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Synopsis

The dominant approach to regulate tool path motion is to allow the controller of a given machine

to autonomously adjust both the intended shape and kinematics. For a given application, the

autonomous regulation of motion can produce undesirable and unknown machining conditions.

Parameters may therefore need to be optimised using machinist experience. Indeed, the methods

employed are often iterative and informed by empirical evidence from machining trials. Such a

posteriori attempts to obtain suitable machining conditions are heuristic and time intensive.

A shape characterisation of tool path motion is postulated by enforcing constraints on the gen-

eral vector equations describing velocity, acceleration and jerk. The resulting description of

tool path motion depends only upon the kinematic limits of a machine and the intrinsic shape

properties of a tool path. Both sets of parameters may be identified prior to physical machining.

The shape characteristic equations describing tool path motion are consolidated into a series of

diagrams, referred as shape schematics. These shape schematics provide a complete illustration

of the distinctive features of each of the kinematic vectors. Kinematic profiles, derived from

a series of test tool path motions are compared with the shape schematics in order to provide

supportive empirical evidence.

The main contribution of this thesis is to demonstrate a priori shape characterisation of tool path

motion. This characterisation is achieved without knowledge of the motion control algorithms

implemented by a given machine’s controller. The characterisation may be employed to inform

the selection of machining parameters and thereby reduce the time and the number of machining

trials.
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Chapter 1

Introduction

Unknown controller regulation of tool path motion can produce unacceptable manufactured

components [1]. Such instances can call for the heuristic and iterative modification of the ma-

chining parameters associated with cutting tool and workpiece movements [2]. This in turn

diminishes material and energy resources, thus reducing the efficiency and productivity of the

manufacturing process [2]. This thesis addresses the issue by developing a shape characterisa-

tion of tool path motion that provides a description of motion that is independent of the motion

control algorithms implemented by a given machine. The resulting shape schematics may be

employed in a pre-processing manner to inform the selection of parameters without the need

for physical machining [1].

To develop and verify this a priori approach to motion characterisation, this thesis begins the

introductory chapter by providing an overview of the Computer-aided Design and Manufac-

turing process (CAD/CAM). A tool path and its function within CAD/CAM are then defined

1



and discussed. This is then followed by a review of the current approaches employed by ma-

chine controllers to regulate motion. The effects of shape on tool path motion are emphasised

throughout the literature review. This then motivates the research aim which is stated in section

1.4. The chapter concludes with a brief discussion of the possible impact of the research.

1.1 Computer-aided Design and Manufacturing

Computers can be used to help manufacture components [3]. The sequential steps through

which a conceptual design becomes a physical component are collectively referred to as the

CAD/CAM [3]. This thesis is concerned with the use of CAD/CAM in the context of controlled

material removal processes, specifically milling. The general aims of CAD/CAM in subtractive

manufacturing are to produce components in smaller time periods, to a higher dimensional

accuracy and with as little financial expense as possible [3].

The first step in the process is to create a computerised description of a design. The numerical

nature of the description enables the design to be interrogated by computer software that facili-

tate CAD/CAM [4, 5]. Many commercial CAD software systems are available. Solidworks and

AutoCAD, developed by Dassault Systèmes and Autodesk respectively, being two popular ex-

amples [4, 5]. Such software enables engineers to model and refine designs using an integrated

graphical user interface (GUI).

Empirical and ab initio designs are the two main types of design that are modelled using CAD

software. The shapes of some designs are arrived at iteratively by experimental evaluation of

2



the processes undertaken by the resulting components during their service times. These types

of designs are referred to as empirical designs [6]. Examples are mechanical and structural

components whose aesthetic appearance need not affect their operation, like compressor blades,

engine manifolds and surgical implants. Many modern CAD systems provide dynamic analysis

tools that can improve the efficiency of this iterative modelling process [4]. The shapes of other

designs depend on both aesthetic and functional requirements. These are frequently termed

ab initio designs [6]. Examples are the skin of car bodies, aircraft fuselages and ship hulls.

The appearance of such designs may be perceived, by the resulting product’s consumers, to be

linked to physical performance characteristics and as a result affect sales [7]. Their designs

therefore cannot be formulated entirely in terms of quantitative criteria, but must be resolved by

a judicious combination of computational and heuristic methods [6].

CAD systems commonly represent both empirical and ab initio designs using Non-Uniform

Rational B-Spline (NURBS) curves and surfaces [6, 8]. These parameterised rational curves

and surfaces form the primitive elements from which a given design is constructed. Multiple

curves and surfaces may be joined together to form complex designs. For example, multiple

curves may be joined together to from a composite curve and individual surfaces may be joined

together to form a composite surface, where each surface is then referred to as a patch.

The properties of NURBS allow engineers to manipulate the shape of a design in an intuitive

and predictable manner. The engineer does not require an understanding of the underlying

mathematics to manipulate the shape of the design. Consider a degenerate form of NURBS

curve, the Bézier curve. Although it can be expressed as a recursive algorithm, it can also be

expressed as a weighted summation of control points, P0, P1, ..., Pn−1, Pn [8]. The weights,

3



P0

P1

P′1

P2

Figure 1.1: Intuitive shape manipulation

referred to as the Bernstein polynomials, are employed as coefficients of the control points in

order to affect the shape of the resulting curve [8]. Further, since the Bernstein polynomials

are non negative and sum to unity, they provide the convex hull property [8]. This may be

interpreted geometrically, in the planar case, that the curve must lie within the convex polygon

whose vertices are formed by the control points. Moving control point P1 to P′1 (in Fig. 1.1)

therefore has the effect of stretching the curve towards P′1 and being contained in the convex

polygon formed by control points P0, P′1 and P2. By extension, the control points of a surface,

collectively referred to as the control polyhedron, can be manipulated to change the shape of

the surface.

Once an appropriate shape for a given design is achieved, the CAD model is imported into

CAM software. Here the machining process, defined as controlled material removal from a

raw material to form a desired final shape, can be simulated, analysed and refined [9]. This

simulated machining can reduce the amount of physical machining trials and so less material is
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wasted and fewer interruptions are required in production [4, 5, 9].

Simulation requires the definition of workpiece, cutting tools and their movements. Once the

workpiece material and its dimensions are specified, cutting tools suitable for removing material

are chosen. Different cutting tools are used for different stages of the machining process. To

initially remove high volumes of material per unit time (rough cutting), a tool with serrated

teeth may be used as this can help to break chips into smaller pieces. Typically, the resulting

machined surfaces are relatively rough. Removing a lower volume of material per unit time

(finishing cutting), can improve the surface finish. This can then be achieved by using a cutting

tool with relatively more teeth, that need not be serrated, since the presence of more teeth

reduces the total volume of the space between teeth and so less material is removed per unit

time.

Material removal requires the cutting tool’s teeth to move relative to the workpiece surface.

This motion can be defined in CAM software by specifying the rate at which the tool rotates

about the spindle axis (spindle speed), the speed at which the entire tool moves relative to the

workpiece surface (feed rate) and the path traversed on the workpiece surface (tool path).

When a machining strategy suitable for the given application has been established, CAM soft-

ware is able to produce numerical instructions (G-Code) that can be used to manufacture the

design. This is achieved via a language definition file, called a post processor, that modifies

generic G-Code to adapt it to the particular computer numerically controlled (CNC) machine

being used. The resulting instructions are then transferred to the controller of the CNC machine

in the form a numerical control (NC) file.
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The CNC machine’s controller then translates NC file instructions into motion commands for

the machine’s axes servomotors. Once the automated machine motion starts, the engineer has

little further effect on the manufacture of the component and in turn the resulting component

quality. It is therefore imperative that the instructions presented to the controller are appro-

priate for the given application and achievable within the machine’s physical capabilities. For

example, the motions imposed by tool path shape should not exceed the maximum kinematics

permissible by the machine’s servomotors.

The actual motions produced derive from the machine’s attempts to provide the desired relative

movements between tool and workpiece defined in the NC file. As discussed above, a given

motion is defined by the spindle speed, feed rate and tool path. If the selected parameters do not

account for the kinematic constraints of the machine, the desired motions may not be realised

in practice. For a given workpiece material, cutting tool manufacturers recommend particular

values for feed rate and spindle speed. Also, in general, the maximum feed rate and spindle

speed for a given machine are clearly stated in the literature. Assuming proper selection of feed

rate and spindle speed, the emphasis therefore lies on constructing suitable paths for the cutting

tool to traverse relative to the workpiece.

1.2 Tool paths

Change in position and/or orientation of a cutting tool relative to the workpiece coordinate

system, in a finite time period, is considered a motion. A given position and orientation are

collectively referred to as a tool pose (or tool posture). A tool path is therefore defined as the

6



(a) Locus of poses (b) Locus of positions

Figure 1.2: Tool path definitions

continuous locus of poses associated with a given motion (Fig. 1.2a). A tool path can also be

considered as a continuous locus of positions when a desired motion does not require changes

in orientation (Fig. 1.2b).

The locus of positions correspond to those of a given point on a cutting tool. The choice of point

is immaterial provided that the point’s position is fixed with respect to the machine’s spindle

axis. The point is therefore confined to lie on the axis of rotation of the spindle. Typically the

top or bottom point of the cutting tool is chosen to represent the location of a tool on a tool path.

This cutter location point, CL, need not be the same as the point in contact with the workpiece

at a given instance in time. Such a point is commonly referred to as the cutter contact point, CC.

A key distinction between the two is that the CL point remains fixed for a given motion and the

CC point does not. The point on the cutting tool corresponding to the CC point changes as the

tool rotates about the spindle axis.

The orientation of the cutting tool in the workpiece coordinate system is defined as the angle, δ ,
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Figure 1.3: Cutting tool orientation

between the workpiece’s unit surface normal vector that passes through the CC point, n̂0, and

the unit vector that passes through the CL point and is directed parallel to the spindle axis, n̂1

(See Fig. 1.3).

By definition, consecutive poses of a continuous tool path are different. Either the position,

orientation or both change. It then follows that an infinite number of poses are required to

exactly describe a given tool path. Such descriptions cannot be presented to the controller of

a CNC machine, since each pose must be interpreted into motion commands for the machine’s

servomotors. Each interpretation occurs over a finite period of time, therefore an infinite amount

of time would be necessary to traverse a given tool path.

In practice a finite number of appropriate poses must be selected from the desired continuous

tool path. These discrete poses are then interpolated to form an approximation to the desired

tool path. Linear and circular interpolation have traditionally been employed [3]. Consider a

portion of a planar tool path, C, shown in Fig. 1.4. Since the path is planar, the orientations of

the path’s poses do not change, therefore the path may be considered as a locus of positions.

Let P0 and P1 denote the start and end positions of this portion. By linearly interpolating from
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Figure 1.4: Interpolation error, ε

P0 to P1 the desired path is approximated by a single chord, P0P1. The error of this type of

interpolation, ε0, may be defined as the length of a perpendicular line segment connecting the

midpoint, M0, of the chord, P0P1, to the tool path, C. By selecting another point, P′1, on C

between P0 and P1 two chords, P0P′1 and P′1P1, form an alternative linear approximation to the

portion of the desired tool path, C. Points M1 and M2 denote the midpoints of P0P′1 and P′1P1

respectively. Given the direction of the desired path, C, changes monotonically between points

P0 and P1 the error of each chord, ε1 and ε2 respectively, is less that the error of the original

single chord, ε0; ε1,ε2 < ε0.

The greater the number of positions selected, the smaller the interpolation error for a given

chord and so the closer the shape of the discretised tool path is to the desired continuous tool

path. A greater number of positions also decreases the distances between consecutive positions.

If the time taken to process and execute a cutting tool’s movement between consecutive posi-

tions, Tm, is less than the controller’s minimum processing time, Tp, the tool will rest at the

end position and wait or dwell for the next motion command to be generated by the controller.

When Tm < Tp, the machine’s servomotors are effectively deprived of motion data. This phe-
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nomenon is commonly referred to as data starvation [10]. A compromise must therefore be

made between the number of positions selected and the magnitudes of the interpolation errors

associated with the discretised tool path. Conventional CAM software does not automatically

account for the effects of data starvation. It is generally the responsibility of the engineer to

heuristically determine and specify a suitable trade-off.

An alternative to the conventional linear and circular interpolation methods is parametric (or

spline) interpolation [11]. Many modern controllers are able to process tool paths expressed

as parameterised polynomial curves [11, 12]. The most common type of parametric curve em-

ployed are NURBS [11, 12]. Since CAD models can be described with NURBS, (see section

1.1) the geometric information of a model may be transferred to a machine’s controller exactly.

It is then the responsibility of the controller to select appropriate poses. Further, less informa-

tion is generally required to define a tool path if NURBS are used compared to conventional

interpolation [12]. Only critical parameters, like control points, need be specified in a NC file

for a given NURBS tool path. Particularly with larger NC files, that may require many linear

interpolation segments, parametric interpolation can consolidate tool path descriptions using

less information thereby reducing the risk of data starvation.

Whether the discretisation occurs in CAM software or in the controller, the shape of the result-

ing tool path imposes particular kinematic demands on the machine. The controller attempts to

provide the requested kinematics by coordinating the movements of the machine’s independent

translational and/or rotational axes. Should the demands exceed the capabilities of the ma-

chine’s servomotors, controller regulation intervenes to provide permissible tool path motion

that is deemed, by motion control algorithms, to be an appropriate alternative to the desired tool
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path motion.

1.3 Tool path motions

Tool path motion is governed by motions of the machine’s axes. The inertia of each axis, I, and

the finite torque, ϒmax, and power, Pmax, capacities of the corresponding servomotors limit the

achievable tool path kinematics [13]. Consider, for example, circular tool path motion resulting

from the simple harmonic motions of two orthogonal linear axes. For a given feed rate, v, the

shape of the circle, defined by its radius, r, imposes a maximum acceleration of magnitude v2/r

on each axis. The smaller the radius the greater the acceleration required to traverse the circular

path at a given feed rate. It is shown in appendix A that the maximum feed rate, vmax, attainable

for a given radius, with servomotors of limited power is

vmax =

Pmax

I

 1
3

r .

Similarly, when servomotor torque is the limiting factor it is shown that

vmax =

ϒmax

I

 1
2

r .

The axes of a given machine commonly have the same kinematic limits, as implied above,

although many modern controllers provide the functionality of defining separate limits for each
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axis should a particular application require it [12].

In order to adhere to the kinematic limits of a given machine, the controller may command the

machine’s axes to divert from both the intended feed rate and tool path shape.

Consider a planar, point continuous, G0, tool path composed of linear segments (Fig. 1.5). At

the junction of consecutive segments the tangent vector, t̂, is not unique (Fig. 1.5). Its direc-

tion changes instantaneously. Change in the direction of the tangent vector with respect to the

distance travelled along the path, s, is defined as curvature, κ(s) [14]. It then follows that a

singularity in the tool path’s curvature function exists at the junction of consecutive linear seg-

ments (Fig. 1.6). Traversal at a given feed rate, where v > 0, of such a tool path shape requires

an instantaneous change in direction of the velocity vector. Such a motion is not possible in

practice. The cutting tool must come to rest at the junction if the path is to be followed exactly.

Changes in acceleration are required for this intermittent motion. The rate of change of acceler-

ation, with respect to time, is defined as jerk [15]. The resulting jerk can change resultant forces

on the cutting tool, causing deflection marks on the surface of the machined component [16].

Further, feed rate, acceleration and jerk fluctuations increase numerical control cycle time and

prematurely wear the cutting tool, in turn reducing productivity [17].

In general, to reduce fluctuations in kinematic properties of tool path motion, CNC controllers

can permit cutting tools to follow alternative trajectories that deviate from programmed tool

paths by given tolerances [17]. These new trajectories may be considered to smooth motion

since less fluctuations in higher feed rates are generally attainable with reduced accelerations

and jerks [18].
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Figure 1.5: Undefined tangent vector

s

κ

0

∞

Figure 1.6: G0 linear segments. Piecewise impulse curvature profile
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The precise nature of an amended tool path motion may not be known prior to machining. This

is mainly due to machine manufacturers regarding their motion control algorithms as giving

them commercial advantage so that they do not disclose the ways in which these algorithms

operate. The specifics of these control algorithms are therefore not generally accessible. This

has not deterred academia, nor should it, from proposing novel algorithms to be implemented

in machine controllers [18–21].

Consider again, the tangent discontinuous linearly segmented tool path. The segment junctions

impose impractical kinematic demands on any machine. Controller regulation is therefore re-

quired. The general approach of many of the proposed algorithms is to first fit an appropriate

path between consecutive linear segments. This path removes the infinite acceleration imposed

by the junction whilst still adhering to the desired positional tolerances [19]. The algorithms

then plan the feed rate profile across the revised path accounting for machine kinematic limits

[19].

For example, the junction may be replaced by a circular arc that joins each linear segment with

tangent continuity, G1 (Fig. 1.7) [20]. The direction of the tangent vector no longer changes

instantaneously, thus enabling a continuous feed rate profile. The curvature singularity is re-

placed by a non zero constant curvature segment (Fig. 1.8). This piecewise constant curvature

profile corresponds to instantaneous changes in curvature at the start and end of the circular arc

(Fig. 1.9). Traversing such a path at a constant feed rate, vc, would require an instant increase

in acceleration, from 0 to v2
c/r, at the beginning of the arc in order to change direction and

follow the circular arc and an instant decrease in acceleration, from v2
c/r to 0, at the end of the

arc in order to stop changing direction and follow the linear path. Despite the revised tool path
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improving the motion, in the sense that traversal no longer requires an infinite acceleration, con-

stant feed rate motion still cannot be realised. The new tool path’s piecewise constant curvature

imposes infinite jerk at the beginning and end of the arc. A jerk limited feed rate profile can

then be used to allow the cutting tool to follow the revised tool path exactly [18, 21].

Figure 1.7: G1 circular arc

s

κ

0

1/r

Figure 1.8: G1 circular arc. Piecewise constant curvature profile

By replacing the circular arc with two Cornu spirals (Fig. 1.10), curvature continuity, G2, may

be achieved across the linear and spiral segments, thus enabling a continuous acceleration pro-

file [22]. A Cornu spiral is a planar path, defined by a linear curvature profile, κ(s) = αs+β ,
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0≤ s≤ L, where L is the total length of the path and α , β ∈ R and α is the gradient of the cur-

vature profile and β is the initial curvature of the associated path [23]. The piecewise constant

curvature profile can therefore be replaced by a continuous linear curvature profile (Fig. 1.11).

The curvature at each point on the path is well defined and unique. It then follows that traver-

sal no longer requires instantaneous changes in acceleration. The shape of the tool path now

only imposes a finite jerk at each position. The gradient of the curvature profile describes the

rate at which curvature changes with respect to the distance travelled along the path, dκ(s)/ds.

Fig. 1.12 illustrates that this curvature derivative is piecewise continuous. It then follows that

d2κ(s)/ds2 can be shown by Fig. 1.13. The figure indicates that d2κ(s)/ds2 is undefined at

each segment transition point. It can be shown such shape properties correspond to instanta-

neous changes in jerk [1]. The rate at which jerk changes with respect to time is defined as

jounce [15]. The shape of the G2 Cornu spiral smoothing tool path thus imposes infinite jounce

at each transition point. Such kinematic demands cannot be realised. In practice, the feed rate

must fluctuate in order to follow the tool path exactly. Further, direct implementation of Cornu

spirals within CAD/CAM is impractical since positional evaluation requires numerical methods

and thus must be approximated [24].

As discussed previously, NURBS tool paths can be implemented directly within CAD/CAM.

Motion control algorithms within controllers may use NURBS tool paths to avoid the imprac-

tical kinematic demands of linear and circular segments [12, 25–27]. For example, two quartic

polynomial splines can be used to achieve continuous curvature cornering within user specified

tolerances [12]. A single G2 quintic Bézier can be used to ensure axis acceleration limits are ad-

hered to [25]. Many other proposed algorithms use B-splines as they offer flexibility in locally

changing the shape of a tool path [26, 27]. However the rational nature of NURBS means that
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Figure 1.9: G1 circular arc. Piecewise impulse curvature derivative profile

Figure 1.10: G2 Cornu spirals
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Figure 1.11: G2 Cornu spiral curvature profile
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Figure 1.12: G2 Cornu spiral curvature derivative profile
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Figure 1.13: G2 Cornu spiral curvature second derivative profile

tool paths can experience undulating oscillations in curvature which in turn impose fluctuations

in the kinematic properties of tool path motion [8, 28].

1.4 Research aim

The discussion above suggests that the current dominant approach to regulate tool path motion

is to allow the controller of a given machine to autonomously adjust both the intended shape

and kinematics. Such autonomy is machine specific. The control algorithms implemented on

one machine need not be the same as those implemented on another. Execution of a given NC

file can therefore result in different sets of conditions depending on the machine being used.

A given design, machined on different machines, can result in manufactured components of

different qualities.
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For a given application, the autonomous regulation of kinematics by a controller may produce

undesirable and unknown machining conditions. For example, a commanded feed rate may have

been specified in order to achieve particular conditions, such as certain material removal rates

or surface finish. However, the kinematics imposed by the shapes of the specified tool paths

exceed the machine capabilities and therefore controller regulation results in a manufactured

component outside of tolerance. Therefore, in practice, parameters need to be optimised for

a given application. A series of machining trials may be conducted to refine the machining

parameters for the given application.

For a given workpiece material, cutting tool manufacturers recommend particular values for

parameters such as feed rate, depth of cut, and spindle speed. These suggested values are

however, often based on assumptions of simple components with tool paths describing simple

motions, predominately linear. Paths with varying curvature profiles, referred to in this thesis

as free-form paths, place a greater burden on control algorithms to generate resulting motions.

As a result the recommended values for the machining parameters are, in general, not achieved

on free-form tool paths. In such instances the experience of the machinist is used to identify

suitable parameters for the given application [2]. The methods employed may be iterative and

informed by empirical evidence from machining trials. Such a posteriori attempts to obtain

suitable machining conditions are often heuristic and time intensive.

The main aim of this thesis is to present a methodology for assessing the kinematic capabilities

of any CNC machine, in terms of a tool path’s intrinsic shape properties. Two key objectives

must be met in order to achieve this aim.
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• To enable the methodology to be applicable for any CNC machine, it must be independent

of a given machine’s motion control algorithms. As discussed earlier in this section, de-

pendence on a specific motion control algorithm only enables tool path motion description

for a machine upon which the algorithm is used. Further, machine and controller man-

ufacturers tend not to disclose the ways in which these algorithms operate. This in turn

limits the applicability of many of the current proposed methods.

• The methodology must also provide a means of identifying the kinematic limits of a

given machine. Since the aim specifies that the assessment must be conducted in terms of

a path’s intrinsic shape properties, the approach must attempt to isolate the contribution

of a tool path’s shape properties to the actual kinematics produced in a given motion.

Such a methodology would produce a characterisation of tool path motion that would only

depend upon the intrinsic shape properties of a desired tool path and a machine’s kinematic

limits. These are two of the very few conditions that are identifiable without undergoing the

iterative machining trial procedure. The methodology would therefore provide a priori shape

characterisation of tool path motion. The characterisation may be employed in a pre-processing

manner to inform the selection of NC file tool path motions. This can therefore help to reduce

the time and number of machining trials and so improve the efficiency and productivity of the

manufacturing process by reducing the material and energy resources being consumed.

A resulting characterisation may be used in at least two ways. Firstly, a proposed tool path

motion may be checked to see whether its shape imposed kinematics are likely to be achieved

on a given machine. Secondly, having identified the maximum magnitudes of the kinematics

vectors achievable by the machine, given the shape of the tool path, the commanded feed rate
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and desired tool path shape may be adapted in order to accommodate the machine’s kinematic

limits.

1.5 Contents outline

This introductory chapter began by providing an overview of the CAD/CAM process. The

definition of a tool path and its role within CAD/CAM were then detailed. This was then

followed by a study of the effects of shape on tool path motion and a review of the current

approaches employed by machine controllers to regulate motion. Motivation and a statement of

the research aim were then provided, followed by a brief discussion of the possible impact of

the research.

The following chapter establishes the foundations of the mathematical theory required in Chap-

ter 3 to characterise tool path motion in terms of shape. By considering the motion of a local

orthogonal frame, the tool path’s intrinsic shape properties are linked to the kinematic properties

of the corresponding motion.

Chapter 3 then considers the effects of these intrinsic shape properties on a machine, with

kinematic limits, in order to postulate a shape characteristic model.

Chapter 4 employs a test methodology to identify the kinematic limits of any conventional

CNC machine. Empirical evidence obtained from three example machines is used to establish

the maximum permissible kinematics for given shape properties.
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Chapter 5 furthers the investigation by considering motion along free-form paths.

Chapter 6 analyses the empirical data gathered from chapters 4 and 5, compares the evidence

with the characteristic model derived in chapter 3 and discusses the results.

Chapter 7 begins by presenting an overview of the research tasks undertaken. This is then

followed by discussions on the contributions and limitations of the research presented. The

chapter then concludes the thesis by suggesting areas for future research.
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Chapter 2

Shape properties of motion

As discussed in the previous chapter, the motion of a cutting tool relative to a workpiece surface

is defined by three parameters, namely spindle speed, tool path shape and feed rate (section 1.1).

Since spindle speed, however important to material removal, does not affect movements of the

machine’s axes, it is from here onwards omitted from motion analysis. The first section (section

2.1) of this chapter investigates tool path shape. The intrinsic shape properties, curvature and

torsion, are introduced and discussed within the context of motion. Section 2.2 then describes

the relationships between the shape properties of CAD model surfaces and the tool paths that

lie on them. Sections 2.3, 2.4 and 2.5 then relate the kinematic properties, velocity, acceleration

and jerk, to tool path shape.
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2.1 Tool path shape

The path traversed by a specified point on a cutting tool during a given tool path motion may

be represented as a parametric space curve r(u), where u is an arbitrary parameter [11]. By

assuming the path is differentiable and continuous, analysis of motion may be simplified by

expressing the tool path as a time, t, parameterised function in three dimensional Euclidean

space E3. It then follows that r(t) = 〈x(t), y(t), z(t)〉, where 0≤ t ≤ T , x(t), y(t) and z(t) ∈ R

and T is the total time for the motion.

A local coordinate system is employed to facilitate describing each position in terms of the

shape properties of a tool path. A local affine coordinate system, with origin r(t), may be

formed from the first three derivatives of r(t), with respect to parameter t, (r′(t), r′′(t) and

r′′′(t)) (Fig. 2.1) [8]. The resulting vectors may be orthonormalised, using the Gram-Schmidt

process, to form a local Cartesian system called the Frenet frame, with origin r(t) and axes

t̂(t), n̂(t) and b̂(t), where the unit tangent vector, t̂(t) = r′(t)/‖r′(t)‖, the principal unit normal

vector, n̂(t) = t̂′(t)/‖t̂′(t)‖ and the binormal vector, b̂(t) = t̂(t)∧ n̂(t) (Fig. 2.1) [29]. This

frame further defines local planes (Fig. 2.2). At a given point, r(t), on the tool path, ∏n :=

n̂(t)∧ b̂(t), ∏r := b̂(t)∧ t̂(t) and ∏o := t̂(t)∧ n̂(t) define the normal, rectifying and osculating

planes respectively.

Insight into the effects of shape on tool path motion may be gained by considering changes

in frame orientation as time increases. It is assumed the distance travelled along the path, arc

length, s, increases monotonically with time. Frame motion may then be expressed in terms

of the path’s intrinsic shape properties if a reparameterisation to arc length is made. Since arc
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Figure 2.1: Local affine system (left) and Frenet frame (right) [8]

Figure 2.2: The local planes
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length is an intrinsic shape property, a reparameterisation does not change the shape of the tool

path [8]. Assuming s = s(t) is differentiable and the inverse, t = t(s), exists, it follows that

r(s) ≡ r(t). Such a parameterisation, s(t) =
∫ ∥∥ṙ(t)

∥∥dt, enables frame motion to be described

using the following equations,

d t̂(s)
ds

= κ(s)n̂(s) , (2.1)

dn̂(s)
ds

=−κ(s)t̂(s)+ τ(s)b̂(s) , (2.2)

and
db̂(s)

ds
=−τ(s)n̂(s) . (2.3)

The above Frenet-Serret relations contain the functions κ(s) and τ(s), which refer to the shape

properties, curvature and torsion respectively [14]. Formally they are defined by Eq. (2.1) and

Eq. (2.3). Curvature describes the rate at which the tangent vector changes direction, as the

frame traverses the path with respect to arc length. The more the path bends the greater the

magnitude of the curvature. Torsion measures the rate at which the binormal vector changes

direction with respect to arc length. Intuitively, torsion may be considered to describe how

much the tool path twists out of the osculating plane.

The shape of the desired engineering component’s CAD model has some influence on the cur-

vature and torsion of the resulting tool paths used in machining. Particularly in the finishing

stages of the machining process, the actual paths traversed by the cutting tool closely follow
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Figure 2.3: Surface Frame [30]

the surfaces of the original CAD model [3]. Indeed, in the finishing stages, the desired tool

paths are derived from the surfaces on which they lie (see section 1.2). The following section

therefore describes the relationships between the shape properties of the CAD model surfaces

and the desired tool paths used in the corresponding machining process.

2.2 Tool paths on surfaces

Consider a tool path lying on a surface. In addition to the Frenet frame, F1(s), it is possible to

assign another frame, the Darboux frame, F2(s), at each point on the tool path (Fig. 2.3) [30].

At a given point there is only one unit surface normal vector, N̂(s), and an infinity of tangent

vectors. These tangent vectors lie in the tangent plane that is orthogonal to N̂(s). The tool

path’s unit tangent vector and the surface’s unit normal vector can together be used to form

a vector that is orthogonal to both, referred to in this thesis as the bi-tangent vector, T̂(s),

T̂(s) = N̂(s)∧ t̂(s) [30].
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Both orthogonal frames, F1(s) and F2(s), share the tool path’s unit tangent vector, t̂(s), n̂(s)∧

b̂(s)≡ T̂(s)∧ N̂(s) (Fig. 2.3). It then follows that n̂(s), T̂(s), b̂(s) and N̂(s) all lie in the normal

plane of F1(s). Further, at a given point, r(s), on the tool path, vectors t̂(s) and T̂(s) define

the tangent plane, ∏t := t̂(s)∧ T̂(s) and the vectors N̂(s) and t̂(s) define the cleaver plane,

∏c := N̂(s)∧ t̂(s) (Fig. 2.3) [30].

Rotating F1(s) about t̂(s), by an angle φ , converts it into F2(s) (Fig. 2.3). φ is dependent on the

given orientation of F1(s) at a given s. It then follows that the angle of rotation is a function of

arc length, φ(s). From the figure observe that,

T̂(s) = cos(φ(s))n̂(s)+ sin(φ(s))b̂(s)

and

N̂(s) =−sin(φ(s))n̂(s)+ cos(φ(s))b̂(s) .

The structure of the above expressions suggest that the connection between F1(s) and F2(s)

may be expressed concisely in matrix form [30],


t̂(s)

T̂(s)

N̂(s)

=


1 0 0

0 cos(φ(s)) sin(φ(s))

0 −sin(φ(s)) cos(φ(s))




t̂(s)

n̂(s)

b̂(s)

 .

As the surface tool path is traversed the surface frame’s orientation and position changes. The

rate at which the surface frame changes with respect to arc length may be expressed as
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t̂′(s)

T̂′(s)

N̂′(s)

=


0 κg κn

−κg 0 τg

−κn −τg 0




t̂(s)

T̂(s)

N̂(s)

 ,

where κg = κ(s)cos(φ(s)), κn = κ(s)sin(φ(s)) and τg = τ(s)+ φ ′(s) [30]. In the above anti-

symmetric matrix, κg is called the surface’s geodesic curvature, κn is called the surface’s normal

curvature and τg is called the surface’s geodesic torsion. In equation form,

d t̂(s)
ds

= κgT̂(s)+κnN̂(s) ,

dT̂(s)
ds

=−κgt̂(s)+ τgN̂(s) ,

dN̂(s)
ds

=−κnt̂(s)− τgT̂(s) ,

are known as the Bonnet-Kovalevski relations [30]. They may therefore be considered to relate

the shape of the tool path to the shape of the surface on which it lies.

From the definitions of κg and κn it is possible to derive expressions that describe, at a given

point, the shape of a tool path lying on a surface [30]. It can be shown that the path’s curvature

is [30]

κ =±
√

κ2
g +κ2

n .

The sign of κ is equal to the sign of κg in the interval −π/2 < φ < π/2. The corresponding

torsion of the tool path is [30]

τ = τg−
4
κ2 ,
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where4 is the determinant,

4=

∣∣∣∣∣∣∣∣
κg κ ′g

κn κ ′n

∣∣∣∣∣∣∣∣ .

A given tool path therefore does not lose its identity when it lies on a surface [30]. The Frenet

frame, F1(s), is retained at each point on the path [30]. Further, from the fundamental theorem

of space curves, the shape of a tool path is completely defined by its curvature and torsion

profiles [31]. The following analysis of tool path motion is therefore conducted independently

of surface shape, and solely in terms of the path’s intrinsic shape properties.

Frame motion and in turn the motion of any object that moves with the frame, for example a

cutting tool, may be described in terms of curvature and torsion. For example, κ(s) and −τ(s)

describe the angular velocities of the unit tangent and binormal vectors as the Frenet frame

traverses a tool path [8].

Other intrinsic shape properties also offer a kinematic interpretation. As a consequence of

unit feed rate traversal of a tool path, the parameters, arc length and time, may be considered

identical, s ≡ t (ds/dt = 1⇒
∫ s

0 ds =
∫ t

0 dt ∴ s = t). It then follows that dr(s)/ds ≡ dr(t)/dt.

The unit tangent is thus equivalent to the velocity vector. Also, d t̂(s)/ds ≡ dv(t)/dt. The

curvature vector is thus equivalent to the acceleration vector. Further, dκ(s)/ds ≡ da(t)/dt.

The rate at which the curvature vector changes with respect to arc length is therefore equivalent

to the jerk vector.

Investigating unit feed rate traversal is useful for helping to develop initial insight into the shape

properties of motion, but general motion, at an arbitrary speed, requires further effort. The
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following sections derive the velocity, acceleration and jerk equations for tool path traversal at

an arbitrary feed rate.

2.3 Velocity

2.3.1 Definition

The derivative of the position vector, r(s), with respect to time, t, produces the velocity vector,

v(t),

v(t) =
ds
dt

dr(s)
ds

.

Therefore,

v(t) =
ds
dt

t̂(s) . (2.4)

Dimensional analysis reveals that this kinematic vector may be described in terms of the base

quantities, length and time, length/time. Using the International System of Units (SI), magni-

tudes of velocity are expressed in m/s [32].
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2.3.2 Feed rate

The rate at which the arc length of a tool path changes with respect to time quantifies the

magnitude of the velocity vector. The magnitude of velocity is perhaps more appropriately

referred to as feed rate within the context of machining. The velocity vector lies in the direction

of a first order osculant to the tool path at a given point [31]. A member, Γ0, of a family of

curves, Γλ , which intersect the tool path, at a given point, is called an osculating curve of the

family to the tool path, if the degree of contact with Γ0, at the point, is greater than or equal

to the degree of contact of the tool path with any other of the curves from Γλ [31]. It then

follows for the velocity vector, a first order osculant is a line that best approximates the path in

the vicinity of a given point [31].

2.4 Acceleration

2.4.1 Definition

The derivative of the velocity vector, v(t), with respect to time, t, produces the acceleration

vector, a(t),

a(t) =
dv(t)

dt
.

Its dimensions are length/time2. Commonly used units to express accelerations are mm/min2
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and the SI units, m/s2 [32].

2.4.2 Tangential and normal components

From Eq. (2.4) it follows that,

a(t) =
d
dt

{
ds
dt

t̂(s)
}

=
d2s
dt2 t̂(s)+

{
ds
dt

}2 d t̂(s)
ds

.

Substituting Eq. (2.1) into the above equation produces an expression for the acceleration vector

in terms of its tangent and normal components:

a(t) =
d2s
dt2 t̂(s)+

{
ds
dt

}2

κ(s)n̂(s) . (2.5)

The second derivative of arc length with respect to time defines tangential acceleration. It is

therefore the rate at which feed rate changes along the tool path. The normal component of

acceleration is expressed in terms of curvature. The rate at which the normal component of

acceleration changes with respect to time is directly proportional to the path’s curvature. It

can be shown that this normal acceleration acts towards the centre of the circle of curvature

[14]. At each point on the tool path, the corresponding circle of curvature is a second order
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Figure 2.4: Centripetal acceleration surface

osculant, whose derivatives, up to and including order two, agree with those of the path [14].

Subsequently, normal acceleration is commonly referred to as centripetal acceleration [33].

From Eq. (2.5) it follows that normal acceleration consists of time and shape dependent ele-

ments, feed rate, ds/dt, and curvature, κ(s), respectively. The surface, shown in Fig. (2.4),

illustrates the effect of each element on centripetal acceleration, an(t). The surface is mathe-

matically expressed explicitly in terms of ds/dt and κ(s), an(t) = (ds/dt)2κ(s). Centripetal

acceleration (Fig. 2.5) increases linearly with curvature, an(t) = v2
cκ(s), for a constant feed

rate, vc. Centripetal acceleration increases parabolically with feed rate, an(t) = (ds/dt)2K, for

a constant curvature, K.
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Figure 2.5: Acceleration vector components

2.5 Jerk

2.5.1 Definition

The derivative of acceleration with respect to time is defined as jerk,

j(t) =
da(t)

dt
. (2.6)

This kinematic vector may be described in terms of the base quantities, length and time, length/time3.

Using SI units, magnitudes of jerk are expressed in m/s3 [32]. Other common units are g/s

(standard gravity per second ) and mm/min3 [32].
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2.5.2 Geometric interpretation

It follows from the above definition that jerk is the third derivative of displacement with respect

to time,

da(t)
dt
≡ d2v(t)

dt2 ≡ d3r(t)
dt3 .

Jerk is the rate of change, of the rate of change, of the rate of change of displacement with

respect to time. Such an explicit temporal (time-related) interpretation may not be the most

intuitive and so it can be difficult to gain insight into problems relating to this kinematic vector.

By analysing the relationships between force and motion, this section provides a geometric

interpretation of jerk that may be of more practical engineering use.

Consider Newton’s second law. “Lex II: Mutationem motus proportionalem esse vi motirici

impressae, et fieri secundum lineam reactum qua vis illa imprimitu” [34]. A modern translation,

accounting for Newton’s use of terminology, is “Law II: A change in motion is proportional

to the motive force impressed and takes place along the straight line in which that force is

impressed” [35]. Commonly this law is expressed mathematically as F(t) = ma(t), where F(t)

is the motive force impressed on a body of mass m causing an acceleration a(t). This motive

force (or resultant force) may be seen as a force which acts over a period of time, an impulse

[35]. It then follows that, assuming the body’s mass is unchanged, acceleration is not constant.

A description for the rate at which the acceleration changes with respect to time can be obtained
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from differentiating the equation describing the law,

dF(t)
dt

= m
da(t)

dt
.

Because of Eq. (2.6),
dF(t)

dt
= mj(t) .

Jerk experienced, by a body of given mass, is therefore directly proportional to the rate at which

the resultant force acting on the body changes over a period of time. Jerk may therefore be

thought of as the first derivative of force, opposed to the third derivative of displacement, with

respect to time.

The resultant force, of a given motion, need not act in a manner that changes the magnitude of

the velocity vector. Provided the force acts perpendicular to the direction of travel, no compo-

nent of it will lie parallel to the velocity vector and so will not affect its magnitude. This force

will only affect the rate at which the direction of the velocity vector changes. The force is there-

fore directly proportional to curvature and so is confined to lie along the line of intersection of

the rectifying and osculating planes.

2.5.3 Vector components

From the three kinematic properties discussed in this chapter, jerk has perhaps received com-

paratively little attention since it does not appear directly in mathematical expressions of fun-

damental engineering concepts likes energy, force and momentum. Trends of high speed ma-
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chining and increased part shape complexity, have however led to jerk becoming an important

parameter that should be well considered [28]. For example, it has been shown that jerk can

influence vibrations of industrial high-speed systems [36]. Significant investigations have been

undertaken to consider jerk when planning machine motion [19, 37–39]. It is for this reason

that the effects of shape on jerk are considered in this thesis.

By taking the derivative of Eq. (2.5) with respect to time and making substitutions with Frenet-

Serret formulae (Eqs. (2.1)–(2.3)), it can be shown that jerk can be described as the sum of three

orthogonal components (see appendix B).

j(t) = jt(t)t̂(s)+ jn(t)n̂(s)+ jb(t)b̂(s) ; (2.7)

where

jt(t) =
d3s
dt3 −

{
ds
dt

}3

{κ(s)}2 ,

jn(t) = 3
ds
dt

d2s
dt2 κ(s)+

{
ds
dt

}3 dκ(s)
ds

,

and
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jb(t) =
{

ds
dt

}3

κ(s)τ(s) .

The normal component of jerk can also be expressed in terms of an affine differential invariant

of plane paths, namely aberrancy [40]. The local asymmetry of a path with respect to the

path’s normal at a given point is measured by aberrancy [40]. It can be shown that the normal

component of jerk, at a given point on a path, is related to a unique parabola whose Cartesian

derivatives, up to and including order three, agree with those of the path [15]. This parabola

may be reffered to as the osculating parabola [15].

2.6 Chapter summary

Using the Frenet-Serret relations, section 2.1 introduced the shape properties, curvature and

torsion, and discussed them within the context of tool path shape. The following section (2.2)

then considered their connection to the shape properties of CAD model surfaces. It was shown

that the effects of shape on tool path motion can be investigated without reference to the shape

properties of the corresponding CAD model. This then enabled, in sections 2.3, 2.4 and 2.5,

the general kinematic vector equations of tool path motion to expressed in terms of the tool

path’s intrinsic shape properties. Establishing the kinematic vector equations in this manner has

facilitated the task of deriving the shape characteristic model in the following chapter.
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Chapter 3

Shape characterisation of bounded motion

Any given machine must operate within the confines of its physical abilities [13]. For example,

tool path motion is bound by a machine’s kinematic limits [1, 13, 41–43]. This chapter provides

a description of tool path motion accounting for such limits. A shape characterisation of tool

path motion is postulated by enforcing constraints on the general kinematic vector equations

developed in the previous chapter (Eqs. (2.4), (2.5) and (2.7)). The resulting description of

tool path motion depends only upon the kinematic limits of the machine and the intrinsic shape

properties of the tool path. Both sets of parameters (kinematic limits and shape properties) may

be identified prior to physical machining. The curvature and torsion of a tool path may be found

from interrogation of the derivatives of the path with respect to the path’s given parameterisation

[8, 14]. The maximum magnitudes of the velocity, acceleration and jerk vectors may be found

using the techniques discussed in the following chapter.

This chapter therefore demonstrates an a priori approach to describing and assessing tool path
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motion. The first section begins by establishing the behaviour of the velocity, acceleration

and jerk vectors when a tool path is traversed at a constant feed rate. This is then followed by

analysis of the effects of a given machine adhering to its maximum centripetal acceleration limit.

Once the characteristic equations describing bounded tool path motion have been expressed

in terms of shape, the chapter concludes by presenting a series of shape schematics. These

diagrams illustrate the permissible magnitudes for kinematic vectors given the shape of a tool

path.

3.1 Velocity limited phase

Eqs. (2.4), (2.5) and (2.7) show that constant feed rate traversal of a tool path, with an arbi-

trary shape, imposes a particular set of kinematic demands on a given machine. A constant

commanded feed rate of Ψ1 implies that the rate at which the arc length, s, along a tool path

changes with respect to time, t, is constant, ds/dt = Ψ1. From Eq. (2.4) it follows that the

velocity vector required for traversal can be expressed as

v(t) = Ψ1t̂(s) . (3.1)

From Eq. (2.5) it can be seen that a description of the acceleration necessary to provide constant

feed rate requires the evaluation of the second derivative of arc length with respect to time. Since

ds/dt = Ψ1 which is assumed constant, it follows that,
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d2s
dt2 =

d3s
dt3 = 0 .

No component of the acceleration vector thus lies in the direction of travel. The acceleration is

parallel to the curvature vector and is thus referred to as centripetal acceleration. Substitution

of the above expression into Eq. (2.5) gives,

a(t) = Ψ
2
1κ(s)n̂(s) . (3.2)

For a given feed rate, acceleration is directly proportional to the curvature of the path. For

a given curvature, the magnitude of the acceleration vector increases parabolically with feed

rate. Eq. (3.2) shows that the acceleration vector changes both its direction and magnitude as

it traverses a tool path at a constant feed rate, Ψ1. Tool path motion therefore requires the

existence of a jerk vector. Substituting the first three derivatives of arc length with respect

to time into Eq. (2.7) produces the following expression for the jerk vector occurring during

constant feed rate traversal,

j(t) = Ψ
3
1

[
dκ(s)

ds
n̂(s)−{κ(s)}2t̂(s)

]
. (3.3)
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3.2 Acceleration limited phase

Eq. (3.2) shows that at a constant feed rate acceleration is directly proportional to curvature.

The magnitude of acceleration increases linearly with curvature. As discussed in the introduc-

tory chapter, this growth cannot be sustained indefinitely. At a given point on the tool path,

its curvature will impose a magnitude of the centripetal acceleration vector that exceeds the

machine’s limits. It is at this point that controller regulation must intervene to provide an alter-

native motion to that requested in the NC file. As argued previously, the nature of the control

algorithms have some dependence on the mechatronic attributes of the given machine and so

different machines can respond differently to an imposed breach of the kinematic limits.

A possible action is to continue to provide the maximum centripetal acceleration permitted by

a machine, Ψ2, despite curvature imposing a greater magnitude [1]. Such an action will cause

the machine to transition from a velocity to an acceleration limited phase of tool path motion.

The point on a given tool path where this phase transition occurs may be identified by the path’s

curvature, which is therefore referred to as the transition curvature, κα [1]. The curvature, κα ,

at which a commanded feed rate, Ψ1, requires a machine’s maximum centripetal acceleration,

Ψ2, can be found from Eq. (3.2). It follows that κα = Ψ2/Ψ2
1.

By enforcing a limit on the centripetal acceleration, the normal component of the general ex-

pression for the acceleration vector, Eq. (2.5), may be equated to Ψ2,

{
ds
dt

}2

κ(s(t)) = Ψ2 .
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It then follows that feed rate during the acceleration limited phase of motion may be expressed

as,

ds
dt

=

√
Ψ2

κ(s)
. (3.4)

The magnitude of velocity is thus inversely proportional to the square root of curvature,

v(t) =

√
Ψ2

κ(s)
t̂(s) . (3.5)

As curvature increases past κα , the feed rate decreases. A tangential deceleration must therefore

occur. The nature of this deceleration can be characterised by the derivative of Eq. (3.4), since

this corresponds to the tangential component of Eq. (2.5). The second derivative of arc length

with respect to time is thus,

d2s
dt2 =

√
Ψ2

d
ds


√

1
κ(s)

ds
dt

.

It then follows that,

d2s
dt2 =−1

2

√
Ψ2

{κ(s)}3
dκ(s)

ds
ds
dt

.
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Substituting Eq. (3.4), into the above equation enables the tangential acceleration component to

be expressed as

d2s
dt2 =−1

2
Ψ2

1
{κ(s)}2

dκ(s)
ds

. (3.6)

Thus the complete acceleration vector is given by

a(t) = Ψ2

[
n̂(s)− 1

2
1

{κ(s)}2
dκ(s)

ds
t̂(s)
]
. (3.7)

Given a tool path whose curvature increases at a constant rate, the magnitude of the tangen-

tial deceleration required to adhere to the centripetal acceleration limit increases. Further, by

definition, the normal component of acceleration is constant.

Eq. (2.7) shows that the tangential component of the general jerk vector contains the third

derivative of arc length with respect to time, d3s/dt3. Taking the derivative of Eq. (3.6) with

respect to time gives,

d3s
dt3 =−1

2
Ψ2

d
ds

 1
{κ(s)}2

dκ(s)
ds

ds
dt

=−1
2

Ψ2
1

{κ(s)}2

d2κ(s)
ds2 −2

1
κ(s)

{
dκ(s)

ds

}2
ds

dt
.

(3.8)
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An alternative form of Eq. (3.4) is

ds
dt

=

√
Ψ2
√

κ(s)
κ(s)

. (3.9)

Substituting this expression into Eq. (3.8) gives,

d3s
dt3 =−1

2
Ψ2
√

Ψ2
√

κ(s)
1

{κ(s)}3

d2κ(s)
ds2 −2

1
κ(s)

{
dκ(s)

ds

}2
 .

The alternative expression for feed rate can also be substituted into the other term of tangential

jerk to give,

{
ds
dt

}3

{κ(s)}2 = Ψ2
√

Ψ2
√

κ(s) .

Substituting the above two expressions into Eq. (2.7) characterises the tangential jerk experi-

enced during the acceleration limited phase of tool path motion,

jt(t) =−
Ψ2
√

Ψ2
√

κ(s)
2{κ(s)}3

[
d2κ(s)

ds2 −2
1

κ(s)

{
dκ(s)

ds

}2

+2{κ(s)}3

]
. (3.10)

Substituting Eqs. (3.4) and (3.6) into the normal component of Eq. (2.7), provides a means

of characterising the normal component of jerk in the acceleration limited phase of tool path
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motion,

jn(t) =−
Ψ2
√

Ψ2
√

κ(s)
2{κ(s)}2

dκ(s)
ds

. (3.11)

3.3 Shape schematics

Having described the characteristics of bounded tool path motion in terms of shape, this section

consolidates the corresponding equations into a series of diagrams, referred to in this thesis as

shape schematics. Curvature alone describes the shape of a planar tool path [14]. By plotting

the magnitude of each kinematic vector with respect to curvature, each of the shape schematics

provide a complete illustration of the effects of planar tool path shape on a given kinematic

vector. Further, by considering a constant curvature derivative, the shape of the profiles are in-

dependent of any derivative of curvature with respect to arc length, dnκ(s)/dsn, n≥ 1. Within

the context of the schematics, these derivatives simply correspond to the rates at which the pro-

files are rendered. For simplicity, it is assumed that the schematics are rendered at a constant

rate, specifically dκ(s)/ds = 1 and so dnκ(s)/dsn = 0, n ≥ 2 (Figs. 3.1, 3.2, 3.3 and 3.4). For

a tool path where the dκ(s)/ds is not constant, the appropriate magnitudes must be substituted

into the relevant equations when constructing the corresponding shape schematics. A non con-

stant curvature derivative changes the magnitudes of the normal component of jerk during the

velocity limited phase of motion (Eq. 3.11), as well as the tangential acceleration and both com-

ponents of the jerk vector during the acceleration limited phase of motion (Eq. 3.7 and Eqs. 3.10

and 3.11 respectively).
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At κα an instantaneous tangential deceleration is required in order to adhere to the centripetal

acceleration limit. γ1, shown in Fig. 3.2, may be quantified by substituting κα into Eq. (3.6).

∵ d2s/dt2
∣∣
κ(s)=κα

≡ γ1 and dκ(s)/ds = 1 and so,

γ1 =−
1
2

Ψ2
1

κ2
α

.

The normal component of the jerk vector changes direction instantaneously at κα . The value

of this component in the acceleration limited phase is denoted by γ2 and can be quantified by

evaluating Eq. (3.11) when κ(s) = κα . γ2 is thus,

γ2 =−
Ψ2
√

Ψ2
√

κα

2κ2
α

.

γ3 and γ4 are labels for the tangential jerks at κα . Approaching κα from the velocity limited

phase to the acceleration limited phase, requires an instantaneous increase in magnitude from

|γ3| to |γ4|. Approaching κα from the acceleration limited phase to the velocity limited phase,

requires an instantaneous decrease in magnitude from |γ4| to |γ3|. Evaluation of Eq. (3.3) there-

fore expresses γ3,

γ3 =−Ψ
3
1κ

2
α ,

and evaluating Eq. (3.10) gives γ4,

49



κ

v

Ψ1

κα

v ∝

√
1
κ

Figure 3.1: Velocity schematic

γ4 = Ψ2
√

Ψ2


√

1
κ7

α

−
√

κα

 .

In the acceleration limited phase of motion γ5, shown in Fig. 3.4, denotes the point at which the

direction of the tangential jerk vector changes again. The value of γ5 can be found by equating

Eq. (3.10) to zero and accounting for κ ≥ κα .

The discontinuities illustrated in Figs. 3.2, 3.3 and 3.4 are a result of ignoring acceleration

and deceleration from and to rest. In practice these discontinuities, that occur at the transition

curvature, refer to the discrete time period where a machine transitions from one limited phase

to another [1]. The actual curvature at which this transition begins must therefore be less than

the theoretical transition curvature [1].
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Figure 3.2: Acceleration schematic
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Figure 3.3: Normal jerk schematic

52



κ

jt

γ5

γ4

γ3 jt ∝−κ2

jt ∝
1√
κ7 −
√

κ

κα

Figure 3.4: Tangential jerk schematic
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3.4 Chapter summary

This chapter has characterised tool path motion in terms of the path’s intrinsic shape proper-

ties. Two distinct phases of motion originated as a result of enforcing limits on the velocity,

acceleration and jerk vectors.

The velocity limited phase enforced the constraint of constant feed rate traversal, Eq. (3.1). In

order to maintain a constant feed rate it was shown that, at a given point, the magnitude of the

acceleration vector must be directly proportional to the curvature of the tool path, Eq. (3.2).

Analysis of the change in both the direction and magnitude of this acceleration vector revealed

the behaviour of the jerk vector, Eq. (3.3). It was shown that the normal component of jerk

is directly proportional to the rate at which the curvature changes with respect to arc length.

Further, the magnitude of the tangential component increases parabolically with curvature but

is directed opposite to the direction of travel.

The acceleration limited phase enforced the constraint of a maximum magnitude on the cen-

tripetal acceleration vector. It was shown that in order to adhere to this limit, the feed rate is

required to decrease as the path’s curvature increases. Specifically, Eq. (3.4), shows that the

feed rate is inversely proportional to the square root of the path’s curvature. This change in feed

rate was shown to require a negative tangential acceleration, a deceleration, that is described by

Eq. (3.6). Finally, the behaviour of the tangential and normal components of the corresponding

jerk vector are described by Eqs. (3.10) and (3.11).

Direct interpretation of the above mentioned equations (Eqs. (3.1)–(3.3), (3.5), (3.7), (3.10) and

54



(3.11)) may not be the most intuitive or insightful. Consider for example, the expression for the

tangential component of the jerk vector during the acceleration limited phase of motion,

−
Ψ2
√

Ψ2
√

κ(s)
2{κ(s)}3

[
d2κ(s)

ds2 −2
1

κ(s)

{
dκ(s)

ds

}2

+2{κ(s)}3

]
.

The shape schematics (Figs. 3.1, 3.2, 3.3 and 3.4) therefore provide concise illustrations of the

velocity, acceleration and jerk vectors.
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Chapter 4

Shape imposed kinematics

Having established a shape characterisation of tool path motion in the previous chapter, this

chapter provides empirical evidence to support the corresponding shape schematics. By con-

trolling the shape properties of a series of test tool paths, the imposed kinematics are controlled

and the resulting motions are subsequently analysed to deduce the effects of shape.

The chapter begins by describing the test methodology employed to obtain the empirical evi-

dence. This is then followed by an explanation of the apparatus and the techniques used to de-

duce the kinematics achieved for the specified tool path motions. This chapter then concludes

by comparing the resulting kinematic profiles with the shape schematics of the characteristic

model (chapter 3).
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4.1 Methodology

4.1.1 General approach

Tool path shape is controlled to affect the kinematics imposed on a given machine. If these

kinematics exceed the limits of the machine they cannot be realised in practice. Instead a motion

with permissible kinematics will result from controller regulation. The differences between

requested and achieved kinematics are studied. The resulting analysis may then be used to

identify the maximum achievable kinematics for a tool path with given shape properties.

Many factors influence the kinematic properties produced by a given machine. Indeed, any

natural phenomenon that causes the resultant force of a motion to change affects the kinematics

achieved. For example, during machining the cutting forces, acting opposite to the direction

of travel, can reduce the magnitude of the resultant force acting on a tool, thereby causing

deceleration. This in turn causes the magnitude of velocity to decrease. It then follows that

a smaller feed rate is observed. The desire is thus to isolate the effects of tool path shape on

machine motion. However, not all factors can be controlled. For example, the magnitudes of

the vibrations resulting from external influences may not be known or predictable. Actions are

therefore taken to control testing conditions by minimising the effects of factors that can be

controlled.
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4.1.2 Testing conditions

For all tests, the mass loads on the axes are kept constant. Larger masses exert greater burdens

on servomotors and affect achievable kinematics [13]. The masses of workpieces and cutting

tools can vary depending upon the application for which the machine is being used. No work-

piece or cutting tool is therefore fixed to the machine during testing. The main mass loads that

the servomotors must overcome are the masses of the spindle and the axes. The spindle does

not rotate and since there is no tool and workpiece, no material removal occurs, therefore no

vibrations are induced from cutting. The axes are free to move without hindrance of surplus

mechanical loads.

To increase the repeatability of the free motion tests, machine temperature is stabilised us-

ing a standard warming-up procedure [44]. From a cold start machine lubricant is distributed

throughout the mechanical system. Some frictional energy is converted to heat. The result-

ing increase in temperature can cause thermal expansion of the mechanical components, in

particular the machine’s axes [45]. This thermally induced axis distortion can cause errors in

the resulting motions [45]. Through conducting the warming-up procedure the rate at which

temperature changes, with respect to time, decreases and begins to stabilise. This lessens the

changes in the dimensions of the components. Smaller variability is therefore expected of the

kinematics produced from repeated trials of a given test tool path.
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4.1.3 Test tool paths

Circles are deemed appropriate test tool paths to identify the effects of shape on machine kine-

matics. Since circular tool paths are planar, only curvature needs to be manipulated. Torsion

need not been considered (τ(s) = 0). The shape of a given circle is described by a constant

curvature, κc. Circles are also closed paths. Multiple traversals/revolutions can therefore be

preformed without intermission, thus reducing time to perform tests and providing sufficient

distance for a constant feed rate, ds/dt = vc, to be achieved. From Eqs. (2.4), (2.5) and (2.7)

it follows that the kinematic vectors imposed by tool path shape are of constant magnitude and

their directions do not change relative to each other (Fig. 4.1). The analysis is simplified be-

cause in general acceleration and jerk may consist of two and three orthogonal components

respectively, but at constant speed, each can be described by single component vectors (see

chapter 2). Further, constant speed circular tool path motion may be characterised by the equa-

tions governing simple harmonic motion (SHM) [46]. This facilitates analysis of the tool path

motion frequencies, undertaken in the following section.

v(t) = vct̂(s)

an(t) = v2
cκcn̂(s)

jt(t) =−v3
cκ2

c t̂(s)

Figure 4.1: Shape imposed kinematics

59



4.2 Data aquisition

4.2.1 Test machines

As discussed in the introductory chapter, the specific nature of the motion control algorithms

implemented by a given machine may not be known to the engineer. Further, the algorithms

used by one machine need not be the same as those used by another. The test tool path motions

are performed on three machines, the Hermle C600U , the Mazak VCS430A and the Matsuura

LX1, as a means of demonstrating that different machines may regulate a specified tool path

motion according to their own specific motion control algorithms.

To ensure that the highest kinematic demands were enforced on each of the machines, the

maximum feed rates were selected for each machine. Specifically, all the test tool paths had a

commanded feed rate of 8m/min, 35m/min and 90m/min on the Mazak, Hermle and Matsuura,

respectively [47–49].

For all the machines, the circular motions are performed through simultaneous motion of two

linear axes. For a given machine, the specific two linear axes chosen are immaterial since

each linear axis is orthogonal to the other two and assuming each axis has the same kinematic

capabilities, the kinematic properties of each axis form Cartesian components of the resultant

kinematic properties of tool path motion. Technical data for each of the machines verifies

that indeed all the axes of a machine have the same kinematic specification [47–49]. Further,

preliminary testing suggests negligible difference in the motions produced between planes. The

data presented in this thesis is therefore derived from motions in each of the machines’ principal
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xy planes.

4.2.2 Accelerometer

As shown by Eqs. (2.4), (2.5) and (2.7), to quantify the actual velocity, acceleration and jerk

experienced on a given circular tool path, the achieved feed rate is required. Each of the con-

trollers of the test machines provide a Digital Read-Out (DRO) of feed rate. This however, is not

an independent source of measurement and as such can only be used as a preliminary indicator

of the actual feed rate achieved in a given motion. An inertial sensor, specifically a tri-axial

piezoresistive accelerometer, is used as an independent measurement source [50]. The sensor

outputs the acceleration and time of a given motion. The achieved feed rate is then deduced

from this acceleration profile. The actual velocity, acceleration and jerk experienced can then

be found for each circular tool path from Eqs. (2.4), (2.5) and (2.7).

Figure 4.2: Diagram of a piezoresistive accelerometer [51]

The main principle on which the accelerometer operates is the piezoresistive effect [52]. This

is a phenomenon whereby the application of mechanical stress causes a change in the electrical
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Table 4.1: Accelerometer specification

Parameter Value

Model EGCS-50-QB
S/N 28 T6 JFG 3
Sensitivity (X/Y/Z) 4.63mV/g
Input Imped (X/Y/Z) 1116ohms
Output Imped (X/Y/Z) 434ohms
Range ±50g
Excitation 15V

resistivity of a semiconductor material [53]. When a resultant force causes the proof mass

to accelerate, the piezoresistive elements are strained (Fig. 4.2). This strain in turn causes a

change in resistance, which is amplified by the Wheatstone-bridge circuit configuration of the

piezoresistors [54]. The resistance change causes an imbalance of the bridge and results in a

change of voltage output that is proportional to the acceleration experienced by the proof mass

and in turn the object that the sensor is attached to.

The specific piezoresistive accelerometer used was an Entran EGCS-50-QB. To ensure the sen-

sor performed according to its specification (see table 4.1) and to provide meaning to its elec-

trical outputs, each axis was calibrated using gravity. Each axis was rotated by π/2 radians in

order to identify the voltages produced by the axes parallel and perpendicular to Earth’s gravita-

tional field. These values were then used to define the linear relationships between voltage and

acceleration for each axis [53]. Further, a suitable data acquisition rate was chosen to ensure the

accelerometer captured data at a sufficient rate in order to provide an appropriate representation

of the acceleration experienced [53]. Preliminary testing revealed that a rate of 10,000 Hz was

more than sufficient to provide a representation of the actual acceleration experienced.

Other types of accelerometer were considered. For example, piezoelectric accelerometers were
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trialled in preliminary testing. They exploit the vibrations of piezoelectric crystals to deduce

accelerations. It was found that these accelerometers are more appropriate for applications

involving higher frequency motions compared to the test tool path motions. For example, bal-

listics and engine testing [53].

In the case of the Hermle and Matsuura CNC machines, the accelerometer’s axes are aligned

with the given machine’s axes and mounted, via an appropriate adhesive, to the flat vertical

cladding of the corresponding z axis housings. Fig. 4.3 shows the accelerometer attached to the

casing of the Hermle’s coolant ducts. The assembly of the Mazak’s axes is such that the x and

y axes are independent of the z axis and so for this machine, the accelerometer was mounted to

the machine’s work table.

Figure 4.3: Tri-axial accelerometer

To draw signals from the accelerometer and process data a SoMat eDAQ-lite data acquisition

system (Fig. 4.4) was used [55]. The interface through which setup, calibration and data re-

trieval was preformed was the SoMat Test Control Environment (TCE) software [56].
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Figure 4.4: SoMat eDAQ-lite set up

4.2.3 Motion timings

Since the circular tool paths are closed, multiple revolutions were performed (5 revolutions) in

succession. This enabled the tool to accelerate from rest to a terminal feed rate, the maximum

achievable for the given curvature and decelerate back to rest at the end of the revolutions.

As explained in section 3.2 of chapter 3, the curvature of the tool path imposes a particular

magnitude for the centripetal acceleration vector for a given commanded feed rate. If such a

magnitude cannot be delivered by the machine’s servomotors, motion regulation from the ma-

chine’s controller produces a maximum permissible feed rate. It then follows that the remaining

revolutions are performed at a constant feed rate, assuming the circumference of a given circu-

lar path is sufficiently long for the machine to accelerate from rest to the maximum permissible

feed rate. Inspection of the acceleration profiles for all of the test tool path confirms that a con-

stant feed rate is achieved after a single revolution and maintained until the final revolution. To

remove the contributions of the accelerations from and to rest, the initial and final revolutions

of a given test tool path are ignored from analysis. The circular tool paths may therefore be
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considered to have been traversed at a constant feed rate.

For a given tool path motion, the time for one revolution can be obtained from the motion’s

corresponding acceleration profile. To reduce the effects of anomalous data, an average time,

tav, from three revolutions is taken, tav = (1/3) ∑
2
i=0 ti. Since the circumference, 2π/κc, of

a test tool path is known, the average feed rate, vav, achieved for a given curvature can be

found, vav = 2π/κctav. It then follows that the velocity, vtime(t), acceleration, atime(t), and jerk,

jtime(t), experienced during a given tool path motion can be found from the equations shown

in Fig. (4.1). Similar approaches to quantify the kinematics of tool path motion have also been

employed in industry [41–43].

4.2.4 Motion frequencies

The acceleration values from the acceleration profiles can also be exploited to quantify tool

path motion kinematics. As stated at the end of section 4.1.3, a given tool path motion may

be characterised as SHM. Since the circular motion is derived from the oscillations of two

orthogonal linear axes, the curvature of the circular tool path corresponds to the frequency at

which the linear axes oscillate. The greater the curvature of a circle, the greater the frequency

of the axes oscillations.

Although the influences of factors other than shape on tool path motion have been minimised,

they cannot be abolished entirely (see section 4.1.1). Each factor therefore contributes a com-

ponent to the resultant acceleration profile. It can be shown that a given acceleration profile can

be represented as a collection of sinusoids, where each sinusoid corresponds to a component ac-
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celeration [57]. Since each sinusoid has an associated frequency, it follows that each frequency

corresponds to a component acceleration and thus to a physical factor that influences tool path

motion.

Performing Fourier analysis on each of the acceleration profiles decomposes them into their

respective components and represents them in the frequency domain. The frequency, fs, corre-

sponding to tool path shape, specifically curvature, may then be identified from the frequency

profile. The reciprocal of fs denotes the time taken to complete one revolution of the tool

path, T , T = 1/ fs. It then follows that the feed rate, v, at which traversal occurred is thus

v = 2π fs/κ . The velocity, acceleration and jerk experienced during a given tool path motion

can then be found from the equations shown in Fig. (4.1).

To demonstrate the Fourier analysis procedure, consider the traversal of a circular path, of 1mm

radius, at a commanded feed rate of 35m/min, on the Hermle C600U CNC machine. Fig. 4.5

illustrates the axes acceleration profiles extracted from the accelerometer. To express a discrete

axis acceleration signal, aµ(ti) where µ denotes the given axis, of N samples, in the frequency

domain, âµ( fi), the following transform is used.

âµ(k) =
N

∑
j=1

aµ( j)W ( j−1)(k−1)
N ,

where WN = e−
2πi
N is one of N roots of unity. The transform is applied to both axis components.

The resulting profiles are shown in Fig. 4.6. Both profiles have the same dominant frequency.

This suggests that each of the linear axes oscillated at the same rate, indicating constant feed
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rate travsersal of the circular tool path. It then follows that this feed rate may be quantified

using the equations shown in Fig. (4.1). It then follows that the velocity, v f req(t), acceleration,

a f req(t), and jerk, j f req(t), experienced during a given tool path motion can be found from the

equations shown in Fig. (4.1).
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4.3 Motion analysis

This section presents the kinematic data derived from the acceleration profiles of each of the test

tool path motions. Each of the values of the achieved kinematics, illustrated in the following

graphs, are obtained by taking an arithmetic average of a kinematic value derived from the

motion time and a value derived from the motion frequency. For example, an achieved velocity

value, vav, is obtained by taking an arithmetic average of the velocity value derived from the

motion time, vtime, and a value derived from the motion frequency, v f req, vav = (vtime+v f req)/2.

Using two measurement methods improves the reliability of the kinematic data presented.

4.3.1 Mazak VCS 430A

Consider first the Mazak VCS430A. Figs. 4.7 and 4.8 show the magnitudes of the kinematic

vectors imposed on the machine by requesting it to traverse test tool paths of increasing curva-

ture at the same commanded feed rate of 8m/min≡ 0.1333m/s. As described by the equations

in chapter 3, Fig. 4.7 shows a linear increase in the required centripetal acceleration to traverse

circular tool paths of increasing curvature. This linear increase in centripetal acceleration cor-

responds to a parabolic increase in jerk (see section 3.2), as shown by Fig. 4.8. Figs. 4.9 and

4.10 show that the imposed kinematics could be provided by the machine’s servomotors.
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Figure 4.7: Shape imposed velocity and acceleration (Mazak VCS430A)
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Figure 4.8: Shape imposed acceleration and jerk (Mazak VCS430A)
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Figure 4.9: Achieved velocity and acceleration (Mazak VCS430A)
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Figure 4.10: Achieved acceleration and jerk (Mazak VCS430A)

70



4.3.2 Matsuura LX1

The same tool paths were presented to the Matsuura LX1. However the machine’s maximum

feed rate of 90m/min ≡ 1.5m/s was set as the commanded feed rate for each of the tests. The

same tool path shapes therefore imposed greater kinematic demands on the Matsuura LX1 than

the Mazak VCS430A. Those specific kinematic demands are presented in Figs. 4.11 and 4.12.

The machine was unable to provide these kinematic demands as shown in Figs. 4.13 and 4.14.

Instead the servomotors provided alternative motions, deemed suitable approximations by the

motion control algorithms. Indeed, the commanded feed rate was not achieved in any of the

test tool path traversals. Fig. 4.13 shows an approximately constant centripetal acceleration was

produced. As shown in chapter 3, such an acceleration profile corresponds to the characteristic

decrease in the achieved feed rate as the curvature of each circular test tool path increases.

Also, Fig. 4.14 shows the magnitude of the jerk vector increase parabolically as the test tool

path curvatures increase. It follows that the empirical kinematic data profiles of the Matsuura

LX1 resemble the characteristic features of the shape schematics developed in chapter 3.
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Figure 4.11: Shape imposed velocity and acceleration (Matsuura LX1)
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Figure 4.12: Shape imposed acceleration and jerk (Matsuura LX1)
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Figure 4.13: Achieved velocity and acceleration (Matsuura LX1)
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Figure 4.14: Achieved acceleration and jerk (Matsuura LX1)
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4.3.3 Hermle C600U

Finally, the test tool paths were traversed on the Hermle C600U with a commanded feed rate of

35m/min≡ 0.5833m/s. The variation in the magnitude of the centripetal acceleration, with re-

spect to curvature, is considered negligible compared to the variation in achieved feed rate. The

profiles then demonstrate the constant centripetal acceleration feature, upon which the charac-

teristic model, given in chapter 3, is based. The shape imposed kinematics, shown in Figs. 4.15

and 4.16, were not realised. Figs. 4.17 and 4.18 show that the machine’s centripetal acceleration

limit had been exceeded and thus the requested kinematics were compromised.
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Figure 4.15: Shape imposed velocity and acceleration (Hermle C600U)
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Figure 4.16: Shape imposed acceleration and jerk (Hermle C600U)
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Figure 4.17: Achieved velocity and acceleration (Hermle C600U)
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Figure 4.18: Achieved acceleration and jerk (Hermle C600U)

4.4 Chapter summary

This chapter has shown that the empirical evidence obtained from the Mazak VCS430A, the

Matsuura LX1 and the Hermle C600U all support the characteristic model developed in chapter

3. For example, for the specified test tool paths, the motions produced by the Mazak VCS430A

may be characterised by the velocity limited phase equations for velocity, acceleration and

jerk. Both the Matsuura LX1 and the Hermle C600U were unable to provide their respective

tool path motions. Controller regulation intervened as a consequence of the shape imposed

centripetal accelerations exceeding the limits of each of the machines. Acceleration limited

phase behaviour was thus observed. Fig. 4.19 compares the feed rates achieved by the Hermle

(from Fig. 4.17) and Matsuura (from Fig. 4.13). Fig. 4.20 compares the centripetal accelerations

achieved by the Hermle (from Fig. 4.17) and Matsuura (from Fig. 4.13). Fig. 4.21 compares the
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jerks achieved by the Hermle (from Fig. 4.18) and Matsuura (from Fig. 4.14).

Despite different commanded feed rates being set, the maximum achieved feed rate on the

Matsuura LX1 was less than the commanded feed rate specified for the Hermle C600U tests.

This implies the same specified tool path motion can produce different achieved motions on the

Matsuura LX1 and the Hermle C600U even if the defined parameters are with the specifications

of both machines. The Hermle’s lower centripetal acceleration limit (Fig. 4.20) resulted in lower

attainable feed rates and jerks (Figs. 4.19 and 4.21) for tool paths of given curvatures.
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Figure 4.19: Hermle and Matsuura Feed rate Profile
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Figure 4.21: Hermle and Matsuura Jerk Profile

Having obtained, in this chapter, empirical evidence that supports the distinct phases of tool

path motion described in chapter 3, the following chapter continues the investigation by testing

for the other features of the shape characterisation model.
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Chapter 5

Example tool path motions

This chapter continues the investigation by analysing experimental kinematic data from ex-

ample tool paths, in order to provide supporting evidence for particular features of the shape

characterisation of motion developed in chapter 3.

A distinguishing feature of the characterisation is that during the acceleration limited phase of

motion, the achieved feed rate, va, is inversely proportional to the square root of the path’s

curvature, κ , va ∝ 1/
√

κ . Indeed, Fig. 4.19, of chapter 4, suggests that both the Matsuura and

Hermle behave in this manner when a path’s curvature imposes a centripetal acceleration that

exceeds their respective limits. However, since the Mazak demonstrated velocity limited phase

behaviour it is omitted from the following analysis. This chapter therefore begins by adding

further empirical weight to reinforce the validity of this feature, by demonstrating that it can be

used to predict the times of circular tool path motions.
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The chapter then considers transition curvature. The test tool paths, of chapter 4, are inves-

tigated again but with a lower commanded feed rate. Lowering the shape imposed kinematic

demands serves to illustrate that tool path motion may be classified in two distinct phases.

Specifically, a velocity and an acceleration limited phase.

Finally, the chapter concludes by considering the motion along a planar tool path of varying

curvature. Fig. 3.2 shows that traversal of a path of varying curvature requires a tangential

component of the acceleration vector. It is shown that tangential acceleration can cause an

earlier phase change than that described by the transition curvature. The empirical kinematic

data illustrates that transition curvature may be therefore be regarded as an upper bound on the

value of the curvature at which tool path motion changes phase.

5.1 Motion timings

If a path’s shape imposes kinematic demands that exceed a machine’s limits, an alternative tool

path motion to that specified in a NC file can be produced as a result of controller regulation [1].

Indeed, it was shown in chapter 4 that the Matsuura and the Hermle were both unable to traverse

the circular test tool paths at their corresponding commanded feed rates (Figs. 4.13 and 4.17,

respectively). Lower feed rates were achieved compared to those requested. Figs. 5.1 and

5.2 display the resulting differences between the requested and achieved motion times for the

Hermle and the Matsuura, respectively.

To traverse a circular test tool path, of given length, s, at commanded feed rate, Ψ1, requires a
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motion time, tr, of

tr = s/Ψ1 . (5.1)

However, Figs. 4.13 and 4.17 show that the commanded feed rates and therefore the requested

motion times were not realised and further the profiles suggest that the actual achieved feed rates

may be characterised by Eq. 3.4. The achieved feed rate, va, on a given circular test tool path

may therefore be expressed as va =
√

Ψ2/κ . The actual achieved time, ta, is thus ta = s
√

κ/Ψ2.

The length of the tool path may then be given as s = ta
√

Ψ2/κ . Substituting this expression for

tool path length into Eq. 5.1 produces an equation relating the requested and achieved times for

circular tool path motion,

ta = Ψ1

√
κ

Ψ2
tr . (5.2)

The above equation thus predicts the time taken to traverse a circular path of a given curvature,

κ , at a particular commanded feed rate, Ψ1, on machine with a specific centripetal acceleration

limit, Ψ2.

Employing Eq. 5.2 to predict the circular tool path motion times achieved on the Matsuura and

the Hermle requires each machine’s centripetal acceleration limit to be quantified. For each

machine, an arithmetic average of all the deduced centripetal acceleration values, Ψ̄, shown in

Fig. 4.20, is used to obtain a value for Ψ2,
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Ψ̄ =
1
N

N

∑
i=1

ψi ,

where N is the number of samples, specifically, N = 10. Also, to indicate the variation within

the empirical data, the standard deviation of each machine’s centripetal acceleration values, σΨ,

is obtained using

σΨ =

√
1
N

N

∑
i=1
{ψi− Ψ̄}2 .

The mean centripetal accelerations for each machine and their corresponding standard devia-

tions are given in table 5.1. The smaller standard deviation associated with the Hermle’s mean

centripetal acceleration indicates less variability in measured values. Substituting the appropri-

ate empirically derived centripetal acceleration limit into Eq. 5.2 produces predictions of the

achieved motion times for each machine. The results for the Hermle and the Matsuura, are

shown in Figs. 5.3 and 5.4 respectively. The error bars provide a graphical representation of the

percentage error between the predicted and achieved motion times. In the case of the Hermle,

the largest error of 1.45% occurred at a curvature of 250m−1. For the Matsuura, the largest error

of 0.45% occurred at a curvature of 500m−1. The specific values for all the percentage errors

are provided in appendix E.

The described approach to predict motion times is only applicable to circular motions on ma-

chines that exhibit the acceleration limited phase presented in chapter 3. The motivation for

presenting the predictions is to reinforce the applicability of v ∝ 1/
√

κ for characterising feed
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Table 5.1: Empirical centripetal acceleration values

Machine Average, Ψ̄ Standard deviation, σΨ

Hermle C600U 0.13 0.002
Matsuura LX1 1.009 0.0141

rate with respect to curvature, when motions occur under the constraint of a centripetal acceler-

ation limit.

5.2 Transition Curvature

Chapter 3 described two distinct phases of tool path motion. The velocity limited phase de-

scribed the kinematic properties resulting from tool path traversal at the commanded feed rate,

Ψ1. The acceleration limited phase described the kinematics produced as a result of an enforced

constraint on the maximum centripetal acceleration, Ψ2. These two phases are distinguished by

the transition curvature, κα . This is the curvature at which tool path motion transitions between

phases and may be quantified as κα = Ψ2/Ψ2
1, as shown in section 3.2 of chapter 3. It then fol-

lows that when the path’s curvature is less than the transition curvature, tool path traversal may

be classified as velocity limited phase motion and when the path’s curvature is greater than the

transition curvature, tool path curvature may be classified as acceleration limited phase motion.

Consider the behaviour of the Hermle when it was used to traverse the circular test tool paths

described in chapter 4. Figs. 4.17 and 4.18 suggest that the machine’s motion may be classified

as operating within the acceleration limited phase of motion. Since the commanded feed rate

was specified as Ψ1 = 0.5833m/s (see section 4.3.3) and the centripetal acceleration has been

85



found to be Ψ2 = 0.13m/s2 (see section 5.1) the transition curvature may therefore be given as

κα = 0.382m−1. The lowest test tool path curvature was κmin = 20m−1, therefore κα << κmin.

It then follows that all the centripetal accelerations imposed by the curvatures of the test tool

paths exceed the machine’s limit.

Lowering the commanded feed rate, increases the magnitude of the transition curvature. If

Ψ1 = 0.05m/s, the transition curvature becomes κα = 51.95m−1. This transition curvature is

greater than the curvatures of 4 of the test tool paths, specifically κα > 20,25,33.3̇ and 50m−1.

Traversal of the test tool paths with curvatures less than κα therefore require centripetal accel-

erations less than Ψ2. It then follows that the commanded feed rate may be achieved for these

paths, but not for paths whose curvatures exceed κα .

Figs. 5.5, 5.6 and 5.7 illustrate the achieved kinematic properties from traversing the test tool

paths at the revised lower commanded feed rate. As suggested by the characterisation developed

in chapter 3, κα separates the two distinct phases of motion. Velocity limited phase motion is

experienced when the test curvatures, κi, lie within 0≤ κi ≤ κα and acceleration limited phase

motion is experienced when κα ≤ κi ≤ κmax.
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5.3 Premature phase transition

5.3.1 Spiral motion

The shape schematic, shown in Fig. 3.2 of chapter 3, shows that as the curvature of a tool

path increases, the magnitude of the centripetal acceleration vector increases linearly until the

machine’s limit is reached. It is at this point, referred to as the transition curvature, that an

instantaneous tangential acceleration is required in order to reduce the feed rate and thereby

adhere to the centripetal acceleration limit. This instantaneous acceleration cannot be realised

in practice [1]. It then follows from the discussion presented in section 3.3, of chapter 3, that
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as a path’s curvature increases, the actual curvature, κa, at which phase transition occurs is less

than the theoretical transition curvature, κα , κa < κα . This section therefore investigates the

traversals of paths with varying curvature as a means of demonstrating this premature phase

transition.

As described in chapter 3, a tool path with a monotonically increasing curvature profile imposes

a set of kinematics vectors, on a given machine, that are characterised by the shape schematics

presented in chapter 3 (Figs. 3.1, 3.2, 3.3 and 3.4). Such a path is the Cornu spiral. It is defined

by a linear curvature profile κ(s) = αs+β , s ≤ s ≤ L and α , β ∈ R where L is the total tool

path length, α refers to the gradient of the curvature profile and β refers to the initial curvature

of the path [23].

To simplify the analysis of the resulting tool path motions, the tool path lengths, L, and the

angle the path’s final tangent vector, t̂(s = L), subtends with the initial tangent vector, t̂(s = 0),

the winding angle, Ω =
∫ L

0 κ(s)ds, are controlled to construct tool paths where the transition

curvatures occur approximately half way through the motions, κα ≈ κ(s = 1/2L). Preliminary

testing revealed that traversing paths derived from the intrinsic equation κ(s) = 2s, 0 ≤ s ≤

0.4m, with a commanded feed rate of 0.5m/s ≡ 30m/min, ensures the transition curvature,

κα = Ψ2/Ψ2
1⇒ κα = 0.52(m−1).

5.3.2 Path generation

Sampling period Precise representation of Cornu spiral tool paths cannot be achieved in NC

files, since the analytical expressions for a given position require the evaluation of the Fresnel
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integrals [23]. These integrals are transcendental functions and thus require numerical methods

for interrogation [58, 59]. The linear curvature profiles of Cornu spiral tool paths must there-

fore be approximated using paths of constant curvature, since such paths can be represented

exactly [41–43, 47–49]. Linear and circular arc segmented tool paths are therefore used to form

approximations to a Cornu spiral’s linear curvature (Fig. 5.8).

As explained in the introductory chapter, the discretised nature of segmented tool paths requires

the consideration of the effects of data starvation (see section 1.2). To facilitate this task the

sampling period of the test machine may be identified using the methods employed in appendix

C. Having quantified the machine’s sampling period, the minimum length required for a given

segment, smin, can be defined and used to set the constant lengths of the linear and circular

segments, Lline and Larc respectively.
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Linear segmentation Eqs. (5.3) and (5.4) show that positions on a Cornu spiral path (x(s), y(s))

can be expressed in terms of its curvature profile,

x(s) = x0 +
∫ s

0
cos
[

θ0 +
1

2L
{2κ0Lσ +(κ1−κ0)σ

2}
]

dσ , (5.3)

and

y(s) = y0 +
∫ s

0
sin
[

θ0 +
1

2L
{2κ0Lσ +(κ1−κ0)σ

2}
]

dσ , (5.4)

where (x0,y0) is the start of path, θ0 is initial angle made by the path with x-axis, L is the total

length of path and κ0 and κ1 are initial and final path curvatures respectively [23].

Since evaluation of these integrals requires numerical methods, some error may be present in

each x(s) and y(s). The accuracy of each position cannot be stated since the true values for

x(s) and y(s) are not knowable [58, 59]. Despite this, the error, between limits, smin and smax,

may be bounded [58, 59]. Employing the trapezium rule to numerically evaluate Eqs. (5.3) and

(5.4) simplifies the derivation and the resulting analysis of this error bound, εB. It is shown in

appendix D that the error can be given as

εB =−(smax− smin)
3{κ0L+(κ1−κ0)smax}2

12N2L2 ,

where N is the number of segments in the given interval. With a knowledge of the maximum
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error of a given position, the closest representation of Cornu spiral path positions may be formed

by ensuring that each position error is less than the positional accuracy of the given machine.

Linearly interpolating these positions forms a tool path whose shape is defined by a series of

impulse curvatures, each at a distance Lline apart (Fig. 5.9) [1]. From Eq. (2.5) it can be seen

that the curvature of such a path imposes an infinite acceleration, |an(s)| = ∞, normal to the

direction of traversal of this position continuous path, G0. Section 1.3 shows that such a path

cannot be traversed at a feed rate greater than zero. To avoid high fluctuations in machine

kinematics requires the tool to deviate from the specified tool path [16, 17].

Biarc segmentation Connecting two circular arcs with tangent continuity, G1, forms a com-

posite curve known as a biarc [60]. Approximating a Cornu spiral with a series of biarc seg-

ments produces a path with varying curvature (Fig. 5.10). The following scheme is used to

generate such a path (Fig. 5.11) [1].

1. Rotate point Pi about centre Oi through angle θi = Larc/ri .
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2. Find new radius. ri+1 = 1/(αsi+1), where si+1 = si +Larc .

3. Find the new centre of rotation Oi+1. O(ri+1) = Pi+1ri+1 +Oi(λ − ri+1), where λ =

‖Oi−Pi+1‖ .

The result is a piecewise constant curvature series that approximates a Cornu spiral’s linear

curvature profile. The diagram shown in Fig. 5.10 illustrates the approximation. A step change

in curvature corresponds to a point where two arc segments meet. Analysis of the resulting

curvature profile shows that the magnitude of the curvature changes instantaneously from 1/ri

to 1/ri+1 at each segment. Eq. (2.7) shows that the shape of such a path imposes an infinite jerk

in the normal direction to the path, | jn(s)|= ∞. As with the linearly segmented spiral tool path,

the biarc segmented spiral tool path requires a machine controller to comprise the requested

motion and produce an alternative motion that its control algorithms deem appropriate [1].
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5.3.3 Motion Analysis Methodology

Extra segments, 0.06m in length, are added to the ends of each path with the same level of

geometric continuity achieved by the rest of the path. Specifically, G0 for the linear segments

approximation and G1 for the biarc segments approximation. Practically, this will negate the

influences of the accelerations from and to rest at the beginning and end of each motion.

The key attributes upon which the shape characterisation of motion provided in chapter 3 is

based, are the commanded feed rate, Ψ1, and the machine’s centripetal acceleration limit, Ψ2.

Analysis of the spiral motion feed rates and centripetal accelerations will thus identify if the

same characteristic behaviour is applicable.

Data extracted from the accelerometer presents acceleration in terms of machine axis compo-

nents ax(t) = ax(t)x̂m and ay(t) = ay(t)ŷm [1]. Achieved axes velocities and displacements
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are derived from axis acceleration profiles. Feed rate, normal acceleration and curvature can

then be deduced [1]. To demonstrate the analysis procedure, Fig. 5.12 presents accelerations

experienced by the Hermle’s x and y axes.
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Figure 5.12: Biarc spiral acceleration profile

The velocities of the axes may be derived from integration of axes accelerations. Due to the

empirical nature of the acceleration data, each value is likely to harbour some degree of error.

This error can be preserved through integration and as a result misrepresents velocity [1]. The

resulting x-axis velocities are shown in Fig. 5.13. Forward integration from beginning t = 0

to the end of the motion t = tN produces velocity denoted by v f . Backward integration from

t = tN to t = 0 produces velocity denoted by vb. Profile v f suggests the x-axis changes direction

towards the end of the path and profile vb suggests the axis started the motion not from rest.

Because of the cumulative nature of the integration process, the effects of the errors propagate
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through the definite integrals and culminate at end limits of both the forward and backward

integrations [1]. Inherent error present in the acceleration signals, is combated by performing a

Hermite blend H(v f ,vb) of the resulting velocity profiles,

H(v f ,vb) = v f

(
1− t

tN

)
+ vb

(
t

tN

)
.

H(v f ,vb) may be considered as a weighted average of v f and vb. The weight of v f decreases at

the same rate the weight of vb increases. v f and vb therefore have a greater contribution to the

start and end of the resulting profile v, respectively (Fig. 5.13). This reduces the effects of error

propagation. For example, the motion described by v both starts and finishes at rest. In general,

the error is not abolished entirely, but reduced to better illustrate the velocity experienced.
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The euclidean norm of resulting axis velocities forms a representation of feed rate profile v =√
v2

x + v2
y (Fig. 5.14).
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Figure 5.14: Axis velocities and feed rate

Axis displacements (Fig. 5.15) are derived by the same blending approach. From axis displace-

ments arc length is found s =
√

s2
x + s2

y . An approximation to curvature is formed by scaling

arc length by the specified rate of change of curvature (α = 2⇒ κ(s) = 2s).
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5.3.4 Phase change

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
ee

d
ra

te
(m

/
s)

Curvature (1/m)

Spiral approx.
G0

G1

Figure 5.16: Feed rate

By substituting empirical feed rate values, from Fig. 5.16, and appropriately scaled arc lengths

values into Eq. (2.5), a set of normal component acceleration values can be obtained. Fig. 5.17

shows normal components of acceleration vectors, resulting from each tool path motion. Both

demonstrate a transition from velocity limited to acceleration limited behaviour.
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Indeed, as argued in section 5.3.1 of this chapter, traversal of tool paths of varying curvature

demonstrated a premature phase transition. Calculating the transition curvature from the com-

manded feed rate, Ψ1, and the machine’s centripetal acceleration, Ψ2, gives the transition cur-

vature as κα = 0.52(m−1). However, inspection of achieved feed rates and centripetal accelera-

tions, with respect to curvature, reveals that the actual transition curvature, κa, κa ≈ 0.18(m−1)

(See Figs. 5.16 and 5.17 respectively). Between 0 ≤ κ(s) ≤ κa, both the linearly and the biarc

segmented paths enabled the commanded feed rate to be achieved. Once the path’s curva-

ture had exceeded κa, κ(s) ≥ κa, the magnitude of the achieved feed rates began to decrease.

Fig. 3.2, of chapter 3, shows that this decrease occurs as a result of tangential deceleration.

Although the schematic suggests that this deceleration is discontinuous, in practice this dis-

continuity refers to the discrete time period where the machine transitions into the acceleration
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limited phase of motion [1]. In order to ensure that the centripetal acceleration limit is adhered

to this transition period must occur before κ(s) = Ψ2/Ψ2
1. κα may therefore be seen as an upper

bound on the curvature at which motion changes from the velocity to the acceleration limited

phase [1]. The primary reason for the premature transition is that the characteristic model as-

sumes instantaneous acceleration and deceleration from rest. In practice these discontinuities

are not realised. They therefore refer to the discrete time period where the machine transitions

from one limited phase to another. The actual curvature at which this transition begins must

therefore be less than the theoretical transition curvature. Further, the machine’s motion algo-

rithms are unknown. The reasons for this specific difference between κα and κa for the given

tests, on the example machine, may therefore not be known. Many mechanical systems employ

safety factors to allow for emergency situations, unexpected loads, misuse, or degradation [10].

Perhaps the premature transition may also occur as a result of a kinematic safety factor stated

in the control algorithms in order to protect the machine’s servomotors.

5.4 Chapter summary

This chapter served to reinforce the applicability of the motion characterisation presented in

chapter 3. This was achieved by considering 3 separate examples, each of which considered a

particular feature of the characterisation.

The first example used the acceleration limited phase behaviour of feed rate with respect to

curvature, v ∝ 1/
√

κ , to predict the traversal times of circular tool path motions. The pre-

dictions thus accounted for a given machine’s centripetal acceleration limit by considering the
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magnitudes of the kinematics imposed by tool path shape.

This was then followed by an example that illustrated the two distinct phases of motion. Analy-

sis of a machine’s transition curvature for a given feed rate was used to lower the shape imposed

kinematic demands of tool path motion. This then demonstrated the velocity and acceleration

limited phases of the characterisation described in chapter 3.

The chapter then concluded by investigating traversals of paths with varying curvature. As a

result of the necessary tangential component of acceleration, it was shown that a premature

phase transition was required in order to adhere to a given machine’s kinematic limits. The

transition curvature described by κα = Ψ2/Ψ2
1, may therefore be considered as the upper bound

curvature at which the commanded feed rate is not achieved.
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Chapter 6

Discussion

Having provided, in chapters 4 and 5, empirical evidence that supports the shape characterisa-

tion of motion, this chapter returns to some of the key ideas upon which the characterisation is

based.

The chapter begins by discussing the overall purpose of the thesis. Key findings and outcomes

from the previous chapters are highlighted in order to demonstrate how the research aim has

been achieved.

The chapter then considers the contributions of shape to tool path motion. It is argued that it

is desirable to minimise the kinematic demands of a specified tool path motion, as this in turn

may improve the likelihood of those kinematics being achieved.

The following section then describes distinctive features of the shape characterisation model.
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Features fundamental to the nature of the characterisation are identified and discussed. It is

shown how the approaches employed in this thesis may be utilised to derive alternative shape

characterisations of motions, since a given machine need not demonstrate the same behaviour

as that presented by those in this thesis.

This chapter concludes by examining the kinematic properties resulting from the spiral tool path

experiments conducted in chapter 5. It is shown that higher levels of geometric continuity be-

tween consecutive segments, of a given path, resulted in more stable and predictable kinematic

properties.

6.1 Characterisation methodology

As stated in section 1.4 of chapter 1, the aim of the thesis was to present a methodology for

assessing the kinematic capabilities of any CNC machine, in terms of a tool path’s intrinsic

shape properties.

A review of current methods for describing tool path motion, provided in section 1.3 of chap-

ter 1, identified that many methods depend upon the algorithms implemented in a machine’s

controller. Either a method proposes novel algorithms or requires knowledge of the algorithms

currently implemented in a controller. These methods are therefore limited to specific machines.

Further, because the algorithms are often the intellectual property of the machine and controller

manufacturers they are difficult to access.

Chapter 3 showed that by enforcing constraints on the general kinematic vector equations
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(Eqs. (2.4), (2.5) and (2.7)), a characterisation of tool path motion may be given simply in

terms of a tool path’s intrinsic shape properties and a machine’s kinematic limits. Provided

the constraints enforced on the equations are appropriate for the given machine, the resulting

schematics may be used to assess whether a proposed tool path motion is likely to achieved

given the kinematic capabilities of the machine. Further, knowledge of the particular machine’s

kinematic capabilities, in terms of shape, may be used to generate an achievable tool path mo-

tion. The resulting schematics may help to identify geometric constraints that can be employed

to design a new tool path.

The kinematic constraints employed in chapter 3 may seem intuitive since they enable the max-

imum magnitudes of kinematics vectors to be produced by a machine at any given instance

in a motion. However a given machine need not behave in this manner. Different machines

can respond differently to an imposed breach of its kinematic limits, therefore chapter 4 de-

tailed free motion tests that can be used on any CNC machine in order to identify the maximum

magnitudes of kinematic vectors given the shape of a tool path. As detailed in sections 4.1.1

and 4.1.2 of chapter 4 the approach attempts to isolate the contribution of a tool paths shape

properties to the actual kinematics produced in a given motion. The resulting empirical data

may then be used to enforce kinematic constraints on the vector equations to produce a shape

characterisation of tool path motion suitable for any given test machine.

105



6.2 Contributions of shape

The shape properties of a tool path impose a particular set of kinematic demands on a given

machine as a result of traversal [28]. It was shown in chapter 2 that curvature is intrinsically

linked to the velocity, acceleration and jerk vectors. It then follows that curvature may be

controlled in order to affect tool path motion, as shown in chapters 4 and 5.

Consider the analogous task of planning an aircraft’s flight path. Two key issues need to be

considered: minimising the risk of mid air collision and fuel consumption. To ensure a safe

flight, an aircraft is required to fly over a number of intermediate checkpoints [61]. Also,

fuel consumption is predominantly dependent upon the aircraft’s acceleration [62]. Eq. 2.5, of

chapter 2, shows that acceleration at a given point is proportional to the path’s curvature. Thus

assuming all other contributing factors are unchanged, decreasing the curvature, decreases the

acceleration and so decreases the amount of fuel consumed. It then follows that an aircraft must

interpolate the departure and arrival positions, whilst minimising the curvature of the resulting

flight path. The task may therefore be viewed as one of geometric design opposed to logistics.

Within the context of tool path motion, it then follows that minimising the curvature of the path

minimises the imposed tool path kinematics.

Any of the many fairing techniques could thus be used to optimise, whilst adhering to design

constraints, the tool path shape in order to minimise the corresponding kinematic demands

[28]. It has been shown in chapter 4 that the permissible kinematics of a given machine are

limited by the physical capabilities of the machine’s servomotors. Fairing a tool path’s shape

therefore increases the likelihood of the commanded feed rate being achieved since the path’s

106



shape imposes the minimal set of kinematics on a machine’s servomotors.

6.3 Characteristic features of motion

The purpose of the characterisation is to describe features of motion that result from tool path

shape. The purpose is not to precisely quantify the magnitude of a given kinematic vector, at a

given instance in time. Indeed, many models have been proposed that are able to predict tool

path motion time to a relatively high degree of precision [11, 18, 20, 21]. However, these models

often presume a knowledge of the control algorithms implemented by a machine’s controller.

In practice, the specifics of these control algorithms are not generally accessible (chapter 1). By

enforcing constraints on the general kinematic vector equations, derived in chapter 2, motion is

described simply in terms of the kinematic limits of a given machine and the shape properties

of the tool path.

The resulting equations show that tool path motion may be classified into two separate phases.

The velocity limited phase describes the behaviour of the kinematic vectors when a tool path’s

specified commanded feed rate is achieved. This phase may therefore be viewed as the ideal

phase of motion, since the commanded feed rate is often specified in order to achieve particular

machining parameters (for example, material removal rates and cutting forces). The accelera-

tion limited phase is defined by tool path motion with a constant magnitude for the centripetal

acceleration vector. In order to maintain this kinematic constraint the actual feed rate must de-

viate from the commanded feed rate. The desired tool path motion is therefore compromised in

the acceleration limited phase.

107



It was argued in section 3.4, of chapter 3, that the characteristic equations describing the phases

are not the most intuitive or insightful. For example, Eq. 3.10, corresponding to the tangential

component of the jerk vector during the acceleration limited phase, contains the second deriva-

tive of curvature with respect to arc length, d2κ(s)/ds2. There are however kinematic vectors

that depend only upon the existence of curvature at a given arc length. Specifically, they are the

acceleration vector, a(t) = Ψ2
1κ(s)n̂(s) and the tangential jerk vector, jt(t) =−Ψ3

1{κ(s)}2t̂(s),

during the velocity limited phase and the velocity vector, v(t) =
√

Ψ2
κ(s) t̂(s), during the accelera-

tion limited phase. If at a given point on a tool path the curvature becomes zero, the contribution

of shape to these kinematics also vanishes. These vectors are thus deemed to be fundamental

features of the presented characterisation.

The nature of the constraints enforced on the general kinematic vector equations ensures that a

given machine provides the maximum kinematic performance permissible by its servomotors.

For example, it was shown in section 3.2, of chapter 3, that when a path’s curvature imposes a

centripetal acceleration that exceeds a machine’s limits, the machine will continue to provide the

maximum permitted centripetal acceleration despite curvature imposing a greater magnitude.

Yet this behaviour need not occur for every machine, for a given machine’s motion has some

dependence on its own mechatronic attributes [1]. However, by using the methods employed

in chapter 4, it is possible to identify the maximum velocity, acceleration and jerk, for a given

curvature. The resulting profiles can then be used to enforce appropriate constraints on the

general kinematic vectors (chapter 2) and thus derive an alternative shape characterisation of

motion.
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6.4 Shape quality

Cornu spiral tool path traversal was investigated in chapter 5 as a means of demonstrating

premature transition from the velocity to the acceleration limited phase of motion. It was shown

that the Cornu spiral could not be represented exactly and thus was approximated by linearly

and biarc segmented tool paths. This section discusses the effects of the geometric continuity

of each of the paths on the resulting properties of tool path motion.

The same commanded feed rate was specified for each spiral tool path. However, different levels

of geometric continuity were achieved in each path. It then follows that each path imposed

a different set of kinematic demands on the machine’s servomotors. Fig. 5.9 shows a series

of impulse curvatures, indicating that the linear segments joined with position continuity, G0.

Eq. 2.5, of chapter 2, shows each junction of consecutive linear segments imposes an infinite

acceleration in the normal direction to the path. Fig. 5.10 shows a series of constant curvatures.

It follows that at each junction the curvature changes instantaneously. The rate of change of

curvature is thus undefined at each junction. The normal component of Eq. 2.7 shows that an

infinite normal jerk is required at each junction. Both tool paths impose impractical kinematic

demands on the machine. However, the tangent discontinuities may be considered to impose

greater kinematic demands on machine motion than the curvature discontinuities, since a lower

order time derivative is undefined in the associated set of kinematic functions [1]. Regulation

from the machine’s controller was therefore required. The resulting feed rate and centripetal

acceleration are presented in Figs. 5.16 and 5.17.

As the curvature of both paths increased, the feed rate decreased (see Fig. 5.16). This may per-
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haps be intuitive. However, relationships between tool path shape and machine motion can be

further refined [1]. Both the feed rate and acceleration profiles illustrate the machine’s transition

from the velocity to the acceleration limited phase. the feed rate may therefore be considered

to be inversely proportional to the square root of curvature. Further, both tool path motions

were able to provide initial periods where centripetal acceleration rises linearly with curvature

to maintain a constant feed rate. As the machine transitions into the limited acceleration phase,

acceleration no longer increases linearly and submits to the centripetal acceleration limit [1].

Fig. 5.16 and 5.17 also show that less kinematic fluctuation occurred on the path with a higher

level of geometric continuity, specifically the biarc spiral path. Less fluctuation implies greater

stability [1]. The kinematics resulting from the biarc spiral motion are more predictable in

the sense that they greater resemble the schematics derived in chapter 3. Whether the fluctua-

tions, resulting from the linearly segmented spiral tool path, are significant, is dependent on the

application for which the motion is implemented [1].

6.5 Chapter summary

The chapter began by suggesting that it is desirable to control the shape of a given tool path

such that the effects of the kinematics of the tool motion imposed on the machine’s servomotors

are minimised. It was argued that minimising the kinematic demands of a specified tool path

motion, improves the likelihood of those kinematics being realised in practice.

This was then followed by an examination of the shape characterisation model. The kinematic

vectors that were solely dependent upon curvature were classified as fundamental features of
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the characterisation. It was shown that if at a given point on a tool path, the curvature becomes

zero, the contribution of shape to the actual tool path motion also becomes zero.

The chapter then concluded by considering the kinematic properties resulting from the spiral

tool path experiments conducted in chapter 5. The effects of geometric continuity were dis-

cussed. The empirical data suggests that free form paths constructed from a series of biarc

segments as opposed to linear segments can produce more stable and predictable motion. The

term stable in this context refers to the magnitudes of the local perturbations of the kinematics

vectors. Further, biarc G1 segments are considered to produce more predictable motions since

the kinematic profiles for the biarc spiral in Figs. 5.16 and 5.17 better resemble the schematics,

Figs. 3.1 and 3.2, shown in chapter 3.
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Chapter 7

Conclusions

The main aim of this thesis was to demonstrate a priori shape characterisation of tool path mo-

tion. Through the empirical evidence presented in chapters 4 and 5, such a characterisation has

been achieved without knowledge of the control algorithms implemented by a given machine’s

controller.

This chapter begins by presenting an overview of the research tasks undertaken. This is then

followed by discussions of the contributions and limitations of the investigation. The thesis then

concludes by describing a possible avenue for future research.
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7.1 Overview

The thesis began by providing an overview of CAD/CAM, specifically within the context of

milling. A tool path and its role within CAD/CAM were then defined and discussed. This

was then followed by a review of the current approaches employed by machine controllers to

regulate motion, with an emphasis throughout, on the effects of shape on tool path motion. This

then laid the foundation for an explicit statement of the research aim and the corresponding

objectives required to achieve it.

Chapter 2 established the foundations of the mathematical theory required, in chapter 3, in

order to derive the shape characteristic model. In particular, the kinematic properties, velocity,

acceleration and jerk, were related to a tool path’s intrinsic shape properties, curvature and

torsion.

In chapter 3, constraints were then enforced upon these relations in order to provide a descrip-

tion of tool path motion that accounted for a machine’s kinematic limits. Two distinct phases of

motion originated as a result of deriving the shape characteristic model. It was shown that the

velocity limited phase described motion at the commanded feed rate and the acceleration limited

phase described motion with a constant magnitude for the centripetal acceleration vector.

Having established the shape characteristic model, chapter 4 provided empirical evidence to

support the corresponding shape schematics. Kinematic data obtained from the Mazak VCS430A,

the Matsuura LX1 and the Hermle C600U all supported the characteristic model. For the spec-

ified test tool paths, the motions produced by the Mazak VCS430A described the velocity lim-
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ited phase of the model. Further, it was shown that the Matsuura LX1 and the Hermle C600U

were unable to provide their respective tool path motions. As a consequence of the shape

imposed centripetal accelerations exceeding the limits of each of the machines, acceleration

limited phase behaviour was observed.

Finally, chapter 5 continued the investigation by analysing particular features of the model. In

particular, the relationship between feed rate and curvature during the accelerated limited phase

of motion, v ∝ 1/
√

κ , was employed to predict tool path motion times. This served to add

further empirical weight to reinforce the applicability of this feature of the model. Circular

tool path motion was then employed to illustrate that a given machine’s tool path motion may

be classified in the velocity and acceleration limited phases. The chapter then concluded by

investigating traversals of paths with varying curvature. As a result of the necessary tangential

component of acceleration, it was shown that a premature phase transition was required in order

to adhere to a given machine’s kinematic limits. The transition curvature described by κα =

Ψ2/Ψ2
1, may therefore be considered as the upper bound curvature at which the commanded

feed rate is not achieved.

7.2 Contributions

For any given CNC machine, this thesis has presented a methodology for assessing its kinematic

capabilities in terms of shape. A key advantage of the method, over current methods of describ-

ing tool path motion, is that it is independent of a machine’s motion control algorithms. As a

result of performing the free motion tests, detailed in chapter 4, constraints may be enforced
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on the general kinematic vectors (Eqs. 2.4, 2.5 and 2.7) in order to obtain a characterisation of

tool path motion that is solely dependent on the intrinsic shape properties of the path and the

machine’s kinematic limits. The resulting schematics may be used in at least two ways. Firstly,

a proposed tool path motion may be checked to see whether its shape imposed kinematics are

likely to be achieved on a given machine. Secondly, having identified the maximum magni-

tudes of the kinematics vectors achievable by the machine, given the shape of the tool path, the

commanded feed rate and desired tool path shape may be adapted in order to accommodate the

machine’s kinematic limits.

The characteristic model presented in this thesis may be used to inform the heuristic and it-

erative modification of the machining parameters associated with cutting tool and workpiece

movements. This in turn can help to reduce the material and energy resources being consumed

and thus improve the efficiency and productivity of the manufacturing process. Since the model

provides a description of motion that is independent of a given machine’s motion control algo-

rithms, the characteristic equations may be employed in a pre-processing manner to inform the

selection of parameters without the need for physical machining.

7.3 Limitations

The kinematic discontinuities inherent to the shape characterisation model and illustrated in

the schematics of Figs. 3.1, 3.2, 3.3 and 3.4, arise from the idealised assumption of removing

acceleration and deceleration from and to rest. In practice these discontinuities are not realised.

They therefore refer to the discrete time period where the machine transitions from one limited
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phase to another. The actual curvature at which this transition begins must therefore be less

than the theoretical transition curvature. Indeed, this premature transition was shown to occur

along the spiral tool paths investigated in section 5.3 of chapter 5. Perhaps future research

could account for these discontinuities by modelling and incorporating the given machine’s

acceleration and deceleration behaviour from and to rest.

Also, this thesis has considered only the effects of curvature on tool path motion. In effect,

torsion was equated to zero, τ(s) = 0. From Eq. 2.7, of chapter 2, it follows that the binormal

component of the jerk vector becomes zero, jb(t)b̂(s) = 0. The resultant jerk vector, j(t), is thus

limited to describing the rate of change of acceleration, with respect to time, in a given plane.

The jerk vector is thus unable to describe the rate at which a given tool path twists out of the

osculating plane [14, 31].

7.4 Future Research

Considering torsion effects may extend the investigation to tool paths in higher dimensions, as

implied above. From Eq. 2.7, of chapter 2, it follows that the jerk vector would gain a binormal

component. The vector would then be able to describe the jerk experienced on a non planar tool

path.

Further, corresponding incorporation of the binormal vector into the shape characteristic model,

may provide a means of describing the characteristic nature of motions where a tool’s orienta-

tion may be allowed to change with respect to the workpiece [63, 64]. If the rotational axis of

116



a given tool is aligned with the binormal vector, or at least enforced to maintain a fixed offset

angle, the motion of the path’s Frenet frame, in particular the motion of the binormal vector,

could be used to describe the motion of the tool. This then motivates investigating the motions

of a machine’s rotational axes. In practice, derivation of the rotational kinematic properties

from the linear axes of an accelerometer would require consideration of the specific assembly

of the given machine’s axes.
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Appendix A

Machine axis limits

The power, P, required to produce a given torque, ϒ, and angular velocity, ω from the shaft of

a rotating servomotor can be expressed as [46]

P = ϒω . (1.1)

Similarly, ϒ may be expressed in terms of the servomotor’s inertia, I, and the shaft’s angular

acceleration, α , as [46]

ϒ = Iα . (1.2)

The relationships between the angular and linear kinematic properties associated with circular
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tool path motion can be expressed as,

a =
v2

r
, (1.3)

α =
a
r
, (1.4)

and

ω =
v
r
, (1.5)

where v and a are the linear velocity and acceleration respectively, and r is the radius of a given

circular tool path motion [46].

Substituting Eq. 1.2 into Eq. 1.1 generates an alternative expression for power,

P = Iαω . (1.6)

Also, an expression relating angular acceleration and linear velocity can be formed by substi-
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tuting Eq. 1.3 into Eq. 1.4,

α =
v2

r2 . (1.7)

Substituting Eqs. 1.5 and 1.7 into Eq. 1.6 produces,

P = I
v3

r3 . (1.8)

Making v the subject of the above equation and letting v = vmax and P = Pmax provides an ex-

pression for the maximum achievable traversal speed using servomotors with a given maximum

power,

vmax =

Pmax

I

 1
3

r . (1.9)

An alternative expression for torque can be found by substituting Eq. 1.7 into Eq. 1.2,

ϒ = I
v2

r2 . (1.10)

Making v the subject of the above equation and letting v = vmax and ϒ = ϒmax provides an ex-

pression for the maximum achievable traversal speed using servomotors with a given maximum
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torque,

vmax =

ϒmax

I

 1
2

r . (1.11)
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Appendix B

Jerk vector derivation

Taking the derivative of Eq. (2.5) with respect to time, provides an expression for the jerk vector:

j(t) =
d
dt

[
d2s
dt2 t̂(s)+

{
ds
dt

}2

κ(s)n̂(s)

]

=
d
dt

[
d2s
dt2 t̂(s)

]
+

d
dt

[{
ds
dt

}2

κ(s)n̂(s)

]
.

Let

ξ0(t)≡
d
dt

[
d2s
dt2 t̂(s)

]
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and

ξ1(t)≡
d
dt

[{
ds
dt

}2

κ(s)n̂(s)

]
.

It then follows that,

ξ0(t) =
d3s
dt3 t̂(s)+

ds
dt

d2s
dt2

d t̂(s)
ds

.

Substituting Eq. (2.1) into the above equation gives

ξ0(t) =
d3s
dt3 t̂(s)+

ds
dt

d2s
dt2 κ(s)n̂(s) . (2.1)

Also,

ξ1(t) = 2
ds
dt

d2s
dt2 κ(s)n̂(s)+

{
ds
dt

}3 d
ds

[
κ(s)n̂(s)

]

= 2
ds
dt

d2s
dt2 κ(s)n̂(s)+

{
ds
dt

}3 dκ(s)
ds

n̂(s)+
{

ds
dt

}3

κ(s)
dn̂(s)

ds
.
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Substituting Eq. (2.2) into the above equation gives

ξ1(t) = 2
ds
dt

d2s
dt2 κ(s)n̂(s)+

{
ds
dt

}3 dκ(s)
ds

n̂(s)

−
{

ds
dt

}3

{κ(s)}2t̂(s)+
{

ds
dt

}3

τ(s)κ(s)b̂(s) .

(2.2)

Summing Eq. 2.1 and Eq. 2.2 produces the equation given below,

j(t) = jt(t)t̂(s)+ jn(t)n̂(s)+ jb(t)b̂(s) ;

where

jt(t) =
d3s(t)

dt3 −
{

ds(t)
dt

}3

{κ(s)}2 ,

jn(t) = 3
ds(t)

dt
d2s(t)

dt2 κ(s)+
{

ds(t)
dt

}3 dκ(s)
ds

,

and

jb(t) =
{

ds(t)
dt

}3

κ(s)τ(s) .

131



Appendix C

Sampling Period

Sampling period, Ts, is the time interval in which a controller receives position feedback from

servo loops. Since the purpose of the investigation is to study the effects of shape on tool path

motion, care has been taken to ensure that tool path motions do not require processing speeds

greater than the controller’s processing capability.

The greater the number of points used to define a tool path, the greater the processing speed

required from the controller. Consider a planar linear tool path defined by N equally spaced

points. If the commanded feed rate is achieved, the distance between consecutive points does

not require a sampling period greater than the controller’s limit. By incrementally increasing the

number of equally spaced points until the commanded feed rate is not achieved, the controller

sampling period can be identified.

A planar linear path has no curvature and no torsion, so shape has no affect. The length of the
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line does however affect the achieved feed rate. The length of the line should be sufficiently

long such that the machine can accelerate to the commanded feed rate from rest and decelerate

from the commanded feed rate to rest.

The specific values of feed rate and line length chosen are immaterial. In general, the greater the

commanded feed rate, the greater the distances required for acceleration and deceleration and so

the longer the line needed. However, for a line of a given length, the greater the commanded feed

rate, the fewer equally spaced points required to observe a difference between the commanded

and achieved feed rates.

The Hermle’s maximum permissible feed rate, Fmax, (0.6m/s) is therefore set as the commanded

feed rate in the linear tool path motion tests. The tool path length is set to 0.5m, as prelim-

inary testing showed such a length is sufficiently long to enable the commanded feed rate to

be achieved. By incrementally increasing the density of the equally spaced points, it is found

that the threshold number of points, Nt , at which the specified feed rate is still achieved is

214 (Fig. C.1). From this, the minimum distance between consecutive points can be found,

smin = L/Nt . It then follows that Ts = smin/F .
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Figure C.1: Feed rate profiles for different point densities

To verify the threshold number of points does not affect motion, a comparison is made to a

motion produced for N = 2 points (start and end points of the line). Fig. C.1 suggests negli-

gible difference between the two motions. Doubling the threshold number of points to 428,

halves the distance between consecutive points and the achieved feed rate is approximately

halved (Fig. C.1). Further, the line is then divided into three sections, the first and last sections

contain points minimally spaced and the middle section contains points that are spaced with

half the minimal distance. From the figure it can be seen that the achieved feed rate drops to

approximately half in the middle dense region as the sampling period phenomenon takes effect.
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Appendix D

Numerical integration error bound

For a given interval [smin, smax], the total error εT of numerical integration, using the trapezoidal

rule, can be given as

εT =−(smax− smin)
3

12N2
∑

N−1
i=0 f ′′(ζi)

N
,

where N is the number of segments in the interval and f ′′(ζi) is the second derivative of the

integrand evaluated at some point ζi, smin ≤ ζi ≤ smax [59]. The expression

∑
N−1
i=0 f ′′(ζi)

N
,

can be considered as an approximate average value of the second derivative in the specified
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interval. At some point, the second derivative will take its average value ζavg, assuming it is

continuous. In the case of the integrands given in Eqs. (5.3) and (5.4), it is shown below in

Eqs. (4.3) and (4.4) and Fig. D.1 that the second derivatives are indeed continuous. Therefore

let,

ζavg =
∑

N−1
i=0 f ′′(ζi)

N
.

The total error may then be expressed as

εT =−(smax− smin)
3

12N2 ζavg .

It is not known where ζavg lies in the interval. By replacing ζavg with max(| f ′′(ζi)|), an upper

bound εB on the total error for the given interval can be found. It then follows that,

εB =−(smax− smin)
3

12N2 max(| f ′′(ζi)|) . (4.1)

The above equation shows that to identify error bounds of the Cornu spiral positions, resulting

from Eqs. (5.3) and (5.4), evaluation of the second derivatives of the corresponding integrands

is required. This can be achieved by rewriting Eqs. (5.3) and (5.4) as [23]
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x(s) = x0 +
∫ s

0
fx(σ)dσ ,

and

y(s) = y0 +
∫ s

0
fy(σ)dσ ,

where fx(σ) = cos(α(σ)), fy(σ) = sin(α(σ)) and

α(σ) = θ0 +
1

2L
{2κ0Lσ +(κ1−κ0)σ

2)} . (4.2)

The first and second derivatives of the integrand fx(σ) are

d fx(σ)

dσ
=−dα(σ)

dσ
sin(α(σ)) ,

and

d2 fx(σ)

dσ2 =−

d2α(σ)

dσ2 sin(α(σ))+

{
dα(σ)

dσ

}2

cos(α(σ))

 , (4.3)

respectively. Similarly,
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d fy(σ)

dσ
=

dα(σ)

dσ
cos(α(σ)) ,

and

d2 fy(σ)

dσ2 =
d2α(σ)

dσ2 cos(α(σ))−

{
dα(σ)

dσ

}2

sin(α(σ)) . (4.4)

From Eq. (4.2) it follows that,

dα(σ)

dσ
=

1
L
{κ0L+(κ1−κ0)σ} ,

and

d2α(σ)

dσ2 =
κ1−κ0

L
.

|cos(α(σ))| and |sin(α(σ))| ≤ 1, ∀ σ , d2(α(σ))/dσ2 is constant, and {dα(σ)/dσ}2 = O(σ2)

since,

{
dα(σ)

dσ

}2

=
1
L2{κ0L+(κ1−κ0)σ}2 . (4.5)
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It then follows that the magnitude of {dα(σ)/dσ}2 increases monotonically and so its max-

imum value occurs at smax for the interval [smin, smax]. As illustrated by Fig. D.1, as σ → ∞,

{dα(σ)/dσ}2, denoted (α ′)2 in Fig. D.1, begins to envelope both second derivative terms

(Eqs. (4.3) and (4.4)). By substituting Eq. (4.5) into Eq. (4.1) an alternative expression for the

error bound can be formed

εB =−(smax− smin)
3{κ0L+(κ1−κ0)smax}2

12N2L2 .

The number of segments required, for a given interval, to obtain a suitable magnitude of error

can then be identified,

N =

√
(smax− smin)3{κ0L+(κ1−κ0)smax}2

12|εB|L2 .
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Figure D.1: Error bound
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Appendix E

Motion timing percentage errors

Table E.1: Hermle motion timings

Predicted time, tp(s) Achieved time, ta(s) Error, %

0.551 0.55 0.179

0.78 0.785 0.671

0.955 0.961 0.602

1.103 1.087 1.453

1.233 1.226 0.538

1.743 1.742 0.087

2.466 2.453 0.51

3.02 3.022 0.077

3.487 3.473 0.4

3.898 3.897 0.037
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Table E.2: Matsuura motion timings

Predicted time, tp(s) Achieved time, ta(s) Error, %

0.551 0.55 0.179

0.78 0.785 0.671

0.955 0.961 0.602

1.103 1.087 1.453

1.233 1.226 0.538

1.743 1.742 0.087

2.466 2.453 0.51

3.02 3.022 0.077

3.487 3.473 0.4

3.898 3.897 0.037
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Figure 1.4: Interpolation error, ε

P0 to P1 the desired path is approximated by a single chord, P0P1. The error of this type of

interpolation, ε0, may be defined as the length of a perpendicular line segment connecting the

midpoint, M0, of the chord, P0P1, to the tool path, C. By selecting another point, P′
1, on C

between P0 and P1 two chords, P0P′1 and P′1P1, form an alternative linear approximation to the

portion of the desired tool path, C. Points M1 and M2 denote the midpoints of P0P′1 and P′1P1

respectively. Given the direction of the desired path, C, changes monotonically between points

P0 and P1 the error of each chord, ε1 and ε2 respectively, is less that the error of the original

single chord, ε0; ε1,ε2 < ε0.

The greater the number of positions selected, the smaller the interpolation error for a given

chord and so the closer the shape of the discretised tool path is to the desired continuous tool

path. A greater number of positions also decreases the distances between consecutive positions.

If the time taken to process and execute a cutting tool’s movement between consecutive posi-

tions, Tm, is less than the controller’s minimum processing time, Tp, the tool will rest at the

end position and wait or dwell for the next motion command to be generated by the controller.

When Tm < Tp, the machine’s servomotors are effectively deprived of motion data. This phe-
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Figure 1.5: Undefined tangent vector
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Figure 1.6: G0 linear segments. Piecewise impulse curvature profile
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Figure 2.1: Local affine system (left) and Frenet frame (right) [8]

Figure 2.2: The local planes
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Figure 2.3: Surface Frame [30]

the surfaces of the original CAD model [3]. Indeed, in the finishing stages, the desired tool

paths are derived from the surfaces on which they lie (see section 1.2). The following section

therefore describes the relationships between the shape properties of the CAD model surfaces

and the desired tool paths used in the corresponding machining process.

2.2 Tool paths on surfaces

Consider a tool path lying on a surface. In addition to the Frenet frame, F1(s), it is possible to

assign another frame, the Darboux frame, F2(s), at each point on the tool path (Fig. 2.3) [30].

At a given point there is only one unit surface normal vector, N̂(s), and an infinity of tangent

vectors. These tangent vectors lie in the tangent plane that is orthogonal to N̂(s). The tool

path’s unit tangent vector and the surface’s unit normal vector can together be used to form

a vector that is orthogonal to both, referred to in this thesis as the bi-tangent vector, T̂(s),

T̂(s) = N̂(s)∧ t̂(s) [30].
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Figure 2.4: Centripetal acceleration surface

osculant, whose derivatives, up to and including order two, agree with those of the path [14].

Subsequently, normal acceleration is commonly referred to as centripetal acceleration [33].

From Eq. (2.5) it follows that normal acceleration consists of time and shape dependent ele-

ments, feed rate, ds/dt, and curvature, κ(s), respectively. The surface, shown in Fig. (2.4),

illustrates the effect of each element on centripetal acceleration, an(t). The surface is mathe-

matically expressed explicitly in terms of ds/dt and κ(s), an(t) = (ds/dt)2κ(s). Centripetal

acceleration (Fig. 2.5) increases linearly with curvature, an(t) = v2
cκ(s), for a constant feed

rate, vc. Centripetal acceleration increases parabolically with feed rate, an(t) = (ds/dt)2K, for

a constant curvature, K.
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xy planes.

4.2.2 Accelerometer

As shown by Eqs. (2.4), (2.5) and (2.7), to quantify the actual velocity, acceleration and jerk

experienced on a given circular tool path, the achieved feed rate is required. Each of the con-

trollers of the test machines provide a Digital Read-Out (DRO) of feed rate. This however, is not

an independent source of measurement and as such can only be used as a preliminary indicator

of the actual feed rate achieved in a given motion. An inertial sensor, specifically a tri-axial

piezoresistive accelerometer, is used as an independent measurement source [50]. The sensor

outputs the acceleration and time of a given motion. The achieved feed rate is then deduced

from this acceleration profile. The actual velocity, acceleration and jerk experienced can then

be found for each circular tool path from Eqs. (2.4), (2.5) and (2.7).

Figure 4.2: Diagram of a piezoresistive accelerometer [51]

The main principle on which the accelerometer operates is the piezoresistive effect [52]. This

is a phenomenon whereby the application of mechanical stress causes a change in the electrical
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At a given point there is only one unit surface normal vector, N̂(s), and an infinity of tangent
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