the major groupings 

and their primary bacterial targets. The following subheadings summarise the 

mechanisms of antibiotic action and describes how different classes of antibiotics 

may target similar bacterial processes. The descriptions below particularly focus on 

antibiotics acting against Gram-negative bacteria, which are the focus of this study.  

1.2.2.1 Cell wall biosynthesis 

The cell wall plays a vital role in the survival of bacterial cells by protecting against 

changes in osmotic pressures that could potentially lyse cells (Shanson, 1999). The 

cell wall is made up of long polysaccharide chains formed of alternating N-

acetylglucosamine and N-acetylmuramic acid (Walsh and Wencewicz, 2016a). 

These chains are cross-linked by peptides to form the structure peptidoglycan. This 

peptidoglycan layer is found in both Gram-positive and Gram-negative bacteria; 

although it is typically thicker in Gram-positive bacteria (Shanson, 1999). The peptide 

cross-links provide stability and are formed through a series of biochemical 

reactions.  

Two classes of clinically significant antibiotics target the peptidoglycan cell wall; 

beta-lactams and glycopeptides. Beta-lactam antibiotics are used to treat both Gram-

positive and Gram-negative bacterial infections; however glycopeptide antibiotics are 

primarily used against Gram-positive bacterial infections (Skold, 2011), and therefore 

will not be discussed further here.  
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Beta-lactam antibiotics cause disruption of the cell wall structure. The stability of the 

cell wall depends on the peptide cross-linkage of these polysaccharide chains to 

form peptidoglycan. The peptide cross-linking is catalysed by transpeptidase 

enzymes, which are also referred to as penicillin-binding proteins. The beta-lactam 

ring component of the molecule is a structural mimic of the D-alanyl-D-alanine 

dipeptide, which is found at the end of cross-linking peptides that form the 

peptidoglycan. Therefore beta-lactam antibiotics inhibit the transpeptidation reaction, 

which in turn prevents the formation of the cross links in the late stages of forming 

peptidoglycan, and thereby weakens the newly formed cell wall in growing bacteria 

(Walsh & Wencewicz, 2016a). 
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Table 1.1 Classification of a selection of antibiotics (based on BNF classification - 
https://bnf.nice.org.uk/) 

Class (chemical 
structure) 

Mode of action Example 

Beta-lactam antibiotics Inhibit bacterial cell wall synthesis Penicillins 

  Penicillins     Amoxicillin 

  Cephalosporins Cephalosporins 

  Carbapenems     Cefotaxime 
 

Carbapenem  

    Meropenem 

Polymyxins Disrupt bacterial cell membrane Colistin 

Glycylcyclines Inhibit bacterial protein synthesis Tigecycline 

Epoxides Inhibits bacterial cell wall synthesis Fosfomycin 

Glycopeptide Inhibits bacterial cell wall synthesis Vancomycin 

Lipopeptides Disrupt bacterial cell membrane Daptomycin 

Oxazolidinones Inhibit bacterial protein synthesis Linezolid 

Macrolides Inhibit bacterial protein synthesis Erythromycin 

Tetracyclines  Inhibit bacterial protein synthesis Tetracycline 

Quinolones Inhibit bacterial DNA synthesis Ciprofloxacin 

Sulphonamides and 
trimethoprim 

Blocks bacterial cell metabolism by 
inhibiting enzymes 

Co-trimoxazole 

Aminoglycosides Inhibit bacterial protein synthesis Gentamicin 

Imidazoles Inhibit bacterial DNA synthesis Metronidazole 

Peptides Inhibit bacterial cell wall synthesis Bacitracin 

Lincosamides Inhibit bacterial protein synthesis Lincomycin 

Other Inhibit bacterial protein synthesis Fusidic acid 
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1.2.2.2 Cell membrane integrity 

Unlike the bacterial cell wall, cell membranes are found in both eukaryotic and 

prokaryotic cells (Shanson, 1999), therefore, it is a challenge to identify antibiotics 

that are selective and non-toxic for mammalian cells. Many antiseptics, for example 

those used in hand-washing disrupt the bacterial membranes; however the lack of 

selectivity for prokaryotic cells restricts their use to topical application. Antimicrobial 

peptides are part of the innate immune system and destroy bacterial membranes. 

Some of these are now candidates for novel therapeutic agents (Walsh & 

Wencewicz, 2016a). The traditional membrane acting antibiotics include polymyxins 

(e.g. colistin) and lipopeptides (e.g. daptomycin). Polymyxins were once deleted from 

formularies due to their toxicity; however due to their effectiveness against multi-drug 

resistant bacteria they are becoming increasingly used as antibiotics of last resort. 

They act on the outer membrane of Gram-negative bacteria by disrupting its integrity 

and gain access to the inner membrane, where they again disrupt the membrane 

barrier, possibly by pore formation (Velkov et al., 2014). Polymyxins are not as 

effective against Gram-positive bacteria as their action depends on the positive side-

chains, which react electrostatically with the negatively charged lipopolysaccharide 

(LPS) of Gram-negative bacteria; however lipopeptides are effective against Gram-

positive bacteria, but not Gram-negative bacteria due to an inability to penetrate the 

outer membrane barrier (Walsh & Wencewicz, 2016a).  

1.2.2.3 Protein synthesis 

Most of the cellular structures and enzymes that make up a bacterial cell are made 

from proteins, and therefore protein synthesis is an essential process for the cell’s 

survival (Shanson, 1999). There are several classes of antibiotics that act on 
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bacterial protein synthesis by either binding to the 30S or 50S subunits of the 70S 

prokaryotic intracellular ribosomes (Skold, 2011), these include aminoglycosides, 

macrolides and oxazolidinones. From this group, aminoglycosides are antibiotics 

primarily used in the treatment of Gram-negative infections, whilst macrolides and 

oxazolidinones mainly target Gram-positive bacteria due to poor penetration of the 

cell-membrane in Enterobacteriaceae and non-fermenting Gram-negative bacteria 

(Skold, 2011).     

Aminoglycosides bind to the 16S rRNA in the 30S subunit and interfere with the 

precision of the translation process that directs which amino acids are included in the 

formation of peptides (Skold, 2011). The resultant mutations are not compatible with 

normal functions of the bacterial cell. Mutations in critical proteins, such as 

membrane proteins, have a lethal effect on the bacteria as this leads to leakage of 

ions and larger molecules (Walsh & Wencewicz, 2016a). It has also been suggested 

that aminoglycosides damage the bacterial outer-membrane during their transition 

into the cell, increasing general permeability and leading to leakage of cellular 

content, which may explain the bactericidal action of this family of antibiotics 

(Schurek et al., 2008).   

1.2.2.4 DNA and RNA metabolism 

DNA and RNA have a vital role in cell replication (Shanson, 1999). Some antibiotics 

bind to components involved in DNA or RNA synthesis, and thereby have a 

bactericidal effect. These antibiotics belong to the quinolone and rifamycin antibiotic 

classes.  Quinolones do not interfere with DNA synthesis but do interfere with 

conformation changes in DNA required for replication (Skold, 2011). To enable the 

long molecular length of DNA to be accommodated inside a bacterial cell the DNA 
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has to undergo a process of supercoiling (Walsh and Wencewicz, 2016b). This 

supercoiling is facilitated by the enzyme DNA gyrase, which cuts both strands of 

DNA to allow another part of the circular double stranded DNA molecule to pass 

through the break. Quinolones act by binding to the enzyme-DNA interface in a non-

covalent manner, which results in the DNA strand breaks becoming permanent. This 

triggers DNA repair pathways and the ultimate degradation of the ‘broken’ DNA, 

leading to cell death (Walsh & Wencewicz, 2016a). Topoisomerase IV, responsible 

for releasing the coiling to enable DNA replication, is another cellular enzyme that is 

inhibited by quinolones (Aldred et al., 2014). 

Rifamycin antibiotics, such as rifampicin, inhibit the growth of bacteria by inhibiting 

the transcription of DNA. These antibiotics bind to the active centre of the bacterial 

DNA transcribing enzyme RNA polymerase, inhibiting the early stage RNA chain 

elongation. This leads to the transcription process being severely restricted 

preventing bacterial growth (Skold, 2011).   

1.2.2.5 Folate biosynthesis  

Folic acid is an essential coenzyme for all living cells as it is involved in the synthesis 

of DNA precursors (Alberts et al., 2008). Bacterial cells depend on an enzyme 

pathway for the formation of folic acid, which differs from mammalian cells, as they 

do not have these enzymes, and therefore have to acquire this coenzyme from food 

sources (Alberts et al, 2008). Sulphonamides and folic acid inhibitors (e.g. 

trimethoprim) are the broad classes of antibiotics that interfere with the bacterial 

syntheses of folic acid. Sulphonamides are structural analogues of para-

aminobenzoic acid (PABA), which is a substrate for the key enzyme dihydropteroate 

synthetase (DHCP). This enzyme acts on PABA to catalyse the formation of the 
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folate intermediate dihydropteroic acid, therefore the competitive inhibition of this 

enzyme by sulphonamides prevents folic acid production (Chopra et al., 2002).  

Trimethoprim acts on another part of the folic acid enzyme pathway by competitively 

inhibiting the reduction of dihydrofolate to tetrahydrofolate by the enzyme 

dihydrofolate reductase. The functional nature of trimethoprim and sulphonamide in 

inhibiting folic acid synthesis has been exploited over many decades by these 

antibiotics being used in combined therapy  (Walsh & Wencewicz, 2016a).     

The mechanisms of antibiotic action described above provide examples of only some 

of the many types of antibiotics that are currently available for the treatment of 

bacterial infections. In the next section antimicrobial resistance will be discussed, 

again with a focus on the mechanisms used by Gram-negative bacteria to combat 

the action of antibiotics.       

   

1.2.3 Antimicrobial resistance 

1.2.3.1 Introduction 

Antibiotics changed the face of modern medicine and are now indispensable for a 

range of medical procedures such as surgery, organ transplants and cancer 

therapies (Department of Health, 2013); however, with the discovery of each new 

antibiotic, resistance to the agent developed soon after (Figure 1.1).   

There are three main ways in which a bacterium may be resistant to antibiotics. They 

may be naturally resistant to antibiotics (intrinsic resistance), develop resistance by 

mutation or acquire resistance through the transfer of deoxyribonucleic acid (DNA) 
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(Walsh & Wencewicz, 2016a). A species of bacteria may be naturally resistant to an 

antibiotic, for example Proteus mirabilis is resistant to nitrofurantoin or Pseudomonas 

aeruginosa resistant to cloxacillin, due to the impermeable nature of the outer 

membrane and the use of efflux pumps that remove antibiotics from the cell (Cox 

and Wright, 2013). A bacterial strain may also develop antibiotic resistance by a 

process of spontaneous mutation. Mutation can occur within the bacterial 

chromosome at a frequency of 10-6 to 10-12 per generation (Shanson, 1999). Some 

bacterial strains exhibit increased mutation frequency (hypermutability) due to loss of 

DNA mismatch repair systems, which is an important mechanism of acquired 

resistance (Jolivet-Gougeon et al., 2011).  

Acquisition of antimicrobial resistance genes is the major cause of resistance 

amongst Gram-negative bacteria. Foreign DNA can be spread horizontally via 

plasmids or transposons. Plasmids are mobile genetic elements that can carry 

antibiotic resistance genes. Transposons are genetic elements that, unlike plasmids, 

are not able to replicate; however they are able to ‘jump’ from plasmids to the 

chromosome (and vice-versa) and also move between plasmids. Many transposons 

include antimicrobial resistance genes and therefore this is an important mechanism 

for creating multi-drug resistant plasmids (Skold, 2011).   

Plasmid and chromosomal DNA can be spread horizontally via conjugation (cell to 

cell contact with the same or unrelated species). A few species of bacteria (e.g. 

Neisseria spp. and Streptococcus pneumoniae) can take up extracellular DNA 

released by dead cells of related species (transformation) (Livermore, 2004a). 

Plasmid transfer differs in the Gram-positive bacterium S. aureus, with plasmid 
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genes being transferred by bacteriophages (transduction), rather than conjugation 

(Walsh & Wencewicz, 2016a).  

Gram-negative bacteria are the focus of this study, in particular members of the 

family Enterobacteriaceae and the genus Pseudomonas. These bacteria have been 

associated with the recently observed rise in antibiotic resistance and its members 

are the major cause of urinary tract infections (UTI) in males and females from all 

age groups (Laupland et al., 2007).Therefore these bacteria and their resistance 

mechanisms will form the basis of the remainder of this section. 

The bacterial mechanisms of resistance to antibiotics include: altering the antibiotic 

target; the use of alternative enzymatic pathways; production of antibiotic inactivating 

enzymes; reduced cell permeability and the ability to remove antibiotics that have 

entered the cell (efflux pumps). Examples of various mechanisms of antibiotic 

resistance in Gram-negative bacteria are described below. 
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Figure 1.1 Antibiotic resistance timeline (Clatworthy et al., 2007) 
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1.2.3.2 Beta-lactam inactivating enzymes 

The production of enzymes (beta–lactamases) that hydrolyse antibiotics structured 

around a beta–lactam ring, rendering them ineffective as antimicrobial agents, is the 

most common mechanism of resistance in Gram-negative bacteria (Livermore, 

2012a). The first beta-lactamase was discovered in 1940 in an isolate of Escherichia 

coli (Abraham and Chain, 1940). However it was the discovery of a beta–lactamase 

gene located on a mobile plasmid, shortly following the introduction of the first broad-

spectrum beta-lactam, ampicillin, in 1961, that raised concerns regarding the spread 

of resistance to a range of clinically important Gram-negative bacteria (Datta and 

Kontomichalou, 1965). This mobile beta–lactamase, designated TEM-1(isolated from 

a patient named Temoniera), was soon to be found in other members of the 

Enterobacteriaceae and also other pathogens such as Haemophilus influenzae and 

Neisseria gonorrhoeae (Brunton et al., 1986).  

The range of beta–lactam antibiotics affected by resistance increased markedly with 

the emergence and spread of extended-spectrum beta–lactamases (ESBLs) in the 

early 1990s. ESBLs are enzymes that impart resistance to most beta-lactam 

antibiotics, including cephalosporins and penicillins. The earliest recognised ESBLs 

evolved from point mutations of known beta–lactamases (TEM-1, TEM-2 and SHV-

1). Infections with these ESBLs were initially largely nosocomial from patients in 

specialist units and involving Klebsiella spp. (Shannon et al., 1998). A new class of 

ESBL called CTX-M appeared in the 1990’s, named for their greater activity against 

cefotaxime. This new enzyme has been shown to originate from the chromosome of 

Kluyvera sp rather than from mutation of existing widely dispersed beta–lactamases 

(Poirel et al., 2002).  
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Another group of beta-lactamases, AmpC cephalosporinases, confer resistance to 

cephamycins, oxyimino- beta–lactams and are not inhibited by beta–lactamase 

inhibitors, such as clavulanic acid, which can be used to inhibit a range of beta-

lactamases (Livermore and Hawkey, 2005a). A number of species of bacteria have 

inducible chromosomally coded AmpC beta-lactamases and have been given the 

acronym ESCAPPM (Enterobacter spp., Serratia spp., Citrobacter freundii, 

Aeromonas spp., Proteus spp., Providencia spp., and Morganella morganii) (Boyle et 

al., 2002). Although found encoded within the chromosome of these species, the 

genes have become mobilized by plasmids and are now found widely in bacteria 

lacking or poorly expressing the chromosomal gene, such as K. pneumoniae, and P. 

mirabilis (Jacoby, 2009).   

Members of the carbapenem antibiotic family have been kept as reserve drugs for 

use against multi-resistant Gram-negative bacterial infections, such as those with 

bacteria producing CTX-M beta-lactamases. However resistance to this important 

group of antibiotics has emerged, either by combination of hyper-production of 

broad-spectrum beta–lactamases (i.e. ESBLs or AmpC) and porin loss (Tangden et 

al., 2013), or by acquiring the ability to produce carbapenemases. Carbapenemases 

are a diverse group of beta-lactamases that show broad-spectrum activity against 

beta–lactam antibiotics including carbapenem’s (Table 2). They belong to three 

molecular classes and two distinct types are found among Gram-negative bacteria, 

those that have serine and those that have zinc (metallo beta–lactamases) at the 

active sites (Queenan and Bush, 2007).  
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Table 1.2 Carbapenemases by Ambler classification (source UK Standards for 
Microbiological Investigation B60 issue 2.1) 

 

Enzyme 
type * 

Classification 
by Ambler 
class  

Activity spectrum  Organism(s)  

KPC  A  All beta-lactams  
Enterobacteriaceae  

P. aeruginosa A. baumannii  

SME  A  
Carbapenems and aztreonam, but 
not 3rd/4th generation 
cephalosporins  

S. marcescens  

NMC–A  
A  

Carbapenems and aztreonam, but 
not 3rd/4th generation 
cephalosporins  

Enterobacter species  
IMI  

GES  A  
Depends on enzyme variant. 
Some are ESBLs, others eg GES-
5 are carbapenemases  

P. aeruginosa and 
Enterobacteriaceae  

IMP  

B (metallo-beta-
lactamases)  

All beta-lactams except 
monobactams (aztreonam)  

Pseudomonas species  

VIM  
Acinetobacter species 
Enterobacteriaceae  

NDM    

AIM, GIM, 
SIM, (not 
detected in 
the UK yet)  

  

DIM, SPM    

OXA  D  
Carbapenems (note that many 
OXA enzymes are NOT 
carbapenemases)  

A. baumannii, 
Enterobacteriaceae and rare 
P. aeruginosa  

*Enzymes marked as bold are the enzymes most commonly found in the UK. 
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1.2.3.3 Aminoglycoside inactivating enzymes  

High levels of resistance to aminoglycosides is commonly mediated in clinical 

infections by transferable genes that code for drug-inactivating enzymes that modify 

the antibiotic so that it is unable to bind to bacterial ribosome targets (Walsh & 

Wencewicz, 2016b). These inactivating substances are of three types: 

phosphorylating, adenylating, and acetylating enzymes. As they have differing 

substrate targets they can confer resistance to individual aminoglycosides or show 

extensive cross resistance to this group of antibiotics (Skold, 2011). Transferable 

aminoglycoside resistant genes are often found on plasmids that confer multi-drug 

resistance (MDR), for example the aac(6_)-Ib-cr aminoglycoside resistance gene is 

commonly found in a plasmid associated with CTX-M-15, TEM-1 and OXA-1 

resistance genes (Carattoli, 2009). 

1.2.3.4 Altering the antibiotic target 

Fluoroquinolone resistance is increasingly found amongst Enterobacteriaceae 

(Hsueh et al., 2010). Resistance is achieved by stepwise mutations in the coding 

region of the gyrase subunits (gyrA and gyrB) and DNA topoisomerase IV (parC) 

(Drlica and Malik, 2003). Plasmid-mediated quinolone resistance (Qnr) is an 

increasing concern as it has been associated with plasmids encoding ESBLs 

conferring multi-drug resistance (Lavilla et al., 2008). 

Polymyxins were first used in the 1950s and have broad spectrum activity against 

Gram-negative bacteria, including activity against the majority of Enterobacteriaceae. 

Due to nephrotoxicity and neurotoxicity, plus the availability of effective, less toxic 

antibiotics, its use has been very limited in recent decades. As this family of 

antibiotics remain active against most carbapenemase producing bacteria there has 
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been a renewed interest in these antibiotics. Polymyxin B and polymyxin E (colistin) 

have now become first-line therapy for the treatment of serious infections caused by 

multi-drug resistant bacteria (Schwarz and Johnson, 2016). Resistance to 

polymyxins is due to the modification of the target lipid A, which until recently was 

believed to be solely mediated by chromosomal genes. However a plasmid-mediated 

resistance mechanism, designated MCR-1, was discovered in China in late 2015. 

The mcr1 gene product aligns closely with phosphoethanolamine transferase which 

modifies the phospoethanolamine moiety of lipid A (Liu et al., 2016). 

1.2.3.5 Reduced permeability and efflux pumps 

The outer membrane of Gram-negative bacteria acts as a barrier to a number of 

antibiotics that are effective against Gram-positive organisms. This attribute, 

combined with large numbers of efflux pumps within the membrane that reduce the 

concentration antibiotics within the cell, provides some members of the 

Enterobacteriaceae family and many non-fermenting Gram-negative bacteria, the 

ability to resist the action of different classes of antibiotics (Cox & Wright, 2013).    

Antimicrobial resistance in Pseudomonas aeruginosa is an increasing concern. As 

with members of Enterobacteriaceae, the acquisition of transferrable genetic 

elements, particularly class B carbapenemases can lead to multi-drug resistance. 

However P. aeruginosa is also noted for an ability of developing resistance to a 

range of antibiotics, including carbapenems, by the selection of chromosomal 

mutations. Although these can include mutations that result in the hyper-production 

of beta-lactam inactivating enzymes, they also often result in the upregulation of 

genes encoding efflux pumps that actively remove antibiotics from the cell, and 
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reduced antibiotic permeability by removal or inactivation of porins that allow 

antibiotic into the cell (Cabot et al., 2011).          

 

1.3 Epidemiology of Gram-negative antimicrobial resistance 

 

1.3.1 Background 

In the 1990’s the focus of concern for AMR was the emerging antibiotic resistance of 

Gram-positive bacteria causing invasive infections (Livermore, 2012b). In the early 

2000’s in the UK the proportion of Staphylococcus aureus resistant to methicillin 

(MRSA) isolated from blood had reached over 40%, and had become a major 

political issue for the UK government. This led to a national initiative to reduce MRSA 

bacteraemia by 60% over three years (Johnson et al., 2005). There has been a 

significant decline in the number of cases of MRSA bacteraemia and in the 

proportion of MRSA to methicillin-sensitive Staphylococcus aureus isolated from 

blood specimens between 2003-2010 (Livermore, 2012b). In the last ten years the 

focus of concern has changed from multi-resistant Gram-positive bacteria to the 

emergence of highly resistant Gram-negative bacteria. 

 

1.3.2 Extended spectrum beta-lactamases 

Transferable resistance to extended-spectrum cephalosporins was first described by 

Kliebe et al. in 1985 (Kliebe et al., 1985). Soon after, reports of transferable 

resistance to extended-spectrum beta-lactam antibiotics in outbreaks caused by 

Enterobacteriaceae were being reported in Europe (Sirot, 1995). These beta-
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lactamases were found to be mutations of the classical TEM and SHV enzymes that 

were commonly found being produced by members of the Enterobacteriaceae family 

(Livermore and Hawkey, 2005b). These enzymes had activity against extended 

spectrum cephalosporins and by the late 1990s were reported from around the world 

(Livermore et al., 2007a). They were occasionally found in large outbreaks of 

infections in UK hospitals in the 1990s; however they remained uncommon in the 

UK, and mainly associated with nosocomial infections in specialist hospital units 

(Livermore & Hawkey, 2005b).      

During 2003 the Health Protection Agency (HPA, now a part of Public Health 

England) began receiving isolates of E. coli with CTX-M type ESBL from laboratories 

around the UK. The significant difference with these reports was that they were not 

only being reported from hospital settings, but many of these isolates were from 

community patients with urinary tract infections (Woodford et al., 2004). The 

emergence of CTX-M enzymes has led to a significant change in the prevalence and 

epidemiology of ESBL-producing bacteria in the UK and Europe (Figure 1.2), with 

their widespread distribution representing a threat to the ability to treat infections in 

both hospital and community settings (Hawkey and Jones, 2009;Livermore & 

Hawkey, 2005a). These enzymes will be described in more detail in the following 

section. 

A study in the Netherlands in 2010 reported that CTX-M, TEM and SHV extended-

spectrum beta–lactamase (ESBL) genes were found in 79.8% of raw chicken meat, 

and that the predominant ESBL genes in chicken meat and human rectal swabs 

were identical (Overdevest et al., 2011). The widespread use of antibiotics in human 

and veterinary medicine, and the use of antibiotics as growth promoters in animal 
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feed, although now banned in the EU, are significant factors in the emergence and 

spread of antibiotic resistance (Wellcome Trust and UK Department of Health, 2016). 
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Figure 1.2 Percentage of invasive E. coli isolates with resistance to third-generation 
cephalosporins, by European country, a) 2010 b) 2015 (source ECDC) 

a) 2010 

 

b) 2015 
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1.3.2.1 CTX-M enzyme 

Five major families of CTX-M genotypes have been recognised (Livermore, 2012a) 

and particular genotypes are associated with geographical regions. CTX-M-14 was 

associated with China and the Far East, and CTX-M-15 was the only genotype 

reported from India; however both of these genotypes are now spread widely across 

the world. High rates of ESBL-producing E.coli have been reported in India (61.2%), 

China (59.1%) and Thailand (53%) (Hsueh et al, 2010). CTX-M-15 is frequently 

carried by a very successful uropathogenic strain of E. coli, sequence type (ST) 131, 

which has led to it becoming the dominant genotype found in Western Europe 

(Livermore et al., 2007b). 

In a survey in the West Midlands region of England in 2006, the majority of ESBL 

producing bacteria were found to be of the CTX-M-15 genotype. It was reported that 

a particular clonal group (025b-ST131) had become dominant in the region following 

its emergence in an outbreak only three years earlier (Xu et al., 2011). A further 

study in the West Midlands in 2012 demonstrated increased gut carriage of ESBL 

producing E. coli in residents with names associated with Middle East/South Asia 

compared with those with names of a European origin (22.8% compared with 8.1%). 

The authors suggest that frequent travel to areas of higher prevalence of ESBL by 

members of the West Midlands Middle East and South Asia community may account 

for the increased carriage (Wickramasinghe et al., 2012).   
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1.3.3 Carbapenemases 

In 2004 it was reported that pan-resistance in nosocomial infections caused by 

Enterobacteriaceae was rare due to the continuing activity of carbapenems 

(Livermore, 2004b). Resistance to this important group of antibiotics has now 

emerged, with the acquisition of transferable genes coding for carbapenemase 

enzymes becoming a serious concern. Small numbers of carbapenem-resistant 

pseudomonads and other non-fermenting Gram-negative bacteria have been 

reported to the PHE Antimicrobial Resistance and Healthcare Infections (AMRHAI) 

reference laboratory since 2000; however, from 2008 a rising trend is observed in 

carbapenemase-producing Enterobacteriaceae (Figure 1.3). 

1.3.3.1 Klebsiella pneumoniae carbapenemase (KPC) 

Klebsiella pneumoniae carbapenemase (KPC) was first reported in the USA in 1996 

(Yigit et al., 2001). KPC-producing bacteria have now been reported globally and 

have been associated with a successful clonal lineage of K. pneumoniae multi-locus 

sequence type (ST), ST258. This clone has caused large hospital outbreaks in 

several countries, including Israel, Greece and the USA (Nordmann et al, 2009). The 

success of this clone has led to a rapid change in the epidemiology of 

carbapenemase-producing bacteria across parts of southern Europe, with 

carbapenemase-producing K. pneumoniae becoming endemic in Greece and Italy 

(Figure 1.4).   
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Figure 1.3 Confirmed carbapenemase producing Enterobacteriaceae in the UK, 2003-2015 (source PHE Antimicrobial Resistance 
and Healthcare Infections reference unit)   
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Figure 1.4 Percentage of Klebsiella pneumoniae invasive isolates resistant to 
carbapenems in Europe in a) 2009, b) 2014 (source ECDC) 

a) 2009

 

b) 2014
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The first K. pneumoniae KPC-producing organism in the UK was isolated from a 

blood specimen in Scotland in 2007 (Woodford et al., 2008). Up until 2010 there 

were sporadic geographically dispersed reports of KPC-producing K. pneumoniae in 

the UK, which were largely related to imported ST258 strains. This changed 

dramatically in 2010, with 231 bacteria, mostly from the Greater Manchester area, 

being identified as KPC-producers. This cluster of cases was the result of horizontal 

transmission of plasmids between species, rather than spread by a clonal KPC-

producing strain (Livermore, 2012b). In contrast to the standard ST258 antibiogram, 

the KPC bacteria isolated in the North West region are mostly susceptible to 

fluoroquinolones and several aminoglycosides (Munoz-Price et al., 2013). Shown in 

Figure 1.3 increasing number of confirmed KPC-producing bacteria are observed up 

to 2014, and although the numbers fall slightly in 2015, there is a rising trend for the 

total number of confirmed carbapenemase producers. Although most of the 

confirmed KPC-producing bacteria were referred from the North West region; these 

referrals include bacteria from an extensive screening programme in this area. 

1.3.3.2 New Delhi metallo (NDM) carbapenemase 

New Delhi metallo (NDM) carbapenemases were first described in 2008 from a 

patient in Sweden who had recently returned from India (Yong et al., 2009). NDM-1 

confers high level resistance to carbapenems and other beta-lactam antibiotics. The 

carriage of NDM-1 genes are also associated with genes conferring resistance to 

many antibiotic classes, including fluoroquinolones and aminoglycosides 

(Kumarasamy et al., 2010;Yong et al, 2009).   

The emergence of NDM-1 is a concern as the gene is located in a mobile genetic 

element that enables it to be transferred easily to different strains of bacteria, rather 
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than be associated with a single strain (Nordmann et al, 2011;Yong et al, 2009). A 

study of NDM-1 producing isolates in India, Pakistan and the UK showed high-level 

resistance to all antibiotics except tigecycline and colistin (Kumarasamy et al, 2010). 

The NDM-1 UK isolates reported in this study were mostly associated with travel to 

India or Pakistan, with the Indian NDM-1 isolates being isolated from community-

acquired infections (Kumarasamy et al 2010). A variant, designated NDM-2, was 

described in a strain of Acinetobacter baumannii from a patient transferred from an 

Egyptian hospital (Kaase et al., 2011) and now at least five other variants have been 

described (Jain et al., 2014). 

A review of the first 250 NDM cases in the UK reported that, although travel history 

was only available for 40% of cases, 41% (41/101) of patients with information on 

travel had not travelled outside the UK, suggesting a local UK reservoir of these 

bacteria (Jain et al, 2014). The majority of those (52%) with a travel history had 

travelled to, or received healthcare in the Indian subcontinent. The same study also 

reported that 12% of NDM cases were found in the community (Jain et al, 2014). 

Previously metallo- and non-metallo carbapenemases were largely isolated from 

nosocomial infections caused by K. pneumoniae (Walsh et al., 2005).  However 

increasing numbers of E. coli have been identified as having either an OXA-48 

carbapenemase (Dimou et al., 2012) or New Delhi metallo- beta-lactamase (NDM-1) 

(Walsh and Toleman, 2012). The emergence of transmissible plasmids encoding 

carbapenemases in E. coli is a concern as this organism is widely found in the 

environment and is an important cause of infections in the community (Nordmann et 

al, 2011). 
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1.3.3.3 OXA-48 carbapenemase 

OXA-48 was first identified in a strain of K. pneumoniae isolated in Turkey in 2001, 

being found on a mobile plasmid (Poirel et al., 2004). Reservoirs of the OXA-48 gene 

are now found in Middle East, North Africa and well as Turkey (Poirel et al., 2012). 

Although these enzymes have been isolated mainly from K. pneumoniae, they are 

increasingly being found in other Enterobacteriaceae, including E. coli. A recent 

study in Spain reported an increase in the prevalence of carbapenemase-producing 

E. coli, which was mainly due to the dissemination of OXA-48 producers (Ortega et 

al., 2016). Across the UK (Figure 1.3), and specifically in the West Midlands (Figure 

1.5), increasing numbers of OXA-48 producers are being confirmed by the PHE 

reference laboratory.    
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Figure 1.5 Confirmed carbapenemase producers in Enterobacteriaceae. West Midlands July 2014-December 2016 (source PHE 
AMRHAI laboratory) 

        

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Ja
n

Fe
b

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

Se
p

O
ct

N
o

v

D
ec Ja
n

Fe
b

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

Se
p

O
ct

N
o

v

D
ec Ja
n

Fe
b

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

Se
p

O
ct

N
o

v

D
ec

2014 2015 2016

KPC + VIM

VIM

OXA-48

NDM + OXA-48

NDM

KPC

IMP

GES

N
o
. 
o
f 

is
o

la
te

s
 



36 

 

1.3.3.4 Mobilised colistin resistance (mcr-1) 

The options for treating serious infections caused by carbapenemase-producing 

Enterobacteriaceae are limited (Livermore, 2012a). As many of these bacteria remain 

susceptible to colistin, the WHO has recently added colistin to the list of critically 

important antimicrobials (World Health Organisation, 2016a). Therefore the 

emergence of a plasmid-mediated mobilised colistin resistance (mcr-1) in bacteria 

isolated from animals and humans in China in 2016 is a serious concern (Liu et al, 

2016). Polymyxins were not available for hospital use in China before the emergence 

of this plasmid-mediated resistance; however they were used heavily in agriculture. 

The prevalence of the mcr-1 gene in bacteria carried by humans and food animals in 

south China suggests the possibility of this antibiotic resistance mechanism being 

driven by extensive use of colistin in agriculture and food production (Paterson and 

van, 2017). Although the mcr-1 gene was originally thought to be confined to China, 

from sequencing archived bacterial DNA, it has now been found in countries on five 

continents and in many types of enterobacterial species dating back as far as the 

1980s (Schwarz & Johnson, 2016).      

 

 

 

 



37 

 

1.4 Urinary Tract Infections 

In this section the burden of urinary tract infections (UTI) will be put into context by 

describing the types of patients at risk of infection, aetiology (including host factors), 

the bacteria commonly responsible, diagnosis of UTI and treatment.   

Urinary tract infections (UTI) are considered to be one the most common bacterial 

infections of humans, with acute uncomplicated cystitis affecting approximately 40% 

of women during the course of their lives (Sheerin, 2011). Although UTI has been 

associated with severe infections, including sepsis, most UTIs are not severe 

(Laupland et al, 2007). However, UTI can cause significant distress and discomfort 

and is one of the most commonly seen presentations in community health care 

settings. Patients suffering from UTI may present with one or more of the following 

symptoms: dysuria, frequency, suprapubic tenderness, urgency, polyuria and 

haematuria (Public Health England, 2014b). In the USA it has been estimated that 

seven million clinic visits per year are due to UTI at a cost exceeding $1.6 billion 

(Sheerin, 2011). 

 

1.4.1 Definitions 

Urinary tract infection (UTI) is caused by the presence of pathogenic bacteria within 

the urinary tract. These bacteria can be found infecting the bladder (cystitis), kidney 

(pyelonephritis) or urine (bacteriuria). UTI can be symptomatic with patients 

presenting with a range of symptoms, from mild irritation to sepsis (Foxman, 2003).  
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An uncomplicated UTI is an infection of an otherwise healthy individual, with normal 

structures and function of the urinary tract, whilst the term complicated UTI is 

assigned to those occurring in individuals with structural or functional abnormalities, 

those with indwelling catheters or other conditions including pregnancy. Patients with 

symptomatic renal infections that otherwise have a normal genitourinary tract are 

diagnosed with acute uncomplicated pyelonephritis (Foxman, 2010). 

Asymptomatic bacteriuria is defined as the isolation of sufficient numbers of bacteria 

from urine to indicate an infection (>100,000 colony forming units/ml), yet the patient 

has no symptoms or signs of infection (Cormican et al., 2011).       

 

1.4.2 Epidemiology of UTI 

This section describes the distribution of UTI across various age groups and gender 

and describes associated risk factors that may lead to both uncomplicated and 

uncomplicated infections. 

Asymptomatic bacteriuria (ASB) is common in women and the elderly from both 

sexes, being found in one to two percent of school-age girls, and five percent of adult 

women. In the >65 age-group asymptomatic bacteriuria has been reported in 21% of 

women and 12% men (Stamm and Hooton, 1993). The risk factors for ASB include 

sexual intercourse, diabetes, pregnancy and advancing age. The risk of developing 

symptomatic UTI is increased with ASB; however in most cases treatment is not 

recommended (Cormican et al, 2011). As ASB during pregnancy can progress to 

cause pyelonephritis, and is linked to premature delivery, hypertension and fetal 

mortality, treatment is always recommended in this group (Schieve et al., 1994).        
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Uncomplicated UTI is the most common form of symptomatic infection, affecting 

approximately 15% of women per year, with the incidence of infection highest in 

sexually active women (Sheerin, 2011). Recurrence is common with up to 50% of 

woman experiencing a recurrent infection, and around 33% experiencing frequent 

recurrences (Scholes et al., 2000;Stamm, 2002). Although uncomplicated UTI is 

often not a serious condition and the effects are normally short-lived, they can have 

significant short-term morbidity causing considerable discomfort and inconvenience. 

Recurrent UTI may also have an economic effect on individuals by disrupting a 

patient’s working life (Foxman, 2003). 

Catheter-associated UTI is a common healthcare-associated infection. In hospitals 

25% of patients with catheters in place for over seven days develop UTIs (Tambyah 

and Maki, 2000). In the USA approximately one million cases of nosocomial UTI 

occur annually, of which 80% are associated with catheters (Tambyah & Maki, 2000) 

and these infections make up 40% of all hospital-associated infections (Foxman, 

2010). As the bacteria causing catheter-associated UTI can only originate from either 

the patients rectal or perineal flora, or be carried on the hands of the healthcare 

professional, then good hygiene practices can reduce the number of infections 

(Meddings et al., 2014).    

UTI is rare in young males that have a normal genitourinary tract. The risk groups 

include men who have sex with men or have a sexual partner that has vaginal 

colonisation with E. coli (Nicolle, 2008). UTI in older men is also uncommon until after 

the age of 50, when there is increasing risk of urinary flow being obstructed by 
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increasing prostatic hypertrophy (Stamm, 2002). As UTI in males is infrequent, it 

should always be managed as a complicated UTI (Nicolle, 2008).    

UTI is common in children. These infections are commonly associated with renal tract 

abnormalities and are found most often in males in the first 3 months due to 

congenital abnormalities. In older children UTI is more common in females 

(Svanborg, 2013). 

   

1.4.3 Host factors  

Urine is a hostile environment for bacteria, having high osmolality and low pH, with 

frequent flushing helping to maintain a sterile environment (Sheerin, 2011).  The 

epithelial lining of the urinary tract responds to bacteria by producing antibacterial 

peptides, which combined with the release of pro-inflammatory cytokines and 

chemokines initiate an innate immune response (Sheerin, 2011). Epithelial cells that 

are colonised with bacteria will be shed in to the urine through a process of 

apoptosis. The normal bacterial flora provides a degree of protection from 

colonisation by potential pathogens; however infections are more likely when this is 

disrupted by antibiotic therapy or post-menopausal oestrogen deficiency (Sheerin, 

2011). Pathogen-specific immunoglobulin A (IgA) is found in urine following infection; 

however neutrophil killing of complement opsonised bacteria is instrumental for 

defence against UTI (Sheerin, 2011).    

Women are more prone to UTI due to a shorter urethra and its proximity to large 

numbers of bacteria found in the rectum and vaginal cavity, which may be dispersed 
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during sexual activity (Foxman, 2003).  The gender difference is less pronounced in 

the elderly with the rate of infections increasing in males over 50 years old (Foxman, 

2010).  

1.4.4 Bacterial uropathogens 

Escherichia coli is responsible for 80% of uncomplicated UTI in women aged 18-39 

years (Stamm & Hooton, 1993). A survey of community onset UTI in Canada found 

E. coli to be the cause in 70% across all patient groups (74.2% of ambulatory, 65.5% 

hospitalised). Klebsiella pneumoniae was responsible for 6.2% of the UTIs in 

ambulatory patients and eight percent in hospitalised patients (Laupland et al, 2007). 

A Gram-positive organism, Staphylococcus saprophyticus has the ability to adhere to 

epithelial cells lining the urinary tract and is responsible for around four percent of 

uncomplicated UTI (Public Health England, 2016). 

Enterobacteriaceae (other than E. coli), Staphylococcus aureus, enterococci and 

Streptococcus agalactiae  are more commonly found in complicated UTI; although E. 

coli is still the most common isolate in this group (Hooton, 1999). The wider range of 

bacteria found in complicated UTI is associated with a reduction in host defences due 

to anatomical or functional abnormalities of the renal tract (e.g. disruption of urine 

flow or a foreign body in the urinary tract) (Sheerin, 2011). 

In addition to host factors, bacteria may have specific attributes that increase the 

likelihood of infection. Fimbriae are structures found on many uropathogenic bacteria 

and are involved in binding the bacteria to the epithelial cells (Nicolle, 2008). 

Uroplakin proteins that line the bladder are a target for Type 1 fimbriae, found on 

pathogens linked to uncomplicated UTI. Uropathogens, such as E. coli, also produce 
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toxins, such as haemolysin and colony-necrotising factor, which disrupt the epithelial 

cell walls and allow bacteria to enter the epithelial cells lining the urethra and bladder. 

Uropathogenic E. coli are able to replicate inside the host cells, which may provide a 

reservoir for recurrent infections (Sheerin, 2011).  

Urinary pathogenic Escherichia coli (UPEC) are found in a restricted phylogenetic E. 

coli group and have additional virulence factors such as the ability to produce a 

biofilm to enable colonisation and protect the bacteria from the human immune 

system (Foxman, 2010). One sequence type (ST), E. coli ST131, is a successful 

uropathogenic clone that not only has an array of virulence factors, but is also 

commonly associated with multi-drug resistance (Rogers et al., 2011). 

  

1.4.5 Diagnosis and treatment 

The gold standard for the diagnosis of a UTI is the detection of a urinary bacterial 

pathogen in the presence of clinical symptoms; however current guidance for primary 

care diagnosis of UTI is not to submit urine samples for laboratory investigation in 

adult women under the age of 65 with urinary symptoms (Public Health England, 

2014b). For adult women under the age of 65 where clinical symptoms do not clearly 

indicate a UTI, it is recommended that a urine sample should be tested locally using 

chemical dipsticks to determine presence of nitrite (a metabolic product of many 

bacteria causing UTI), leucocytes, protein and/or blood and a diagnostic algorithm 

followed to determine if treatment is required and if urine specimens should be 

referred to the laboratory (Public Health England, 2014). With diagnostic sensitivity 

using these algorithms being reported as high as 80%, urine samples are not 
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commonly sent to laboratories for confirmation and immediate therapy is provided 

following consultation (Bent and Saint, 2003).     

The laboratory investigation of UTI involves methods to measure cellular components 

such as leucocytes combined with methods to quantify the number of bacteria in the 

urine. Traditionally this has involved microscopy and quantitative agar culture 

techniques; however new semi-automated technologies are being introduced such as 

particle detection and flow cytometry, that are able to differentiate between cell types 

and count bacteria (Public Health England, 2016). These new techniques are often 

used to screen for negative samples so that predicted positive urines can be cultured 

and antibiotic susceptibility tested. Urine chromogenic agar is increasingly used to 

enable the identification of common uropathogens (Public Health England, 2016). 

Quantitative culture results showing ≥105 colony forming units /mL (cfu/mL) are 

indicative of a urinary tract infection; although pure cultures of 104-105 cfu/mL should 

be reviewed depending on clinical features (Public Health England, 2016). 

In England the recommended first-line empirical treatment of uncomplicated UTI has 

changed in recent years. Nitrofurantoin has replaced trimethoprim as first-line 

treatment in recognition of the increasing levels of trimethoprim resistance in E. coli 

(Vellinga et al., 2012). Nitrofurantoin should not be prescribed for patients with renal 

impairment and trimethoprim is still recommended as first-line treatment for UTI in 

children, although susceptibility should be confirmed by laboratory analysis.  Co-

amoxiclav or ciprofloxacin are the recommended options for pyelonephritis (Public 

Health England, 2017).   
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1.5 Antibiotic Prescribing 

 

1.5.1 Background  

This section on antibiotic prescribing describes the volume and variation of antibiotic 

prescribing within the UK and internationally. A discussion on the relationship 

between antibiotic prescribing and antimicrobial resistance from a community 

perspective follows. Finally there is a description of interventions designed to reduce 

overall antibiotic prescribing in the UK.    

There were 39.2 million antibiotic prescriptions dispensed in the community across 

England in 2007 (The Information Centre for Health and Social Care, 2013). In 2014 

in the UK, 74% of antibiotic prescribing occurred in general practice (Public Health 

England, 2014a). The quantity of antibiotics prescribed between general practices 

varies considerably, with a large study across England finding a five-fold difference in 

prescribing rates between practices at the extremes of the studies dataset (Wang et 

al., 2009). 

The use of antibiotics is acknowledged as the single most important factor leading to 

the development of antibiotic resistance (CDC, 2014). The association between 

antibiotic consumption and observed resistance has been well described in Europe 

and other parts of the world (Albrich et al., 2004a;Sande-Bruinsma et al., 2008b).  

1.5.1.1 Community antibiotic prescribing and resistance 

A study in Wales reviewed the prescribing of individual general practices and linked 

these data to the antibiotic susceptibility of isolates from routine urine specimens 

submitted by these practices. Prescribing rates were shown to vary more than four-
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fold between general practices and rates of resistance between these practices also 

varied markedly. The authors reported that resistance to specific antibiotics was 

found to be associated with prescribing at the general practice level (Howard et al., 

2001).  

A study conducted in the South West and North West regions of England also 

published in 2001 found similar findings reported in Wales; however this study 

showed only modest correlation between antibiotic prescribing at practice level and 

observed resistance. The authors argued that the weak correlation observed does 

not support community prescribing being an important contributor to antibacterial 

resistance (Priest et al., 2001). More recently, two large systematic reviews 

concluded that antibiotic prescribing in the community is associated with the 

development of AMR and results in the increased use of second line antibiotics (Bell 

et al., 2014;Costelloe et al., 2010).  

The overuse of antibiotics reserved for the treatment of MDR bacteria has led to 

these antibiotics now becoming ineffective against these bacteria. Fosfomycin was 

first developed in the 1960s but became unpopular due to issues associated with 

toxicity. Fosfomycin has now been re-introduced, along with other older antibiotics 

such as colistin and chloramphenicol to combat MDR Gram-negative infections due 

to the shortage of alternative therapeutic options (Theuretzbacher et al., 2015). A 

Spanish study in 2008 described a significant increase in ESBL-producing E. coli 

resistant to fosfomycin. The authors suggested that this could be accounted for by a 

large increase (340% over a period of ten years) in the use of this antibiotic in the 

community (Oteo et al., 2010).  
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1.5.1.2 International antibiotic prescribing 

The World Health Assembly (1998) recognised the international dimension of the 

misuse of antibiotics and urged member states to develop measures to encourage 

appropriate and cost effective use of antimicrobials; to develop sustainable systems 

to detect resistant bacteria; to monitor use of antimicrobials; and to monitor the 

impact of control measures (WHO Report, 2000).  

Large variations exist in resistance rates between individual countries. Figure 1.6 

shows K. pneumoniae with combined resistance to the major antibiotic classes in 

2015, demonstrating increased resistance proportions in central and southern 

Europe. High resistance rates have been linked to countries with high consumption of 

antibiotics, suggesting that selective pressures from higher consumption explain 

some of the observed geographical differences. It is a concern that non-prescribed, 

over-the-counter use of antibiotics is a significant factor in high consumption 

countries, for example it is estimated that 30% of antibiotics in Spain are obtained 

without prescriptions (Goossens et al., 2005).  There is also a concern as to whether 

collating data at national level is sufficient to monitor subtle interactions between 

prescribing and resistance; however the strength of association has been shown to 

be strong between consumption and observed resistance of antibiotics across 

Europe, North America and Australia (Albrich et al., 2004b;Sande-Bruinsma et al., 

2008a). 
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Figure 1.6 K. pneumoniae invasive isolates with combined resistance (%) to 
fluoroquinolones, third-generation cephalosporins and aminoglycosides by country, 
2015 (source ECDC). 
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1.5.2 Antimicrobial stewardship 

 

1.5.2.1 AMR and reduced antibiotic prescribing 

A key intervention in the strategy to slow down the development of AMR is the 

reduction of antibiotics prescribed in both hospital and community settings 

(Department of Health, 2013). The reversal of resistance by reducing the use of 

antibiotics is not fully understood; however, due to fitness costs associated with 

acquiring resistance mechanisms, it is plausible that reducing antibiotic exposure 

leads to increased numbers of susceptible wild-type strains (Andersson, 2006); 

however there is evidence that resistance remains after exposure is removed. For 

example, persistence in the level of resistance to sulphonamide in E. coli has been 

observed despite a sharp decrease in use of this drug in the community (Vernaz et 

al., 2011); although this may partly be explained by co-selection of resistance by the 

use of other antibiotics (Bean et al., 2009). 

A national intervention that was reported to be effective in reducing resistance was 

reported from Finland, where high rates of erythromycin resistance to group A 

streptococci was reversed by a national reduction in the use of this antibiotic 

(Seppala et al., 1997). Following a reduction in prescribing in the UK there has been 

a fall in the resistance to penicillin in pneumococci although it is difficult to assign 

causality (Livermore, 2004c). However unlike group A streptococci and pneumococci, 

the primary isolates found in UTI (i.e. Gram-negative bacilli) are found in a range of 

environments and hosts, including the normal flora of farm and domestic animals. 

Therefore Gram-negative bacteria are more exposed to other selective pressures, 

such as the widespread use of antibiotics in veterinary medicine (Gaze et al., 2008). 
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Interventions designed to reduce the burden of Clostridium difficile infections 

included a significant reduction in prescribing cephalosporins and quinolones in UK 

hospitals. This fall in prescribing of cephalosporins and quinolones from 2005 to 2009 

was associated with a fall in the non-susceptibility of Enterobacteriaceae to these 

antibiotics (Livermore et al., 2013).     

1.5.2.2 Community interventions  

With the majority of antibiotic prescribing taking place in community settings, 

adherence to antimicrobial stewardship strategies are being encouraged in general 

practices (McNulty and Francis, 2010). Patients with upper respiratory tract infections 

have been shown to receive the most community prescriptions, closely followed by 

(in descending order): lower respiratory tract infections, sore throat, urinary tract 

infection and otitis media (Petersen and Hayward, 2007).     

A significant factor in community prescribing is the patient’s expectation to receive an 

antibiotic prescription when consulting a general practitioner. In a survey in India 

almost 50% of those questioned reported that they would change their doctor if they 

were not prescribed antibiotics for a common cold (WHO Community Survey India, 

2011). In the UK a number of educational campaigns have aimed to educate the 

general public regarding the appropriateness of antibiotic prescribing. A campaign 

launched in 1999 in England and Wales attempted to reduce the expectation for 

antibiotics being prescribed for upper respiratory tract infections (McNulty, 2001).  

The Department of Health in England launched an antibiotic campaign featuring 

posters aimed at general practice surgeries and pharmacies plus newspaper 

advertisements on how antibiotics do not work for upper respiratory infections 
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(Department of Health, 2008). A survey of the effectiveness of this campaign 

reported that there was little evidence that the campaign raised awareness in the 

English general public (McNulty et al., 2010). However an educational pack about the 

prudent use of antibiotics (e-Bug) aimed at school children across Czech Republic, 

France and England was seen as a success (Lecky et al., 2010). Supporting 

materials are now part of the Department of Health Antibiotic Awareness Campaign 

(Department of Health Antibiotic Awareness Campaign, 2011) and the European 

Antibiotic Awareness Day (EAAD) is held annually in November with individual web 

resources tool kits targeted for use by the general public, primary care prescribers 

and hospital prescribers (EAAD, 2011).  

In the UK, the success of interventions aimed at reducing antibiotic usage is often 

measured by the NHS Prescription Service’s Prescribing Analysis and Cost (PACT) 

data set (Lovejoy and Savage, 2001). This is a measure of dispensed prescriptions 

for all conditions and therefore specific illness episodes cannot be separately 

identified. There are initiatives to use primary care databases such as the General 

Practice Research Database (GPRD) to monitor antibiotic prescribing for specific 

conditions in the community (Petersen & Hayward, 2007). An ideal surveillance 

system for measuring the effect of a reduction in antibiotic use will be the use of 

patient level primary care prescribing data to link to antibiotic resistance data for the 

same population (McNulty, 2001).    

Theories of behaviour have been used to help understand the difficulties in achieving 

change in the prescriber’s habits of general practitioners. A simple model has been 

suggested, which involves understanding an individual’s perception of ‘why’ they 
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should change prescribing practice and ‘how’ change can realistically be achieved. 

The authors suggest that a change in prescribing will not be achieved unless the 

general practitioners believe it is important for them to do so (McNulty & Francis, 

2010). A study in Sweden reported that GPs held a range of views on antimicrobial 

resistance in the treatment of UTI. Their views were assigned to the following 

categories: a) there is not a problem, b) the problem is found elsewhere or c) that 

AMR is a serious issue. The authors reported that only the GPs who believed that 

AMR is a serious problem followed prescribing guidance (Björkman et al., 2013). 

Initiatives to change prescribing practice have focused on the productions of a range 

of evidence based national and local guides being made available to primary care 

prescribers. In the UK these include the PHE Management of Infection Guidance for 

Primary Care (Public Health England, 2014a), which is designed to be adapted by 

local primary care teams. A UK study using a large database of primary care 

consultations between 1995 and 2011 found large variations in prescribing between 

practices following the introduction of the national PHE guidance aimed at promoting 

a consistent approach to treatment of infectious disease (Hawker et al., 2014). 

Antimicrobial results reported to primary care by the local diagnostic laboratory have 

also been shown to influence prescribing, and therefore can be used as a 

mechanism to encourage the use of preferred antibiotics (McNulty et al., 2011).    
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1.6 Surveillance of Antimicrobial Resistance 

 

1.6.1 Surveillance systems 

1.6.1.1 Background 

Antimicrobial resistance surveillance has been defined by the European Society of 

Clinical Microbiology and Infectious Diseases (ESCMID) as “a systematic, ongoing 

data collection, analysis and reporting process that quantitatively monitors temporal 

trends in the occurrence and distribution of susceptibility and resistance to 

antimicrobial agents, and provides information useful as a guide to medical practice, 

including therapeutics and disease control activities” (Cornaglia et al., 2004). This is 

a variation of the classic CDC definition of disease surveillance which states: 

“epidemiologic surveillance is the ongoing and systematic collection, analysis, and 

interpretation of health data in the process of describing and monitoring a health 

event. This information is used for planning, implementing, and evaluating public 

health interventions and programs. Surveillance data are used both to determine the 

need for public health action and to assess the effectiveness of programs”. (Klaucke 

et al., 1988).  

An important action in the global strategy to contain antimicrobial resistance is the 

establishment of effective surveillance systems at local, sub-national and national 

levels (Commission to the European Parliament and the Council, 2011;World Health 

Organisation, 2001). Such surveillance systems should be designed to meet clearly 

defined objectives that address the requirements of key health partners. These 

objectives may include defining the extent of the problem and changes over time, 

detecting the emergence of new mechanisms of resistance and outbreaks, providing 
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local information to inform the development of formularies, guiding the development 

of effective strategies and interventions, and evaluating the effectiveness of 

implemented control measures (Bax et al., 2001;Felmingham, 2002;Johnson, 

2015;O'Brien and Stelling, 2011). Surveillance information from these systems is only 

useful when it triggers an intervention. To this end, surveillance outputs from AMR 

surveillance systems must be timely, present data unambiguously and meet the 

needs of a range of users, including physicians, general practitioners, 

microbiologists, commissioners and providers of healthcare, national and 

international health organisations (Johnson, 2015).  

International and national AMR surveillance schemes have been recently introduced, 

including schemes in the UK devolved countries of Scotland and Wales. These AMR 

surveillance systems are described in section 3.1.4 of Chapter 3. 

1.6.1.2 AMR surveillance in England prior to 2009 

In England, before the introduction of AmSurv (described in Chapter 3), antimicrobial 

resistance surveillance has been mostly undertaken by Public Health England 

reference laboratories and the British Society for Antimicrobial Chemotherapy 

(BSAC). These are voluntary targeted sentinel surveillance systems that monitor 

AMR trends in specific infections, for example gonorrhoeae, or isolates from 

respiratory and blood specimens. These bacteria are sent by participating 

laboratories to PHE reference laboratories for antibiotic susceptibility testing and 

characterisation (White, 2008).  

A further potential source of antimicrobial resistance data in England is a surveillance 

system, operated by PHE, known as CoSurv when it was introduced in 1996, but is 
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now incorporated as part of the Second Generation Surveillance System (SGSS). 

This surveillance system collates notifiable ‘Communicable Disease Reports’ (CDR) 

from diagnostic laboratories, and therefore is described in this section as CDR SGSS 

to distinguish from the AMR SGSS data collection described later (Health Protection 

Agency, 2012). CDR SGSS also collects data from Wales and Northern Ireland, 

although these countries have developed independent national AMR surveillance 

systems and therefore do not participate in the AMR SGSS.  

Together, the notification and targeted systems provide a mechanism for monitoring 

antimicrobial resistance for specific bacteria and infections. As CoSurv only collects 

antibiotic susceptibility data that is reported by the laboratory to clinicians (that is, it 

does not collect all tested antibiotics) and the bacteria included are mostly from more 

serious or invasive infections, there has been a significant gap in monitoring 

resistance from isolates acquired from routine diagnostic microbiology, particularly 

those isolated from community specimens. Specifically, there has not been a system 

to collate resistance data from bacteria responsible for urinary tract infections, for 

which plasmid-mediated multi-resistance is increasingly being reported (Hayward et 

al., 2007).  

1.6.1.3 The AmSurv system 

In order to complement existing UK systems and address the current gaps in AMR 

surveillance in England, the Health Protection Agency (HPA) developed antimicrobial 

surveillance software (AmSurv) to facilitate the collection of antimicrobial 

susceptibility reports from all bacterial isolates tested against antibiotics, including 

those from routine community samples. Implementation of this system across the 
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nine NHS organisational English regions began in 2009 (Public Health England, 

2014a). The dataset collected includes patient demographics, specimen details, 

sending organisation, organism, antibiotic and susceptibility result. The minimum 

inhibitory concentration (MIC) for each antibiotic test is also collected if this is 

available on the laboratory information Management system (LIMS).  

A comparison of the AmSurv and Cosurv systems is given in Table 3. The AmSurv 

system was incorporated into the SGSS PHE laboratory surveillance application in 

2014. SGSS collates AmSurv files from laboratories and collates these in a 

centralised data repository (Hopkins, 2016). An advantage of using the SGSS 

process is that the collection of data from laboratories may be fully automated, which 

will reduce the burden of reporting for laboratories, improve timeliness and ensure 

the system is sustainable over time (Johnson, 2015). 
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Table 1.3 AmSurv and CoSurv comparison(based on PHE reporting guide 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/545183/PHE_
Laboratory_Reporting_Guidelines.pdf ) 

 

 

CoSurv  AmSurv 

Implemented 1996 Implemented 2009 

Surveillance system for communicable 
disease reports (CDR) 

Antimicrobial resistance (AMR) surveillance 
system 

Mandatory reporting for designated organisms 
since 2010 (Health Protection Regulations 
2010) 

Voluntary reporting system 

Only receives antibiotic susceptibility results 
reported to the clinician  

Collects all antibiotic susceptibility results 
tested in laboratory 

Only receives organisms of public health 
interest ( 5-7% of bacterial isolates from a 
laboratory) 

Collects all organisms isolated that have 
antibiotic results 

Antibiotic results only reliably received from 
sterile fluids (e.g. blood cultures) 

Collates antibiotic susceptibility test results 
from all specimen types 

Predominantly antibiotic reports received from 
more serious infections within hospital 
environments   

Includes results from community and hospital 
isolates 

 

 

 

 

 

 

 

 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/545183/PHE_Laboratory_Reporting_Guidelines.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/545183/PHE_Laboratory_Reporting_Guidelines.pdf
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1.6.2 Interpretation of surveillance data 

A challenge for surveillance systems based on routine reporting by microbiology 

laboratories is in understanding how observed results relate to the general 

population. There are a number of factors that may influence interpretation of routine 

laboratory surveillance data, which are discussed below.  

1.6.2.1 Submission of specimens 

A source of potential bias is the variation in submission of specimens for 

microbiological examination. The frequency at which urine specimens are sent for 

microbiological examination varies greatly between practices (Howard et al, 

2001;McNulty et al., 2004). Selection bias requires consideration when interpreting 

AMR data from the community, as it is likely that specimens are sent for 

microbiological examination from initial treatment failures, those with more 

complicated medical histories and those suffering severe infections (Hay et al., 

2005a;Hillier et al., 2006). To mitigate for this type of bias in antibiotic resistance, 

studies would require specimens being taken systematically prior to antibiotic 

exposure. A study in the South West region of England assessing the relationship 

between prescribing and resistance in primary care examined E. coli contaminating 

urine samples from asymptomatic adult patients. Evidence of antibiotic exposure was 

captured for individuals in the preceding 12 months. The authors reported greater 

resistance in patients exposed to antibiotics within two months of sampling (Hay et 

al., 2005b). This short term increased resistance following community prescribing has 

also been reported in studies of respiratory and urine infections in children (Chung et 

al., 2007;Paschke et al., 2010). 
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1.6.2.2 Duplicate data 

The inclusion of duplicate data has been a flaw in a number of AMR surveillance 

reports (Morris and Masterton, 2002). Guidelines from the US Clinical and Laboratory 

Standards Institute (CLSI, previously called the National Committee for Clinical 

Laboratory Standards) recommended that only results from the first isolate of a 

species from a patient should be included in calculating the percentage susceptibility 

to an antibiotic (Clinical and Laboratory Standards Institute, 2014). Shannon et al 

agreed with this approach for its simplicity, although their data only showed 

significant advantages for defined organism and antibiotic combinations (Shannon 

and French, 2002). Selecting only the first isolate, however, limits the ability to 

monitor changes in individual resistance, perhaps as the result of antimicrobial 

therapy (Morris & Masterton, 2002). 

A study reviewing exact duplicates (i.e. same organism, patient and antimicrobial 

susceptibility test results) found that exclusion of duplicates did not make a significant 

difference in regional resistance estimates, with the exception of screening for MRSA 

(Magee, 2004). A further study specifically examining the effect of duplicates when 

calculating prevalence and antimicrobial susceptibility of isolates from urinary 

specimens found that most duplicates appeared within seven days and that there 

were more ‘repeat’ isolates from patients admitted to hospital than those in the 

community. The study concluded that although the effect of duplicates was relatively 

minor when calculating susceptibility levels in the community, using the first isolate 

per episode may minimize any bias (Cebrian et al., 2005). 
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1.6.2.3 Standard laboratory methodology  

Interpretation of AMR surveillance data are dependent on standard methodology 

being adopted by the testing laboratories (Johnson, 2015). Surveillance of 

antimicrobial resistance using routine laboratory reports is subject to a number of 

potential factors that may introduce bias that are inherent within the methods and 

protocols used by individual laboratories. There are a number of different methods 

used to test susceptibility to antibiotics. In the UK these have been mostly disc 

diffusion methods (such as modified Stokes and BSAC) or breakpoint methods (see 

Chapter 2 section 2.1) (Wootton et al., 2017). The results from these methods do 

sometimes vary, with potentially significant errors reported as a result (Gosden et al., 

1998;Potz et al., 2004). Laboratories have also adapted or changed standard 

methods, for example performing susceptibility testing direct from urine specimens in 

order to improve timeliness and reduce costs (Oakes et al., 1994).   

In recent years the introduction of automated systems, such as the VITEK2® 

(bioMerieux, Lyon, France), has had a significant impact on antibiotic testing within 

laboratories (Livermore et al., 2002). These automated devices provide an element of 

standardisation and in combination with interpretative software systems allow the 

detection and interpretation of resistance mechanisms; however confirmation by 

other methods is sometimes required, for example with ESBL detection (Espinar et 

al., 2011;Thomson et al., 2007;Valenza et al., 2011).  
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1.6.2.4 Expert rules 

It is not rational to report each individual antibiotic result as if they were independent 

of other antibiotic results, due to the fact that multi-resistance often depends on a 

single mechanism (Livermore et al, 2002). Many laboratories, therefore, derive 

particular antibiotic results based on the organism isolated or other antibiotic 

susceptibility results. A software rule, for example, may change ‘susceptible’ 

antibiotic susceptibility test results to ‘resistant’ for beta-lactam antibiotics such as 

aminopenicillins and cephalosporins for Gram-negative bacteria suspected of 

producing an ESBL. This is achieved by automated rules within the Laboratory 

Information System (LIS) or ‘expert’ rules (Leclercq et al., 2013) developed within the 

automated testing device.  

1.6.2.5 Identification of bacteria 

Another source of variation between results submitted to the surveillance systems 

relates to the variation in identification methods and protocols for bacterial isolates 

used by different laboratories. Some laboratories may report all lactose-fermenting 

bacteria from urine specimens as ‘coliforms’, whilst others will identify all isolates 

using a combination of colonial morphology and enzyme or biochemical tests. The 

pooling of bacteria from different species has important implications for surveillance 

as it will mask the detection of emerging or new resistance in species isolated less 

frequently (Hayward et al, 2007).  

In the last 5 years Matrix Assisted Laser Desorption Ionization Time-Of-Flight 

(MALDI-TOF) mass spectrometry has been introduced into diagnostic microbiology 

laboratories to rapidly and cost-effectively identify bacteria, including directly from 
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clinical specimens (Croxatto et al., 2012). The introduction of this technology has 

improved the quality and timeliness of bacterial identification and enable a wider 

range of bacteria to be characterised (Carbonnelle et al., 2011).  

  

1.7 Study population 

In 2015 the West Midlands was one of nine English PHE regions (NHS, 2015), with a 

population of 5.6 million (2011 census) and contains the City of Birmingham, the 

second most populous city in the UK. It is the second most ethnically diverse region 

of the UK (after London), with 10.8% of the population being Asian or British Asian 

(Office for National Statistics). 

At the start of this study in 2010 the region was divided into 17 Primary Care Trusts 

(PCTs), and these bodies acted as commissioners of health services for their local 

populations. A reorganisation of the National Health Service (NHS) in England led to 

PCTs being abolished on 31 March 2013, with 22 newly established Clinical 

Commissioning Groups (CCGs) taking on their commissioning role. 

In 2012 there were 950 general practices with a total of 3635 general practitioners 

responsible for 5.8 million registered patients (Health and Social Care Information 

Centre). Each practice had an average of four GPs with an average practice list size 

of just over 6,000 patients and 73% of practices were located in Local Authority 

(English local administrative unit) areas designated as urban (Health and Social Care 

Information Centre). 
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During the study period (2010-2014) there were 15 diagnostic microbiology 

laboratories in the West Midlands serving both community-based centres and 

hospitals. The daily average for occupied hospital beds in the West Midlands for 

2013 was 10,626 (NHS England). 

 

1.8 Hypothesis 

Surveillance data collected routinely from diagnostic microbiology laboratories in the 

West Midlands region of England will be able to demonstrate an association between 

antibiotic prescribing in the community and antibiotic resistance in bacteria causing 

urinary tract infections. 
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1.9 Aim and objectives 

The overarching aim of this study was to determine if routine antimicrobial 

surveillance data may be utilised to influence local antibiotic prescribing habits by 

demonstrating an association between prescribing and resistance at the general 

practice level.  

To achieve this aim a number of objectives needed to be achieved:  

 The establishment of routine AMR surveillance in the West Midlands  

 To develop an understanding of the methods used by diagnostic laboratories 

in the West Midland to identify bacteria from urine specimens and perform 

antibiotic susceptibility tests. 

 To understand how and when protocols are used in the community for 1) 

sending urine specimens for microbiological analysis and 2) prescribing 

antibiotics for urinary tract infections (UTI). 

 To review AMR in bacteria isolated from urine specimens across the West 

Midlands 

 To examine the effect of general practice characteristics and antibiotic 

prescribing on antibiotic resistance in bacteria isolated from community urine 

specimens. 

 

1.10  Ethics  

PHE has approval under Section 60 of the Health and Social Care Act 2001 (now 

subsumed into the National Information Governance Board for Health and Social 

Care with Section 60, now Section 251 of the NHS Act 2006) to process confidential 
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patient information for public health surveillance 

(http://www.legislation.hmso.gov.uk/si/si2002-20021438.htm). Following PHE 

Research Ethics and Governance Group (REGG) policies and with reference to the 

NHS Research Ethics Committee decision tool (http://www.hra-

decisiontools.org.uk/ethics/) it was determined that the studies reported in the 

following chapters did not require specific ethical approval. 

 

The AMR surveillance data extracted for the studies reported in chapters three, five 

and six did not include patient identifiers. Individual GP identifiers were not collected 

in the survey reported in chapter 4. Laboratory and general practice identifiers were 

anonymised throughout the thesis. 

 

 

 

 

 

 

 

 

 

http://www.legislation.hmso.gov.uk/si/si2002-20021438.htm
http://www.hra-decisiontools.org.uk/ethics/
http://www.hra-decisiontools.org.uk/ethics/
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2 A survey of methodologies for the identification 

and antibiotic susceptibility testing of bacterial 

isolates from urine samples submitted to 

laboratories based in the West Midlands 

 

 

 

 

 

 

 

 

 

 

 



66 

 

2.1 Background 

 

2.1.1 Laboratory testing protocols for urine specimens  

Diagnostic microbiology laboratories offer a range of tests to help in the diagnosis 

and treatment of patients. Diagnostic methods and techniques are often selected 

based on the reliability and reproducibility of results; however the speed in which 

results are delivered and the overall costs associated with specific tests also have to 

be justified by the clinical usefulness of the results provided (World Health 

Organisation, 2003). Laboratory analysis of urine may comprise four stages: 

chemical tests, usually in the form of dipsticks, to detect the presence of leucocytes, 

nitrite, protein, and blood; microscopy to detect the presence of cellular components, 

such as white blood cells, red blood cells casts, and bacteria; culture is used for the 

quantification of bacteria present, and isolation of the suspected causative organism; 

and finally tests may be completed to identify the bacteria present and determine 

antibiotic susceptibility.  

 

2.1.2 Initial examination  

PHE guidance suggests that a urine specimen is taken if clinical symptoms suggest a 

possible UTI. If the urine is cloudy on visible examination, then a biochemical dipstick 

test should be considered (Public Health England, 2014). Dipstick tests are 

commonly used to aid diagnosis and determine if a specimen should be sent to the 

laboratory for analysis,  or if empirical antibiotic treatment is required (Public Health 

England, 2014). For urine specimens sent to the laboratory initial microscopy is now 
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being replaced by new technologies such as flow-cytometry and particle recognition 

systems. These systems are being used to screen-out negatives and thereby 

reducing the number of samples sent for culture (Public Health England, 2016).   

 

2.1.3 Urine culture 

Urine specimens are selected for culture based on laboratory protocols. The most 

common culture techniques used for determining the number of bacteria in urine are 

the use of calibrated loops, sterile paper strips or multi-point inoculators to deliver a 

standard inoculum onto either Cystine Lactose Electrolyte-Deficient (CLED) agar or 

chromogenic agar (Public Health England, 2016). CLED agar has been the standard 

media used for urine culture in the UK as it is able to support the growth of most 

urinary pathogens, prevents the swarming spread of Proteus spp. and allows some 

colonial morphology to be determined (Munoz et al., 1992).  

Chromogenic agar has been developed to enable the presumptive identification of 

urinary pathogens and enable the differentiation of bacteria in mixed cultures. 

Chromogenic agar media for culture of bacteria  from urine samples combines the 

ingredients of CLED agar with a range of chromogenic substrates (Fallon et al., 

2003a). Bacteria growing on this media show either a distinctive pigmentation or 

change the colour of the media, allowing the presumptive identification of a number 

of common urinary pathogens (Fallon et al., 2003b).    
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2.1.4 Identification of bacteria isolated from urine specimens 

Laboratories undertaking further identification of bacteria isolated from urine use a 

mixture of automated and non-automated systems. One of the most popular non-

automated identification system for Enterobacteriaceae in Europe and the USA is the 

API® 20E system (bioMérieux) (O'Hara, 2005). It consists of a strip of 20 plastic wells 

that contain substrates and indicators that are inoculated with bacteria and incubated 

for 24hr-48hrs. Results are given a numerical value based on reactions in each 

plastic well, which is referenced in the API® database to provide identification. The 

API® 20E identification system provides high levels of accuracy for the identification 

of Enterobacteriaceae commonly isolated from clinical specimens and became a 

gold-standard for the assessment of new methods (O'Hara, 2005). Other manual 

identification systems available at the time of the this study included: the BBL 

Crystal® identification system (Becton Dickinson), which includes a miniaturised 

plastic panel of 30 biochemical tests, and Enterotube® II (Becton Dickenson), which 

consists of a tube with 12 different media with indicators (O'Hara, 2005). Automated 

susceptibility testing devices, discussed below, also include the ability carry out 

identification tests. 

 

2.1.5 Antibiotic susceptibility tests  

 

2.1.5.1 Manual susceptibility tests 

Antimicrobial susceptibility testing is a key function of diagnostic microbiology 

laboratories. The aim of antimicrobial susceptibility testing is to provide an indication 
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of whether the bacteria present in a sample, and thus potentially causing an infection, 

will respond to treatment by an antibiotic using the normal dosage for the type of 

infection and organism isolated (Andrews et al., 1996). A ‘susceptible’ result indicates 

that the antibiotic will be effective whereas a ‘resistant’ result indicates that at the 

normal dosage the antibiotic will not inhibit the bacteria (Jorgensen and Ferraro, 

2009). Laboratories usually test bacteria against a standard set of antibiotics based 

on initial identification and / or the site the organism was isolated from (known as 

first-line testing). If the organism is found to be resistant to ‘first-line’ antibiotics then a 

further set of antibiotics are tested (known as second-line testing) (Public Health 

England, 2016). Automated susceptibility testing (AST) systems often test up to 20 

antibiotics, compared with the six antibiotics tested first-line by laboratories using the 

BSAC method. Therefore laboratories using AST systems do not need to undertake 

second-line testing for most of their isolates (Jorgensen & Ferraro, 2009).  

A number of methods are available for determining antibiotic susceptibility and 

methods may vary within a laboratory depending on the identification of the bacteria 

and the specimen type from which it was isolated. These are discussed further in 

section 2.4.  

One of the first methods for measuring antibiotic susceptibility was the broth dilution 

technique, which was later miniaturised using ‘microdilution’ trays (Jorgensen & 

Ferraro, 2009). This technique is quantitative and provides the Minimum Inhibitory 

Concentration (MIC), which is the lowest concentration of the antibiotic that prevents 

bacterial growth. This method required manual reading and interpretation of growth 

within the dilution wells; however  automated readers have been developed that 
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allow plates to be electronically scanned and results linked to laboratory computer 

systems, which enables standardised result reporting (Jorgensen & Ferraro, 2009). 

The breakpoint method of susceptibility testing involves seeding an agar plate with a 

concentration of an antibiotic that is close to its breakpoint value (Waterworth, 

1981a). The breakpoint value is the concentration (mg/L) of an antibiotic used to 

determine whether a bacterial isolate is susceptible or resistant to that antibiotic 

(BSAC, 2017).  In the breakpoint method a diluted suspension of bacteria is spotted 

on to the agar plate to determine if the bacteria are able to grow in the presence of 

the specific concentration of antibiotic. Using multipoint inoculators this method was 

scalable for large volume testing (Waterworth, 1981a).   

Disc diffusion susceptibility testing methods are popular due to their simplicity to 

complete, control over the bacterial inoculum and the provision of categorical results. 

In the 1990s the Modified Stokes disc susceptibility method was the most popular 

method in the UK (Andrews et al, 1996). This method involved comparing the test 

bacteria with a susceptible control organism on the same agar plate; however, the 

method was not standardised between laboratories and was found to have a number 

of serious quality issues (Gosden et al., 1998).     

Using standardised methods, disc diffusion has been shown to be a reproducible and 

accurate method for determining antibiotic susceptibility (Woods, 1995). Various 

national bodies introduced standardised disc susceptibility testing methods and 

interpretive guidelines, including, in 2001, in the UK  the British Society for 

Antimicrobial Chemotherapy (BSAC) (Andrews, 2001). The BSAC standardised disc 

diffusion method largely replaced the Modified Stokes method as the most popular 
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technique in the UK over the following ten years (Wootton et al., 2017). In 2009, the 

European Committee on Antimicrobial Susceptibility Testing (EUCAST) provided 

breakpoint standards and introduced a standardised disc diffusion method which is 

calibrated to harmonised European MIC breakpoint standards (Matuschek et al., 

2014). To help standardise susceptibility testing methods in Europe, BSAC 

announced that from January 2016 it will no longer support the BSAC disc diffusion 

method and will encourage UK laboratories to use the EUCAST standardised method 

(http://bsac.org.uk). The EUCAST disc diffusion method uses Mueller Hinton agar 

rather than Isosensitest Agar used in the BSAC method (British Society for 

Antimicrobial Chemotherapy (BSAC), 2016), and covers a greater range of antibiotics 

and bacteria (Brown et al., 2016).    

A variation of the disc diffusion method is the antimicrobial gradient diffusion method 

(Jorgensen & Ferraro, 2009). This method uses an antimicrobial gradient in an agar 

medium to determine the MIC of an organism. A commercial version of the gradient 

strip is a system called Etest® (bioMérieux), which is a strip impregnated with a 

gradient concentration of an antibiotic with a scale inscribed on the reverse side. 

Following incubation of the agar plate, the Etest® strips are read and the MIC 

determined by the intersection of the bacterial growth with the strip. Etest®  strips are 

relatively expensive when compared with disc diffusion or break point techniques; 

however they have been found to be useful for determining the MIC for fastidious 

bacteria or where standard methods are unreliable for particular antibiotics (Huang et 

al., 1992).  

http://bsac.org.uk/
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In the 1990’s direct antibiotic susceptibility testing of urines was introduced by some 

laboratories in the UK. This involved inoculating the urine directly onto disc or 

breakpoint agar plates and therefore results were available after overnight incubation 

(Oakes et al., 1994). The merits of this technique are discussed further in section 2.4.  

2.1.5.2 Automated susceptibility tests 

Following the automation of other pathology services, automated systems are being 

introduced into diagnostic microbiology laboratories. Automated systems standardise 

the reading of susceptibility results and sensitive detection devices provide faster 

results by detecting small changes in bacterial growth (Jorgensen & Ferraro, 2009). 

Four commercial systems were available at the start of this study in 2010: three of 

which: the MicroScan®  Walkaway (Siemens Healthcare Diagnostics), the Phoenix® 

Automated Microbiology System (BD Diagnostics) and the VITEK 2®  (bioMérieux) 

are able to generate rapid susceptibility test results (3.5hrs-16hrs). The fourth 

system, the Sensititre®  ARIS 2X (Trek Diagnostic systems) requires overnight 

incubation (Jorgensen & Ferraro, 2009). 

With the introduction of AmSurv in 2009 (see Chapter 3), laboratories in the West 

Midlands were asked during the configuration visit, if they used automated 

susceptibility testing (AST) devices, as it is possible to interface these so that 

minimum inhibitory concentration (MIC) values can be captured by the surveillance 

system. The MIC is the lowest concentration of an antibiotic that inhibits the growth of 

a bacterium (BSAC, 2017), and MIC values are sometimes output by these 

automated susceptibility testing devices (O'Hara, 2005). The only AST system being 
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used by laboratories in the West Midlands at that time was VITEK 2®, which does 

assign susceptibility results based on predictive MIC values.  

The VITEK®  system was originally part of a McDonnell Douglas program to identify 

bacteria in space and was acquired by bioMérieux in 1988 (O'Hara, 2005). VITEK 2®, 

using fluorescence-based technology to identify bacteria and test susceptibility, using 

separate identification test substrates or antibiotics in microliter quantities within 

plastic cards, was introduced into clinical practice in 1997. VITEK 2®  is a closed 

system designed to process 60 or 120 cards at a time and may provide results within 

4-8hrs by repeated turbidimetric monitoring of bacterial growth (Jorgensen & Ferraro, 

2009). The need for improvement in laboratory efficiency, rapid turnaround times and 

reliable results have led to the widespread introduction of VITEK 2®  by diagnostic 

microbiology laboratories (Ling et al., 2001).      
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2.2 Objectives 

 To determine how many urine specimens are tested by West Midland 

microbiology  laboratories  

 To understand how bacteria isolated from urine specimens are identified in 

West Midland microbiology laboratories   

 To determine which antibiotic susceptibility test methods are being used and 

which antibiotics are tested for a range of bacteria identified from urine 

specimens in West Midland microbiology laboratories 

 To document ‘expert rules’ used by West Midland laboratories to determine 

antibiotic susceptibility test results or change existing results 

 To document any changes in susceptibility testing methods or breakpoint 

standards       

 

2.3 Methods 

 

2.3.1 Survey protocol 

In 2011 there were 15 diagnostic microbiology laboratories in the West Midlands (14 

NHS laboratories and one public health laboratory). In March 2011 all laboratories in 

the West Midlands were contacted by email and informed about the aims of the 

forthcoming voluntary survey of methods. At the same time they were asked to 

provide the total number of urines processed by their laboratory in 2010 and provide 

the proportion of urines received from community patients compared with those 

received from hospitalised patients. The email request was followed-up after a two 

week period with a phone call to laboratories that had not responded.  
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A survey of laboratory methods was developed using the web Select Survey v4 

application (Classapps, KS, USA). All participating laboratories were sent an email 

with links inviting them to complete the on-line survey in April 2011. The email 

requested that the survey be completed by a member of laboratory staff with 

knowledge of current methods and protocols for the analysis of urine samples. 

Laboratory staff were required to register on-line to gain access to the survey. 

Registration on the survey site allows users to save partially completed 

questionnaires for later completion, and also ensures details of the participant are 

recorded. Two weeks following the initial request, non-responding laboratories were 

contacted by telephone to request enrolment on the survey site and completion of the 

survey. Following analysis of the survey and request for numbers of urines tested, 

laboratories were anonymised for the remainder of the analysis.   

The electronic survey (Appendix 1) consisted of 19 questions, in a format of ‘drop-

down’ selections and textual response boxes. The survey focused on methods used 

to identify bacteria isolated from urine specimens and the techniques employed to 

ascertain the antibiotic susceptibility of these bacteria. 
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2.3.2 Survey format 

The survey was designed to obtain the following information from each of the 

diagnostic microbiology laboratories in the West Midlands (Survey Appendix 1): 

 The current methodologies for identifying bacterial isolates from urine samples  

 The techniques used in the laboratory to determine antimicrobial 

susceptibilities for bacterial isolates from urine  

 The antibiotics routinely tested against urinary isolates by the laboratory  

 The protocols employed for determining when methods are used for 

identifying bacteria from urine specimens 

 The protocols for determining which antibiotic susceptibility testing method is 

used for bacteria isolated from urine samples 

 The protocols employed to specify which antibiotics are tested as first line or 

second line for bacterial groups  

 If reporting rules are used to determine antibiotic results based on other test 

results or the bacteria isolated 

 Which antibiotics are reported to general practices for urinary isolates 

 If protocols or methods have changed in the recent past and if there are any 

plans to make changes in the future 

 

2.3.3 Survey follow-up questions 

Initial analysis of the results from the on-line survey identified areas where the 

answers to specific questions were unclear and required clarification.  A follow up 
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email was sent to each respondent of the electronic survey. These follow-up emails 

were tailored for each laboratory based on their response to the questions on the 

web survey. The aim of the follow up email was to provide an opportunity for the 

respondent to clarify and expand on ambiguous answers, and if necessary, complete 

gaps in their responses. The follow-up questions were also an opportunity to improve 

the data by asking for further detail on some of the techniques (Table 2.1).  
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Table 2.1 Supplementary questions to laboratories in follow-up survey 

1 What criteria are used to determine if second-line antibiotic panel testing is 
used against urinary isolates? 

2 If you use VITEK 2® for testing urinary isolates please could you provide the 

names of the VITEK 2® cards used? 

3 What version of clinical breakpoint standards are in current use? 

4 Do you use standard media or chromogenic agar for direct culture of urine 

specimens? 

5 Are the specified urine antibiotic panels used against both Gram-positive 

and Gram-negative isolates? 

6 Please can you specify the individual rules employed by the laboratory to 

change the reporting of antibiotic susceptibility results (e.g. based on the 

isolate and/or other antibiotic results)?  
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2.4 Results 

 

2.4.1 Response 

All laboratories in the West Midlands responded to the request for urine numbers, the 

electronic survey and follow up questionnaires (n=15). The majority of the survey 

respondents were senior Biomedical Scientists (12), with two Consultant 

Microbiologists and one Information Manager responding. All respondents confirmed 

that they were familiar with their laboratory protocols for the microbiological analysis 

of urine specimens.  A response to certain questions was not provided by all 

laboratories. 

 

2.4.2 Number of urines tested by West Midlands laboratories  

The number of urine specimens submitted for microbiology analysis by West Midland 

laboratories in 2010 was 1.1 million. Laboratories varied considerably in the number 

of urine specimens tested, ranging from 8,000 to 190,000 (Figure 2.1). Two of the 

laboratories served specialist Trusts and did not provide a diagnostic service for the 

community. The remaining 13 general diagnostic laboratories received approximately 

equal numbers of urine samples from the community and hospital patients in 2010 

(55% of urines received from the community over the whole region).  
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Figure 2.1 Number of urine samples tested in 2010 by West Midland laboratories (anonymised as 1 to 15) 
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2.4.3 Identification of bacterial species isolates from urine 

Laboratories in the West Midlands reported using a number of different methods for 

the identification of bacteria isolated from urine specimens, including: microscopy 

(detection of bacteria and to determine cell morphology), colonial morphology, 

biochemical tests, single enzyme tests (e.g. oxidase, coagulase) and automated 

testing devices (e.g. VITEK 2®). These tests were often used in various combinations 

depending on the initial presumptive identification from colonial morphology and/or 

chromogenic indicators (Figure 2.2), for example laboratories reported using an 

oxidase test to confirm presumptive Pseudomonas spp. identification following 

chromogenic indicator results. 

Laboratories in the West Midlands varied in the level of identification for different 

bacterial groups. For Gram-negative bacilli (GNB) three laboratories indicated that 

non-lactose fermenting bacteria may be reported at the ‘bacterial group’ or ‘family’ 

level (e.g. coliform or Enterobacteriaceae). Only two laboratories indicated that 

lactose-fermenting bacteria are reported at the ‘group’ level (e.g. ‘coliform’). The 

majority of laboratories identified Gram-positive bacteria to at least the genus level 

(Figure 2.3).  All laboratories reported that they would fully identify bacteria exhibiting 

multi-drug resistance.  

The majority of West Midland laboratories used a chromogenic agar as their primary 

urine culture medium (10/15). CLED medium was used by the remaining five 

laboratories for primary culture, although three of these laboratories also used 

chromogenic agar as an aid to identification. 
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Figure 2.2 Number of different test methods used by each laboratory to identify bacterial isolates from urine 
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Figure 2.3 Identification of bacteria isolated from urine specimens by laboratories in 
the West Midlands (n=15) 
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2.4.3.1 Gram-negative bacilli (GNB) 

Identification of all Gram-negative bacilli isolated from urine specimens to species 

level was performed by nine laboratories (Table 2.3). This was achieved by using 

chromogenic agar as the first line test followed by either the use of biochemical test 

strips (bioMérieux API® test system) or the automated VITEK 2® system (bioMérieux). 

Laboratories varied in the way they used chromogenic agar to identify bacteria 

isolated from urines, with five of the 13 laboratories using this medium to only identify 

E. coli. Seven laboratories used chromogenic agar to identify E. coli, Proteus spp., 

Pseudomonas spp. and Klebsiella spp.. Two of the laboratories using chromogenic 

agar for initial identification did not further identify bacteria that were not identified by 

the chromogenic agar and reported these as coliform bacteria.  

Of the two laboratories culturing urine specimens on CLED agar and not 

subsequently using chromogenic agar for genus or species identification, one 

laboratory used colonial morphology on the CLED agar to identify a limited set of 

bacteria (e.g. E . coli and Proteus sp.) with non-identified bacteria reported as 

coliform (Table 2.2). The other laboratory using CLED agar only for the culture of 

uropathogens reported that they did not identify GNB routinely from urines and 

reported these bacteria as ‘coliform’.  
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Table 2.2 Identification of Gram-negative bacilli isolated from urines 

 

Lab  Culture media Chromogenic 
agar for ID 

Identify 
isolates to 
species level? 

Method(s) used for Identification 

 1 CLED Yes All Chromogenic agar to ID E.coli, Proteus 
sp.. Biochemical test strip to ID others 

2 Chromogenic Yes All Chromogenic agar to ID E.coli, VITEK 2®to 
ID others 

3 CLED Yes All Chromogenic agar to ID E.coli. VITEK 2® 

or biochemical strip to ID others 

4 Chromogenic Yes  Some Chromogenic agar to ID E.coli, Proteus sp. 
and Pseudomonas sp. Other bacteria 
reported as coliform 

5 Chromogenic Yes All Chromogenic agar to ID E.coli, Proteus sp. 
and Pseudomonas sp. Biochemical strip to 
ID others 

6 Chromogenic Yes  All Chromogenic agar to ID E.coli, Proteus 
sp.. VITEK 2®  to ID others 

7 CLED No  None Bacteria reported as coliforms. Only 
resistant bacteria are tested by VITEK 2®   

8 Chromogenic Yes All Chromogenic agar to ID E.coli, VITEK 2®  
to ID others 

9 Chromogenic Yes All Chromogenic agar to ID E.coli, VITEK 2®  
to ID others 

10 Chromogenic Yes All Chromogenic agar to ID E.coli, Proteus 
mirabilis. VITEK 2®  to ID others 

11 CLED No Some Some bacteria reported at genus level by 
colonial morphology. Others reported as 
coliform. Only resistant bacteria sent for 
VITEK 2®  

12 Chromogenic Yes All Chromogenic agar to ID E.coli, Proteus 
sp., Klebsiella sp.. VITEK 2®  to ID others 

13 CLED Yes All Chromogenic agar to ID E.coli. C390 disc* 
to ID P.aeruginosa. VITEK 2®  to ID others 

14 Chromogenic Yes Some Chromogenic agar to ID E.coli, Proteus 
sp.. Others reported as coliform unless 
resistant then VITEK 2®  test for ID 

15 Chromogenic Yes All Chromogenic agar to ID E.coli and Proteus 
sp., VITEK 2®  to ID others 

*C-390 disc (9-chloro-9-(4-diethylaminophenyl)-10-phenylacridan) for identification of P. aeruginosa  
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2.4.3.2 Gram-positive cocci (GPC) 

Members of the genus Enterococcus, Staphylococcus and Streptococcus are the 

most common Gram-positive cocci isolated from urine specimens submitted for 

microbial analysis (Laupland et al., 2007), and these were identified in West Midland 

laboratories by a combination of colonial morphology and enzyme tests (e.g. 

coagulase, DNAase etc.). Fourteen of the 15 laboratories indicated that members of 

the genus Staphylococcus were reported to species level. The majority of 

laboratories (11/15) indicated that members of the genus Streptococcus were 

reported to species level. Members of the genus Enterococcus were identified to 

species level by nine of 15 laboratories from urine culture in the region (Figure 2.2).  

 

2.4.4 Antibiotic susceptibility testing methods for urinary isolates 

All 15 West Midland laboratories responded to questions related to antibiotic testing 

methods and panels of antibiotics used. Thirteen of the 15 laboratories reported 

using the standardised BSAC disc diffusion method for assessing the susceptibility of 

urinary isolates to antibiotics (Figure 2.4). Nine (9/13) of these laboratories used this 

method routinely for all or selected bacterial isolates from urine specimens. The 

BSAC method was used by 4/13 laboratories only in specific circumstances (e.g. out-

of-hours working) or for specific organism / antibiotic combinations which may be 

problematic for other methods (Table 2.2).  

As described previously, the VITEK 2® system was introduced into diagnostic 

microbiology the late 1990s. At the time of the survey 11 laboratories in the West 
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Midlands were in possession of one of these automated antibiotic susceptibility and 

bacterial identification testing devices (Figure 2.5).  

The VITEK 2® device was used by 7/11 laboratories for testing the antibiotic 

susceptibility of bacteria isolated from urine specimens. Four of these laboratories 

processed the majority of bacteria isolated from urine specimens using the VITEK 2® 

device, with the only exceptions being the testing of the antibiotic piperacillin / 

tazobactam or for performing susceptibility tests on more fastidious bacteria isolated 

from urine, (e.g. alpha-haemolytic Streptococci) as VITEK 2® is not recommended for 

these tests or bacteria (Sader et al., 2006). The remaining 3 laboratories using 

VITEK 2® for urinary isolates selected bacteria for testing on this device based on a 

preliminary identification (Table 2.3). One laboratory routinely processed only GNB 

from urine samples on VITEK 2®, and one laboratory routinely processed only 

Staphylococci and Enterococci on VITEK 2®, with one laboratory using the VITEK 2® 

for bacteria provisionally identified as Staphylococcus spp., Pseudomonas spp. and 

coliform bacteria. The VITEK 2® system was not used for routine antibiotic 

susceptibility testing of urinary isolates in 4 of the 11 laboratories. These laboratories 

used the VITEK 2® system for specific isolates (e.g. those demonstrating resistance 

with other methods or those not identified by routine identification tests). 
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Figure 2.4 Methods(s) used to assess antibiotic susceptibility of bacterial pathogens 
isolated from urine specimens by laboratories in the West Midlands 
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The breakpoint susceptibility testing method was used by 2 laboratories in the West 

Midlands region. This technique was used for the majority of bacterial isolates from 

urine specimens in one laboratory, although this laboratory also reported using the 

Modified Stokes technique, E Tests or the VITEK 2® if additional antibiotics were 

required. The second laboratory using the breakpoint method also used the Modified 

Stokes technique as first line for Enterococcus spp., Streptococci spp. and 

Pseudomonas aeruginosa. Direct sensitivity testing on urine specimens was used 

routinely by 2 laboratories in the West Midlands region. One laboratory performed 

direct testing using the breakpoint technique and the other used the BSAC disc 

diffusion method. Etests® (bioMérieux) were used by 9 laboratories to verify 

abnormalities or test highly resistant bacteria. Some of the laboratories using the 

VITEK 2® device for bacterial isolates from urine, routinely used Etests® for testing 

piperacillin / tazobactam as VITEK 2® was not recommended for testing this 

antibiotic, as previously mentioned (Table 2.3). 

 

 



90 

 

Table 2.3 Antibiotic testing methods used to test bacteria isolated from urine samples in the West Midlands region 

*British Society for Antimicrobial Chemotherapy (BSAC) disc susceptibility testing method  

Laboratory  Direct 
sensitivity 
testing?  

Primary Antibiotic testing techniques E-tests used for bacteria isolates from urine 

 1 Yes BSAC* No 

 2 No VITEK 2®   (BSAC* for piperacillin / tazobactam and fastidious 
bacteria) 

Yes (vancomycin and daptomycin) 

 3 No VITEK 2®   (BSAC* weekends only)  No 

 4 No BSAC* Yes (ertapenem, meropenem, vancomycin 
and/or teicoplanin ) 

 5 No BSAC* Yes (mupirocin, ciprofloxacin, teicoplanin, 
vancomycin, ceftriaxone, penicillin)  

 6 No VITEK 2®   (BSAC* for piperacillin / tazobactam) No 

 7 Yes  Breakpoint (occasionally Modified Stokes or  VITEK 2®  if additional 
antibiotics are requested) 

Yes (piperacillin / tazobactam, but only 
occasionally on bacterial isolates from urine) 

 8 No VITEK 2®  for Gram negative bacteria, BSAC* Gram positive 
bacteria 

Yes (piperacillin / tazobactam on ESBL 
producing bacteria) 

 9 No VITEK 2®  (occasionally BSAC*)   Yes (mostly carbapenems) 

 10 No BSAC* Yes (vancomycin and ertapenem) 

 11 No Breakpoint for coliform bacteria, Modified Stokes for Enterococci, 
Streptococci, Pseudomonas spp.,  VITEK 2®  for resistant coliforms 
/ Enterococci and all Staphylococci 

No 

 12 No BSAC* (coliforms resistant to cefpodoxime or only one antibiotic 
reported as sensitive are tested on  VITEK 2® )  

No  

 13 No VITEK 2® for all Staphylococci, Pseudomonads, and coliforms. 
BSAC* for Streptococci and Enterococci 

Yes (piperacillin / tazobactam and ESBL 
confirmation) 

 14 No BSAC (coliforms resistant to cefpodoxime are tested on  VITEK 2® )  No 

 15 No BSAC (non-E.coli  or Proteus sp. or cefpodoxime /cefotaxime 
resistant are tested on  VITEK 2® ) 

Yes (piperacillin / tazobactam if requested) 
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2.4.5 Rule based reporting 

All laboratories responded to the question regarding whether the laboratory modified 

antibiotic susceptibility test results or reported antibiotic susceptibility based on 

defined ‘expert’ rules rather than using the results obtained from testing (Leclercq et 

al., 2013). The majority of West Midland laboratories (13/15) used logic rules defined 

in their Laboratory Information System (LIS) or within an automated testing device 

(i.e. VITEK 2®) to alter tested results or report untested antibiotics. These logic rules 

were based on; bacteria isolated (e.g. nitrofurantoin always reported resistant for 

Proteus spp.), results of other antibiotic tests (e.g. bacteria resistant to co-amoxiclav 

are also reported resistant to ampicillin), detection of resistance mechanisms (e.g. all 

bacteria suspected of producing intrinsic AmpC beta-lactamase, based on the results 

of other antibiotic susceptibility results, were reported as resistant to first, second and 

third-generation cephalosporins). 

Of the two laboratories that indicated that they did not alter the reported antibiotic 

results by specific rules, one reported that their laboratory used their LIMS reporting 

tools to release, or suppress antibiotic results based on the organism isolated, or 

other antibiotic results. The second laboratory not using ‘expert’ rules indicated that 

results were potentially changed manually by medical microbiologists during the 

vetting of reports, based on organism or other antibiotic results.   
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2.5 Discussion 

Ideally an antimicrobial surveillance scheme will obtain data that have been derived 

using standard methods (preferably a single methodology) to enable direct 

comparison of susceptibility testing results. It is evident from the survey of West 

Midland laboratories that a range of techniques and protocols are used for the 

microbiological analysis of urine specimens and the subsequent identification and 

antibiotic susceptibility testing of isolates.  

The PHE publish UK Standard for Microbiology Investigations (SMIs) (Public Health 

England), which are a collection of recommended algorithms and procedures for 

laboratories to follow. These guidelines are not prescriptive; and some of the SMIs, 

such as the ‘Investigation of urine’, provide detail about a range of methods for 

undertaking various aspects of the analysis (Public Health England, 2016). One of 

the stated aims of the SMI’s is to standardise the diagnostic process by helping to 

assure the equivalence of diagnostic investigations in UK laboratories (Public Health 

England); however, within these standard procedures there is still scope for 

laboratories to use different approaches. For example the ‘Investigation of urine’ SMI 

does not stipulate that species level identification should be undertaken for 

Enterobacteriaceae; although it does recommend the use of standardised 

susceptibility testing methods, which do recommend species identification (British 

Society for Antimicrobial Chemotherapy (BSAC)). 

The results of this survey of laboratory methods show that although national 

guidance and protocols aimed at standardising methods were available in this period, 

they were not applied by all laboratories. Two West Midlands laboratories routinely 
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used the Modified Stokes method for testing bacteria isolated from urine, although 

guidelines available at the time of the survey (Health Protection Agency, 2008) and 

published research (Gosden et al, 1998) state that the Modified Stokes method is not 

recommended due to poor standardisation between laboratories. Standard method 

protocols for antibiotic susceptibility testing have to be strictly followed to maintain 

reliability and reproducibility; however 2 laboratories in the West Midlands report 

performing direct susceptibility testing on urine specimens, using BSAC disc diffusion 

or breakpoint methods. Susceptibility testing of antibiotics by inoculating agar plates 

directly with urine, rather than with bacteria grown overnight, was a popular 

technique in the 1990’s as it improved turnaround times and was even suggested as 

a method for use in primary care settings (Scully et al., 1990). However as it is not 

possible to control the organism inoculum, these techniques are not recommended 

by standardised susceptibility testing method protocols.  

A potential method for encouraging the use of standardised microbiological methods 

is through the laboratory accreditation process. All West Midlands laboratories are 

accredited by the Clinical Pathology Accreditation (CPA) service which is now part of 

the UK Accreditation Service (UKAS) (https://www.ukas.com/services/accreditation-

services/clinical-pathology-accreditation/). Unfortunately for those involved in 

surveillance, CPA standards focus on the safe management of diagnostic 

laboratories and do not specifically prescribe the use of ‘recommended’ or 

‘standardised’ laboratory methods. 

All West Midlands laboratories take part in the national external quality control 

scheme managed by the UK National External Quality Assessment Service (NEQAS) 

https://www.ukas.com/services/accreditation-services/clinical-pathology-accreditation/
https://www.ukas.com/services/accreditation-services/clinical-pathology-accreditation/
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(http://www.ukneqas.org.uk/content/PageServer.asp?S=377166&C=1252&AID=16&II

D=8). This quality control scheme sends 2 bacteria a month to laboratories for 

antibiotic susceptibility testing and scores laboratories based on the identification and 

susceptibility results. The aim of the scheme is to improve local and national testing 

standards and reveal areas of difficulty. It is possible that the processing of quality 

control (QC) specimens are prioritised by laboratories; however this scheme provides 

assurance that each laboratory in the region is reporting similar categorical 

susceptibility results for a range of bacteria and resistance mechanisms, and any 

potential variation is identified and notified to the laboratory. Although the NEQAS 

scheme does not promote ‘recommended’ testing methods, it does record the 

methods used by the laboratory and monitors the performance of these methods 

against the ‘test’ bacteria. In 2016 Public Health England approached UKAS and 

NEQAS to discuss the possible inclusion of PHE SMIs as benchmark methods when 

assessing laboratories (request by PHE AMR team leaders).   

As intrinsic resistance varies between genera and species of bacteria, the 

identification of urinary isolates is necessary to enable surveillance systems to 

monitor emerging resistance at this level. Twenty years ago in the UK a significant 

proportion of laboratories did not identify Enterobacteriaceae accurately to species 

level, which led to difficulties in interpreting susceptibility test results (Livermore et al., 

2001). Two factors seemed to have reversed this trend: 1) the adoption of 

standardised antibiotic susceptibility testing methods, including automated methods 

and 2) the introduction of chromogenic agar. Standardised antibiotic susceptibility 

testing methods such as the BSAC disc diffusion method requires laboratories to 

identify bacteria at species level to enable the interpretation of susceptibility test 

http://www.ukneqas.org.uk/content/PageServer.asp?S=377166&C=1252&AID=16&IID=8
http://www.ukneqas.org.uk/content/PageServer.asp?S=377166&C=1252&AID=16&IID=8
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results (British Society for Antimicrobial Chemotherapy (BSAC)). Automated devices 

such as the VITEK 2®  include bacterial identification modules, and the ‘expert’ rules 

interpret antibiotic susceptibility results based partly on the bacterial identification 

(Ling et al, 2001).  

Chromogenic agar has been shown to be effective for the identification of the 

majority of routine isolates from urine specimens (Fallon et al, 2003b). Although 

chromogenic agar is more expensive than standard media, such as CLED agar, it 

has been suggested that the additional cost can be off-set by the reduced 

requirement for additional tests and reduced labour time processing suspected 

pathogens (Perry and Freydiere, 2007).   

In the West Midlands chromogenic agar is used by all but 2 of the 15 laboratories to 

aid identification of urinary isolates, with 10 laboratories using chromogenic agar as 

the primary urine culture medium. However one of the laboratories using 

chromogenic agar for primary urine culture reported that they may stop using this 

media due to increased cost pressures. It is encouraging that 9 of the 15 laboratories 

identified all GNB urinary isolates to species level and only 1 laboratory reported all 

of their Enterobacteriaceae isolates from urine specimens as coliform bacteria. 

Thirteen of the 15 laboratories in the West Midlands reported that they use the BSAC 

standardised disc diffusion method for some or all of their susceptibility testing. 

Although this method has been reported as being a reliable and reproducible 

technique for determining antibiotic susceptibility, it is mostly dependent on manual 

laboratory procedures. Biological variation such as the genetic background or 

metabolic state of the bacteria can influence results; however inoculum preparation 
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and manual plate streaking account for 6.8%-24.8 and 6.6%-24.3%, respectively, of 

the total imprecision of the test (Hombach et al., 2016).  

Removing manual processes with automation will improve the precision and 

reproducibility of susceptibility testing. The introduction of the VITEK 2® automated 

identification and antimicrobial testing device has had an impact on laboratory 

antibiotic susceptibility testing practice in the West Midlands.  For the laboratories 

that have acquired these devices in the West Midlands, there is variation between 

laboratories in the way they are used. Four of the 11 laboratories with a VITEK 2® do 

not use this device for routine bacterial isolates from urine. The higher cost of VITEK 

2® tests and some technical limitations, such as difficulties with fastidious bacteria 

and testing some antibiotics, leads laboratories to employ other techniques for the 

determination of antibiotic susceptibility for high volume specimen types such as 

urine, or for particular classes of bacteria.  

The introduction of automated testing systems provides an opportunity to improve the 

standardisation of methods between laboratories and can greatly increase the range 

of tested antibiotics. Greater standardisation of methods between laboratories will 

improve the quality of routine surveillance data and the increased range of antibiotics 

tested first-line will reduce the bias introduced by only testing second-line antibiotics 

against more resistant bacteria. Automated testing systems also often determine 

minimum inhibitory concentrations (MICs) which can be captured by routine 

surveillance systems to provide a measure of emerging antibiotic resistance and 

indicate potential resistance mechanisms (Jorgensen & Ferraro, 2009).  
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The number of urines tested by individual West Midland laboratories varies 

considerably, which is related to the size of the hospital/s served, the case-mix of 

patients and the geographical area covered. Considering the different urban/rural 

mix, size of the hospital Trusts served and varying community populations for the 13 

general diagnostic laboratories, the proportion of their urine specimen requests 

received from community settings was consistently around half of their total requests 

for each year of the study.   

To be able to interpret AMR surveillance data and monitor changes in resistance to 

specific antibiotics, results that are reported by ‘expert’ rules rather than actual 

laboratory tests needs to be identified within the dataset. Expert rules describe how 

results should be interpreted and reported based on the results of other specified 

antibiotics. They are based on a mixture of clinical and microbiological evidence 

(Leclercq et al, 2013). Rules that change results or report untested antibiotics are 

employed by most laboratories in the West Midlands (13/15). These are managed 

either by the automated testing device (e.g. VITEK 2® ) or by the Laboratory 

Information Management System (LIMS). As part of this survey of laboratory 

methods we obtained details of these rules from West Midland laboratories and these 

will inform the analysis and interpretation of AMR surveillance data later in this thesis 

(Chapters 3, 5 and 6). For example, most West Midlands laboratories reported 

having a rule to change nitrofurantoin susceptible results for Proteus spp. to non-

susceptible due to the intrinsic resistance of this organism. As a result of this finding, 

this antibiotic can be excluded from the analysis of Proteus spp. non-susceptibility 

trends.     
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In order to interpret antibiotic susceptibility tests reported by different laboratories, it 

is important that clinically relevant and up-to-date clinical breakpoints are applied. 

The original breakpoint standards provided to laboratories in the 1970s were based 

on frequency distributions to separate resistant and susceptible phenotypes. In 1991 

BSAC published more accurate breakpoints based on the pharmacokinetics of the 

individual antibiotics rather than microbiological characterisation (British Society for 

Antimicrobial Chemotherapy (BSAC), 1991).  Between 2002 and 2008 there were 

incremental steps to harmonise European breakpoints standards, resulting in the first 

comprehensive EUCAST published standards in 2008 being incorporated in the 

annually updated BSAC breakpoints (Wootton et al, 2017). Thirteen of the 15 West 

Midlands laboratories reported using the latest published EUCAST or BSAC 

breakpoint standards, with 2 laboratories using the previous year’s version of the 

BSAC breakpoint standards. None of the West Midlands laboratories reported using 

Clinical and Laboratory Standards Institute (CLSI) breakpoint standards developed in 

the USA. Although antibiotic breakpoint standards have now been harmonised 

across Europe, there is still work on-going to harmonise with other international 

standards. CLSI and EUCAST breakpoints have differed for some antibiotics which 

has led to discrepancies in interpreting antibiotics such as co-amoxiclav, and 

cephalosporins (Delgado-Valverde et al., 2017;Hombach et al., 2012).   

There are a number of limitations within this survey. The design of the initial on-line 

survey was an attempt to achieve a balance between 1) obtaining a detailed picture 

of the methods and protocols employed by individual laboratories in the West 

Midlands for identifying bacteria from urine and performing antibiotic susceptibility 

tests, and 2) keeping the survey short to reduce the burden on busy laboratory staff 



99 

 

and encourage completion. Therefore detailed methodologies for each individual 

laboratory were not captured by the on-line survey. However, the relationships 

formed with laboratories during this period enabled a dialogue regarding the survey 

results and provided an opportunity to follow-up the on-line survey with questions to 

complete missing information and enrich the data. For example the initial survey did 

not specifically ask about methods used to culture bacteria from urines; however the 

responses indicated that some laboratories may use media that is able to identify 

common urinary pathogens (chromogenic media) as their primary urine culture agar.    

Following completion of this survey of laboratories in 2011, the introduction of Matrix 

Assisted Laser Desorption Ionization Time-Of-Flight (MALDI-TOF) mass 

spectrometers have provided laboratories with a cost-effective, fast and accurate 

method of identifying most bacteria isolated from clinical specimens (Carbonnelle et 

al., 2011). The introduction of these devices will aid the interpretation of antibiotic test 

results within the laboratory by providing species level identification and strengthen 

the ability of routine surveillance to monitor changes in resistance between species.   

In summary, this survey has shown that diagnostic microbiology laboratories in the 

West Midlands vary considerably in the methods used to identify bacteria isolated 

from urine specimens, the techniques to determine antibiotic susceptibility and the 

range of antibiotics tested. All West Midlands laboratories are CPA (UKAS) 

accredited and partake in an internationally recognised quality control scheme. 

Although these schemes assess safe practice and accuracy of results, they do not 

stipulate specific methods employed by laboratories. With new technologies 

emerging, such as the MALDI-TOF for bacterial identification, and new breakpoint 
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standards being released annually, the protocols employed by laboratories are 

subject to constant change or updates. This survey of laboratory methods represents 

a snapshot of the methods used in 2011. Therefore, although an understanding of 

the variation in laboratory practice in this period will help inform the interpretation of 

routine antimicrobial resistance surveillance data and enable comparison of AMR 

between laboratories for this study, it is important that regular surveys of laboratory 

methods are undertaken to support the on-going interpretation of routine AMR 

surveillance data.      
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3 Implementation of AmSurv and development of 

web-based reporting tools for the surveillance of 

antimicrobial resistance 
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3.1 Background 

 

3.1.1 AmSurv 

The concept for a routine antimicrobial surveillance system was first suggested in the 

late 1990s by the Public Health Laboratory Service, which was incorporated into the 

Health Protection Agency (HPA) in 2005. A prototype modular database was 

developed and given the name AmSurv. In the following years a national AmSurv 

database was specified and a software company was tasked to build the application. 

In 2005 during the final stage of development, the software company involved went in 

to liquidation and it was not possible for PHE to acquire the intellectual property 

rights (IPR) for the application. A PHE project team was established, including 

representatives from the West Midlands, and a new AmSurv functional specification 

was developed. A new software company was appointed to develop the system in 

2006. 

AmSurv was launched by the HPA in 2009 to facilitate the collection of antimicrobial 

susceptibility reports for all bacterial isolates tested in participating laboratories, 

including those from community samples. The surveillance system was made 

available to all nine HPA Regional Epidemiology Units (REUs) in 2009.  As part of 

this PhD study, the implementation of AmSurv was prioritised and piloted in the West 

Midlands region.  

To commence this study in 2009, all 15 West Midland laboratories were visited and 

the plan to implement AMR surveillance was discussed. All laboratories in the West 

Midlands agreed to send data to the system; although some of their Laboratory 

Information Management Systems (LIMS) would require modification in order to 
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produce the required outputs. Laboratory codes for data entities such as: organism, 

antibiotic, specimen type, hospital site and GP were collected from each laboratory 

and were mapped to standard national codes provided for use by the AmSurv 

system. During these discussions, the West Midland Consultant Microbiologists 

expressed their interest in AMR surveillance and requested that the data collated 

from their laboratories be made available for analysis by laboratory and Trust 

information specialists. The AmSurv application has in-built defined reports; however 

these were viewed as inadequate to meet the laboratories surveillance requirements 

as they were only available to designated HPA information specialists with access to 

the regional database server.  

 

3.1.2 AmWeb 

West Midland microbiologists and Trust infection control teams required access to 

AMR surveillance data to enable the monitoring of AMR in their populations and 

allow them to benchmark AMR between laboratories and hospitals. LIMS primary 

functions were to facilitate entering laboratory results and for sending reports back to 

test requesters. The technology used to build these applications has changed little 

since the 1980s, with most LIMS built on non-relational database platforms. The 

reporting tools provided within LIMS are often limited or complex, and therefore 

laboratory scientists and microbiologists expressed that they had experienced 

difficulty viewing data for their own hospitals /Trusts. Following discussions with 

laboratories in the region it became apparent that to ensure participation in a regional 

routine AMR surveillance system, a mechanism was required to allow microbiologists 
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easy access to regional AMR data. It was therefore decided to initiate the 

development of AmWeb, a web-enabled reporting tool to allow laboratories and other 

health professionals in the region to analyse and review local data which is 

electronically submitted to the regional AmSurv server and compare this with AMR 

data from laboratories across the region.  

 

3.1.3 Community AMR web bulletin 

AmWeb was primarily focused on providing access to AMR surveillance data to 

laboratories and NHS Trusts and therefore it was not made directly available to 

prescribers in the community. The majority of antimicrobial prescribing occurs in 

community settings (Public Health England, 2014), with much of this being empirical 

prescribing, as microbiological data are often not available at the time of consultation 

(McNulty and Francis, 2010).  

AmSurv collates AMR data from both community and hospital patients, and therefore 

providing access to local AMR data for healthcare professionals in the community 

may help inform prudent antibiotic prescribing. As part of this study, a regional AMR 

bulletin was developed for primary care antibiotic prescribers. This bulletin aimed to 

raise awareness of AMR in the community, and provide antibiotic susceptibility data 

at local geographical areas.    
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3.1.4 AMR surveillance systems outside England  

When planning the implementation of routine AMR surveillance in the West Midlands, 

a review of systems in the UK, Europe and the USA was undertaken to compare 

techniques and technologies used.  

In 1999 NHS Wales initiated a project to collate routine microbiology data from all 

laboratories in Wales using a database application called Datastore (NHS Wales, 

2002). This application has been used to produce annual AMR national reports. A 

plan to build a web application by 2018 has been published, which will enable 

hospital and community health professionals to interrogate local AMR data using the 

data collated by Datastore (NHS Wales, 2016). In Scotland each laboratory was 

provided with a VITEK® automated susceptibility testing system to standardise 

susceptibility testing and data collated for the EARS-Net European surveillance 

network (https://ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-

laboratory-networks/ears-net). Each laboratory in Scotland was also asked to send 

AMR data to a central database for 400 isolates from urine specimens each month 

(Health Protection Scotland, 2011). The analysis from these data are included in the 

SAPG Annual report on Antimicrobial Use and Resistance 

(http://www.isdscotland.org/Health-topics/Prescribing-and-Medicines/SAPG/AMR-

Annual-Report/).     

A number of countries have sentinel surveillance schemes for AMR. In Germany a 

sentinel laboratory-based Antibiotic Resistance Surveillance (ARS) system collects 

electronic reports of all clinically relevant bacterial pathogens from healthcare 

providers in 9 of the 16 federal states in Germany (as of 2011) with access to reports 

https://ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/ears-net
https://ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/ears-net
http://www.isdscotland.org/Health-topics/Prescribing-and-Medicines/SAPG/AMR-Annual-Report/
http://www.isdscotland.org/Health-topics/Prescribing-and-Medicines/SAPG/AMR-Annual-Report/
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via a web portal (Schweickert et al., 2011). In France the focus of AMR surveillance 

is based on a sentinel scheme for infections from an animal origin. 

(https://www.anses.fr/en/content/resapath-french-surveillance-network-antimicrobial-

resistance-pathogenic-bacteria-animal-0). Similarly, in the USA a national scheme for 

AMR focuses on foodborne bacterial infections (Karp et al., 2017). 

 

3.2 Objectives 

The objective of the work detailed in this chapter was to complete the implementation 

of the AmSurv AMR surveillance system within the West Midlands. Simultaneously 

web-based reporting tools will be developed to provide epidemiologists, 

microbiologists, infection control teams and community prescriber’s access to 

regional AMR surveillance data. These surveillance tools should be designed to allow 

users to monitor the emergence and spread of AMR within local and regional 

settings, inform the development of local prescribing formularies and to provide an 

incentive for continued participation in the voluntary surveillance scheme.  

 

3.3 Methods 

 

3.3.1 Population studied  

The study included all residents receiving healthcare in the West Midlands region of 

England, which is described in Chapter 1.  

 

https://www.anses.fr/en/content/resapath-french-surveillance-network-antimicrobial-resistance-pathogenic-bacteria-animal-0
https://www.anses.fr/en/content/resapath-french-surveillance-network-antimicrobial-resistance-pathogenic-bacteria-animal-0
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3.3.2 AmSurv system and data sources  

There were 15 diagnostic microbiology laboratories in the West Midlands region 

serving primary and secondary healthcare settings during the study period. Six 

different LIMS were in operation across the region, with each individual laboratory 

using a range of bespoke codes for recording data items including antibiotic 

susceptibility test results. In the 12 months prior to receiving the release version of 

the AmSurv software, code tables for bacteria, antibiotics, GPs and requesting 

locations were requested from each of the 15 laboratories. Code mappings were 

created for each of the individual code tables to translate bespoke laboratory codes 

to NHS Organisation Data Service (ODS) codes (NHS Connecting for Health, 2012) 

where available, or if not available then translations were made to standard HPA 

codes. In 2016 ODS was incorporated into the new NHS Digital service and this body 

is now responsible for maintaining these codes. These translation tables were 

inserted into HPA software called LabLink+ which managed the standard AMR text 

files generated by each laboratory using LIMS reporting tools. LabLink+ software 

reformatted these files and applied the created translation tables to produce 

nationally standardised AMR report files.  

The HPA CoSurv database application installed in every laboratory (LabMod3) for 

the delivery of communicable disease reports (CDR) was adapted to also deliver the 

AMR files to the REU. These files were encrypted and emailed weekly using semi-

automated batch routines to the AmSurv database at the REU (Figure 3.1).  

The AmSurv files included the following: the organism isolated, antibiotic 

susceptibility interpretation (i.e. Susceptible/Resistant/Intermediate), MIC value 
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(where available), patient identifier, date of birth, gender, patient postcode, 

requesting source (community or hospital), specimen type, specimen date and the 

medical specialty of the doctor who submitted the specimen to the laboratory.      

 

3.3.3 Data validation 

Each file produced by LabLink+ software was assigned a unique rolling check-digit. 

This check-digit was used to ensure files were received in sequence from each 

individual laboratory. Laboratories were informed of missing files and asked to 

resend. Laboratory reports received were checked for completeness of data items 

and correct coding using the AmSurv import/validation processing. These were a set 

of ETL (extraction translation and loading) processes developed using Microsoft SQL 

Server Integration Services (SSIS). Reports failing data validation were held in 

‘quarantine’ until the sending laboratory was contacted to attain the missing data 

items/codes translations (Figure 3.2). The loading processes included de-duplication 

routines that removed exact duplicates (i.e. same patient, same specimen number 

with matching results) and appended any changes in results to existing records in the 

database. The AmSurv module included some reporting tools; however, the reports 

were limited in scope and could only be accessed by HPA information managers. 

They were also designed in the 1990s for a prototype AMR surveillance application, 

and therefore did not include changes in NHS boundaries and organisational entities.     
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3.3.4 Development of AmWeb 

A functional specification was developed for a web-based AMR reporting tool based 

on consultations with microbiologists and NHS Trust infection control teams. The 

specification was delivered to a software development company (RADAS Ltd.) in 

April 2011. A technical specification was agreed and indicative costs provided. A 

business case was developed to obtain funding and this was presented to the HPA 

Regional Management Team. Funding was formally agreed in July 2011. The 

application was delivered in October 2011 and historic AMR data collated by the 

AmSurv application since its launch in 2009 were migrated into the AmWeb 

database.  

On completion of the application, User Acceptance Testing (UAT) was undertaken. 

The UAT process involved systematically querying the AmSurv database directly 

using the Transact SQL language. A wide range of drug/bug and tabular queries 

were applied directly to the AmSurv database. These queries were then recreated in 

the reporting application of AmWeb. The results from each of the query tools were 

compared for consistency and accuracy. Following successful completion of the UAT, 

a four week pilot was initiated in two West Midland laboratories. Eight microbiologists 

from the two laboratories were enrolled to undertake the pilot. On completion of the 

pilot the web application was signed-off and rolled-out to all laboratories in the region 

in January 2012.   
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3.3.4.1 AmWeb design objectives 

 To develop a web based database application that is capable of hosting 

regional AmSurv data 

 To automate the extraction of data from the regional AmSurv database, apply 

a 14 day episode length and remove all personal identifiable information (PII) 

 To automate the secure delivery of processed AmSurv data to the AmWeb 

application hosted on the HPA West Midlands web server 

 To enable the management of user privileges and log-in via maintenance 

screens accessible only to designated system administrators 

 To provide reporting tools that enable users to define drug/bug combinations 

and produce graphical reports over a defined period of time 

 To enable users to specify the content of antibiotic panels, and produce 

tabular reports using these panels against named bacteria over a defined 

period of time 

 To enable all reports to be aggregated and viewed by Local Authority/ Primary 

Care Trust geographical boundaries or by reporting laboratories               
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                Figure 3.1 AmSurv Data collection flow chart 
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                         Figure 3.2 AmSurv process map 
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3.3.4.2 AmWeb Architecture and Processes 

The extraction, cleaning and secure transfer of AMR data from the AmSurv database 

to the AmWeb application was automated on a weekly schedule. The application 

included management tools that controlled internet access via set user permissions 

and log-ins. The AmWeb application ran on Microsoft.Net Framework 2.0 and its 

database was driven using SQL Server 2005. The AmWeb application was built 

using Microsoft's Visual Studio 2008 in VB.NET and ASP.NET. 

The processing commenced with a copy of the regional AmSurv database being 

created using scheduled SQL Server routines that removed subsequent specimens 

from the same patient and specimen type, with matching results, within a 14 day 

episode length (based on specimen date) from the copied database (Figure 3.3). The 

fields used for matching and de-duplicating records were as follows; Laboratory ID, 

Patient ID, Patient NHS No, Patient date of birth, Patient Postcode, Organism, 

Antibiotic, Antibiotic Result, Specimen, Specimen date, Specimen Source Location 

and Medical Speciality. Once duplicate episodes had been excluded, the records 

were anonymised by removing Patient ID, NHS number, Date of Birth and Postcode 

data from the copied database. A scheduled output file was created using Microsoft 

SQL Server Integration Services (SSIS). The export application polled for a suitable 

file every 15 minutes and when found used secure File Transfer Protocol (FTP) to 

transmit the file to a designated directory on the AmWeb server. In the AmWeb 

application an import routine built in VB.net ran continually as a Microsoft Windows 

service. The import directory was polled every 15 minutes for new files. When a new 

file was found the application inserted the data into the AmWeb database using SQL 

database transaction routines.  
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Figure 3.3 AmWeb Process Map 
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3.3.4.3 User defined reports 

Microsoft SQL Server 2005 Reporting Services (SSRS) were used to extract data 

from the SQL Server database and provide graphical and tabular outputs. Reports 

were viewed using a Report Viewer Control which is embedded into the web 

application. 

Two report types were developed: drug/bug combinations and tabular reports. For 

drug/bug reports a maintenance screen allowed users to select antibiotic or antibiotic 

group versus an organism or organism group. Additionally the reports could be 

filtered on specimen types or groups of specimens (e.g. all lower respiratory 

specimens) and the status of the sender, that is acute hospital, GP or community 

hospital (Figure 3.4 (a)). The reports could be saved to the account of the user and 

an option was provided for the report to be included or excluded when reports were 

next run.  

For tabular reports another maintenance screen allowed users to create an antibiotic 

panel to be included in the report (Figure 3.4 (b)). These antibiotic panels could be 

created by selecting from a complete list of available antibiotics and allowed users to 

create antibiotic panels appropriate for the treatment of specific bacteria (e.g. MRSA 

panels) or infection types (e.g. urinary tract infection panels). These antibiotic panels 

were saved to the users’ account and could be retrieved at any time for editing or 

deletion. When running a tabular report the user selected the antibiotic panel to 

include (which could be user-defined or standard system panels), the organism or 

organism group, the specimen type or specimen group, the gender of the patients, 

patient age ranges and the date range for the report.  
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Figure 3.4 AmWeb report maintenance screens(screen shots from application) 

a) Drug / bug reports 

 

b) Tabular reports 
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The ‘run reports menu’ enabled users to select either a tabular or drug/bug report 

type and allowed these reports to be viewed by; Hospital Trust, Reporting 

Laboratory, Local Government Authority or Primary Care Trust (replaced by Clinical 

Commissioning Group, CCG, geographical boundaries in April 2013). Within each of 

these categories individual or groups of organisations (e.g. laboratories or NHS 

Trusts) or geographical boundaries (e.g. Local Authorities) were available for 

selection by application users.    

 

3.3.5 Community AMR web bulletin 

With the objective of increasing the availability of local AMR information to clinicians 

in primary care settings in the West Midlands, a regional AMR Focus Group was 

established, comprising microbiologists, pharmacists and epidemiologists within the 

West Midlands. The group met just once and was tasked to guide the development of 

surveillance outputs to meet the needs of the local community. It was agreed that a 

Community AMR bulletin should be developed, and the regional focus group advised 

on the antimicrobial resistance trends that should be incorporated in the bulletin (see 

section 3.4.6).    

A small number of randomly selected GPs were approached in November 2012 to 

pilot the first community AMR bulletin. Meetings were held in two practices to discuss 

the desired format and content required by local antibiotic prescribers. From the 

verbal feedback received it was agreed that the bulletin should be produced quarterly 

and provide headline summaries for common bacteria and antibiotics seen in the 

community, with links from the front page to provide more detailed analysis by local 
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geographies. It was decided that to deliver these requirements a web formatted 

bulletin should be built, hosted by the HPA regional epidemiology unit web server.  

Data for the bulletin was obtained using the Microsoft Structured Query Language (T-

SQL), to extract information from the regional AMR database (AmSurv) on a quarterly 

basis. Templates were created in Microsoft Excel to create the charts for each of the 

antibiotic and organism combinations. The web pages were developed using the 

Dreamweaver (Adobe, California USA) web development application.  

To minimise selective testing bias, only antibiotic susceptibility test results were 

included in the analysis from a local laboratory where at least 70% of the bacteria are 

tested against the antibiotic being assessed. Initially susceptibility results were 

viewed by Local Authority geographical boundaries; however with the introduction of 

Clinical Commissioning Groups (CCGs) the bulletin was changed to show AMR by 

West Midland CCG boundaries. Reports were assigned to local area boundaries 

using an algorithm that assigned location using the postcode of the GP practice 

requesting the specimen. For the infrequent occasions where a report was missing a 

GP practice code, then patient postcode, or as a last resort the reporting laboratory 

postcode would be assigned. 

During pilot sessions with GP practices, requests were received to include a printable 

version of the bulletin. A PDF version was made available and this was linked to a 

button on the home page of the web bulletin that printed this version. Also following 

feedback from these sessions, links to other internet community prescribing guidance 

resources and a warning regarding interpreting complex AMR surveillance data was 

added on the front page of the bulletin.    
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The inaugural ‘West Midlands Community Antimicrobial Resistance Bulletin’ was 

distributed in February 2013 by incorporating a link to the bulletin within an 

introductory email. Emails were sent to GP practice managers, microbiologists and 

pharmacists across the region. The first bulletin contained a message for GP 

prescribers from the head of the national Antimicrobial Resistance and Healthcare 

Associated Infection (AMRHAI) reference unit, Professor Neil Woodford, describing 

the dangers of AMR and how prudent antibiotic prescribing in the community can 

help reduce the selection and spread of resistant bacteria.  

 

3.3.5.1 Community bulletin user survey 

A short survey of users of the bulletin was undertaken in September 2016 using the 

on-line survey tool Select Survey (Classapps, KS, USA). The purpose of the survey 

was to assess the following: if users found the bulletin relevant to their practice, if the 

content and format was appropriate to their needs, and if it had influenced their 

prescribing habits.   

The request to complete the survey, with a link to the web page, was sent with the 

email notification to GP practices informing that a new quarterly bulletin was available 

for viewing.  Free text comments were analysed thematically.      
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3.4 Results 

 

3.4.1 AMR reporting volumes 

The first laboratory was configured for reporting to AmSurv in October 2009, with all 

laboratories reporting by 2012. The larger regional laboratories were prioritised for 

configuration. Monthly reports of individual antimicrobial susceptibility tests (ASTs) 

rose from 120,000 per month in November 2009, when three laboratories were 

reporting, to approximately 320,000 per month November 2012 when all fifteen 

laboratories were reporting. In January 2013, there were 10 million individual records 

of antimicrobial susceptibility tests captured in the database (Figure 3.5).  

With all laboratories in the region reporting in 2012, an average of 40,000 bacterial 

isolate reports were received each month by the REU, ranging from 40 isolates / 

month from smaller specialist laboratories to 4,000 isolates / month from the larger 

laboratories. 

Although the AmSurv database application was released across England in 2009, in 

2012 AMR surveillance was not a high priority within the HPA, and with resourcing 

issues in some PHE regions, the national AmSurv reporting levels from laboratories 

in England (excluding the West Midlands) was less than 30%. Therefore it was 

decided that there were not sufficient levels of coverage to allow valid and 

representative national comparisons at the time of this study.  

In the following section the usefulness of the AmWeb web surveillance application 

will be described by using specific case studies.  
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Figure 3.5 Number of antibiotic tests reported to AmSurv in the West Midlands, with arrows indicating the total number of 
laboratories enrolled by specific dates (n=15). September 2009 – April 2013  
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3.4.2 AmWeb case study A 

Figures 3.6 and 3.7 are the AmWeb graphical representations of a time series of 

drug / bug combination reports at the local and regional setting. Figure 3.6a shows 

the trends in proportion of E. coli isolates reported as susceptible, intermediate or 

resistant to co-amoxiclav by a local laboratory, and Figure 3.6b shows the number of 

E. coli isolates tested against co-amoxiclav by the same laboratory over the same 

period. These charts show that over a 14 month period, testing of E.coli isolates 

against co-amoxiclav remained relatively stable, but the proportion of isolates 

reported as resistant to co-amoxiclav increased steeply in July 2011 from 

approximately 15% to 40% and remained at this level for six months before 

decreasing to the levels observed in the first half of 2011. On investigation this 

observed pattern was found to be due to a change to BSAC breakpoint 

guidelines,(Andrews and Howe, 2011) recommending an increase in the zone 

diameter for interpreting E. coli susceptibility to co-amoxiclav when testing urine 

samples, which the laboratory instituted in July 2011. The breakpoint was 

subsequently reversed by the laboratory for isolates from patients with a UTI, 

consequently resistance proportions returned to the previous level. Concern was 

raised by laboratories regarding reporting increased resistance to co-amoxiclav for 

isolate from urine specimens resulting from the implementation of new guidelines. 

The BSAC, therefore, introduced an increased MIC breakpoint specifically for 

UTIs.(Howe and Andrews, 2012). Figure 3.7 shows the regional trends for the same 

drug-bug combination during this period for comparison and clearly shows a stable 

trend over time, suggesting that most laboratories ignored the change in 

recommendation.   
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3.4.3 AmWeb case study B 

Table 3.1 shows an AmWeb tabular report for numbers of isolates and proportions of 

E. coli urinary isolates reported as resistant in selected Primary Care Trusts (PCTs) 

in the West Midlands in 2011. The table shows wide variation in reported resistance 

proportions between the PCT areas, with the proportion of E. coli isolates resistant to 

cephalexin ranging between 4% to 10%, and co-amoxiclav resistance ranging 

between 9% and 24%. The number of tests performed for each antibiotic against the 

specific organism is also displayed. It can be observed that in some areas local 

laboratories were performing selective testing for certain antibiotics by not testing all 

E. coli isolates against specific antibiotics, which may lead to higher apparent rates of 

resistance due to selection bias. This is particularly true for PCT 4 where the local 

laboratory only tested isolates against ciprofloxacin when resistance to first-line 

antibiotics was detected. The corresponding resistance proportion to ciprofloxacin in 

this area was 27% compared with the regional average of 10%. 
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Figure 3.6 (a): Distribution of resistance profile of E. coli isolates from all specimens, 
tested against co-amoxiclav in laboratory A between January 2011 and March 2012. 
(b): Number of E. coli isolates from all specimens, tested against co-amoxiclav in 
laboratory A between January 2011 and March 2012 (charts from report prepared for 
publication). 

a) 

 

b) 
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Figure 3.7 Drug/Bug example regional reports for E. coli isolates from all specimens 
tested against co-amoxiclav by laboratories in the West Midlands region between 
January 2011 and March 2012 (charts from report prepared for publication). 
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Table 3.1 Susceptibility of E. coli isolates from urine samples to co-amoxiclav, ciprofloxacin and cephalexin in selected PCT 
areas in 2011. 

 

   

   

 

No. of 
E. coli 
UTI 
isolates 

Co-amoxiclav Ciprofloxacin Cephalexin 

No.  

isolates 
tested 

% 
resistant 

No. 
isolates 
tested 

% 
resistant 

No. 
isolates 
tested 

% 
resistant 

PCT1 2523 2523 21% 2519 7% 2516 6% 

PCT2 1685 1685 24% 1681 15% 1685 10% 

PCT3 3165 3162 10% 411 14% 132 4% 

PCT4 9830 9067 9% 923 27% 8557 5% 

Regional 

Totals a 

 

 54287 50339 18% 44493 10% 48068 7% 

a Includes isolates from all 17 Primary Care Trusts areas within the region. 
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3.4.4 AmWeb case study C 

A review of AmWeb data for the susceptibility of Pseudomonas aeruginosa to 

piperacillin / tazobactam in 2016 revealed variation in the proportions reported as 

non-susceptible by laboratories in the West Midlands. On further investigation it 

appeared that the variation seemed to be associated with the susceptibility testing 

method used by the laboratory. Laboratories using disc diffusion methods reported 

comparatively low proportions of their P. aeruginosa as non-susceptible to piperacillin 

/ tazobactam (Figure 3.8); however, laboratories using VITEK 2® devices (described 

in Chapter 2) to test this organism (n=5) reported a higher proportion non-susceptible 

to piperacillin / tazobactam (Figure 3.9). The results from laboratories using VITEK 2®  

reported a large proportion of their piperacillin / tazobactam results as having 

intermediate resistance; although the EUCAST breakpoint standards used by these 

devices does not include a definition for intermediate susceptibility for P. aeruginosa 

tested against any antibiotics, including piperacillin / tazobactam (European 

Committee on Antimicrobial Susceptibility Testing, 2017). A review of the ‘predictive’ 

MIC results from a laboratory using VITEK 2® to perform susceptibility testing on P. 

aeruginosa for January-May 2017 found that many of the tests reported with 

‘intermediate’ susceptibility had ‘predictive’ MIC values of <16 mg/L, which following 

EUCAST guidelines would be the ‘susceptible’ range (Table 3.2). 

As a result of reporting these findings, the laboratories using VITEK 2® to perform 

susceptibility testing of P. aeruginosa to piperacillin / tazobactam in the West 

Midlands contacted the manufacturer (bioMérieux) in September 2016 for information 

on how the results are assigned for this antibiotic, and two laboratories changed to a 

disc diffusion method for testing P. aeruginosa. A new automated sensitivity test card 
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for Pseudomonas spp. was deployed by bioMérieux in January 2017 and results from 

laboratories using the new card are being monitored using AmWeb.    
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Table 3.2 Piperacillin/tazobactam VITEK 2® susceptibility results for P. aeruginosa 
tested by a West Midlands laboratory, January – May 2017.     

 

Susceptibility 

result reported 

MIC test results reported (mg/L) Total 

susceptibility 

results  
≤4 8 16 ≥32 

 

Sensitive 83 32 8 0 123 

Resistant  0 1 1 24 26 

Intermediate  158 302 21 0 481 

Total  241 335 30 24 630 

 

 

 

 

 

 

 

 

 

 

 



130 

 

Figure 3.8 AmWeb drug/bug report for P. aeruginosa isolates from all specimens tested against piperacillin / tazobactam by a West 
Midland laboratory using a disc diffusion method, June 2011-June 2016* (screen shot from AmWeb application). 

 

*Laboratory commenced reporting to AmSurv in November 2012 
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Figure 3.9 AmWeb drug/bug report for P. aeruginosa isolates from all specimens tested against piperacillin / tazobactam by a West 
Midland laboratory using a VITEK 2® automated testing system,June 2011-June 2016 (screen shot from AmWeb application). 
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3.4.5 Regional surveillance of AMR 

Following the launch of AmWeb in England in January 2012, the AmWeb application 

was used by the West Midlands REU to detect and monitor unusual resistance 

profiles, such as outbreaks of multi-drug resistant Gram-negative bacteria in local 

hospitals. Following small outbreaks of carbapenemase-producing 

Enterobacteriaceae in local hospitals, AmWeb was used to monitor the occurrence 

of new, potentially linked cases, through the use of distinctive antimicrobial profiles 

set up as alerts on the system so as to detect potential local spread of these 

resistant bacteria.  

As an example Figure 3.10 shows a time series chart marking the appearance of a 

Klebsiella pneumoniae resistant to imipenem in a local hospital. The number of K. 

pneumoniae isolates tested against imipenem by the laboratory is also shown.  

This hospital experienced an outbreak of ESBL-producing Enterobacteriaceae during 

the summer of 2010, and implemented a screening programme for patients on 

affected wards and all new admissions. This may account for the increased testing of 

imipenem observed during this period, as more isolates detected in the screening 

programme would be tested for carbapenem resistance. We investigated the spike in 

imipenem resistance with the local microbiologist and found that a strain of K. 

pneumoniae producing a Verona Integron-encoded Metallo-β-lactamase (VIM) had 

spread between patients in the hospital.   
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Figure 3.10 Results of susceptibility testing to imipenem for K. pneumoniae isolates from all specimens, reported by laboratory B, 
together with total numbers of isolates of K. pneumoniae tested against imipenem by laboratory B (chart from report prepared for 
publication). 
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3.4.6 Community AMR web bulletin 

The quarterly community AMR bulletin provides temporal antibiotic resistance trends 

for E. coli isolated from community urine specimens against trimethoprim, co-

amoxiclav, cephalexin and nitrofurantoin. Figure 3.11 shows a chart taken from the 

community AMR bulletin released in July 2016. This chart displays AMR resistance 

in E. coli community isolates from urine specimens  from January 2012 to June 

2016. The proportion of E. coli resistant to nitrofurantoin and trimethoprim appears to 

be stable during this period at approximately 2.5% and 35.0%, respectively; although 

in Chapter 6 trimethoprim is shown to have a gradual rising trend in non-

susceptibility in the period 2010-20112, which then levels out between 2012-2014. 

There was variation in the resistance proportion of co-amoxiclav during this period 

(range 11.0% - 19.7%). There also appeared to be a gradual linear increase in 

resistance to cephalexin between 2012 and 2016, with the resistance proportion at 

8.7% in June 2016 compared with 6.8% in January 2012. A separate table on the 

community bulletin home page provides the resistance proportions of pathogens 

commonly isolated from community specimens for a particular calendar quarter 

(Figure 3.12). 
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Figure 3.11 Trends in regional antimicrobial resistance in E. coli isolated from 
community urine specimens, West Midlands, Jan 2012 - May 2016 (screen shot from 
web bulletin).   
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Figure 3.12 Summary table from the Quarter 2 2016 Community AMR bulletin 

 

West Midlands Summary 

  

Apr-Jun 2016, Q2 
 

Community sample resistance rates 
(Click on antibiotic for local breakdown) 

 
Escherichia coli (E. coli) from urine samples 
Nitrofurantoin: 3% 
Cephalexin: 9% 
Co-amoxiclav: 13% 
Trimethoprim: 35% 

 
Haemophilus influenzae from all samples 
Ampicillin/Amoxicillin: 27% 

 
Staphylococcus aureus from all samples 
Methicillin: 6% 
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Each of the quarterly resistance proportions for the various bacteria and antibiotics 

provided on the homepage of the Bulletin (Figure 3.12) was set as a hyperlink that 

on clicking would open a new web page that showed resistance proportion by local 

geographies (initially Local Health Authorities and replaced by CCGs in 2013). 

Figures 3.13 and 3.14 illustrate examples of the local breakdown charts displayed for 

co-amoxiclav and trimethoprim respectively for the Quarter 2 2016 bulletin.  

In Figure 3.13 it can be observed that the proportion of E. coli isolates resistant to 

co-amoxiclav in CCG areas during April-May 2016 ranged from 5% to 24%, with a 

regional average proportion of 13% for this quarter. In Figure 3.14 the resistance 

proportion for trimethoprim to E. coli in CCG areas shows less variance and ranges 

from 30% to 43% with a regional average resistant proportion of 35% for this quarter. 

The pages showing resistance in E. coli to each of the selected antibiotics by local 

commissioning groups also included a chart to describe the age and sex breakdown 

for patients with E. coli urinary infections that were tested against the selected 

antibiotic. Figure 3.15 and Figure 3.16 show examples for cephalexin and 

nitrofurantoin respectively from the quarter 2 2016 bulletin.   
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Figure 3.13 Chart from bulletin showing number of E. coli isolates from community urine samples tested against co-amoxiclav (blue 
columns), regional average resistance (green line) and CCG average (red squares), West Midlands  April-June 2016 (screen shot 
from community AMR bulletin). 
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Figure 3.14 Chart from bulletin showing number of E. coli isolates from community urine samples tested against trimethoprim (blue 
columns), regional average resistance (green line) and CCG average (red squares). West Midlands, April - June 2016 (screen shot 
from community AMR bulletin). 
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The age and sex breakdown for patients with E. coli isolates resistant to cephalexin 

for quarter 2 in 2016 (Figure 3.15) shows higher proportions of resistance in the 

younger and older age groups for both male and female patients. The chart shows 

the much higher number of tests performed on E. coli isolated from female patients, 

particular the over 65 age group.  The bulletin commentary for this page informs that 

85% of the E. coli tested against trimethoprim were from female patients and that as 

a proportion of all E. coli isolates tested against trimethoprim the overall proportion of 

resistant isolates in females was slightly higher than that reported in males (36% vs. 

33%).   

Figure 3.16 shows the age and sex breakdown for nitrofurantoin testing released in 

the quarter 2 2016 bulletin. A marked increase in resistance to nitrofurantoin is 

observed in the older age groups, with a resistance proportion of over 5% for the 

male 65+ age group. Increased resistance is also observed in the female under 5 

age group. The number of tests performed again also rises sharply in the female 65+ 

age group. The bulletin commentary for this page informs that while the majority 

(85%) of susceptibility reports were from females, when viewed as a proportion of all 

E. coli isolates tested against nitrofurantoin, the overall proportion of resistant 

isolates in females was lower than that reported in males (2% vs.4%). This is 

possibly explained by a higher proportion of urines received from male patients in the 

65+ age group, in which higher proportions of resistance are found (Figure 3.16). 
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Figure 3.15 Community bulletin chart showing age and sex breakdown for E. coli 
resistance to cephalexin in the West Midlands, quarter 2 2016 (screen shot from 
community AMR bulletin). 
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Figure 3.16 Community bulletin chart showing age and sex breakdown for E. coli 
resistance to nitrofurantoin in the West Midlands, quarter 2 2016 (screen shot from 
community AMR bulletin). 
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3.4.7 Community AMR bulletin survey 

The on-line survey of GP practices received 90 responses, representing 80 GP 

practices (8% of practices in the West Midlands). Forty-one (46%) of the 

respondents were GPs, 38 (42%) practice managers, 5 (6%) practice nurses and 6 

(7%) were other members of the practice team.  

There were 54 responses to the question whether the bulletin was useful / relevant 

to the practice with 81% (44/54) answering ‘yes’, 2% (1/54) ‘no’ and 17% (9/54) 

‘unsure’. There were 53 reponses to the question asking whether the bulletin had 

influenced prescribing or prescribing policy, with 51% (27/53) answering ‘yes’, 9% 

(5/53) ‘no’ and 40% (21/53) ‘unsure’.   

The survey invited recipients of the bulletin to agree or disagree with statements 

regarding the format, content and frequency of publication (Table 3.3). Sixty-four 

percent (34/53) ‘agreed’ or ‘completely agreed’ that ‘the content is appropriate’ and 

‘quarterly reporting of the bulletin is appropriate’. Sixty-two percent (33/53) ‘agreed’ 

or ‘completely agreed’ that the ‘format is appropriate’ and ‘the level of detail is just 

right’.  
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Table 3.3 Community bulletin survey question results for content and format (53 responses) 

 

 

 

 

 

  Completely disagree Disagree Neutral Agree Completely agree 

It is simple to use. 0 (0%) 0 (0%) 20 (38%) 25 (47%) 8 (15%) 

The antibiotics and 

organisms included are 

appropriate. 

0 (0%) 0 (0%) 19 (36%) 27 (51%) 7 (13%) 

The format is appropriate to 

my needs. 

0 (0%) 0 (0%) 20 (38%) 27 (51%) 6 (11%) 

The level of detail is just 

right. 

0 (0%) 0 (0%) 20 (38%) 29 (55%) 4 (8%) 

Quarterly reporting is 

appropriate 

0 (0%) 1 (2%) 18 (34%) 27 (51%) 7 (13%) 
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The last two questions in the survey requested additional free-text responses. The 

first of these asked for examples of where the bulletin had influenced antibiotic 

prescribing or prescribing policy. There were 18 free-text comments to this question 

with two themes emerging within the group; the practice had changed to prescribing 

nitrofurantoin rather than trimethoprim as a result of reading the bulletin (n=4) and the 

bulletin had reaffirmed or prompted the following of national prescribing guidelines for 

UTI in the practice (n=8). One response stated that the bulletin was used to show to 

patients to explain practice prescribing policy.    

The second free-text question asked for general comments regarding the bulletin. 

There were 15 individual comments in this section with one common theme 

emerging, which was that practices are overwhelmed by emails and therefore 

notification of the AMR community bulletin can be easily overlooked (n=9).   
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3.5 Discussion  

 

3.5.1 AmSurv and AmWeb 

3.5.1.1 Advances in informatics 

The development of surveillance systems to monitor trends in antimicrobial 

resistance at the local, regional and national levels is an important element in 

controlling the emergence and spread of antibiotic resistant bacteria (O'Brien and 

Stelling, 2011a). In the UK, a lot of healthcare information is available in electronic 

format (Johnson, 2015). Modern relational database management systems, such as 

Microsoft SQL Server, are able to store large amounts of data, can retrieve 

information rapidly and have in-built advanced security features (Wisniewski et al., 

2003). Advances in informatics reduce the burden on laboratories of reporting timely 

routine surveillance data by using automated routines, and web-enabled database 

tools are now able to process large datasets in real-time. The use of new 

technologies such as the secure web based data capture and processing provide an 

opportunity to improve data quality, obtain near real-time data and provide a 

mechanism of automating the generation of alerts for users of the system (Hayward 

et al., 2007;O'Brien and Stelling, 2011b).  

3.5.1.2 Standard laboratory methods 

As discussed in Chapter 2, an AMR surveillance system based on routine laboratory 

reporting ideally requires standard methods to be used by laboratories and a 

consistent approach to the interpretation of antibiotic resistance. The survey of 

laboratories in the West Midlands, undertaken in 2011 and described in chapter 2, 

showed variation in laboratory methods and protocols for both the identification of 
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bacterial isolates and the determination of antimicrobial susceptibility. This is 

underscored in this chapter by the observed shift in resistance trend in laboratory A 

following adoption of different guidelines for the interpretation of susceptibility to co-

amoxiclav (Figure 3.6). However the laboratory survey reported in Chapter 2 also 

demonstrated a recent growing trend towards using Automated Susceptibility Testing 

(AST) systems, with 11 of the 15 diagnostic laboratories now using the bioMérieux 

VITEK 2® system for some or all of their antimicrobial susceptibility testing. There has 

also been a progressive move to greater International Standardisation with the 

adoption of much more similar breakpoints within Europe and internationally 

(Hombach et al., 2012). This increasing standardisation will improve the quality of 

routine AMR surveillance and enable direct comparison between laboratories, 

hospitals and geographical areas (O'Brien & Stelling, 2011a).  

3.5.1.3 De-duplication of records 

AMR surveillance systems need to incorporate a process for identifying and handling 

duplicate entries. Inadequate de-duplication risks affecting the validity of AMR 

surveillance information through the introduction of measurement bias. Although as 

mentioned in Chapter 1, guidelines from the CLSI recommended that results from 

only the first isolate of a species from a patient should be included in calculating the 

percentage susceptibility to an antibiotic (National Committee for Clinical Laboratory 

Standards, 2000), selecting only the first isolate limits the ability to monitor and 

identify any changes in antimicrobial susceptibility at the individual level, perhaps as 

the result of antimicrobial therapy (Morris and Masterton, 2002). We found a 14 day 

repeat exclusion rule removed on average less than 5% of AmSurv reports, and this 

did not increase significantly if the repeat exclusion episode length was extended 
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beyond 14 days. To this end, we were confident in implementing a 14 day 

comprehensive repeat exclusion rule in AmWeb, which is also the period used to 

determine episodes of infection in the HPA CoSurv system (now incorporated into 

SGSS).  

3.5.1.4 Laboratory information management systems and coding 

The number and variety of Laboratory Information Management Systems (LIMS) in 

use across England has always posed a problem for those designing laboratory-

based surveillance systems (Hayward et al, 2007). In parts of Europe one laboratory 

can serve over 60 hospitals (Schweickert et al, 2011); however, in the UK during this 

study period, each NHS laboratory usually provides services for a single or small 

group of hospitals and their local community healthcare providers. In 2012 there were 

nearly 200 NHS diagnostic laboratories in England and 14 different varieties of LIMS. 

There is not a universal national system in England for coding clinical microbiological 

data items (Zhao et al., 2014). Each laboratory has therefore developed their own 

bespoke codes or have been provided with a set of hard-coded data items by their 

LIMS manufacturer, who are often not based in the UK. This poses a real challenge 

in extracting and collating healthcare information from the disparate information 

systems, and an even greater challenge in trying to impose new standard codes on 

historic patient care data (O'Brien & Stelling, 2011a).  

AmSurv was designed to manage this diversity of LIMS systems by simplifying the 

output requirements and translating local codes to nationally recognised formats. 

However the solution for dealing with bespoke local coding was still a significant 

obstacle for the implementation of AmSurv. The requirement to obtain a range of 

code directories from each laboratory and individually translate the several thousand 
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codes obtained to standardised HPA/PHE national codes required significant 

resource and political will, which may explain why national reporting of AMR data 

from local laboratories, excluding the West Midlands, was only around 30% in 2012. 

As implementing AMR surveillance was an objective of this study, code mapping was 

prioritised in the West Midlands and regional HPA management agreed to provide 

some additional resource to help build translation tables in preparation for the launch 

of AmSurv. Personal visits to laboratories to discuss regional AMR surveillance plans 

and the development of tools to allow microbiologist’s access to regional AMR data 

(via AmWeb), helped secure participation of all West Midland laboratories in this 

voluntary surveillance scheme.   

3.5.1.5 AmWeb case studies 

The reported AmWeb case studies show that the application can be used to monitor 

the emergence of new resistance mechanisms (case study B) and can also be used 

to act as a benchmark to improve the quality of susceptibility testing and reporting by 

laboratories. The laboratory that was using systemic breakpoints to interpret 

susceptibility testing results of isolates from urine (case study A) changed their 

practice following reports received from the system.  

Piperacillin / tazobactam is an antibiotic used to treat infections caused by MDR 

bacteria. To limit the use of drugs of last resort, such as carbapenems, piperacillin / 

tazobactam is often first-line treatment for serious infections, such as sepsis, in many 

hospitals (Lodise, Jr. et al., 2007). Therefore it was concerning to discover the range 

of non-susceptibility being reported between laboratories in the West Midlands. With 

non-susceptibility being reported at levels of 30%-40% by some West Midland 

laboratories, clinicians may switch to ‘reserve’ antibiotics for first-line treatment. As 
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described in the previous chapter, piperacillin / tazobactam testing was not 

recommended on earlier versions of VITEK 2® systems as a study of direct 

susceptibility testing of blood using VITEK 2® found major discrepancies for 

piperacillin/ taxobactam (Ling et al., 2001). The high proportion of intermediate 

susceptibility reported by laboratories using VITEK 2® systems is a significant factor 

in the overall higher non-susceptibility reported by laboratories using VITEK 2® 

devices. These intermediate test results are unexplained as the breakpoint standards 

used by VITEK 2® (EUCAST) do not contain a definition for intermediate 

susceptibility for piperacillin / tazobactam tested against Pseudomonas spp..  

A review of the predictive MIC results provided by a VITEK 2® device used by a West 

Midland laboratory (Table 3.2) showed that a high proportion of the results 

determined as having ‘intermediate’ susceptibility would have been reported as 

susceptible (i.e. MIC <16mg/L) using EUCAST breakpoints (European Committee on 

Antimicrobial Susceptibility Testing, 2017). Although these are only predictive MIC 

values based on a limited range of antibiotic concentrations, they are presumably 

being overwritten by the VITEK 2® ‘expert rules’ when determining the final 

susceptibility results.         

3.5.1.6 National AmWeb application 

The HPA Healthcare Associated Infections and Antimicrobial Resistance (HAIAMR) 

programme board and the government Advisory Committee on Antimicrobial 

Resistance and Healthcare Infections (ARHAI) requested that AmWeb be 

demonstrated in 2012 to their respective group members. These bodies supported 

the development of the AmWeb application and endorsed it as a suitable surveillance 

tool for interrogating AMR data across England. It was therefore requested that the 
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West Midlands AmWeb application be adapted to enable the collation of AMR data 

from all nine regional AmSurv modules in England. A functional specification was 

agreed in August 2012 and the ‘national’ AmWeb application was launched in 

November 2012. This application, for the first time in England, created a national 

repository of AMR surveillance data, and gave regional HPA colleagues the ability to 

setup their laboratories so that they could access AMR data, and benchmark against 

regional / national data. The HPA was incorporated within Public Health England 

(PHE) in April 2013 and AMR was assigned one of the top priority areas for the new 

organisation. The AmSurv system of distributed databases was replaced by the 

Second Generation Surveillance System (SGSS) in 2014, with the AmWeb 

application incorporated into the new SGSS national reporting tools. With increased 

PHE resource in 2016 to support the translation of laboratory AMR report codes, 

combined with the incentive of regions and laboratories in England having the 

AmWeb surveillance applications to access local and national data, reporting of AMR 

by English laboratories improved dramatically. By April 2017 98% of laboratories 

were reporting AMR data to PHE.    

The next section discusses the information output and some of the findings reported 

in the community AMR bulletin. It also considers the results from a survey of general 

practice users. 
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3.5.2 Community AMR bulletin 

3.5.2.1 Bulletin report 

The quarterly community AMR bulletins have shown a relatively stable trend in 

resistance proportions for E. coli isolated from urine between January 2012 to June 

2016 against trimethoprim, cephalexin and nitrofurantoin (Figure 3.11). The trend line 

for co-amoxiclav resistance, however, is less stable. As described above, changes to 

the BSAC breakpoint guidelines for interpreting co-amoxiclav susceptibility test 

results in 2011, which were reversed later that year, may be responsible for the 

higher resistance proportion observed in early 2012. The variability in co-amoxiclav 

resistance proportions is also observed in the bulletin chart for quarter 2 in 2016, 

showing resistance proportions by local geographic areas (Figure 3.13). The range 

for resistance to co-amoxiclav between CCGs is 5% to 24% in this period. Testing for 

co-amoxiclav susceptibility has been problematic for laboratories, with the action of 

two drugs (amoxicillin and clavulanic acid), being assessed simultaneously (Barrett et 

al., 1999). The NEQAS external quality assessment service issued a test sample 

containing E. coli to laboratories in 2012 that was susceptible to co-amoxiclav but 

had an MIC that was close to the breakpoint for non-susceptibility. BSAC, EUCAST 

and CLSI had the same breakpoint guidelines for co-amoxiclav (S ≤ 8mg/L); 

however, 41% of laboratories using BSAC guidelines reported the organism as 

resistant compared with 3.5%, 4.7% using EUCAST and CLSI, respectively  (Brown, 

2012). A reason for this discrepancy may be the use of a 2:1 ratio for amoxicillin and 

clavulanic acid in the BSAC method compared with the fixed 2mg/L clavulanic acid 

used in the EUCAST method (Diez-Aguilar et al., 2015). It is therefore difficult to 

measure actual variability in resistance proportions between geographical areas for 

co-amoxiclav using the charts provided in the community bulletin.  
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Trimethoprim is often used to treat UTI empirically and was previously recommended 

for first-line empirical treatment in national formularies (McNulty et al., 2006a). 

However the proportion of E. coli from urinary specimens that are resistant to 

trimethoprim in the region is approximately 35% (Figure 3.11). It is accepted that this 

resistance rate may be higher than the actual non-susceptibility rates within the 

population due to specimen selection bias described previously; however studies 

using data from practices sending all urine specimens for suspected UTI have found 

similar high levels of resistance to trimethoprim, with a sampling study from 22 

practices in Ireland showing the mean proportion resistant to trimethoprim as 31.5% 

(Vellinga et al., 2012). It has been suggested that antibiotics should be prescribed 

empirically provided the local resistance rate does not exceed 10-20% (Naber et al., 

2001;Warren et al., 1999); however, some suggest antibiotics should be used even 

at higher rates of local resistance rates in order to avoid increased use of broad-

spectrum antibiotics such as ciprofloxacin (Gupta et al., 2001;McNulty et al., 2006b). 

An argument put forward to justify this approach is that resistance rates have been 

traditionally based on hospital patients and therefore likely to be higher than those 

found in the community (Hooton, 2012). Although the definition for ‘community 

patients’ is sometimes ambiguous, as many patients seen in primary care will have 

come into contact with secondary care facilities, this study shows that resistance 

rates for E. coli versus trimethoprim from urine specimens sent by GPs are at a level 

that should lead to a re-assessment of empirical prescribing choices. Recently, 

based partly on data provided via the AmSurv surveillance system and published 

research, there has been change in the national formulary, with nitrofurantoin now 

recommended, rather than trimethoprim for first-line treatment of lower UTI (Public 

Health England, 2017). Prior to this change in national formulary a number of 
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anecdotal reports from GPs in the West Midlands were received, informing they had 

changed to prescribing nitrofurantoin following receiving the community AMR bulletin, 

with some of these comments being replicated in the results from the user survey 

reported above.    

The risk of acquiring a UTI is higher in females compared with males; although this 

increased risk for female patients is cancelled-out in the elderly population (Laupland 

et al., 2007). The West Midland community bulletin reflects the higher proportions of 

UTI in females for the various antibiotics tested (Figure 3.15 and Figure 3.16). The 

bulletin age and gender charts also show increased levels of antibiotic resistance in 

the older generations, with for example nitrofurantoin resistance being 5% for E. coli 

in males over 65 years compared with 2% or less resistance in the younger age 

groups (Figure 3.16). It is plausible that the older generation are more likely to come 

into contact with hospitals or be institutionalised in the community. Catheter-

associated UTI is a common nosocomial infection in community nursing homes 

(Foxman, 2003). A recent study in the West Midlands region found that patients in 

long-term care facilities (LTCFs), compared with similar age groups living in the 

community, are more than twice as likely to have a laboratory confirmed UTI and the 

bacteria isolated from these patients are more resistant to commonly prescribed 

antibiotics (Rosello et al., 2017). The increased incidence of infection in this age 

group will inevitably lead to greater exposure to antibiotics.       
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3.5.2.2 Survey of community bulletin users   

The low response rate from the survey of recipients of the community AMR bulletin is 

a limitation on the validity of any findings due to non-response bias. From the 

received responses, 81% (44/54) stated that the bulletin was useful / relevant, with 

51% (27/53) stating that it had influenced prescribing or prescribing policy. A majority 

of responses agreed that the bulletin was simple to use, provided appropriate 

drug/bug results, the format meets user requirements and that the quarterly interval 

was adequate. It is plausible, however, that that community prescribers who did not 

find the bulletin helpful may be less inclined to respond to the survey (non-response 

bias).   

Again the number of free text comments received is not sufficient to be analysed as a 

representative sample of GP practices in the West Midlands. However the emerging 

themes regarding moves towards using nitrofurantoin and reaffirming / promoting 

correct prescribing for UTI based on the bulletin data is encouraging. The dominant 

theme in the general comments section regarding email notification of the bulletin 

being lost due to the high volume of emails received by practices may account for the 

low survey response rate. The design of future community surveillance outputs will 

need to consider alternative methods of engaging with general practices.    

 

3.6 Summary 

 

The AmSurv system collated routine reports of all bacterial isolates tested against 

antimicrobials, rather than the small proportion of bacteria that laboratories have a 

statutory requirement to report under the Health Protection (Notifications) 
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Regulations 2010 (UK Government Legislation, 2010).The development of AmWeb 

therefore provided a tool for health professionals to interrogate a complete range of 

AMR surveillance data, produce reports relevant to their geographic area, and 

identify the first appearance of new or emerging resistance. It also provided an 

opportunity, for the first time in England, to review variation in laboratory to laboratory 

antimicrobial susceptibility testing as a first step to identifying and understanding the 

reasons behind the observed differences.    

Culture-based susceptibility testing information is rarely available to the community 

clinician at the time of therapeutic decision-making, and there can be geographical 

differences in susceptibility to specific antimicrobials, (Felmingham, 2002;Gupta et al, 

2001;Howard et al., 2001). Therefore timely antibiotic susceptibility data, filtered by 

hospital or community samples, and viewed by local geographies has the potential to 

inform local prescribing.  

The majority of responders to the survey of recipients of the West Midlands 

Community AMR Bulletin found the bulletin was useful and relevant for their practice; 

however the low response rate and comments received suggest alternative methods 

are required to engage with community healthcare professionals. 
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4 Antimicrobial resistance information and 

prescribing guidance used in the management of 

urinary tract infections: a survey of general 

practitioners in the West Midlands 
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4.1 Background 

 

The relation of observed susceptibility testing results to the population being studied 

is a challenge for surveillance systems that are based on routine reporting by 

microbiology laboratories. The interpretation of these data are dependent on an 

understanding of the frequency of sending specimens for microbiological examination 

and how the various presentations of potential UTI are managed in the community. 

Although national guidelines for the management of UTI are provided in many 

European countries, there is a paucity of information on adherence to these policies 

by general practitioners (Hummers-Pradier et al., 2005).   

As described in Chapter 3, antimicrobial susceptibility data from diagnostic 

microbiology laboratories can be used to monitor temporal trends and emerging 

antibiotic resistance. AMR data are gathered on bacteria isolated from specimens 

submitted to laboratories by clinicians in hospitals and the community, and therefore 

may be subject to selection bias due to over sampling of patients with initial treatment 

failures, complicated clinical histories or severe infections (Hillier et al., 

2006a;McNulty et al., 2004). There is evidence to suggest that there is substantial 

variability in local sampling policies.  For instance, an English study in 2004 found 

differences in taking urine specimens between practices, ranging from 29 to 266 

urine specimens/1000 registered patients/year (McNulty et al, 2004). A Welsh study 

found a similar range, with specimen submission rates varying from 0.6 to 237.2 

urine specimens/1000 registered patients/year (Howard et al., 2001a). 

A linear relationship between trends in antibiotic consumption and antibiotic 

resistance, for many antibiotic and organism combinations, has been described in the 
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literature (Bell et al., 2014;Costelloe et al., 2010). Therefore it is plausible that 

practices that prescribe greater quantities of antibiotics will select higher levels of 

antibiotic resistance in their practice population, and this hypothesis is explored in 

Chapter 6. The amount of antibiotics prescribed in the community varies between 

practices. A study in England in 2009 reported a fivefold difference in antibiotic 

prescribing volume between general practices, with the authors reporting that the 

strongest predictor of higher antibiotic prescribing was being located in the north of 

England (Wang et al., 2009a). In 2014, 74% of antibiotic prescribing occurred in 

community settings (Public Health England, 2014a). Variation in antibiotic prescribing 

rates in general practices have been shown to be negatively associated with variation 

in observed antibiotic resistance in the local population (Howard et al., 

2001b;Vellinga et al., 2012).  National guidance for the management of infections 

and prescribing in the community has not reduced the variation in antibiotic 

prescribing across general practices in the UK, particularly in the management of 

upper respiratory and urinary tract infections (Hawker et al., 2014).  

UTI is one of the most common infections found in community settings, with 

associated medical and financial implications for patients contracting these infections 

and those providing healthcare (Foxman, 2003). The management of UTI in the 

community should focus on patient safety and efficacy of treatments by considering 

factors such as: local in vitro susceptibility of bacterial pathogens, adverse effects of 

treatment (or non-treatment) and cost-effectiveness (Gupta et al., 2001a). 

Widespread variation in the management of UTI in the community has been reported. 

A survey in the US found that out of 137 responses, there were 82 different 

management strategies for the management of uncomplicated UTI (Berg, 1991). 
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In the West Midlands, a survey of local antibiotic prescribing by the West Midlands 

Strategic Health Authority was undertaken in 2010. This survey demonstrated 

significant variation between PCTs for commonly prescribed antibiotics in the 

community, showing a two-fold variation in prescribing quinolones and co-amoxiclav, 

with a four-fold difference between PCTs prescribing cephalosporin in the period 

2007-2011 (R. Seal, personal communication). The reported variation in antibiotic 

prescribing across the West Midlands region, and the observed variance in the 

proportion of urinary isolates non-susceptible to antibiotics in the community in 

AmWeb reports (Chapter 3), prompted a review of variables such as local prescribing 

formularies and local microbiology sampling policies used by GPs in order to identify 

and quantify potential confounders and bias within the AMR surveillance dataset. 

This chapter describes a survey of GPs in the West Midlands to help determine the 

role of prescribing formularies and practice protocols in the management of UTI.  

 

4.2 Objective 

To conduct a survey among general practitioners (GPs) in the West Midlands to 

better understand some of the organisational and behavioural factors driving 

variation in both antibiotic prescribing and the taking of urine specimens for 

diagnostic microbiology, and thereby aid the interpretation of routine AMR 

surveillance data.  
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4.3 Methods 

 

4.3.1 Setting / population 

The survey was designed for GPs working within practices in the West Midlands 

region of England. As described previously, in 2012 there were 950 general practices 

with a total of 3635 general practitioners responsible for 5.8 million registered 

patients. Each practice had an average of four GPs with an average practice list size 

of just over 6,000 patients (NHS Digital, 2014).  

 

4.3.2 Survey of GPs in the West Midlands 

A cross-sectional survey was conducted during November 2012 to February 2013 

among GPs providing community healthcare in the West Midlands. Community 

healthcare was defined as ambulatory primary healthcare delivered by registered 

GPs working within practices in the West Midlands.  

The survey was developed using a template from an earlier Welsh study (Hillier et al, 

2006a) and consisted of 17 questions divided into four sections (Appendix 2). Section 

one collected demographic data related to the practice and GPs. Section 2 elicited 

information on policies for the management of UTI, comprising questions on the use 

and source of prescribing formularies, existence of practice policies for urine 

sampling; how microbiological results influenced antibiotic prescribing; and an 

estimate of the proportion of patients clinically suspected as having a UTI for which 

urine specimens were requested. Section 3 described five hypothetical clinical 

scenarios (A to E) involving potential UTI presentations and GPs were asked whether 



162 

 

they would request a specimen and/or prescribe antibiotics empirically (Table 4.1). 

Section 4 captured free text comments from the respondents. 
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Table 4.1 Clinical scenarios presented in the survey 

Scenario A: Treatment failure in a young 

woman 

A 20 year old lady re-attends surgery and complains 

that the loin pain and frequent urination symptoms 

reported to you the previous week had worsened 

despite finishing a complete course of trimethoprim 

(no sample was taken previously). 

 

Scenario B: Probable uncomplicated UTI A 43 year old woman complains of pain passing 

urine and frequency. She feels well otherwise and 

has not previously been treated for a UTI. 

Scenario C:  Probable UTI in an adult male A 51 year-old man attends your surgery 

complaining of pain passing urine and perineal 

tenderness. On examination you find suprapubic 

tenderness and a temperature of 38.5 C is 

measured. 

 

Scenario D:  Possible asymptomatic UTI in 

pregnancy 

 

During a routine antenatal clinic an 18 year old girl 

who is 20 weeks pregnant produces a cloudy urine 

sample. She reports no symptoms or discomfort. 

The urine dipstick tests positive for nitrite but 

negative for leukocytes and protein. 

 

Scenario E: Catheterised asymptomatic 

elderly female 

 

You visit an 82 year old female in a nursing home. 

She is catheterised, afebrile and has no symptoms 

but the staff inform you that the urine is cloudy. 
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In October 2012, five GP practices were randomly selected from the sampling frame 

of all GP practices in the West Midlands, and invited to pilot the questionnaire. Two 

of these practices, consisting of 20 registered GPs participated in the pilot and the 

feedback received was used to improve the questionnaire.  

The final questionnaire was produced and hosted online using SelectSurvey.net 

(ClassApps, USA). No sample size calculation was undertaken as all eligible 

practices were invited to complete the survey via email during November 2012. One 

email reminder was sent out to practices in January 2013 and the survey closed in 

February 2013. Not all of the questions were answered by all the responding GPs. 

Therefore response proportions detailed in the following result sections are based on 

the number of responses (n) to the individual questions.  

 

4.3.3 Statistical analysis  

The survey data were collated using Microsoft Excel (Microsoft Redmond, WA). 

Categorical variables were summarised as counts and proportions with differences 

between male and female GPs tested using a two-proportion Z test with p< 0.05 

considered statistically significant.  All statistical analyses were performed using 

STATA v12 (StataCorp, USA). All free text comments were analysed by thematic 

analysis.   
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4.4 Results 

 

4.4.1 Survey response 

The response rate was 11.3% (409/3635 GPs) equivalent to a practice response rate 

of 26% (248/950). The age group distribution of respondents were 10% aged under 

35 years, 31% aged 35-45 years, 44% were aged 46-55 years and 16% were over 

55 years old. The gender distribution of the responders was similar, with 54% of the 

GPs being female (222/409), which compares to 44% of all GPs in the West 

Midlands being female. Eleven percent of GP responders had been qualified for less 

than 10 years; however, a majority (62%) of responders had been qualified for 20 or 

more years. The age range of the responders was comparable with the demographic 

profile of all GPs in the West Midlands (NHS Digital, 2014). 

 

4.4.2 Use of prescribing formularies 

Eighty-six percent (314/366) of respondents reported that they used antibiotic 

prescribing formularies to guide prescribing decisions. The majority of these 

respondents (73%; 269/366) stated that they used a formulary provided by their PCT; 

with 45 (12%) reporting using more than one formulary (Table 4.2). Thirty four 

percent (123/366) had reviewed compliance with the existing policy for the 

management of UTI in the last 12 months.  
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4.4.3 Influence of laboratory AMR results on antibiotic prescribing  

Two hundred and fifty (70%) respondents indicated that susceptibility results always 

or frequently influenced their antibiotic prescribing decisions for UTI. There was a 

significant difference (79% vs. 68%; p=0.016) between female and male GPs in the 

use of laboratory results to guide prescribing following treatment failure (Table 4.3). 

Only 6/362 (2%) GPs reported that laboratory results infrequently or never influenced 

their prescribing in the case of reported resistance to initial therapy.   

The proportion of GPs that indicated that laboratory reports always influenced their 

prescribing habits was slightly higher in the <35 years age group for each scenario, 

with 95% (35/37) of the <35 age group reporting that laboratory results always 

influenced their prescribing when resistance is reported by the laboratory to the initial 

agent (Table 4.4). 
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Table 4.2 Reported source of antibiotic prescribing formularies/ prescribing guidance 
used by survey respondents (N=352). 

 

Source of antibiotic formulary Number using source ǂ 

Primary Care Trust + 269 

British National Formulary 46 

Local area prescribing committee 17 

Practice formulary 13 

Local NHS Microbiology department 6 

NHS Hospital/Trust 4 

Health Protection Agency (now part of Public Health England)  3 

NICE 1 

+ On April 2013, PCTs were replaced by Clinical Commissioning Groups 

ǂ Note some respondents listed more than one source 
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Table 4.3 Influence of laboratory results on antibiotic prescribing decision (number answering category / number of respondents)  

*Significant statistical difference between male and female response (p=0.016) 

 

 

 

 

 

 

  Male  Female  

  Always Frequently Infrequently Never Always Frequently Infrequently Never 

General 
prescribing 

 

22% 
(37/167) 

46% 
(77/167) 

25%    
(41/167) 

7% 
(11/167) 

21% 
(40/190) 

51% 
(97/190) 

22%    
(42/190) 

6% 
(12/190) 

In the case of a 
treatment failure 

 

68% 
(114/168)* 

29% 
(49/168) 

2%       
(3/168) 

1%   
(1/168) 

79% 
(154/195)* 

19% 
(38/195) 

1%       
(2/195) 

1%    
(1/195) 

When resistance is 
reported to initial 
prescribed agent 

81% 
(136/168) 

16% 
(27/168) 

2%       
(4/168) 

1%   
(1/168) 

86% 
(168/195) 

13% 
(26/195) 

1%       
(1/195) 

0%    
(0/195) 
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Table 4.4 Number of GPs indicating that laboratory results always influence empirical prescribing by age group 

 

  Age of GP respondents 

Always influenced by 
laboratory results  

<35 years 35-45 years 46-55 years >55 years 

For general empirical 
prescribing: 

 28% (10/36)  21% (23/109)  21% (35/163)  18% (9/49) 

In the case of a 
treatment failure: 

 81% (30/37)  72% (79/110)  72% (119/165)  80% (40/50) 

When resistance is 
reported to initial 

prescribed agent:  

 95% (35/37)  84% (92/110)  82% (136/166)  82% (41/50) 
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4.4.4 Factors influencing GPs decision to send urine specimens for analysis 

Half (183/366) of the respondents reported that their surgery had a policy to inform 

on the criteria for taking urine samples to send for microbiological examination. There 

was considerable variation among respondents regarding the approximate proportion 

of clinical consultations for suspected UTI that resulted in a urine specimen being 

sent for diagnostic microbiology (median 50%, IQR 30% to 75%). Fourteen percent 

(50/365) of respondents suggested that they sampled 20% or less urines from their 

patients, whereas 82/365 (23%) of respondent GPs reported they would sample 

urine specimens from 80% or more of their patients (Table 4.5). 
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Table 4.5 Estimates by GPs of proportion of patients with clinically suspected UTI on 
whom the practitioner would submit specimens to the laboratory 

 

Range of urine 
specimens collected 
(%) 

No of GPs within 
range (n=365) 

Proportion of 
GPs within 
range 

0-9 14 4% 

10-19 36 10% 

20-29 40 11% 

30-39 57 16% 

40-49 78 21% 

50-59 1 0% 

60-69 23 6% 

70-79 34 9% 

80-89 25 7% 

90-100 57 16% 
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4.4.5 Clinical Scenarios 

In scenarios A, C and D (Table 4.6) the majority of GPs would submit a urine 

specimen for diagnostic microbiology (98%, 98% and 97% respectively), which is in-

line with Public Health England (PHE) national guidance (Public Health England, 

2014a). In scenario B, 40% of GPs indicated that they would submit a urine 

specimen for microbiological testing, even though PHE guidance recommends 

samples should not be sent for examination routinely for uncomplicated UTI in female 

adults <65 years of age. In scenario E, 38% of GPs reported that they would submit a 

urine sample, which is contrary to PHE guidance, which recommends that urine 

specimens should only be sent for examination in catheterized patients when 

features of systemic infection are observed (Public Health England, 2014a).  

A higher proportion of female GPs (46% compared with 36% males, p=0.057) 

indicated that they would collect a urine specimen in scenario B, probable 

uncomplicated UTI (Table 4.7). The majority of GPs follow PHE guidance (Public 

Health England, 2014a) by prescribing an antibiotic empirically for probable treatment 

failure (scenario A, 80%), suspected uncomplicated UTI (scenario B, 78%) and 

probable UTI in a male adult (scenario C, 98%) (Table 4.6). There was significant 

variation between male and female GPs for prescribing antibiotics in the suspected 

UTI in pregnancy scenario (scenario D) where 43% of female GPs would prescribe 

compared with 30% of male GPs(p=0.0123) (Table 4.8). There was also a difference 

in urine sampling between genders for the catheterised asymptomatic elderly female 

scenario (scenario E) with 32% of male GPs indicating they would submit a sample, 

compared with 43% of female GPs (p=0.034) (Table 4.9). 
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Table 4.6 Count and percentage of GPs requesting urine samples and prescribing 
antibiotics for each clinical scenario 

 

Clinical scenarios Number (%) of GPs 
requesting a specimen 

Number (%) of GPs 
that would prescribe 

an antibiotic 

A. Treatment failure in a young women 

 

344/352 (98%) 284/353 (80%) 

B. Probable uncomplicated UTI 

 

144/359 (40%) 270/345 (78%) 

C. Probable UTI in an adult male 

 

348/354 (98%) 344/352 (98%) 

D. Possible asymptomatic UTI in 

     pregnancy 

 

341/353 (97%) 129/352 (37%) 

E. Catheterised asymptomatic elderly 

 female 

134/354 (38%) 5/348 (1%) 
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One hundred and four (104/409, 25%) GPs entered additional free text comments. 

The main themes emerging from the analyses were the use of urinary dipstick test to 

investigate UTI in some of the scenarios presented, particularly scenario A (55/104, 

53%); the need to gather additional clinical information (15/104, 14%); inclination to 

send urine specimens by default (14/104, 13%), and influence of the timing of the 

consultation in determining whether to take a specimen due to specimen transport 

issues (8/104, 8%).      
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Table 4.7 Responses for probable uncomplicated UTI, Clinical Scenario B 

 

 

 

 

 

 

 

 

 

 

Scenario B. A 43 year old woman complains of pain passing urine and frequency. She feels well otherwise 
and has not previously been treated for a UTI. 

  Male Female Difference in 
‘Yes’ returns 

(male/female) 

  Yes No Response 
Total 

Yes No Response 
Total 

 

Would you 
collect a urine 
sample for 
microbiological 
examination? 

36%    
(59) 

64%    
(105) 

164 46%   
(86) 

54% 
(101) 

187 z= -1.901 

(p= 0.0573) 

Would you 

prescribe an 
antibiotic? 

79%   

(127) 

21%      

(34) 

161 77% 

(143) 

22%    

(42) 

185 z= 0.3551 

(p= 0.7225) 
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Table 4.8 Responses for possible UTI in pregnancy scenario, Clinical Scenario D  

 

 

 

 

 

 

 

 

 

 

Scenario D. During a routine antenatal clinic an 18 year old girl who is 20 weeks pregnant 
produces a cloudy urine sample. She reports no symptoms or discomfort. The urine dipstick 
tests positive for nitrite but negative for leukocytes and protein. 

 

  Male Female Difference in 
‘Yes’ returns 

(male/female) 

  Yes No Response 
Total 

Yes No Response 
Total 

 

Would you 
collect a urine 
sample for 
microbiological 
examination? 

94%   
(155) 

6%        
(10) 

165 99% 
(187) 

1%      
(2) 

189 z = -2.5945 

(p = 0.0095) 

Would you 

prescribe an 
antibiotic? 

30%    

(49) 

70%    

(116) 

165 43%   

(80) 

57% 

(108) 

188 z = -2.5027 

(p = 0.0123) 
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Table 4.9 Responses for catheterised asymptomatic elderly female, Clinical Scenario E 

 

 

 

 

 

 

 

 

Scenario E. You visit an 82 year old female in a nursing home. She is catheterised, afebrile 

and has no symptoms but the staff inform you that the urine is cloudy. 

 

  Male Female Difference in 
‘Yes’ returns 

(male/female) 

  Yes No Response 
Total 

Yes No Response 
Total 

 

Would you 
collect a urine 
sample for 

microbiological 
examination? 

32%    
(53) 

68%    
(113) 

166 43%   
(81) 

57% 
(108) 

189 z = -2.1196 

(p = 0.0340) 

Would you 

prescribe an 
antibiotic? 

2%        

(3) 

98%     

(161) 

164 1%      

(2) 

99% 

(183) 

185 z = 0.5870 

(p = 0.5572) 
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4.5 Discussion  

This study examined the role of specific organisational and behavioral factors in the 

observed variation of urine sampling for diagnostic microbiology, and antibiotic 

prescribing for patients with UTIs among GPs in the West Midlands region of 

England.  Although the response overall rate was low, the responders were 

representative in terms of age and gender to the GP population in the West 

Midlands.   

The response rate of 11.3% of West Midland GPs, covering 26% of practices was 

similar to a Welsh study (16% of GPs covering 20% of practices); although the Welsh 

approach involved recruiting targeted practices, offering financial incentives and 

following-up with phone calls (Hillier et al, 2006a).  

 

4.5.1 Specimen collection 

A commonly cited issue in interpreting routinely reported AMR data from community 

settings is sampling bias (McNulty et al., 2006a), which may lead to observed levels 

of resistance that overestimate the burden of AMR in the general population. Only 

half of the GPs who responded reported having a practice policy to guide clinical 

sampling for diagnostic microbiology. Ideally, surveillance systems for UTI and AMR 

require the standardised submission of urine specimens by GP practices to 

laboratories for microbiological analysis (McNulty et al, 2004). National guidelines do 

provide recommendations on when to submit urine for analysis (Public Health 

England, 2014b); however, it appears that these are not being universally adopted, 
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with a study in the South West of England in 2004 reporting 10-fold differences in 

urine submission rates between general practices (McNulty et al, 2004).  

As the volume of urine samples makes up a large proportion of a laboratory’s 

workload, laboratories have a role, alongside commissioning bodies, in influencing 

the specimen submission policies for primary care healthcare providers (Morency-

Potvin et al., 2017). Testing methods, and their associated costs, vary between 

laboratories (as described in Chapter 2), which may introduce bespoke 

commissioning of services and therefore influence submission protocols. Projected 

laboratory cost-savings introduced following a major review of NHS pathology 

services may dictate the services that local laboratories are able to offer in the near 

future, and thereby have an impact on community sampling policies (Department of 

Health, 2008).      

In the present survey there was considerable variation between GPs in the estimated 

proportion of clinical consultations for suspected UTI in which a urine specimen is 

sent for diagnostic microbiology. However it was found that by using scenario 

questions, the response was broadly consistent for the scenarios involving: treatment 

failure, probable UTI in an adult male and possible UTI in pregnancy, and therefore 

using clinical scenarios may provide a more reliable insight into GP sampling practice 

than relying on a general view of GPs prescribing habits (Hillier et al, 2006a).    

A survey of females in England in 2014 reported that 76% of those reporting 

symptoms of UTI had urine samples taken (with 52% receiving immediate local 

testing results), and 25% reporting that their urine was sent to the laboratory (Butler 

et al., 2015).  The present survey showed that 40% of GPs would submit a sample 
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for diagnosis of the most commonly encountered presentation of uncomplicated 

UTIs, although PHE guidance recommends not sending urine samples for this 

presentation (Public Health England, 2014b). These high levels of sampling and local 

testing are also contrary to evidence of poor negative predictive value from dipstick 

analysis (Little et al., 2010). If the finding of 40% of urines being sent to laboratories 

from uncomplicated UTI is representative of GPs in the West Midlands then this type 

of sampling would be responsible for a considerable proportion of the 500,000 / year 

urine specimens sent for microbiological examination. This is a similar finding to a 

study in Wales in 2006 that found 56% of randomly selected GPs would submit a 

urine specimen for probable uncomplicated UTI (Hillier et al., 2006b). Also PHE 

guidance for management of UTIs in catheterised patients recommends that a urine 

sample should only be sent if there are signs of systemic infection (Public Health 

England, 2014a), however 38% of respondents would send a urine specimen in the 

catheterised asymptomatic elderly female scenario (Table 4.6). In the thematic 

analysis of free-text comments, 14 of the 104 responders in this section indicated 

that they would send urine specimens for all suspected urinary infections.  

A study of diagnosis of UTI in Germany in 2004 found that GPs clinical diagnostic 

accuracy of UTI was low, even with the use of dipstick indicators, suggesting that 

over-treatment, with inappropriate use of antibiotics, would be avoided by taking 

more specimens for culture; however the authors do acknowledge the increased 

costs of this approach (Hummers-Pradier et al, 2005). It has also been suggested 

that increased use of diagnostic services is more successful than targeted 

antimicrobial stewardship interventions in improving appropriate prescribing in the 

community (van Buul et al., 2015); however with the cost of empirical treatment often 
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being less than the cost of the microbiological analysis, not taking specimens can 

save valuable health resources (McNulty et al., 2006a).      

4.5.2 Prescribing 

The majority of respondents in the present survey used local prescribing formularies 

produced by their PCTs. As PCTs were abolished at the end of March 2013 and 

replaced with Clinical Commissioning Groups (CCGs), it is not known whether these 

formularies have been updated and are still being utilised. In November 2012 a 

national antimicrobial stewardship (AMS) toolkit was launched for primary care called 

Treat Antibiotics Responsibly, Guidance, Education, Tools (TARGET), which 

provides prescribing guidance, access to prescribing surveillance data and audit 

tools (Moore and McNulty, 2012). A study in 2016 on behalf of the English 

Surveillance Programme for Antimicrobial Utilisation and Resistance (ESPAUR) 

evaluated the uptake of the TARGET AMS toolkit by CCGs and found that 60% of 

the 82 responding CCGs had reviewed the toolkit; however only 13% had AMR 

action plans to implement the recommendations. The authors reported that in CCGs 

with a dedicated antimicrobial pharmacist leading the implementation of the toolkit, 

more time was dedicated to antimicrobial stewardship activities; however only 5% of 

CCGs had an antimicrobial pharmacist in post (Ashiru-Oredope et al., 2016).    

In the present study a small proportion of respondents (14%) indicated that they did 

not use a prescribing formulary to guide treatment decisions. A study in Canada 

reviewed provincial prescribing formularies during 2010 and compared these to 

actual prescribing practice. This study reported a wide variation in prescribing rates, 

but found no significant correlation between prescribing rates for provinces that had 

strictly-regulated formularies and those that had more flexible approaches. The 
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authors suggested that educational programmes and treatment guidance had a 

greater effect on prescribing habits (Glass-Kaastra et al., 2014).    

From the study described in this chapter, it is not possible to ascertain whether the 

non-utilisation of an antibiotic formulary by GPs results in inappropriate prescribing. 

Therefore it is recommended that use of formularies is routinely assessed through 

the regular auditing and feedback of individual prescribing patterns, combined with 

the implementation of other interventions to address inappropriate prescribing as part 

of a wider antimicrobial stewardship programme.  

Only six GPs cited microbiology laboratories and three GPs cited the Health 

Protection Agency (HPA, to become part of PHE in 2013) as the source of their 

prescribing formularies. Microbiologists can play an important role in antimicrobial 

stewardship by providing local resistance profiles and actively participating in CCG 

stewardship committees (Morency-Potvin et al, 2017). It is likely that the PCTs based 

their formularies on national guidance or have input from local laboratories; however 

microbiologists and pharmacists wishing to influence local prescribing practice will 

need to engage with the new commissioning bodies to ensure the production of 

evidence based guidance. A number of studies have found that the selection of 

antibiotics reported on microbiology forms and interpretive comments, influence 

prescribing decisions. A study in the South West of England found that cephalexin 

prescribing for UTI increased when this was included on the laboratory report and co-

amoxiclav prescribing decreased when this was removed from the report (McNulty et 

al., 2011). A recent Australian study found that withholding antibiotic results on 

microbiology forms for bacteria suspected of colonisation rather than causing 

infection reduces antibiotic use (Papanicolas et al., 2017).       
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In the present survey, seventy percent of GP responders stated that laboratory 

susceptibility results frequently or always influenced their prescribing, with the 

proportion being slightly higher for female GPs and GPs under the age of 35. 

However, based on their response to the scenario questions, most GPs would 

prescribe empirically, suggesting that previous laboratory results may influence their 

choice of empirical agents.  

The symptoms of UTI are often distressing to the patient, requiring immediate 

empirical therapy (Gupta et al., 2001b). In the clinical scenarios most GPs  would 

prescribe an antibiotic empirically for scenarios A, B and C (Table 4.6), which is in-

line with national PHE guidance (Public Health England, 2014b); although finding that 

a fifth of GP respondents would not prescribe an antibiotic in the treatment failure 

scenario (scenario A) given the presence of worsening symptoms was unexpected. 

National guidance for the management of UTI in the community recommends that 

antibiotic treatment should not be given for suspected UTI in pregnancy unless 

bacteruria is confirmed by laboratory culture (Public Health England, 2014b); 

although the survey reported in this chapter found over a third of GP respondents do 

not follow this guidance and would prescribe antibiotics empirically in these cases.   

 

4.5.3 Gender of prescriber 

There was a slightly higher proportion of female GP responders (54%) than male 

GPs in this survey, which is a higher proportion of female GPs than that found in all 

West Midland GPs (44%), suggesting that response rate was higher amongst this 

gender group. The survey did show that the gender of the GP was a factor in the 
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responses to some of the survey questions, with a greater proportion of female GPs 

reporting being influenced by laboratory results, taking specimens and prescribing in 

scenarios D and E.  

A possible explanation for this variation may be differences in patient empathy with 

particular patients groups or difference in the desire to meet patient expectations 

(Coenen et al., 2006). A large English study in 2009 found a higher proportion of 

male GPs prescribing antibiotics in the community, and suggested male GPs 

perceive a greater pressure from patients to prescribe (Wang et al., 2009b). A 

Belgium study reviewing prescribing in 2002-2009 reported that the gender of the 

prescriber may influence the type of antibiotic given, as the authors found male 

prescribers were more likely to prescribe broader spectrum antibiotics (Blommaert et 

al., 2013). It is therefore suggested that further behavioural studies are required to 

better understand variation in prescribing between genders and help inform the 

design of interventions aimed at changing prescribing habits. Another area for further 

study, which was not possible to investigate in the survey reported in this chapter, 

was gender difference in patients receiving antibiotics. A study in Germany in 2016 

reported that females between 16 and 34 years old were prescribed 36% more 

antibiotics than males, and this increased to 40% more for females between 35 and 

54 years old (Schroder et al., 2016)   

 

4.5.4 Primary care guidance 

The results of this survey indicate GP non-compliance with guidance for certain 

clinical scenarios and a degree of inappropriate microbiological testing.  A German 
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study in 2005 concluded that most patients in their study were not treated according 

to current guidelines and for half the patients the decision to prescribe an antibiotic or 

the antibiotic prescribed was inappropriate, with a quarter of the patients having a 

bacterial infection that was resistant to the prescribed antibiotic (Hummers-Pradier et 

al, 2005).  

It is plausible that this non-compliance with the guidance may be driven by ambiguity 

in the advice provided by existing national guidance. The National Institute for Health 

and Care Excellence (NICE) Clinical Knowledge Summaries advise that a urine 

sample should be sent to the laboratory for all women with suspected UTI  

associated with visible or non-visible haematuria (NICE guidelines, 2015); however 

PHE guidance advises that urine samples should not be routinely submitted from 

women <65 of age, and if there are signs of UTI, including haematuria, then only 

empirical treatment should be given (Public Health England, 2014a). Both guidelines 

need to be reviewed so that unambiguous evidence based guidance is made 

available to GPs.   

Prescribing in general practice is not only influenced by the availability of national or 

local guidance but also factors such as prescriber’s gender, socio-economic 

deprivation, geographical area and clinical autonomy (Mason, 2008;Wang et al, 

2009a). Prescribing in secondary care occurs in a much more controlled 

environment, with doctors working in teams which include pharmacists and infection 

control physicians. Prescribing by individual doctors in secondary care is often the 

subject of frequent reviews and may be changed by other members of the healthcare 

team. GPs have considerable clinical autonomy in prescribing and have much less 

diagnostic support; however community prescribers are increasingly aware of 
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national / local guidance and the monitoring of both prescribing habits and adherence 

to guidance (Mason, 2008).   

Whilst acknowledging the importance of autonomy in clinical decision making, there 

is value in developing and utilising standardised, evidence-based sampling policies to 

ensure that diagnostic and treatment decisions are both clinically effective and cost-

effective (McNulty et al, 2004).  Increasingly limited healthcare resources make a 

compelling case for standardising sampling policies, but this will only be achieved 

with consensus between microbiologists, community clinicians and policy makers.   

 

4.5.5 Study limitations and next steps 

There were some limitations to the present study. The low response rate raises the 

possibility of non-response bias and its potential effect on the external validity of the 

study. It is believed that any effect on these estimates and the generalisability of 

these findings is low given that the demographic profile of our respondents is similar 

to that of all GPs in the West Midlands. In the free text comments, three GP 

respondents indicated that they may delay prescribing in some of the clinical 

scenarios; however the ‘yes’ or ‘no’ response options to these questions prevented 

the capture of this information.   

Our analyses and interpretation of the free text comments may not be representative 

of the cohort of respondents as the number of comments was relatively small. 

However emerging themes from the analysis of these comments suggests that some 

GPs may be more inclined to send urine specimens by default. This needs to be 
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explored further using alternative qualitative research methods such as focus groups 

of GPs.  

The next steps include a survey of CCGs to determine whether antibiotic prescribing 

formularies developed by the PCTs are still being used and updated since the 

abolition of PCTs. We are also currently exploring the use of mobile device 

technologies to deliver timely localised AMR surveillance data and national 

prescribing guidance directly to clinicians in community settings and healthcare 

commissioners to support the management of UTI.  

 

4.6 Summary 

 

Understanding the knowledge and attitude of GPs towards the management of UTI 

within a healthcare region will help understand bias within routine surveillance data 

and aid the interpretation of AMR in the community. This survey showed that national 

guidelines for the management of UTI are not followed consistently by GPs in the 

West Midlands. It is reasonable to assume that specimens will only be taken in 

primary care in treatment failures or in more complicated etiologies, leading to a 

sampling bias within routine surveillance systems; however this survey found that 

half of the responders did not have sampling policies and the answers to clinical 

scenario questions suggest a significant proportion of urines are sent for 

microbiological examination from the most common forms of UTI. The survey also 

found significant differences between male and female GPs in both the management 
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of UTI and decisions to prescribe, which may inform those designing local antibiotic 

stewardship interventions.      

The delivery of clinical care of consistent high quality will benefit from the 

implementation of antimicrobial stewardship programmes in community settings that 

include prescribing formularies based on local AMR surveillance and unambiguous 

national guidance on the management of infections. Most prescribers in the West 

Midlands used formularies developed by their PCT. With the reduction in the number 

of community pharmacists and the formation of new commissioning bodies, on-going 

audit and feedback are required to ensure consistent policies are provided to local 

healthcare providers within the region. Evidence-based prescribing formularies and 

policies to guide clinical specimen sampling will also facilitate the cost-effective use 

of available laboratory, and other finite healthcare resources.  
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5 Surveillance of the antibiotic susceptibility of 

bacteria found in the urinary tract in the West 

Midlands over a four year period  
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5.1 Introduction 

 

In 2002 the Chief Medical Officer (CMO) for England published a strategy document 

for combating infectious disease, which concluded that the surveillance systems 

available at the time were not adequate to protect public health as they were not able 

to determine the size and nature of the threat from infectious disease (Department of 

Health, 2002). At this time, infectious disease surveillance systems were focused on 

a select number of diseases and tended to be influenced by media coverage or 

political interventions (Boyce et al., 2009). Many of the systems in operation were 

focused on regional or national trends in infections and were often not adequate to 

detect local outbreaks of disease (Huang et al., 2010). In 2013 the current CMO for 

England published a five year AMR strategy and action plan calling for strengthened 

AMR surveillance, and a new focus on the Gram-negative bacteria that were linked 

with outbreaks of MDR infections occurring at the time. The strategy suggested key 

drug bug combinations that should be monitored in the UK (Table 5.1) (Department 

of Health, 2013).     

As discussed in Chapter 3 (section 3.1.1), to address some of these gaps in AMR 

surveillance in England, particularly the surveillance of resistant bacteria in the 

community, Public Health England (PHE) implemented the AmSurv system to 

facilitate collection of all AMR reports from diagnostic laboratories in England. The 

development of a web-enabled reporting tool (AmWeb) in 2012 to allow laboratories 

and infection prevention and control teams timely access to AMR surveillance data 

was described in Chapter 3 (section 3.3.4). 
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Table 5.1 Antibiotic and bacteria combinations recommended for monitoring in the 
UK (Department of Health, 2013). 

 

Multi-Drug Resistant Bacteria  Metric  

Klebsiella spp - carbapenem  % non-susceptible to imipenem 
and/or meropenem  

E. coli - carbapenem  % non-susceptible to imipenem 
and/or meropenem  

E. coli - cephalosporin  % non-susceptible to cefotaxime 
and/or ceftazidime  

E. coli – fluoroquinolone  % non-susceptible to ciprofloxacin  

Pseudomonas - carbapenem  % non-susceptible to imipenem 
and/or meropenem  

N. gonorrhoeae – ceftriaxone  % non-susceptible  

Klebsiella spp - cephalosporin  % non-susceptible to cefotaxime 
and/or ceftazidime  

Pseudomonas – cephalosporin  % non-susceptible to ceftazidime  

E. coli – gentamicin  % non-susceptible  

S. pneumoniae – penicillin  % non-susceptible  
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A key component in the response to the threats of increasing resistance amongst 

Gram-negative bacteria, and in particular resistance to third-generation 

cephalosporins and carbapenems in Escherichia coli and Klebsiella pneumoniae, is 

the routine reporting and monitoring of surveillance information on resistance 

patterns of isolates from various settings and specimens including those from urine 

samples.  

International travel and population migration has a significant role in the spread of 

AMR (Hawkey, 2015). Computer software is now available to categorize populations 

into cultural, ethnic and linguistic (CEL) groups based on family names (Webber, 

2007). This type of categorization has been used to associate lineage of bacterial 

strains with different population groups from around the world (Evans et al., 2010). 

Origins software (Experian, Nottingham, UK) is used in the study reported in this 

chapter to examine the association between CEL and multidrug resistant Gram-

negative bacteria reported by laboratories in the West Midlands.          

In the following sections in this chapter, the results from an analysis of routine 

laboratory-based surveillance data on bacteria isolated form urine specimens, 

collated from the West Midland laboratories over a four-year period, are presented.  

 

5.2 Objective 

To describe baseline antibiotic resistance levels among E. coli, K. pneumoniae and 

Pseudomonas aeruginosa isolated from urine samples submitted to all laboratories in 

the West Midlands, in order to support the monitoring of key organism / antibiotic 
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combinations as described in the UK Five Year AMR Strategy and to inform ongoing 

public health action.   

 

5.3 Methods 

 

5.3.1 Population and data sources 

The West Midlands population has been described previously in Chapter 1, section 

1.7. During the period of this study there were 15 diagnostic microbiology 

laboratories in the West Midlands serving both community-based centres and 

hospitals. The daily average of occupied hospital beds in the West Midlands during 

2013 was 10,626 (NHS England). AMR surveillance data are captured via the 

AmSurv system, which collects all laboratory identification and antimicrobial 

susceptibility testing data directly from each laboratory information system. AmSurv 

designates all specimens sent from general practice surgeries and primary care 

clinics as community requests, and distinguishes these from specimens requested in 

hospitals by collecting data on the hospital sites for inpatients and requesting GP for 

community specimens. Nine of the West Midland laboratories were reporting data 

regularly to AmSurv at the start of our study in 2010, and complete coverage of all 15 

laboratories was achieved in December 2012 (Figure 3.5).  

It is requested that all Gram-negative bacteria suspected of producing a 

carbapenemase by diagnostic microbiology laboratories in England be referred to the 

national PHE Antimicrobial Resistance and Healthcare Associated Infections 

(AMRHAI) Reference Unit for molecular confirmation and further characterisation 
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(Public Health England, 2014a). The AMRHAI Reference Unit provided this study 

with molecular carbapenemase detection test results for all isolates of E. coli, 

Klebsiella spp. or Pseudomonas spp. referred for confirmation of suspected 

carbapenemase production by West Midland laboratories during the four-year period 

(2010-2013).      

 

5.3.2 Data extraction  

The processing of laboratory files in the AmSurv database and de-duplication 

routines are described in Chapter 3 (section 3.3.3). Data were extracted from the 

AmSurv database using a combination of Microsoft SQL Server Management Studio 

and the AmWeb application (Chapter 3, section 3.3.4). A 14-day repeat exclusion 

rule was applied to the extracted data and to mitigate for selective testing, only 

records from laboratories testing ≥70% of each bacterial species against a particular 

antibiotic or antibiotic group were included (Table 5.2). Non-susceptibility to an 

antibiotic was defined as test results with a ‘resistant’ (R) or ‘intermediate’ (I) 

designation.  

The bacteria and antibiotic combinations for clinical isolates recommended for 

monitoring in the UK Five Year AMR Strategy are listed in Table 5.1. Data were 

extracted based on these recommendations for the period 2010 to 2013, with the 

exception that Klebsiella spp. was replaced with K. pneumoniae, as recommended in 

a review of the strategy by the UK government Advisory Committee on Antimicrobial 

Resistance and Healthcare Associated Infections (ARHAI, 2014); and a third-

generation cephalosporin group was added, as initial data profiling showed that many 
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West Midlands laboratories follow UK guidance for detecting ESBLs, by testing 

cefpodoxime rather than cefotaxime for community isolates (Health Protection 

Agency, 2008).  
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Table 5.2 Number of West Midland laboratories consistently testing < 70% of isolates 
from urine specimens against specific antibiotics in 2010-2013 (n=15). 

 

Organism  Antibiotic Number of laboratories 
testing <70% of isolates 

E. coli Third-generation 
cephalosporin 

2 

  Ciprofloxacin 2 

  Gentamicin 2 

  Meropenem/imipenem 7 

K. 
pneumoniae 

Third-generation 
cephalosporin 

2 

  Meropenem/imipenem 2 

P. aeruginosa Third-generation 
cephalosporin 

1 

  Meropenem/imipenem 3 
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Denominator data were based on laboratory reports of the total number of urine 

specimens received during the study period from hospital and community settings. 

Information on the antimicrobial susceptibility testing methods employed in each 

laboratory was also obtained.  

 

5.3.3 Determination of global origin and statistical methods 

The proportions of West Midland urine specimens processed by laboratories and 

yielding E. coli, K. pneumoniae or P. aeruginosa were calculated by year. This 

calculation utilised an adjusted denominator that took into account the length of time 

that the laboratory had contributed to AmSurv during the qualifying year. Annual non-

susceptibility proportions of each bacteria / antibiotic combination were calculated 

with trend analysis undertaken using chi-square statistic for trend to determine 

whether there was a statistically significant linear trend (p<0.05) over the study 

period. All statistical analysis was performed using STATA v12 (StataCorp, USA). 

Origins software (Experian, Nottingham, UK) was used to determine the likely global 

origin of the names of patients with confirmed carbapenemase-producing isolates of 

E. coli, Klebsiella spp. or Pseudomonas spp.. Names were classified as belonging to 

one of 257 Cultural, Ethnic and Linguistic (CEL) codes representing the most likely 

cultural origin of the person’s name. The CEL codes were grouped into international 

geographies used previously in this context.(Evans et al, 2010;Wickramasinghe et 

al., 2012)   
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5.4 Results 

 

5.4.1 Routine surveillance data 

During the four-year study period (2010-2013) there were 431,461 reports for E. coli, 

23,786 for K. pneumoniae, and 6,985 for P. aeruginosa from urine specimens 

collected by laboratories in the West Midlands. These represented 61%, 3% and 1% 

respectively of the total isolates obtained from urine specimens sent from hospital 

patients and the community during the period. 

The proportion of E. coli non-susceptible to antibiotics recommended for monitoring 

in the UK five year AMR Strategy is shown in Figure 5.1. During the period, there was 

a rising trend in reported non-susceptibility to third-generation cephalosporins for E. 

coli isolated from community and hospital sources, from 4.5% and 6.3%, respectively 

in 2010, to 5.5% and 7.7% in 2013 (P for trend < 0.001). Similarly, a rising trend was 

observed for non-susceptibility to ciprofloxacin in E. coli for both community and 

hospital isolates, from 9.4% and 13.5%, respectively in 2010, to 13.1% and 17.1% in 

2013 (P < 0.01).  

Only a small proportion of E. coli isolates were non-susceptible to meropenem and/or 

imipenem for community and hospital sources and this remained very low during the 

study period with no evidence of linear trend (P=0.09 and P=0.13 respectively). In E. 

coli, non-susceptibility to gentamicin fell between 2010 and 2011, from around 10% 

to 8% for hospital and 7% to 5% for community submitted specimens, and then 

remained stable for the remaining period (Figure 5.1). 
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During the study period, a rising trend in the proportion of K. pneumoniae non-

susceptible to third-generation cephalosporins was also observed for both community 

and hospital isolates, from 3.8% and 8.5% respectively in 2010, to 10.1% and 15.9% 

in 2013 (P < 0.001). K. pneumoniae non-susceptibility to meropenem / imipenem 

remained very low from community and hospital sources, with no evidence of linear 

trend (P=0.12 and P=0.44 respectively) (Figure 5.2). 

The proportion of P. aeruginosa exhibiting non-susceptibility to 

meropenem/imipenem fluctuated considerably, with values between 4.6% and 

11.3%. Interestingly there appeared to be a mirroring of trend lines for non-

susceptibility to meropenem and/or imipenem and ceftazidime for P. aeruginosa, 

which demonstrated significant correlation (P = 0.0013), with the ceftazidime range 

being 4.6% to 12.5% (Figure 5.3).      

Among all isolates from urine specimens, Pseudomonas spp. had the highest 

number of reported non-susceptibility to carbapenems (n=786), followed by E. coli 

(n=254). The proportion non-susceptibility to carbapenems has remained relatively 

stable for target bacterial species during the study period. The only species with a 

marked difference in the proportion non-susceptible to carbapenems was 

Acinetobacter spp. with 41.12% non-susceptible in 2010 and non-susceptibility of 

21.24%, 25.95% and 24.47% in the following 3 years (Table 5.3). 
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Figure 5.1 Non-susceptibility (%) of E. coli from West Midlands urine specimens to 
(a) third-generation cephalosporins, (b) meropenem and/or imipenem, c) gentamicin  
and (d) ciprofloxacin. Hospital source, dotted line; community source, solid line.              
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Figure 5.2 Non-susceptibility (%) of K. pneumoniae from West Midlands urine 
specimens to (a) third-generation cephalosporins, and (b) meropenem / imipenem. 
Hospital source, dotted line; community source, solid line. 
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Figure 5.3 Non-susceptibility (%) of P. aeruginosa from West Midlands urine specimens to ceftazidime (dotted line) and meropenem 
/ imipenem (solid line). 
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Table 5.3 Number of study target bacteria, (plus all other isolates below dotted-line) from urine specimens (% of total) that are non-
susceptible to any carbapenem antibiotic, West Midlands, 2010 to 2013 

 

Organism 2010 2011 2012 2013 Total 

Pseudomonas spp. 156 (6.18) 163 (3.57) 192 (3.38) 275 (4.22) 786 (4.08) 

E. coli 59 (0.10) 58 (0.06) 56 (0.05) 81 (0.05) 254 (0.06) 

K. pneumoniae 15 (0.40) 15 (0.32) 16 (0.22) 30 (0.37) 76 (0.32) 

Acinetobacter spp. 44 (41.12) 24 (21.24) 48 (25.95) 46 (24.47) 162 (27.32) 

Coliform 5 (0.37) 13 (0.13) 25 (0.14) 44 (0.19) 87 (0.17) 

S. maltophilia 7 (26.92) 11 (18.03) 14 (24.56) 16 (26.23) 48 (23.41) 

Klebsiella (other) 24 (1.42) 7 (0.21) 0 (0.00) 7 (0.23) 38 (0.34) 

Serratia spp. 11 (3.28) 8 (1.65) 6 (1.17) 8 (1.44) 33 (1.75) 

C. freundii 6 (1.84) 1 (0.22) 7 (1.17) 7 (1.24) 21 (1.08) 

All bacteria 392 (0.52) 351 (0.28) 445 (0.26) 583 (0.28) 1771 31) 
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5.4.2 Reference laboratory (AMRHAI) data 

In this section results from the analysis of the data retrieved from the AMRHAI 

Reference Unit database is reported.    

5.4.2.1 All referred bacterial isolates 

In 2010 - 2013, 222 E. coli or Klebsiella spp. bacteria, isolated from any specimen 

type, were referred to AMRHAI from West Midland laboratories for confirmation of 

resistance and full characterisation of the bacteria (Table 5.4). The majority of these 

bacteria sent to the PHE AMRHAI reference unit were from urine specimens (45%), 

with 28 (13%) being recorded as unknown specimen types (Table 5.4).  

There were 112 E. coli and 110 Klebsiella spp referred from all specimen types; with 

9 (8%) and 41 (37%) respectively being confirmed as carbapenemase producers. 

The overall proportion of confirmed carbapenemase producers from E. coli or K. 

pneumoniae referred from all specimen types was 23% (50/222) (Table 5.4).  

The specimen types designated as being of rectal or faecal origin are likely to be 

taken from patients as part of active screening programmes for MDR Gram-negative 

bacteria, rather than being taken from patients with clinical infections (Public Health 

England, 2014b). There were 36 E. coli or Klebsiella spp. sent to the AMRHAI 

reference unit from faecal or rectal specimens, which represented 16% of the total for 

these bacteria. The majority (25 of 36, 70%) of these bacteria referred from rectal or 

faecal specimens were sent in 2010-2011.  

5.4.2.2 Isolates referred to AMRHAI from urine specimens 

From all bacteria sent to AMRHAI Reference Unit in the study period for investigation 

of resistance mechanisms from both hospital and community settings, 174 isolates of 
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E. coli, Klebsiella spp. or Pseudomonas spp. were referred from urine specimens. 

The isolates were received from 147 unique patients; isolates from 28 patients (19%) 

were confirmed as carbapenemase-producing bacteria (n=11 K. pneumoniae, n=10 

Klebsiella sp., n=4 P. aeruginosa and n=3 E. coli), with 16 (57%) identified as 

producing New Delhi metallo-beta-lactamase (NDM) (Table 5.5). Isolates from the 

remaining 119 patients did not have carbapenemase production confirmed. 

Of the 119 bacterial isolates that were not confirmed as producing a carbapanemase, 

50 (42%) of were determined as susceptible to carbapenems by BSAC MIC clinical 

breakpoints. The remainder were determined as non-susceptible to at least one 

carbapenem, but not producing a carbapenemase, and included 19 E. coli (all 

resistant to ertapenem, but susceptible to meropenem and imipenem), 13 Klebsiella 

spp. (all resistant to ertapenem, but susceptible to meropenem and imipenem) and 

37 Pseudomonas spp. (non-susceptible to meropenem and/or imipenem). 
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Table 5.4 Number of requests (de-duplicated by specimen and patient) received by the AMRHAI reference laboratory from the West 
Midlands by specimen type 2010-2013 (AMRHAI laboratory information system data). 

 

 

 

  
                               Bacteria received by the AMRHAI unit (confirmed carbapenemase producers) 

           2010         2011       2012         2013 2010-2013 

  E. coli Klebsiella spp. E. coli Klebsiella spp. E. coli Klebsiella spp. E. coli Klebsiella spp.   

Urines 14 (1) 32 (14) 8 (0) 7 (1) 16 (0) 6 (1) 8 (2) 11 (5) 102 (24) 

Not-stated  4 (0) 9 (3) 1 (0) 0 (0) 0 (0) 0 (0) 9 (0) 5 (2) 28 (5) 

Faecal specimens 10 (1) 4 (0) 10 (0) 1 (1) 4 (0) 0 (0) 1 (0)  1 (1) 31 (3) 

Blood culture 3 (2) 0 (0) 5 (0) 1 (0) 2 (0) 1 (1) 2 (0) 4 (2) 18 (5) 

Swab (general)  3 (0) 1 (0) 1 (0) 2 (0) 4 (0) 0 (0) 2 (2) 4 (3) 17 (5) 

Sputum 0 (0) 1 (0) 0 (0) 2 (2) 0 (0) 0 (0) 0 (0) 4 (2) 7 (4) 

Umbilicus 1 (0) 5 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 7 (0) 

Rectal swab 0 (0) 0 (0) 0 (0) 5 (0) 0 (0) 0 (0) 0 (0) 0 (0) 5 (0) 

Fluid 0 (0) 1 (0) 1 (0) 1 (1) 0 (0) 0 (0) 0 (0) 1 (1) 4 (2) 

Peritoneum 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 0 (0) 1 (1) 

Placenta 0 (0) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (0) 

Other  0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 1 (1) 

Total 35 (4) 53 (17) 28 (0) 19 (5) 26 (0) 7 (2) 23 (5) 31 (17) 222 (50) 
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Table 5.5 Number of isolates of E. coli, Klebsiella spp. and Pseudomonas spp. 
received (and carbapenemase confirmations) by the PHE AMRHAI Reference Unit 
from urine specimens received by West Midland laboratories, 2010-2013. 

 

  E. coli Klebsiella spp. Pseudomonas spp. 

2010 14 (1 NDM) 32 (11 NDM, 3 KPC) 18 (0) 

2011 8 (0) 7 (1 NDM) 13 (2 VIM) 

2012 16 (0) 6 (1 KPC) 6 (1 VIM) 

2013 8 (1 KPC, 1 OXA-48) 11 (3 NDM, 2 OXA-48) 8 (1 VIM) 
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5.4.3 Assigning cultural, ethnic and linguistic origin 

The names of patients with confirmed carbapenemase-producing bacteria isolated 

from urine specimens (Table 5.5) were categorised as being of Middle East/South 

Asia (n = 6) and Europe (n = 22) cultural, ethnic and linguistic (CEL) origin. Fourteen 

of the 16 (88%) patients with NDM carbapenemase-producing bacteria were grouped 

as having European CEL origin. The carbapenemase-producing isolates from the six 

names categorised as of Middle East/South Asia origin were 3 VIMs, 2 NDMs and 1 

OXA-48. 

 

5.4.4 Proportion of urines reported with a bacterial isolate 

In 2010 to 2013, the annual number of urine samples submitted for microbiological 

examination in the West Midlands remained relatively constant at around 1.1 million, 

with approximately 55% of these being received from the community (Figure 5.4).   

The proportion of E. coli isolates (15%) from urine specimens submitted from 

community settings was higher than those from hospital settings (6%) (Figure 5.4). 

The proportion of K. pneumoniae from community isolates was also slightly higher 

than those isolated from hospital (0.7% and 0.5% respectively), with the proportion of 

P. aeruginosa similar from both settings during the study period (0.2%). The total 

number of urine specimens received in 2010–2013 by individual laboratories varied 

considerably, with different catchment populations and sizes of hospitals served 

(Figure 5.5).  
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Figure 5.4 Total number of urine specimens received and proportion (%) positive for 
E. coli, West Midland laboratories, 2010-2013. 
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Figure 5.5 Total number of urines received from primary and secondary care by West 
Midland laboratories 2010-2013   
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5.4.5 Number of reports of bacteria received by AmSurv 

The number of reports of E. coli, K. pneumoniae and P. aeruginosa isolated from 

urine specimens in the West Midlands increased significantly during 2010-2013 

(Figures 5.6 and 5.7). Although the majority of laboratories were reporting to AmSurv 

by 2010 (Figure 3.5), it was not until 2012 that all laboratories reported results by this 

mechanism, therefore some of the rise in number of reports in the years 2010 and 

2011 may be accounted for by laboratories joining the surveillance scheme. 

Increases in the number of these named bacterial species may also be due to 

laboratories beginning to identify isolates from urine specimens to species level; 

however, the survey of methods described in Chapter 2 reported that only 3 of the 15 

West Midland laboratories did not fully identify Gram-negative bacteria isolated from 

urine in 2011. Much of the increase in numbers of E. coli from urine specimens 

during the study period can be accounted for by the sharp rise in numbers isolated 

from specimens sent to laboratories by GPs (Figure 5.6). 
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Figure 5.6 Total no. of E. coli reports received from urine specimens submitted by 
GPs and Acute Trusts in the West Midlands 2010-2013  
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Figure 5.7 Number of a) K. pneumoniae and b) P. aeruginosa reports from urine 
specimens in the West Midlands 2010 – 2013 

 

a) 

 

 b) 
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5.4.6 Antibiotic susceptibility testing 

As reported in Chapter 2, there was variation in the reported antibiotic susceptibility 

test methods in use by West Midland laboratories during the study period for bacteria 

isolated from urine. The methods were BSAC disc diffusion (n=7), VITEK 2® (n=6) 

and breakpoint methods (n=2). One laboratory used a combination of VITEK 2® and 

BSAC disc diffusion depending on whether the tests were performed during or 

outside normal working hours.  All but one of the seven laboratories using the BSAC 

method reported using the most recent available breakpoint standards during the 

study period, and are currently using the latest breakpoint standard (version 12) 

(British Society for Antimicrobial Chemotherapy (BSAC), 2013), with just one 

laboratory using an earlier version (version 10) (British Society for Antimicrobial 

Chemotherapy (BSAC), 2011). The standard VITEK 2®  software included EUCAST 

v1.1 (2010) breakpoints during this period (European Committee on Antimicrobial 

Susceptibility Testing). During the study period, two laboratories changed from the 

BSAC method to a breakpoint technique. One of the breakpoint users reported using 

‘in-house’ breakpoint standards.   
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5.5 Discussion 

 

5.5.1 E. coli and K. pneumoniae isolates from urine specimens 

This chapter describes the findings from the early implementation of the AmSurv 

system in the West Midlands. This system, for the first time in England, has enabled 

the routine analysis and reporting of antibiotic susceptibility tests results of all 

bacterial isolates from specimens submitted by hospital and community healthcare 

providers, for a defined population. Members of the family Enterobacteriaceae are 

the most common cause of UTI in hospitals and the community (Bean et al., 

2008;Kahlmeter and Poulsen, 2012;Laupland et al., 2007), and they are implicated in 

many of the current problems of transferrable multi-antibiotic resistance. The ability to 

monitor AMR trends in infections most commonly caused by these bacteria, across 

all patient groups, provides valuable additional insight needed to inform public health 

action.  

E. coli is the most frequent uropathogen responsible for community and nosocomial 

UTI (Bean et al, 2008;Laupland et al, 2007). The larger proportion of urine specimens 

yielding E. coli were observed from community sources (15% compared with 6% from 

hospital settings) and may reflect differences in urine sampling strategies in these 

settings combined with the modulating effect of urinary dipstick screening results in 

the community being used as a prerequisite for sending to the laboratory. It is also 

plausible that urine sampling is undertaken within a more systematic and stringent 

framework in hospital settings (Hayward et al., 2007). K. pneumoniae has been 

associated with hospital settings and complicated UTIs (Stamm, 2002); however a 

Canadian study reported that K. pneumoniae accounted for 7% of community-onset 
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UTI (Laupland et al, 2007). This study found that 3% of the total positive urine 

cultures in the West Midlands were K. pneumoniae and that there was a slightly 

higher positivity rate for K. pneumoniae in urines received from the community 

compared with those received from hospital settings (0.7% and 0.5% respectively).   

 

5.5.2 Extended spectrum beta-lactamase 

This study found increasing non-susceptibility in E. coli isolates from urine specimens 

tested against third-generation cephalosporins and ciprofloxacin in 2010 to 2013. As 

previously described, the successful uropathogenic E. coli sequence type 131 

(ST131) is often associated with the CTX-M-15 beta-lactamase and also 

fluoroquinolone resistance (particularly the H30 subclone) (Johnson et al., 2016), and 

therefore the rise in non-susceptibility in the West Midlands may be the result of the 

continued spread of this sequence type. The horizontal transfer of the CTX-M gene in 

conjugative plasmids is pivotal to the spread of this ESBL, with plasmids of the IncF 

family being the common carrier (Novais et al., 2012).  

As described in Chapter 1, bacteria carrying ESBL genes have a global prevalence 

(section 1.3.2). A recent review reported that the prevalence of bacteria carrying 

ESBLs is increasing in Europe and found a significant rise in community ESBL rates 

in all WHO geographical regions. The authors report that the E. coli ST131 is now the 

dominant global extraintestinal pathogenic strain, and that clonal spread of virulent 

strains has led to the widespread dissemination in Europe and North America of 

ESBL-producing ST131 sub clone H30-Rx, which often carries blaCTX-M (Bevan et al., 

2017).   
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As discussed in Chapter 1 (section 3.1), international travel is a common mechanism 

for the dispersal of successful MDR bacterial clones. The successful replacement of 

other E. coli clones by ST131 in South America and Europe is probably due to 

human migration (Bevan et al, 2017). As also described in Chapter 1 the increased 

carriage of CTX-M ESBLs in community patients in the West Midlands with South 

Asian connections,(Wickramasinghe et al, 2012) may act as a reservoir for the 

increasing levels of resistance being detected in this surveillance study.  

A rise in third-generation cephalosporin non-susceptibility for E. coli has not been 

detected for isolates from blood in England during 2012-2014; however, the on-going 

rise in the number of E. coli bacteraemia cases is leading to more non-susceptible 

isolates being detected (Bou-Antoun et al., 2016). A UK study reported that non-

susceptibility to cephalosporins and quinolones amongst E. coli and K. pneumoniae 

isolates from bloodstream infections rose significantly from 2001 to 2006 and then 

plateaued or fell between 2007 and 2011. The authors suggested a link to a change 

in prescribing practices in the UK, which involved significant reductions in the use of 

cephalosporins and quinolones in the middle of the decade. However the data 

presented in their study suggests that the decline in non-susceptibility in 2007-2010 

may be starting to be reversed again for E. coli in 2011, with a rise in non-

susceptibility for both third-generation cephalosporins and quinolones (Livermore et 

al., 2013). Therefore it is possible that these rates may continue to rise following 

2011, as was found in the study reported in this chapter for 2010-2013 West Midland 

isolates from urine specimens.  
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5.5.3 Carbapenemase producing bacteria     

 

5.5.3.1 Enterobacteriaceae 

A recent study reviewed the confirmed carbapenemase-producing 

Enterobacteriaceae (CPE) cases referred to the AMRHAI Reference Unit from the 

West Midland between 2007 and 2014. The authors of this study concluded that the 

number of CPE reports had increased in the 7 year period (Findlay et al., 2017). 

There has been an increase in the numbers of E. coli bacteria reported from invasive 

infections in England in 2012 to 2014 (Bou-Antoun et al, 2016). The increased 

number of isolates, combined with a greater awareness of CPE, may account for the 

increased referral of potential isolates to PHE reference laboratories, and the 

increased number of confirmed CPE reported in the AMRHAI study (Findlay et al, 

2017). Figures provided by the AMRHAI reference unit show that from 2014 onwards 

the number of confirmed CPE are continuing to increase in the West Midlands 

(Figure 1.5). In the study reported in this chapter there was not any increase in the 

proportion of E. coli and K. pneumoniae isolated from urine specimens that were 

non-susceptible to carbapenems in 2010 – 2013; and monitoring of routine West 

Midland susceptibility data post 2013 has not detected an increase in the proportion 

of Enterobacteriaceae non-susceptible to carbapenems (PHE internal quarterly 

surveillance reports). The study described in this chapter has shown increasing 

numbers of E. coli, K. pneumoniae and P. aeruginosa being reported by West 

Midland laboratories (Figures 5.6 and 5.7) from urines, and this may lead to an 

increase in the number of reported non-susceptible to carbapenems, even if the 

proportion that are non-susceptible does not rise.   
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The situation in the West Midlands contrasts sharply with the situation in the North 

West of England, where much higher numbers of CPE are being detected (Findlay et 

al, 2017). A sentinel study of UK laboratories in 2013-2014 reported that the 

incidence of CPE in the North West region was 0.033 per 1000 patient days (95% 

CI=0.012-0.072) compared with an incidence of 0.007 per 1000 patient days (95% 

CI=0.005-0.010) across the UK (Trepanier et al., 2017). 

The majority of confirmed carbapenemase-producing E. coli and K. pneumoniae in 

the West Midlands were NDM producers (Table 5.5) rather than the KPC producing 

strains that predominate in the North West region (Livermore, 2012;Munoz-Price et 

al., 2013). In the rest of the UK, the number of KPC-producing bacteria being 

detected have increased but have not been associated with the major outbreaks that 

have been observed in the North West region (Findlay et al., 2016). The on-going 

outbreak of KPC producing bacteria in the North West region is due to the horizontal 

spread of IncFIIK plasmid rather than the emergence of a successful clone, and this 

is being detected in a range of Enterobacteriaceae (Munoz-Price et al, 2013). The 

KPC-producing bacteria being reported in the UK outside the North West region are 

predominantly K. pneumoniae strain type (ST) 258, which has been responsible for 

many clonal outbreaks across Europe and the USA (Findlay et al, 2016).  

There is a significant local community originating from South Asia in the West 

Midlands, who frequently travel to their countries of origin (Wickramasinghe et al, 

2012). It has been suggested that this is a potential source of acquiring 

carbapenemase-producing pathogens for some UK residents (Kumarasamy et al., 

2010). However, the analysis of cultural, ethnic and linguistic origin based on patient 

names revealed that the majority of CPE reported in the West Midlands during 2010-
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2013 were from individuals with European origins. Although NDM-producing strains 

are endemic in parts of South Asia,(Walsh et al., 2011;Walsh and Toleman, 2012), in 

the study reported in this chapter only 2 of the 16 patient names with NDM-producing 

isolates were categorised as being of Middle East / South Asian origin. These 

findings are supported by a study of NDM in the UK which reports >40% of cases 

providing travel information had no history of foreign travel (Jain et al., 2014). A study 

of confirmed CPE cases in the West Midlands in 2007 to 2014 found 137 isolates 

from 108 patients. Travel history was available for 42 patients, with 23 patients 

indicating travel outside the UK. The most frequently visited countries reported to 

have been visited outside the UK in the previous 6 months were; India (14/23) and 

Pakistan (5/23). From the 14 patients with a confirmed CPE that had reported travel 

to India, 10 had isolates positive for NDM, two had isolates positive for OXA-48-like 

genes and two had isolates positive for both NDM and OXA-48-like genes. All five of 

the patients with a confirmed CPE that had visited Pakistan yielded bacteria with 

NDM genes (Findlay et al, 2017).  

Currently most NDM isolates in South Asia are associated with hospital care 

(Kumarasamy et al, 2010), with time it is possible that bacteria carrying NDM may 

spread into the general community. It is therefore plausible that NDM-producing 

Enterobacteriaceae may follow the same pattern of dispersal in the UK as the CTX-M 

ESBL gene (Livermore, 2012). 

In this study of bacteria isolated from urine in the West Midlands in 2010 to 2013, 

three cases of bacteria producing the OXA-48 carbapenemase in 2013 (one E.coli 

and two K. pneumoniae) were reported. As described in Chapter 1 (Figure 1.5) 2016 

data from AMRHAI for the West Midlands shows OXA-48 producers are replacing 
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KPC and NDM as the predominant carbapenemase enzyme. OXA-48 enzymes 

hydrolyse carbapenems at a low level and have no effect on broad-spectrum 

cephalosporins (Public Health England, 2014b); and as bacteria expressing this 

enzyme do not often co-express an ESBL, their phenotypic susceptibility to third-

generation cephalosporins complicates their laboratory detection (Poirel et al., 2012). 

The successful uropathogenic E. coli ST131 has been associated with production of 

the OXA-48 enzyme, leading to a concern that this may lead to the widespread 

dissemination of this resistance mechanism in the community (Dimou et al., 2012).  

   

5.5.3.2 Pseudomonas aeruginosa  

P. aeruginosa is a non-fermenting Gram-negative opportunistic pathogen, often 

associated with nosocomial pneumonia, blood stream infections and UTI (Mittal et 

al., 2009). In the study reported in this chapter, P. aeruginosa accounted for only 1% 

of the positive isolates from urine specimens; however the prevalence of MDR strains 

of P. aeruginosa has risen sharply in many parts of the world in the last 20 years, 

including the UK (Nathwani et al., 2014). The increase of P. aeruginosa MDR 

infections prompted the inclusion of this organism in the ‘ESKAPE’ (Enterococcus 

faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, 

Pseudomonas aeruginosa and Enterobacter spp.) pathogens list which is published 

by the Infectious Disease Society of America to highlight bacteria posing a serious 

risk to human health (Boucher et al., 2009).   

In this chapter it was reported that P. aeruginosa isolated from urine specimens was 

demonstrated to have an increased proportion of non-susceptibility to carbapenems, 
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compared with E. coli and K. pneumoniae. Imipenem resistance in P. aeruginosa is 

often due to the loss of OprD porin, however this does not affect susceptibility to 

other β-lactams (Public Health England, 2014b). Up-regulation of the MexAB-OprM 

efflux system can confer reduced susceptibility to meropenem and resistance to anti-

pseudomonal cephalosporins (Bonomo and Szabo, 2006). A Spanish study 

investigating the overexpression of AmpC and efflux pumps in P. aeruginosa isolates 

from bloodstream infections provides insight into the observed correlation between 

trends in reported incidence of carbapenem and ceftazidime non-susceptibility 

reported in this chapter (Cabot et al., 2011). The study demonstrated a statistically 

significant correlation between overexpression of ampC and both mexY and mexB 

genes coding for efflux pumps, in isolates of this phenotype. This association 

between mechanisms of resistance in P. aeruginosa adds to its already formidable 

ability to resist a range of antibiotics, and further complicates treatment options (Cox 

and Wright, 2013). Further analysis is required to determine whether the isolates 

identified in the West Midlands exhibit the same pattern as those in Spain.  

 

5.5.3.3 Acinetobacter spp. and Stenotrophomonas maltophilia  

In Table 5.3 all bacteria non-susceptible to carbapenems in the West Midlands during 

the study period were listed. Two bacteria showed high levels of non-susceptibility to 

carbapenems; Acinetobacter spp. and Stenotrophomonas maltophilia (27% and 23% 

non-susceptibility respectively over the study period). The majority of infections 

involving the genus Acinetobacter are by members of the A. baumanii complex, 

which includes A. baumanii, A. calcoaceticus and A. nosocomialis, which cannot be 

distinguished by current routine diagnostic laboratory identification tests, and are 
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therefore mostly reported as A. baumannii  (Camp and Tatum, 2010). A. baumannii is 

the most clinically important species and is included in the ‘ESKAPE’ pathogens list 

due to its increasing prevalence and high-levels of antibiotic resistance (Boucher et 

al, 2009). A. baumannii is a particular concern due to the increasing frequency of 

isolation in hospital settings and the extensive antibiotic resistance being found, 

including against antibiotics used as last-resort options (Wenzler et al., 2017). These 

bacteria are particularly resistant to desiccation and able to survive in the hospital 

environment for many days (Wenzler et al, 2017). A. baumannii have been found to 

be associated with a range of infections, including pneumonia, wound infections, 

bloodstream infections and UTI. A wide range of antibiotic resistance mechanisms 

are used by this organism, including production of enzymes, porin loss and efflux 

pumps. The frequent acquisition of metallo beta-lactamases such as IMP, VIM, SIM 

and NDM are of particular concern as these further restrict the available treatment 

options (Wenzler et al, 2017). In recent years A. baumannii has been associated with 

infections in wounded soldiers returning from Afghanistan and Iraq (Camp & Tatum, 

2010). In the study described in this chapter, over a third of the reports of 

A. baumannii received in the 2010-2013 study period were from an Acute Trust in the 

West Midlands that includes a British military hospital unit; although this Trust also 

has a number of other specialist units, including a major transplant centre.  

S. maltophilia (previously known as Pseudomonas maltophilia) is also a non-

fermenting Gram-negative opportunistic pathogen that is intrinsically resistant to 

many antimicrobials. The mechanisms of resistance include decreased permeability, 

multi-drug efflux pumps, chromosomally and plasmid encoded beta-lactamases and 

biofilms (Brooke, 2014). L1, a chromosomally encoded metallo-beta-lactamase, is 



224 

 

found widely in S. maltophilia (Livermore and Woodford, 2000). Although the study 

described in this chapter reported a high proportion of these bacteria to be non-

susceptible to carbapenems (23%), and the number of isolates increased during the 

study period, there were still only comparatively small numbers reported from urine 

specimens in the West Midlands (Table 5.3). S. maltophilia is implicated in infections 

of immuno-compromised patients and is associated with a high mortality rates (Gales 

et al., 2001). The increasing worldwide prevalence of S. maltophilia prompted the 

WHO to list this opportunistic pathogen as a serious public health concern (World 

Health Organisation, 2017).           

  

5.5.4 Limitations  

There are some limitations in this study. As discussed previously it is likely that urine 

specimens sent from the community for microbiological examination represent cases 

with initial treatment failures, more complicated medical histories and severe 

infections, (Hillier et al., 2006) and, therefore, the observed levels of resistance are 

liable to be an overestimate of the true levels of resistance in the population. The 

survey of GPs described in Chapter 4 showed that 40% of respondents reported 

sending urines for microbiological examination from patients with uncomplicated UTI, 

contrary to national guidelines (Public Health England, 2014b), and therefore the 

routine surveillance data in the West Midlands is likely to include a significant 

proportion of bacteria isolated from these ‘uncomplicated’ infections. A report of the 

Specialist Advisory Committee on Antimicrobial Resistance (SACAR) Surveillance 

Subgroup states that evidence is mixed on the extent and impact of sampling bias, 

and, as it is difficult to overcome, AMR surveillance should be mainly based on 
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routine laboratory reports (Hayward et al, 2007). It also reassuring that the observed 

proportion (15%) of primary care urine specimens positive for E. coli is similar to that 

reported in another UK based study of antibiotic resistance in isolates from urine 

examining all specimens from community patients with UTI symptoms.(Butler et al., 

2006) 

As described in Chapter 2, there is some variation in antibiotic susceptibility testing 

methods in West Midlands laboratories, although it was encouraging that 13 of the15 

laboratories apply recent BSAC or EUCAST MIC breakpoint standards and all 

laboratories participate in the monthly internationally accredited external quality 

control assessment of susceptibility testing methods (NEQAS) (Chapter 2, section 

2.4). The UK NEQAS scheme did show variation in 2011 between laboratories using 

BSAC or EUCAST breakpoint guidelines and those using CLSI guidelines (Brown, 

2012); however no laboratories in the West Midlands report using CLSI in this period. 

No variation in antibiotic susceptibility proportions was noted from two laboratories 

following a change in their testing methods during the study period. There was only 

one significant change for this study within the BSAC and EUCAST breakpoint 

standards introduced during 2010-2013; a lowering of the breakpoint MIC for 

Enterobacteriaceae against ceftazidime in BSAC v10, released in January 2011 

(British Society for Antimicrobial Chemotherapy (BSAC)). The majority of West 

Midland laboratories did not perform first line testing of ceftazidime against 

Enterobacteriaceae isolated from urine, and therefore it is not believed that this 

change had a significant effect on study findings presented here.       
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5.5.5 New developments  

The growing problem of Enterobacteriaceae resistant to third-generation 

cephalosporins has led to increased use of carbapenems as ‘last resort’ antibiotics. 

As resistance is now emerging to these drugs, multifaceted interventions are required 

to preserve their effectiveness, including antimicrobial stewardship, rapid 

confirmation of potential CPE, meticulous infection control practices and enhanced 

surveillance. Following the surveillance study reported in this chapter, PHE in the 

West Midlands implemented, in 2014, a pilot rapid CPE confirmation service for local 

laboratories. To enable electronic reporting of these confirmation tests a web based 

Electronic Reporting System (ERS) was developed. Routine AmSurv reports are 

used to trigger automated alerts for potential CPE, which are sent to reporting 

laboratories to remind them to send bacteria to the reference laboratory. In response 

to the increased numbers of CPE in the North West region, the ERS was further 

developed as a national enhanced surveillance system for carbapenemase-

producing Gram-negative bacteria (Freeman et al., 2016). Although this study shows 

low numbers of E. coli and Klebsiella spp. resistant to carbapenems in the West 

Midlands during 2010-2013, the experience of other regions of England and parts of 

Europe emphasises the requirement for vigilance and on-going monitoring of these 

bacteria.      

 

5.5.6 Summary 

Better access to and use of surveillance data constitute a key objective in the UK 

Five Year Antimicrobial Resistance Strategy (Department of Health, 2013). AmWeb 

has improved access to AMR data for a diverse group of health professionals, 
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with130 registered users across the region within twelve months of its 

implementation. Automated AMR surveillance is capable of providing a 

representative picture of the burden of resistance in Gram-negative uropathogens 

from both hospitals and the community. 

In 2010 to 2013 the predominant organism isolated from urine specimens referred by 

hospitals and the community was E. coli (61%). Routine AMR surveillance data 

demonstrated an increasing trend in E. coli and K. pneumoniae non-susceptibility to 

third-generation cephalosporins, and E. coli non-susceptibility to ciprofloxacin. The 

proportion of E. coli and K. pneumoniae non-susceptible to carbapenems remains 

low in the West Midlands; however increasing numbers of isolates observed in this 

study will result in greater numbers of carbapenem resistant bacteria being reported 

in the region.      

The observed increasing trends in antibiotic non-susceptibility reported in this study 

strengthens the recommendation in the UK 5 Year AMR Strategy for the on-going 

surveillance of these bacteria / antibiotics, combined with surveillance of antibiotic 

usage in hospitals and the community settings.   
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6 How General Practice characteristics and 

antibiotic prescribing effect the rates of non-

susceptibility of Escherichia coli in the West 

Midlands region of England – a four-year 

ecological study    
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6.1 Background 

In 2014 in England, 74% of antibiotic prescribing occurred in general practice (Public 

Health England, 2015a). Antibiotic prescribing is associated with the development of 

AMR and this linkage has been demonstrated in community settings at both 

individual patient level and within communities, regions and countries (Bell et al., 

2014a; Costelloe et al., 2010a). It has been suggested that antibiotic prescribing at a 

population level may have greater significance than individual level consumption for 

determining the risk of an individual harbouring antibiotic-resistant bacteria (Bergman 

et al., 2009).   

With increasing evidence of an association between antibiotic prescribing and AMR, 

the Chief Medical Officer (CMO) for England in her 2011 annual report promoted the 

use of antibiotic stewardship as a measure to control the development and spread of 

AMR (Chief Medical Officer, 2013). There are some antibiotic prescribers, however, 

that are sceptical that a reduction in their antibiotic prescribing will reduce the levels 

of AMR in their practice population (Björkman et al., 2013). PHE national prescribing 

guidelines were provided as a tool to promote consistent and prudent prescribing in 

primary care in England (Public Health England, 2017b); however a study in 2014 

reported that these guidelines have not encouraged uniformity or reduced the volume 

of prescribing in the community (Hawker et al., 2014). The expectation of patients to 

receive an antibiotic is also driving the level of prescribing (Teixeira et al., 2013), and 

several initiatives have been introduced to modify patients expectations (see 

discussion section 6.5.1.4). 
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To understand antibiotic prescribing practice in the community, the characteristics of 

the general practice have to be taken into account (Wang et al., 2009a). A number of 

factors have been shown to influence the volume of prescribing within general 

practices in the UK, such as the practice location, length of appointment (Wang et al., 

2009b), social deprivation (Covvey et al., 2014a) and being a single-handed practice 

(Wilson et al., 1999). A systematic review of studies reporting on the association 

between antibiotic prescribing and resistance reported that the control for practice or 

population characteristics and the inability to measure the time between prescribing 

and detection of resistance has been a limiting factor when interpreting results (Bell 

et al., 2014b). The period between prescribing an antibiotic and the development of 

resistance has been reported as soon as a month following consumption (Costelloe 

et al., 2010b), or up to 12 months for some antibiotic combinations (Bergman et al, 

2009).    

Antibiotics have been shown to have seasonal prescribing patterns, both in Europe 

and the USA (Goossens et al., 2005; Sun et al., 2012a). In England increases in the 

volume of antibiotics prescribed in the winter months is associated with the treatment 

of upper respiratory infections (Fleming et al., 2003a).   

The pandemic E. coli ST131 has been responsible for community UTIs across the 

globe and is commonly resistant to a range of antibiotics, including beta-lactams, 

fluoroquinolones and trimethoprim (Rogers et al., 2011), therefore, the use of any of 

these antibiotics can potentially select for these MDR strains in the community (Petty 

et al., 2014). A number of studies have shown an association between prescribing a 

specific antibiotic, or structurally similar antibiotics, and non-susceptibility to the same 

antibiotic or antibiotic class (Goettsch et al., 2000; Leflon-Guibout et al., 2002); 
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however,  a recent systematic study reported that there is a paucity of studies 

examining co-selection of antibiotic non-susceptibility in one antibiotic when 

prescribing a structurally different antibiotic with a different mechanism of action (Bell 

et al, 2014b).  

Urinary tract infections (UTI), and in particular those caused by Escherichia coli, were 

chosen as the focus of the study described in this chapter as 1) UTIs are one of the 

most common conditions diagnosed in community settings in Europe and are an 

important clinical indication of prescribing in primary care, and 2) E. coli are the most 

common cause of UTIs in both primary and secondary care (Petersen and Hayward, 

2007). 

Statistical modelling has been defined as using data to explicit a mathematical model 

to enable data generation (Greenland, 1989). The process of selecting a model, and 

its precision, distinguishes statistical modelling from more basic statistical techniques. 

Statistical modelling has been used as a more efficient way of detecting and 

summarising data patterns (Greenland, 1989).   

In this study multilevel mixed-effects Generalised Linear Models (GLMs) were used 

to measure the association between antibiotic prescribing and non-susceptibility to 

antibiotics in E .coli bacteria isolated from urine specimens. Multilevel mixed-effects 

GLMs allow for a range of response variable distributions, including binomial 

distributions, which are used when assessing antibiotic susceptibility data. Mixed-

effect GLMs also allow both fixed effects and random effects, so that explanatory 

variables (fixed effects), such as the amount of prescribed antibiotic or the 

deprivation score, can be modelled alongside random effects, which allows for 
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variations among entities usually following a normal distribution, such as GP 

Practices (Bolker et al., 2009). 

To address some of the limitations listed in previous studies described above, an 

ecological study was undertaken to examine the relationship between prescribing 

antibiotics commonly used in general practice and the number of non-susceptible E. 

coli isolates from urine samples taken in general practices in the West Midlands 

region of England over a four-year period. 

 

6.2 Objectives 

 To identify any associations between prescribing antibiotics in primary care 

and the non-susceptibility of E. coli, taking into account potential confounders, 

such as general practice characteristics.  

 To describe seasonal antibiotic non-susceptibility of E. coli isolated from urine 

specimens and antibiotic prescribing in the West Midlands community  

 To examine variation in antibiotic prescribing between GP practices in the 

West Midlands 
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6.3 Methods 

6.3.1 Population and healthcare facilities 

The West Midlands population has been described in Chapter 1. In 2012, the mid-

point of this study, there were 950 general practices with 3635 general practitioners, 

serving a population of 5.8 million registered patients in the West Midlands Region 

(NHS Digital, 2014). During this study period, 2010-2014, there were 15 diagnostic 

microbiology laboratories serving both community-based healthcare centres and 

hospitals.  

 

6.3.2 Data sources 

Antibiotic prescribing data on items dispensed in each general practice during the 

period 2010-2014 was obtained from NHS Digital (previously known as the Health 

and Social Care Information Centre) (NHS Digital, 2016b). Antibiotic prescribing data 

are expressed as defined daily doses (DDD) per 1000 general practice population.  

Data on antibiotic non-susceptibility for E. coli isolates from urine specimens 

submitted from general practices were obtained from the Public Health England 

(PHE) Second Generation Surveillance System (SGSS), previously known as the 

AmSurv system (see Chapter 3 for description of the AmSurv implementation). To 

detect emerging non-susceptibility, the dataset was de-duplicated by removing only 

duplicate E. coli reports from each patient having exactly matching antibiotic 

susceptibility results within the same year. Nine of the15 laboratories were reporting 

data regularly to SGSS/AmSurv at the start of our study period in 2010, and complete 

coverage of all 15 laboratories was achieved in 2012.  
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General practice characteristics were obtained from the National Health Service 

(NHS) Business Services Authority (http://www.nhsbsa.nhs.uk/). This included 

information on the total practice population, proportion of the practice population <15 

years old and ≥65 years, and ratio of females to males in the practice population. The 

number of general practitioners (GPs) within each practice was obtained from NHS 

Digital, with single-handed practices defined as those practices with only one 

registered GP (NHS Digital, 2016a). A variable was created for the number of GPs 

per 100,000 practice population to include in the statistical modelling.  

Social-economic deprivation was measured using data from the English Index of 

Multiple Deprivation 2010 (Department for communities and local goverment, 2016). 

A deprivation index was assigned to each general practice based on the deprivation 

index assigned to the Local Authority (English administrative area) in which the 

practice was located.  

The general practices were categorised as ‘urban’ or ‘rural’ based on whether the 

majority of the population in the Local Authority in which the practice is situated live in 

a rural or urban setting, according to definitions in the Defra Classification of Local 

Authority Districts and Unitary Authorities in England (Department for Environment, 

2016).  

As defined previously in Chapter 3, non-susceptibility to an antibiotic is defined as 

test results with a ‘resistant’ (R) or ‘intermediate’ (I) designation.  

 

http://www.nhsbsa.nhs.uk/
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6.3.3 Prescribing and AMR descriptive analysis  

Previous prescribing studies have assigned seasons based on standard calendar 

quarters (Suda et al., 2014). In this study, to match seasonal periods in England, 

seasons were defined as spring (March to May), summer (June to August), autumn 

(September to November), and winter (December to February). Seasonal total DDD 

prescribing quantities and DDDs /1000 practice population for the period March 2010 

to February 2014 were calculated. These were compared with non-susceptibility 

proportions for E. coli urinary isolates against the six antibiotics selected for analysis 

in order to describe prescribing and non-susceptibility trends during the study period.       

 

6.3.4 Statistical analysis 

Sixteen individual datasets were created. Each dataset consisted of practice level 

data on all reported E .coli isolates non-susceptible to one of the six selected 

antibiotics, alongside matching practice prescribing data for the same antibiotic or 

another commonly prescribed antibiotic that may select non-susceptibility (Table 6.1). 

Table 6.1 shows that for each antibiotic, non-susceptibility is compared with 

prescribing data for the same antibiotic, or a structurally similar antibiotic with the 

same action (models: 1, 2, 4, 8, 10, 14, and 15). Other antibiotic combinations were 

selected based on biological plausibility of an exposure and non-susceptibility 

relationship, and to enable comparisons with published international studies (models: 

3, 5, 6, 7, 8, 11, 12, 13, and16) (Table 6.1).  
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Table 6.1 Antibiotic combinations evaluated to measure associations between 
antibiotic non-susceptibility and prescribing of the same antibiotic / antibiotic class, or 
an antibiotic that may co-select non-susceptibility  

 

Escherichia coli 
non-
susceptibility  

Prescribed 
antibiotic 

 

Statistical 
model no. 

References that 
suggest potential 
associations  

Ampicillin / 
amoxicillin 

ampicillin/amoxicillin 2  

co-amoxiclav 1  

fluoroquinolones 3 (Johnson et al., 2010a) 

Cephalexin cephalosporins  10  

fluoroquinolones 11 (Rogers et al, 2011) 

trimethoprim 16 (Petty et al, 2014) 

nitrofurantoin  12 (Bergman et al, 2009) 

Co-amoxiclav co-amoxiclav 8  

ampicillin/amoxicillin 4  

Ciprofloxacin fluoroquinolones 8 (Rogers et al, 2011) 

ampicillin/amoxicillin 6 (Johnson et al, 2010a) 

co-amoxiclav 5 (Johnson et al, 2010a) 

cephalosporins  7 (Rogers et al, 2011) 

Trimethoprim trimethoprim 15  

Nitrofurantoin nitrofurantoin  14  

cephalosporins  13 (Bergman et al, 2009) 
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In each model, seasonal quarterly trends in non-susceptibility of E. coli isolates for 

each general practice from 01/03/2010 to 28/02/2014 were compared with trends in 

antibiotic prescribing data in the same quarter and antibiotic prescribing in previous 

quarters (up to four lagged quarters, with quarter ‘minus four’ being prescribing data 

from the same quarter in the previous year). General practice characteristics were 

included in the statistical models as potential explanatory variables (Table 6.2).  

National community prescribing guidance recommends course lengths of between 

3-7 days depending on the antibiotic and the clinical presentation (Public Health 

England, 2017b). A prescribing unit within the statistical models was therefore set as 

50 DDDs, which represents approximately 10 prescriptions, taking an average of five 

days for each course.  

Multilevel mixed-effects generalised linear models, using a binomial distribution for 

the outcome, were developed to examine the relationship between antibiotic use and 

E.coli non-susceptibility.  Each statistical model (one for each prescribing / non-

susceptibility combination) consisted of the number of E. coli isolates non-susceptible 

by general practice as the outcome variable, number tested as the denominator, as 

well as the various explanatory variables described (Table 6.2). A composite group 

variable was created using general practice and Local Authority area to allow 

modelling of variability between these hierarchical populations as random effects. 

The seasonal quarters were assigned as categorical variables within the models and 

spring (March-May) was chosen as the comparator variable. Likelihood ratio testing 

was used to determine significance and a P value of ≤0.05 was considered 

statistically significant. Adjusted odd ratios were used as a measure of association. 
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Table 6.2 Variables included in the multi-level mixed effects statistical model   

  
Variable  West 

Midlands data 
(where 
appropriate)  

Registered patient gender ratio (female/male) 0.98 

Proportion of registered patients aged under age 15 years 18.21% 

Proportion of registered patients aged 65 years and over 16.15% 

Practices with one registered GP 15% 

Average number of GPs per 100,000 registered patients in West Midlands 80.57 

Location deprivation index (IMD2010) median for general practices in the West 
Midlands  

30.50 
(IQ range 

29.23) 

Rural practice location proportion 27% 

General practice within Local Authorities composite variable -- 

Time variable (time elapsed during study period) -- 

Seasonal quarter                                                                                            
(March-May, June-August, September-November, December - February) 

-- 

Prescribing in the same quarter that non-susceptibility assessed (P 0) -- 

Prescribing in the previous quarter that non-susceptibility assessed (P-1) -- 

Prescribing in the quarter ‘minus 2’ that non-susceptibility assessed (P-2) -- 

Prescribing in the quarter ‘minus 3’ that non-susceptibility assessed (P-3) -- 

Prescribing in the quarter ‘minus 4’ that non-susceptibility assessed (P-4) -- 
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The statistical model building process involved constructing cubic functions of all 

continuous explanatory variables and then subsequently tested for linearity via a 

stepwise iterative process (Figure 6.1). Significant non-linear variables were retained 

and tested to determine if they were still significant when inserted into the model 

together. When satisfied that any remaining non-linear terms were still significant 

when tested together in the model, the significance of the linear covariates were 

tested. All lagged prescribing quarters were included in each of the statistical models. 

As prescribing data prior to 2010 was not available, to increase the number of 

complete observations, the DDD/1000 practice population variable with the greatest 

lag was removed if it was found to be not statistically significant, and was not a 

substantial confounder (i.e. its removal did not lead to a >10% change in the odds 

ratios of the linear variables). The model building process was then repeated with the 

increased number of comparable observations. All other explanatory variables were 

retained in a linear or non-linear form, depending on which form was found to best fit 

the data within each model (Figure 6.1).       

All statistical analyses were performed using STATA v13 (StataCorp, USA). 
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Figure 6.1 Flow diagram of data modelling process used for each statistical model 
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6.4 Results 

 

6.4.1 Descriptive analysis  

6.4.1.1 Antibiotic prescribing  

Data from all 948 general practices that prescribed antibiotics in the West Midlands 

during the study period were included. Two of the West Midland general practices 

may have merged or closed as they did not consistently report monthly prescribing 

during 2010-2014 and were therefore removed from the dataset. Fifteen percent 

(141/948) were single-handed general practices (Table 6.2), and 82% (116/141) of 

these were designated as being in rural locations. When comparing single-handed 

GPs as a group, the prescribing rate was consistently higher throughout the study 

period than the group consisting of non-single-handed GP practices (Figure 6.2).  

In 2013, a total of 45 million antibiotic DDDs were prescribed in the West Midlands. 

Amongst the antibiotics included in the study, ampicillin / amoxicillin was the most 

commonly prescribed in 2013 with 13.6 million DDDs, followed by co-amoxiclav with 

2.9 million DDDs and trimethoprim 2.8 million DDDs. The total antibiotic prescribing 

rate (DDD/1000 population) varied widely across general practices (Figure 6.3). In 

2013, the 5th and 95th percentile for total antibiotics prescribed by individual West 

Midland general practices was 4431 DDD/1000 population and10076 DDD/1000 

population.  
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Figure 6.2 Seasonal trends in total antibiotic prescribing rates by single GP and 
multiple GP practices, West Midlands, March 2010 – November 2013 
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Figure 6.3 All antibiotics prescribing by CCGs in the West Midlands in 2013. Boxplot depiction of the mean (line through box), 
interquartile range (box), 1.5 * interquartile range (line), maximum outliers (x) and minimum outliers (+).  
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The prescribing rate (DDD/1000 population) for individual antibiotics also varied 

across the region. The 5th and 95th percentile prescribing rates by individual general 

practices in 2013 were: 1111 DDD/1000 population and 3884 DDD/1000 population 

for ampicillin/amoxicillin; 11 DDD/1000 population and 258 DDD/1000 population for 

cephalosporins; 93 DDD/1000 population and 1047 DDD/1000 population for co-

amoxiclav; 70 DDD/1000 population and 524 DDD/1000 population for nitrofurantoin; 

163 DDD/1000 population and 775 DDD/1000 population for trimethoprim and 22 

DDD/1000 population and 262 DDD/1000 population for fluoroquinolones, 

respectively.  

Trimethoprim and nitrofurantoin are recommended as first-line treatment for 

uncomplicated UTI in the UK. The updated PHE guidelines, published in 2014, 

recommended nitrofurantoin in place of trimethoprim for empirical treatment of 

uncomplicated UTI due to increasing community infections with community ESBL-

producing bacteria and higher levels of trimethoprim resistance in E. coli (Public 

Health England, 2017a). The data presented in Figures 6.4 and 6.5 illustrate the 

prescribing rates for these antibiotics in the West Midlands prior to the change in the 

guidelines described above.       

Most of the variation in prescribing rates cannot be explained by practice size 

(measured by registered population); although the highest level of prescribing by 

individual practices seems to be associated with practices that have smaller numbers 

of registered patients, compared with larger GP practices in the West Midlands  

(Figures 6.6 and 6.7). 
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Figure 6.4 Trimethoprim prescribing by CCG in the West Midlands in 2013. Boxplot depiction of the mean (line through box), 
interquartile range (box), 1.5 interquartile range (line), maximum outliers (x) and minimum outliers (+).  
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Figure 6.5 Nitrofurantoin prescribing by GP practices in the West Midlands in 2013. Boxplot depiction of the mean (line through 
box), interquartile range (box), 1.5 * interquartile range (line), maximum outliers (x) and minimum outliers (+).  
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Figure 6.6 Co-amoxiclav prescribing by general practice versus the number of registered patients, West Mildands 2013.  
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Figure 6.7 Nitrofurantoin prescribing by general practice versus the number of registered patients, West Mildands 2013.  
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6.4.1.2 Antibiotic susceptibility testing  

During the study period there were 313,085 E. coli reports from urine specimens 

submitted by GPs situated in the West Midlands. These represented 247,971 de-

duplicated laboratory reports of E. coli, from 181,764 patients, submitted by 911 of 

948 (96%) general practices prescribing antibiotics in the West Midlands.  

The proportion of E.coli isolates tested against the selected antibiotics and the 

proportion reported as non-susceptible during the study period are shown in Table 

6.3. Trimethoprim and nitrofurantoin were the most consistently tested antibiotics, 

with essentially all E. coli isolates from urine specimens having susceptibility results 

for these antibiotics.  The proportion of E. coli isolates tested against ciprofloxacin 

decreased during the period of the study, with over 90% tested in 2010 compared 

with <70% tested in 2013/2014. For the antibiotics selected in this study, 

ampicillin/amoxicillin had the highest proportions of non-susceptibility, averaging 

52%, with nitrofurantoin having the lowest non-susceptibility, averaging 2.7% for the 

period 2010/11-2013/14 (Table 6.3).  

Increased non-susceptibility to ampicillin/amoxicillin was observed in E. coli isolates 

from urine specimens in the winter periods. This appears to mirror observed winter 

peaks in the prescribing of ampicillin/amoxicillin (Figure 6.7). Pronounced seasonal 

changes in antibiotic prescribing combined with non-susceptibility was not observed 

for other antibiotics included in the study; although the prescribing of co-amoxiclav 

did appear to show increased prescribing during the winter periods. Non-

susceptibility trends for defined antibiotics tested against isolates from urine 

specimens in the West Midlands were examined in Chapter 5. In that study a rising 
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trend in non-susceptibility was demonstrated for ciprofloxacin tested against West 

Midland E. coli isolates. For the additional antibiotics included in this part of the 

study, only trimethoprim demonstrated a rising linear trend for non-susceptibility 

during the study period (p for trend = <0.001) (Figure 6.8). Figure 6.8 also shows a 

gradual increase in total trimethoprim prescribing for the same time period.         
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Table 6.3 Quarterly count of E. coli isolates, proportion tested and proportion non-susceptible by antibiotic type, West Midlands, 
March 2010 – November 2013. 

 

      Ampicillin/Amoxicillin Cephalexin Ciprofloxacin Co-amoxiclav Nitrofurantoin Trimethoprim 

Year Seasonal 
Quarter 

E. coli 
isolates 
(n=247,971) 

Tested 
(%) 

Non-
susceptible 
(%) 

Tested 
(%) 

Non-
susceptible 
(%) 

Tested 
(%) 

Non-
susceptible 
(%) 

Tested 
(%) 

Non-
susceptible 
(%) 

Tested 
(%) 

Non-
susceptible 
(%) 

Tested 
(%) 

Non-
susceptible 
(%) 

2010/11 1 8769 76.7 52.5 88.2 7 90.5 11.7 91.7 15.6 99.8 4.1 99.9 32.8 

2010/11 2 10712 86.7 50.7 86.6 6.6 92.3 11.1 77.7 25.3 99.5 3.7 99.9 32.2 

2010/11 3 10036 78.2 51.1 91.2 6 92.3 11.8 90.2 23.2 99.7 3.0 99.9 33.8 

2010/11 4 11473 82.2 52.8 89.2 6.5 83 12.4 81.8 18.3 99.9 2.8 99.9 35.2 

2011/12 1 13750 82.3 52.1 79.3 6.8 77.4 11.5 84.4 14.6 99.9 3.0 99.9 33.1 

2011/12 2 13843 83.3 50.4 81.2 7 81 10.8 91.7 17.5 99.6 2.7 99.9 32.7 

2011/12 3 16705 84.8 51 85.8 6.6 76.5 10.8 93.3 19.6 99.9 2.7 99.9 35.0 

2011/12 4 16641 86 53.1 85.6 7 78.3 11.9 93.3 20.7 99.9 2.6 99.9 35.6 

2012/13 1 17190 87.6 52.6 85.4 6.6 77.5 11.2 91.8 15.6 99.9 2.0 99.9 35.4 

2012/13 2 18531 88.5 52.1 82.1 6.9 73.4 12.1 86 15.7 99.6 2.4 99.9 35.7 

2012/13 3 20621 89.6 51.7 83.3 7 70.2 11.7 86.6 15.8 99.8 2.1 100.0 35.7 

2012/13 4 21763 91.2 53.3 84.6 7.3 65.6 12.5 87.5 18.8 99.8 2.3 99.9 36.3 

2013/14 1 21665 79.8 53.4 85.1 7.3 67.3 13 87.9 18.8 99.7 2.4 99.8 36.4 

2013/14 2 22037 77.8 51.6 85.6 7.5 67.9 13.1 88.4 17.7 99.8 2.7 100.0 35.4 

2013/14 3 24235 77.7 51.5 81.8 7.7 68.3 11.8 87.6 16.2 99.9 2.4 100.0 36.2 
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Figure 6.8 Ampicillin/amoxicillin prescribing and non-susceptibility of E. coli isolated from urine-specimens,                                                          
West Midlands March 2010- December 2013 
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Figure 6.9 Trimethoprim prescribing and non-susceptibility of E. coli isolated from urine specimens, West Midlands March 2010 – 
December 2013 
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6.4.2 Statistical models 

 

6.4.2.1 Antibiotic non-susceptibility and prescribing 

Nine of the sixteen multi-level mixed effects statistical models showed a statistically 

significant linear relationship between E.coli non-susceptibility and the prescription of 

specific antibiotics during the same seasonal quarter or prescribing within the 

previous 12 months.      

Ampicillin/amoxicillin was the only antibiotic for which the odds of increased E.coli 

non-susceptibility was associated with an increase in prescribing within the same 

quarter, when prescribing ampicillin/amoxicillin and co-amoxiclav (OR 1.003, 95% CI 

1.001 - 1.006 and OR 1.006, 95% CI 1.002 - 1.009 respectively). 

There was also an association between prescribing in previous quarters, and 

increased non-susceptibility of E. coli to co-amoxiclav (when prescribing 

ampicillin/amoxicillin), ciprofloxacin (when prescribing fluoroquinolones), 

nitrofurantoin (when prescribing cephalexin and nitrofurantoin) and trimethoprim 

(when prescribing trimethoprim) (Table 6.4). 

The magnitude of the statistical associations varied, with the lowest being a 0.3% 

increase in the odds of non-susceptibility to ampicillin/amoxicillin for an increase in 

prescribing ampicillin/amoxicillin of 50 DDDs per 1000 practice population in the 

same quarter (95% CI 0.2% - 0.6%, p= 0.001), and the highest a 6.3% increase in 

the odds of non-susceptibility to nitrofurantoin for an increase in prescribing 

nitrofurantoin of 50 DDDs per 1000 practice population in the previous quarter (95% 

CI 1.3% -11.5%, p= 0.013) (Table 6.4).  
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There was a significant negative association in the same quarter with non-

susceptibility in the following: co-amoxiclav when prescribing ampicillin/amoxicillin, 

ciprofloxacin when prescribing co-amoxiclav, trimethoprim when prescribing 

trimethoprim and in the same quarter and in the previous 12 months for nitrofurantoin 

when prescribing nitrofurantoin (Table 6.4), indicating increased prescribing in those 

periods are associated with lower numbers of non-susceptible E. coli.         

In five of the statistical models (Models 9, 11, 12, 14 and 16) for one or more of the 

prescribing quarters the association was found to be a complex, non-linear form. 

These non-linear forms were found to be statistically significant within the models 

and therefore were retained.   

Examining associations between antibiotic prescribing and antibiotic susceptibility 

was a key objective for this study. To asses these associations, a number of potential 

explanatory variables, including general practice characteristics, registered patients 

and seasons were included in the modelling process. Sections 6.3.2.2 to 6.3.2.9 

provide the results from the statistical models for these other possible explanatory 

variables and details their relationship with non-susceptibility in E. coli isolated from 

urines specimens.       
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Table 6.4 Adjusted significant linear associations between antibiotic prescribing and non-susceptibility in E. coli, by current (0) or 
lagged (negative) quarter (models with non-linear or non-significant results not shown, see appendix 3 for full results) 

 
Model 

no. 
Antibiotic non-
susceptibility 

Antibiotic prescribed Prescribing period OR                                   
(50 DDD unit/1000 

population) 

95% 
CI (l) 

95% 
CI (u) 

P value 

1 ampicillin / amoxicillin co-amoxiclav Quarter 0 1.006 1.002 1.009 0.003 

2 ampicillin / amoxicillin ampicillin / amoxicillin Quarter 0 1.003 1.001 1.006 0.001 

4 co-amoxiclav ampicillin / amoxicillin Quarter 0 0.994 0.991 0.998 0.003 

Quarter -3 1.006 1.002 1.009 0.004 

Quarter -4 1.006 1.002 1.009 0.002 

5 ciprofloxacin co-amoxiclav Quarter 0 0.986 0.975 0.997 0.015 

8 ciprofloxacin fluoroquinolones Quarter -4 1.033 1.003 1.066 0.034 

9 co-amoxiclav co-amoxiclav Quarter -3 1.017 1.009 1.026 <0.001 

13 nitrofurantoin cephalexin Quarter -3 1.041 1.009 1.075 0.013 

14 nitrofurantoin nitrofurantoin Quarter 0 0.955 0.914 0.997 0.036 

Quarter -1 1.063 1.013 1.115 0.013 

Quarter -4 0.791 0.703 0.890 <0.001 

15 trimethoprim trimethoprim Quarter 0 0.988 0.978 0.999 0.031 

Quarter -1 1.016 1.004 1.028 0.008 

Quarter -2 1.018 1.006 1.030 0.003 

Quarter -4 1.016 1.005 1.026 0.005 

OR = adjusted odds ratio.                             
Lower and upper 95% confidence intervals = CI (l) and CI (u) respectively 
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6.4.2.2 Seasonal quarters 

In all statistical models, the March to May (spring) period was used as the 

comparator for assessing seasonal association with antibiotic non-susceptibility. 

Seven of the 16 models had statistically significant associations for one or more 

seasonal periods (when compared with spring), with non-susceptibility in E. coli 

isolated from urine specimens (Table 6.5).  

Models 1 and 3 have higher odds for reduced numbers of E. coli non-susceptible to 

ampicillin/amoxicillin in summer and autumn when prescribing co-amoxiclav and 

fluoroquinolones, but increased odds of higher numbers non-susceptible E. coli in the 

winter period when prescribing these antibiotics, compared with the spring period. 

Models 4 and 9 (non-susceptibility to co-amoxiclav when prescribing 

ampicillin/amoxicillin and co-amoxiclav, respectively), showed increased odds of 

non-susceptibility to co-amoxiclav in the summer period; however the magnitude of 

the association was much higher for the number of E. coli non-susceptible to 

co-amoxiclav in the winter periods (model 4 adjusted OR=1.173, p=<0.001 and 

model 9 adjusted OR=1.179, p=<0.001) compared with spring.    

The statistical models suggest odds for reduced numbers of E. coli non-susceptible 

to ciprofloxacin in the autumn period, compared with spring, when prescribing co-

amoxiclav (Model 5), cephalexin (Model 7) and fluoroquinolones (Model 8).   
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6.4.2.3 Practice population age groups 

The proportion of the practice population <15 years old showed significant statistical 

association with antibiotic non-susceptibility in E. coli isolates from urine specimens  

in 12 of the 16 antibiotic prescribing / antibiotic non-susceptibility combinations (Table 

6.6). The statistical models suggest that for every one percent increase in the 

proportion of the population aged <15 years the percentage the odds of 

non-susceptibility increased, by 0.5% (Model 2) to 1.5% (Model 16).  

Only model 4, co-amoxiclav non-susceptibility when prescribing ampicillin/amoxicillin, 

showed a significant linear association with the proportion of the practice population 

≥65 years, with every 1% increase in proportion of registered practice patients ≥65 

years the odds of fewer E. coli non-susceptible to co-amoxicillin increased by 1.4% 

(adjusted odd ratio=0.986, 95% CI=0.980-0.991, P=<0.001).   
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Table 6.5 Adjusted association (OR) of seasonal quarters, compared with March-May (spring), with non-susceptibility of E. coli 
isolated from urine specimens taken from patients in the community in the West Midland, March 2010-February 2014. 

Model 
no. 

Antibiotic 
non-
susceptibility 

Antibiotic 
prescribed 

June-August 
(Summer) 

September-November 
(Autumn) 

December-February 
(Winter) 

      OR 95% 
CI (l) 

95% 
CI (u) 

p value OR 95% 
CI (l) 

95% 
CI (u) 

p value OR 95% 
CI (l) 

95% 
CI (u) 

p value 

1 ampicillin / 
amoxicillin 

co-amoxiclav 0.953 0.929 0.977 <0.001 0.968 0.945 0.993 0.011 1.037 1.010 1.065 0.007 

2 ampicillin / 
amoxicillin 

ampicillin / 
amoxicillin 

0.994 0.966 1.023 0.680 1.005 0.966 1.046 0.809 1.033 0.990 1.078 0.130 

3 ampicillin / 
amoxicillin 

fluoroquinolones 0.950 0.926 0.974 <0.001 0.968 0.944 0.992 0.010 1.040 1.013 1.068 0.004 

4 co-amoxiclav ampicillin / 
amoxicillin 

1.082 1.014 1.156 0.018 1.004 0.928 1.086 0.928 1.173 1.096 1.255 <0.001 

5 ciprofloxacin co-amoxiclav 0.991 0.944 1.041 0.730 0.922 0.877 0.970 0.002 0.992 0.939 1.047 0.758 

6 ciprofloxacin ampicillin / 
amoxicillin 

1.020 0.942 1.104 0.626 0.979 0.889 1.078 0.662 1.018 0.936 1.107 0.681 

7 ciprofloxacin cephalexin 1.001 0.953 1.050 0.982 0.923 0.878 0.969 0.001 0.983 0.932 1.038 0.536 

8 ciprofloxacin fluoroquinolones 1.002 0.955 1.052 0.931 0.915 0.871 0.962 <0.001 0.982 0.930 1.036 0.497 

9 co-amoxiclav co-amoxiclav 1.081 1.037 1.127 <0.001 1.020 0.974 1.068 0.392 1.179 1.128 1.233 <0.001 

10 cephalexin cephalosporin 1.022 0.964 1.083 0.467 0.989 0.934 1.048 0.717 1.022 0.960 1.089 0.489 

11 cephalexin fluoroquinolones 1.011 0.955 1.069 0.708 0.989 0.935 1.045 0.691 1.057 0.997 1.121 0.062 

12 cephalexin nitrofurantoin 1.019 0.961 1.080 0.528 0.978 0.924 1.036 0.454 1.054 0.994 1.118 0.079 

13 nitrofurantoin cephalexin 1.021 0.940 1.109 0.618 0.928 0.853 1.009 0.079 0.966 0.887 1.051 0.422 

14 nitrofurantoin nitrofurantoin 1.041 0.957 1.131 0.350 0.939 0.862 1.024 0.153 0.961 0.872 1.058 0.415 

15 trimethoprim Trimethoprim 0.975 0.949 1.002 0.069 0.999 0.969 1.030 0.962 1.005 0.975 1.036 0.732 

16 cephalexin Trimethoprim 1.024 0.966 1.086 0.429 0.981 0.924 1.042 0.529 1.029 0.964 1.098 0.395 

Bold values signify significant statistical association. OR = adjusted odds ratio. Lower and upper 95% confidence intervals = CI (l) and CI (u) respectively 
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Table 6.6 Adjusted significant associations (OR) between proportion of practice 
population <15 years old and non-susceptibility of E. coli isolated from urine 
specimens  

 

Model 
no. 

Antibiotic 
non-
susceptibility 

Antibiotic 
prescribed 

OR 

(1%increase 
in proportion) 

95% 
CI (l) 

95% 
CI (u) 

p 
value 

1 ampicillin / 
amoxicillin 

co-amoxiclav 1.006 1.003 1.009 <0.001 

2 ampicillin / 
amoxicillin 

ampicillin / 
amoxicillin 

1.005 1.002 1.008 0.001 

3 ampicillin / 
amoxicillin 

fluoroquinolones 1.006 1.003 1.009 <0.001 

4 co-amoxiclav ampicillin / 
amoxicillin 

1.005 

 

0.997 

 

1.013 

 

0.243 

 

5 ciprofloxacin co-amoxiclav Non-linear 
form 

   

6 ciprofloxacin ampicillin / 
amoxicillin 

1.011 1.005 1.017 <0.001 

7 ciprofloxacin cephalexin Non-linear 
form 

   

8 ciprofloxacin fluoroquinolones 1.012 1.006 1.018 <0.001 

9 co-amoxiclav co-amoxiclav 1.007 

 

0.999 

 

1.016 

 

0.098 

 

10 cephalexin cephalosporin 1.014 1.008 1.020 <0.001 

11 cephalexin fluoroquinolones 1.014 1.009 1.020 <0.001 

12 cephalexin nitrofurantoin 1.013 1.007 1.018 <0.001 

13 nitrofurantoin cephalexin 1.012 1.004 1.021 0.005 

14 nitrofurantoin nitrofurantoin 1.011 1.003 1.020 0.01 

15 trimethoprim trimethoprim 1.010 1.007 1.014 <0.001 

16 cephalexin trimethoprim 1.015 1.009 1.021 <0.001 

Bold values signify significant statistical association. OR = adjusted odds ratio.                             
Lower and upper 95% confidence intervals = CI (l) and CI (u) respectively 
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6.4.2.4 General practices according to location (urban versus rural) 

Five of the 16 statistical models had a significant association between general 

practices designated to be in rural locations and antibiotic non-susceptibility in E. coli 

isolated from urine specimens. The association in all five models was negative, 

indicating that a rural setting is associated with decreased numbers of non-

susceptible E. coli (adjusted OR 0.866-0.588) (Table 6.7). 

6.4.2.5 Antibiotic non-susceptibility and single-handed practices 

A statistically significant association was found between E. coli non-susceptibility and 

single-handed practices in all 16 statistical prescribing / non-susceptibility models 

(Table 6.8). In all 16 models a single-handed practice was associated with increased 

numbers of non-susceptible E. coli isolates from urine specimens (adjusted ORs 

1.083 -1.657).  
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Table 6.7 Adjusted association (OR) between rural practice location and antibiotic 
non-susceptibility of E. coli isolated from urine specimens 

 

Model 
no. 

Antibiotic 
non-
susceptibility 

Antibiotic 
prescribed 

OR 95% 
CI (l) 

95% 
CI (u) 

P 
value 

1 ampicillin / 
amoxicillin 

co-amoxiclav 0.970 0.927 1.014 0.181 

2 ampicillin / 
amoxicillin 

ampicillin / 
amoxicillin 

0.976 0.934 1.019 0.263 

3 ampicillin / 
amoxicillin 

fluoroquinolones 0.984 0.941 1.028 0.467 

4 co-amoxiclav ampicillin / 
amoxicillin 

0.617 0.530 0.718 <0.001 

5 ciprofloxacin co-amoxiclav 1.012 0.912 1.124 0.816 

6 ciprofloxacin ampicillin / 
amoxicillin 

0.979 0.878 1.091 0.701 

7 ciprofloxacin cephalexin 0.986 0.885 1.098 0.792 

8 ciprofloxacin fluoroquinolones 0.986 0.886 1.098 0.800 

9 co-amoxiclav co-amoxiclav 0.588 0.502 0.689 <0.001 

10 cephalexin cephalosporin 0.876 0.794 0.967 0.008 

11 cephalexin fluoroquinolones 0.923 0.839 1.015 0.097 

12 cephalexin nitrofurantoin 0.928 0.844 1.021 0.123 

13 nirofurantoin cephalexin 0.866 0.771 0.974 0.016 

14 nitrofurantoin nitrofurantoin 0.866 0.773 0.972 0.014 

15 trimethoprim trimethoprim 0.991 0.936 1.049 0.755 

16 cephalexin trimethoprim 0.909 0.817 1.011 0.079 

Bold values signify significant statistical association. OR = adjusted odds ratio.                             
Lower and upper 95% confidence intervals = CI (l) and CI (u) respectively 
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Table 6.8 Adjusted association (OR) between single-handed GP practices and 
antibiotic non-susceptibility of E. coli isolated from urine specimens 

 
Model 
no. 

Antibiotic non-
susceptibility 

Antibiotic prescribed OR 95% 
CI (l) 

95% 
CI (u) 

P value 

1 ampicillin / amoxicillin co-amoxiclav 1.097 1.027 1.171 0.006 

2 ampicillin / amoxicillin ampicillin / amoxicillin 1.083 1.014 1.156 0.018 

3 ampicillin / amoxicillin fluoroquinolones 1.095 1.024 1.170 0.008 

4 co-amoxiclav ampicillin / amoxicillin 1.361 1.148 1.614 <0.001 

5 ciprofloxacin co-amoxiclav 1.458 1.267 1.676 <0.001 

6 ciprofloxacin ampicillin / amoxicillin 1.448 1.258 1.666 <0.001 

7 ciprofloxacin cephalexin 1.370 1.180 1.592 <0.001 

8 ciprofloxacin fluoroquinolones 1.371 1.182 1.590 <0.001 

9 co-amoxiclav co-amoxiclav 1.398 1.171 1.669 <0.001 

10 cephalexin cephalosporin 1.528 1.322 1.767 <0.001 

11 cephalexin fluoroquinolones 1.534 1.337 1.759 <0.001 

12 cephalexin nitrofurantoin 1.534 1.340 1.756 <0.001 

13 nitrofurantoin cephalexin 1.606 1.304 1.979 <0.001 

14 nitrofurantoin nitrofurantoin 1.657 1.352 2.031 <0.001 

15 trimethoprim trimethoprim 1.110 1.026 1.201 0.009 

16 cephalexin trimethoprim 1.603 1.395 1.841 <0.001 

OR = adjusted odds ratio. Lower and upper 95% confidence intervals = CI (l) and CI (u) respectively 
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6.4.2.6 Antibiotic non-susceptibility and gender 

Only Model 4, co-amoxiclav non-susceptibility with prescribing ampicillin / amoxicillin, 

demonstrated a significant linear association with population gender (adjusted OR 

0.241, 95% CI 0.116 – 0.502, p= <0.001). All the other 15 models demonstrated 

significant but complex non-linear forms for the gender covariate.   

6.4.2.7 Antibiotic non-susceptibility and deprivation 

A significant association was found, between E. coli non-susceptibility and the IMD 

deprivation score derived for general practices, in 12 of the 16 statistical models. 

Five of these associations were significant complex non-linear forms, with seven 

non-susceptible / prescribing combinations found to have significant linear 

associations with deprivation scores (Table 6.9). However the adjusted ORs for the 

linear associations were small, with all being <1% increase in the odds of non-

susceptibility for a unit increase in the deprivation score.  
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Table 6.9 Adjusted association (OR) between GP practice deprivation score and 
antibiotic non-susceptibility of E. coli isolated from urine specimens 

 
 

Model 
no. 

Antibiotic 
non-
susceptibility 

Antibiotic 
prescribed 

OR 

(non-linear form) 

95% 
CI (l) 

95% 
CI (u) 

P 
value 

1 ampicillin / 
amoxicillin 

Co-amoxiclav (non-linear)  
   

2 ampicillin / 
amoxicillin 

ampicillin / 
amoxicillin 

(non-linear) 
   

3 ampicillin / 
amoxicillin 

fluoroquinolones (non-linear) 
   

4 co-amoxiclav ampicillin / 
amoxicillin 

(non-linear) 
   

5 ciprofloxacin Co-amoxiclav 1.005 1.001 1.010 0.023 

6 ciprofloxacin ampicillin / 
amoxicillin 

1.005 1.000 1.010 0.056 

7 ciprofloxacin cephalexin 1.005 1.000 1.009 0.064 

8 ciprofloxacin fluoroquinolones 1.006 1.001 1.011 0.016 

9 co-amoxiclav Co-amoxiclav (non-linear) 
   

10 cephalexin cephalosporin 1.004 1.000 1.009 0.073 

11 cephalexin fluoroquinolones 1.006 1.002 1.011 0.005 

12 cephalexin nitrofurantoin 1.007 1.002 1.011 0.004 

13 nirofurantoin cephalexin 1.007 1.001 1.013 0.027 

14 nitrofurantoin nitrofurantoin 1.006 1.000 1.012 0.047 

15 trimethoprim trimethoprim 1.002 1.000 1.005 0.080 

16 cephalexin trimethoprim 1.005 1.000 1.010 0.037 

Bold values signify significant statistical association. OR = adjusted odds ratio.                             
Lower and upper 95% confidence intervals = CI (l) and CI (u) respectively 



266 

 

 

6.4.2.8 Antibiotic non-susceptibility and the number of GPs per population 

Ten of the 16 statistical models had a significant association for the number of GPs 

per 100,000 population and antibiotic non-susceptibility in E. coli isolates from urine 

specimens  (Table 6.10).  The adjusted OR for each of the 10 significant linear 

associations was >1 suggesting that an increase in the number of GPs per 100,000 

population increases the odds of increased numbers of non-susceptible E. coli in the 

practice population; however the magnitude of the increase was small for each 

increase in GP / 100,000 (adjusted ORs 0.001 to 0.002). The 10 models with 

significant associations comprised of only three antibiotics, which were assessed 

against all the prescribed antibiotic combinations used in the models; that is non-

susceptibility to: ciprofloxacin (Models 5, 6, 7, 8), cephalexin (Models 10, 11, 12, 16) 

and nitrofurantoin (Models 13, 14) (Table 6.10).     

6.4.2.9 Association of antibiotic non-susceptibility and time elapsed during study 

In eight of the 16 models there was a significant linear association between the time 

elapsed during the entire study period and non-susceptibility of E. coli isolates from 

urine specimens (Table 6.11). For the three ampicillin/amoxicillin non-susceptibility 

models (Models 1-3) and cephalexin non-susceptibility (when prescribing 

cephalosporins), the association suggested an increase in non-susceptibility for 

increases in time; whereas all the models featuring non-susceptibility of ciprofloxacin 

(Models 5-8) suggested a decrease in non-susceptibility over time. The magnitude of 

increases or decreases in non-susceptibility in relation to time was small across all 

the models (<1% change in non-susceptibility).      
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Table 6.10 Adjusted association (OR) between the number of GPs per 100,000 
practice population and antibiotic non-susceptibility of E. coli isolated from urine 
specimens 

 
Model 

no. 
Antibiotic non-
susceptibility 

Antibiotic 
prescribed 

OR 95% 
CI (l) 

95% 
CI (u) 

P 

Value 

1 ampicillin / amoxicillin co-amoxiclav 1.000 0.999 1.000 0.843 

2 ampicillin / amoxicillin ampicillin / 
amoxicillin 

1.000 0.999 1.000 0.438 

3 ampicillin / amoxicillin fluoroquinolones 1.000 1.000 1.001 0.842 

4 co-amoxiclav ampicillin / 
amoxicillin 

1.000 0.999 1.002 0.693 

5 ciprofloxacin co-amoxiclav 1.002 1.001 1.003 0.001 

6 ciprofloxacin ampicillin / 
amoxicillin 

1.002 1.001 1.003 0.002 

7 ciprofloxacin cephalexin 1.002 1.001 1.003 0.003 

8 ciprofloxacin fluoroquinolones 1.002 1.000 1.003 0.007 

9 co-amoxiclav co-amoxiclav 1.000 0.999 1.002 0.839 

10 cephalexin cephalosporin 1.001 1.000 1.002 0.044 

11 cephalexin fluoroquinolones 1.002 1.000 1.003 0.010 

12 cephalexin nitrofurantoin 1.001 1.000 1.003 0.024 

13 nitrofurantoin cephalexin 1.002 1.000 1.004 0.026 

14 nitrofurantoin nitrofurantoin 1.002 1.000 1.004 0.024 

15 trimethoprim trimethoprim 1.000 0.999 1.000 0.164 

16 cephalexin trimethoprim 1.001 1.000 1.003 0.025 

Bold values signify significant statistical association. OR = adjusted odds ratio.                             
Lower and upper 95% confidence intervals = CI (l) and CI (u) respectively 
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Table 6.11 Significant associations (ORs) between time and antibiotic non-
susceptibility of E. coli isolated from urine specimens (non-significant models not 
shown) 

 
Model 

no. 
Antibiotic 
non-
susceptibility 

Antibiotic prescribed OR          

(non-linear form) 

95% 
CI  (l) 

95% 
CI (u) 

P   Value 

1 ampicillin / 
amoxicillin 

Co-amoxiclav 1.005 1.002 1.007 <0.001 

2 ampicillin / 
amoxicillin 

ampicillin / amoxicillin 1.005 1.002 1.007 <0.001 

3 ampicillin / 
amoxicillin 

fluoroquinolones 1.005 1.002 1.007 <0.001 

4 co-amoxiclav ampicillin / amoxicillin (Non-linear)    

5 ciprofloxacin Co-amoxiclav 0.992 0.986 0.998 0.006 

6 ciprofloxacin ampicillin / amoxicillin 0.992 0.986 0.998 0.006 

7 ciprofloxacin cephalexin 0.993 0.987 0.999 0.024 

8 ciprofloxacin fluoroquinolones 0.993 0.987 0.999 0.016 

9 co-amoxiclav co-amoxiclav (Non-linear)    

10 cephalexin cephalosporin 1.009 1.002 1.017 0.013 

11 cephalexin fluoroquinolones (Non-linear)    

12 cephalexin nitrofurantoin (Non-linear)    

13 nitrofurantoin cephalexin (Non-linear)    

14 nitrofurantoin nitrofurantoin (Non-linear)    

15 trimethoprim trimethoprim (Non-linear)    

16 cephalexin trimethoprim (Non-linear)    

Bold values signify significant statistical association. OR = adjusted odds ratio.                             
Lower and upper 95% confidence intervals = CI (l) and CI (u) respectively 

 

 

 



269 

 

6.5 Discussion  

 

This section firstly discusses the findings from the descriptive analysis and then goes 

on to discuss the results from the statistical models. The main focus of the statistical 

study was to measure associations between antibiotic prescribing and non-

susceptibility in E. coli isolates from urine specimens; however with the multifactorial 

nature of AMR, this section also discusses the effect of other potential explanatory 

variables included in the model building (Table 6.2). 

    

6.5.1 Descriptive analysis  

 

6.5.1.1 Seasonal prescribing 

A temporal association was observed between prescribing ampicillin/amoxicillin and 

non-susceptibility to this antibiotic in E. coli isolated from urine specimens in this 

study, with peaks in the winter months (Figure 6.8). Seasonal increases in antibiotic 

prescribing in England and Wales has been shown to be associated with the 

increased number of winter respiratory infections diagnosed in the community 

(Fleming et al., 2003b). Increased antibiotic prescribing in winter months has been 

described in Europe (Goossens et al, 2005), including regional variation within 

countries (Achermann et al., 2011). A study in the USA in 2012 supports the findings 

reported in this study. The USA study used a dataset that covered 70% of all 

prescriptions, and seasonal relationships were demonstrated for a number of 

combinations of prescribed antibiotics and resistance, including a correlation of 



270 

 

prescribing aminopenicillins (lagged by 1 month) and resistance in all E. coli isolates 

(Sun et al., 2012b).  

Ampicillin/amoxicillin prescribing represented 30% of the total quantity of antibiotics 

prescribed in the West Midlands in 2013; and although there is a seasonal trend in 

prescribing, the proportion has not changed significantly in this 2010-2013 study 

period (Figure 6.8). In the UK, amoxicillin is not first-line treatment for UTI, but it is 

first-line treatment for many community respiratory tract infections (Public Health 

England, 2017b). Most UK general practices over-prescribe for respiratory 

conditions, particularly in the winter period, with a study reporting that the median 

practice prescribed antibiotics in 38% of consultations for ‘colds and upper 

respiratory infections’, 48% for 'cough and bronchitis' and 60% for 'sore throat’ 

(Gulliford et al., 2014).  It is therefore plausible that winter peaks in prescribing for 

respiratory conditions are contributing to the selection of non-susceptible E. coli in 

urine specimens from patients in the community.  

Inappropriate seasonal antibiotic prescribing for respiratory infections in the 

community may also be driving antibiotic resistance in hospitals, as E. coli UTI in the 

community is an important risk factor for acquiring more serious infections, such a 

bacteraemia, requiring hospital care (Abernethy et al., 2017). A randomised 

controlled trial in 2005 showed that the use of narrow-spectrum antibiotics among 

hospitalised patients with community-acquired pneumonia, rather than a broad-

spectrum antibiotic such as amoxicillin, resulted in comparable clinical outcomes 

(van der Eerden et al., 2005). The findings reported in this chapter suggest this 

approach may also result in reduced numbers of non-susceptible E. coli in the 

population.     
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6.5.1.2 Variation in antibiotic prescribing  

The descriptive analysis part of this study describes the substantial variation in 

antibiotic prescribing by general practices in the West Midlands, with a greater than 

two-fold difference between the 5th and 95th percentile for total antibiotic prescribing 

between practices in 2013. This total variation included a four-fold difference in 

ampicillin / amoxicillin, eight-fold difference for nitrofurantoin and a 10-fold difference 

for co-amoxiclav amongst practices (section 6.4.1.1). These findings are supported 

by an English study using 2004-2005 prescribing data, with the authors reporting a 

two-fold difference in total prescribing between the 10th and 90th percentiles using the 

Specific Therapeutic group Age-sex Related Prescribing Unit (STAR-PU) 

standardised population measure (Wang et al, 2009b). The quantity of antibiotic 

prescribing also varies between countries, with more than three-fold difference in 

total antibiotic prescribing between European nations, with lower rates being 

reported in more northerly countries (Goossens et al, 2005).     

Although total antibiotic prescribing declined in the UK between 1995 and 2000 it has 

since returned to similar levels observed in the 1990s (Ashiru-Oredope et al., 2012a; 

Wang et al, 2009a). The Quality, Innovation, Productivity and Prevention (QIPP) 

prescribing comparators were introduced in 2012 to reduce prescribing in primary 

care, and in particular reduce the proportion of cephalosporin and fluoroquinolone 

prescribing in general practice (Health and Social Care Information Centre, 2015). 

Cephalosporin and fluoroquinolone use has fallen markedly with the introduction of 

this initiative; however it appears that these antibiotics have been replaced by other 

antibiotics such as co-amoxiclav (Ashiru-Oredope et al., 2012b). The data presented 

in this chapter show comparatively lower proportions of cephalosporin and 
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fluoroquinolone prescribed by general practices in the West Midlands; however there 

is still a 20-fold and 10-fold difference respectively in prescribing these antibiotics 

between the 5th and 95th percentile in 2013.    

There is a paucity of published literature explaining the large variation observed in 

antibiotic prescribing between practices in England. A study using 2004-2005 

prescribing data showed small associations for higher prescribing in practices with 

higher population morbidity, shorter appointment times, non-training practices and 

practices with higher proportion of GPs who were male, >45 years old and qualified 

outside the UK. However these practice and population characteristics only 

explained 17% of the variance in prescribing between practices (Wang et al, 2009a). 

6.5.1.3 Single-handed practices 

Single-handed practices is one of the potential explanatory variables included in the 

statistical models. The descriptive analysis reported in this chapter demonstrates 

higher rates of antibiotic prescribing by single-handed practices (Figure 6.1). 

Although many single-handed practices are merging to form larger practices, 15% of 

practices have only one registered GP in the West Midlands (NHS Digital, 2016a). A 

study using English prescribing data for all drugs from 1994 to 1998 reported higher 

prescribing rates with all medicines amongst single-handed practices (Unsworth and 

Walley, 2001). A study from Norway suggests that higher prescribing, and 

prescribing broad spectrum antibiotics are associated with higher numbers of 

consultations per GP (Gjelstad et al., 2011), which may be a factor in the observed 

higher prescribing by single-handed practices reported in this study.  Variation has 

also been reported in the prescribing habits of individual GPs (intra-physician 

variability), with a study in France suggesting that up to 70% of observed variation in 



273 

 

prescribing is due to prescribers not being consistent in their own approach 

(Mousques et al., 2010). It is conceivable that the inability to meet regularly with 

practice colleagues to discuss, review and audit the management of patients may be 

a factor in ’intra-physician’ variability in a single-handed practice.   

6.5.1.4 Patient-level factors influencing prescribing practice 

As described in the background section of this chapter, understanding the 

expectations of patients in regards to antibiotic prescribing is important in 

understanding antibiotic prescribing variation in the community. Patient pressure 

may be responsible for much of the inappropriate prescribing by GPs (McNulty et al., 

2007). A systematic review of prescribing behaviour concluded that prescribers 

perceive that patients want to be prescribed an antibiotic, and this combined with the 

fear of negative consequences if they do not provide antibiotics, is driving imprudent 

prescribing (Teixeira et al, 2013).  

A ‘situational analysis’ by the WHO reported that knowledge of AMR was low in all 

WHO regions for both members of the public and healthcare workers (WHO, 2015), 

and although individual countries such as the UK have promoted national awareness 

campaigns, these had been largely ineffective (McNulty et al, 2007). A recent 

systematic international review of public knowledge and beliefs about antibiotic 

resistance concluded that the public has an incomplete understanding of AMR and 

that they do not believe they play any part in its development (McCullough et al., 

2016). Since 1999 the Department of Health has run antibiotic awareness 

campaigns aimed at both the public and healthcare professionals, and since 2008 

this has coincided with the European Antibiotic Awareness day (EAAD) on the 18th 

November (Ashiru-Oredope et al, 2012b). Using lessons learnt from previous 
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campaigns, in 2014 PHE has led an initiative called ‘Antibiotic Guardian’ to support 

people to take personal and collective action to use antibiotics wisely and overcome 

the ‘intention-behaviour’ gap. Within 3 months 11833 people had registered as 

antibiotic guardians, of which 31% were members of the public (Ashiru-Oredope and 

Hopkins, 2015). It is too early to assess the effectiveness of this campaign, but it is 

hoped that by increasing public knowledge of the misuse of antibiotics, not receiving 

a prescriptions or receiving a delayed prescriptions for antibiotics will be more 

acceptable to the general population (McNulty et al, 2007).         

 

6.5.2 Statistical models 

 

6.5.2.1 Prescribing and non-susceptibility 

A key objective of this thesis was to determine if increased antibiotic prescribing in 

the community was associated with increased numbers of non-susceptible bacteria 

causing UTI in the general practice population. The multi-level modelling, described 

in this chapter, demonstrated that small increases in antibiotic prescribing by general 

practices in the West Midlands for a range of antibiotics increased the odds that E. 

coli isolated from urine specimens from the practice population would be non-

susceptible to one or more antibiotics.  

Excessive prescribing of antibiotics is associated with antibiotic resistance at national 

and regional levels  (Goossens et al, 2005); however local prescribers are not 

always convinced that a reduction in their own prescribing will reduce resistance in 

their population (McNulty, 2001). The results reported in this chapter provide 
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evidence to show that small increases in prescribing at a practice-level significantly 

raises the odds of increased antimicrobial resistance. In order to change behaviour, 

prescribers also need to believe that the opposite behaviour, i.e. reduced 

prescribing, will reduce resistance within their practice (Björkman et al, 2013). It is 

plausible that in the absence of antibiotic selective pressure, the ‘less-fit’ antibiotic-

resistant bacterial strains will be replaced by the ‘fitter’ wild-types that are susceptible 

to commonly prescribed antibiotics (Heinemann et al., 2000). A study in Wales found  

that a statistically significant decrease in ampicillin resistance of 1.03% for every 

decrease of 50 amoxicillin items dispensed per 1000 patients per annum and a 

decrease in trimethoprim resistance of 1.08% for every decrease of 20 trimethoprim 

items dispensed per 1000 patients per annum, (Butler et al., 2007). The Welsh study 

complements the findings reported in this chapter, suggesting that small increases, 

or decreases in prescribing, effect the numbers of resistant bacteria in the local 

practice population. 

In the following sections the associations between exposure and non-susceptibility 

for specific antibiotic combinations found in the statistical models are discussed.   

6.5.2.2 Ampicillin/amoxicillin, co-amoxiclav and trimethoprim prescribing 

The findings reported in this chapter of an association between ampicillin/amoxicillin 

non-susceptibility in E .coli and prescribing levels during the same three month 

period at a population level are supported by a systematic international review of the 

effect of prescribing on AMR in individual patients. This study concluded that an 

association with resistance is strongest in the month immediately following treatment 

(Costelloe et al, 2010b). Individual patient-level studies in England in 2005 and 

Wales in 2007 also found that ampicillin/amoxicillin resistance was associated with 
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prescribing of ampicillin/amoxicillin within the previous 1-2 months (Hay et al., 

2005a;Hillier et al., 2007). The Welsh study also supports the results presented in 

this study, by describing a temporal nature between exposure and resistance for 

ampicillin / amoxicillin; that is, although they found association in the first 1-2 months, 

they did not find an association with exposure 12 months previously (Hillier et al, 

2007).   

The immediate effect described above of increased numbers of E. coli non-

susceptible to ampicillin/amoxicillin with increased prescribing of beta-lactam 

antibiotics (models 1 and 2) may be due to the selection and rapid multiplication of 

TEM beta-lactamase producing strains (Brismar et al., 1993). It is plausible that the 

selection of these strains would have a negative association with co-amoxiclav, as 

observed in Model 4, as this antibiotic remains active against common TEM beta-

lactamases.  

The successful E. coli urinary pathogenic clonal group ST131 is associated with 

combined non-susceptibility to beta-lactam antibiotics and fluoroquinolones, 

(Johnson et al., 2010b) and therefore the successful action of co-amoxiclav against 

these strains may also reduce the population non-susceptible to ciprofloxacin, as 

observed in Model 5 (Table 6.4). The negative association with non-susceptibility to 

co-amoxicillin (prescribing ampicillin/amoxicillin) and trimethoprim (prescribing 

trimethoprim) in the immediate quarter is reversed in previous prescribing quarters 

with a positive association, suggesting sufficient time had elapsed for a previously 

susceptible population to acquire resistance.    
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6.5.2.3 Nitrofurantoin, cephalosporin and fluoroquinolones prescribing 

Nitrofurantoin remains active against multi-drug resistant (MDR) E.coli, which may 

explain the negative association with non-susceptibility and increased prescribing of 

nitrofurantoin in the same quarter observed in Model 14 (Sanchez et al., 2014).  

High-level non-susceptibility to nitrofurantoin (MIC > 32mg/L) is conferred by 

mutations in the nsfA and nsfB genes (Sandegren et al., 2008a). The mutation rate 

for developing resistance in a previously susceptible population is relatively high for 

E. coli at 10-7/cell per generation (Sandegren et al, 2008a). Increased odds of non-

susceptibility when prescribing nitrofurantoin in the previous quarter were observed 

in the present study, suggesting sufficient time had elapsed for these mutations to 

have occurred and become established.  Longer term establishment of E. coli clones 

non-susceptible to nitrofurantoin is unlikely due to the severe fitness cost imposed by 

the mutations in the nsfA and nsfB genes (Poulsen et al., 2013). This biological cost 

imposed by acquiring resistance to nitrofurantoin plays a significant role in the extent 

a resistant mutant can spread within the community (Sandegren et al, 2008a). 

Therefore in the absence of the selective pressure resulting from exposure to 

nitrofurantoin, the resistant mutants will be outcompeted by the ‘fitter’ susceptible 

isolates. This applies particularly to bladder infections as an infecting organism 

needs to multiply quickly to establish itself in order to combat the flushing 

mechanism of the bladder / urinary systems (Sandegren et al., 2008b). The 

biological cost of resistance may explain the negative association observed in the 

statistical model for prescribing nitrofurantoin 12 months previously, which suggests 

that greater numbers of susceptible bacteria are found in the community after 

removal of the selective agent (Model 4). 
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In a similar ecological study based in Finland in 2009, 25 potential associations of 

antibiotic consumption and antibiotic resistance (E. coli resistance to 7 antibiotics 

was compared in different combinations with 12 antibiotics prescribed 12 months 

previously) were examined (Bergman et al, 2009). Only a few statistically significant 

associations were reported, of these nitrofurantoin use and nitrofurantoin resistance, 

and cephalosporin use and nitrofurantoin resistance correspond with the findings 

reported in this chapter for prescribing in lagged quarters. The Finnish study only 

included prescribing data from 12 months before measuring antibiotic resistance, 

which may explain why no association was found in their study between exposure 

and resistance for ampicillin/amoxicillin (see section 6.5.2.2). Unlike the Finnish 

study, the present study found an association between ciprofloxacin non-

susceptibility and fluoroquinolone prescribing (Table 6.4); however the authors of the 

Finnish study speculate that not finding this association in their study may be due to 

high CLSI breakpoints used by Finnish laboratories for determining fluoroquinolone 

resistance (Bergman et al, 2009).   

As stated previously the focus of this study was examining the association between 

antibiotic prescribing and non-susceptibility in E. coli isolated from community urine 

specimens. In the following sections other potential explanatory variables included in 

the statistical models and their association with non-susceptibility are discussed.    

6.5.2.4 Single-handed practices and non-susceptibility 

Whilst other studies report higher general prescribing by single-handed practices 

(discussed in section 6.5.1.3), the statistical models reported in this chapter suggest 

that single-handed practices in England are associated with higher levels of antibiotic 

non-susceptibility. It is possible that other factors may be involved in the higher-level 



279 

 

of non-susceptibility suggested by these models, such as links between these 

practices and other practice characteristics like rural location or deprivation status. 

As discussed previously higher general prescribing rates by single-handed practices 

may be due to higher workloads, shorter appointment times and the lack of 

opportunity to discuss prescribing protocols with colleagues (Damiani et al., 2013). 

Single-handed practices have been shown to prescribe greater quantities of broad-

spectrum antibiotics inappropriately for community respiratory infections (Otters et 

al., 2004), which may be a factor in selecting increased numbers of non-susceptible 

isolates suggested by the association reported in this chapter. Although it was found 

that 15% of practices in the West Midlands were single-handed, in many parts of 

Europe single-handed practices still predominate (Damiani et al, 2013); therefore 

these findings of increased antibiotic non-susceptibility in these practices may have 

implications for countries with higher proportions of single-handed practices.  

6.5.2.5 Seasons and non-susceptibility 

The increased odds of reduced number of non-susceptible bacteria in the summer 

and autumn and higher numbers of non-susceptibility in the winter periods, 

compared with spring, found in Model 1 and Model 3 may possibly be explained by 

increased prescribing in the winter months. As mentioned in section 6.5.1.1 

amoxicillin is recommended for the treatment of a number of respiratory infections 

usually prevalent in the winter months (Public Health England, 2017b), and in this 

chapter high levels of prescribing ampicillin/amoxicillin in winter months have been 

described (Figure 6.8). Although fluoroquinolones are not included in first-line 

recommendations for common winter respiratory conditions, the successful 

uropathogenic E. coli strain (ST131) commonly hosts a combination of beta-
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lactamase and fluoroquinolone resistance genes (Rogers et al, 2011); therefore it is 

plausible that fluoroquinolone use may also select for ampicillin/amoxicillin non-

susceptibility in E.coli isolated from urine specimens.  

The increased odds of increased numbers of E. coli non-susceptible to co-amoxiclav 

in the winter months, compared with spring, when prescribing ampicillin/amoxicillin 

(Model 4) and co-amoxiclav (Model 9) again may be explained by the selective 

pressure of large amounts of winter prescribing. Although co-amoxiclav is not first-

line for common winter respiratory infections, it is recommended as a treatment 

option if resistance is suspected, for example following treatment failure (Public 

Health England, 2017b).  

Non-susceptibility of E. coli isolates from urine specimens to cephalexin, 

trimethoprim and nitrofurantoin (in Models 10-16) were not found to be associated 

with ‘seasons’ in the statistical modelling, which may be explained by findings in the 

descriptive analysis that these antibiotics do not have seasonal prescribing patterns, 

and the antibiotics prescribed in these models are not associated with the treatment 

of winter respiratory infections.   

 

6.5.2.6 Population age and non-susceptibility 

Twelve of the statistical models show increased linear antibiotic non-susceptibility in 

E. coli isolated from urine specimens with increases in the proportion of the practice 

population <15 years of age. Two of the models (5 and 7) had significant, but non-

linear associations with non-susceptibility, and therefore only the co-amoxiclav non-

susceptibility models (Models 4 and 9) were shown not to be significantly associated 
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with the proportion of the population <15 years. Children are frequent recipients of 

community healthcare and receive disproportionally a greater number of antibiotic 

prescriptions (Ready et al., 2004). Having a higher proportion of children in the 

practice has been shown to result in a significant increase in inappropriate antibiotic 

prescribing (Otters et al, 2004).   

A recent systematic review reports higher levels of antibiotic resistance in E. coli 

isolates from urine specimens to ampicillin and ceftazidime in the 0-5 age group, but 

interestingly lower levels of co-amoxiclav resistance compared with other age groups 

(Bryce et al., 2016), which may be a factor in why an association was not found for 

co-amoxiclav and the <15 age group in the statistical models.                  

Only one model, co-amoxiclav when prescribing ampicillin/amoxicillin (Model 4), had 

a significant linear association with non-susceptibility for practices with a greater 

proportion of patients ≥ 65 years. This association was negative, showing a1.4% 

decrease in the odds of non-susceptibility for every 1% increase in the proportion 

≥65 years old. Increasing age has been shown to be a significant risk factor for 

having bacteria resistant to antibiotics, with ciprofloxacin resistance particularly 

associated with older age groups (Mulder et al., 2017; Vellinga et al., 2012). This 

association with age does not explain the finding in Model 4; however it may explain 

findings from those models measuring ciprofloxacin non-susceptibility (Models 5, 6, 7 

and 8) having a significant, albeit a non-linear complex association with practice 

population ≥ 65 years.  
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6.5.2.7 Rural location and non-susceptibility 

For all five of the statistical models with a significant association between rural 

location and non-susceptibility, the association was negative (Table 6.7). This 

suggests that for these models a rural location is associated with fewer non-

susceptible E. coli in a rural practice population. The magnitude of association with 

co-amoxiclav non-susceptibility, when prescribing ampicillin / amoxicillin and co-

amoxiclav was high for practices in rural locations, with a 38.3% and 41.2% 

respective decrease in the odds of non-susceptible E. coli in the population.  

There are a limited number of studies that describe variation in antibiotic resistance 

in urban and rural locations in developed countries, although a number of studies 

report on variations in prescribing based on practice location. Authors in the 

Netherlands suggested greater exposure to resistant bacteria found on cattle farms 

may be a factor in the small increase in prescribing they found in rural settings (de 

Jong J. et al., 2014); however in the USA, it was found that urban physicians are 

more likely to prescribe antibiotics (Mainous, III et al., 1996). A Dutch community 

prescribing study found no association between rural and urban general practice 

locations; although the study did not evaluate individual classes of antibiotics (Otters 

et al, 2004). The strong associations found for reduced odds of non-susceptibility to 

co-amoxiclav reported in rural locations reported in this chapter are not easily 

explained. It is possible that there may be interaction between practice location and 

other potential explanatory practice characteristics, such as deprivation or population 

case-mix, which may lead to higher levels of prescribing in urban settings (Wang et 

al, 2009a).                    
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6.5.2.8 Deprivation and non-susceptibility 

In this study, seven of the statistical models were found to have a significant linear 

association with deprivation scores for the general practice locations and non-

susceptibility in E. coli isolates from urine specimens ; although the magnitude of 

increase in odds of non-susceptibility for every unit increase in deprivation score was 

<1% (Table 6.9).  

A number of studies have investigated the relationship between prescribing and 

deprivation. A Welsh study found no association between prescribing and 

deprivation based on Townsend deprivation scores associated with the practice 

population, but the authors did report rates of resistance 6% higher in the most 

deprived quartile (Butler et al, 2007). Another UK study found that practices in the 

most deprived quintile prescribed 36.5% more antibiotics than those in the least 

deprived quintile (Covvey et al., 2014b). The authors propose that as employment 

and income are heavily weighted in the Scottish Index of Multiple Deprivation (SIMD) 

score used in this study, then these factors may be driving factors for the variation in 

prescribing.     

The dataset for the study described in this chapter included the multiple deprivation 

index associated with the Local Authority where the practice was located. It is 

possible that non-susceptibility may be more closely associated with individual 

indices of deprivation. A study in northern England examined routine antibiotic 

susceptibility data for E. coli isolated from community urine specimens and linked 

patients postcodes to neighbourhood deprivation scores. The five domains making-

up the Indices of Deprivation were separated into quintiles and considered 

separately in their models. They found that only one of the domains, living 
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conditions, was significantly associated with resistance against all eight antibiotics 

included in the models (OR 1.33-3.03) (Nomamiukor et al., 2015).       

6.5.2.9 Gender and non-susceptibility 

Only one statistical model (Model 4, co-amoxiclav non-susceptibility when 

prescribing ampicillin / amoxicillin) was found to have a significant, but negative 

linear association with the proportion of female patients and non-susceptible E. coli; 

with this model suggesting that increases in the proportion of female patients in the 

practice result in lower numbers of E. coli non-susceptible to co-amoxiclav (adjusted 

OR 0.241 95% CI 0.116 – 0.502, p= <0.001). All the remaining 15 models have 

significant but complex non-linear associations with gender. The incidence of UTI 

caused by E. coli is higher in females compared with male patients (Foxman, 2010), 

which may be a factor when assessing this association. It also has been reported 

that female patients are prescribed significantly more antibiotics than men in their 

lifetimes (Schroder et al., 2016). The gender of a patient has been found to be a 

significant factor in determining what type of antibiotic is prescribed, with female 

patients receiving more amoxicillin prescriptions in a Belgium study (Blommaert et 

al., 2013). With the findings from these studies, and given the association between 

increased prescribing and the development of resistance, the findings for the gender 

variable in Model 4 are not easily explained.  

6.5.2.10 Time variable and non-susceptibility 

For all the ampicillin / amoxicillin non-susceptibility models and cephalexin non-

susceptibility when prescribing cephalosporins model, there was an association with 

increased non-susceptibility with increases in time during the study period, whereas 

the opposite was found for all the ciprofloxacin non-susceptibility models (Table 
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6.11). In Chapter 5 a similar increasing trend in E. coli non-susceptibility to 

third-generation cephalosporins was demonstrated between 2010 and 2013; 

however in the study reported in Chapter 5, ciprofloxacin also had a rising trend in 

non-susceptibility in contrast to the these model results. The descriptive work in 

Chapter 5 was based on AMR surveillance data only to calculate proportions of non-

susceptible E. coli, and the magnitude for these associations in the statistical models 

with the ‘time’ covariate are comparatively small, with all representing a <1% change 

in non-susceptibility in the number of E. coli non-susceptible for each quarter 

increase in time. A study reported that the proportion of E. coli from blood cultures 

non-susceptible to third-generation cephalosporins and ciprofloxacin declined 

between 2007 and 2011, and it was suggested that these reductions in non-

susceptibility are associated with reduced hospital prescribing. The authors data, 

however, shows the decline may have ended by 2010-2011 (the period this study 

commenced) for both these antibiotics, as slight increases in non-susceptibility were 

reported in this period (Livermore et al., 2013).  

Trimethoprim was the only antibiotic of those antibiotics not included in the study 

described in Chapter 5 that was shown to have a significant rising trend in non-

susceptibility over time in the descriptive analysis (Figure 6.9); yet the trimethoprim 

non-susceptibility statistical model (Model 15) was found to have a complex non-

linear association with the ‘time’ covariate.  

6.5.2.11 Number of GPs per 100,000 patients and non-susceptibility 

The ten statistical models found to have significant linear associations (albeit with 

small magnitudes) with the number of GPs per 100,000 patients, suggest that an 

increase in the number of GPs in the population would result in an increase in the 
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number of non-susceptible bacteria in that community. These 10 models represented 

non-susceptibility in just three antibiotics; cephalexin, ciprofloxacin and 

nitrofurantoin. In contradiction to these findings, it is plausible that greater number of 

GPs per population would result in fewer consultations per GP, longer appointment 

times and therefore lower prescribing rates (Wang et al, 2009a); though a study in 

the USA found that for an increase of one standard deviation in the number of 

physician offices per capita there was a 25.9% increase in antibiotic prescriptions 

(Klein et al., 2015). Although this may explain the findings from the statistical models, 

the private sector model in the USA is different to the UK and therefore may not be 

comparable. A large English study did not find an association between the numbers 

of GPs per practice population and prescribing rates (Wang et al, 2009b).  

 

6.5.3 Limitations  

Significant statistical associations in these types of modelling studies should be 

interpreted as suggestive only as they do not necessarily imply cause – effect 

relationships. This is a retrospective ecological study and therefore is not able to 

draw inferences about individual risk of antimicrobial resistance. Mutations and 

selection of resistant strains occur at an individual patient level; however the spread 

of resistance is at the community level, and therefore population level antibiotic 

pressure may be more relevant than examining individual usage alone (Bell et al, 

2014b;Samore et al., 2006).  

DDDs were chosen as the metric for antibiotic prescribing as they are the most 

commonly applied unit of measurement and are recognised internationally as a 
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bench-marking measure. Using DDDs also allowed comparison with international 

studies comparing prescribing with antibiotic resistance. However it is recognised 

that DDDs do not always accurately reflect prescribing for children or persons with 

renal impairment (Vernaz et al., 2011). 

Multilevel modelling strengthens this study as it allows random effects in the 

population to be taken into account whilst adjusting for a number of potential 

predictor or confounding variables. Following a review of the literature only a limited 

number of studies were found that included practice characteristics and of these 

comparable interactions between these variables with either not found (Hay et al., 

2005b), or were not reported (Wang et al, 2009a). A systematic approach of testing 

potential interactions was considered for this modelling study; however this would 

have added over 30 pairwise combinations of variables. Therefore to ensure 

manageability and aid interpretation it was decided to focus on the main effects of 

the various variables included in this study.  

Given the plausibility of bacteria carrying resistance genes to multiple antibiotics, 

there will be interdependence between some of the antibiotic combinations when 

measured against the same antibiotic non-susceptibility results. Therefore with the 

large amount of testing captured in this study we would expect to encounter a 

number of type one errors for particular antibiotic combinations. A more stringent 

significance test was considered; however this was not implemented due to the 

possibility of increasing the number of false negative associations.  

This study was not able to differentiate urine specimens sent from patients in the 

community residing in long-term care facilities (LTCFs). LTCFs residents have a 
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higher proportion of UTI and the bacteria causing these infections are more likely to 

have antibiotic resistance, compared with bacteria isolated from patients living in the 

community (Rosello et al., 2017). 

The antibiotic non-susceptibility data were extracted from routine laboratory reporting 

and therefore is subject to specimen selection bias as it is likely that urine samples 

sent for microbiological examination are from patients with treatment failures or 

those that have complicated and/or severe infections (McNulty et al., 2004). 

Notwithstanding this, it is encouraging that a study in Ireland in 2012 of urines taken 

from all adult patients suspected of having a UTI attending 22 practices found similar 

antibiotic susceptibility proportions. (Vellinga et al, 2012)       

 

6.5.4 Summary  

A key objective of this study was to describe the association of antibiotic prescribing 

in the community with non-susceptibility of E. coli to a range of antibiotics commonly 

used for treating infections in primary care, taking into account other potential 

explanatory variables, such as GP practice characteristics. The statistical models 

suggest that small increases in antibiotic prescribing within a general practice 

increases the number of non-susceptible bacteria isolated in urine samples within 

the practice population. The magnitude of these associations are not large (between 

1 and 6% increase in the odds of non-susceptibility) and therefore reducing antibiotic 

prescribing may not be seen as worthwhile to only achieve small reductions in AMR. 

These models, however, are based on one quarters prescribing, with relatively small 

unit increases in prescribing at a practice level (i.e. equivalent to 10 prescriptions). It 
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is the cumulative effect of increasing number of non-susceptible bacteria in the 

practice population over a period of several months that will be instrumental in the 

emergence and spread of AMR. A systematic review of prescribing and AMR 

concluded that the residual long-term effect of prescribing is likely to be a key driver 

for high endemic levels of AMR in the community (Costelloe et al, 2010a).  

The descriptive analysis part of the study demonstrated that the large volumes of 

antibiotics likely to have been used in the treatment of respiratory conditions in winter 

months, appears to have an immediate short-term effect of increased antibiotic non-

susceptibility in bacteria causing unrelated infections. Prudent prescribing in the 

winter periods, in line with Royal College of General Practitioners guidance 

(http://www.rcgp.org.uk/clinical-and-research/toolkits/target-antibiotics-toolkit.aspx) is 

required by individual general practices to maintain a population of susceptible 

bacteria in their local population, thereby preserving the effectiveness of available 

antibiotics. 

Including potential explanatory variables in the statistical model building enabled the 

association of these with non-susceptibility to be measured. All 16 models suggested 

that single-handed GP practices are associated with increased numbers of non-

susceptible bacteria in their registered patient population. In future work described in 

Chapter 7, the interaction between practice variables will be examined, as it is 

plausible that factors such as the number of patients per GP, location of the practice 

and deprivation may also be factors when modelling the single-handed practice 

variable. Although additional study will give insight into interactions between these 

variables, the results reported in this chapter do suggest that single-handed 

practices may require additional antibiotic stewardship support and guidance.       

http://www.rcgp.org.uk/clinical-and-research/toolkits/target-antibiotics-toolkit.aspx
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Substantial variation in the quantity of antibiotics prescribed by practices in the West 

Midlands has been demonstrated in this study. Understanding this variation is central 

to interventions designed at improving antimicrobial stewardship within the 

community. The outcome measured in the statistical models was non-susceptibility 

to antibiotics. Several practice characteristics, such as the proportion of children in 

the practice, gender ratio of the patients and the number of GPs per practice 

population were found to have significant associations with non-susceptibility in 

these models. These statistical modelling results therefore may, when combined with 

information provided in the descriptive analysis and qualitative studies on prescribing 

practice, such as the GP survey described in Chapter 4, provide an insight into 

developing targeted interventions in primary care.  
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7 Overall Discussion 
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7.1 Summary of findings   

 

7.1.1 Study design 

This study was designed to test the hypothesis that surveillance data collected 

routinely from diagnostic microbiology laboratories in the West Midlands region of 

England would be able to demonstrate an association between antibiotic prescribing 

in the community and antibiotic resistance in bacteria causing urinary tract infections. 

The work described in this thesis commenced in 2009 with the enrolment of the first 

laboratories asked to report routine AMR surveillance data. During the study period 

there have been changes in laboratory methods, with the introduction of new 

technologies for identification of bacteria and antibiotic susceptibility testing, which 

were described in Chapters 5 and 6. There has also been a significant move towards 

harmonising UK and European antibiotic breakpoint standards, which was discussed 

in Chapter 5.  

The overall aim of the study was to determine whether the availability of routine 

surveillance data can influence antibiotic prescribing habits in the community by 

demonstrating an association between prescribing and AMR at general practice 

level. The study was divided into a series of objectives. A key objective was to 

establish a robust AMR surveillance system in the region (Chapter 3). To help inform 

the interpretation of these complex AMR surveillance datasets, an understanding of 

the laboratory methods and protocols used for culture, identification and antibiotic 

susceptibility testing of bacteria isolated from urine was required (Chapter 2). The 

interpretation of AMR in bacteria isolated from urine also needs to account for 

potential sampling bias, by investigating the circumstances in which urine specimens 
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are sent for microbiological examination by community physicians (Chapter 4). The 

next stage of the study plan was to determine if routine AMR surveillance data could 

be analysed to monitor the key drug/bug combinations set out in the UK five year 

AMR strategy (Department of Health, 2013) (Chapter 5). The final objective was to 

measure the association between antibiotic prescribing by individual general 

practices in the West Midlands and non-susceptibility of bacterial pathogens within 

those practice populations. To achieve this it was necessary to link routine AMR 

surveillance reports to antibiotic prescribing data for the same general practices 

(Chapter 6).  

 

7.1.2 Key findings  

 

7.1.2.1 Chapter 2 

More than one million urine specimens were processed by laboratories in the West 

Midlands each year, with approximately half of these being received from primary 

care settings. Laboratories in the West Midlands used a range of methods for the 

identification and antibiotic susceptibility testing of bacteria isolated from urine 

specimens. All but one laboratory identified all or most Gram-negative bacteria 

isolated from urine specimens to species level, and all but two laboratories used the 

latest EUCAST or BSAC breakpoint standards to determine antibiotic susceptibility. 

The introduction of automated susceptibility testing devices in West Midland 

laboratories may aid the interpretation of surveillance data by increasing the 

standardisation of methods and the range of antibiotics tested.  
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7.1.2.2 Chapter 3  

Routine AMR surveillance reporting was established in all 15 West Midland 

laboratories during the study period. The AmWeb application enabled microbiologists 

and pharmacists to monitor resistance profiles, complete local benchmarking and 

compile data for infection control reports. The development of the community AMR 

bulletin provided antibiotic prescribers in the community local AMR reports for their 

geographic areas to help inform empirical prescribing. 

7.1.2.3 Chapter 4  

The survey described in this chapter reported that only 50% of GPs indicated that 

their practice had a policy for taking urine specimens for microbiological 

investigation. There was variation in the response from GPs regarding the proportion 

that would send a urine for microbiological examination from the most common 

presentation (suspected uncomplicated UTI in a young female adult), with 40% 

indicating they would send a urine sample. There was also variance from national 

guidance by a proportion of GPs (38%) in the management of catheterised patients. 

Finally, differences were found in the response from male and female GPs, with a 

greater proportion of female GPs reporting being influenced by laboratory results, 

taking specimens and prescribing in some of the clinical scenarios.  

7.1.2.4 Chapter 5  

The study described in this chapter examined the use of routine AMR surveillance 

data to monitor antibiotic non-susceptibility for key drug/bug combinations. A linear 

increase in non-susceptibility to third-generation cephalosporins for E. coli and K. 

pneumoniae, and to ciprofloxacin for E. coli, in specimens from both hospital and 

community settings during this study period was reported. The proportions of E. coli 
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and K. pneumoniae reported non-susceptible to meropenem and/or imipenem 

remained low during the study period, with no evidence of linear trend.  

Routine antimicrobial resistance surveillance enabled, for the first time in England, 

the systematic monitoring of resistance in bacteria responsible for urinary tract 

infections in a defined large population, and thereby provided a representative 

indication of the burden of resistance in Gram-negative bacteria in hospital and 

community settings. 

7.1.2.5 Chapter 6 

Nine of 16 antibiotic prescribing / non-susceptibility combinations had a significant 

statistical linear correlation with non-susceptibility in E. coli isolated from urine 

specimens taken from patients in the community; demonstrating that small increases 

in antibiotic prescribing in individual general practices reduces the number of 

susceptible bacteria in the practice population. 

Single-handed general practices were shown to have a significant association with 

increased numbers of non-susceptible E. coli isolates from urine specimens  in their 

practice populations. Increased prescribing of ampicillin / amoxicillin in winter periods 

was shown to be associated with increased non-susceptibility of E. coli isolated from 

urine specimens.    
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7.1.3 Strengths and Limitations  

Each chapter details the strengths and limitations for the study being reported. In this 

section the strengths and limitations associated with the key study objectives, drawn 

from various parts of the study, will be summarised. 

7.1.3.1 Delivery and interpretation of routine AMR surveillance data 

As described in Chapters 3 and 5, routine AMR surveillance provides a robust, 

sustainable and cost-effective data for monitoring trends in AMR and detecting 

emerging public health threats. A further strength of this surveillance is the ability to 

automate the data collection, which removed the burden of reporting from 

laboratories and provided the timely delivery of surveillance data.  

As discussed in Chapters 3 and 5, interpretation of routine AMR surveillance data 

are hampered by variation in laboratory methods and bias introduced by specimen 

sampling policies, particularly for specimens taken in the community (McNulty et al., 

2006). Although the results of the laboratory survey reported in Chapter 2 indicate 

that a wide range of methods and protocols were used by laboratories in the West 

Midlands, nearly all laboratories had adopted the latest antibiotic breakpoint 

standards and all took part in an internationally recognised monthly quality control 

scheme (NEQAS, 2017).  

Variation by GPs and practice nurses in referring urine specimens for microbiological 

examination impedes the generalisability of routine AMR surveillance data (Hayward 

et al., 2007). It has been reported that results of specimens sent from complicated 

UTI and treatment failures are the predominant specimens received by in 

laboratories, as sending urine for examination from the most common presentation 
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of UTI (uncomplicated UTI in female patients) is not recommended in national 

guidelines (McNulty et al., 2011).  Findings from the survey reported in Chapter 4, 

and a similar study from Wales (Howard et al., 2001), suggest that GPs do not 

always follow national guidelines, as a significant proportion of samples from 

uncomplicated UTI infections (40% and 56% respectively) are sent to laboratories for 

microbiological examination. Further studies are required to investigate AMR using 

systematic specimen collection in general practice; however, it is reassuring that a 

study that collected specimens from all patients suspected of having a UTI (Vellinga 

et al., 2012) reported similar levels of AMR to that reported in Chapters 5 and 

Chapter 6 of this thesis.  

7.1.3.2 Understanding specimen collection and prescribing protocols 

The response rate of the survey of GPs reported in Chapter 4 was low (11.3%); 

however the demographic profile of responders to the survey was comparable with 

all West Midland GPs (section 4.5.5). The findings reported from this survey, 

therefore, provided an insight into why specimens are collected, and in what 

circumstances antibiotics are prescribed in cases of suspected UTI in the 

community. This understanding of the variety of clinical conditions leading to urine 

specimens being examined in laboratories helps interpret routine AMR surveillance 

as discussed in Chapter 5.  

It was not possible to generalise findings from the free-text comments provided by 

GPs in the survey reported in Chapter 4, as the number of comments was relatively 

small. The themes that did emerge from this analysis, will require further study using 

qualitative research methods.   
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7.1.3.3 Understanding the effect of general practice characteristics and prescribing 

on antibiotic resistance in organisms isolated from community urine 

specimens 

A strength of the study reported in Chapter 6 was the use of multi-level statistical 

modelling. This technique allowed for a number of predictor or confounding variables 

to be assessed for their effect on E. coli non-susceptibility, whilst adjusting for 

variation within the West Midland population. These types of ecological studies do 

have some limitations and results reported in this chapter should not be used to 

suggest cause-effect relationships between antibiotic prescribing and non-

susceptibility; but rather be used to give an indication, and extent, of associations 

between various explanatory or confounding variables and antibiotic non-

susceptibility  

 

7.2 What this thesis adds  

 

7.2.1 Implications for Public Health 

Antimicrobial resistance is one of the most important threats to public health and the 

problem is accelerating across all parts of the world (WHO, 2015). The use of 

antibiotics is the key driver of antibiotic resistance (CDC, 2014); therefore reducing 

inappropriate antibiotic prescribing is central to strategies aimed at tackling this 

major public health problem.  

The results of this thesis have shown that there is a wide variation in antibiotic 

prescribing between general practices in the West Midlands region (Chapter 6). It 
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has also shown that the large volume of antibiotics prescribed in the winter periods 

for respiratory infections is reducing the numbers of susceptible bacterial pathogens 

in the community causing unrelated infections. The survey of GPs, reported in 

Chapter 4, provides some insight into the observed variance in prescribing by 

showing that national guidance / protocols designed to standardise the prescribing of 

antibiotics and the referral of specimens for microbiological analysis are not 

consistently followed. Combined with other findings reported in this thesis, such as 

single-handed general practiced being associated with antibiotic non-susceptibility 

(Chapter 6), this work will help inform the design of interventions designed to reduce 

overall prescribing in the community.  

Previous intervention strategies have struggled to convince GPs that changes in 

their prescribing practice can impact AMR in the community (Björkman et al., 2013). 

This thesis demonstrates that relatively small increases in antibiotic prescribing 

within a general practice can increase the number of non-susceptible bacteria within 

the local population. These findings will therefore strengthen the evidence base and 

support new Public Health campaigns to reduce the consumption of antibiotics. 

       

7.2.2 Implications for clinical practice 

 

The laboratory survey (Chapter 2) found that in 2011 a number of laboratories 

reported using non-standard techniques (i.e. direct antibiotic susceptibility testing 

from urine, or the modified Stokes method) which have been shown to be unreliable 

or unsafe (Gosden et al., 1998). This thesis has demonstrated that it is feasible to 

capture and analyse routine AMR surveillance data from diagnostic laboratories and 
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provide web tools for microbiologists and pharmacists to allow benchmarking of 

results between laboratories. The case studies described in Chapter 3 (section 3.4) 

show how routine surveillance data are able to change laboratory practice, by 

improving the quality and safety of individual test results (case studies A and C). The 

laboratories contacted to inform of ‘unusual’ susceptibility test results were unaware 

of increased non-susceptibility results being reported by their laboratories, compared 

with regional and national averages.       

The implementation of routine AMR surveillance in the West Midlands, as described 

in Chapter 3, has enabled the monitoring of resistance within both hospitals and the 

community. The reporting tools developed for this study (AmWeb and the 

Community AMR bulletin), and published studies resulting from this thesis, have 

helped policy makers develop new prescribing guidance. Anecdotal reports received 

from GPs following the release of the Community AMR bulletin in 2012 informed that 

GPs were now prescribing nitrofurantoin for uncomplicated UTI instead of 

trimethoprim, due to the higher levels of resistance reported in this bulletin. In 2014, 

based on routine AMR surveillance, PHE changed the national guidelines to 

recommend nitrofurantoin, in place of trimethoprim, for first-line treatment of 

uncomplicated UTI (Public Health England, 2017).     

As discussed above, this thesis has shown that the actions of individual GPs can 

affect the development of AMR in their locality. Providing practice level evidence will 

support community pharmacists and healthcare commissioners in developing 

appropriate local policies and interventions to help convince community physicians of 

the benefits of appropriate antibiotic prescribing.    
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7.2.3 Implications for research  

This thesis has demonstrated the value of providing robust antimicrobial 

susceptibility data to monitor key antibiotic / bacterial combinations as specified in 

national strategies (Department of Health, 2013). The thesis has also demonstrated 

the value of linking AMR surveillance reports to other datasets (e.g. general practice 

demographics and antibiotic prescribing) to measure associations with AMR. Linking 

AMR reports with prescribing data reported in this thesis has influenced the design of 

new studies. A PHE pilot study is being planned to link patient-level prescribing data 

with routine AMR reports, and potentially GP management system data. This will 

deliver a powerful dataset to enable PHE researchers to reveal the clinical context 

behind individual antibiotic prescriptions, and help determine patient-level risk factors 

associated with the development of AMR.         

Community prescribers are often a difficult audience to engage with, with the 

response rate to traditional surveys, even those offering financial incentives, being 

poor (Hillier et al., 2006). The NHS organisational structure changed in April 2013, 

with PCTs being replaced by the introduction of Clinical Commissioning Groups 

(CCGs) (https://www.nhscc.org/ccgs/). The GP survey described in this thesis, found 

that most GPs used prescribing formularies provided by their PCTs; therefore further 

research is required to determine if these formularies are still used or if these have 

been replaced by CCGs. Some of the findings of the GP survey described in Chapter 

4, such as different attitudes to prescribing by male and female GPs, and the 

inclination for some responders to send all urines for microbiological examination, 

require a qualitative research approach in order to understand the reasoning behind 

these differences. 

https://www.nhscc.org/ccgs/


302 

 

7.3 Next steps 

 

Two follow-up studies are being planned. Firstly a statistical study to determine if 

there are significant interactions between various potential explanatory variables 

investigated in Chapter 6. As previously discussed the development of the statistical 

models focused on the main outcomes for the potential explanatory or confounding 

variables. It is plausible that interactions between these variables may be a factor in 

their associations with antibiotic non-susceptibility. For example, the findings that 

single-handed practices are associated with increased numbers of non-susceptible 

E. coli may also be linked to single-handed GPs being associated with other 

potential explanatory variables such as location (e.g. rural or urban areas) or 

particular demographics within the registered population (Wilson et al., 1999). 

Secondly, routine AMR data from the West Midlands collated for this thesis, were 

used in a collaborative study with members of the national PHE AMR surveillance 

unit. This collaborative study was designed to compare AMR in the general 

community, for adults aged 70 and over, with AMR reported from locations 

associated with long-term care facilities (LTCFs). The study found four times the rate 

of AMR in LTCFs compared with the general community (Rosello et al., 2017). It is 

now intended to analyse and model antibiotic prescribing from these LTCF locations, 

as higher levels of prescribing in these facilities may be a factor in driving the 

observed increase in AMR.        
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7.4 Closing remarks 

 

One of the aims of antimicrobial stewardship is to preserve the efficacy of antibiotics 

that are currently available by understanding which infections remain susceptible to 

therapy by particular drugs, thereby minimising unintended consequences and 

limiting the spread of AMR (Ashiru-Oredope et al., 2012). This thesis demonstrates 

that routine AMR surveillance data can both guide effective antibiotic treatment, by 

informing of the susceptibility of circulating bacteria in the community and hospitals, 

and be used to inform on the consequence of excessive or inappropriate use.  

The studies that make up this thesis have a focus on AMR in bacteria causing 

community UTIs. Until recently, health professionals and members of the public have 

been led to believe that AMR is mainly an issue within hospitals (Livermore, 2012); 

however, frequently newly admitted patients from the community are the source of 

MDR bacteria in hospitals (Levy, 2002). These patients may be infected or colonised 

with resistant bacteria as a direct result of inappropriate antibiotic use in the 

community (Abernethy et al., 2017).  

As described in the introduction to Chapter 1, MDR Gram-negative resistance genes 

are now found widely in the environment and are being distributed in a cyclical 

manner (Figure 7.1).  
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Figure 7.1The principle transfer pathways for antibiotic resistance genes 
(Department of Health, 2012). 
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The movement of people and rapid changes in agricultural practice are driving the 

spread of AMR across the world and creating a serious public health crisis (Hawkey, 

2015). Multifaceted strategies, based on a one-health approach, are required to 

reduce risks and mitigate the effects of antibiotic resistance at the interface between 

humans, animals and the environment (Wellington et al., 2013).       

In conclusion, the misuse of antibiotics impacts those providing secondary and 

primary healthcare, as well as individuals, families and communities. Therefore 

everyone has a role to play in ensuring this precious resource is preserved for future 

generations.      
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Appendix 1: Survey of West Midland laboratories  

 

 

Screen 1 

 

Introduction 

 
Thank you for entering this short HPA West Midlands survey. The survey should take 15-20 

minutes to complete. We greatly appreciate your time in answering these questions. The 

responses to this survey will be used to better understand antimicrobial surveillance data from 

urinary infections and help inform analysis and develop meaningful reports.  

 

1.  Please select your laboratory from the drop down list* 

   

    

2.  Please select your professional group from the drop down list* 

   

    

 

 

  

 

Screen 2 

 Identification of urinary isolates  

 

3.  How are the following organisms identified from urinary isolates. Please tick all relevant boxes 

for each organism.* 

      

Microscopy 

(e.g. gram 

stain) 

  
Colonial 

morpholgy 
  

Biochemical 

tests (e.g. 

API) 

  

Automated 

testing 

device 

(e.g. Vitek) 

  

Enzyme 

tests (e.g. 

oxidase, 

coagulase) 
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Non lactose 

fermenting gram 

negative bacilli 

               

Lactose fermenting 

gram negative bacilli 
               

Staphylococcus spp.                

Streptococcus spp.                

Enterococcus spp.                
 

   

4.  To what level are the following urinary isolates routinely identified. Please select most 

appropriate option.* 

  

    
Family (e.g. 

Coliform) 
  

Genus (e.g. 

Klebsiella sp.) 
  

Species (e.g. 

Klebsiella 

pneumoniae) 

Non lactose fermenting 

gram negative bacilli 

 

 

         

Lactose fermenting 

gram negative bacilli 
         

Staphylococcus spp.          

Streptoccus spp.          

Enterococcus spp.          
 

    

 

  

Screen 3 

 Antimicrobial Susceptbility Tests  
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5.  Please state the method(s) used within the last 12 months to assess antimicrobial susceptibility of 

bacteria isolated from urinary specimens 

 

  

    Please select method(s) used for urinary isolates 

Modified Stokes 

Method 
   

BSAC Disc Test    

Break Points    

E Test    

Broth/Agar dilution    

Vitek    

Phoenix    

Other    
 

    

6.  Please can you provide an approximate date that the testing method was introduced? 

 

  

    
Please state approximate 

date of introduction 
  

Please state approximate 

date the test was withdrawn 

(if applicable) 

Modified Stokes 

Method 
      

BSAC Disc Test       

Break Points       

E Test       

Broth/Agar dilution       
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Vitek       

Phoenix       

Other       
 

    

7.  If more than one method is used to asses antimicrobial susceptibility from urinary isolates then 

please state the criteria used to determine when a technique is applied?  

 

  

 

   

8.  Has the criteria for selecting the testing technique changed over the last 12 months and if so 

when? 

 

  

 

    

9.  If there has been a change in criteria then what was the reason for the change? 

 

  

 

    

 

  

Screen 4 
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 Antibiotic Panels  

 

10.  Please describe the antibiotic panels used for urinary isolates and whether they are used as first 

or second line panels (e.g. gram negative first line) * 

  

Panel 

a)   

Panel 

b)   

Panel 

c)   

Panel 

d)   

Panel 

e)   

Panel 

f)   

Panel 

g)   

Panel 

h)   

Panel 

i)   

Panel 

j)   

 

    

11.  When were the panels introduced (approximate date)? * 

  

Panel 

a)   

Panel 

b)   

Panel 

c)   

 



311 

 

Panel 

d)   

Panel 

e)   

Panel 

f)   

Panel 

g)   

Panel 

h)   

Panel 

i)   

Panel 

j)   

 

    

12.  Have any of the above panels been modified over the last 12 months and if so which ones and 

how have they changed? 

 

  

 

    

 

  

 

Screen 5 

 Antibiotics Tested  

 

13.  Please select antibiotics in each panel 

      Panel a   Panel b   Panel c                      
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1                               

2                               

3                               

4                               

5                               

6                               

7                               

8                               

 

 

  

 

Screen 6 

 Reporting rules and changes to policies  

 

14.  Does the laboratory use rule-based reporting (i.e. results reported by rule for particular 

organisms/antibiotics rather than results of antibiotic susceptibility testing e.g. all H. influenzae 

isolates reported as resistant to erythromycin by rule)? 

If yes then please describe 

  

 

    

15.  Have you any plans to change antimicrobial susceptibility testing techniques in the near future? 

If so what changes are planned? 
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16.  Have you any plans to change urine isolates identification methods in the near future? 

If so what changes are planned? 

  

 

    

17.  Do you plan to change policies involving the criteria used to select organisms (isolated from urine) 

for identification or the antibiotics tested in the near future? 

If so what changes are planned? 
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Screen 7 

 Personal views and observations  

 

18.  Have you noticed any particular trends in antimicrobial resistance in the last 12 months? 

 

  

 

  

  

 

 

19.  Is there anything else that you would like to add regarding the identification of urinary isolates, 

antimicrobial testing or antimicrobial resistance surveillance?  
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 Appendix 2: Survey of West Midlands GPs  
 

 

Welcome to this HPA Survey 

 The HPA Regional Epidemiology Unit is developing an Antimicrobial Resistance (AMR) surveillance bulletin for 
GP's in the West Midlands. To help understand potential variation in collection of samples for microbiological 
investigation and antimicrobial prescribing habits we would be very grateful if you could complete this short 

survey on the management of UTI.  

 

1.  Please provide the name of your practice (primary if you have more than one)* 

   

    

2.  Please enter your national Practice Code or if not known the Practice Postcode 

 

  
    

National Practice 

Code (e.g. 
M123456) 

  
OR Practice Post 

Code 
  

*       
  

 

    

3.  Your age?* 

  <35 years   35-45 years   46-55 years   >55 years   
 
 

    
   

4.  Please can you enter the number of years since qualified. 
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5.  Your gender?* 

  Male   Female   
 
 

    
   

 

  

 

6.  Is there a practice policy or protocol for sending urine specimens for microbiological 
examination?* 

  Yes No 

    

7.  Does your practice use specific prescribing formularies ?* 
If YES then please state the source of this guidance (e.g. HPA, PCT, BNF etc) 

  Yes No 

    

8.  If the answer to question 7 is YES then please state the source of the prescribing 
formularie used in your practice (e.g. PCT, HPA, BNF) 
 

   

    

9.  Do laboratory antimicrobial susceptibility results for urinary isolates influence your 
antibiotic prescribing for: 
 

  
    Always   Frequently   Infrequently   Never   

General empirical 
prescribing:             
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In the case of a 
treatment failure:             

  

When resistance 
is reported to 

initial prescribed 
agent:  

            
  

 

    
   

10.  Based on your experience of treating patients presenting with clinically suspected UTI 
what approximate proportion would you request a urine sample for microbiological 
examination [%]?* The value must be between 0 and 100, inclusive. 

  %  

    

11.  Has your practice reviewed the management of urinary tract infections within the last 12 
months?* 

  Yes No 

    
 

  

For each of the scenario’s below please state whether (a) a urine sample would be taken for microbiological examination 
and (b) an antibiotic agent prescribed (if prescribed empirically)  

  

 

12.  Case 1. A 20 year old lady re-attends surgery and complains that the loin pain and frequent urination symptoms reported to you the 
previous week had worsened despite finishing a complete course of trimethoprim (no sample was taken previously).   

 

  

    Yes   No   

Would you collect a 
urine sample for 
microbiological 
examination? 
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Would you prescribe an 
antibiotic?       

  

 

    
   

13.  Case 3. A 43 year old woman complains of pain passing urine and frequency. She feels well otherwise and has not previously been 
treated for a UTI. 

 

  

    Yes   No   

Would you collect a 
urine sample for 
microbiological 
examination? 

      
  

Would you prescribe an 
antibiotic?       

  

 

    
   

14.  Case 4. A 51 year-old man attends your surgery complaining of pain passing urine and perineal tenderness. On examination you find 
suprapubic tenderness and a temperature of 38.5 C is measured. 

 

  

    Yes   No   

Would you collect a 
urine sample for 
microbiological 
examination? 

      
  

Would you prescribe an 
antibiotic?       

  

 

    
   

15.  Case 5. During a routine antenatal clinic an 18 year old girl who is 20 weeks pregnant produces a cloudy urine sample. She reports no 
symptoms or discomfort. The urine dipstick tests positive for nitrite but negative for leukocytes and protein. 
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    Yes   No   

Would you collect a 
urine sample for 
microbiological 
examination? 

      
  

Would you prescribe an 
antibiotic?       

  

 

    
   

16.  Case 6. You visit an 82 year old female in a nursing home. She is catheterised, afebrile and has no symptoms but the staff inform you 
that the urine is cloudy. 

 

  

    Yes   No   

Would you collect a 
urine sample for 

microbiological 
examination? 

      
  

Would you prescribe an 

antibiotic?       
  

 

    
   

17.  Please let us know if you have any additional comments regarding this survey. 
Please enter any comments in the box below. 
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Appendix 3: Statistical model results (followed by meta-data description) 

Key 

Non-linear form 

 

 

 

Model 

no.

Antibiotic non-

susceptibility Antibiotic prescribed

Adjusted 

OR (or non-

linear form) P  value 95% CI(l) 95% CI (u)

Adjusted OR 

(or non-

linear form) P  value 95% CI(l) 95% CI (u)

Adjusted 

OR (or non-

linear form) P  value 95% CI(l) 95% CI (u)

1 ampicillin / amoxicillin Co-amoxiclav 0.953 <0.001 0.929 0.977 0.968 0.011 0.945 0.993 1.037 0.007 1.010 1.065

2 ampicillin / amoxicillin ampicillin / amoxicillin 0.994 0.680 0.966 1.023 1.005 0.809 0.966 1.046 1.033 0.130 0.990 1.078

3 ampicillin / amoxicillin fluoroquinolones 0.950 0.000 0.926 0.974 0.968 0.010 0.944 0.992 1.040 0.004 1.013 1.068

4 co-amoxiclav ampicillin / amoxicillin 1.082 0.018 1.014 1.156 1.004 0.928 0.928 1.086 1.173 <0.001 1.096 1.255

5 ciprofloxacin Co-amoxiclav 0.991 0.730 0.944 1.041 0.922 0.002 0.877 0.970 0.992 0.758 0.939 1.047

6 ciprofloxacin ampicillin / amoxicillin 1.020 0.626 0.942 1.104 0.979 0.662 0.889 1.078 1.018 0.681 0.936 1.107

7 ciprofloxacin cephalexin 1.001 0.982 0.953 1.050 0.923 0.001 0.878 0.969 0.983 0.536 0.932 1.038

8 ciprofloxacin fluoroquinolones 1.002 0.931 0.955 1.052 0.915 <0.001 0.871 0.962 0.982 0.497 0.930 1.036

9 co-amoxiclav Co-amoxiclav 1.081 <0.001 1.037 1.127 1.020 0.392 0.974 1.068 1.179 <0.001 1.128 1.233

10 cephalexin cephalosporin 1.022 0.467 0.964 1.083 0.989 0.717 0.934 1.048 1.022 0.489 0.960 1.089

11 cephalexin fluoroquinolones 1.011 0.708 0.955 1.069 0.989 0.691 0.935 1.045 1.057 0.062 0.997 1.121

12 cephalexin nitrofurantoin 1.019 0.528 0.961 1.080 0.978 0.454 0.924 1.036 1.054 0.079 0.994 1.118

13 nirofurantoin cephalexin 1.021 0.618 0.940 1.109 0.928 0.079 0.853 1.009 0.966 0.422 0.887 1.051

14 nitrofurantoin nitrofurantoin 1.041 0.350 0.957 1.131 0.939 0.153 0.862 1.024 0.961 0.415 0.872 1.058

15 trimethoprim trimethoprim 0.975 0.069 0.949 1.002 0.999 0.962 0.969 1.030 1.005 0.732 0.975 1.036

16 cephalexin trimethoprim 1.024 0.429 0.966 1.086 0.981 0.529 0.924 1.042 1.029 0.395 0.964 1.098

Qtr2 Qtr3 Qtr4
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Model 

no.

Adjusted 

OR (or 

non-

linear 

form) P  value 95% CI(l)

95% CI 

(u)

Adjusted 

OR (or 

non-

linear 

form) P  value 95% CI(l)

95% CI 

(u)

Adjusted 

OR (or 

non-

linear 

form) P  value 95% CI(l)

95% CI 

(u)

1 1.097 0.006 1.027 1.171 0.970 0.181 0.927 1.014 1.000 0.002 1.000 1.000

2 1.083 0.018 1.014 1.156 0.976 0.263 0.934 1.019 1.000 0.001 1.000 1.000

3 1.095 0.008 1.024 1.170 0.984 0.467 0.941 1.028 1.000 0.001 1.000 1.000

4 1.361 <0.001 1.148 1.614 0.617 <0.001 0.530 0.718 1.000 <0.001 1.000 1.000

5 1.458 <0.001 1.267 1.676 1.012 0.816 0.912 1.124 1.005 0.023 1.001 1.010

6 1.448 <0.001 1.258 1.666 0.979 0.701 0.878 1.091 1.005 0.056 1.000 1.010

7 1.370 <0.001 1.180 1.592 0.986 0.792 0.885 1.098 1.005 0.064 1.000 1.009

8 1.371 <0.001 1.182 1.590 0.986 0.800 0.886 1.098 1.006 0.016 1.001 1.011

9 1.398 <0.001 1.171 1.669 0.588 <0.001 0.502 0.689 1.000 <0.001 1.000 1.000

10 1.528 <0.001 1.322 1.767 0.876 0.008 0.794 0.967 1.004 0.073 1.000 1.009

11 1.534 <0.001 1.337 1.759 0.923 0.097 0.839 1.015 1.006 0.005 1.002 1.011

12 1.534 <0.001 1.340 1.756 0.928 0.123 0.844 1.021 1.007 0.004 1.002 1.011

13 1.606 <0.001 1.304 1.979 0.866 0.016 0.771 0.974 1.007 0.027 1.001 1.013

14 1.657 <0.001 1.352 2.031 0.866 0.014 0.773 0.972 1.006 0.047 1.000 1.012

15 1.110 0.009 1.026 1.201 0.991 0.755 0.936 1.049 1.002 0.080 1.000 1.005

16 1.603 <0.001 1.395 1.841 0.909 0.079 0.817 1.011 1.005 0.037 1.000 1.010

Single GP registered in practice Rural practice location Deprivation score 
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Model 

no.

Adjusted OR (or non-linear 

form) P  value 95% CI(l) 95% CI (u)

Adjusted 

OR (or 

non-

linear 

form) P  value 95% CI(l)

95% CI 

(u)

1 6699.167 0.031 2.283 19700000.000 4.025 <0.001 1.979 8.183

2 5716.261 0.033 2.016 16200000.000 3.202 0.001 1.575 6.511

3 150042.000 0.010 18.072 1250000000.000 3.918 <0.001 1.920 7.993

4 0.241 <0.001 0.116 0.502 3.087 0.243 0.466 20.466

5 14700000.000 0.044 1.574 138000000000000.000 0.000 0.031 0.000 0.187

6 83.872 0.013 2.558 2749.696 11.880 <0.001 3.076 45.884

7 503000000000000.000 0.005 30475.900 8300000000000000000000000.000 0.000 0.014 0.000 0.014

8 681000000.000 0.041 2.337 198000000000000000.000 17.048 <0.001 4.426 65.666

9 76.800 0.032 1.462 4035.011 5.209 0.098 0.738 36.750

10 13100000000000000000000.000 <0.001 65100000000.000 2660000000000000000000000000000000.000 23.962 <0.001 6.252 91.842

11 1973.927 <0.001 52.776 73829.140 26.559 <0.001 7.243 97.382

12 774000000.000 0.006 307.532 1950000000000000.000 18.050 <0.001 4.934 66.041

13 206809.600 <0.001 726.828 58800000.000 17.405 0.005 2.352 128.804

14 9624.475 0.001 44.189 2096217.000 13.163 0.010 1.838 94.278

15 0.000 0.007 0.000 0.000 10.779 <0.001 4.818 24.119

16 1612.423 <0.001 39.512 65800.820 31.293 <0.001 7.922 123.606

Gender Proportion ≤14 years old
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Model 

no.

Adjusted OR (or non-

linear form) P  value 95% CI(l) 95% CI (u)

Adjusted 

OR (or 

non-

linear 

form) P  value 95% CI(l)

95% CI 

(u)

Adjusted 

OR (or 

non-

linear 

form) P  value 95% CI(l)

95% CI 

(u)

1 0.803 0.375 0.495 1.304 1.000 0.843 0.999 1.000 1.005 <0.001 1.002 1.007

2 0.735 0.209 0.455 1.188 1.000 0.438 0.999 1.000 1.005 <0.001 1.002 1.007

3 0.847 0.505 0.521 1.379 1.000 0.842 1.000 1.001 1.005 <0.001 1.002 1.007

4 0.036 <0.001 0.009 0.137 1.000 0.693 0.999 1.002 1.004 <0.001 1.003 1.004

5 6510000000000.000 <0.001 22500000.000 1880000000000000000.000 1.002 0.001 1.001 1.003 0.992 0.006 0.986 0.998

6 6680000000.000 <0.001 525162.800 84900000000000.000 1.002 0.002 1.001 1.003 0.992 0.006 0.986 0.998

7 683000000000000.000 <0.001 1620000000.000 287000000000000000000.000 1.002 0.003 1.001 1.003 0.993 0.024 0.987 0.999

8 424000000.000 <0.001 27519.870 6550000000000.000 1.002 0.007 1.000 1.003 0.993 0.016 0.987 0.999

9 0.000 0.007 0.000 0.007 1.000 0.839 0.999 1.002 1.004 <0.001 1.003 1.004

10 0.893 0.833 0.311 2.562 1.001 0.044 1.000 1.002 1.009 0.013 1.002 1.017

11 1.135 0.808 0.410 3.138 1.002 0.010 1.000 1.003 1.002 0.002 1.001 1.004

12 1.111 0.842 0.396 3.119 1.001 0.024 1.000 1.003 1.003 0.003 1.001 1.004

13 2.212 0.261 0.555 8.826 1.002 0.026 1.000 1.004 1.006 <0.001 1.003 1.008

14 235000000000.000 <0.001 896843.700 61500000000000000.000 1.002 0.024 1.000 1.004 1.006 0.002 1.002 1.009

15 0.724 0.280 0.402 1.301 1.000 0.164 0.999 1.000 1.001 0.027 1.000 1.001

16 1.208 0.734 0.406 3.595 1.001 0.025 1.000 1.003 1.003 0.049 1.000 1.005

Proportion ≥65 years old GP/100,000 population Time
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Model 

no.

Adjusted 

OR (or 

non-

linear 

form) P  value 95% CI(l)

95% CI 

(u)

Adjusted 

OR (or 

non-

linear 

form) P  value 95% CI(l)

95% CI 

(u)

Adjusted 

OR (or 

non-

linear 

form) P  value 95% CI(l)

95% CI 

(u)

1 1.000 0.003 1.000 1.000 NS NS

2 1.000 0.001 1.000 1.000 1.000 0.057 1.000 1.000 NS

3 1.000 0.564 0.999 1.000 NS NS

4 1.000 0.003 1.000 1.000 1.000 0.143 1.000 1.000 1.000 0.609 1.000 1.000

5 0.999 0.015 0.999 1.000 1.000 0.436 0.999 1.000 1.000 0.261 1.000 1.001

6 1.000 0.226 1.000 1.000 1.000 0.254 1.000 1.000 1.000 0.506 1.000 1.000

7 1.000 0.555 0.999 1.002 1.000 0.792 0.998 1.001 1.000 0.883 0.998 1.002

8 1.000 0.567 0.999 1.002 0.999 0.329 0.998 1.001 0.999 0.280 0.998 1.001

9 1.000 0.005 1.000 1.000 1.000 <0.001 1.000 1.000 1.000 0.465 0.999 1.000

10 1.001 0.242 0.999 1.002 1.000 0.737 0.998 1.002 1.001 0.556 0.999 1.003

11 1.000 0.008 1.000 1.000 1.000 0.033 1.000 1.000 NS

12 1.000 0.004 1.000 1.000 0.999 0.310 0.998 1.001 1.000 0.002 1.000 1.000

13 1.000 0.942 0.997 1.002 1.000 0.923 0.997 1.003 0.999 0.558 0.997 1.002

14 0.998 0.036 0.996 1.000 1.003 0.013 1.001 1.005 1.001 0.469 0.999 1.003

15 0.999 0.031 0.999 1.000 1.001 0.008 1.000 1.001 1.001 0.003 1.000 1.001

16 1.000 0.381 0.998 1.001 1.000 0.425 0.999 1.002 1.000 0.713 0.999 1.001

ddd lag 0 ddd lag -1 Qtr ddd lag -2 Qtr
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Model 

no.

Adjusted 

OR (or 

non-

linear 

form) P  value 95% CI(l)

95% CI 

(u)

Adjusted 

OR (or 

non-

linear 

form) P  value 95% CI(l)

95% CI 

(u)

1 NS NS

2 NS NS

3 NS NS

4 1.000 0.004 1.000 1.000 1.000 0.002 1.000 1.000

5 1.000 0.131 0.999 1.000 1.000 0.567 1.000 1.001

6 1.000 0.470 1.000 1.000 1.000 0.118 1.000 1.000

7 1.000 0.874 0.999 1.002 1.000 0.432 0.999 1.001

8 1.001 0.137 1.000 1.003 1.002 0.034 1.000 1.003

9 1.001 <0.001 1.000 1.001 1.000 0.011 1.000 1.000

10 1.000 0.605 0.999 1.002 1.001 0.303 0.999 1.002

11 NS NS

12 NS NS

13 1.002 0.013 1.000 1.003 NS

14 1.000 0.951 0.998 1.002 0.989 <0.001 0.984 0.995

15 1.000 0.231 1.000 1.001 1.001 0.005 1.000 1.001

16 0.999 0.199 0.998 1.000 1.000 <0.001 1.000 1.000

ddd lag -3 Qtr ddd lag -4 Qtr
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Meta-data used within statistical models 

 

  

  

Field Description 

Qtr Seasonal qtr (see codes table for more details) 

Single GP One registered GP per practice 

Gender_ratio females registered/males registered 

pop14 Proportion of GP population aged under 15 

pop65+ Proportion of GP population aged 65 and over 

GP/100,000 
population GPs per 100,000 practice population 

Time  Linear time variable 

Deprivation_index IMD2010 value 

Rural location Whether practice designated as being in a rural location 

ddd lag 0 DDDs prescribed per 1000 population this quarter  

ddd lag -1 Qtr DDDs prescribed per 1000 population previous quarter 

ddd lag -2 Qtr DDDs prescribed per 1000 population Q-2 

ddd lag -3 Qtr DDDs prescribed per 1000 population Q-3 

ddd lag -4 Qtr DDDs prescribed per 1000 population Q-4 

 

 

Season definitions

Qtr Months Season

1 Mar-May Spring

2 Jun-Aug Summer

3 Sep-Nov Autumn

4 Dec-Feb Winter
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