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ABSTRACT 

 

Northern Ireland Waterloo Mudstone Formation has received relatively little attention due to the 

scarcity of exposures and poor availability of subsurface records. The recent recovery of latest 

Triassic to Early Jurassic strata from boreholes permits further study of biostratigraphical and 

palaeoenvironmental using foraminifera and ostracods. The samples are from boreholes 

(Ballinlea-1, Magilligan and Carnduff-1) and exposures (White Park Bay, Tircrevan Burn, Larne, 

Ballygalley, Ballintoy and Kinbane Head). The age of the sections, established using foraminiferal 

biozonation ranges from latest Triassic (Rhaetian) to earliest Pliensbachian (JF9a). 

 

The assemblages recovered broadly similar to those elsewhere in NW Europe; European Boreal 

Atlantic Realm. The latest Rhaetian to earliest Sinemurian low diverse microfossil assemblages 

dominant by metacopid ostracods with occasional influx of opportunist foraminifera but 

gradually, foraminiferal abundances exceed the ostracods in the Early Sinemurian onwards with 

their highest diversity in the Late Sinemurian. The foraminiferal assemblages are dominated by 

foraminifera of the Lagenida, other groups include the Miliolida, Buliminida and Robertinida.  

Based on the microfossils, the sediments are considered to represent confined inner shelf 

environment in latest Rhaetian to Hettangian then gradually recovered to well-oxgenated, open 

marine deposits of outermost inner shelf to middle shelf in Early Sinemurian to Early 

Pliensbachian.  
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Chapter 1 

Introduction 

 

1.1 Introduction 

 

During the Permian and Triassic, supercontinent Pangea rotated anticlockwise and moved 

northward (Hesselbo, 2012; Holdsworth et al., 2012) as part of its ongoing break-up. By the 

Jurassic (Brenchley & Rawson, 2006; Cope, 2006; Hesselbo, 2012; Holdsworth et al., 2012), Britain 

and Ireland moved further north from 30oN to 40oN latitude (Simms, 2004; Hesselbo, 2012; 

Holdsworth et al., 2012). During this time, the climate was dry summers but cooler wet winters 

towards the north UK (Hudson & Trewin, 2002; Cope, 2006; Hesselbo, 2012). 

 

The Late Triassic-Early Jurassic progressive transgression (Figure 1.2) which was triggered by 

continual rifting of Pangea and consequent global sea-rise (Hudson & Trewin, 2002; Brenchley & 

Rawson, 2006; Holdsworth et al., 2012) resulted in a transition of the Permian-Triassic semi-arid 

(non-marine setting across much of north west Europe) to a Jurassic marine setting (Cope, 2006; 

Hesselbo, 2012). The sea-level rise (Figure 1.3) also led on to the widespread deposition of 

mudrocks across much of Britain and Ireland (Hesselbo, 2012). Although during earliest Jurassic 

much of the UK generally lay beneath shallow shelf sea (Figure 1.1), the London Platform, south-

west of England, Mendip Hills, south-west Wales and much of Scotland and Ireland are presumed 

to have been land areas (Bradshaw et al., 1992; Cope, 2006) (Figure 1.1). These land areas 
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contributed sediments to the formation of Jurassic rocks in adjacent basins but the main source 

was probably from the Scandinavian landmass (Cope, 2006).  

 

 
 

Figure 1.1: UK and adjacent areas during the Hettangian, Early Jurassic (light shading: sea, dark 
shading: land). After Bradshaw et al. (1992), modified by Simms (2004). 
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Figure 1.2: Early Jurassic sequences and variations of sea level (Haq, 2017). 
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Figure 1.3: Jurassic sea-level curves based on (a) Hallam (1988) and (B) Haq et al. (1987). After Cope 
(2006). 
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Figure 1.4: Global change parameters through Phanerozoic time: (a) number of major continents 
(Phillips & Bunge, 2007); (b) global sea-level (Haq & Al-Qahtani, 2005); (c) atmospheric 
concentration of carbondioxide (Royer et al., 2004); (d) atmospheric concentration of oxygen 
(Berner et al., 2003); (e) global average surface temperature (Royer et al., 2004); (f) number of 
genera and mass extinction percentage (Sepkoski, 1998). After Holdsworth et al. (2012). 
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The transgression and warm climate also supported a rich marine fauna, particularly ammonites 

and densely vegetated land areas (Reeves et al., 2006; Howells, 2007). These marked the recovery 

from Triassic-Jurassic extinction; one of the ‘’big five’’ Phanerozoic mass extinctions(Figure 1.4) 

(Newell, 1963; Hallam, 1990; Hallam & Wignall, 1997; Hallam & Wignall, 1999; Hesselbo, 2012) 

that resulted in the extinction up to 80% of marine species (Wignall & Bond, 2008; Holdsworth et 

al., 2012; Barash, 2015). This mass extinction is thought to have been triggered by the Central 

Atlantic Magmatic Province basaltic eruption (Hallam & Wignall, 1997; Wignall & Bond, 2008; 

Deenen et al., 2010; Hesselbo, 2012; Barash, 2015), sea-level fall (Hallam 1981; Hallam & Wignall, 

1997; Hallam & Wignall, 1999; Wignall & Bond, 2008, ; Holdsworth et al., 2012) and 

extraterrestrial impact (Hallam & Wignall, 1997; Hesselbo, 2012; Barash, 2015).  

 

 

1.2 Rathlin, Lough Foyle and Larne basins tectonic setting 

 

The three boreholes examined for this research are from three different basins (Figure 1.5 and 

Table 1.1); Rathlin Basin, Lough Foyle Basin and Larne Basin. The Ballinlea-1 borehole is situated 

at the middle of the Rathlin Basin (north Co. Antrim), whereas the Magilligan Borehole 

(Londonderry) is located in the Lough Foyle Basin, southwest of the Rathlin Basin. The Carnduff-

1 borehole is located in the east of Co. Antrim; Larne Basin. The development of these basins was 

contributed by pre-existing fault reactivation, newly formed Mesozoic extensional faults and 

Pangea rifting (McCaffrey & McCann, 1992; Johnston, 2004; Holdsworth et al., 2012).  
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The Rathlin and Lough Foyle basins are situated next to each other and both are post-Variscan 

transtensional half-graben basins comprising mostly Permian and Triassic fill (Johnston, 2004). 

The Rathlin Basin is an elongate, almost trapezoid-shaped basin (Anderson et al., 1995) and trends 

northeast-southwest (McCann, 1988) to NNW-SSE (Johnston, 2004), deepening towards the 

southeast into the Tow Valley Fault (McCann, 1988). This basin is situated onshore under north 

Antrim and Londonderry and continues offshore between the Irish coast and Islay (McCann, 1988; 

McCaffrey & McCann, 1992; Fitzsimons & Parnell, 1995). According to Fitzsimons & Parnell (1995), 

the Foyle and Tow Valley faults (Figure 1.5) control the extent of the Rathlin Basin. This basin is 

separated from the Lough Neagh-Larne Basin to the south by the Highland Border Ridge 

(McCaffrey & McCann, 1992).  

 

Whilst Lough Foyle Basin is bounded by Foyle Fault of northeast-southwest orientation and the 

basin elongated and deepens to the southeast underneath the Lough (Johnston, 2004). The east 

of this basin is concealed under the Antrim Plateau (Johnston, 2004).  

 

The Larne Basin is NE-SW orientated and is the southwest extension of the Midland Valley in 

Scotland which partially lies onshore Northern Ireland, continue offshore through the North 

Channel seaway (Shelton 1997; Dunnahoe, 2016). The sediments in Larne basin thicken to the 

west and range from Carboniferous to Cenozoic but the thickest and predominant are Permo-

Triassic sequences (Shelton, 1997; Dunnahoe, 2016). Triassic-Cretaceous sediments from this 
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basin crop out in the Larne area yet the remainder are concealed beneath the Antrim Plateau 

(Johnston, 2004). 

 

 

 
 

Figure 1.5: Distribution of Triassic and Jurassic sediments in Northern Ireland, together with location 
of Rathlin Basin, Foyle Basin, Larne Basin, boreholes (B: Ballinlea-1; M: Magilligan; C: Carnduff-1; P: 
Port More; MH: Mire House) and localities containing Triassic and Jurassic exposures (1: Tircrevan 
Burn; 2: Ballymaglin; 3: Tircorran; 4: Portrush; 5: Whitepark Bay; 6: Ballintoy; 7: Portnakillew; 8: 
Kinbane Head 9: Ballycastle; 10: Garron Point; 11: Glenarm; 12: Minnis; 13: Ballygalley; 14: Waterloo 
Bay; 15: Whitehouse; 16: White Head; 17: Collin Glen). The map is modified from George (1967), 
Warrington (1997) and Middleton et al. (2001). 
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Locality Grid reference 
 

Ballinlea-1 Borehole D 03765 39317 
 

Magilligan Borehole C 70039 33251 
 

Carnduff-1 Borehole D 40150 00983 
 

Ticrevan Burn C 70126 32552 
 

Portrush C 85725 41021 
 

White Park Bay D 02271 44184 
 

Ballintoy D 03625 45177 
 

Kinbane Head D 08951 43354 
 

Minnis D 33835 13695 
 

Ballygalley D 37901 07956 
 

Waterloo Bay, Larne D 40786 03768 
 

 
Table 1.1: The grid references of examined or visited localities. 

 

 

1.3 Late Triassic and Early Jurassic sequences in Northern Ireland 

 

The upper part of the Mercia Mudstone Group is the Collin Glen Formation formerly termed the 

‘Tea Green Marls’; it consists mainly of calcareous greenish grey to dull green mudstone and is 

devoid of red beds (Bazley & Thompson, 2001). However, Mitchell (2004) stated that the basal 

Collin Glen Formation has around 1 m thick of alternating red and green mudstone subsequently 
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by 10 m pale greenish green silty mudstone with thin beds of auto-brecciated micrite.  Similarly 

to the Blue Anchor Formation in the southern Britain (equivalent of Northern Ireland Collin Glen 

Formation; Warrington, 1997); it is characterised by predominantly grey-green with few thin beds 

of red-brown mudstone in the lower part, while upper part mainly composed of greenish grey 

silty mudstone (Barton et al., 2011). 

 

The Mercia Mudstone Group lies disconformably below the Penarth Group (Mitchell, 2004). The 

group is divided into the Westbury Formation and Lilstock Formation.  The Westbury Formation 

based on Larne No. 1 borehole (Mitchell, 2004) and Waterloo section (Simms & Jeram, 2007) 

comprises black and dark grey shale with silty laminae and thin sandstones. The formation has 

bivalve dominated levels with low diversity marine faunas (Simms & Jeram, 2007).  The Lilstock 

Formation possesses brown-grey mudstone and dark grey micaceous mudstones both with 

siltstone laminae (Bazley & Thompson, 2001; Mitchell, 2004). 

 

The best Penarth Group-Lias Group boundary is exposed at Waterloo Bay, Larne (Simms & Jeram, 

2007) (Figure 1.6) marked the conformable base of the Lias Group (Waterloo Mudstone 

Formation) at the dark-grey, shelly-mudstone facies. The boundary also crops out at White House, 

Islandmagee and Collin Glen (Wilson, 1972). Meanwhile, in the northern part of Co. Antrim, this 

boundary has not been observed in any exposures. This conformable boundary is recorded in 

boreholes such as at Port More (Wilson & Manning, 1978) and Magilligan (Bazley et al., 1997) by 
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Figure 1.6: Penarth-Lias boundary and Triassic-Jurassic boundary exposed at Waterloo, Larne, east 
Co. Antrim with range of macrofaunas and microfaunas (Simms & Jeram, 2007). 
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contrast, the Lias Group from Ballytober-1 Borehole unconformably overlies the Mercia 

Mudstone Group (Fynegold Petroleum, 1991). 

 

The Waterloo Mudstone Formation named after the Waterloo Bay, Larne (Mitchell, 2004; Simms 

& Jeram, 2007); is dominated by grey calcareous mudstones with subordinate laminae of silty 

mudstone and fossiliferous limestone (Broughan et al. 1989; Bazley & Thompson, 2001; Mitchell, 

2004). Besides the argillaceous dominance, arenaceous facies do occur but only in early 

Sinemurian strata. A thin (13 m) sandstone bed within which there are a few organic rich ‘coals’ 

(Tircrevan Sandstone Member) are well-preserved at Tircrevan Burn; Co. Londonderry (Mitchell, 

2004).  

 

Exposures of the Late Rhaetian to Early Pliensbachian Waterloo Mudstone Formation in Northern 

Ireland are relatively rare, mostly small (Figure 1.5), discontinuous, faulted and prone to landslip 

as they are rest unconformably below cliffs of Late Cretaceous chalk and Paleogene basalt 

(Wilson, 1972; Ivimey-Cook, 1975; Broughan et al., 1989; Warrington, 1997; Cripps et al., 2002; 

Mitchell, 2004). The Waterloo Mudstone Formation exposures confined to the Late Triassic-Early 

Jurassic period and can be observed at numbers of localities (Figure 1.5), for example Ballintoy 

Harbour (Wilson & Manning, 1978), Collin Glen (Anderson, 1954 in Charlesworth, 1960; Reid & 

Bancroft, 1986), Barney’s Point (Island Magee; Ivimey-Cook, 1975; Griffith & Wilson, 1982; 

Charlesworth, 1960), Waterloo Bay, Larne (Charlesworth, 1960; Reid & Bancroft, 1986; Broughan 

et al., 1989; Mitchell, 2004; Simms & Jeram, 2007), Ballymaglin (Reid & Bancroft, 1986), Tircorran 
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(Reid & Bancroft, 1986), Garron Point (Ivimey-Cook, 1975; Griffith & Wilson, 1982; Reid & 

Bancroft, 1986), Glenarm (Reid & Bancroft, 1986), Portnakillew (Wilson, 1972; Reid & Bancroft, 

1986; McCann, 1988) , Portrush (Charlesworth, 1960; Wilson & Robbie, 1966; Wilson, 1972; 

Wilson & Manning, 1978; Reid & Bancroft, 1986; McCann, 1988; Warrington, 1997; Mitchell, 

2004); Tircrevan Burn (Reid & Bancroft, 1986; Mitchell, 2004), Kinbane (Wilson & Robbie, 1966; 

Wilson & Manning, 1978) Whitehead (Charlesworth, 1960; Ivimey-Cook, 1975; Griffith & Wilson, 

1982) and White Park Bay ( Charlesworth, 1935, 1960;  Wilson & Robbie, 1966; Wilson, 1972; 

Wilson & Manning, 1978; Reid & Bancroft, 1986; McCann, 1988). The outcrops are thin, rarely 

exceeding 30 m in thickness and often occur around the coastal margins of the Paleogene Antrim 

Basalt Plateau (Antrim Lava Group; Wilson, 1972).  

 

However, thicker Early Jurassic successions have been penetrated in boreholes (Figure 1.7); Port 

More borehole (270 m; Wilson & Manning, 1978; Shelton, 1997; 250 m; McCann, 1988; Broughan 

et al., 1989; Parnell et al.; 1992; 248 m; Mitchell, 2004), Mire House borehole (125 m; 

Charlesworth, 1960; Warrington, 1997; Mitchell, 2004), Magilligan borehole (90 m; McCann, 

1988; 68 m, Broughan et al., 1989), Larne-1 borehole (51.5 m; Manning & Wilson, 1975; Broughan 

et al., 1989; Shelton, 1997) and Ballymacilroy (86 m; Broughan et al., 1989). 

 

Most of Northern Ireland’s Early Jurassic outcrops possess Planorbis and Angulata chronozone 

(Hettangian) strata (Charlesworth, 1960).  Yet, some younger sections are observed from the 

Waterloo section, Larne (up to Bucklandi Chronozone, earliest Sinemurian) and Collin Glen (up to 
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Obtusum Chronozone, earliest Late Sinemurian; Charlesworth, 1960). Generally, the younger 

sections are more commonly exposed along the northern coast of Co. Antrim such as at Portrush 

(Raricostatum Chronozone, latest Sinemurian; Wilson & Manning, 1978) and Kinbane Head (Ibex 

Chronozone, Early Pliensbachian; Wilson & Robbie, 1966). Based on Charlesworth (1935, 1963) 

the Waterloo Mudstone Formation at White Park Bay reaches as high as the Davoei Chronozone 

(Early Pliensbachian). However, Wilson & Manning (1978) affirmed that the White Park Bay 

Waterloo Mudstone Formation exposures only belongs to the Raricostatum (Late Sinemurian) 

and Ibex Chronozones (Early Pliensbachian) which is unconformably overlain by the Cretaceous 

Ulster White Limestone Formation at the eastern end of the bay (Oweynamuck; Wilson & 

Manning, 1978). Some sections of the Waterloo Mudstone Formation at White Park Bay had been 

intruded by numbers of minor dolerite sill, this has caused induration of the adjacent mudstone 

(Symes et al., 1888) but only to less than 1 m. Similarly, the Late Sinemurian, ammonite-rich 

exposures at Portrush have been metamorphosed to hornfels due to the contact with the 

Paleogene dolerite of the Portrush Sill (Wilson, 1972; Mitchell, 2004). Such intrusions are also 

observed in the Ballinlea-1 borehole (630 m-668 m and 238 m-330 m). 

 

For subsurface, the youngest Northern Ireland Early Jurassic sediments; Ibex Chronozone (Early 

Pliensbachian) are recovered from Port More Borehole (Warrington, 1997). This demonstrates 

that the Waterloo Mudstone Formation in the Rathlin Basin appear more complete than in the 

Larne-Lough Neagh Basin (Ivimey-Cook, 1975). The differences in this completeness are a 

consequence of structural events that occurred between the Pliensbachian and Cenomanian 
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Figure 1.7: Correlation of lithostratigraphic logs of Triassic and Jurassic successions from Northern 

Ireland boreholes; Port More (Wilson & Manning, 1978); Mire House (Fowler & Robbie, 1961), 

Magilligan (Bazley et al., 1997) and Ballinlea-1 (this study). 
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 (Warrington, 1997); faulting (George, 1967; Fletcher, 1997 in Warrington, 1997) and pre-

Cretaceous erosion (Broughan et al., 1989).  

 

There is no in-situ evidence for Jurassic sediments younger than early Pliensbachian although 

fragments of younger sediments have been discovered along north coast such as Ballintoy and 

Portrush (Wilson & Manning, 1978).  Numerous authors proposed that these blocks are glacial 

erratics, possibly from the Inner Hebrides, western Scotland (Versey, 1958; Warrington, 1997 & 

Wilson & Robbie, 1966). More local sources are suggested as Rathlin Island (Wilson & Robbie; 

1966) or offshore exposures in the Rathlin and Kish Bank basins (Warrington, 1997). Furthermore, 

the basal Cretaceous conglomerate that crops out at Oweynamuck (Wilson & Robbie, 1966; 

Wilson & Manning, 1978) and Murlough Bay (Hartley 1933; Versey 1958; Savage 1963; Wilson & 

Robbie 1966; Wilson 1972, 1981; Wilson & Manning 1978) contain remanie of late Early Jurassic 

fossils which were described by Hartley (1933 in Wilson & Robbie, 1966) as Toarcian ammonites, 

most probably Dactylioceras from the crassum group. 

 

Based on the presence of Mid and Late Jurassic beds on Skye and Mull, it is possible that more 

recent Jurassic beds were once present in Northern Ireland but have been eroded during pre-

Cretaceous erosion (Wilson, 1972), possibly following uplift during the Kimmerian (George, 1967; 

Bradshaw et al., 1992; Hancock & Rawson, 1992; Shelton, 1997) to Early Cretaceous (George, 

1967; Shelton, 1997; Warrington, 1997) or Cenomanian periods (Bradshaw et al., 1992; Hancock 

& Rawson, 1992).  
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1.4 The Lias Group in the Great Britain  

 

The Lias Group had been deposited in Wessex Basin (include parts of Somerset and South Wales), 

Severn Basin (=Worcester Basin; with adjoining Bristol-Radstock Shelf), Cleveland Basin and East 

Midlands Shelf (Cox et al., 1999; Hobbs et al., 2012), Cardigan Bay Basin (Woodland, 1971; 

Boomer, 1991; Copestake & Johnson, 2014), Cheshire Basin (Evans et al., 1993; Warrington, 

1997); Carlisle Basin (Ivimey-Cook et al., 1995; Warrington, 1997) and Portland-Wight Basin 

(Ainsworth & Riley, 2010). 

 

The Early Jurassic exposures in England (Figure 1.8) extend in continuous northeast-southwest 

trending exposures from Yorkshire (Hesselbo & Jenkyns, 1998; Hesselbo et al., 2000; Simms, 

2004; Cope, 2006; Price & Ford, 2009) in the north through Lincolnshire (Kemp & McKervey, 

2001), the Midlands (Ambrose, 2001; Cope, 2006), Gloucestershire (Simms, 2003); the Cotswolds 

(Donovan et al., 2005), Somerset (Hylton, 1998, 1999) to the Dorset coast in the south (House, 

1989; Hesselbo & Jenkyns, 1998; Kemp & McKervey, 2001; Wignall, 2001; Cope, 2006; Gallois, 

2009; Barton et al. 2011; Hobbs et al., 2012). The most significant exposures of Lias Group are 

exposed at coastal cliff sections in between Lyme Regis and Bridport (Dorset; House, 1989; Hobbs 

et al., 2012), between Robin Hood’s Bay and Redcar (Yorkshire; Hesselbo et al., 2000; Hobbs et 

al., 2012), St. Audrie Bay (Somerset; Warrington et al., 1994) and East Quantoxhead, (West 

Somerset; Hylto, 1998, 1999).  
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Even though continuous cliffs between Pinhay Bay and Lyme Regis possess a full thickness of Blue 

Lias sections (Gallois, 2009; Barton et al., 2011), the type section for this formation are from 

Saltford railway cutting near Bath (Donovan, 1956; Torrens & Getty, 1980; Ambrose, 2001). About 

203 m thick of Early Jurassic strata crop out in the cliff north of the village of East Quantoxhead, 

approximately 6 km east of Watchet (Page, 1995; Hylton, 1998, 1999; Bloos & Page, 2002). The 

Hettangian-Sinemurian transition is approximately 5 times thicker than other equivalent 

sequences (Hylton, 1998) plus well-developed Early Sinemurian ammonite faunas helped support 

this section for selection as the Global Stratotype Section and Point (GSSP) for the base of the 

Sinemurian and hence the Hettangian-Sinemurian boundary (Page, 1995; Bloos & Page, 2002).  

 

Whilst, the outcrops from Robin Hood’s Bay (Wine Haven, Yorkshire) provide another GSSP 

section, but for the base of the Plienbachian (Hesselbo et al., 2000; Meister et al., 2006). In 1994, 

Warrington et al. proposed the cliff at the west side of St. Audrie’s Bay, Somerset as a GSSP for  

the base of the Hettangian. However, this section (Warrington et al., 1994) was not selected as 

the GSSP of the base Hettangian in favour of the Kuhjoch section, Karwendel Mountain in Austria 

(Von Hillebrandt et al., 2007). 

 

The Lias Group had traditionally been subdivided into the Lower, Middle and Upper, but to 

replace these imprecise divisions and provide a stable guideline, British Geological Survey with 

support of the Geological Society of London developed a formational framework for the Lias 
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Figure 1.8: Surface and subsurface map of England and Wales Lias Group and sedimentary basin. 
 After Cox et al. (1999) and Simms (2004).  
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Group onshore area of England and Wales and divided the Lias Group into 12 formations (Cox et 

al., 1999). The formations are listed in Table 1.2 according to their basins, whereas the age and 

lithologies descriptions are summarized in Table 1.3. Copestake & Johnson (2014) also discussed 

and illustrated about these different successions (Figure 1.9). 

 

In Wales, Lias Group exposures are limited to the Vale of Glamorgan, South Wales (Wobber, 1968; 

Hesselbo & Jenkyns, 1998; Cope, 2006; Sheppard et al., 2006; Howells, 2007) but thick Jurassic 

strata are recorded around Wales; Cheshire, the Celtic Sea, Bristol Channel and Cardigan Bay 

basins (Howells, 2007). In the Vale of Glamorgan, about 150 m thick of late Rhaetian (pre-

planorbis)-Early Sinemurian (Semicostatum Ammonite Chronozone) Blue Lias formation (Waters 

& Lawrence, 1987; Wilson et al., 1990) lies conformably on top of the Penarth Group, and is 

divided into three members in ascending order St. Mary’s Well Bay Member, Paper Shales and 

Bull Cliff Member (Howells, 2007). The Early Jurassic succession (Hettangian-Toarcian) in Wales 

discovered in Mochras Borehole, Cardigan Bay Basin (at 1304.95 m) is the thickest known Early 

Jurassic succession in Britain (Woodland, 1971; Boomer, 1991; Hesselbo, 2012; Hesselbo et al., 

2013; Copestake & Johnson, 2014). Due to this thickness, the Pliensbachian basal ammonite 

biozone is twice the thickness of Robin Hood’s Bay Pliensbachian sequence, this emphasizes the 

global importance of Mochras Borehole in stratigraphy (Hesselbo et al., 2013). 
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Basin Formation (in ascending stratigraphical order) 
 

Cleveland Redcar Mudstone, Staithes Sandstone, Cleveland Ironstone, 
Whitby Mudstone, Blea Wyke Sandstone 
 

Wessex Blue Lias, Charmouth Mudstone, Dyrham, Beacon Limestone, 
Bridport Sand 
 

Worcester Blue Lias, Charmouth Mudstone, Dyrham, Marlstone Rock, 
Whitby Mudstone, Bridport Sand 
 

East 
Midlands 

Shelf 

South Blue Lias, Charmouth Mudstone, Dyrham, Marlstone Rock, 
Whitby Mudstone. 
 

North Scunthorpe Mudstone, Charmouth Mudstone, Marlstone Rock, 
Whitby Mudstone 
 

                       
Table 1.2: Formations of Lias Group based on basins (Cox et al., 1999). 

 

 

Formation Age Lithologies 

Blue Lias latest Rhaetian-Sinemurian 
(Bucklandi, Semicostatum, 
Turneri, Obtusum or 
Oxynotum Ammonite 
Chronozone) 
 

Thin bed argillaceous 
limestone alternating with 
calcareous mudstone or 
siltstone 

Scunthorpe Mudstone latest Rhaetian-Late 
Sinemurian (Obtusum or 
Oxynotum Ammonite 
Chronozone) 

Grey calcareous or silty 
mudstone with thin beds of 
argillaceous limestone either 
bioclastic or micritic and 
calcareous siltstone 
 

Redcar Mudstone Hettangian (Planorbis 
Ammonite Chronozone)-
Pliensbachian (Davoei 
Ammonite Chronozone) 

Grey fossiliferous mudstones 
and siltstones with subsidiary 
thin beds of shelly limestone 
at the base and fine-grained 
carbonate-cemented 
sandstone at the top 



 

22 
 

Charmouth Mudstone Sinemurian (base within 
Bucklandi, Semicostatum, 
Turneri or Obtusum 
Ammonite Chronozone) 

Dark grey, light grey and 
blueish grey mudstones and 
dark grey laminated shales, 
some areas have profuse 
argillaceous limestone or 
sideritic nodules; some levels 
comprise ‘paper shale’ or silt 
and fine sandstone beds.  
 

Staithes Sandstone Early Pliensbachian (Davoei 
Ammonite Chronozone)-Late 
Pliensbachian (Margaritatus 
Ammonite Chronozone) 
 

Silty sandstone with 2 to 4 m 
thick of fine-grained 
laminated sandstone 

Dyrham Early Pliensbachian (Davoei 
Ammonite Chronozone)-Late 
Pliensbachian (Margaritatus 
Ammonite Chronozone) 
 

Light, dark or greenish grey 
silty and sandy mudstone 
with interbedded silt or very 
fine sandstone 

Cleveland Ironstone Late Pliensbachian 
(Margaritus-Spinatum 
Ammonite Chronozone) 

Mudstone, siltstone and silty 
sandstone with rhythmic thin 
seams of sideritic and 
berthierine-ooidal ironstone 
at the top of formation 
 

Marlstone Late Pliensbachian (Spinatum 
Ammonite Chronozone)-Early 
Toarcian (Tenuicostatum 
Ammonite Chronozone) 

Sandy, shell-fragmental, 
ferruginous berthierine-
ooidal limestone with 
ferruginous and calcareous 
sandstone 
 

Beacon Limestone Late Pliensbachian (Spinatum 
Ammonite Chronozone)-Late 
Toarcian (Thouarsense 
Ammonite Chronozone) 

Variable colour of limestone 
with ferruginous-ooidal in 
the lower section and 
nodular in the upper section 
 

Whitby Late Pliensbachian (topmost 
Spinatum Ammonite 
Chronozone)-Toarcian  

Medium and dark grey 
fossiliferous mudstone and 
siltstone with thin siltstone 
or silty mudstone and 
occasional calcareous 
sandstone 
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Blea Wyke Sandstone Late Toarcian (Levesquei 
Ammonite Chronozone) 

Fine-grained sandstone with 
grey-weathering argillaceous 
below while yellow-
weathering and silty above 
 

Bridport Sand Toarcian-Aalenian Grey micaceous siltstone and 
fine-grained sandstone which 
some weathered to yellow or 
brown; locally with calcite-
cemented beds, doggers or 
lenticular masses (sand-
burrs) and infrequent 
argillaceous strata 
 

 
Table 1.3: Age and lithologies descriptions of Lias Group’s formations (Cox et al., 1999). 

 

 

The Early Jurassic exposures in Scotland are small and relatively few small; for example, the 

Dunrobin Coast section (north-east Scotland) and remnants along the Solway Firth Basin (south 

Scotland; Simms, 2004). The only extensive and well-preserved Scottish Jurassic sediments crop 

out in the Inner Hebrides and nearby areas; with important sections at Skye, Raasay, Eigg, Muck 

and Mull, with smaller exposures at Rum, Shiant Isles, Applecross, Ardnamurchan and Morvern 

(Hesselbo & Jenkyns, 1998; Hudson & Trewin, 2002; Morton, 2004; Simms, 2004). The Jurassic 

strata of 1494 m thick are discovered within the deepest part of the Hebrides-Little Minch Basin, 

while for onshore regions, the extensive Early Jurassic beds are documented in Skye; 40% (500 m 

out of total thickness; 1300m) of the Jurassic sequences belong to Early Jurassic sediments of 

Hettangian to middle Pliensbachian age (Hesselbo et al., 1998; Ainsworth & Boomer, 2001). In  
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Figure 1.9: Comparison of Early Jurassic successions in the UK (Copestake & Johnson, 2014). 
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general, Scottish Early Jurassic sequences have a greater proportion of coarse clastic sediments 

than their English equivalents, for example, in the Moray Firth region (Hudson & Trewin, 2002).  

 

The earliest Jurassic lithologies which deposited in the northern part of Inner Hebrides (Skye-

Pabay-Raasay) consist of shallow marine facies; alternating of limestones, sandstone, mudstone 

and siltstones. (Hesselbo et al., 1998; Hesselbo & Coe, 2000). These facies known as the Breakish 

Formation, ranges from Hettangian to earliest Sinemurian age (Morton, 1999; Hesselbo et. al, 

1998; Hesselbo & Coe, 2000). This formation overlies by the Pabay Shale Formation of Early 

Sinemurian to middle Pliensbachian age (Hesselbo et al., 1998; Hesselbo & Coe, 2000) which has 

well-developed sandstone unit (Torosay Sandstone Member) at it Early Sinemurian-Late 

Sinemurian boundary. Torosay Sandstone Member incompletely crop out at few localities on the 

southeastern coast of Mull (Hesselbo et al., 1998). 

 

 

1.5 Microfossils biozonation schemes 

 

Even though high-resolution ammonite zones have been achieved in outcrops studies, the 

shortage of macrofossils in the core material has prohibited their use for borehole materials 

(Partington et al. 1993). According to Copestake (1993), the microfossils are more valuable to 

determine biostratigraphy of borehole because of their small size (allow them to survive 

destruction by the drilling bit), abundance and rapid evolution. Thus, the application of 
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microfossils as stratigraphic markers has developed in response to the requirements of the oil 

industry. 

 

The first Early Jurassic foraminifera zonal scheme was produced by Bartenstein & Brand (1937) 

due to the need of correlating subsurface sequences during oil exploration in the onshore western 

Germany (Haynes 1981, Simms et al. 2004, Copestake & Johnson, 2014). Their works are well 

illustrated and important (Barnard 1949) although most of the species proposed are long-range 

species (Copestake & Johnson, 2014). The similar attempt then followed by Barnard (1949) based 

on the study of the Dorset Early Jurassic foraminifera specimens. He correlated the foraminifera 

with the ammonite chronozone; from Planorbis to Daveoi Ammonite Chronozone. In another 

Europe regions, Bang from Denmark (1968) and Norling from Sweden (1972) are one of the 

earliest author applied this kind of biozonation. Michelsen (1975) also initiated the microfossils 

zonation scheme but he only focused on Hettangian-Pliensbachian ostracods from the offshore 

Danish embayment. Later in 1987, Park presented Early Jurassic (only up to Early Pliensbachian) 

ostracods biozonation based on the southern North Sea Basin records. A comprehensive 

examination of exploration wells by Ainsworth (1989, 1990) provided detail studies of ostracods 

faunas from offshore southwest Ireland. Another ostracods zonation scheme also established by 

Boomer (1991) but from the Mochras Borehole samples. In 1981 and 1989, Copestake & Johnson 

outlined the Jurassic foraminifera biozones based on the several boreholes in the Great Britain. 

Later, Partington et al. (1993) established a scheme (MJ zones) specific to the Jurassic of the North 

Sea Basin. They calibrated the microfossils (dinoflagellate cyst, radiolaria, ostracods and 
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foraminifera) with each event of maximum flooding surface. In 1998, Ainsworth et al., also 

constructed biostratigraphic zonation of the latest Triassic to the earliest Cretaceous but only 

from three different groups; ostracods (Zone OJ), foraminifera (Zone FJ) and dinocyst (Zone DJ). 

These biozonations were established for English Channel boreholes and its adjacent onshore 

areas. Meanwhile, at the offshore Inner Hebrides Scotland, Ainsworth and Boomer (2001) 

determined the age of the well L134/5-1 sections based on the abundant and the first appearance 

of the foraminifera and ostracods stratigraphic markers. Few years later, the same authors 

published an ostracods range chart that produced from several sections of the Great Britain and 

Ireland (Boomer & Ainsworth, 2009). They only included Early Jurassic short-range ostracods and 

correlated them with standard ammonite zonation. 

 

The latest and most up to date foraminifera biozonation scheme was established by Copestake & 

Johnson (2014). Both of them are 30 years’ experienced stratigraphers (foraminifera-based) in 

the oil industry. This scheme almost similar to Copestake & Johnson (1989), but the zonations are 

details published in Copestake & Johnson (2014), especially in terms of biozones and subzones. 

The biozones are erected on the basis of short range species (either their inception or extinction), 

common, abundant or their period of acme zone (Copestake & Johnson, 2014). 

 

The biostratigraphic microfossils markers not just useful for hydrocarbon exploration but also for 

other purpose such as determination of macrofossils age. For instance, Lomax et al. (2017) used 

foraminifera and ostracods bioevents to assign the specific age of Ichthyosaurus communis. This 
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Figure 1.10: Early Jurassic foraminifera biozonation for British and northern European area (filled 

circles represent abundance increases). After Copestake & Johnson, 2014.  
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fossil is stored in the Lapworth Museum of Geology, University of Birmingham and has no 

provenance data. Thus, the best way to identify it age is by using microfossils analysis.  

 

In this study, author decided to refer the most recent foraminifera biozonation schemes (after 

Copestake & Johnson, 2014) (Figure 1.10) with the aid of ostracods range chart published by 

Boomer & Ainsworth (2009). Although the microfossils bioevents can also influence by the local 

environment, remarkable uniformity of Early Jurassic species across north-west Europe make the 

correlation of Northern Ireland microfossils with these schemes possible. 

 

As mentioned before, both of these schemes are correlated with the ammonite chronozone. 

Unfortunately, it is difficult for author to correlate ammonite chronozone with microfossils 

markers herein due to the limitation of provided samples. The main analysed borehole; Ballinlea-

1 is ditch cuttings, thus no ammonite records can be found (usually absence due to the 

destruction by drilling bit). Whereas, Magilligan and Carnduff-1 are core sample yet only Carnduff-

1 has recorded few good preservation ammonites. However, the detail classifications of these 

ammonites are still carrying out by Kevin Page. In view of the lack information on ammonite data, 

the author decided to just focus on foraminifera and ostracods to determine the specific age of 

the examined sequences.  

 

 

  



 

30 
 

1.6 Aims and objectives 

 

Although there are a few previous studies on Early Jurassic foraminifera from Northern Ireland 

(e.g. McGugan, 1965) and data has been included in wider reviews (Copestake & Johnson, 1981, 

1989), no comprehensive studies have been attempted for benthic microfaunas through these 

Early Jurassic successions. Thus, the primary aim of this research is to carry out a biostratigraphical 

study of Early Jurassic sediments from northern Irish boreholes and exposures to establish the 

full chronostratigraphic range of sediments preserved. The age of the youngest sediment at any 

one locality help define the upper erosional surface of the Early Jurassic sediments in this region. 

Detailed examination of foraminiferal and ostracods occurrences also will assist in the comparison 

of local microfossil biozonations with established schemes.  

 

The objectives of this research are as follows: 

 

1) To identify foraminifera and ostracods species from latest Triassic to Early Jurassic boreholes 

in Northern Ireland (samples provided by GSNI, the Geological Survey of Northern Ireland) and 

collections of Early Jurassic outcrop material from the accessible coastal localities.  

 

2) To observe and record recovery patterns in benthic microfaunas after the late Triassic mass 

extinction, their recovery being associated with the latest Triassic-Early Jurassic transgression. 

 



 

31 
 

3) To propose specific Early Jurassic stages and lithostratigraphy of the studied strata based on 

the stratigraphic foraminifera and ostracods, with the aid of few macrofaunas (in some cores, an 

ammonite and bivalves are presence) and lithologies. 

 

4) To assess the palaeoecology of the microfossils and thereby establish the depositional 

palaeoenvironments of the studied sections based on the presence of indicator species 

(foraminfera and ostracods). 

 

5) To compare the results between the studied sequences. The localities are compared and 

correlated in terms of their microfaunas distribution, biozonation, age-range and 

palaeoenvironment.  

 

6) To compare the Northern Ireland Jurassic microfaunas with records from adjacent regions; 

England, Wales, Scotland and the Irish Sea Basin. 

 

7) To summarise the latest Triassic to Early Jurassic palaeogeographical settings of counties 

Antrim and Londonderry. 
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1.7 Thesis overview 

 

The thesis is organised into ten chapters with 28 plates.  

 

Chapter 1 provides review of the previous works on the Early Jurassic sediments of Great Britain 

and Northern Ireland. This chapter also explains about tectonic setting of studied basins and the 

history of Early Jurassic biostratigraphic biozonation schemes. At the end of introductory chapter, 

the objectives and aims of this research are listed.  

 

The second chapter exclusively discusses about the disaggregation techniques applied to the 

samples. The methods are explained according to their localities for better understanding. There 

are two breakdown techniques used herein, hence the results of these different processing 

techniques also included in this chapter. Besides laboratory procedures, the relative abundance 

and Fisher’s alpha diversity are also mentioned herein.  

 

Chapter 3 presents detail stratigraphically and environmentally important benthic foraminifera 

and ostracods recovered from the analysed Northern Ireland sections. These selected species are 

discussed in terms of their morphology, variation, dimension, material and range.  

 

Chapter 4 is specific for Ballinlea-1 Boreholes. The outcome of the microfossils study of this 

borehole enables detail explanation in it microfaunas assemblages, age and biozonation. The 
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interpretation of Early Jurassic palaeoenvironment and oxygenation level are established based 

on the microfossils environmental markers.  

 

Chapter 5 also presents the similar contents like chapter 4, but the microfossils data are from 

Carnduff-1 Borehole. The chapter describes biostratigraphy, foraminifera biozonation, age and 

palaeoenvironment of the Waterloo Mudstone Formation (latest Triassic-Early Jurassic).  

 

Chapter 6 includes two examined localities; Magiliigan Borehole and Tircrevan Burn. Both sites 

are closed to each other in which the Waterloo Mudstone Formation exposed at the Tircrevan 

Burn is the continuation sequences of the subsurface beds from the Magilligan Borehole. The 

results of the studies are discussed in terms of their microfossils assemblages, biozonation, 

chronostratigraphic age and palaeoenvironment.  

 

Chapter 7 demonstrates the microfossils records of all exposures visited during the fieldwork 

together with their proposed biozonation and palaeoenvironmental interpretation. The collected 

samples are from the Antrim coast; White Park Bay, Ballintoy, KI nbane Head, Ballygalley and 

Waterloo.  

 

The microfaunas analysis from three examined boreholes are compared in Chapter 8. The 

comparisons not only limited to these boreholes, but the existence of foraminifera and ostracods 

index markers are differentiated with adjacent regions too. 
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Chapter 9 will provide palaeogeography and palaeobiogeography summaries of Northern Ireland 

Waterloo Mudstone Formation. The summaries are initiated based on the type assemblages of 

foraminifera and ostracods recovered.  

 

The final chapter; chapter 10 is the conclusion of the main findings of this research. In addition 

with few suggestions for future works.  

 

The photographs images (Figure A-C) and SEM images (Plates 1-29) of microfossils and few 

macrofossils frgaments are present right after the reference section.  
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Chapter 2 

Methodology 

 

2.1 Samples and disaggregation methods 

 

The material studied in this research comes from a number of localities located at Co. Antrim and 

Co. Londonderry, Northern Ireland. Access to three boreholes (Ballinlea-1, Carnduff-1 and 

Magilligan) was permitted by the Geological Society of Northern Ireland while complimentary 

surface samples were collected from the exposures of Tircrevan Burn, White Park Bay, Ballintoy, 

Kinbane Head, Ballygalley and Waterloo Bay. 

 

 

2.1.1 Ballinlea-1 Borehole 

 

The Ballinlea-1 hydrocarbon exploration well situated in the Rathlin Basin, north coast of Co. 

Antrim has proven the thickest sequence of Early Jurassic sediments in Northern Ireland; 605m 

with 120 cutting samples available for study. Stratigraphically, the borehole ranges from the 

Paleogene Antrim Lava Group (youngest) to the Late Triassic Mercia Mudstone Group (oldest). 

Our research interest focuses mainly on Early Jurassic samples and few Late Triassic sections 

which were recorded from 345 m to 980 m depth. The sequences are interrupted by a dolerite 

sill from 630 m to 668 m. A total of 120 samples (BAL255 to BAL980) at 5 metres intervals were 
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provided by GSNI (Geological Survey of Northern Ireland), of which 54 were chosen to undergo 

two different disaggregation methods and another 17 samples had previously been picked by an 

MSci student; Mark Jeffs (but sorted and identified by author). Two different methods of 

disaggregation were applied; hydrogen peroxide and freeze-thaw method. The reason for 

applying two different methods are explained in section 2.2. The first 30 cutting samples from 

BAL345 to BAL610 were processed by using hydrogen peroxide method. About 70 g of cuttings 

sample each was soaked in approximately 3% hydrogen peroxide for one hour. The soaking 

duration was increased if the sample is indurated and not break down initially.  

 

Another 34 cuttings samples (BAL685 to BAL980) underwent a freeze-thaw method. Again, 

approximately 70 g of each sample was selected, placed in a small plastic tray, then tap water was 

added until it covered the sediment. The tray was placed in a freezer until the water completely 

freeze before it was taken out for thawing. The cycle can be repeated once or twice a day. The 

softer rocks only required 3 freeze-thaw cycles to break down fully, but more cemented can took 

up about 18 cycles to disaggregate well.  

 

All the processed samples were washed through a 63 µm sieve and the retained sediment placed 

inside an oven at 50oC overnight. Once dried, a half or quarter split of each sample was separated, 

sufficient to provide 250-300 specimens and this was then dry-sieved to provide fractions at 63 

µm, 125 µm, 250 µm and 500 µm. Sediment greater than 125 µm was usually totally picked with 

additional scans through the 63 µm fraction to identify species not encountered in the larger 
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fractions. The presence of microfossils, macrofossils fragments and minerals were taken note 

(refer to Appendix E, G, I, J and L). However, the author only picked microfossils for further study. 

The microfossils were then classified according to their species and mounted on the 32 cells slide 

using water-soluble Gum Tragacanth glue. 

 

 

2.1.2 Carnduff-1 Borehole 

 

The Carnduff-1 borehole is from Larne Basin and was a salt exploration borehole. A total of 28 

Late Triassic (Lilstock Formation) to Early Jurassic (Waterloo Mudstone Formation) Carnduff-1 

core samples were selected from Geological Survey of Northern Ireland core store in Belfast. All 

these samples were processed by using freeze-thaw method. About 20 g-40 g of each sample was 

crushed by mortar and pestle then placed in small containers and weighed. The container was 

then filled with tap water and stored inside the freezer for approximately 12-24 hours. Later, it 

was placed in oven until it completely thawed. These freeze-thaw cycles were repeated 3 to 4 

times depending on the sediments cementation. Subsequently, the disaggregated samples were 

washed through the 63 μm sieve under flowing tap water and dried in the oven at about 50oC for 

a day. After the final weight recorded, full to quarter or 1/8 fractions of the dry residues were 

sieved into 4 different fractions and all microfossils observed were picked, counted and identified 

for analysis. The extracted microfossils were lightly glued by Gum Tragacanth on 32 cell slides. 
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2.1.3 Magilligan Borehole  

 

The Magilligan Borehole is a mineral exploration borehole situated in the Lough Foyle Basin. 

About 1 cm thick of each core sample (35 samples in total) were given by Geological Survey of 

Northern Ireland for this study. The provided samples belong to the Westbury Formation (Late 

Triassic) up to the Waterloo Mudstone Formation (Early Jurassic). From these 35 samples, only 

28 samples were chosen to undergo freeze-thaw method. Approximately 10-20 g of each core 

sample was crushed by mortar and pestle to get pea-sized mudrock lumps. Later, the sediment 

was soaked in tap water before storing in the freezer. The frozen sample then thawed in the oven 

for few hours. The repetition of freeze-thaw only took 4 cycles to obtain a soft sample, but the 

more indurated ones took up to 18 cycles. If some samples were still unsuccessfully 

disaggregated, the hydrogen peroxide technique was applied but for just 5-15 minutes. Further 

steps are similar as in Ballinlea-1 (section 2.1.1) and Carnduff-1 (section 2.1.2) sections.  

 

 

2.1.4 Tircrevan Burn exposure 

 

One of the best early Jurassic outcrops are exposed along the Tircrevan Stream which was 

accessed easily when in low flow. We worked upstream to collect approximately 200 g of well-

preserved outcrop. Only 5 bags of different samples were taken for further study. The exposures 

were cleaned first to avoid contamination.  
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The collected samples were cleaned and dried before undergoing processing. Later, about 30 g – 

50 g sample each was soaked in 3% hydrogen peroxide for an hour before washed through 63 µm 

sieve. The subsequent processes are similar to those described in Ballinlea-1 section above 

(section 2.1.1). 

 

 

2.1.5 Other outcrop localities 

 

We visited seven localities (White Park Bay, Portrush, Ballintoy Harbour, Kinbane Head, 

Ballygalley, Minnis and Waterloo Bay) situated at Co. Antrim to observe the Waterloo Mudstone 

Formation outcrops. Out of these seven localities, the hand samples only taken from five localities 

(Table 2.1) using a cold chisel and hammer. The collected samples later processed by hydrogen 

peroxide methods for an hour.  

 

The broken samples then washed through 63 µm sieve and fully dried inside the oven. The 

subsequent steps are as in Ballinlea-1 section (section 2.1.1). 
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Locality Grid reference Type of 
sample 

Number of 
processed 
samples 

Processing 
technique 

Average number of 
microfossils picked 

per sample (the 
barren samples are 
not included in the 

calculation) 
 

Ballinlea-1 
Borehole 

D 03765 39317 Cutting 71 Hydrogen 
peroxide and 
freeze-thaw 

 

167 

Carnduff-1 
Borehole 

 

D 40150 00983 Core 28 Freeze-thaw 285 

Magilligan 
Borehole 

C 70039 33251 Core 28 Freeze-thaw, 
only few 
soaked in 
hydrogen 
peroxide 

 

81 

Tircrevan 
Burn 

C 70126 32552 Outcrops 5 Hydrogen 
peroxide 

 

180 

White Park 
Bay 

D 02271 44184 Outcrops 7 Hydrogen 
peroxide 

 

125 

Waterloo 
Bay, Larne 

D 40786 03768 Outcrops 1 Hydrogen 
peroxide 

 

71 

Ballygalley D 37901 07956 Outcrops 1 Hydrogen 
peroxide 

 

104 

Ballintoy 
Harbour 

D 03625 45177 Outcrops 1 Hydrogen 
peroxide 

 

80 

Kinbane 
Head 

D 08951 43354 Outcrops 1 Hydrogen 
peroxide 

 

117 

 

Table 2.1: Summaries of processed samples from all studied localities. 
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2.2 Result of the different processing techniques 

 

Throughout the disaggregation process of Ballinlea-1 samples, only two techniques had been 

applied herein; hydrogen peroxide method and freeze-thaw method. At the beginning, the 

Ballinlea-1 samples (BAL345-BAL610) were broken down by soaking them for one hour in dilute 

hydrogen peroxide (H2O2). This method broke down the sample successfully, unfortunately, the 

present of low to common pyrite in these samples made the usage of hydrogen peroxide is 

inappropriate. Kennedy & Coe (2014) concluded that the use of hydrogen peroxide can cause 

damage and dissolution of fragile calcium carbonate and pyritised microfossils. Kennedy & Coe 

(2014) also observed pitting morphology on the surface of pyritised microfossil processed using 

hydrogen peroxide, however, the same pyritised microfossil extracted by using freeze-thaw 

method preserved well with no evidence of damage to the tests. Thus, I decided to continue the 

remaining Ballinlea-1 samples (BAL685-BAL980) by using freeze-thaw technique. There is no 

direct comparison can be made in the term of preservation because no same sample has been 

tested for two different technique. However, if compared from the SEM images of different 

samples processed by different methods (for example BAL845 with BAL530), no obvious 

difference can be observed.  

 

For Magilligan, a few samples were initially tested by using hydrogen peroxide to see the rate of 

disaggregation. Alas, the sample cannot break down well as most of the Magilligan samples are 

well cemented than Ballinlea’s. So, different approach had been used for the whole Magilligan 
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samples. Kennedy & Coe (2014) describe freeze-thaw as effective method to breakdown the 

indurated rocks compared to the hydrogen peroxide technique. Therefore, I decided to apply 

freeze-thaw method to all Magilligan samples, even though some of them took about 18 freeze-

thaw cycles. Furthermore, the use of this method proved to be a good decision as few depths 

such as MAG106.95 comprises abundant of pyritised microfossils. The usage of freeze-thaw 

technique on MAG106.95 resulted on well-preserved pyritised microfossils without any damage 

or pitting on their tests. This supported the observations of Kennedy & Coe (2014) regarding the 

advantage of freeze-thaw method on pyritised specimens. 

 

The freeze-thaw technique was also applied to the Carnduff-1 samples. Most of the extracted 

microfossils are poorly preserved but these are due to the calcite overgrowth on the test walls 

not because of the technique used.  

 

For outcrop samples, none of them were disaggregated by freeze-thaw method due to time 

constraints. Therefore, all of them were broken down using diluted hydrogen peroxide for short 

period of time (less than an hour) and the preservation of extracted microfossils are great despite 

delicate calcium carbonate test.  
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2.3 Microfossil relative abundance 

 

The number of microfossils (abundance) is variable, it not only depends on the weight of picked 

residues but also the richness of the microfossil contents in each sample. Due to these variations, 

the raw abundance data should not be used directly as this will cause some bias. Therefore, the 

author normalised the assemblage abundance by calculate the amount of microfossils predicted 

per 10 g (initial weight). Below was the formula used to calculate this abundance: 

 

 Relative abundance (per 10 grams) =                                                                                    x 10 grams 

 

The data were plotted by using StrataBugs software. These results are shown in Figure 4.2, Figure 

5.6, Figure 6.3, Figure 7.21, Figure 7.23, Figure 7.25, Figure 7.27, and Figure 7.29. 

 

 

2.4 Species richness and Fisher’s alpha index diversity 

 

The diversity is the number of different species (richness) in a certain community or a sample. 

Some of the main aims of this study are to compare species diversity throughout each core and 

to compare with patterns of Early Jurassic foraminifera and ostracod diversity on much larger 

scales. The numbers of species found are partly related to the weight of the residue studied. Thus, 

the only concern when comparing the diversity is how to prevent bias by sample size. This 

Total of microfossils picked (raw abundance) 

Initial weight of analysed sample (g) 
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problem can be overcome by using an appropriate measurement. According to Magurran (1988) 

and Hayek & Buzas (1997), Fisher’s alpha index is one of the frequent used formula to calculate 

the foraminiferal diversity. Even though the species dominance cannot be detected by using 

Fisher’s alpha, it can avoid sample size bias (Shochat et al. 2004). For this study, author preferred 

to express the species diversities in Fisher alpha index.  

 

Fisher alpha index is a measure of species diversity based on logarithmic parameter (Murray 2006, 

2014; Barjau-González et al., 2012), in which the number of species represented by one individual, 

two individual and so on can be predicted (Murray, 2006). Below is the formula of Fisher’s alpha 

index diversity (Fisher et al., 1943): 

S = n1 (1 +  
𝑥

2 
 + 

𝑥2

3
 + …) 

Where S is the total number of species in the sample, n1 the number of species represented by 

single specimens, and x is a constant having a value <1 but approaching this value as the size of 

sample is increased.  

 

Meanwhile, n1 can be calculated from N(1-x), N being the total number of individual specimens. 

As the size of the sample is increased, n1 approaches α. 

 

Different type of indices can be obtained from StrataBugs software. As per discussed above, the 

author only used Fisher’s alpha index to calculate the diversity. The Fisher’s alpha diversity data 
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for this research are plotted in Figure 4.2, Figure 5.6, Figure 6.3, Figure 7.2, Figure 7.24, Figure 

7.26, Figure 7.28, and Figure 7.30. 
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Chapter 3 

Northern Ireland benthic microfaunas 

 

3.1 Foraminifera taxonomy 

 

3.1.1 Introduction 

 

Foraminifera are the most diverse and abundant microfossil group discovered from this research; 

7 orders, 16 families, 29 genera and 167 species of benthic foraminifera, the most common being 

Lagenida in associate with order Robertinida, Miliolida and Buliminida.  

 

The generic and suprageneric classifications applied in this study essentially from Loeblich and 

Tappan (1998), whilst the species classification is mainly referred to Copestake & Johnson (2014) 

as it is the most up to date Early Jurassic foraminifera scheme available. In this research, few 

foraminifera specimens are not able to identify in species level, thus named as Genus sp. A. Only 

the stratigraphical significance unidentifiable forms are included herein. The synonym will not be 

listed fully, only limited to the original designation and major generic shift. However, additional 

synonymies are included if there are description or illustration provided and closely similar to this 

study diagnosis taxa.     
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The preservation relatively good to moderate in all localities albeit domination of fragile tests 

such as aragonitic Reinholdella and thin calcitic Paralingulina tenera plexus. The only exceptional 

is Carnduff-1 as most of it samples consist poor preservation of foraminifera; frequent visible 

calcite overgrowth on the test walls. 

 

This section only mentioned about important stratigraphic, environmental and abundant taxa. 

The remaining taxa are listed in Appendix B. The morphology of the species below discussed fully 

under description. Any distinctive variation within the species will also be explained but under 

variation section. Whilst, the remarks described about how to distinguish the species with other 

almost similar appareance taxa or any other comments which author feels relevant or important 

to discuss. The full range of each species will be first written followed by each localities range of 

that particular species. 

 

The range mentioned below are total range of the species from Copestake & Johnson (2014) 

together with the range of the species in each examined locality. Dimensions for the species are 

given in microns and all measurements are for the maximum distance excluded spines. 

Foraminifera SEM digital photomicrographs captured mainly using Phenom Pro and few by Joel 

6060 and presented in Plate 1-19. The normal images of some specimens also taken using Canon 

DSLR and included under Figure A-Figure C (right before Plate 1).  
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3.1.2 Systematic descriptions 

 

CLASS FORAMINIFERIDA d’Orbigny, 1826 

 

Order LAGENIDA Lankester, 1885 

Superfamily NODOSARIOIDEA Ehrenberg, 1838 

Family NODOSARIIDAE Ehrenberg, 1838 

Genus PARALINGULINA Gerke, 1969 emend. 

 

Paralingulina tenera (Bornemann, 1854) plexus 

 

Paralingulina tenera collenoti (Terquem, 1866) 

(Plate 1, figs 14, 15, 16 & 17) 

 

1866 Marginulina collenoti Terquem, p. 424, pl. 17, figs 1a-1b. 

1876 Lingulina striata Blake, p. 455, pl. 18, figs 16, 16a. 

1956 Lingulina tenera Bornemann form A ‘’striata’’ Barnard, p. 275-279, pl. 2, 3, fig. 1.  

1957 Geinitzina tenera (Bornemann) subsp. striata (Blake); Nørvang, p. 54-55, figs. 1a-1c, 2. 

1981 Lingulina tenera collenoti (Terquem); Copestake & Johnson, p. 94-95, pl. 6.1.3, fig. 7. 

1989 Lingulina tenera collenoti (Terquem); Copestake & Johnson, p. 178, pl. 6.2.4, fig. 7. 

2014 Paralingulina tenera collenoti (Terquem); Copestake & Johnson, p. 189-191, pl. 8, fig. 16.  
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Description: Test elongate, uniserial, flattened, non-sulcate and almost parallel-sided with 

rpunded margin. Spherical proloculus followed by 8-10 gently arched chamber increasing in width 

only in first two chambers, later chambers remain same size until the final one. The surface has 

8-10 longitudinal, irregular, similar strength, few discontinuous ribs and disappear before the oval 

aperture. Sutures are gently arched, flush except for the latter sutures; often depressed. 

 

Remark: Paralingulina tenera plexus from Hettangian age appear almost similar to P. t. collenoti 

(Figure 3.1). Most of them especially P. t. pupa are long like P. t. collenoti. However, they are 

differentiate based on their outline; P. t. collenoti almost parallel-sided while P. t. pupa is 

divergent-sided. P. t. collenoti ribs are irregular and discontinuous, whereas P. t. pupa has 

longitudinal, equal strength, and regular ribbing. P. t. substriata exist right after the extinction of 

P. t. collenoti and the features almost similar too but it is shorter, has median sulcus, carinated 

margin and comprises two irregular dominant ribs with interstital ribs in between them. 

 

Dimension: Magilligan (pl. 1, fig. 14) length 534 µm, width 139 µm; (pl. 1, fig. 17) length 724 µm, 

width 168 µm. Ballinlea-1 (pl. 1, fig. 15) length 641 µm, width 153 µm. Carnduff-1 (pl. 1, fig. 16) 

length 679 µm, width 185 µm.  

 

Material: Ballinlea-1 Borehole 32 specimens; Magilligan Borehole 30 specimens; Carnduff-1 

Borehole 39 specimens. 
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Range: Total range: Late Rhaetian-Hettangian (Angulata Ammonite Chronozone, Copestake & 

Johnson 1981, 1989, 2014). Range of studied samples: Early-Mid Hettangian (Ballinlea-1 Borehole 

and Carnduff-1 Borehole), Mid Hettangian (Magilligan Borehole).  

 

Paralingulina tenera pupa (Terquem, 1858) 

(Plate 1, figs 9, 10, 11, 12, 13, 18 & 19) 

 

1866 Marginulina pupa Terquem, p. 429, pl. 17, figs 7a-f. 

1941 Lingulina tenera var. pupa (Terquem), Macfadyen, p. 52-53, pl. 3, figs. 53a, b. 

1949 Lingulina tenera var. pupa (Terquem), Barnard, p. 367, figs. 6b, d. 

1956 Lingulina tenera Bornemann forms I, H Barnard, p. 274, pl. 2; pl. 3, figs. 8-12. 

1957 Geinitzina tenera (Bornemann) subsp. pupa (Terquem); Nørvang, p. 61-62, figs. 32-43.  

1957 Geinitzina tenera (Bornemann) subsp. praepupa Nørvang, p. 60, figs. 30, 31. 

1989 Lingulina tenera pupa (Terquem); Copestake & Johnson, p. 178, pl. 6.2.4, fig. 13. 

2014 Paralingulina tenera pupa; Copestake & Johnson, p. 192-193, pl. 8, figs. 5, 12, 13, 18-20, 

22, 26. 

 

Description: Test multilocular, uniserial, pupiform, inflated and divergent-sided with round 

marginal. Spherical proloculus succeeding by 5-6 arched chambers gradually increase in width in 

latter chambers. Some forms yield slightly smaller final chamber compared to it previous 

chamber, but most of specimens seen have almost similar size of both latter chambers. The 
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surface is ornamented by two main ribs each side. These main ribs comprise finer interstitial ribs 

and continuous through the depressed sutures. Suture sometimes flush. Aperture terminal, 

central, slit-like and slight produced. 

 

Variation: P. t. pupa exhibits varieties of forms. In latest Rhaetian to Hettangian stage reflected 

intermediate form of P.t pupa and P. t collenoti (Figure 3.1); P. t. pupa is long but has divergent-

sided and equal strength of regular longitudinal ribs. The subspecies gradually revolute to the 

younger stage, where this species become more resemble to P. t. tenuistriata in Early Sinemurian 

stage.  However, in Late Sinemurian, few flattened forms with equal strength of fine ribs which 

occasionally appeared discontinuously.  

 

Remark: Intermediate form of P.t. pupa can be distinguished from P.t. tenuistriata by it rounded 

margin, absence of keeled and the interstitial striations are nearly strong like the main ribs and 

appear almost continuous. This intermediate form is difficult to differentiate just by using the 

microscope still the features details especially ribbing can be observed clearly by using SEM. 

 

Dimension: Magilligan (pl. 1, fig. 9) length 450 µm, width 147 µm; (pl. 1, fig. 19) length 801 µm, 

width 183 µm. Ballinlea-1 (pl. 1, fig. 10) length 435 µm, 148 µm; (pl. 1, fig. 11) length 535 µm, 

width 135 µm, diameter of aperture 60 µm; (pl. 1, fig. 12) length 574 µm, width 140 µm, diameter 

of aperture 43 µm. Carnduff-1 (pl. 1, fig. 13) length 585 µm, width 137 µm; (pl. 1, fig. 18) length 

746 µm, width 128 µm. 
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Material: Ballinlea-1 Borehole 1027 specimens; Magilligan Borehole 16 specimens; Carnduff-1 

Borehole 45 specimens; White Park Bay 33 specimens; Ballintoy 2 specimens; Kinbane Head 13 

specimens. 

 

Range: Total range: Hettangian-Late Jurassic (Copestake & Johnson, 2014). Range of studied 

samples: Hettangian-Early Pliensbachian (Ballinlea-1 Borehole, Mid Hettangian-Early Sinemurian 

(Magilligan Borehole), Hettangian-Early Sinemurian (Carnduff-1 Borehole), Late Sinemurian 

(White Park Bay, Ballintoy and Kinbane Head). 

 

Paralingulina tenera subprismatica (Franke, 1936) 

(Plate 2, figs 10-15) 

 

1936 Nodosaria subprismatica Franke, p. 48, pl. 4, fig. 17 

1941 Lingulina tenera Bornemann; Macfadyen, p. 51-52, pl. 3, figs. 52a, b. 

1956 Lingulina tenera Bornemann form B ‘’prismatica’’; Barnard, p. 275-277, pl. 2. 

1957 Geinitzina tenera (Bornemann) subsp. subprismatica (Franke); Nørvang, p. 57-58, figs. 11, 

12, 14, 15. 

1981 Lingulina tenera subprismatica(Franke); Copestake & Johnson, p. 95-96, pl. 6.1.3, figs 5, 6.  

1984 Lingulina acuformis (Terquem); Riegraf et al., p. 687, 699, pl. 7, fig. 179. 

1989 Lingulina tenera subprismatica (Franke); Copestake & Johnson, p. 179, pl. 6.2.4, fig. 11. 

2014 Paralingulina tenera subprismatica (Franke); p. 193-194, pl. 8, fig. 8. 
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Description: Test is uniserial, elongate, narrow, parallel-sided and non-compressed. Hexagonal in 

cross-section and keeled margin. Perforate wall. It proloculus; spherical in shaped commonly has 

basal spine but the recovered specimens mostly absence of spine. The test is made up of 5-7 

chambers of almost same sizes but few specimens yield slightly smaller final chamber. The sutures 

are nearly horizontal, clearly depressed and thick. Each side of P. t. subprismatica has two primary 

longitudinal, parallel to sides, narrow ribs which stop before reaching the aperture. Few 

specimens exhibit 1 or 2 narrow interstital ribs each side. These interstitial ribs have equal 

strength as the main ribs. The aperture is similar like other Paralingulina tenera subspecies; 

terminal and oval. 

 

Variation: Main P. t. subprismatica specimens found are typical form but intermediate form of P. 

t. subprismatica and P. t. tenera do occurred (Figure 3.1).  

 

Remark: These two subspecies share same feature; has few ribs usually just two main ribs each 

side. The confusion usually happens in intermediate form of P. t. subprismatica. This is because, 

this form normally has slightly divergent-sided. However, it can be distinguished from P. t. tenera 

by it test outline; P. t. subprismatica is more elongate, narrower, only slightly diverge and 

hexagonal cross-section. 

 

Dimension: Ballinlea-1 (pl. 2, fig. 10) length 459 µm, width 141 µm, diameter of aperture 34 µm; 

(pl. 2, fig. 11) length 527 µm, width 136 µm, diameter of aperture 64 µm; (pl. 2, fig. 12) length 
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506 µm, width 135 µm; (pl. 2, fig. 13) length 443 µm, width 145 µm; (pl. 2, fig. 14) length 276 µm, 

width 88 µm, diameter of aperture 29 µm; (pl. 2, fig. 15) length 255 µm, width 95 µm, diameter 

of aperture 25 µm.  

 

Material: Ballinlea-1 Borehole 484 specimens; White Park Bay 9 specimens. 

 

Range: Total range: end Early Sinemurian (Turneri Ammonite Chronozone)-Late Pliensbachian 

Margaritatus Ammonite Chronozone, Copestake & Johnson, 2014). Range of studied samples: 

Early-Late Sinemurian (Ballinlea-1 Borehole), Late Sinemurian (White Park Bay). 

 

Paralingulina tenera substriata (Nørvang 1957) 

(Plate 1, figs. 1-3) 

 

1957 Geinitzina tenera (Bornemann) subsp. substriata Nørvang, p. 55, figs. 3-10. 

1981 Lingulina tenera substriata (Nørvang); Copestake & Johnson, p. 95-96, pl. 6.1.3, fig. 8.  

1989 Lingulina tenera substriata (Nørvang); Copestake & Johnson, p. 179, pl. 6.2.4, fig. 12. 

1998 Lingulina tenera plex. substriata (Nørvang); Hylton, p. 205-206, pl. 1, fig. 5. 

2014 Paralingulina tenera substriata (Nørvang); Copestake & Johnson, p. 194-195, pl. 8, fig. 6. 

 

Description: Test uniserial, divergent, keeled and has indistinct sulcus. Subconical to spherical 

proloculus followed by 5-6 chambers which their width gradually increases until the final 
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chamber, still slightly smaller final chamber does occur infrequently. The sutures are generally 

flush except for few specimens; the latter sutures are depressed. This subspecies has two 

irregular, discontinuous, interrupted or wavy primary ribs with the presence of shorter, 

incomplete, discontinuous, sometimes slightly oblique secondary ribs. The aperture is terminal, 

central and oval in shaped. 

 

Remark: P. t. substriata is differs from P. t. collenoti as P. t. substriata is less compressed test, has 

slightly median sulcate, keeled marginal and comprises two stronger, irregular main ribs. P. t. 

substriata almost similar to the P. t. tenuistriata except for P. t. substriata has irregular ribs; 

whereas P. t. tenuistriata possesses regular, continuous main ribs.  

 

Dimension:  Carnduff-1 (pl. 1, fig. 1) length 923 µm, width 238 µm; (pl. 1, fig. 2) length 699 µm, 

width 311 µm; (pl. 1, figs. 3) length 709 µm, width 198 µm. 

 

Material: Ballinlea-1 Borehole 12 specimens; Carnduff-1 Borehole 270 specimens. 

Range: Total range: Hettangian (Planorbis Ammonite Chronozone, Planorbis Ammonite 

Subchronozone)-Early Sinemurian (Bucklandi Ammonite Chronozone, Conybeari Ammonite 

Subchronozone, Copestake & Johnson 1981, 2014). Range of studied samples: Hettangian-Early 

Sinemurian (Ballinlea-1 Borehole), Hettangian-Early Sinemurian (Magilligan Borehole), 

Hettangian-Early Sinemurian (Carnduff-1 Borehole). 

 



 

56 
 

Paralingulina tenera tenera (Bornemann, 1854) 

(Plate 2, figs. 1-9) 

 

1854 Lingulina tenera Bornemann, p. 38, pl. 3, figs 24a-c. 

1949 Lingulina tenera Bornemann; Barnard, p. 365, fig. 6a. 

1956 Lingulina tenera Bornemann forms B ‘’tenera’’, D, E, G, J Barnard, p.275-280, pl.1 , figs. 1 ,2 

,9a , b; 10a, b; pl.2; pl.3, figs 4, 5, 13. 

1957 Geinitizina tenera (Bornemann) subsp. tenera (Bornemann); Nørvang, p. 58-60, figs. 18-23.  

1957 Geinitizina tenera (Bornemann) subsp. carinata Nørvang, p. 62-63, figs. 46-48, 51, 54. 

1984 Lingulina tenera tenera Bornemann; Riegraf et al., p. 688, 699, pl. 7, fig. 174-175. 

1989 Lingulina tenera tenera Bornemann; Copestake & Johnson, p. 179, pl. 6.2.4, fig. 12. 

1998 Lingulina tenera plex. tenera Bornemann; Hylton, p. 205-206, pl. 1, fig. 6.  

2014 Paralingulina tenera tenera (Bornemann); Copestake & Johnson, p. 195-196, pl. 8, figs. 7, 

10, 21, 25. 

2017 Paralingulina tenera tenera (Bornemann); Lomax et al., p. 3, fig. 2; 1-3. 

 

Description: Uniserial. Keeled subspecies with variety of forms; pupiform, flaring or subtriangular. 

P. t. tenera contains well-defined median sulcus. This species has 5-10 arched chambers with flush 

sutures within. The surface is smoother than other Paralingulina tenera subspecies; each side has 

two longitudinal, narrow to sharp predominant ribs. These primary ribs are parallel to the side 

and disappear at the mid final chamber without reaching the oval aperture.  
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Variation: Most of the microspheric forms are flaring or subtriangular test; normally made up of 

5-6 chambers only and flush sutures throughout the test. For megalospheric, the test generally in 

pupiform which the chamber size slowly wider and higher except for the constricted last chamber. 

The megalospheric sutures are flush in the beginning chamber but later become depressed 

especially final sutire. Secondary, continuous or discontinuous, fine ribs literally occur in the 

middle of primary ribs; noticed from end Hettangian to basal Early Sinemurian specimens. 

 

Remark: P. t. tenera sometimes can be confused by P. t. subprismatica. However, P. t. tenera is 

more compressed, broader and diverge-sided. 

 

Dimension: Ballinlea-1 (pl. 2, fig. 1) length 843 µm, width 225 µm; (pl. 2, fig 2) length 731 µm, 

width 236 µm; (pl. 2, fig. 3) length 635 µm, width 174 µm; (pl. 2, fig. 5) length 539 µm, width 191 

µm; (pl. 2, fig. 6) width 126 µm, thickness 93 µm, diameter of aperture 27 µm; (pl. 2, fig. 7) length 

351 µm, width 143 µm; (pl. 2, fig. 8) length 405 µm, width 178 µm, diameter of aperture 48 µm; 

(pl. 2, fig. 9) length 376 µm, width 229 µm. Carnduff-1 (pl. 2, fig. 4) length 603 µm, width 271 µm. 

 

Material: Ballinlea-1 Borehole 779 specimens; Magilligan Borehole 100 specimens; Carnduff-1 

Borehole 869 specimens; White Park Bay 158 specimens; Tircrevan Burn 3 specimens; Larne 1 

specimen. 
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Range: Total range: Norian (Late Triassic)-Late Toarcian (Pseudoradiosa Ammonite Chronozone, 

Copestake & Johnson, 2014). Range of studied samples: Rhaetian-Early Pliensbachian (Ballinlea-

1 Borehole), Mid hettangian-Early Sinemurian (Magilligan Borehole), Rhaetian-Early Sinemurian 

(Carnduff-1 Borehole), White Park Bay (Late Sinemurian-Early Pliensbachian), Tircrevan Burn 

(Early Sinemurian), Larne (latest Hettangian).  

 

Paralingulina tenera tenuistriata (Nørvang 1957) 

(Plate 1, figs. 4-8) 

 

1957 Geinitzina tenera (Bornemann) subsp. tenuistriata Nørvang, p. 56-57, figs 13, 16, 17, 24. 

1957 Geinitzina tenera (Bornemann) subsp. pupoides Nørvang, p. 60, figs 27, 29. 

1984 Lingulina tenera praepupa (Nørvang); Riegraf et al., p. 688, 699, pl. 7, fig. 173.  

1984 Lingulina tenera tenuistriata (Nørvang); Riegraf et al., p. 688, 699, pl. 7, fig. 176. 

1998 Lingulina tenera plex. tenuistriata (Nørvang); Hylton, p. 205-205, pl. 1, fig. 7. 

2014 Paralingulina tenera tenuistriata (Nørvang); Copestake & Johnson, p. 197, pl. 8, figs. 4, 11, 

17. 

 

Description: Uniserial, broad or elongate test with keeled periphery. Median sulcus occurs in 

between two main, strong, continous ribs on both sides of test. Secondary fine, discontinuous 

striations (interrupted across sutures) are often occurred. Pupiform test has spherical proloculus; 
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whereas subtriangular test comprises subconical proloculus. This subspecies contains up to 8 

arched chambers and flush to depressed sutures. The aperture is terminal, central and open oval. 

 

Variation: The megalospheric usually in pupiform shape, while microspheric either flaring or 

subtriangular form. 

 

Remark: P. t. tenuistriata is differentiate by P. t. pupa by its finer, discontinuous secondary 

striations, contrary to P. t. pupa which has almost equal strength and continuous primary and 

secondary striations. P. t. tenuistriata also slightly resemble to P. t. substriata but it differs by its 

well-defined predominant ribs, whereas P. t. substriata has irregular primary ribs. 

 

Dimension: Ballinlea-1 (pl. 1, fig. 4) width 80 µm, thickness 60 µm, diameter of aperture 21 µm; 

(pl. 1, fig. 5) width 161 µm, thickness 68 µm, diameter of aperture 54 µm; (pl. 1, fig. 6) length 330 

µm, width 168 µm; (pl. 1, fig. 7) length 500 µm, width 156 µm, diameter of aperture 59 µm; (pl. 

1, fig. 8) length 430 µm, width 155 µm, diameter of aperture 77 µm. 

 

Material: Ballinlea-1 Borehole 796 specimens; Carnduff-1 Borehole 377 specimens; Maglligan 

Borehole 21 specimens; White Park Bay 23 specimens; Kinbane Head 14 specimens; Ballintoy 6 

specimens. 
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Figure 3.1: Summary of Paralingulina tenera plexus range chart from all analysed localities (Northern 
Ireland). 1: Typical form of P. t. collenoti, 2: typical form of P. t. substriata, 3: intermediate form of 
P. t. pupa and P. t. collenoti, 4: typical form of P. t. pupa, 5: intermediate form of P. t. pupa and P. t. 
tenuistriata, 6: longer form of P. t. tenuistriata; 7: typical form of P. t. tenuistriata, 8: intermediate 
form of P. t. tenuistriata and P. t. occidentalis, 9: longer form of P. t. tenera, 10,11 & 12: typical form 
of P. t. tenera, 13: intermediate form of P. t. tenera and P. t. occidentalis, 14: intermediate form of 
P. t.tenera and P. t. subprismatica, 15 & 16: typical form of P. t. subprismatica. 

  



 

61 
 

Range: Total range: Rhaetian-Late Toarcian (Copestake & Johnson, 2014). Range of studied 

samples: Mid Hettangian-Early Pliensbachian (Ballinlea-1 Borehole), Rhaetian-Early Sinemurian 

(Carnduff-1 Borehole), Mid Hettangian-Early Sinemurian (Magilligan Borehole), Late Sinemurian 

(White Park Bay, Ballintoy and Kinbane Head). 

 

Genus ICHTHYOLARIA Wedekind, 1937 

 

Ichthyolaria terquemi barnardi (Copestake & Johnson, 2014) 

(Plate 3, fig. 4) 

 

2014 Ichthyolaria terquemi barnardi ssp. nov. (Copestake & Johnson, 2014), p. 150-152, pl. 11, 

figs. 10, 17-19. 

 

Description: Small, uniserial, flattened test, divergent-sided, lanceolate, rounded margin, 5- 7 

chevron-shaped chambers, increase gradually except for the last chamber which smaller than it 

previous chamber. It has flush sutures, but final suture compressed. The surface comprises of 3-

4 longitudinal ribs which end before the last two final chambers. Generally, the margin is keeled 

except for the latest chamber; rounded. The aperture is terminal, radiate and produced in short 

neck.
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Dimension: Ballinlea-1 (pl. 3, fig. 4) length 363 µm, width 98 µm. 

 

Material: Ballinlea-1 Borehole 4 specimens. 

 

Range: Total range: mid Hettangian (latest Planorbis Ammonite Chronozone-latest Angulata 

Ammonite Chronozone, Copestake & Johnson, 2014). Range of studied samples: mid 

Hettangian (Ballinlea-1 Borehole). 

 

Ichthyolaria terquemi squamosa (Terquem & Berthelin, 1875) 

(Plate 3, figs 11 & 12) 

 

1875 Frondicularia squamosa Terquem & Berthelin, p. 37, pl. III, figs 3 a, b.  

1941 Frondicularia sulcata var. squamosa Terquem & Berthelin; Macfadyen, p. 61, pl. 4, fig. 

61. 

1981 Frondicularia terquemi muelensis Ruget and Sigal; Copestake & Johnson, p. 93-94, pl. 

6.1.2, fig. 12. 

1984 Frondicularia squamosa Terquem & Berthelin; Riegraf et al., p. 684, 697-698, pl. 6, fig. 

154. 

1989 Frondicularia terquemi muelensis Ruget & Sigal; Copestake & Johnson, p. 174, pl. 6.1.2, 

figs 12, 13. 

1994 Ichthyolaria squamosa (Terquem & Berthelin); Herrero, p. 290-291, pl. 1, fig. 8. 

2006 Ichthyolaria squamosa (Terquem & Berthelin); Herrero, p. 344-345, pl. 1, fig. 9. 
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2014 Ichthyolaria terquemi squamosa (Terquem & Berthelin); Copestake & Johnson, p. 155-

156, pl. 11, figs. 1, 7-9. 

 

Description: Uniserial, divergent, fragile, thin, flattened test from earliest chamber to the final 

one, with no swollen in final chamber and no sulcus. Each side contains up to 9 equal spaced 

ribs, fine and parallel ribs. It yields margin keeled but some rounded. The chevron-shaped 

chambers contain flush sutures in between. The aperture is centre, radiate and terminal.  

 

Dimension: Ballinlea-1 (pl. 3, fig. 11) length 531 µm; width 152 µm; White Park Bay (pl. 3, fig. 

12) length 762 µm; width, 173 µm. 

 

Material: Ballinlea-1 Borehole, 12 specimens; White Park Bay, 7 specimens; Ballintoy, 2 

specimens. 

 

Range: Total range: Late Sinemurian (Oxynotum Ammonite Chronozone)-Early Toarcian 

(serpentinum Ammonite Chronozone, Copestake & Johnson, 2014). Range of studied samples: 

Late Sinemurian (Ballinlea-1 Borehole, White Park Bay and Ballintoy). 
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Genus NODOSARIA Lamarck, 1812 

 

Nodosaria issleri Franke, 1936 

(Plate 4, figs. 2, 3, 5, 6, 7 & 8) 

 

1908 Nodosaria aequalis; Issler, p. 54, pl. 2, fig. 94 

1936 Nodosaria issleri Franke, p. 53, pl. 5, fig. 6 

1957 Nodosaria issleri Franke; Nørvang, p. 79, fig. 82 

1981 Nodosaria issleri Franke; Copestake & Johnson, p. 97, 99, pl. 6.1.4, figs 1, 2.  

1989 Nodosaria issleri Franke; Copestake & Johnson, p. 182, pl. 6.2.5, fig. 11. 

2014 Nodosaria issleri Franke; Copestake & Johnson, p. 168-169, pl. 7, figs. 15, 16, 22. 

 

Description: Multilocular and the chambers added in linear series (uniserial). This circular 

cross-section test exhibits ovate proloculus followed by drum-shaped chambers those 

increasing in height and width towards the final chamber. The test literally rectilinear but 

some slightly curvate at the early chambers. The surface is ribbed by 6-8 sharp ribs; continuous 

through the depressed, straight sutures. The ribs fusing as basal spine and disappear near the 

mid of the final chamber. The aperture is single; either radiate or round aperture produce on 

short neck.  

 

Remark:  N. issleri is differentiate from N. mitis by their ribs; N. issleri ribs do not reach 

aperture, contrary to N. mitis which the ribs continuous until the aperture.  
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Dimension: Ballinlea-1 (pl. 4, fig 2) width 108 µm, diameter of aperture 26 µm; (pl. 4, fig. 3) 

length 262 µm, width 92 µm, diameter of aperture 17 µm; (pl. 4, fig. 5) length 337 µm, width 

103 µm, diameter of aperture 13 µm; (pl. 4, fig. 6) length 343 µm, width 133 µm, diameter of 

aperture 32 µm; (pl. 4, fig. 7) length 411 µm, width 151 µm, diameter 34 µm; (pl. 4, fig. 8) 

length 483 µm, width 172 µm, diameter of aperture 38 µm.  

 

Material: Ballinlea-1 Borehole, 28 specimens; White Park Bay, 7 specimens.  

 

Range: Total range: Late Sinemurian (Obtusum Ammonite Chronozone-Raricostatum 

Ammonite Chronozone, Copestake & Johnson 1981, 2014). Range of studied samples: Early-

Late Sinemurian (Ballinlea-1 Borehole), Late Sinemurian (White Park Bay). 

 

Genus PSEUDONODOSARIA Boomgaart, 1949 

 

Pseudonodosaria vulgata (Bornemann, 1854) group 

(Plate 7, figs. 1-8, 13) 

 

1854 Glandulina vulgata Bornemann, p. 31, pl. 2, figs la, b; 2a, b. 

1941 Pseudoglandulina tenuis (Bornemann); Macfadyen, p. 48-49, pl. 3, fig. 49.  

1941 Pseudoglandulina tenuis (Bornemann); Macfadyen, p. 49-50, pl. 3, fig. 50.  

1949 Pseudoglandulina vulgata (Bornemann); Barnard, p. 358-359. 365, fig. 4e. 

1957 Pseudoglandulina vulgata (Bornemann) var. pupoides (Bornemann); Nørvang, p. 81, 

figs. 83-84.  
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1957 Pseudoglandulina vulgata (Bornemann); Nørvang, p. 80-81, fig. 85.  

1957 Pseudoglandulina vulgata (Bornemann) var. irregularis (Franke); Nørvang, p. 82, fig. 86. 

1989 Pseudonodosaria vulgata (Bornemann); Copestake & Johnson, p. 183, pl. 6.2.5, figs 12, 

13. 

2014 Pseudonodosaria vulgata (Bornemann); Copestake & Johnson, p. 200-201, pl. 10, figs. 

1-7, 9-14.  

1984 Pseudonodosaria vulgata (Bornemann); Riegraf et al., p. 687, 692-693, pl. 1, fig. 35. 

2006 Pseudonodosaria vulgata (Bornemann); Herrero, p. 344-345, p. 1, fig. 19. 

 

Description: Uniserial, circular cross-section species with variable test either parallel, 

divergent or convergent sided. Semi-spherical proloculus and rounded margin. The test is 

made up of 4-7 drum-shaped chamber; literally the wide length is greater than height. The 

chambers’ diameter increasing rapidly in early chambers but almost same diameter or 

decreasing in latter chambers. The surface normally smooth but some exhibits faint striations.  

The sutures are straight, horizontal, flush or depressed.  The aperture is centre, terminal, 

rounded or radiate with slightly produced. Few specimens have ring like feature on their final 

chamber, right before aperture. 

 

Dimension: Magilligan (pl. 7, fig. 2) length 265 µm, width 111 µm. Ballinlea-1 (pl. 7, Fig. 1) 

length 419 µm, 118 µm, diameter of aperture 28 µm; (pl.7, fig. 3) length 312 µm, width 110 

µm, diameter of aperture 29 µm; (pl. 7, fig. 4) length 326 µm, width 133 µm, diameter of 

aperture 33 µm; (pl. 7, fig. 5) length 360 µm, width 136 µm, diameter of aperture 31 µm; (pl. 

7, fig. 6) length 347 µm, width 122 µm, diameter of aperture 30 µm; (pl. 7, fig. 7) length 419 
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µm, width 115 µm, diameter of aperture 28 µm; (pl. 7, fig. 8) length 434 µm, width 100 µm, 

diameter of aperture 26 µm; (pl. 7, fig. 13) length 587 µm, width 254 µm.  

 

Material: Ballinlea-1 Borehole 83 specimens; Carnduff-1 Borehole 5 specimens; White Park 

Bay 7 specimens; Ballintoy 3 specimens; Kinbane Head 2 specimens. 

 

Range: Total range: Rhaetian-Late Cretaceous (Copestake & Johnson, 2014). Range of studied 

samples: Mid Hettangian-Early Pliensbachian (Ballinlea-1 Borehole), Mid Hettangian-Early 

Sinemurian (Carnduff-1 Borehole), Late Sinemurian-Early Pliensbachian (White Park Bay), Late 

Sinemurian (Ballintoy and Kinbane Head).                        

 

Genus MARGINULINA d’Orbigny, 1826 emend 

 

Marginulina prima d’Orbigny, 1849 plexus 

 

Marginulina prima incisa Franke, 1936 

(Plate 8, figs. 16-18) 

 

1936 Marginulina incisa Franke, p. 78, pl. 8, fig. 11.  

1989 Marginulina prima incisa Franke; Copestake & Johnson, p. 180, pl. 6.2.5, fig. 2. 

2014 Marginulina prima incisa Franke; Copestake & Johnson, p. 274-275, pl. 13, figs. 9, 12.   

2017 Marginulina prima incisa Franke; Lomax et al., p. 3, fig. 2, no. 7 
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Description: Test uniserial, elongate, long, narrow and rectilinear; some specimens has curve 

or incomplete coiled in early stage. This elongate test is made up of 6-8 oblate chambers with 

straight to slightly oblique, horizontal, flush sutures. The test has 8 well-developed, parallel, 

coarse ribs those reached aperture. The terminal margin has eccentric, radiate and protruding 

aperture.  

 

Remark: M. p. incisa and M. p. insignis are longest subspecies among their subspecies. These 

two subspecies are distinguished by the presence of aperture face and oblique ribs. M. p. 

incisa is devoid of thickening on aperture face as their ribs reach aperture. These ribs are 

entirely parallel without any oblique ribs in between. 

 

Dimension: Carnduff-1 (pl. 8, fig. 16) length 542 µm, width 155 µm, diameter of aperture 45 

µm. Ballintoy (pl. 8, fig 17) length 923 µm, width 188 µm. Ballinlea (pl. 8, fig. 18) length 913 

µm, width 200 µm, diameter of aperture 63 µm. 

 

Material: Ballinlea-1 Borehole 100 specimens; Magilligan Borehole 1 specimen; Carnduff-1 

Borehole 45 specimens; Tircrevan Burn 11 specimens. 

 

Range: Total range: Hettangian (Angulata Ammonite Chronozone)- Late Pliensbachian 

(Spinatum Ammonite Chronozone, Copestake & Johnson, 2014). Range of studied samples: 

Early Sinemurian-Early Pliensbachian (Ballinlea-1 Borehole), Early Sinemurian (Magilligan 

Borehole and Tircrevan Burn), latest Hettangian-Early Sinemurian (Carnduff-1 Borehole). 
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Marginulina prima insignis (Franke, 1936) 

(Plate 8, figs. 19-21) 

 

1936 Dentalina insignis Franke, p. 36, pl. 3, figs 11a, b. 

1957 Marginulina prima prima d’Orbigny var. insignis (Franke); Nørvang, fig. 103. 

1989 Marginulina prima insignis Franke; Copestake & Johnson, p. 180, pl. 6.2.5, fig. 1. 

2014 Marginulina prima insignis (Franke); Copestake & Johnson, p. 275-276, pl. 13, fig. 8. 

2017 Marginulina prima insignis (Franke); Lomax et al., p. 3, fig. 2, no. 6. 

 

Description: Uniserial, for early stage, the test slightly curved but not completely enrolled. 

Test is elongated and broad with circular to ovate in cross-section. The proloculus is big and 

spherical followed by oblate chambers wider as added. The surface comprises coarse, parallel, 

longitudinal ribs which fused as thickening on aperture surface. However, short oblique ribs 

occasionally happened in between the predominant ribs.    

 

Remark: This species is differentiated by its presence of umbrella-like fussion ribs on aperture 

face and existence of oblique ribs.  

 

Dimension: Ballinlea-1 (pl. 8, fig. 19) length 1071 µm, width 239 µm, diameter of aperture 65 

µm; (pl. 8, fig. 20) length 932 µm, width 247 µm, diameter of aperture 64 µm. Carnduff-1 (pl. 

8, fig. 21) width 189 µm, diameter of aperture 57 µm. 
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Material: Ballinlea-1 Borehole 83 specimens; Carnduff-1 Borehole 59 specimens; Tircrevan 

Burn 20 specimens; White Park Bay 1 specimen. 

 

Range: Total range: Hettangian (Angulata Ammonite Chronozone)-Late Pliensbachian 

(Spinatum Ammonite Chronozone, Copestake & Johnson, 2014). Range of studied samples:  

Early Sinemurian-Early Pliensbachian (Ballinlea-1 Borehole), latest Hettangian-Early 

Sinemurian (Carnduff-1 Borehole), Early Sinemurian (Tircrevan Burn). 

 

Marginulina prima interrupta Terquem, 1866 

(Plate 8, figs. 10-12) 

 

1866 Marginulina interrupta Terquem, p. 426, pl. 17, figs 4a-c. 

1981 Marginulina prima interrupta (Terquem); Copestake & Johnson, p. 95, 97, pl. 6.1.3, fig. 

11. 

1989 Marginulina prima interrupta Terquem; Copestake & Johnson, p. 180, pl. 6.2.5, fig. 3. 

2014 Marginulina prima interrupta Terquem; Copestake & Johnson, p. 276-277, pl. 13, figs. 

1, 2, 7. 

 

Description: 4-6 oblate chambers arranged in uninserial and elongate manner. The chambers 

are slowly wider toward the final chamber. The ribs are sharp, parallel and longitudinal; 

appear from proloculus continue upwards but fused in thickened aperture face. The ribs are 

distinctly interrupted at straight, horizontal, depressed sutures. The terminal, eccentric 

aperture is radiate or has bifurcating elements.  



 

71 
 

 

Variation: Infrequent intermediate form of M. p interrupta and M. p. spinata are recovered 

from end Late Sinemurian sediments. This form almost developed projected ribs near its 

sutures. 

 

Dimension: Ballinlea-1 (pl. 8, fig. 10) length 331 µm, width 113 µm, diameter of aperture 32 

µm; (pl. 8, fig. 11) length 386 µm, width 118 µm, diameter of aperture 32 µm; (pl. 8, fig. 12) 

length 574 µm, width 206 µm, diameter of aperture 52 µm.  

Material: Ballinlea-1 Borehole 30 specimens; Kinbane Head 1 specimen. 

 

Range: Total range: Late Sinemurian (Raricostatum Ammonite Chronozone)-Early Toarcian 

(Tenuicostatum Ammonite Chronozone, Copestake & Johnson 1981, 2014). Range of studied 

samples: Late Sinemurian-Early Pliensbachian (Ballinlea-1 Borehole), Late Sinemurian 

(Kinbane Head). 

 

Marginulina prima rugosa Bornemann, 1854 

(Plate 8, figs. 1, 6, 14 & 15) 

 

1854 Marginulina rugosa Bornemann, p. 39, pl. 3, figs 26a, b. 

1957 Marginulina prima d’Orbigny subsp. rugosa Bornemann; Nørvang, p. 90-91, fig. 97. 

1984 Marginulina prima d’Orbigny; Riegraf et al., p. 685, 697-698, pl. 6, fig. 162. 

1989 Marginulina prima rugosa Nørvang; Copestake & Johnson, p. 182, pl. 6.2.5, figs 4, 6. 

2006 Marginulina prima D’Orbigny; Herrero, p. 348-349, pl. 2, fig. 6. 
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2014 Marginulina prima rugosa Bornemann; Copestake & Johnson, p. 280, pl. 13, figs. 4, 5, 

14. 

 

Description: Uniserial and divergent test; comprises 4-7 oblate chambers which initially curve 

(microspheric) or rectilinear (megalospheric form). The sutures are generally flush, straight 

and horizontal. Sharp, parallel ribs are fused in aperture face but only slightly developed. The 

aperture is eccentric, terminal, vaguely produced either radiate or contains 6 bifurcating 

elements. 

 

Variation: The microspheric forms literally have parallel-sided with almost same size of 

chamber but slightly curve in early chambers. For megalospheric forms, the test is rectilinear 

and diverge. The chambers increase rapidly towards the latest chamber. 

 

Remark: Marginulina prima rugosa, Marginulina prima praerugosa and Marginulina prima 

prima need a detailed identification. These three subspecies are distinguished by the 

existence and thickness of aperture face. M. p. praerugosa is the smallest among these three 

subspecies and the ribs reach aperture cause absence of aperture face. For M. p. prima, the 

aperture face is thicker and well-established compare to M. p. rugosa aperture face. 

 

Dimension: Balinlea-1 (pl. 8, fig. 1) thickness 90 µm, diameter of aperture 20 µm; (pl. 8, fig. 6) 

width 222 µm, diameter of aperture 49 µm; (pl. 8, fig. 14) length 505 µm, width 177 µm, 

diameter of aperture 44 µm; (pl. 8, fig. 15) length 640 µm, width 228 µm, diameter of aperture 

50 µm. 
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Material: Ballinlea-1 Borehole 183 specimens; Carnduff-1 11 specimens; White Park Bay 2 

specimens; Ballintoy 1 specimen; Kinbane Head 3 specimens.  

 

Range: Total range: Early Sinemurian (Bucklandi Ammonite Chronozone)-Early Toarcian 

(Tenuicostatum Ammonite Chronozone, Copestake & Johnson, 2014). Range of studied 

samples: Early Sinemurian-Early Pliensbachian (Ballinlea-1 Borehole), latest Hettangian-Early 

Sinemurian (Carnduff-1 Borehole), Late Sinemurian (White Park Bay, Ballintoy and Kinbane 

Head). 

 

Marginulina prima spinata (Terquem, 1858) 

(Plate 8, figs. 7-9, 13) 

 

1941 Marginulina spinata Terquem; Macfadyen, p. 39-40, pl. 2, figs. 33a, b. 

1957 Marginulina prima d’Orbigny subsp. spinata Terquem; Nørvang, p. 92. 

1981 Marginulina prima spinata (Terquem); Copestake & Johnson, p. 95, 97, pl. 6.1.3, fig. 9, 

10. 

1984 Marginulina spinata Terquem; Riegraf et al., p. 685, 697-698, pl. 6, fig. 160. 

1989 Marginulina prima spinata Terquem; Copestake & Johnson, p. 182, pl. 6.2.5, figs 9, 10. 

2006 Marginulina spinata Terquem; Herrero, p. 348-349, pl. 2, fig. 18. 

2008 Marginulina spinata Terquem; Herrero, p. 240, fig. 3. 

2014 Marginulina prima spinata (Terquem); Copestake & Johnson, p. 280-281. 
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Description: Uniserial and the test is literally rectilinear but slightly curvate in early phase 

occasionally occured. The sharp ribs are notched and protruded as spines near the flush 

sutures. The ribs fused at faintly thickened aperture face and uninterrupted at flush sutures. 

The spine is frequently observed at the basal of spherical proloculus too. The chambers are 

gradually increase in size as added until final chamber which contains marginal, radiate and 

almost eccentric aperture. 

 

Dimension: Ballinlea-1 (pl. 8, fig. 7) width 184 µm, diameter of aperture 54 µm; (pl. 8, fig. 8) 

length 400 µm, width 103 µm, diameter of aperture 32 µm; (pl. 8, fig. 9) length 297 µm, width 

107 µm, diameter of aperture 30 µm. White Park Bay (pl. 8, fig. 13) length 575 µm, width 196 

µm, diameter of aperture 50 µm. 

 

Material: Ballinlea-1 55 specimens; White Park Bay 18 specimens; Ballintoy 1 specimen; 

Kinbane Head 2 specimens. 

 

Range: Total range: Late Sinemurian (Raricostatum Ammonite Chronozone)-Early Toarcian 

(Serpentinum Ammonite Chronozone, Copestake & Johnson, 2014). Range of studied samples: 

Late Sinemurian-Early Pliensbachian (Ballinlea-1 Borehole and White Park Bay), Late 

Sinemurian (Ballintoy and Kinbane Head). 
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Marginulina aff. turneri Copestake & Johnson, 2014 

(Plate 9, fig. 8) 

 

1981 Marginulina sp. A Copestake & Johnson, p. 95, 97, pl. 6.1.3, fig. 13. 

2014 Marginulina turneri sp. nov. Copestake & Johnson, p. 282-283, pl. 13, figs. 20-22, 27, 

28. 

 

Description: Small spherical, spinose proloculus and six ovate chambers are arranged in 

uniserial series. The chambers sizes are widening rapidly with growth. The aperture is located 

at dorsal margin, in which rectilinear. However, ventral margin is sharply diverged. This 

smooth species yields depressed, oblique sutures. 

 

Dimension: Ballinlea-1 (pl. 9, fig. 8) length 566 µm, width 193 µm. 

 

Material: Ballinlea-1 7 specimens. 

 

Range: Total range: Early Sinemurian (Turneri Ammonite Chronozone, Copestake & Johnson, 

2014). Range of studied samples: latest Early Sinemurian (Ballinlea-1 Borehole). 
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Genus DENTALINA Risso, 1826 

 

Dentalina langi Barnard, 1949 

(Fig. A1) 

 

1949 Dentalina langi sp. nov. Barnard, p. 360-361, fig. 5e.  

 

Description: D. langi is a very distinctive species as it test is big and elongate. This arcuate test 

has 8 ovoid chambers (uniserial) increasing slowly with growth. The surface is ornamented by 

fine longitudinal oblique ribs those continuous through depressed sutures. The aperture 

situated at terminal and eccentric but almost centre.  

 

Dimension: Ballinlea-1 (fig. A1) length 1540 µm, width 310 µm, diameter of aperture 90 µm. 

 

Material: Ballinlea-1 Borehole 1 specimens. 

 

Range: Total range: latest Hettangian (Angulata Ammonite Chronozone, Complanata 

Ammonite Subchronozone, Copestake & Johnson, 2014). Range of studied samples: earliest 

SInemurian (Ballinlea-1 Borehole). 
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Genus MESODENTALINA Norling, 1968 

 

Mesodentalina matutina (d’Orbigny, 1849) 

(Plate 11, figs. 13-17) 

 

1849 Dentalina matutina d’Orbigny, p. 243, no. 259. 

1949 Dentalina matutina d’Orbigny; Barnard, p. 359-361, fig. 5d. 

1957 Dentalina matutina d’Orbigny subsp. matutina d’Orbigny; Nørvang, p. 83-85, figs. 88, 

90-93. 

1957 Dentalina matutina d’Orbigny subsp. claviformis Terquem; Nørvang, p. 85, figs. 89. 

1981 Dentalina matutina (d’Orbigny); Copestake & Johnson, p. 92-93, pl. 6.1.2, fig. 9. 

1989 Dentalina matutina d’Orbigny; Copestake & Johnson, p. 171, pl. 6.2.2, figs 10, 11. 

2014 Mesodentalina matutina (d’Orbigny); Copestake & Johnson, p. 250-252, pl. 14, figs. 3, 

9-12. 

2017 Mesodentalina matutina (d’Orbigny); Lomax et al., p. 3, fig. 2, no. 8. 

 

Description: Test is uniserial, elongated and arcuate with ovoid proloculus normally comprises 

basal spine. This uniserial test has 5-7 chambers with oblique, constricted sutures. Most of the 

chambers width is greater than it height. This species easily to identified because of their 

coarse, oblique ribs which either reach aperture or disappear before final chambers. The 

aperture is terminal, eccentric and radiate. 
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Variation: The sutures vary depend on the test outline. The microspheric form mostly has 

flush sutures except for the depressed final suture. But megalospheric exhibits entirely 

depressed sutures. The intermediate form between M. matutina and M. varians haeusleri is 

observed too. These species can be distinguished by their degree of suture constriction; M. 

matutina suture not highly depressed as in M. varians hauesleri. 

 

Dimension: Ballinlea-1 (pl. 11, fig. 13) length 734 µm, width 169 µm, diameter of proloculus 

106 µm, diameter of aperture 53 µm; (pl. 11, fig. 14) length 720 µm, width 176 µm, diameter 

of proloculus 64 µm, diameter of aperture 60 µm; (pl. 11, fig. 16) length 1055 µm, width 188 

µm, diameter of proloculus 65 µm; (pl. 11, fig. 17) length 967 µm, width 155 µm.  White Park 

Bay (pl. 11, fig. 15) length 562 µm, width 133 µm, diameter of proloculus 42 µm. 

 

Material: Ballinlea-1 Borehole 218 specimens; Magilligan Borehole 5 specimens; Carnduff-1 

Borehole 21 specimens; White Park Bay 41 specimens; Tircrevan Burn 2 specimens; Ballintoy 

2 specimens; Kinbane Head 4 specimens. 

 

Range: Total range: latest Hettangian (Angulata Ammonite Chronozone)-Late Pliensbachian 

(Spinatum Ammonite Chronozone, Copestake & Johnson, 2014). Range of studied samples:  

latest Hettangian-Early Pliensbachian (Ballinlea-1 Borehole), Early Sinemurian (Magilligan 

Borehole and Tircrevan Burn), latest Hettangian-Early Sinemurian (Carnduff-1 Borehole), Late 

Sinemurian-Early Pliensbachian (White Park Bay), Late Sinemurian (Ballintoy and Kinbane 

Head).    
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Mesodentalina varians haeusleri (Schick, 1903) 

(Plate 11, figs. 11 & 12) 

 

1949 Dentalina häusleri Schick; Barnard, p. 360-362, fig. 5j. 

1957 Dentalina haeusleri Franke; Nørvang, p. 86. 

1981 Dentalina varians haeusleri (Schick); Copestake & Johnson, p. 92-93, pl. 6.1.2, fig. 5. 

2014 Mesodentalina varians haeusleri (Schick); Copestake & Johnson, p. 254-256, pl. 14, fig. 

16. 

 

Description: This elongate, arcuate, uniserial species yields swollen chambers and commonly 

found in broken form due to it very constricted sutures (cause the test to become fragile).  The 

slightly broad, coarse ribs are sub-parallel to periphery and continuous through the sutures. 

The aperture is marginal, terminal and radiate. 

 

Dimension: Ballinlea-1 (pl. 11, fig. 11) length 425 µm, width 175 µm; (pl. 11, fig. 12) length 

581 µm, width 171 µm, diameter of aperture 60 µm.  

 

Material: Ballinlea-1 Borehole 21 specimens; White Park Bay 3 specimens. 

 

Range: Total range: Early Sinemurian (Semicostatum Ammonite Chronozone)-Middle Toarcian 

(Bifrons Ammonite Chronozone, Copestake & Johnson, 2014). Range of studied samples: Late 

Sinemurian-Early Pliensbachian (Ballinlea-1 Borehole and White Park Bay).                                                                                                                                                   
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Family LENTICULINIDAE Chapman, Parr & Collins 1934 emend. 

 

Genus LENTICULINA Lamarck, 1804 

 

Lenticulina muensteri (Roemer, 1839) plexus 

 

Lenticulina muensteri muensteri (Roemer, 1839) 

(Plate 12, figs 4-10) 

 

1839 Robulina muensteri Roemer, p. 48, pl. 20, figs 29a, b. 

1941 Cristellaria matutina d’Orbigny; Macfadyen, p. 30-31, pl. 2, fig. 22. 

1941 Cristellaria münsteri (Roemer); Macfadyen, p. 31-32, pl. 2, fig. 23a, b. 

1957 Lenticulina gottingensis (Bornemann); Nørvang, p. 104, figs 153-170. 

1957 Marginulina matutina (d’Orbigny); Nørvang, p. 96-97, figs. 115, 117. 

1957 Marginulina prima d’Orbigny; Nørvang, p. 98, figs. 116, 121, 122. 

1957 Marginulina lituoides (Bornemann); Nørvang, p. 97, figs. 118, 120. 

1989 Lenticulina muensteri muensteri (Roemer); Copestake & Johnson, p. 178, pl. 6.2.4, fig. 

2. 

2014 Lenticulina muensteri muensteri (Roemer); Copestake & Johnson, p. 215-217, pl. 16, 

figs. 3, 11, 15, 16. 

 

Description: Lenticular and involute planispiral test (may be in tight coiled form or trochospiral 

form) which convex in cross-section. The keeled usually well-developed at basal area. The final 
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whorl has 7-9 chambers. The flush suture situated in between the triangular (coiled form) to 

subtriangular (uncoiled form) shaped of chambers. In trochoid form, the final suture normally 

slightly depressed. This subspecies has no striation. The aperture is marginal, protruding and 

radiate. 

 

Remark: L. muensteri muensteri differs from other L. muensteri subspecies by its smooth 

umbilical area. 

 

Dimension: Ballinlea-1 (pl. 12, fig. 4) diameter of coil 315 µm , diameter of aperture 66 µm, 

number of chmabers in final whorl 8; (pl. 12, fig. 6) length 725 µm, diameter of coil 300 µm, 

diameter of aperture 59 µm, number of chambers in final whorl 9, number of uncoiled 

chambers 3; (pl. 12, fig. 7) length 673 µm, diameter of coil 432 µm, diameter of aperture 68 

µm, number of chambers in final whorl 8, number of uncoiled chambers 2; (pl. 12, fig. 8) length 

753 µm, diameter of coil 341 µm, diameter of aperture 76 µm, number of chambers in final 

whorl 8, number of uncoiled chambers 3. Kinbane Head (pl. 12, fig. 5) diameter of aperture 84 

µm. (pl. 12, fig. 9) White Park Bay diameter of coil 373 µm, number of chambers 8. Ballintoy 

(pl. 12, fig. 10) diameter of coil 481 µm, number of chambers 12.  

 

Material: Ballinlea-1 Borehole 284 specimens; Magilligan Borehole 6 specimens; Carnduff-1 

Borehole 2 specimens; White Park Bay 28 specimens; Ballintoy 5 specimens. 

 

Range: Total range: Late Triassic-Early Cretaceous (Copestake & Johnson, 2014). Range of 

studied samples: Hettangian-Early Pliensbachian (Ballinlea-1 Borehole), Hettangian-Early 
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Sinemurian (Magilligan Borehole), Hettangian (Carnduff-1 Borehole), Late Sinemurian-Early 

Pliensbachian (White Park Bay), Late Sinemurian (Ballintoy).  

 

Lenticulina varians (Bornemann, 1854) plexus 

 

Lenticulina varians varians (Bornemann, 1854) 

(Plate 13, figs. 2-7) 

 

1854 Cristellaria varians Bornemann, p. 41, pl. 4, figs 32-34. 

1941 Cristellaria varians Bornemann; Macfadyen, p. 35-36, pl. 2, figs 28a, b 

1957 Astacolus varians (Bornemann); Nørvang, p. 99-101, figs. 123-134. 

1984 Astacolus varians (Bornemann); Riegraf et al., p. 683, 697-698, pl. 6, fig. 149. 

1989 Lenticulina varians (Bornemann); Morris & Coleman, p. 214, pl. 6.3.4, fig. 6. 

2014 Lenticulina varians varians (Bornemann); Copestake & Johnson, p. 222-223, pl. 16, figs. 

17, 19-21, 25. 

 

Description: Lenticular and compressed test with rounded or keeled margin. The early 

chambers are tightly enrolled (involute planispiral) but later stage is high and has tendency to 

uncoiled. Some specimens exist in trochospiral form. The coiled form has 7-9 subtriangular 

chambers whereas the uncoiled form usually comprises 4-5 sub-rectangular chambers. The 

early curve sutures are raised at dorsal margin and merging into the umbilical; without 

reaching ventral margin. The latter sutures are literally flush. This subspecies yields marginal, 

radiate and protruding aperture. 
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Variation: The subspecies recovered in varities of form, but generally in coiled, 1.5 whorl. 

However, the uncoiled (astocoline) form do occur. Few specimens are vaguely flattened; 

intermediate of Lenticulina and Planularia.   In Late Sinemurian, the final stage of chambers 

has tendency to become polygonal outline. 

 

Dimension: White Park Bay (pl. 13, fig. 2) length 615 µm, diameter of coil 406 µm, diameter 

of aperture 74 µm, number of chambers in final whorl 10; (pl. 13, fig. 4) thickness 39 µm, 

diameter of aperture 36 µm. Ballinlea-1 (pl. 13, fig. 3) length 509 µm, diameter of coil 340 µm, 

diameter of aperture 63 µm, number of chambers in final whorl 9; (pl. 13, fig. 5) length 442 

µm, diameter of coil 274 µm, number of chambers in final whorl 8; (pl. 13, fig. 6) length 467 

µm, diameter of coil 246 µm, number of chambers in final whorls 8, number of uncoiled 

chambers 3; (pl. 13, fig. 7) length 761 µm, diameter of coil 362 µm, diameter of aperture 62 

µm, number of chambers in final whorl 11, number of uncoiled chambers 4. 

 

Material: Ballinlea-1 Borehole 515 specimens; Magilligan Borehole 8 specimens; Carnduff-1 

Borehole 99 specimens; White Park Bay 33 specimens; Tircrevan Burn 1 specimen; Larne 4 

specimens; Ballintoy 10 specimens. 

 

Range: Total range: Rhaetian-Bathonian (Copestake & Johnson, 2014). Range of studied 

samples: Rhaetian-Early Pliensbachian (Ballinlea-1 Borehole), Hettangian (Magilligan Borehole 

and Larne), Hettangian-Early Sinemurian (Carnduff-1 Borehole), White Park Bay (Late 

Sinemurian-Early pliensbachian), Tircrevan Burn (Early Sinemurian), Ballintoy (Late 

Sinemurian). 
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Lenticulina muensteri ssp. A 

(Plate 12, figs. 11-13) 

 

Description: Involute planispiral test, biconvex cross-section. The specimens usually found in 

tight coiled form but trochospiral form does occurred. Well- developed keeled especially at 

the basal area of the test and some specimens have sharp narrow keeled. The final whorl 

normally made up of 9-11 triangular-subtriangular chambers with marginal, protruding and 

radiate aperture located at the final chamber. The raised sutures merged the protruding 

umbilical boss. These features differentiate Lenticulina muensteri spp. A with Lenticulina 

muensteri muensteri as L. m. muensteri contains flush sutures and smooth umbilical boss. 

 

Remark: Few Lenticulina muensteri ssp. A specimens look like intermediate form of Lenticulina 

muensteri muensteri and Lenticulina muensteri subalata because their tests exhibit partly 

raised suture and umbilical boss. Yet, most of Lenticulina muensteri ssp. A specimens have 

distinctive protruding umbilical boss and raised suture which closely resemble to Lenticulina 

muensteri subalata. However, Lenticulina muensteri spp. A range does not fit Lenticulina 

muensteri sublata range as the latter range is from Late Pliensbachian to Early Cretaceous, 

whilst former one appeared earlier; Late Sinemurian-Early Pliensbachian. Thus, these 

specimens are called as Lenticulina muensteri ssp. A. 

 

Dimension: Ballinlea-1 (pl. 12, fig. 11) length 678 µm, diameter of coil 575 µm, diameter of 

aperture 85 µm, number of chambers in final whorl 9; (pl. 12, fig 12.) length cannot be 

measured because of the broken final chamber, diameter of coil 646 µm, number of chambers 
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in final whorl 11. Ballintoy (pl. 12, fig. 13) length 975 µm, diameter of coil 803 µm, diameter 

of aperture 98 µm, number of chambers in final whorl 10. 

 

Material: Ballinlea-1 Borehole 107 specimens; Ballintoy 2 specimens. 

 

Range: Range of studied samples: Late Sinemurian-Early Pliensbachian (Ballinlea-1 Borehole), 

Late Sinemurian (Ballintoy). 

 

Genus ASTACOLUS de Montfort, 1808 emend. 

 

Astacolus speciosus (Terquem, 1858) group 

(Plate 13, figs. 8-12) 

 

1858 Cristellaria speciosa Terquem, p. 624, pl. 4, figs 2a, b. 

1957 Marginulinopsis radiata (Franke); Nørvang, p. 93-94, figs 105, 107. 

1989 Astacolus speciosus (Terquem); Copestake & Johnson, p. 170, pl. 6.2.2, fig. 5. 

2006 Astacolus speciosus (Terquem); Herrero, p. 348-349, pl. 2, fig. 19. 

2014 Astacolus speciosus (Terquem) group Copestake & Johnson, p. 209-211, pl. 16, figs. 26, 

31-33. 

 

Description: Test is compressed, broad and auriculate; coiled (loose planispiral) in early phase 

and uncoiled in later stage with keeled periphery. Typical form has 4 coarse, oblique ribs each 

side; which the outer ribs are parallel to outline and has 2 shorter ribs within. The sutures are 
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flush and curve in coiling part, whereas flush and oblique in uncoiling stage. The aperture is 

marginal and radiate. 

 

Variation: Although the typical form (astacoline form) exhibits 4 ribs each side, some longer. 

curvilinear form has up to 9 oblique ribs. This rare form comprises slightly enrolled early stage 

which succeeding by wider chambers which then decrease in width in final chambers. The ribs 

are coarse, long, oblique, curve, continuous but few short and discontinuous ribs occurred in 

between them. The sutures entirely flush except for the final one; depressed. 

 

Remark: the longer form of A. speciosus sometimes is misclassified with V. curva. A. speciosus 

differs by more compressed test and larger coiled. This form is megalospheric form as the 

length up to 0.80 mm and has well-developed initial coil; which clearly not a feature of 

megalospheric V. curva. This is because only microspheric V. curva contains loose early coiled, 

while megalospheric form is entirely uncoiled. 

 

Dimension: Ballinlea-1 (pl. 13, fig. 8) length 412 µm, width 206 µm, diameter of aperture 36 

µm; (pl. 13, fig. 9) length 441 µm, width 220 µm, diameter of aperture 41 µm; (pl. 13, fig. 10) 

length 535 µm, width 267 µm; (pl. 13, fig. 11) length 804 µm, width 241 µm, diameter of 

aperture 45 µm; (pl.13, fig. 12) length 538 µm, width 156 µm.  

 

Material: Ballinlea-1 Borehole 184 specimens; Carnduff-1 Borehole 11 specimens; White Park 

Bay 8 specimens; Kinbane Head 6 specimens. 
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Range: Total range: Hettangian (Planorbis Ammonite Chronozone)-Late Jurassic (Copestake & 

Johnson, 2014). Range of studied samples: Mid Hettangian-Early Pliensbachian (Ballinlea-1 

Borehole), Mid Hettangian-Early Sinemurian (Carnduff-1 Borehole), Late Sinemurian-Early 

Pliensbachian (White Park Bay), Late Sinemurian (Kinbane Head). 

 

Genus PLANULARIA Defrance, in de Blainville, 1826 

 

Planularia inaequistriata (Terquem, 1863) 

(Plate 14, figs. 1-4) 

 

1863 Marginulina inaequistriata Terquem, p. 191, pl. 8, figs 15a-f. 

1949 Planularia inaequistriata (Terquem); Barnard, p. 374-375, figs. 8, d, g. 

1957 Planularia inaequistriata (Terquem); Nørvang, p. 102, figs. 148-149. 

1981 Planularia inaequistriata (Terquem); Copestake & Johnson, p. 98-99, pl. 6.1.4, fig. 5. 

1989 Planularia inaequistriata (Terquem); Copestake & Johnson, p. 183, pl. 6.2.5, fig. 16. 

2008 Planularia inaequistriata (Terquem); Herrero, p. 240, fig. 3. 

2014 Planularia inaequistriata (Terquem); Copestake & Johnson, p. 229-230, pl. 17, figs. 16, 

22. 

2017 Planularia inaequistriata (Terquem); Lomax et al., p. 3, fig. 2, no. 9. 

 

Description: The test is broad, flattened and robust with basal keeled. The initial chambers 

coiled in loose planispiral which later become uncoiled in the final stage. The width increases 

rapidly and greater than height. The highest height recorded at dorsal, while the chambers at 
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ventral part approaching toward the early chambers. The sutures are curve and flush. The 

surface has fine, oblique ribs end before final chamber. The microspheric form has coarser 

ribs than the megalospheric form.  The aperture is radiate and at the dorsal angle. 

 

Dimension: Ballinlea-1 (pl. 14, fig. 1) length 906 µm, width 435 µm, diameter of aperture 71 

µm; (pl. 14, fig. 4) length 695 µm, width 322 µm, diameter of aperture 66 µm. Ballintoy (pl. 

14, fig. 2) length 813 µm, width 427 µm; (pl. 14, fig. 3) length 687 µm, width 393 µm. 

 

Material: Ballinlea-1 Borehole 15 specimens; Magilligan Borehole 2 specimens; Carnduff-1 

Borehole 1 specimen; Ballintoy 1 specimen. 

 

Range: Total range: Hettangian (Planorbis Ammonite Chronozone)-Late Sinemurian 

(Raricostatum Ammonite Chronozone, Copestake & Johnson, 2014). Range of studied 

samples: Hettangian-Late Sinemurian (Ballinlea-1 Borehole), Early Sinemurian (Magilligan and 

Carnduff-1 Boreholes), Ballintoy (Late Sinemurian). 

  

Genus VAGINULINOPSIS Silvestri, 1904 

 

Vaginulinopsis denticulatacarinata (Franke, 1936) 

(Plate 14, figs 12 & 13) 

 

1936 Cristellaria (Astacolus) denticulata-carinata Franke, p. 102, pl. 9, fig. 38. 
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1989 Vaginulinopsis denticulatacarinata (Franke); Copestake & Johnson, p. 186, pl. 6.2.6, figs 

6, 7. 

2014 Vaginulinopsis denticulatacarinata (Franke); Copestake & Johnson, p. 237-238, pl. 17, 

figs. 37, 38. 

 

Description: This uniserial species is planispirally, involute coiled in their early stage yet later 

become uncoiled, high, elongate and rectilinear. It is ovate in cross-section, slightly 

compressed with rounded margin. The uncoiled part comprises 8-9 sub-rectangular chambers 

with flush to slightly depressed, horizontal sutures in between. The microspheric form literally 

smooth but encompasses denticulate base, while megalospheric has oblique ribs begin at mid-

stage chambers continue to basal margin which appear as denticulate. The radiate aperture 

situated at terminal dorsal angle. 

 

Dimension: Ballinlea-1 (pl. 14, fig. 12) length 265 µm, width 169 µm, diameter of aperture 41 

µm; (pl.14, fig. 13) length 587 µm, width 221 µm, diameter of aperture 68 µm. 

 

Material: Ballinlea-1 8 specimens. 

 

Range: Total range: Late Sinemurian (Obtusum Ammonite Chronozone)-earliest Late 

Pliensbachian (Margaritus Ammonite Chronozone, Copestake & Johnson, 2014). Range of 

studied samples: Late Sinemurian (Ballinlea-1 Borehole). 
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Superfamily POLYMORPHINOIDEA d’Orbigny, 1839 

Family POLYMORPHINIDAE d’Orbigny, 1839 

Subfamily POLYMORPHININAE d’Orbigny, 1839 

Genus EOGUTTULINA Cushman & Ozawa, 1930 

 

Eoguttulina liassica (Strickland, 1846) 

(Plate 15, figs. 9-13) 

 

1846 Polymorphina liassica Strickland, p. 31, fig. 6. 

1949 Eoguttulina liassica (Strickland); Barnard, p. 374-376, figs. 8b, f. 

1957 Eoguttulina liassica (Strickland); Nørvang, p. 107-108, figs. 180-181. 

1984 Eoguttulina liassica (Strickland); Riegraf et al., p. 688, 692-693, pl. 1, fig. 51. 

1989 Eoguttulina liassica (Strickland); Copestake, p. 118, pl. 5.2, figs 10, 12-14. 

2006 Eoguttulina liassica (Strickland); Herrero, p. 348-349, pl. 2, fig. 1. 

2014 Eoguttulina liassica (Strickland); Copestake & Johnson, p. 302-303, pl. 18, figs. 10, 14, 

15. 

 

Description: This smooth species is ovate in shape and in cross-section. The chambers are 

added in planes less than 90˚ in spiral arrangement. The sutures are oblique and depressed; 

cause formation of lobulate periphery.  The radiate, centre aperture situated at terminal of 

the test. 
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Variation: Shapes may be varying; depending on the sutures either depressed or flush. 

Depressed sutures resulted on lobulated margin, whereas flush sutures generally formed 

convex margin.  

 

Dimension: Magilligan (pl. 15, fig. 9) diameter of aperture 26 µm; (pl. 15, fig. 10) thickness 127 

µm, diameter of aperture 29 µm, (pl. 15, fig. 13) length 492 µm, width 184 µm, diameter of 

aperture 54 µm. Carnduff-1 (pl. 15, fig. 11) length 307 µm, width 143 µm. Ballinlea-1 (pl. 15, 

fig. 12) length 543 µm, width 194 µm, diameter of aperture 49 µm. 

 

Material: Ballinlea-1 Borehole 44 specimens; Magilligan Borehole 139 specimens; Carnduff-1 

Borehole 226 specimens. 

 

Range: Total range: Rhaetian-Oxfordian (Copestake & Johnson, 2014). Range of studied 

samples: Hettangian-Early Pliensbachian (Ballinlea-1 Borehole), Hettangian (Magilligan 

Borehole), latest Rhaetian-Early Sinemurian (Carnduff-1 Borehole).  

 

 

Order ROBERTINIDA Mikhalevich, 1980 

Superfamily CERATOBULIMINOIDEA Cushman, 1927 

Family CERATOBULIMINIDAE Cushman, 1927 

Genus REINHOLDELLA Brotzen, 1948 
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Reinholdella pachyderma humilis Copestake & Johnson, 2014 

(Plate 17, figs. 4-6) 

1981 Reinholdella pachyderma subsp. A Copestake & Johnson, p. 101-102, pl. 6.1.5, figs 10, 

11. 

2014 Reinholdella pachyderma humilis Copestake & Johnson, p. 328-329, pl. 21, figs. 15, 18, 

19, 21-24. 

 

Description: This white or light grey, opaque, aragonitic species comprises low trochospiral 

test and rounded periphery. Most of the observed specimens has planar or slightly convex 

ventral side exhibits filling indistinct umbilicus. The test only has three whorls with 7 chambers 

in final whorl. The suture is thickened in umbilical and become flush in dorsal. 

 

Dimension: Ballinlea-1 (pl. 17, fig. 4) diameter 443 µm; (pl. 17, fig. 5) diameter 345 µm, 

number of chambers in final whorl 7; (pl. 17, fig. 6) diameter 317 µm, number of chambers in 

final whorl 7. 

 

Material: Ballinlea-1 Borehole 67 specimens. 

 

Range: Total range: Late Sinemurian (Raricostatum Ammonite Chronozone)-Early 

Pliensbachian (Jamesoni Ammonite Chronozone, Copestake & Johnson, 2014). Range of 

studied samples: Late Sinemurian (Ballinlea-1 Borehole). 
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Reinholdella planiconvexa (Fuchs, 1970) 

(Plate 16, figs 1-12) 

 

1970 Oberhauserella planiconvexa Fuchs, p. 113, pl. 9. 

1981 Reinholdella? planiconvexa (Fuchs); Copestake & Johnson, p. 101-102, pl. 6.1.5, fig. 12, 

16. 

1989 Reinholdella? planiconvexa (Fuchs); Copestake & Johnson, p. 187, pl. 6.2.6, figs 11, 16. 

2013 Reinholdella sp. Clémence & Hart, p. 1012-1013, fig. 6, no. 4-7. 

2014 Reinholdella? planiconvexa (Fuchs); Copestake & Johnson, p. 330-331, pl. 20, figs. 16, 

19-21, 23-24. 

 

Description: Trochospiral, small, opaque, smooth, circular or ovate and orange in colour test. 

The dorsal surface is convex, while ventral surface is either planar or concave with umbilical 

hollow. The whorls are only 2-2.5 with 5 to 6 chambers in final whorl. The sutures are oblique 

either slightly depressed or flush; resulted on lobulated or smooth margin respectively. The 

raised circular suture at the centre of dorsal surface is commonly observed too. 

 

Dimension: Ballinlea-1 (pl. 16, fig. 1) diameter 208 µm; (pl. 16, fig. 2) diameter 168 µm. 

Magilligan (pl. 16, fig. 3) diameter 175 µm; (pl. 16, fig. 4) thickness 66 µm; (pl. 16, fig. 5) 

diameter 163 µm, number of whorls 2, number of chambers 11, number of chambers in final 

whorl 5; (pl. 16, fig. 6) diameter 161 µm, number of whorls 2, number of chambers 10, number 

of chambers in final whorl 5; (pl. 16, fig. 7) diameter 160 µm, number of whorls 1.5, number 
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of chambers 8, number of chambers in final whorl 5; (pl. 16, fig. 8) thickness 113 µm; (pl. 16, 

fig. 9) diameter 159 µm; (pl. 16, fig. 10) diameter 146 µm. 

 

Material: Ballinlea-1 Borehole 162 specimens; Magilligan Borehole 9396 specimens; Carnduff-

1 Borehole 2160 specimens. 

 

Range: Total Range: Rhaetian-Early Pliensbachian (Jamesoni Ammonite Chronozone, 

Copestake & Johnson, 2014). Range of studied samples: Hettangian-Late Sinemurian 

(Ballinlea-1 Borehole), Mid Hettangian (Magilligan Borehole), latest Rhaetian-Hettangian 

(Carnduff-1 Borehole). 

 

Reinholdella robusta Copestake & Johnson, 2014  

(Plate 17, figs. 7-11) 

 

2014 Reinholdella robusta sp. nov. Copestake & Johnson, p. 331, pl. 20, figs 12, 17, 18, 22. 

 

Description: R. robusta is low trochospiral, robust, smooth, large, opaque, circular and orange-

brown in colour species. The dorsal surface is highly convex, whereas ventral surface normally 

planar but slightly concave and convex ventral are observed too. The margin is slightly 

lobulated or smooth. Most of the specimens found yield close umbilicus. The sutures are 

thickly raise; cause the chambers to appear depressed.  
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Variation: Even though literally the sutures are raised throughout all whorls, some specimens 

reflected depressed sutures in between all chambers in final whorl. The occurrence of 

depressed sutures causes the formation of lobulated periphery. Deeply sharp and narrow 

sutures also found resulted from the dissolvation of those raise sutures. 

 

Dimension: Ballinlea-1 (pl. 17, fig. 7) diameter 451 µm, number of chambers in final whorl 7; 

(pl. 17, fig. 8) diameter 425 µm, number of chambers in final whorl 7; (pl. 17, fig. 9) diameter 

429 µm, number of chambers in final whorl 7; (pl. 17, fig. 10) diameter 515 µm; (pl. 17, fig. 11) 

diameter 400 µm. 

 

Material: Ballinlea-1 Borehole 75 specimens; White Park Bay 3 specimens. 

 

Range: Total range: Late Sinemurian (Obtusum Ammonite Chronozone)-Early Pliensbachian 

(Ibex Ammonite Chronozone, Copestake & Johnson, 2014). Range of studied samples: Late 

Sinemurian (Ballinlea-1 Borehole and White Park Bay). 

 

Reinhodella sp. A 

(Plate 17, figs. 1,2) 

 

Description: Medium size brownish-orange aragonitic test with convex dorsal surface and 

planar or partly convex smooth ventral side. The test exhibits 2.5-3 whorls with 7 to 8 

chambers in the final whorl. The thin raised sutures at dorsal surface merged to become raised 
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circular suture at the centre. The umbilicus commonly observed as closed but few specimens 

filled with calcite boss. No keeled observed from this species. 

 

Remark: This species almost identical to Reinholdella macfadyeni as both have narrow-sharp 

raised sutures on dorsal side, closed or small umbilicus with planar or slightly convex ventral 

surface. Normally these thin raised sutures are not being preserved because they are easily 

dissolved; cause the species looks like having depressed sutures. The only difference of both 

species is their range; Reinholdella macfadyeni distributed from Late Pliensbachian-Early 

Aalenian but Reinholdella sp. A older in age.  Based on these features, Philip Copestake 

porposed this form as Reinholdella ‘’praemacfadyeni’’ (personal communication). 

Unfortunately, due to the proposed name is unpublished yet, so the species will be called as 

Reinholdella sp. A in this thesis. 

 

Dimension: Ballinlea-1 (pl. 17, fig. 1) diameter 378 µm; (pl. 17, fig. 2) diameter 239 µm. 

 

Material: Ballinlea-1 Borehole 14 specimens; Carnduff-1 Borehole 18 specimens. 

 

Range: Range of studied samples: latest Hettangian-Early Sinemurian (Ballinlea-1 Borehole), 

Early Sinemurian (Carnduff-1 Borehole). 

 

 

  



 

97 
 

Order MILIOLIDA Lankester, 1885 

Suborder MILIOLINA Delage & Hérouard, 1896 

Superfamily CORNUSPIROIDEA Schultze, 1854 

Family CORNUSPIRIDAE Schultze, 1854 

Subfamily CORNUSPIRINAE Schultze, 1854 

Genus CORNUSPIRA Schultze, 1854 

 

Cornuspira liasina Terquem, 1866 

(Plate 18, figs. 1 & 2) 

 

1866 Cornuspira liasina Terquem, p. 474-475, pl. 19, figs 4a, b. 

2014 Cornuspira liasina Terquem; Copestake & Johnson, p. 107, pl. 4, figs 1,2,5.  

 

Description: Test flattened, smooth, milky white, biconcave, evolute planispirally coiled with 

globular proloculus. The proloculus are enrolled by a tubular and undivided second chamber. 

Most observed specimens are microspheric forms as the proloculus are small and has greater 

whorls (7-9 whorls) than megalospheric (6 whorls). The tubes are narrow except for the last 

whorl; wider tube with rounded edge and open-end aperture. 

 

Remark: Cornuspira easily to be confused with Sprillina and Ammodiscus. However, 

Cornuspira is calcareous and porcellaneous, while Spirillina is calcareous and hyaline, whereas 

Ammodiscus is agglutinated test. When they are preserved as pyrite cast, the differentiation 

of Cornuspira and Spirillina can be very difficult, yet the best ways to distinguish them are by 
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their side shape and edge. Other distinct features between these two genera are their wall 

appearances; Cornuspira has milky white test wall, meanwhile Spirillina has a glassy test wall. 

In addition, Spirillina has irregular shape, numerous coarsely pores (or pseudospores), more 

likely to concavo-convexity and width of whorl is gradually increase.  

 

Dimension: Carnduff-1 (pl. 18, fig. 1) diameter 289 µm, number of whorls 8; (pl. 18, fig 2) 

diameter 252 µm, number of whorls 9. 

 

Material: Carnduff-1 Borehole 464 specimens; Tircrevan Burn 54 specimens. 

 

Range: Total range: Hettangian-Callovian (Copestake & Johnson, 2014). Range of studied 

samples: Mid Hettangian-earliest Early Sinemurian (Carnduff-1 Borehole), Early Sinemurian 

(Tircrevan Burn). 

 

Superfamily NUBECULARIOIDEA Jones, 1875 

Family OPHTHALMIDIIDAE Wiesner, 1920 emend 

Genus OPHTHALMIDIUM Kübler & Zwingli, 1870 emend 

 

Ophthalmidium macfadyeni macfadyeni Wood & Barnard, 1946 

(Plate 18, figs. 8, 14 & 15) 

 

1941 Ophthalmidium carinatum (Kübler and Zwingli); Macfadyen, p. 23-25, 74-75, pl. 1, fig. 

12. 
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1946 Ophthalmidium macfadyeni sp. nov Wood & Barnard, p. 92, 93, pl. IX. 

1989 Ophthalmidium macfadyeni Wood & Barnard; Copestake & Johnson, p. 167, pl. 6.2.1, 

figs. 18, 19. 

2014 Ophthalmidium macfadyeni macfadyeni Wood & Barnard; Copestake & Johnson, p. 

116-118, pl. 5, figs. 1-3, 7, 9, 21a, b, 22. 

 

Description: Test flattened, bilaterally symmetrical and almost like eye-shaped in outline. The 

proloculus is enrolled planispiral, evolute by 8-10 chambers of 4-5 whorls; a chamber mainly 

just half of a whorl which wider at proximal ends. It has apertural neck with phialine lip. 

 

Dimension: Ballinlea-1 (pl. 18, fig. 8) length 321 µm, width 157 µm, number of whorls 5; (pl. 

18, fig. 14) length 203 µm, width 116 µm, number of whorls 4; (pl. 18, fig. 15) length 197 µm, 

width 118 µm, number of whorls 4.  

 

Material: Ballinlea-1 Borehole 149 specimens; Carnduff-1 Borehole 3 specimens; White Park 

Bay 1 specimen. 

 

Range:  Total range: Hettangian-Aalenian (Copestake & Johnson, 2014). Range of studied 

samples: Late Sinemurian-Early Pliensbachian (Ballinlea-1 Borehole), Hettangian (Carnduff-1 

Borehole), Late Sinemurian (White Park Bay). 

 

 

  



 

100 
 

Order SPIRILLINIDA Gorbachik & Mantsurova, 1980 

Suborder SPIRILLININA Hohenegger & Piller, 1975 

Family SPIRILLINIDAE Reuss & Fritsch, 1861 

Genus SPIRILLINA Ehrenberg, 1843 

 

Spirillina infima (Strickland, 1846) 

(Plate 18, figs. 5 & 6) 

 

1846 Orbis infimus Strickland, p. 30, text-fig. a. 

1949 Spirillina infima (Strickland); Barnard, p. 352-353, 376, fig. 1g. 

2006 Spirillina infima (Strickland); Herrero, p. 344-345, p. 1, fig. 6. 

2014 Spirillina infima (Strickland); Copestake & Johnson, p. 311-312, pl. 19, figs. 8, 9, 14.  

 

Description: The test is discoidal in cross-section and circular in outline. The proloculus is 

enrolled planispirally by a tubular chamber. The whorls up to 6 which gradually wider as whorl 

added. The aperture is at open end of the tube. 

 

Remark: This species differs from S. tenuissima by it lesser number of whorls and wider final 

whorl. Contary from S. infima, S. tenuissima has maximum of 10 narrow whorls those only 

slightly increasing width with growth.        

  

Dimension: Magilligan (pl. 18, fig. 5) thickness 47 µm. Ballinlea-1 (pl. 18, fig. 6) diameter 237 

µm, number of whorls 4.5. 
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Material: Ballinlea-1 Borehole 49 specimens; Magilligan Borehole 110 specimens; Carnduff-1 

Borehole 36 specimens; White Park Bay 2 specimens; Larne 1 specimen; Ballygalley 1 

specimen. 

 

Range: Total range: Hettangian-Portlandian (Copestake & Johnson, 2014). Range of studied 

samples: Hettangian-Late Sinemurian (Ballinlea-1 Borehole), Hettangian (Magilligan Borehole, 

Larne and Ballygalley), Hettangian-Early Sinemurian (Carnduff-1 Borehole).  

 

Order BULIMINIDA Fursenko, 1958 

Superfamily BOLIVINOIDEA Glaessner, 1937 

Family BOLIVINITIDAE Cushman, 1927 

Genus BRIZALINA Costa, 1856 

 

Brizalina liasica (Terquem, 1858) 

(Plate 19, figs. 1-4) 

 

1858 Textilaria liasica Terquem, p. 634, pl. 4, figs 12a, b. 

1941 Bolivina liasica (Terquem); Macfadyen, p. 68, pl. 4, figs. 69a, b. 

1957 ‘’Bolivina’’ liasica (Terquem); Nørvang, p. 109-110, fig. 182. 

1981 Brizalina liasica (Terquem); Copestake & Johnson, p. 101-102. Pl. 6.1.5, fig. 17. 

1984 Brizalina liasica (Terquem); Riegraf et al., p. 689, 692-693, pl. 1, figs. 19-20. 

1989 Brizalina liasica (Terquem); Copestake & Johnson, p. 187, pl. 6.2.6, figs 20, 21. 

2014 Brizalina liasica (Terquem); Copestake & Johnson, p. 333-334, pl. 18, figs. 17-20, 24-26. 
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Description:  Brizalina is a smooth species, which in lanceolate, compressed and elongated 

shape with rounded margin. The spherical proloculus is followed by 8 chambers; arranged in 

biserial manner with straight, oblique sutures in between. The early phase has flush sutures 

but later become depressed. The aperture is elongate and slit. 

 

Variation: Despite of flush or depressed sutures, few specimens encompass thick raised 

sutures.  

Dimension: Ballinlea-1 (pl. 19, fig. 1) width 81 µm; (pl. 19, fig. 2) length 213 µm, width 105 

µm; (pl. 19, fig. 3) length 253 µm, width 93 µm; (pl. 19, fig. 4) length 296 µm, width 142 µm. 

 

Material: Ballinlea-1 Borehole 142 specimens; White Park Bay 1 specimen. 

 

Range: Total range: Late Sinemurian (Obtusum Ammonite Chronozone)-Early Toarcian 

(Tenuicostatum Ammonite Chronozone, Copestake & Johnson 1981, 1989, 2014). Range of 

studied samples: Late Sinemurian-Early Pliensbachian (Ballinlea-1 Borehole), Late Sinemurian 

(White Park Bay). 

 

Superfamily TURRILINOIDEA Cushman, 1927 

Family TURRILINIDAE Cushman, 1927 

Genus NEOBULIMINA Cushman & Wickenden, 1928 

 

Neobulimina bangae (Copestake & Johnson, 2014) 

(Plate 19, figs. 5-8) 
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1968 ‘Neobulimina’sp. 2 Bang, p. 67, tab. 24. 

1981 Neobulimina sp. 2 Bang; Copestake & Johnson, p. 101-102, pl. 6.1.5, fig. 14. 

1989 Neobulimina sp. 2 Bang; Copestake & Johnson, p. 187, pl. 6.2.6, figs 18, 19. 

2014 Neobulimina bangae sp. nov. Copstake & Johnson, p. 335-337, pl. 18, figs. 16, 21-23, 

27, 28. 

 

Description: N. bangae is elongated, lanceolate species with divergent side and rounded 

marginal. The globular chambers are triserial arranged in early stage yet become biserial in 

latter phase. The sutures are depressed, oblique and straight. The surface usually has hispid 

ornament throughout all chambers except for last two chambers exhibit smooth surface. The 

aperture is a U-shaped situated between two final chambers. 

 

Remark: N. bangae is differentiated from B. liassica by its hispid ornaments and less 

compresed test. 

 

Dimension: Ballinlea-1 (pl. 19, fig. 5) length 264 µm, width 127 µm; (pl. 19, fig. 6) length 215 

µm, width 140 µm; (pl. 19, fig. 7) length 218 µm, width 102 µm; (pl. 19, fig. 8) length 187 µm, 

width 112 µm. 

 

Material: Ballinlea-1 Borehole 92 specimens. 
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Range: Total range: Hettangian (Angulata Ammonite Chronozone)-Late Sinemurian (Obtusum 

Ammonite Chronozone, Copestake & Johnson, 2014). Range of studied samples: Hettangian-

Late Sinemurian (Ballinlea-1 Borehole). 

 

Subclass TEXTULARIIA Mikhalevich, 1980 

 

Agglutinated tests. The tests are made up of organic and minerals from sea floor cemented 

by organic, calcareous or ferric oxide cement. 

 

Superfamily HORMOSINOIDEA Haeckel, 1894  

Family REOPHACIDAE Cushman, 1910 

Genus Reophax de Montfort, 1808 

 

Reophax sp. A 

(Plate 19, fig. 10) 

 

Description: The test is agglutinated and uniserial. The early portion has 2-3 oblate 

chambers arranged in arcuate manner which later become rectilinear (5 chambers) with 

compressed sutures in between. The aperture is not clearly seen in picked specimens. All the 

diagnosed specimens had been replaced by pyrite. 

 

Dimension: Magilligan (pl. 19, fig. 10) length 273 µm, width 89 µm. 
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Material: Magilligan Borehole 40 specimens.   

 

Range: Range of studied samples: Mid Hettangian (Magilligan BHorehole). 

 

Order TEXTULARIIDA Delage & Hérouard, 1896 emend. Kaminski, 2004 

Superfamily TROCHAMMINOIDEA Schwager, 1877 

Family TROCHAMMINIDAE Schwager, 1877 

Subfamily TROCHAMMININAE Schwager, 1877 

 

Genus TROCHAMMINA Parker & Jones, 1859 

 

Trochammina canningensis Tappan, 1955  

(Plate 19, fig 11) 

 

1955 Trochammina canningensis Tappan, p. 49, pl. 14, figs 15-19. 

1984 Trochammina canningensis Tappan; Riegraf et al., p. 680, 700, pl. 8, figs. 189, 192. 

1989 Trochammina canningensis Tappan; Copestake & Johnson, p. 166, pl. 6.2.1, figs 10-12. 

2014 Trochammina canningensis Tappan; Copestake & Johnson, p. 100, pl. 2, figs 17, 21-23. 

 

Description: This agglutinated species has 6-12 globular chambers which arrange in moderate 

to high trochospirally; 1.5-2.5 whorls. Test is multiserial; more than three chamber per whorl.  

The early whorl contains big and distinctive globular chamber, but chambers in final whorl are 

poorly shaped of globular and smaller than chambers in early whorl. The sutures are moderate 
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to higly depressed. The aperture is not clearly observed from any recovered specimens. The 

tests of all observed specimens are replaced by pyrites. 

 

Dimension: Magilligan (pl. 19, fig. 11) diameter 273 µm. 

Material: Magilligan Borehole 82 specimens. 

 

Range: Total range: Hettangian-Kimmeridgian (Copestake & Johnson, 2014). Range of 

studied sample: Mid Hettangian (Magilligan Borehole). 

 

 

3.2 Ostracods Taxonomy 

 

3.2.1 Introduction 

 

The studied samples recover 69 ostracods species from 19 genera and 5 unknown affinity. The 

ostracods are from 14 families; Healdiidae, Protocytheridae, Progonocytheridae, 

Cytheruridae, Trachyleberididae, Cytheridae, Pontocyprididae, Limnocytheridae, 

Paradoxostomatidae, Bairdiidae, Macrocyprididae, Candonidae, Polycopidae and 

Cytherellidae. These families belong to suborder Metacopina, Podocopina, Cladocopina and 

Platycopina. No new species found in this study. 

 

The genus and species naming are referred from Drexler (1958); Malz (1971); Michelsen 

(1975); Donze (1985); Park (1987, 1988); Ainsworth (1989) and Boomer & Ainsworth (2009). 
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The synonymies listed herein are not exhaustive, only limited to the original designation and 

major generic change. However, additional references may be included if illustrations or 

detailed descriptions are present.  

 

The ostracods preservations are good to moderate, either preserved in carapace form or 

valves. Despite of this great preservation, few of them are broken into half or smaller 

fragments, most probably due to the laboratory processes. 

 

This section only deals with abundant, stratigraphically and environmentally significance 

ostracods documented from studied sections. For Metacopina, all the stratigraphic important 

species are described in detail but for other suborder; only Ektyphocythere translucens and 

Acrocythere gassumensis are selected. The selections are based on their highest numbers 

among their genus. Other species not described herein are completely listed in the Appendix 

C.  

 

The measurements given below are the maximum distance and presented in micrometers. 

The ostracods’ SEM images are illustrated in Plates 20-26; captured by Phenom Pro. These 

SEM images presented most species except for some poorly preserved taxa.  
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3.2.2 Systematic descriptions 

 

Order PODOCOPIDA Sars, 1866 

Suborder METACOPINA Sylvester-Bradley, 1961 

Superfamily HEALDIOIDEA Harlton, 1933 

Family HEALDIIDAE Harlton, 1933 

Genus OGMOCONCHELLA Gründel, 1964 

 

Ogmoconchella aspinata (Drexler, 1958) 

(Plate 20, figs 7-13) 

 

1958 Healdia aspinata Drexler, p. 505, pl. 21, figs 5a-e; pl. 25, figs. 1-4. 

1964 Ogmoconchella aspinata (Drexler); Gründel, p. 470, figs. 5-7. 

1971 Ogmoconchella aspinata (Drexler); Malz, p. 454-455, pl. 5, figs. 21-22. 

1971 Ogmoconcha ellipsoidea (Jones); Lord, p. 658, pl. 123, figs. 9-13. 

1975 Ogmoconchella aspinata (Drexler); Michelsen, p. 238-242, pl. 31, fig. 450; pl. 33, figs. 

470-471. 

1985 Ogmoconchella aspinata (Drexler); Donze, p. 106-107, pl. 21, fig. 10. 

1987 Ogmoconchella aspinata (Drexler); Park, p. 64-65, pl. 4, figs. 10-12. 

1989 Ogmoconchella ellipsoidea (Jones); Ainsworth, p. 141, 142, 149, 154, pl. 4, fig. 25. 

1990 Ogmoconchella ellipsoidea (Jones); Ainsworth, p. 192, 199, 205, pl. 5, fig. 16. 

2009 Ogmoconchella aspinata (Drexler); Franz et al., p. 150, pl. 5, fig. 18. 

2009 Ogmoconchella aspinata (Drexler); Boomer & Ainsworth, p. 188-189, pl. 1, fig. 12. 
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Description: Smooth, unornamented, medium-sized species. The carapace is sub-ovate or 

sub-triangular in lateral view, whereas ovoid in dorsal view. The greatest height marked at 

posterior of mid-length but few are almost median. The greatest width also situated at 

posteriorly and greatest length at the mid-height. The larger left valve strongly overlaps right 

valve with the thickest overlap on dorsal margin. Specifically, the right valve and left valve are 

differed in shape. The posterior and anterior margins of right valve are evenly rounded and 

meet at concave ventral margin. In contrast, the left valve exhibits straight to slightly concave 

ventral margin, whilst it posterior margin evenly rounded compare to anterior margin which 

is almost acute. Lip sometimes occurred but only appear at anterior margin of right valve. Few 

right valve of instar specimens possess postereo-ventral spine.  

 

Variation: The overlap area of juvenile form is narrow and even around the margin. 

 

Remark: Ogmoconchella aspinata is the most abundant ostracods recorded in Hettangian-

Early Sinemurian studied samples. The dominance usually happened from early Hettangian to 

mid Hettangian age but then their abundance decreases from end Hettangian to early 

Sinemurian due to the appearance of Ogmoconcha hagenowi. 

 

Dimension: Ballinlea-1 Borehole (pl. 20, fig. 7) carapace: length 525 µm, height 341 µm. 

Magilligan Borehole (pl. 20, fig. 10) left valve: length 579 µm, height 411 µm; (pl. 20, fig. 9) 

carapace: length 526 µm, height 371 µm. Magilligan Borehole (pl. 20, fig. 13) carapace: length 

584 µm, width 316 µm.  Carnduff-1 Borehole (pl. 20, fig. 8) carapace: 540 µm, height 383 µm; 

(pl. 20, fig. 11) right valve: length 518 µm, height 341 µm. 
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Material: Ballinlea-1 Borehole 951 carapaces, 218 right valves and 247 left valves; Carnduff-1 

Borehole 474 carapaces, 574 right valves and 548 left valves; Magilligan Borehole 335 

carapaces, 125 right valves and 145 left valves; Tircrevan Burn 13 carapaces, 37 right valves 

and 29 left valves; Larne 10 right valves and 8 left valves; Ballygalley 10 right valves and 26 left 

valves. 

 

Ranges: Total range: latest Triassic-Early Sinemurian (Semicostatum Ammonite Chronozone, 

Boomer & Ainsworth, 2009). Range of studied samples (Figure 3.2): Hettangian- Early 

Sinemurian (Ballinlea-1 Borehole), Hettangian (Magilligan Borehole), Hettangian-earliest Early 

Sinemurian (Carnduff-1 Borehole), Early Sinemurian (Tircrevan Burn), end Hettangian (Larne), 

Hettangian (Ballygalley). 

 

Ogmoconchella danica Michelsen, 1975 

(Plate 21, figs 1 & 2) 

 

1975 Ogmoconchella danica Michelsen, p. 243-247, pl. 31, figs. 451-454; pl. 32, figs. 456-

462; pl. 33, figs. 476-484; pl. 34, figs. 485-489; pl. 41, figs. 574-577. 

1987 Ogmoconchella danica Michelsen; Park, p. 64-65, pl. 4, figs. 13-16. 

2009 Ogmoconchella danica Michelsen; Boomer & Ainsworth, p. 189-190, pl. 1, figs. 14. 

 

Description: Smooth, ovate and almost symmetry carapaces with equally rounded outline. 

The highest point situated just behind the mid-point of arched dorsal margin. The longest 

length is at the mid-height. The vaguely narrow rounded anterior and broad rounded posterior 
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pass uniformly through the straight ventral margin and arched dorsal margin. The left valve is 

overlap the right valve entirely and evenly. 

 

Remark: This species is normally observed in the latest early Sinemurian to early 

Pliensbachian. They appear right after the extinction of O. aspinata and O. hagenowi. 

 

Dimensions: Ballinlea-1 Borehole (pl. 21, fig. 1) carapace: length 582 µm, height 397 µm; (pl. 

21, fig. 2) left valve: length 617 µm, height 440 µm. 

 

Materials: Ballinlea-1 Borehole 65 carapaces, 43 right valves and 62 left valves; White Park 

Bay 13 right valves and 2 left valves; Kenbane Head 2 carapaces, 4 right valves and 2 left valves; 

Ballintoy 3 right valves and 4 left valves. 

 

Ranges: Total range: Late Sinemurian (Obtusum-Raricostatum Ammonite Chronozone, 

Boomer & Ainsworth, 2009). Range of studied samples (Figure 3.2): end early Sinemurian-

Early Pliensbachian (Ballinlea-1 Borehole), Late Sinemurian (White Park Bay), Early 

Pliensbachian (Kenbane Head and Ballintoy). 

 

Ogmoconchella mouhersensis (Apostolescu, 1959) 

(Plate 21, figs 4-7) 

 

1959 ‘’Ogmoconcha’’ mouhersensis Apostolescu, p. 805, pl. II, figs. 18-19. 
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1975 “Ogmoconcehlla mouhersensis’’ (Apostolescu); Michelsen, p. 248-249, pl. 32, figs. 465-

466; pl. 34, figs. 494-496; pl. 35, figs. 497-502. 

1987 Ogmoconchella mouhersensis (Apostolescu); Park, p. 64-65, pl. 4, figs. 17-22. 

2009 Ogmoconchella mouhersensis (Apostolescu), p. 188-189, pl. 1, fig. 13. 

 

Description: The carapace is slightly elongate and sub-ovate in lateral view with the greatest 

height posteriorly. The dorsal margin arched or greatest height located behind the mid-point 

which later the margin gently slopes into well-rounded and broad posterior end. The antero-

dorsal margin has greater gradient than in postero-dorsal margin. This rectilinear margin 

merge at rounded, narrow anterior end. Like other Ogmoconchella, the ventral margin of O. 

mouhersensis is distinctly concave especially in right valve. Left valve is overlap right valve 

entirely except for postero-ventral margin. Posterior half of both valves encompass fingerprint 

ornament. Right valve normally has lip on its anterior end, whereas few specimens yield spine 

at postero-ventral end.  

 

Remark: O. mouhersensis larvae usually do not developed distinct fingerprint structure, make 

them difficult to differentiate with O. danica juveniles as both appear in the same range. 

 

Dimension: White Park Bay (pl. 21, fig. 4) right valve: length 667 µm, height 427 µm; (pl. 21, 

fig. 5) right valve: length 684 µm, height 433 µm; (pl. 21, fig. 6) left valve: length 684 µm, height 

464 µm; (pl. 21, fig 7) left valve: length 611 µm, height 390 µm. 
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Material: Ballinlea-1 Borehole 19 carapaces, 16 right valves and 13 left valves; White Park Bay 

2 carapaces, 19 right valves and 14 left valves. 

 

Range: Total range Late Sinemurian (Obtusum-Raricostatum Ammonite Chronozone, Boomer 

& Ainsworth, 2009). Range of studied samples (Figure 3.2): end Early Sinemurian-Late 

Sinemurian (Ballinlea-1 Borehole), Late Sinemurian (White Park Bay). 

 

Genus OGMOCONCHA Triebel, 1941 

 

Ogmoconcha hagenowi Drexler, 1958 

(Plate 20, figs 1-4) 

 

1958 Ogmoconcha hagenowi Drexler, p. 508, pl. 21, figs 8a-f; pl. 26, figs. 1-2. 

1971 Ogmoconcha hagenowi Drexler; Malz, p. 452-453, pl. 4, fig. 17. 

1975 Ogmoconcha hagenowi Drexler; Michelsen, p. 230-231, pl. 28, figs 419-425; pl. 29, figs. 

428-430. 

1985 Ogmoconcha hagenowi Drexler; Donze, p. 106-107, pl. 21, figs. 14-15. 

1987 Ogmoconcha hagenowi Drexler; Park, p. 64-65, pl. 4, figs. 7-9. 

1989 Ogmoconcha hagenowi Drexler; Ainsworth, p. 140, 149, 154 pl. 4, fig. 21. 

1990 Ogmoconcha hagenowi Drexler; Ainsworth, p. 190, 199, 205, pl. 5, fig. 14. 

2009 Ogmoconchella hagenowi Drexler; Franz et al., p. 149-150, pl. 5, fig. 16. 

2009 Ogmoconcha hagenowi Drexler; Boomer & Ainsworth, p. 188-189, pl. 1, fig. 11. 
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Description: O. hagenowi is a smooth species possesses a large carapace with triangular 

outline (lateral view). The anterior and posterior margin are well-rounded or acute which 

merge into convex ventral margin and acute dorsal margin. The greatest point is in-front of 

mid length (antero-medianly), whilst the longest length situated slightly below the mid height. 

The sides of the carapace in dorsal view are rounded, not flattened. The larger left valve is 

overlap right valve equally. 

 

Variation: The distinctive triangular appearance normally recorded from adult specimens, 

whereas the instars show different shape in lateral view. The instar carapaces are slightly 

longer than adult forms with more anteriorly highest point. Furthermore, their posterior and 

anterior ends are rounded (not acute like adult form). 

 

Remark: This species is commonly observed from end Hettangian to basal Early Sinemurian 

sediments.  

 

Dimension: Ballinlea-1 Borehole (pl. 20, fig. 4) carapace: length 454 µm, height 317 µm; (pl. 

20, fig. 3) carapace: length 506 µm, width 300 µm. Magilligan Borehole (pl. 20, fig. 2) carapace: 

length 669 µm, height 504 µm. Carnduff-1 Borehole (pl. 20, fig. 1) right valve: length 641 µm, 

height 473 µm. 

 

Material: Balinlea-1 Borehole 274 carapaces 68 right valves and 74 left valves; Magilligan 

Borehole 1 carapace and 1 right valve; Carnduff-1 Borehole 185 carapaces, 169 right valves 
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and 200 left valves. Tircrevan Burn 9 carapaces, 14 right valves and 9 left valves; Larne 2 right 

valves and 7 left valves; Ballygalley 10 right valves and 26 left valves.  

 

Range: Total range: late Hettangian (Angulata Ammonite Chronozone)-Early Sinemurian 

(Semicostatum Ammonite Chronozone, Boomer & Ainsworth, 2009). Range of studied 

samples (Figure 3.2): end Hettangian-Early Sinemurian (Ballinlea-1 Borehole & Carnduff-1 

Borehole), late Hettangian (Magilligan Borehole), Early Sinemurian (Tircrevan Burn), end 

Hettangian (Larne). 

 

Ogmoconcha eocontractula Park, 1984 

(Plate 20, figs 5 & 6) 

 

1984 Ogmoconcha eocontractula Park, p. 67-70, pl. 11, figs 1-2. 

1987 Ogmoconcha eocontractula Park; Park, p. 64-65, pl. 4, fig. 1-6. 

 

Description: The test is smooth, medium-large with sub-triangular to sub-ovate outline. The 

anterior margin very broad, symmetry and smoothly rounded which continue until the convex 

ventral margin. Poster-dorsal margin is steeply slope to a narrower rounded, asymmetry 

posterior end. The greatest height in front of mid-point; anteriorly. The longest length located 

near the mid-height of the test. Left valve slightly larger than right valve and overlap in narrow 

but equally manner. A distinct convex margin is observed from ventral margin.  
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Remark: The adult forms of O. eocontractula are closely identical to O. contractula but they 

are differed in range; Early Sinemurian-Early Pliensbachian and Late Pliensbachian 

respectively. Meanwhile, the juvenile carapaces are almost similar to Ogmoconcha amalthei 

amalthei but O. eocontractula is devoid of median concavity (lateral surface), which present 

on median of O. amelthei amelthei. This flattened or concave feature is also observed in O. 

contractula; resulted on concave margin from dorsal view. Furthermore, all features explained 

in description best suit O. eocontractula rather than O. amelthei, especially it range. The O. 

eocontractula usually occurred together with O. danica in Late Sinemurian to Early 

Pliensbachian beds. 

 

Dimension: Ballinlea-1 Borehole (pl. 20, fig. 5) carapace: length 496 µm, height 354 µm; (pl. 

20, fig. 6) left valve: length 676 µm, height 481 µm. 

 

Material: Ballinlea-1 Borehole 72 carapaces, 37 right valves and 48 left valves; White Park Bay 

12 carapaces, 41 right valves and 19 left valves; Ballintoy 2 carapaces, 1 right valve and 1 left 

valve. 

  

Range: Total range: Early Sinemurian-Late Sinemurian (Park, 1987, 1988). Range of studied 

samples (Figure 3.2): end Early Sinemurian-Early Pliensbachian (Ballinlea-1 Borehole), Late 

Sinemurian (White Park Bay), Early Pliensbachian (Ballintoy).
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Figure 3.2: Range chart of biostratigraphical Metacopina from studied localities (Northern Ireland). 
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Suborder PODOCOPINA Sars, 1866 

Superfamily CYTHERACOIDEA Baird, 1850  

Family PROTOCYTHERIDAE, Ljubimova, 1955  

Subfamily KIRTONELLINAE Bate, 1963  

Genus EKTYPHOCYTHERE Bate, 1963 

 

Ektyphocythere translucens (Blake, 1876) 

(Plate 23, figs 1-4) 

 

1876 Cythere translucens Blake, p. 432, 433, pl, 17, fig. 10. 

1923 Bairdia translucens (Tate and Blake); Pratje, p. 253. 

1971 Klinglerella? translucens (Blake); Lord, p. 656, pl. 123, figs. 4-5. 

1985 Klinglerella translucens (Blake); Donze, p. 110-111, pl. 23, figs. 5-7. 

1987 Kinkelinella (Ektyphocythere) translucens (Blake); Park, p. 59-60, pl. 2, figs. 1-6. 

1989 Kinkelinella translucens (Blake); Ainsworth, p. 137, 138, 149, 154, pl. 4, fig. 1. 

1991 Ektyphocythere translucens (Blake); Boomer, p. 213-214. 

2009 Ektyphocythere translucens (Blake); Boomer & Ainsworth, p. 190-191, pl. 2, figs. 1-3. 

 

Description: The lateral view of the test is elongate, sub-oval outline with highest point at 

anterior cardinal angle and the longest length exactly below mid-height. The linear dorsal 

margin exhibits low gradient until it reaches narrow well-rounded posterior end. The anterior 

margin has rounded margin too but broader than posterior margin. Both anterior and 
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posterior margins comprise bordering rim. The convex ventral margin can be either poorly or 

distinct inflated. This smooth valve are inflated entirely except for the flattened anterior-

dorsal regions. From dorsal view, greatest width located behind the mid-length; posteriorly. 

 

Variation: Most of examined specimens are frequently smooth, yet few tests contain weak 

longitudinal ribs near the ventral margin or weak reticulations at the mid-valve area. These 

types are found from mid Hettangian of Magilligan and Carnduff-1 boreholes only. These 

variations are very identical to the Paris Basin specimens; illustrated by Donze (1985).  

 

Remark: E. translucens is common in Hettangian and normally exists together with O. 

aspinata. 

 

Dimension: Ballinlea-1 Borehole (pl. 23, fig. 1) carapace: length 444 µm, height 283 µm; (pl. 

23, fig. 2) left valve: length 531 µm, height 342 µm. Carnduff-1 Borehole (pl. 23, fig. 3) left 

valve: length 594 µm, height 361 µm; (pl. 23, fig. 4) left valve: length 553 µm, height 312 µm. 

Magilligan Borehole (pl. 23, fig. 5) carapace: length 470 µm, height 255 µm; (pl. 23, fig. 6) left 

valve: length 427 µm, height 241 µm; (pl. 23, fig. 7) carapace: length 484 µm, width 226 µm. 

 

Material: Ballinlea-1 Borehole 25 carapaces, 23 right valves and 20 left valves; Magilligan 

Borehole 8 carapaces, 25 right valves and 24 left valves.; Carnduff-1 Borehole 30 carapaces, 

103 right valves and 101 left valves; Tircrevan Burn 4 right valves and 5 left valves; Larne 1 

right valves and 14 left valves; Ballygalley 50 right valves and 75 left valves.  
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Range:  Total range: latest Triassic-early Sinemurian (Bucklandi Ammonite Chronozone, 

Boomer & Ainsworth, 2009). Range of studied samples: Hettangian-Early Sinemurian 

(Ballinlea-1 Borehole), Hettangian (Carnduff-1 Borehole), Hettangian (Magilligan Borehole), 

Early Sinemurian (Tircrevan Burn), end Hettangian (Larne), Hettangian (Ballygalley).  

 

Suborder CYTHEROCOPINA Baird, 1850 

Superfamily CYTHEROIDEA Baird, 1850 

Family CYTHERURIDAE Müller, 1894 

Genus ACROCYTHERE Neale, 1960 

 

Acrocythere gassumensis (Michelsen, 1975) 

(Plate 25, figs 4 & 5) 

 

1975 Acrocythere gassumensis (Michelsen), p. 153, 154, pl. 7, figs. 97-100; pl. 8, figs. 117-

119. 

1989 Acrocythere? cf. A? gassumensis Michelsen; Ainsworth, p. 129, 147, 151, pl. 1, figs. 23, 

24, 27.  

 

Description: Acrocythere is a small sized ostracod with a sub-rectangular outline in lateral 

view. The anterior end is broadly rounded, whilst the posterior end is narrow obtuse angle. 

The greatest height located at anterior cardinal angle. The straight dorsal margin is gently 

slope exactly after the anterior cardinal angle until the obtuse posterior end. The ventral 

margin is also straight but horizontal. The inflated anterior and posterior lateral surface are 
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separated by concave median-dorsal surface. The elevated tests are heavily ornamented by 

coarse sub-ovate or sub-quadrate homogenous reticulations except for smooth flanged 

anterior and posterior marginals.  Although mostly are utterly reticulated, few specimens bear 

faded or weak ornament at the median concave region of the valve surface. The eye spot is 

well-developed and situated near the anterior cardinal angle. 

 

Remark: A. gassumensis closely resemble to A. oeresundensis. However, the lateral outline of 

former species is shorter and more rectangular than the latter elongate species. These small 

genera; Acrocythere and Nanacythere are both important stratigraphically. 

 

Dimension: Ballinlea-1 Borehole (pl. 25, fig. 4) right valve: length 373 µm, height 188 µm; (pl. 

25, fig. 5) right valve: length 278 µm, height 138 µm. 

 

Material: Ballinlea-1 Borehole 13 carapaces, 2 right valves and 1 left valve; Tircrevan Burn 1 

right valve. 

 

Range: Total range: Early-Late Sinemurian (Michelsen, 1975). Range of studied samples: Early-

Late Sinemurian (Ballinlea-1 Borehole), Early Sinemurian (Tircrevan Burn). 
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Chapter 4 

Biostratigraphy, biozonation and palaeoenvironment of Ballinlea-1 Late Triassic-Early 

Jurassic sequences 

 

4.1 Introduction 

 

A deep onshore borehole (TD 2683 m) in the Rathlin Basin; Ballinlea-1 [D 03765 39317] (Figure 

4.1) drilled in 2008 by Rathlin Energy for hydrocarbon exploration. The borehole yielded 

thickest Waterloo Mudstone Formation (Early Jurassic age) sequences known from Northern 

Ireland. The discovery provides the opportunity to study Early Jurassic benthic microfauna of 

this region in detail.  

 

 

4.2 Lithology 

 

The thickest sequence of Waterloo Mudstone Formation known in Northern Ireland of 

approximately 605 m underlie relatively thin (15 m) Cretaceous Chalk of the Ulster White 

Limestone Group (UWLG) and a thicker (92 m) Paleogene Antrim Lava Group (ALG). Above 

these are a 238 m faulted, repeated section that comprises Jurassic Waterloo Mudstone 

Formation (47 m) and a further 51 m section of Cretaceous UWLG which overstepped by 140 

m Paleogene Antrim Lava Group. Our study focuses on the largely continuous early Jurassic 

sequence underlying these sediments from about 345 m to 950 m. 
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Figure 4.1: The location map of Ballinlea-1 Borehole (BAL) [D 03765 39317].  
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The Waterloo Mudstone Formation comprises principally grey calcareous mudstones with 

occasional thin grey limestones and silty mudstones. The colours are variable range of grey 

but common by blueish-grey and olive-grey. Mica and fossils such as foraminifera, ostracods, 

micro-bivalves, micro-gastropods, echinoderm fragments, ophiuroid fragments are prevalent, 

whilst pyrites, carbonaceous materials, iron nodules and quartz grains distributed irregularly 

throughout.  

 

 

4.3 Biostratigraphy and Chronostratigraphic Age 

 

Of the 70 cuttings samples from Ballinlea-1, only 4 are considered belong to the Late Triassic 

(Mercia Mudstone Group and Penarth Group) and remaining 69 samples are from the Early 

Jurassic Lias Group (Figure 4.2). A total of 10990 specimens were recovered consisting of 156 

species of calcareous benthic foraminifera, 2 species of agglutinated foraminifera and 57 

species of ostracods. Most of the samples yielded microfaunas of varying abundance (the 

highest is 576 specimens per 10 grams), however, some barren samples were noted. The 

microfaunas are very low (0.86 Fisher’s alpha diversity) to highly diverse (27.36 Fisher’s alpha 

diversity). The changing abundances and diversity of both ostracods and foraminifera are 

shown in Figure 4.2. 

 

The oldest examined samples are upper part of the Late Triassic Collin Glen Formation, Mercia 

Mudstone Group. This interpretation is based on their lithologies; reddish-brown mudstone 

(BAL980) and greenish-grey mudstone (BAL970-BAL975) which according to Mitchell (2004) 
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as typical characteristics of the Collin Glen Formation. The microfaunas of this formation are 

impoverished, only exhibits ostracods Lutkevichinella, juvenile Metacopina, Ektyphocythere 

moorei, foraminifera Paralingulina tenera tenera and Lenticulina varians varians. 

Unfortunately, the existence of these species is questionable whether in-situ or caving. 

 

The overlying beds are dark grey mudstone (BAL960-BAL965) and reddish grey siltsone 

(BAL950), most probably from the Penarth Group; Westbury Formation. The dark grey 

mudstone encompasses low abundance and diversity of marine foraminifera (Lagenida) and 

ostracods (Metacopina and Podocopina). While, the subsequent bed; reddish grey siltstone 

(BAL950) exhibits few white fine sandstone fragments with reddish stain. The sample has rare 

juvenile of Metacopina and very rare Podocopina with no foraminifera specimen. The 

assignation of age and lithostratigraphy are uncertain as no strong evidence from microfaunas 

that can provide biostratigraphical or environmental markers, plus author did not have access 

to additional data other than cutting samples and gamma ray log (Figure 4.2). The author just 

relies on lithologies and compared with the description of Penarth Group provided in Mitchell 

(2004).   

 

The succeeding beds are grey mudstone (BAL945) of Waterloo Mudstone Formation, Lias 

Group. This based on bisaccate pollen information from Riding (2010), where he concluded 

BAL945 as Hettangian in age due to the occurrence of Riccisporites tuberculatus and the 

absence of Rhaetian markers such as Rhaetipollis germanicus and Rhaetogonyaulax rhaetica. 

His discovery means that probably the Lilstock Formation (Cotham Member and Langport 

Member) are missing. Hence, the unconformity possibly exists in between BAL950 and BAL945 
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strata. Furthermore, Delhaye et al. (2016) stated that within the Rathlin Basin, Jurassic Lias 

Group mudstone overlain unconformably on top of the Triassic Mercia Mudstone Group.  

 

The Ballinlea-1 Early Jurassic (Waterloo Mudstone Formation) strata yield mainly of grey 

calcareous mudstone; interpreted from BAL345 to BAL945. The microfaunas are entirely 

benthic taxa where foraminiferal specific diversity is generally higher than for ostracods. Both 

groups show low diversity in Hettangian age (mostly below 5 Fisher’s alpha diversity), to mid-

part of the Early Sinemurian, but it then gradually increases for both groups starting from Early 

Sinemurian (1.83-26.56 Fisher’s alpha diversity) to the Late Sinemurian (8.87-27.36 Fisher’s 

alpha diversity). The diversity then slightly drops in the Early Pliensbachian interval (11.96-

19.07 Fisher’s alpha diversity), but still more diverse than during the Hettangian and Early 

Sinemurian stages.  

 

For abundance, the low abundances are noted during the earliest Hettangian (19-61 

specimens per 10 grams) but then increase in latter Hettangian sequence (73-490 specimens 

per 10 grams). Although the abundance is high during mid-latest Hettangian age, the 

assemblages are actually dominant by ostracods, specifically Ogmoconchella aspinata. 

Despite of ostracods dominance, the turnover recorded in BAL920 sample, where an influx of 

Reinholdella planiconvexa (210 specimens per 10 grams) takes place and it exceeds the 

number of Ogmoconcehlla aspinata (94 specimens per 10 grams).  The abundance of earliest 

Early Sinemurian until mid Early Sinemurian are almost same pattern as in Hettangian 

sections. The microfossils abundances are very low during the earliest Early Sinemurian (4-41 

specimens per 10 grams) but drastically increase when reach mid Early Sinemurian (10-576 
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specimens per 10 grams). These assemblages still dominant by ostracods especially 

Ogmoconchella aspinata and Ogmoconcha hagenowi. The younger beds; Late Sinemurian to 

Early Pliensbcahian recorded moderate to high abundance (24-270 specimens per 10 grams) 

and dominant by foraminifera.  

 

The foraminifera assemblages mainly belong to the Order Lagenida but representatives of 

important accessory taxa assigned to the orders Miliolida, Buliminida and families 

Ceratobuliminidae and Spirillinidae are also recorded. The overall foraminiferal assemblages 

are abundance by the Paralingulina tenera plexus, followed by the Lenticulina muensteri 

plexus, the Lenticulina varians plexus and the Marginulina prima plexus. These genus 

particularly high amounts from the later part of the early Sinemurian onwards. 

 

The ostracods mostly belong to the Order Metacopina which are present in almost every 

sample. There is an increasing abundance and diversity of the Order Podocopina noted from 

the mid-part of the Early Sinemurian onwards. 
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Figure 4.2: Sedimentary log, gamma ray log, relative abundance, species richness and Fisher’s alpha diversity of microfaunas from Ballinlea-1 Borehole (MM: 
Mercia Mudstone Formation, CG: Collin Glen Formation). 
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4.4 Ballinlea-1 proposed biozonation  

 

Ammonites form the basis for the chronostratigraphy of the Jurassic. As they are un-useable 

from cuttings wells, the age of the Ballinlea-1 core is established using the JF foraminiferal 

biozones of Copestake & Johnson (1989, 2014). The cuttings also demand that only the first 

downhole occurrences (FDO) of the marker species can be used, with a slightly modified 

approach taken for the interpretation of zones JF1 to JF3. The detail Ballinlea-1 Jurassic 

Foraminifera biozonations are discussed below together with microfossils range charts (Table 

4.1 and Table 4.2). 

  

Interval: 925 m- 950 m 

Jurassic Foraminifera Biozone: JF1 (BAL925-BAL945) 

Inferred age: earliest Hettangian  

Ballinlea-1 indicator species: Paralingulina tenera collenoti, Ogmoconchella aspinata and 

Ektyphocythere translucens.  

 

Riding (2010) determined the base of the Jurassic in this borehole as 945 m (BAL945) based 

on the presence of Riccisporites tuberculatus and the absence of distinctive Rhaetian markers 

such as Rhaetipollis germanicus and Rhaetogonyaulax rhaetica. No benthic microfauna data 

able to provide as this sample not in author’s sample collections. 

 

The bed above (BAL935) has impoverish marine assemblages; only Paralingulina tenera tenera 

and Eoguttulina liassica with the absence of JF1 marker; Paralingulina tenera collenoti. 
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However, common occurrence of P. t. collenoti is recorded at the top of JF1 biozone together 

with low numbers of Reinholdella planiconvexa. In the Mochras Borehole (Copestake & 

Johnson, 2014), P. t. collenoti appears commonly at the top of JF1 which they assigned as 

equivalent of Planorbis Chronozone (Planorbis Subchronozone); whereas R planiconvexa 

inception is near the base of JF1. 

 

The Ballinlea-1 JF1 biozone also accompanied by the typical Early Hettangian ostracods taxa; 

Ogmoconchella aspinata and Ektyphocythere translucens.   

 

Interval: 890 m-925 m 

Jurassic Foraminifera Biozone: JF2 (BAL890-BAL920) 

Inferred age: middle Hettangian  

Ballinlea-1 indicator species: Reinholdella planiconvexa, Paralingulina tenera collenoti, 

Planularia inaequistriata and Ogmoconchella aspinata 

 

Although events relating to the last downhole occurrence should be treated with caution in 

this borehole, the sudden flood of Reinholdella planiconvexa and common occurrence of P. t. 

collenoti in BAL920 depth strongly suggests that the JF2 biozone begins at about this depth. 

The influx of R. planiconvexa also occurs elsewhere in Britain such as the Blue Lias Formation 

of the Mochras Borehole (at the base of JF2; assigned as upper Planorbis Chronozone, 

Johnstoni Subchronozone) which is associated with development of widespread claystone 

units (e.g. Lavernock Shale and Saltford Shale; Copestake & Johnson, 2014).   
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At the end of JF2 biozone (BAL890), Planularia inaequistriata appears rare until bottommost 

JF3 (BAL885). Ballinlea-1 JF2 biozone is marked by high abundances and the consistent 

occurrence of the ostracod O. aspinata. 

 

Interval: 785 m-900 m 

Jurassic Foraminifera Biozone: JF3 (BAL785-BAL885) 

Inferred age: Late Hettangian-earliest Sinemurian  

Ballinlea-1 indicator species: Paralingulina tenera substriata, Dentalina langi, Ichthyolaria 

terquemi barnardi, Ogmconchella aspinata and Ogmoconcha hagenowi 

 

The total range of the large and distinctive species; Dentalina langi is used to defined JF3 

biozone (Copstake & Johnson, 2014). However, in Ballinlea-1, only 1 specimen of Dentalina 

langi is recorded (in BAL845). Therefore, the base of Ballinlea-1 JF3 biozone is proposed by the 

last occurrence (first downhole occurrence) of Ichthyolaria terquemi barnardi at 885 m and 

supported by the presence of Paralingulina tenera substriata. The sudden abundance of 

Astacolus speciosus appeared near the upper part of Ballinlea-1 JF3 (BAL810). Based on 

Copestake & Johnson (2014), this bioevent is particularly a diagnostic of the Sinemurian in 

Britain. 

 

For ostracods, last downhole occurrence (first appearance) of common and consistent 

Ogmoconcha hagenowi appears within JF3 coincides with Ogmoconchella aspinata which 

abundant and consistent since JF1.  
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Riding (2010) examined two samples from this samples range (BAL875 and BAL825) and he 

observed the occurrence of consistent Hettangian-Early Sinemurian spore; Kraeuseliporites 

reissingeri. Thus, this supported the author’s age interpretation of this succession. 

 

Interval: 735 m- 785m 

Jurassic Foraminifera Biozone: JF4 (BAL735-BAL780) 

Inferred age: Early Sinemurian  

Ballinlea-1 indicator species: Paralingulina tenera substriata, Marginulina prima insignis and  

Marginulina prima incisa, Ogmoconhella aspinata and Ogmoconcha hagenowi. 

 

The base of JF4 in the Ballinlea-1 borehole is represented by the extinction of Paralingulina 

tenera substriata recorded at BAL780. The JF4 biozone is further characterised by continuation 

of Marginulina prima insignis and Marginulina prima incisa which reach their maximum 

numbers at the top of the biozone (BAL730). Near the top of the biozone, Ogmoconcha 

hagenowi and Ogmoconchella aspinata becomes less common and both disappear (first 

downhole occurrence) at the JF4-JF5 boundary. Boomer & Ainsworth (2009) record the 

Ogmoconcha hagenowi and Ogmoconchella aspinata extinction event as earliest and mid 

Semicostatum Ammonite Chronozone of Early Sinemurian respectively. Copestake & Johnson 

(1989, 2014) divided JF4 into two sub-biozones; JF4a and JF4b by using common to abundant 

Involutina liassica (top of the Bucklandi Chronozone) as an indicator for this boundary; e.g. 

Mendip High (Somerset; Barnard, 1949), Inner Hebrides well L134/5-1 (Ainsworth & Boomer, 

2001) and Wessex Basin (Ainsworth et al., 1998a). However, the absence of I. liassica in this 

core, makes this separation impossible. 
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Interval: 575 m-735 m 

Jurassic Foraminifera Biozone: JF5 (BAL575-BAL730) 

Inferred age: Early Sinemurian  

Ballinlea-1 indicator species: Neobulimina bangae, Vaginulina listi, Paralingulina tenera 

subprismatica, Marginulina turneri 

 

The base of JF5 biozone is defined by the common and consistent occurrence of foraminifera 

Neobulimina bangae (Early Sinemurian) from BAL720 to BAL730. Furthermore, based on 

palynological data from Riding (2010), the presence of pollen Cerebropollenites 

macroverrucosus in BAL700 inidicates Early Sinemurian age. While, the top of the biozone 

(BAL580 and BAL595) comprises few specimens of foraminifera marker; Marginulina aff. 

turneri which according to Copestake and Johnson (2014), Marginulina turneri only restricted 

to the Turneri Ammonite Chronozone of Early Sinemurian age. The ostracod assemblages are 

dominated by Ogmoconchella danica and Ogmoconchella mouhersensis; starting from the top 

of JF5 (BAL580). Boomer & Ainsworth (2009) ascribed inception of Ogmoconchella danica and 

Ogmoconchella mouhersensis appearing in the earliest Obtusum Chronozone. Alas, based on 

the presence of Marginulina aff. turneri from BAL580-BAL595, this means the last downhole 

occurrence (first appearance) of Ogmoconchella danica and Ogmoconchella mouhersensis 

recorded earlier (Turneri Ammonite Chronozone) than Boomer & Ainsworth (2009) proposed 

chronozone; Obtusum Ammonite Chronozone.  
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Table 4.1: Ranges of Ballinlea-1 stratigraphic and environmental benthic foraminifera markers in relation to proposed biozonation and stage. 
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Table 4.2: Ranges of Ballinlea-1 stratigraphic and environmental ostracods markers in relation to proposed biozonation and stage.
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Interval: 395 m-575 m 

Analysed sample: BAL400-BAL570 

Jurassic Foraminifera Biozone: JF8 

Inferred age: Late Sinemurian  

Ballinlea-1 indicator species: Marginulina prima spinata and Marginulina aff. turneri 

 

Although the usage of last downhole occurrence as marker should be avoided in this borehole, 

the consistent and common occurrence of Marginulina prima spinata indicates base of JF8 

biozone. Thus, this shows that JF6 and JF7 are missing within Ballinlea (refer to 

palaeoenvironment for further explainations).  

 

The JF8 biozone is also marked by the consistent occurrence of Late Sinemurian assemblages; 

foraminifera Ichthyolaria terquemi squamosa, Marginulina prima spinata, Marginulina prima 

interrupta, Nodosaria issleri, Mesodentalina varians hauesleri, Paralingulina tenera subprismatica 

and ostracods Ogmoconchella danica, Ogmoconchella mouhersensis and Ogmoconcha 

eocontractula. A sudden peak of Reinholdella pachyderma humilis occurs within this biozone 

(BAL490). Copestake & Johnson (2014) stated that this influx indicates the Raricostatum 

Ammonite Chronozone. Comprehensively, P. t. subprismatica occurs abundantly throughout the 

biozone. 
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Another important Late Sinemurian taxa is Varginulinopsis denticulatacarinata which occurs in 

significant numbers near the top of Ballinlea-1 JF8 biozone (BAL400-BAL425). The top of JF8 

biozone (BAL400) is defined by the disappearance (first downhole occurrence) of Nodosaria issleri 

and abundant occurrence of Brizalina liasica. Based on the Early Jurassic British and northern 

Europe foraminifera biozonation scheme, the Nodosaria issleri extinction marks the end of 

Raricostatum Ammonite Chronozone (Aplantum Subchronozone); latest Late Sinemurian 

(Copestake & Johnson, 1989, 2014).  

 

Interval: 345 m- 395 m 

Jurassic Foraminifera Biozone: JF9a (BAL345-BAL395) 

Inferred age: bottommost Early Pliensbachian 

Ballinlea-1 indicator species: Nodosaria issleri, Astacolus speciosus and M. p. spinata 

 

The JF8-JF9a boundary is defined by first downhole occurrence of Nodosaria issleri at BAL400. 

Therefore, the base of JF9 (Early Pliensbcahian) is suggested from BAL395 through to BAL345. 

Some species such as Astacolus speciosus and Marginulina prima spinata still occur commonly in 

this biozone. At Mochras, JF9 is classified into two sub-biozones; JF9a and JF9b by the last 

downhole occurrence of Haplophragmoides lincolnensis (Copestake & Johnson, 2014). This 

species has not been observed in Ballinlea-1, hence the youngest studied sample is interpreted 

as the JF9a biozone of Early Pliensbachian. 
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The occurrence of ostracods Ogmoconchella danica, Ogmoconchella gruendeli and Ogmoconcha 

eocontractua continue up to almost end of studied samples (BAL355). These taxa are known as 

Late Sinemurian and Early Pliensbachian species (Michelsen, 1975; Park, 1988). 

 

 

4.5 Palaeoenvironmental analysis 

 

In the following section, the palaeoenvironments are interpreted based on the full range of biotic 

components observed during the study and only Waterloo Mudstone Formation will be discussed. 

 

 

4.5.1 Hettangian (BAL885 to BAL950) 

 

The Lias Group was deposited during latest Rhaetian to earliest Jurassic eustatic sea level rise.  

 

The microfauna of the Hettangian interval (885 m to 950 m) yields no evidence of freshwater or 

brackish ostracod genera like Darwinula or Lutkevichinella suggesting that the transgression was 

firmly established throughout this interval.  The late Triassic mass extinction is slowly recovered 

in Hettangian towards earliest Sinemurian. Even though the faunas start to recover, the diversity 

is still too low (alpha diversity less than 5) and mostly dominated by ostracods especially adult 

Metacopina (Ogmoconchella aspinata and Ogmoconcha hagenowi) with subsidiary ostracod 
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species such as Ektyphocythere translucens and foraminifera Paralingulina tenera collenoti and P. 

t. tenera. This is probably because they are still in the recovery phase from Tr-Jr mass extinction. 

This lowermost Waterloo Mudstone Formation was deposited in a well-oxygenated, marine, 

inner shelf environment; reflected by the colonization of opportunistic and successful group of 

organisms that were able to tolerate a wide range of environment like O. aspinata (Boomer & 

Ainsworth, 2009).  

 

 

 
 

Figure 4.3: Benthic foraminifera morphogroups (Reolid et al., 2013). 
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Within the early part of Hettangian, both diversity of foraminifera and ostracods are low, 

however, the distinct peak of small aragonitic taxon; Reinholdella planiconvexa has been recorded 

at in BAL920, in association with moderate number of O. aspinata. Reinholdella is a primary 

seaweed epifaunal grazing herbivors (Reolid et al., 2013) (Figure 4.3) and opportunistic species 

(Bernhard, 1986; Koutsoukos et al., 1990; Boutakiout & Elmi, 1996; Sagasti & Ballent, 2002; 

Ballent et al., 2006) that can adapt to biotic stress environments (Clémence & Hart, 2013) or 

stagnant sea-bottom (Brouwer, 1969; Johnson, 1976). According to (Johnson, 1976), Reinholdella 

planiconvexa lived at inner to middle shelf environment.  

 

 

4.5.2 Early Sinemurian (BAL610 to BAL885) 

 

A regressive episode is interpreted, within the overall marine transgression (Figure 4.4), in the 

earliest Sinemurian (Haq, 2017), this supported by the presence of common to abundant quartz 

grained between BAL820 to BAL845 associated with abundant micro-ironstone nodules at 

BAL820. The arenaceous material might be correlated with the Tircrevan Sandstone Member 

mentioned in Mitchell (2004) which is exposed in the Tircrevan Burn section (refer Chapter 6 in 

this study), therefore a shallower environment is envisaged. These unfavourable environments 

cause the decline of both foraminifera and ostracods numbers and diversity (BAL815 to BAL875 

samples) especially the abundance of O. aspinata, and those that occur are mostly juvenile 

(possibly transported) and it’s later replaced by slightly higher numbers of Ogmoconcha 
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hagenowi. Even though these intervals deposited in the shallower setting, no agglutinated 

foraminifera are recorded.  

 

The microfaunas diversity are increase starting from BAL810 up to BAL740.  As stated by Haynes 

(1981), the diversity is the highest in open marine conditions, while low diverse denoted 

shallowing environment (close to land) or due to other factors (for instance, stagnant of bottom 

water or change of salinity or turbulence). Moreover, Copestake & Johnson (1989) related the 

inception as association of transgression, whereas extinction linked to the regression. Therefore, 

this increases diversity can be associated with sea-level rise. Despite of this transgression, BAL810 

might be deposited in the low-oxygen environment based on the abundant occurrence of 

Astacolus speciosus. According to Bernhard (1986), the high occurrence of ornamented flattened 

Lagenida such as Astacolus speciosus indicates low oxygen condition (Reolid et al., 2012). The 

younger intervals above (785 m to 800 m) deposited in inner shelf environment with little or no 

oxygen depletion; inferred by the increase of foraminiferal and ostracods abundant and diversity 

(note that ostracods are still more numerous than foraminifera). 

  

The fauna turnover is marked at BAL740 where the foraminifera become diverse and dominant 

the abundance. The dominance of foraminifera by Lagenida members happened towards Early 

Plienbachian. The dominance and diversity of Lagenida indicates a favourable environment with 

normal marine inner shelf (Nagy & Alve, 2010).  
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However, within these diverse assemblages, BAL615 and BAL675 samples are barren due to the 

intrusion (630 m-670 m) that cause contact metamorphism on adjacent beds and making fossil 

extraction impossible.  

 

 

4.5.3 Late Sinemurian (BAL400 to BAL570) 

 

Based on the biostratigraphic foraminifera, the Northern Ireland Late Sinemurian interval is 

missing of JF6 and JF7 (equivalent to Obtusum and Oxynotum Ammonite Chronozone). This can 

be highly correlated with the adjacent borehole; Port More Borehole where the Obtusum and 

Oxynotum Ammonite Chronozes are missing too (Wilson & Manning 1978).  This event notably 

across NW Europe and according to Hallam (1978, 1981), this is the period of shallowing or 

regression.  

 

Generally, the Late Sinemurian horizon (JF8) recorded the most diverse and abundance of both 

microfaunas especially foraminifera. The increasing calcareous benthic foraminifera are resulted 

from the consistent sea-level rise which gradually change the inner shelf to middle or outer shelf 

environment. Hallam (1978) and Copestake & Johnson (2014) mentioned that latest Sinemurian 

is a representative of major transgression in Europe. Hence, the sea-level rise not only occurred 

in Northern Ireland but other parts of Europe too. The faunas are still dominated by the 

abundance Paralingulina with increasing specimens of Lenticulina, while ostracods dominant by 
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Metacopina. The uncoiled form of Lenticulina began to appear in the earliest Late Sinemurian. 

This trend is indicative of their adaptations to live near the sediment or water interface (Haynes, 

1981).  

 

It is noted that an influx of Reinholdella pachyderma humilis occurs in 490 m samples 

accompanied with very high number of Paralingulina. Brouwer (1969) and Jones (2013) stated 

that abundant of Reinholdella is characteristic of deep, open-marine; middle bathyal 

environments but below the Aragonite Compensation Depth (approximately 2000 m). Other 

authors interpreted genus Reinholdella as deep water indicator too, but that this genus lived on 

middle to outer shelf open marine (Brouwer, 1969; Johnson 1976; Hylton & Hart, 2000) with the 

onset of low-oxygen condition (Hylton & Hart, 2000). However, the Lias Mochras borehole study 

by Johnson (1976) has discovered the different Reinholdella species preferred different 

environment settings. He described that Reinholdella pachyderma lived on the outermost middle 

shelf or outer shelf.  Meanwhile, occurrence of very abundance and dominance Paralingulina 

tenera plexus in this level indicate them as opportunistic species. This is supported by the 

statement of Rey et al. (1994) which suggested the elongated early Jurassic Lagenida are specialist 

form that able to adapt in confined environments (Reolid et al., 2012). Another distinctive fauna 

is from BAL465 sample; where the nonexistence of Ophthalmidium in below intervals is suddenly 

expand to moderate amounts. This species accompanied by very abundant of Paralingulina 

tenera plexus. Jones (2013) described Ophthalmidium as a genus restricted to deep marine 

environments.  
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Another deeper setting proven from BAL400, where the occurrence of abundant Brizalina liassica 

together with profuse Paralingulina tenera plexus and moderate numbers of Ophthalmidium. 

Both Brizalina and Ophthalmidium dominant on deeper setting; outer shelf (Haynes, 1981; Jones, 

2013). Boltovskoy (1972) stated the successful of Brizalina is related to their ability to tolerate 

with lower oxygen conditions. The depletion of oxygen is supported by the evidences of the dwarf 

size of Brizalina and Paralingulina; these two species recovered mostly in smaller sizes (63 µm to 

125 µm residue) together with common amount of pyrites.  

 

The influx of deep marine species such as Brizalina and Ophthalmidium usually come together 

with very abundant of Paralingulina tenera plexus. Therefore, this proven Reolied et al. (2012) 

statement regarding the elongated Lagenida are specialist form that able to with-stand confined 

environments.  

 

 

4.5.4 Early Pliensbachian (BAL345 to BAL400) 

 

The microfaunas still diverse in Early Pliensbachian but slightly decrease. The decline may be due 

to the minor fall of sea level during Pliensbachian age. 
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Figure 4.4: Stratigraphic summary, microfossils abundance, microfossils diversity, palaeoenvironment and oxygenation interpretation of the latest  
Triassic-Early Jurassic of Ballinlea-1 Borehole (MM: Mercia Mudstone Formation, CG: Colline Glen Formation). 
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Chapter 5: 

Biostratigraphy, biozonation and palaeoenvironment of Carnduff-1 Late Triassic-Early 

Jurassic sequences 

 

5.1 Introduction 

 

The Carnduff-1 borehole (Figure 5.1) [D 40150 00983] was drilled within the Larne Basin, east 

Co. Antrim in 2013 by Gaelectric Energy Storage for salt exploration. The 8 cm diameter 

borehole of TD 922.7 m penetrated Waterloo Mudstone Formation from 163.9 m-320 m 

depth. The core samples from this borehole allows a detailed study of the Triassic-Jurassic 

boundary interval lithologies and microfaunas. The detailed studies of foraminifera and 

ostracod groups also allows an interpretation of the age and palaeoenvironment of the Late 

Triassic - Early Jurassic interval in the Larne Basin. These aspects are discussed in this chapter 

together with materials, lithology and biostratigraphy descriptions.   

 

 

5.2 Lithology 

 

The Carnduff-1 core samples are stored in GSNI samples room and during the visit, only Late 

Triassic to Early Jurassic sequences are observed. We then selected 28 samples from 170 m to 

326 m depth; upper part of Penarth Group (Late Triassic) up to the uppermost Lias Group 

(Early Jurassic).  
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Figure 5.1: The location map of Carnduff-1 Borehole (CRN) [D 40150 00983]. 
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The observed Penarth Group only limited to the Lilstock Formation. The lower part of Lilstock 

Formation; Cotham Member facies is very distinctive; the lamination of white siltstones with 

grey mudstone. Further up, the fine lamination gradually disappears as the siltstone become 

thicker and interbedded with mudstone. The distinct change of silt dominant to mud-

dominant sediments began at 327 m depth, this marks the boundary of Cotham Member-

Langport Member. The base of Langport Member comprises dominant dark grey micaceous 

mudstone with few laminations in between until upper part of the member but about the mid 

of Langport Member, 2 m thick slumping bed, noticeable in CRN322. Then, the upper half of 

Langport Member is coarsening upwards where relatively thick (approximately 1 m) white 

siltstones occur at the top. 

 

Based on Simms & Jeram’s (2007) study on the Waterloo Bay section, at Larne (just 4 km to 

the north east of Carnduff-1), they observed the Waterloo Mudstone Formation (Lias Group) 

resting conformably on the Lilstock Formation (Penarth Group). They marked the dark grey 

mudstone as the bottommost part of Lias Group which overlain the white bed of Langport 

Member. These interpretations have been applied in Carnduff-1 Borehole too, where the 

transition of white siltstone to dark grey mudstone at 320 m depth marks the Lilstock 

Formation (Penarth Group)-Waterloo Mudstone Formation (Lias Group) boundary.  

 

The Waterloo Mudstone Formation in Carnduff-1 borehole is 156.1 m thick and intruded by 

Palaeogene dolerite sill at 224 m-230 m depth.  The formation made up of varies colour of 

grey calcareous mudstone with occasional grey limestone and mudstone. They are commonly 

fossiliferous, micaceous with some pyrite and carbonaceous materials recorded. Commonly, 
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the beds contain ammonites (Figure 5.2-5.4), bivalves (Figure 5.5), micro-gastropods, 

echinoderm fragments, ophiuroid fragments, foraminifera and ostracods. The macrofossils 

observed in the cores is ammonites in 313.4 m (Figure 5.2) and 312.9 m (Figure 5.3) and 

bivalves such as in Modiolus minimus (Figure 5.5) and Gryphaea arcuate in several horizons. 

 

 

 
 
Figure 5.2: The first occurrence of ammonite; Psiloceras sp. observed at 313.4 m depth 
(CRN313.4) of Carnduff-1 Borehole. This marks the base of Jurassic. 
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Figure 5.3: Psiloceras sp. observed at 312.9 m (CRN312.9) of Carnduff-1 Borehole. 

 

 

 
 

Figure 5.4: Ammonite observed in younger section of Carnduff-1 Borehole 
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Figure 5.5: Modiolus minimus at 309.7 m (CRN309.7) of Carnduff-1 Borehole 

 

 

5.3 Biostratigraphy 

 

The 28 processed samples yielded 6940 microfossils comprising 5000 calcareous benthic 

foraminifera and 1940 marine ostracods. These specimens are from 89 species of calcareous 

benthonic foraminifera and 18 species of ostracods. In general, the abundance of both 

foraminifera and ostracods are vary from low (17 specimens per 10 grams) to extremely 

abundant (1288 specimens per 10 grams). While the diversity still considered as low (most 

samples have Fisher’s alpha diversity below than 5) but moderate to high diversity (6.03-13.37 

Fisher’s alpha diversity) do occurred occasionally. Throughout much of the core the order 
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Lagenida dominates the foraminifera abundance and diversity, whilst the ostracod 

assemblage rich with Metacopina but the greatest diversity belongs to the Podocopina. 

Basically, foraminifera fauna is more diverse than the ostracods except for samples at CRN186 

and CRN191.3 where the ostracods demonstrate greater diversity. 

 

From these 28 core samples, only two Late Triassic samples (CRN324.35 and CRN326) from 

the Lilstock Formation are included in the research, unfortunately, both of them barren with 

microfossils but from Jim Fenton observations (unpublished report, 2017), CRN326 is 

abundant with algal cysts, whereby in CRN324.35 recorded occurrence of Ricciisporites 

tuberculatus, common Todisporites minor, abundant Deltoidospora spp., base 

Cerebropollenites thiergartii.  

 

The first observed microfossils marks in CRN319.50, belongs to the Waterloo Mudstone 

Formation. This sample is low diverse (1.34 Fisher’s alpha diversity) but profuse with 

Eoguttulina liassica (862 specimens per 10 grams). Then in subsequent bed (CRN314.9), the 

assemblage are still very abundant (1288 specimens per 10 grams) by low diverse fauna (1.27 

Fisher’s alpha diversity). This extremely abundant resulted from the influx of Reinholdella 

planiconvexa which continue up to the younger section (CRN296.2). Albeit of this continuation 

flood, the R. planiconvexa amounts literally decrease from 1232 specimens (per 10 grams) in 

CRN314.9 into 203 specimens (per 10 grams) in CRN296.2. This bioevent is a characteristic of 

Hettangian age (Planorbis Ammonite Chronozone; Copestake & Johnson, 2014). However, the 

ammonite (Figure 5.2) initially observed in CRN313.4, thus this marks the boundary of Triassic-

Jurassic. Therefore, the flood of R. planiconvexa in Carnduff-1 Borehole occurred earlier than 
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most of adjacent regions. These floods are normally accompanied by abundant 

Ogmoconchella aspinata but still lower numbers than Reinholdella planiconvexa. 

 

After end of the Robertinida floods, the foraminifera assemblages predominant by members 

of Lagenida particularly Paralingulina tenera plexus until the youngest sections of Carnduff-1 

Waterloo Mudstone Formation. Another important occurrence of Lagenida members are 

moderate numbers of Marginulina prima incisa and Marginulina prima insignis in CRN211. 

These species indicate base of Sinemurian. Despite of Lagenida dominance, contrast appear 

at the top of Carnduff-1 Waterloo Mudstone Formation successions; in CRN182.9, CRN191.3 

and CRN198.6, when localised peaks of Miliolida (Cornuspira liasina) occurred. The Cornuspira 

flood (111-383 specimens per 10 grams) only happened when Paralingulina is absent or rare; 

the change of infaunal (Paralingulina) to epifaunal (Cornuspira) are resulted from change of 

environment setting (discussed in section 5.5).  Meanwhile in ostracods assemblages, 

Ogmoconchella aspinata is the most abundant among it group especially in the earliest 

Hettangian. Alas, the richness declines once Ektyphocythere translucens and Ogmoconcha 

hagenowi appeared but Ogmoconchella aspinata still dominant in mostly horizons. These 

three species start to disappear in the Waterloo Mudstone Formation youngest sections 

(CRN170.7-CRN182.9) when Bairdia molesta, Isobythocypris tatei and Nanacythere 

aequalicostis become significant in numbers. Figure 5.6 plots the picked abundance, relative 

abundance, species richness and Fisher’s alpha diversity of Carnduff-1 microfossils. 
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Figure 5.6: Sedimentary log, relative abundance, species richness and Fisher’s alpha diversity of microfaunas from Carnduff-1 Borehole.



 

155 
 

5.4 Carnduff-1 proposed biozonation  

 

The Late Triassic and Early Jurassic biozonations of the Carnduff-1 borehole are proposed 

using the important foraminifera biozone markers with addition of key ostracods events 

(Table 5.1). Since these materials are from core samples, emphasis is placed on first 

appearance (last downhole occurence) and last occurrence (first downhole occurrence) of 

marker taxa. The Carnduff-1 Waterloo Mudstone Formation yields three biozones; Rhaetian, 

JF1-JF2 and JF3 (Table 5.1). The biozones determination only on Waterloo Mudstone 

Formation of latest Triassic to Early Jurassic age. Below are details of the Carnduff-1 

biozonation: 

 

Interval: 313.4 m-320 m 

Analysed sample: CRN314.9-CRN319.5 

Jurassic Foraminifera Biozone: Rhaetian  

Inferred age: Latest Rhaetian  

Carnduff-1 indicator species: Eoguttulina liassica and Reinholdella planiconvexa 

 

The oldest Waterloo Mudstone Formation strata analysed are CRN314.9 and CRN319.5 which 

both contain microfossil. Two important both biostratigraphical and environmental markers 

appear in each section. The CRN319.5 sample is abundant with Eoguttulina liassica which 

Copestake & Johnson (2014) ascribed as typical event in Late Rhaetian due to begin of the sea-

level rise. In younger bed (CRN314.9), the flood of thousands aragonitic taxa; Reinholdella 

planiconvexa documented. This event is recorded elsewhere, in Ballinlea and Magilligan 
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boreholes, even across the NW Europe. The last donwhole occurence (first appearance) of this 

influx is used as marker for base JF2 (Copestake & Johnson, 2014). However, in Carnduff-1 

Borehole, the last downhole occurrence of this event happened earlier, in latest Rhaetian 

rather than Hettangian. This age proven by the discovery of the first occurrence of ammonite 

(Figure 5.2) found at the overlying bed; CRN313.4. Thus, the boundary of Triassic-Jurassic 

marks at CRN313.4. Refer to the section 4.5 for detailed explanation regarding relationship of 

Reinholdella planiconvexa with environment. 

 

Analysed sample: CRN264.2-CRN306.6 

Jurassic Foraminifera Biozone: JF1-JF2 

Inferred age: Hettangian-mid Hettangian. 

Carnduff-1 indicator species: Reinholdella planiconvexa and Paralingulina tenera collenoti 

 

The base of JF1 is marked at the first occurrence of ammonite in CRN313.4. The latest Rhaetian 

Reinholdella planiconvexa flood continue in this biozones up to CRN296.2 but their numbers 

drops drastically to hundreds. This flood coincides with common occurrence of Paralingulina 

tenera collenoti from CRN296.2-CRN306.6. According to Copestake & Johnson (2014) these 

common and consistent occurrence ends before mid of JF2 biozone. However, because of the 

Reinholdella planiconvexa floods appear earlier than other part of NW Europe which 

commonly happened within JF2, hence the usage of last downhole occurrence (first 

appearance) of Reinholdella planiconvexa influx as the base JF2 marker is not applicable in this 

borehole. This cause the Carnduff-1 JF1-JF2 boundary uncertain, therefore author includes 

both biozones as one range. 
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The ostracod assemblages in this range are dominated by Ogmoconchella aspinata 

throughout the biozone, whereas the at the top of biozone; Ogmoconcha hagenowi and 

Ektyphocythere translucens appear frequent. These species are also representative of 

Hettangian stage (Boomer & Ainsworth, 2009). 

 

Analysed sample: CRN170.7-CRN259 

Biozone: JF3 

Inferred age: latest Hettangian  

Carnduff-1 indicator species: Paralingulina tenera substriata, Marginulina prima incisa, 

Mesodentalina matutina  

 

The first appearance and abundance of Paralingulina tenera substriata are used to denote the 

base of the JF3 biozone which starts at sample CRN259 continuing through to the youngest 

studied sample (CRN170.7). This part of the sequence is assigned to the JF3 biozone due to 

the presence of Paralingulina tenera substriata as this species only range up to the JF3 

biozone. Meanwhile, other two important JF3 index markers; Marginulina prima incisa and 

Marginulina prima insignis observed in CRN252.5 and CRN241.5 respectively. These two 

species reach their maximum abundance and dominate the foraminifera assemblage in the 

CRN211 sample. The ostracod assemblages are dominated by smooth Metacopina such as 

Ogmoconchella aspinata which decreases in abundance as Ogmoconcha hagenowi increases.  
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Table 5.1: Range chart of Carnduff-1’s biostratigraphical and environmental important taxa 
(foraminifera and ostracods) in relation to proposed biozonation. 

 

 

5.5 Palaeoenvironmental analysis 

 

The progressive transgression during latest Triassic allowed the deposition of the 

epicontinental sea sediments (Penarth Group) which then gradually change to deeper setting 

that resulted on the development of dominant calcareous mudstone facies, Lias Group. This 

continues transgression enable the colonisation of infaunal Eoguttulina liassica in CRN319.5 

sample. This species is a shallow marine genus (Jones, 2013) and their dominance in low 
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diversity microfaunas described it as opportunistic species (Nocchi & Bartolini, 1994). This 

reflects the beginning of transgression as the sea-level progressively increase but still 

relatively shallow. 

 

The profuse of epifaunal grazing herbivors (Reolid. et al, 2012) Reinholdella planiconvexa in 

the younger sections (Figure 5.7), suggested inner to middle shelf environment (Johnson, 

1976) with confined setting as this species is opportunistic species (Bernhard, 1986; 

Koutsoukos et al., 1990; Boutakiout & Elmi, 1996; Sagasti & Ballent, 2002; Ballent et al., 2006) 

that can with-stand biotic stress environments (Clémence & Hart, 2013) or stagnant sea-

bottom (Brouwer, 1969; Johnson, 1976). Furthermore, the Reinholdella flood occurred earlier 

in Carnduff-1 compared to other two boreholes. This show that sea-level rapidly increase in 

Larne Basin compared to Rathlin and Foyle Basin. This may be due to the local setting of the 

Larne Basin.  

 

Clémence & Hart (2013) stated that the restoration of stable environments causes the absence 

of Reinholdella yet trigger the appearance of other species. For instance, drop of Reinholdella 

numbers in Carnduff-1 allowed other opportunist species like Paralingulina and 

Ogmoconchella to colonise the ecology.  

 

The assemblages then dominated by Cornuspira liasina within earliest Sinemurian (CRN198.6, 

CRN191.3, CRN182.9). This species is interpreted as shallow marine type based on the studies 

in Persian Gulf (Murray, 1965, 1970; Evans et al., 1973; Seibold et al., 1973; Hughes Clarke & 

Keij, 1973) and in the Caribbean (Murray 1965, 1970; Evans et al., 1973; Seibold et al., 1973; 
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Hughes Clarke & Keij, 1973) shown that smaller porcelaneous foraminifera dominant and 

achieve utmost diversity in tropical carbonate settings (Haynes, 1981). In addition, Jones 

(1994) stated that the smaller type of Miliolida such as family Cornuspiridae reach their 

maximum diversity in shallow marine, inner neritic environments. Based on the research of 

Bock (1969) and Brasie (1975) on relationship of seagrass (Thalassia) with epiphytic 

foraminifera in Caribbean, Haynes (1981) concluded that the success of small or large 

porcelaneous foraminifera in shallow water carbonate environments are because of seagrass 

role in providing the habitat to this group. The dominance of this shallow marine species also 

supported by the sea-level fall that is recorded at end Hettangian to earliest Sinemurian. 

 

The overall palaeoenvironmental changes throughout Late Triassic to Early Jurassic are plotted 

in Figure 5.7. 
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Figure 5.7: Stratigraphic summary, microfossils abundance, microfossils diversity, palaeoenvironment and oxygenation interpretation of the latest Triassic-Early Jurassic of Carnduff-1 Borehole. 
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Chapter 6 

Biostratigraphy, biozonation and palaeoenvironment of Late Triassic-Early Jurassic 

sequences of Magilligan Borehole and Tircrevan Burn  

 

6.1 Introduction 

 

The Co. Londonderry Waterloo Mudstone Formation (Waterloo Mudstone Formation) were 

investigated from a borehole at Magilligan [C 70039 33251] (Figure 6.1); Geological Society 

Northern Ireland (GSNI) onshore coal exploration borehole drilled within Lough Foyle Basin in 

1963-1964 and with TD of 1346 m. Younger sequences of sediments are exposed at the 

Tircrevan Burn [C 70126 32552]; 6 km to the SE of Magilligan Borehole. Therefore, the results 

of these two localities will be included together in this chapter.  

 

This chapter presents biostratigraphy, biozonations and palaeo-environmental 

interpretations based on the foraminifera and ostracods of the Magilligan Borehole and 

Tircrevan Burn exposures. The microfaunas are studied in detail as these sections have not 

previously been studied for their micropalaeontological remains.  
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Figure 6.1: The location map of Magilligan Borehole (MAG) [C 70039 33251] and Tircrevan 
Burn (TB) exposure [C 70126 32552]. 
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6.2 Lithology 

 

6.2.1 Magilligan Borehole 

 

A total of 35 core samples from Waterloo Mudstone Formation and Westbury Formation with 

2-7m intervals were provided by Geological Survey of Northern Ireland. From these core 

samples, only 28 were processed for this study. The Waterloo Mudstone deposited in 

Magilligan Borehole is overlain conformably on top of Lilstock Formation which rest on top of 

the Westbury Formation. 

 

The Westbury Formation of Penarth Group made up of alternating black to dark grey shales 

with mudstone and calcareous mudstone consisting silty laminae. The formation is rich with 

bivalve fossils and common with iron nodules. Meanwhile, the lithology description for 

Lilstock Formation cannot be explain in detail due to the absence of this formation in author’s 

sample collection. Yet in general Lilstock Formation exhibits distinctive facies of grey 

mudstone laminae with white or light grey siltstones.  

 

The Waterloo Mudstone Formation herein is about 163 m thick comprised mainly calcareous 

mudstone in association with infrequent mudstones and thin limestones in several horizons. 

The lithologies are often micaceous and subordinate with pyrite, iron nodules and 

carbonaceous material (see Appendix H and I for details).  
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6.2.2 Tircrevan Burn exposure 

 

The continuation of Magilligan Borehole Waterloo Mudstone Formation sequences is display 

at Tircrevan Burn (Figure 6.2) which is one of the best Northern Ireland Waterloo Mudstone 

Formation exposures. However, the Tircrevan Burn Waterloo Mudstone Formation beds do 

not appear to overlap Magilligan Borehole but the gap between them is not large, about 50 

m.  

 

The Tircrevan Burn Waterloo Mudstone Formation sections are exposed along the stream 

which approximately 52 m thick (Bazley et al, 1997; Mitchell, 2004) which yields 13 m thick of 

Tircrevan Sandstone Member (Mitchell, 2004).  

 

During fieldtrip, we were able to access several outcrop localities (Figure 6.2) and collected 

few samples for microfaunas study. The first observed bed was a part of Tircrevan Burn 

Member; thick white fine-grained quartz sandstone with black mud drapes on top of the facies 

(TB1 and TB2). Later, this arenaceous facies grades into blueish grey calcareous mudstone 

(TB3). Towards southeast, another two samples were collected, both are blueish grey 

calcareous mudstone. These are the youngest exposures that we able to access during our 

fieldtrip. 
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Figure 6.2: The locations of Tircrevan Burn sampling; TB1-TB2 [C 70126 32552], TB3 [C 70131 
32531], TB4 [C 70218 32321] and TB5 [C 70292 32167]. 

 

 

6.3 Biostratigraphy 

 

 6.3.1. Magilligan Borehole 

 

Total of 1552 specimens of microfossils were picked from 28 core samples, with resolution of 

4 m to 10 m intervals. The specimens consist of 784 calcareous benthic foraminifera, 121 

agglutinated foraminifera and 647 marine ostracods. In addition, 9080 specimens of 

foraminifera, Reinholdella planiconvexa have been observed and counted but it proved 

impossible to picked all of these as they are time consuming. Thus, the total number of 

microfossils found in 28 core samples were 10,632 specimens. 
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From the studied samples, only 21 samples have microfossils yet another 7 samples barren. 

The predominantly black shales with silty laminae (MAG179.43-MAG175.1) belong to the 

Westbury Formation of Penarth Group are devoid of microfaunas except for the oldest sample 

that comprises an impoverished foraminiferal assemblage (six specimens of two species at 

MAG179.43). the absence of microfossils continues up to the top section of the Westbury 

Formation (MAG173.54). Lilstock Formation samples from 163.95m-172m interval are not in 

author’s sample collection, hence no biostratigraphy analysis is able to conduct. 

  

The microfauna assemblages from Waterloo Mudstone Formation sediments are generally 

low to moderate (20-45 specimens per 10 grams) and decline to very low (barren to 13 

specimens per 10 grams) towards the upper part of the Magilligan Borehole (Figure 6.3). Yet, 

few peaks of high (149-333 specimens per 10 grams) to very high abundance (1515-47430 

specimens per 10 grams) are documented. These high abundances are resulted from the 

dominance of certain species, for instance, the very high abundance at the lower part of the 

sequences (MAG146 and MAG158) are due to the flood of aragonitic species Reinholdella 

planiconvexa, whereas about the mid of the sequences, the high abundance is caused by the 

dominance of Ogmoconchella aspinata or by the low diverse of Lingulina members. 

 

Almost entirely analysed samples contain low diversity; Fisher’s alpha diversity less than 5. 

Alas, within these low diversities, there are two samples recorded alpha diversity greater than 

5 which are MAG146 and MAG131.1. The assemblages with low diversity are typical 

characteristic of latest Rhaetian-earliest Early Sinemurian age. 
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Figure 6.3: Sedimentary log, relative abundance, species richness and Fisher’s alpha diversity of microfaunas from Magilligan Borehole and Tircrevan Burn exposure. 
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6.3.2 Tircrevan Burn 

 

Total of 175 foraminifera specimens and 178 ostracods specimens are extracted from two 

collected samples (TB4 and TB5); both are calcareous mudstones. Another three samples 

belong to the Tircrevan Sandstone Member are barren. These samples exhibit low to high 

diversity (3.33 to 14.47 Fisher’s alpha diversity); the foraminifera assemblages are more 

diverse (3.05-10.15 Fisher’s alpha diversity) than ostracods (0.71-4.75 Fisher’s alpha diversity). 

TB4 sample dominant by ostracods (347 specimens per 10 g) particularly from O. aspinata 

whereas the younger bed (TB5) abundant by foraminifera (1516 specimens per 10 grams) 

which numerous by Cornuspira liasina. 

 

 

6.4 Magilligan Borehole and Tircrevan Burn proposed biozonation 

 

6.4.1 Magilligan Borehole 

 

The biozones of the Waterloo Mudstone Formation in the Magilligan Borehole are interpreted 

based on first appearance (last downhole occurrence) and last occurrence (first downhole 

occurrence) of the index species (Table 6.1). Downhole contamination is not an issue in these 

samples as they are core material. The details of Magilligan biozonations are shown below: 
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Interval: 158 m-163.95 m 

Analysed sample: MAG161.7-MAG163.9 

Jurassic Foraminifera Biozone: cannot be assigned due to the absent of foraminifera 

Inferred age: latest Rhaetian-earliest Hettangian  

Magilligan indicator species: Ogmoconchella aspinata 

 

The oldest analysed samples from this interval are devoid of microfossils. The microfauna only 

observed in MAG161.7 sample where occurrence of monospecific is recognised; juveniles of 

Ogmoconchella aspinata. According to Boomer & Ainsworth (2009), Ogmoconchella aspinata 

ranges from latest Rhaetian (Late Triassic) to Early Sinemurian (Early Jurassic). In this study, 

the author interpreted the interval of being latest Rhaetian to very earliest Hettangian due to 

the typical characteristic of these age; very low diversity yet dominant by Ogmocnchella 

aspinata. 

 

The foraminifera absence cause the identification of JF biozone uncertain. However, the 

biozone perhaps Rhaetian-JF1 because it overlie by JF2 biozone. 

 

Interval: 76.69 m-158 m 

Analysed sample: 

Jurassic Foraminifera Biozone: JF2 (MAG76.69-MAG158) 

Inferred age: middle Hettangian  

Magilligan indicator taxa: Reinholdella planiconvexa, Paralingulina tenera collenoti and 

Ogmoconchella aspinata 
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The base of JF2 is defined by the inception (last downhole occurrence) of super-abundant 

Reinholdella planiconvexa. Copestake & Johnson (2014) described this important event as 

base of JF2 biozone (Planorbis Ammonite Chronozone). Magilligan JF2 is also marked by the 

common occurrence and consistency of Paralingulina tenera collenoti recorded from early to 

mid-part of JF2 biozone. For ostracods, Ogmoconchella aspinata remains present throughout 

this biozone. JF2 of Magilligan borehole is interpreted until MAG76.69; making this biozone 

81.31 m thickness.  

 

Interval: 19 m?- 76.69 m 

Analysed sample: MAG19-MAG70.22 

Jurassic Foraminifera Biozone: JF3 (MAG19-MAG70.22) 

Inferred Age: latest Hettangian-earliest Early Sinemurian 

Magilligan indicator species: Marginulina prima incisa, Mesodentalina matutina, 

Paralingulina tenera substriata and Ektyphocythere   

 

JF3 biozone lies between latest Hettangian-earliest Sinemurian age (Copestake & Johnson, 

2014). They stated that total range of Dentalina langi and common occurrence of 

Paralingulina tenera substriata determine the JF3 biozone but due to the absence of Dentalina 

langi in the Mochras Borehole, thus they used first appearance of Mesodentalina matutina as 

a marker of the base JF3 (Hettangian). The same approach applied in the Magilligan Borehole  

due to non-existence of distinctive Dentalina langi. Furthermore, another important JF3 

indicators such as Involutina liassica and Marginulina prima insignis also absent. 
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Table 6.1: Ranges of Magilligan Borehole stratigraphic and environmental foraminifera and 
ostracods species in relation to proposed biozonation.  
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Consequently, the base of Magilligan Borehole JF3 biozone is indicated by the first 

appearances (last downhole occurrences) of Mesodentalina matutina and Marginulina prima 

incisa at MAG70.22.  The useful marker Paralingulina tenera substriata observed too, but they 

appear infrequent since JF2 (mid Hettangian) and common within JF3 of Early Sinemurian age. 

The increases in abundance and diversity of the ostracod genus Ektyphocythere are recorded 

in this biozone particularly Ektyphocythere retia. The most significant appearance of this genus 

is marked in MAG65.35 and based on Boomer & Ainsworth (2009), Ektyphocythere retia only 

began to appear at the earliest Early Sinemurian. Thus, this concluded the Early Sinemurian 

age start from 65.35 m towards the top.  

 

 

6.4.2 Tircrevan Burn 

 

The continuation of the Early Jurassic sedimentary sequence recorded in the Magilligan 

Borehole can be observed at the Tircrevan Burn exposures approximately 1 km to the 

southeast of the Magilligan Borehole. From five collected samples, only two exhibit 

microfossils (Table 6.2).  

 

Analysed sample: TB4 and TB5 

Biozone: JF4  

Inferred age: early Sinemurian  

Tircrevan Burn indicator taxa: Marginulina prima incisa, Marginulina prima insignis  
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The samples observed are assigned to the bottommost part of the JF4 biozone and the 

Marginulina prima plexus are the only significant JF indicator recognised. These are 

determined by the common occurrence of Marginulina prima incisa and Marginulina prima 

insignis. Other important indicator taxa for JF4 such as Neobulimina bangae, Paralingulina 

tenera substriata and Involutina liassica are absent in above samples. Both species coincide 

with biostratigraphical important ostracods, Ogmoconcha hagenowi and Ogmoconchella 

aspinata. These osracods range up to Semicostatum Ammonite Chronozone of Early 

Sinemurian age (Boomer & Ainsworth, 2009). Both occurrences of foraminifera and ostracods 

biostratigraphy markers confirm the Early Sinemurian age; younger than those deposited in 

the Magilligan Borehole. 

  

 
 
Table 6.2: Ranges of stratigraphic and environmental indicators of Tircrevan Burn in relation with 
proposed biozonation. 
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6.5 Palaeoenvironmental analysis 

 

6.5.1 Magilligan Borehole 

 

The basal sample analysed (MAG179.43); dark grey mudstone contains only two species of 

foraminifera (Eoguttulina liassica and Paralingulina lanceolata) and most of the specimens are 

recorded from Eoguttulina liassica. Jones (2013) interpreted Eoguttulina as shallow marine 

genus. In addition, Nocchi and Bartolini (1994) described Eoguttulina liassica from Early 

Toarian sediments in Umbria Marhe Basin, Italy as opportunist species too. The absence of 

ostracods fauna and very sparse diversity of foraminifera in MAG197.43 proved Eoguttulina 

liassica as an opportunist species.  

 

The overlain beds (MAG175.1-MAG177.9) are Westbury Formation comprise fossiliferous 

black shales or mudstones with silty laminae. This succession was deposited during the 

continuing Rhaetian marine transgression (Warrington & Ivimey-Cook, 1992; Ainsworth & 

Riley, 2010) and formed due to the accumulation of organic matter under the dysaerobic 

conditions (Nichols 2009). Specifically, Allington-Jones et al. (2010) interpreted this formation 

as the product of anoxic lagoonal environment with some episodic storms based on trace 

fossils, sedimentary and geochemical evidences. As studied by Ainsworth & Riley (2010) based 

on the Westbury Formation of Kerr McGee 97/12-1 exploration well in offshore southern 

England, the organic-rich nature of the sediments with the presence of abundant dinocyst but 

devoid of microfossils demonstrated low energy and anoxic environment. The salinity changes 

in this shallow epeiric sea resulted on the mass mortality of bivalves and fish faunas in the 
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Westbury Formation beds (Mitchell, 2004). These explain the nonexistence of microfauna yet 

abundant with bivalve fossils and presence of fish tooth fossils (Appendix H and I) in these 

observed interval (MAG175.1-MAG177.9). The absence of microfossils continues in the 

younger beds; olive grey calcareous mudstone (MAG173.54) of the Westbury Formation.  

 

The younger sections (MAG163.95-MAG172) are the epicontinental sea deposition of Lilstock 

Formation which divided into two members; Cotham Member and Langport Member. 

Unfortunately, no core sample provided for this research.  

 

The continuation of sea-level rise during latest Triassic-Early Jurassic (Figure 6.4) resulted on 

the deposition of predominantly calcareous mudstone succession known as the Waterloo 

Mudstone Formation of the Lias Group. The oldest examined samples of this formation 

(MAG163.22 and MAG 163.9) are barren with microfauna. The microfossils only begin to 

discover in MAG161.7 yet has only low abundance (25 specimens per 10 grams) of ostracods, 

Ogmoconchella aspinata. The presence of Ogmoconchella aspinata reveals the extension of 

Late Triassic marine transgression (Boomer & Ainsworth, 2009), particularly inner shelf setting 

(Ainsworth, 1989). The colonisation of this taxon also indicates Ogmoconchella aspinata as an 

opportunistic species (Ainsworth 1989; Ainsworth & Boomer, 2001; Ainsworth & Riley, 2010).  

 

The sudden flood of thousands Reinholdella planiconvexa (45865 specimens per 10 grams) is 

noted from MAG158 (Figure 6.4). They are accompanied by abundant specimens of 

Ogmoconchella aspinata (1145 specimens per 10 grams) and moderate numbers of 

Paralingulina tenera plexus too (300 specimens per 10 grams). According to (Johnson, 1976), 
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Reinholdella planiconvexa lived at inner to middle shelf environment and the dominance of 

Reinholdella in low diverse assemblages reflected marine stagnant environment. Haynes 

(1981) and Hylton & Hart (2000) also described Reinholdella as a genus which can withstand 

poorly-oxygenated environments. This proved by the influx of this small foraminifera 

Reinholdella planiconvexa and the dominance of juvenile of Ogmoconchella aspinata in 

ostracods assemblage. Although Reinholdella planiconvexa documented until MAG126.12 

sample, their abundances decrease drastically (12-682 specimens per 10 grams) indicates the 

oxygen-level recovery. 

 

The microfossils abundances then drop starting from MAG122 until the youngest section 

MAG19 either caused by sea-level fall or unfavourable environment. However, among these 

low abundances, there are few samples abundant with microfaunas such as MAG112, 

MAG106.95, MAG85.63, MAG76.69 and MAG 65.35. Although these samples are abundant by 

microfaunas, the diversty still low diverse (less than 5 Fisher’s alpha index diversity) as the 

assemblages dominant by few taxa only. For instance, the dominance of Ogmoconchella 

aspinata in MAG112 and MAG76.69, which according to Ainsworth & Boomer (2001), Boomer 

& Ainsworth (2009) and Ainsworth & Riley (2010) this taxon is opportunistic and can tolerate 

in wide range environment. Even the foraminifera assemblages in MAG112 reflected the 

unfavourable setting based on the dominance of Nodosaria metensis among its group. 

Nodosaria is one of the genus that capable in having tolerant with suboxic environment 

(Jones, 2014). 
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The most distinctive assemblage can be observed in olive grey calcareous mudstone 

MAG106.95, where the assemblage only encompasses foraminifera, both calcareous and 

agglutinated benthic. The fauna is dominant by Spirillina tenuissima, Eoguttulina liassica and 

simple agglutinated taxa (Reophax sp. A and Trochammina canningensis). Simple agglutinated 

foraminifera are known as shallow marine taxa (Gordon, 1970). The dominance of Sprillina 

(Copestake & Johnson, 1981; Shipp & Murray, 1981) and Eoguttulina (Jones, 2013) also 

suggested shallow marine setting. Whereas, the abundant of opportunistic taxa; Eoguttulina 

(Nocchi & Bartolini, 1994) indicates oxygen shortage. This resulted on impoverish diversity. 

 

The abundant yet low diverse of Lagenida in MAG65.3 is an evidence of inner neritic 

environment (Brooke & Braun, 1972). Whereas the dominance of Ektyphocythere in ostracods 

fauna marks the improvement of bottom water conditions (Ainsworth & Boomer, 2001).  

 

These shallow marine setting also continue until the earliest Sinemurian (MAG19-MAG65.35) 

as their abundance and diversity decrease when the arenaceous materials increase (Appendix 

I). This phenomenon not just observed in the Magilligan samples but also from Ballinlea-1 

earliest Snemurian sample. 

 

 

6.5.2 Tircrevan Burn 

 

The shallow marine deposition continues to observe in the surface section from Tircrevan 

Burn. This anrenaceous bed are Tircrevan Sandstone Member, the only significant thick of 
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arenaceous sediment. (13 m) in the Waterloo Mudstone Formation Ths fine quartz-grained 

sandstone yield mud-drapes which indicates inter-tidal depositional setting. The overlying bed 

are typical Waterloo Mudstone facies, calcareous mudstones comprise mcirofaunas.  The 

younger samples studied; blueish calcareous mudstone encompasses rare diverse of 

microfaunas where the ostracods specimens recovered are greater than foraminifera.  Low 

diversity of foraminifera (Brooke & Braune, 1972) and the dominant of Ogmoconchella 

aspinata implied marine inner neritic environment (Ainsworth 1989; Boomer & Ainsworth 

2009). The microfaunas assemblages then increasing rapidly in the youngest sample collected; 

blueish calcareous mudstone (5th sample). The foraminifera are dominant by moderate 

number of Cornuspira liasina, while ostracods by Metacopina. This again indicates shallow 

marine environment which defined by the dominance of Cornuspira liasina which represents 

shallow marine environment, inner neritic (Jones, 1994). Therefore, the transgression 

continues gradually after the deposition of the Tircrevan Sandstone Member. 
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Figure 6.4: Stratigraphic summary, microfossils abundance, microfossils diversity, palaeoenvironment interpretation and oxygenation interpretation of the latest Triassic-Early Jurassic of Magilligan Borehole and Tircrevan 
Burn outcrop. 
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CHAPTER 7: 

Biostratigraphy, biozonation and palaeoenvironment of Northern Ireland Early Jurassic 

exposures 

 

 

7.1 Introduction 

 

Outcrop sampling was undertaken in Co. Antrim and Co. Londonderry to understand the 

distribution of Waterloo Mudstone Formation exposures across these counties. The selected 

localities (Figure 7.1) are Tircrevan Burn [C 70126 32552], Portrush [C 85725 41021], White 

Park Bay [D 02271 44184], Ballintoy Harbour [D 03625 45177], Kinbane Head [D 08951 43354], 

Minnis [D 33835 13695], Ballygalley [D 37901 07956] and Waterloo Bay [D 40786 03768]. 

Among these, White Park Bay (the youngest exposure of Early Jurassic sediments in Northern 

Ireland), Tircrevan Burn (the continuation of Early Jurassic sequence from subsurface beds; 

Magilligan boreholes) and Larne (the oldest exposure of Early Jurassic in Northern Ireland) are 

the most important exposures. Most of the observed sections yielded microfaunas for this 

study except for Minnis (absence of in-situ early Jurassic beds) and Portrush (sediments have 

been metamorphosed). The studied exposures discussed below except for Tircrevan Burn 

which is included together with the Magilligan borehole in Chapter 6. 
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Figure 7.1: Location of observed Waterloo Mudstone Formation exposures (TB: 
Tircrevan Burn [C 70126 32552], PB: Portrush [C 85725 41021], WPB: White Park Bay [D 
02271 44184], BLL: Ballintoy Harbour [D 03625 45177], KH: Kinbane Head [D 08951 
43354], MS: Minnis [D 33835 13695], BG: Ballygalley [D 37901 07956] and WB: Waterloo 
Bay [D 40786 03768]).    
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7.2 Materials and Lithologies 

 

The localities descriptions below are discussed in ascending stratigraphic order; from oldest 

to the youngest sections. 

 

 

7.2.1 Waterloo Bay, Larne  

 

The foreshore at Waterloo Bay [D 40786 03768], east coast Co. Antrim exposes Rhaetian to 

Sinemurian (Bucklandi Ammonite Chronozone) successions through the transition of the late 

Triassic Penarth Formation to the late Triassic Waterloo Mudstone Formation and Triassic-

Jurassic boundary (Mitchell, 2004; Simms & Jeram, 2007).  

 

However, during our fieldtrip, only Early Jurassic strata from northern part of Waterloo section 

is able to collect (LRN1). The sample is taken from a 2 m thick blueish-grey calcareous 

mudstone bed, the location is marked in Figure 7.2. Another best exposure in Waterloo Bay is 

the alternating beds of mudstones and limestones (Figure 7.3). 
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Figure 7.2: Sketch map of Late Triassic-Early Jurassic sections (dipping to the northwest at 20o-
30o) crop out on the foreshore at Waterloo Bay, Larne (after Ivimey-Cook, 1975 in Simms & 

Jeram, 2007). The red star is LRN1 sample location (Blueish grey calcareous mudstone). 
. 
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Figure 7.3: The alternating of limestone with mudstone at Waterloo Bay. Some part of the 
mudstone had been eroded.  
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7.2.2 Ballygalley  

 

The exposure at Ballygalley [D 37901 07956] is poor and very limited (Figure 7.4); just 2 m of 

blueish-grey calcareous mudstones (Figure 7.5) was recorded, yielding fossils of ammonites 

(Figure 7.6), bivalve (Figure 7.7), crinoid stems and reptile bone (Figure 7.8). Only a single 

sample is taken for further study (BLG1). 

 

 

 
 
Figure 7.4: The dark grey rocks on the foreshore are Waterloo Mudstone Formation,  while 
the   lighter rocks are Ulster White Limestone Formation. 
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Figure 7.5: Ballygalley outcrops. 

 

 

 
 

Figure 7.6: Jurassic ammonite found at Balleygalley, probably belongs to the Johnstoni 

Ammonite subchronozone. 
 



 

188 
 

 
 

Figure 7.7: Jurassic bivalve fossil (Gryphaea sp.) found at Ballygalley. 

 

 

 
 

Figure 7.8: Reptile bone discovered at Ballygalley. 
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7.2.3 Kinbane Head 

 

Very limited and poor outcrops (less than 1 m thick) exposed at the down cliff of Kinbane Head 

[D 08951 43354], not far from Ballycastle. The beds of blueish-grey mudstone (Figure 7.9) are 

soft and humid due to the contact of the sea water, thus just a sample bag was taken (KH1). 

 

 
 

Figure 7.9: Grey mudstone of Waterloo Mudstone Formation exposed at Kinbane Head. 
 

 

7.2.4 Ballintoy Harbour 

 

Early Jurassic outcrops yield ammonite and bivalve fossils are observed at the foreshore of 

Ballintoy Harbour [D 03625 45177]. The exposure just 1 m thick of bluiesh-grey mudstone, 

overlain by recent beach deposits (Figure 7.10), only a single sample was collected; BLT1. 
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Figure 7.10: Exposure of Waterloo Mudstone Formation at the foreshore of Ballintoy Harbour. 
The bed thickness is approximately 0.5 m. 

 

 

7.2.5 Portrush 

 

At Portrush [C 85725 41021], the Early Jurassic sediments have been metamorphised to 

hornfels facies by the Portrush Sill (Figure 7.11). No sample was taken from this locality, only 

few images of ammonites are captured during the visit (Figure 7.12-7.14). 

 

 
 

Figure 7.11: Lateral view of Waterloo Mudstone Formation at Portrush. 
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Figure 7.12: Ammonites from Raricostatum Ammonite Chronozone, Portrush. 
 

 

 
 

Figure 7.13: Ammonites from Raricostatum Ammonite Chronozone, Portrush. 
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Figure 7.14: Ammonites from Raricostatum Ammonite Chronozone, Portrush. 

 

 

 

7.2.6 White Park Bay 

 

The best-known, and youngest Early Jurassic sequences in Northern Ireland crop out at White 

Park Bay [D 02271 44184] (Figure 7.16), north Co. Antrim. The east sections are younger than 

west and dipping to the north-east, hence the samples are initially taken from west to the east 

with approximately every 20 m- 40 m distance (Figure 7.15). These successions are thin (less 

than 0.5 m thick) and discontinuously crop out as they are scattered along the intertidal zone.  

The Early Jurassic sections represent primarily by blueish-grey calcareous mudstone (Figure 

7.17) with occasional olive-grey calcareous mudstone (Figure 7.18) and blueish-grey 

mudstone. Some parts of the exposure (close to the WPB4 bed of N312oE/7) are intruded by 

a Paleogene dolerite sill (Figure 7.19); baked and chill zones are clearly observed herein. The 
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youngest Early Jurassic bed in WPB; 0.06 m thick of blueish grey calcareous mudstone is 

displayed at the Oweynamuck cliff (the end of east White Park Bay) and lies unconformably 

beneath (N330oE/48 boundary) 0.5 m thick Late Cretaceous Hibernian Greensands Formation 

which is overlain by about 10 m thick Late Cretaceous Ulster White Limestone Formation 

(Figure 7.20). The greensand bed is rich in phosphatised pebbles with glauconite and prevalent 

bivalve fossils, crinoid stem fragments and some re-worked Jurassic pebbles, while the chalks 

above have numerous flints. 

 

 

 
Figure 7.15: the localities of collected sample from White Park Bay; WPB1 [D 02271 44184], 
WPB2 [D 02396 44276], WPB3 [D 02607 44429], WPB4 [D 02708 44491], WPB5 [D02805 44624], 
WPB6 [D02870 44783], WPB7 [D 02890 44824]. 
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Figure 7.16: lateral view of White Park Bay captured from eastern end of the bay. 

 

 

 
 
Figure 7.17: Thin blueish-grey calcareous mudstone bed crops out on the beach floor (WPB3 
locality, White Park Bay). 
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Figure 7.18: Thin olive-grey calcareous mudstone bed crops out on the beach floor (WPB5 
locality, White Park Bay). 
 

 

 
 
Figure 7.19: Dolerite sills intruded Waterloo Mudstone Formation (WPB4 locality, White Park  
Bay). 
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Figure 7.20: The unconformable boundary of Early Jurassic Waterloo Mudstone Formation-Late 

Cretaceous Hibernian Greensands Formation at Oweynamuck, eastern end of White Park Bay (see 

figure 7.16 for locality). HGF: Hibernian Greensands Formation, UWLF: Ulster White Limestone 

Formation, WMF: Waterloo Mudstone Formation. 
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7.3 Biostratigraphy 

 

7.3.1 Waterloo Bay, Larne 

 

The only Larne sample included is a blueish grey calcareous mudstone situated at the north of 

the Waterloo Bay. The sample reveals 71 microfossil specimens (Figure 7.21) from 8 

calcareous benthonic foraminifera taxa and 6 marine ostracods species. The assemblages are 

moderate in abundance with ostracods approximately four times higher (83 specimens per 10 

grams) than foraminifera specimens (17 specimens per 10 gram). Even though, the ostracods 

numbers are greater than foraminifera, the foraminifera diversity (2.71 Fisher’s alpha 

diversity) is relatively higher than ostracods (1.59 Fisher’s alpha diversity) (Figure 7.22). 

Overall assemblages are dominated by Isobythocypris tatei (18 specimens) followed by almost 

the same number of Ogmoconchella aspinata and Ektyphocythere translucens. Meanwhile, 

foraminifera are dominant by low numbers of Lenticulina varians varians (just 4 specimens 

found). 

 

 
 
Figure 7.21: Abundance of foraminifera and ostracod recovered from the Larne outcrop sample. 
(WMF: Waterloo Mudstone Formation, L: Late, E: Early). 
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Figure 7.22: The species richness of Larne is plotted separately according to the groups, whilst 
the Fisher’s alpha diversity is displayed in total. (WMF: Waterloo Mudstone Formation, L: Late, 
E: Early). 

 

 

7.3.2 Ballygalley 

 

A total of 106 specimens (Figure 7.23), comprising 4 calcareous benthonic foraminifera species 

in association of 3 ostracods species was picked from a single sample. In this sample, the 

ostracods are more numerous than the foraminifera. Almost 98% (170 specimens per 10 g) of 

recovered microfossils belong to Podocopid ostracods; (mainly Ektyphocythere translucens) 

three times greater than Metacopina (Ogmoconchella aspinata). The foraminifera specimens 

discovered (6 specimens per 10 g) are entirely Lagenida members. Meanwhile, the diversity 

of both group is low, even the Fisher’s alpha diversity is just 1.68 (Figure 7.24) 
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Figure 7.23: Foraminifera and ostracod abundance recovered from the Ballygalley outcrop sample. 
(WMF: Waterloo Mudstone Formation).  

 

 

 

 
 
Figure 7.24: The species richness of foraminifera and oistracods recovered from Ballygalley sample and 
the total of Fisher’s alpha diversity. (WMF: Waterloo Mudstone Formation). 
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7.3.3 Kinbane Head 

 

Kinbane Head Early Jurassic sediment contains 117 microfossils (Figure 7.25) belong to 26 

calcareous benthic foraminifera taxa and 6 ostracods species. The moderate diverse (14.61 

Fisher’s alpha diversity) is noticed from the collected sample (Figure 7.26). These foraminifera 

dominance (five times greater than ostracods) in association with low diversity and abundance 

of ostracods specimens. The foraminifera recovered are mostly from order Lagenida with 

Lenticulina muensteri ssp. A as the highest specimens recorded, followed by Paralingulina 

tenera tenuistriata. The ostracod fauna is dominated by Ogmoconchella danica and 

Gammacythere ubiquita.  

 

 

 

 
 
Figure 7.25: Foraminifera and ostracod abundance recovered from the Kinbane Head outcrop sample. 
(WMF=Waterloo Mudstone Formation). 
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Figure 7.26: The species richness (number of species observed in the Kenbane Head studied section) is 
plotted separately according to the groups, whilst the Fisher’s alpha diversity is displayed in total. 
(WMF: Waterloo Mudstone Formation). 
 

 

7.3.4 Ballintoy Harbour 

 

Eighteen calcareous benthonic foraminifera species and 8 ostracod species of total 81 

specimens were observed from collected sample (Figure 7.27). The abundances of picked 

foraminifera and ostracods in this sample are almost equal but the foraminifera diversity is 

two times higher than ostracods. The foraminifera fauna is typically from the order Lagenida 

which rich by Lenticulina varians varians (10 specimens recovered); while ostracods mostly 

denoted by Podocopida; with the highest abundance of Pleurifera vermiculata (12 specimens 

recovered). The assemblage is diverse by foraminifera (species richness of 19) and total 

Fisher’s alpha of the microfaunas is quite high (Figure 7.28).  
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Figure 7.27: Foraminifera and ostracod abundances recovered from the Ballintoy outcrop sample. 
(WMF: Waterloo Mudstone Formation) 

 

 

 

 
 
Figure 7.28: Foraminifera and ostracods species richness together with Fisher’s alpha diversity 
recovered from Ballintoy examined sample. (WMF: Waterloo Mudstone Formation). 
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7.3.5 White Park Bay 

 

Examination of 7 outcrops samples resulted in recovery of 877 microfaunal specimens from 

64 calcareous benthonic foraminifera species and 22 ostracods species (Figure 7.29). 

Generally, the abundances of foraminifera are moderate to abundant (64-140 specimens per 

10 g) throughout the samples except for WPB1 and WPB5 where both are very abundant; 332 

specimens (per 10 g) and 335 specimens (per 10 g) respectively. By contrast, ostracods 

abundances are lower than foraminifera as they are only low to moderate abundance (1-35 

specimens per 10 g). Similar to the foraminifera abundance in WPB1 and WPB5, ostracod 

abundance was recorded as 213 specimens per 10 g for the former and 264 specimens per 10 

g for the latter. The total diversity for both groups are relatively diverse (9.32-18.11 Fisher’s 

alpha diversity) except for low diversity in sample WPB7 (3.47 Fisher’s alpha diversity) (Figure 

7.30). 

 

The foraminifera assemblages are almost entirely from the Order Lagenida; The most diverse 

genus is Prodentalina but abundant by Paralingulina. Less than 5% of foraminifera species are 

from other orders such as Spirillinida (genera Spirillina), Robertinida (genus Reinholdella) and 

Buliminida (genus Brizalina). Overall, the total foraminifera specimens recovered are almost 

three times higher than ostracods.  

 

Of the ostracod fauna, the Podocopina is the most diverse and abundant, more so than the 

Metacopina, yet the differences are not significant. The highest number of ostracods 
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specimens is recorded from Ogmoconchella danica, Gammacythere faveolata and 

Ektyphocythere perplexa. 

 

 

 
 
Figure 7.29: Foraminifera and ostracod abundances identified from the White Park Bay samples. 
(Pliens: Pliensbachian). 

 

 

 
 
Figure 7.30: The species richness and Fisher’s alpha diversity of White Park Bay microfossils. (Pliens: 
Pliensbachian). 
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7.4 Outcrops proposed biozonation 

 

7.4.1 Waterloo Bay, Larne 

 

Sample: LRN1 

Jurassic Foraminifera Biozone: cannot be assigned due to the absence of index foraminifera. 

Inferred age: latest Hettangian- Early Sinemurian 

Larne indicator species: Ektyphocythere translucens, Ogmoconchella aspinata and 

Ogmoconcha hagenowi 

 

The Larne sample did not yield any Jurassic foraminifera biozone indicators (Table 7.1). 

However, a broad age can be assigned based on the existence of biostratigraphically important 

ostracods; dominant Ektyphocythere translucens and common Ogmoconchella aspinata and 

rare occurrence of Ogmoconcha hagenowi. According to Boomer & Ainsworth (2009), 

Ogmoconcha hagenowi first appears within the early Angulata Ammonite Chronozone (latest 

Hettangian), whereas Ektyphocythere translucens becomes extinct within the Bucklandi 

Chronozone (earliest Early Sinemurian). Therefore, these suggest an age from latest 

Hettangian to earliest Early Sinemurian. 
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Table 7.1: Biostratigraphy data of examined Larne sample. 

 
 

7.4.2 Ballygalley 

 

Sample: BLG1 

Jurassic Foraminifera Biozone: cannot be assigned due to the absence of index foraminifera 

Inferred age: latest Hettangian-Early Sinemurian  

Ballygalley indicator species: Ogmoconchella aspinata and Ektyphocythere translucens 

 

The Ballygalley sample has very low diversity (Table 7.2); only 7 species (3 ostracod, 4 

foramininfera), abundant Ektyphocythere translucens with supplementary Ogmoconchella 

aspinata. The absence of Hettangian foraminifera markers, such as Paralingulina tenera 

collenoti (JF1 marker, earliest Hettangian) or Reinholdella planiconvexa (JF2 marker, mid 

Hettangian) cause the foraminifera biozonation assignation impossible. Yet, the age can be 

determined by the presence of Ektyphocythere translucens and Ogmoconchella aspinata, the 

former ranges from the Planorbis Ammonite Chronozone (very earliest Hettangian) to the 

middle Bucklandi Ammonite Chronozone (very earliest Sinemurian), whilst the latter ranges 

from the latest Rhaetian (Late Triassic) to uppermost Semicostatum Ammonite Chronozone 
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(Early Sinemurian; Boomer & Ainsworth, 2009). The sample mostly likely from latest 

Hettangian to earliest Sinemurian. 

 

 
 

Table 7.2: Biostratigraphy data of examined Ballygalley sample. 

 

 

7.4.3 Kinbane Head 

 

Sample: KH1 

Jurassic Foraminifera Biozone:  JF8  

Inferred age: Late Sinemurian  

Kinbane Head indicator species: Marginulina prima aspinata, Marginulina prima interrupta, 

Mesodentalina matutina, Astacolus speciosus, Ogmoconchella danica, Ogmoconchella 

mouhersensis and Ogmoconcha eocontractula. 

 

The foraminifera assemblage of Kinbane Head is relatively abundant but mostly long-ranging 

species (Table 7.3). Of the 16 species present, 4 foraminifera species are JF biozone markers; 
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Marginulina prima interrupta, Marginulina prima spinata, Mesodentalina matutina and 

Astacolus speciosus. The occurrences of Marginulina prima spinata and Marginulina prima 

interrupta suggested the sample to be JF8 biozone as the inception of these taxa is at the base 

JF8. Meanwhile, the common occurrence of Astacolus speciosus and Mesodentalina matutina 

reflect that this sample must not be younger than Late Sinemurian because, based on 

Copestake & Johnson (2014), the last occurrence of these species are at the top of JF8 (Late 

Sinemurian-Early Pliensbachian boundary). Therefore, the sample range within JF8. 

 

The occurrence of Late Sinemurian ostracods; Ogmoconchella danica, Ogmoconchella 

mouhersensis, Ogmoconcha eocontractula supports this age definition.  

 

 

 
 

Table 7.3: Range chart of studied Kinbane Head sample. 
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7.4.4 Ballintoy Harbour 

 

Sample: BLT1 

Jurassic Foraminifera Biozone:  JF8  

Inferred age: latest Late Sinemurian  

Ballintoy indicator species: Ichthyolaria terquemi squamosa, Marginulina prima spinata, 

Pleurifera plicata and Ektyphocythere perplexa 

 

The Ballintoy section is interpreted as JF8 biozone based on the presence of Marginulina prima 

spinata and Ichthyolaria terquemi squamosa (Table 7.4). Both species first appear at the base 

of JF8 biozone (Copestake & Johnson, 2014). The co-occurrence of typical Late Sinemurian 

ostracods especially Pleurifera plicata and Ektyphocythere perplexa supported the inferred 

age. 

 

Furthermore, Reid & Bancroft (1986) described and corrected Ammonite macdonnelli from 

Portlock’s Larne fossils collection as Leptechiosceras macdonnelli from Ballintoy and this 

species defined the Macdonnelli Ammonite Subchronozone of Raricostatum Ammonite 

Chronozone. In particular, JF8 ranges from end Oxynotum Ammonite Chronozone to 

Raricostatum Ammonite Chronozone and Macdonnelli Ammonite Subchronozone of the 

Raricostatum Ammonite Chronozone is equivalent to the mid JF8 (Copestake & Johnson, 

2014), hence this supports author suggestion of the age and biozonation of the Ballintoy 

sample.    
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Table 7.4: Range chart of Ballintoy studied sample. 

 

 

7.4.5 White Park Bay 

 

Samples: WPB1-WPB5 

Jurassic Foraminifera Biozone:  JF8  

Inferred age: latest Late Sinemurian  

WPB indicator species: Nodosaria issleri, Ichthyolaria terquemi squamosa, Marginulina prima 

spinata, Marginulina prima interrupta, Mesodentalina matutina and Gammacythere 

faveolata 

 

Nodosaria issleri is restricted to the Late Sinemurian, ranges from JF6 upwards into top JF8 

biozone (Obtusum Ammonite Chronozone-Raricostatum Ammonite Chronozone; Copestake 

& Johnson, 2014). The last occurrence of Nodosaria issleri in White Park Bay documented in 

WPB3 defined top JF8 (Table 7.5). However, in younger bed (WPB5) is notable in containing 
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another top JF8 marker; last occurrence of common Mesodentalina matutina. Consequently, 

the definition of top JF8 marked at WPB5. The co-occurrence of other JF8 representatives; 

Ichthyolaria terquemi squamosa, Marginulina prima spinata and Marginulina prima 

interrupta supported this conclusion as these species first appear at the base of JF8.   

 

The ostracod fauna comprises Late Sinemurian taxa such as Ogmoconchella danica, 

Ogmoconchella mouhersensis, Ogmoconcha eocontractula and Ektyphocythere perplexa 

throughout the biozone. The most distinctive occurrence noted in WPB5 as Gammacythere 

foveolata is recorded abundantly and dominates throughout the samples. In Boomer & 

Ainsworth (2009) range chart, Gammacythere foveolata ranges from very latest Sinemurian 

to Early Pliensbachian. 

 

Wilson and Manning (1978) stated that at the western end of WPB (a small stream called 

Lemnagh Burn) exhibits representative of the Raricostatum Ammonite Chronozone such as 

Crucilobiceras sp., Gemmellaroceras (Tubellites) tubellus (Simpson), Leptechioceras sp., 

Paltechioceras boehmi (Hug), and Paltechioceras sp. In particular, Leptechioceras indicates the 

Leptechioceras macdonnelli Subzone. The Raricostatum Ammonite Chronozone faunas 

include Gemmellaroceras tubellus (Simpson) and Gemmellaroceras sp. recorded towards the 

eastern end of WPB; at the base of a small waterfall (Wilson & Manning, 1978). Even Mitchell 

(2004) described mid WPB to eastern end of the bay (right before Oweynamuck) belong to 

the Macdonnelli Subchronozone of the Raricostatum Ammonite Chronozone. No older 

chronozone had been mentioned by Wilson & Manning (1978) or Mitchell (2004), hence the 
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WPB1-WPB5 sections discussed above only confined to the Raricostatum Ammonite 

Chronozone (range from mid to end JF8 biozone).    

 

A microfaunal study of WPB had been conducted by McGugan (1965). The sample he 

examined was collected from small east-facing stream bank located almost at the centre of 

WPB and not precisely in-situ. The sample recovered was dominated by members of the 

Lagenida such as Marginulina bergquisti Tappan and Marginulina spp. (=uncoiled form of 

Lenticulina muensteri muensteri), Frondicularia lustrata Tappan (=Ichthyolaria terquemi 

bicostata), F. sulcata Bornemann (=Ichthyolaria terquemi sulcata) and Lingulina tenera 

Bornemann (=Paralingulina tenera tenera). McGugan concluded this to be Angulata 

chronozone based on Barnard (1956, 1957) claimed that the occurrences of variants 

Frondicularia sulcata Bornemann and Lingulina tenera Bornemann as representative of 

Angulata Ammonite Chronozone. This proposed chronozone by McGugan is definitely wrong 

as no older bed found in WPB by any authors. 

 

 
 

Table 7.5: Range chart of stratigraphic and environmental markers of examined White Park Bay 
samples. (Pliens: Pliensbachian). 
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Samples: WPB6-WPB7 

Jurassic Foraminifera Biozone:  JF9  

Inferred age: earliest Early Pliensbachian 

WPB indicator species: Mesodentalina matutina, Marginulina prima spinata, Ogmoconchella 

gruendeli 

 

The base JF9 indicator; consistent or common occurrence of Vaginulinopsis 

denticulatacarinata (Copestake & Johnson, 2014) is absent in two youngest WPB studied 

samples. This biozone can only be suggested based on the low occurrence of Mesodentalina 

matutina (only 2 specimens discovered in each sample). The Late Sinemurian-Pliensbachian 

species; Marginulina prima spinata, and ostracods Ogmoconchella gruendeli and 

Gammacythere faveolata continue to occur in this biozone. Moreover, the decline in 

abundance and diversity of both microfauna groups are typical events of Early Pliensbachian 

observed in Ballinlea-1 Borehole to the east. 

 

The thin exposure of Early Jurassic sediments at the base of the cliff under Cretaceous strata 

at the eastern end of WPB (Oweynamuck, a small promontory) encompasses ammonites and 

bivalve faunas which probably belong to the Raricostatum Chronozone (Wilson & Manning, 

1978). However, this chronozone is not confirmed due to the presence of ammonite 

Gemmellaroceras tubellum and Oxynoticeras sp. juv which range up into the Jamesoni 

Chronozone (Wilson & Manning, 1978). Contrary to Wilson & Manning’s (1978) chronozone 

proposal, Charlesworth (1935, 1963) stated that the Early Jurassic beds (Waterloo Mudstone 

Formation) at White Park Bay reaches as high as the Davoei Ammonite Chronozone (Early 
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Pliensbachian). Whilst, Mitchell (2004) documented the youngest chronozone as Valdani 

Subchronozone of the Ibex chronozone which is situated about 60 m NNW from Early Jurassic-

Late Cretaceous boundary (WPB7). This Ibex Chronozone mentioned by Mitchell (2004) was 

not collected during our fieldtrip. 

 

 

7.5 Palaeoenvironmental analysis 

 

The Hettangian samples from Ballygalley and Larne have abundant ostracods but are low 

diversity in both ostracods and forminifera, similar to Hettangian strata in studied boreholes. 

The Hettangian microfaunal diversity is still relatively low compared to the Sinemurian due to 

the recovery from Tr-Jr mass extinction . In Larne sample, Isobythocypris elongata and 

Ogmoconchella aspinata dominate the assemblages. The dominance of Isobythocypris may 

have denoted slightly lower oxygen level on the sea floor of shallow marine setting (Ainsworth 

& Boomer, 2001), whereas Ogmoconchella aspinata which is commonly abundant throughout 

NW Europe Hettangian sediments are opportunistic species and often occur in very high 

abundance in newly established niches (Boomer & Ainsworth, 2009). However, at Ballygalley, 

the abundance and dominance of Ektyphocythere translucens indicates the improvement of 

bottom water conditions (Ainsworth & Boomer, 2001).  

 

The dominance and diversity of Lagenida in the Kinbane Head and Ballintoy Late Sinemurian 

samples and the White Park Bay Late Sinemurian-Early Pliensbachian sequences are ascribed 

wider range of normal marine settings; both in oxygenation and salinity (Nagy et al., 1990, 
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Ainsworth & Boomer, 2001, Nagy et al., 2010) and also contain typical constituents of inner 

shelf environments (Barnard, 1948; Ainsworth & Boomer, 2001). 

 

Albeit these are diverse faunas, the youngest WPB Early Jurassic bed (WPB7) exhibits low 

diversity in both foraminifera and ostracods; only 3.47 alpha diversity. In modern faunas, an 

alpha diversity less than 5 suggests a restricted setting, either low salinity or low oxygen (Nagy 

et al., 2010). The sparse microfaunal abundance and diversity observed in the Early 

Pliensbachian facies of offshore Ireland too (Ainsworth, 1987, 1990; Boomer & Ainsworth, 

2009) which are described as shallow marine facies particularly nearshore shelf with 

dysaerobic bottom waters conditions. The remarkable drop of both abundance and diversity 

in Early Pliensbachian sediments, also noted from the offshore Inner Hebrides, west Scotland 

by Ainsworth & Boomer (2001) which are interpreted as inner to mid shelf depositional 

settings with confined water circulation. 
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Chapter 8 

Microfaunas comparison 

 

8.1 Introduction 

 

At north Co. Antrim, the Ballinlea-1 boreholes is situated in the Rathlin Basin near to the Tow 

Valley Fault, whilst Magilligan Borehole was drilled within Lough Foyle Basin next to the Foyle 

Fault. The Carnduff-1 borehole is situated in the Larne Basin; eastern Northern Ireland. 

 

Of these, Ballinlea-1 proved the thickest sequence of the Waterloo Mudstone Formation (600 

m), while Magilligan and Carnduff-1 are about 163 m and 156 m respectively (Figure 8.1). The 

stratigraphical ranges involved vary; Ballinlea-1 ranges from the earliest Hettangian to earliest 

Lower Pliensbachian, Magilligan and Carnduff-1 from the Rhaetian to earliest Lower 

Sinemurian. Although the Waterloo Mudstone Formation at Magilligan is thinner than at 

Ballinlea, the thickest Hettangian strata belong to the former (Figure 8.1).  

 

In the Magilligan and Carnduff-1 boreholes, the Waterloo Mudstone Formation conformably 

overlies the Lilstock Formation, Penarth Group. However, at Ballinlea this differentiation is 

less clear due to the nature of the cuttings but it is thought that the Waterloo Mudstone 

Formation may rests unconformably on top of a short Penarth Group interval which overlies 

the Mercia Mudstone Group. The latest Rhaetian to early Jurassic facies in these three 

boreholes are basically the same; rhythmically alternating calcareous mudstone and   

limestone with variable amounts of mudstone; typical of the Waterloo Mudstone Formation.
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Figure 8.1: Correlation of lithostratigraphic logs of Late Triassic and Early Jurassic sequences of Ballinlea-1, Magilligan and Carnduff-1 boreholes. 
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8.2 Microfaunas of Waterloo Mudstone Formation, Lias Group 

  

The microfaunas assemblages are mostly calcareous benthonic foraminifera and ostracods; 

dominant by Lagenida and Metacopina members respectively. The agglutinated foraminifera 

are rarely recovered from the Northern Ireland Waterloo Mudstone Formation. However, a 

sample from Magilligan Borehole (MAG106.95) has the greatest agglutinated foraminifera 

specimens compared to other boreholes (refer to Table 6.1).  

 

8.2.1 Latest Triassic to Hettangian events 

 

The latest Rhaetian-Hettangian microfossil assemblages from Ballinlea-1, Magilligan and 

Carnduff-1 have dominant representatives of the Order Lagenida (except for abundant 

Robertinida, Miliolida and Spirillinida in some sections) and ostracods of the Metacopina 

(particularly the Ogmoconchella aspinata and Ogmoconcha hagenowi). The similarities and 

dissimilarities between these boreholes are discussed further below. 

 

The influx of thousands of Reinholdella planiconvexa (1231 specimens per 10 grams) at 

Carnduff-1 can be correlated with the Magilligan borehole (45865 specimens per 10 grams). 

Although this flood is continued in younger beds of Carnduff-1 (Figure 5.7), the numbers 

decrease to hundreds (110-200 specimens per 10 grams). Even though Ballinlea-1 does not 

have these high abundances, hundreds of specimens (210 specimens per 10 grams) are 

documented. The influx of Reinholdella is a typical bioevent in the Northwest Europe 

Hettangian sediments, in which Copestake & Johnson (2014) used as biostratigraphical 
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marker; JF2 base indicator (Johnstoni Subchoronoze of Planorbis Ammonite Chronozone). 

Hence, the inception (last downhole occurrence) of common Reinholdella planiconvexa in 

Ballinlea-1 and Magilligan boreholes mark the base of JF2 biozone. However, the records of 

Psiloceras sp. in CRN313.4 (which above the first appearance of abundant R. planiconvexa) 

suggests the first appearance of influx R. planiconvexa at Carnduff-1 occur earlier; in the latest 

Rhaetian, not within Hettangian as in Ballinlea-1 and Magilligan boreholes. This shows that 

this may not be synchronous across Northern Ireland nor may it be the same as age as 

Copestake & Johnson (2014) event as their abundant and dominance occurred due to the 

confined environment. The earlier flood of the Reinholdella planiconvexa is most likely due to 

the local environmental change in the Larne Basin (Carnduff-1). 

  

Another distinctive event in Hettangian strata of those boreholes are the occurrence of 

agglutinated foraminifera. Among these three boreholes, only Magilligan contains a significant 

number of agglutinated foraminifera (53 specimens per 10 grams), however they are just from 

a single sample (MAG106.95). This kind of abundance not been observed from any age of any 

analysed localities.  

 

8.2.2 Comparison of Early Sinemurian records 

 

The Early Sinemurian sediments were deposited in all three boreholes, but the complete 

sequence only documented in Ballinlea-1. The Magilligan and Carnduff-1 only exhibit the 

earliest Early Sinemurian successions. 
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Faunal dissimilarities between Carnduff-1 and another two boreholes are noted in the earliest 

Early Sinemurian beds; the dominance of Cornuspira liasina in the low diverse fauna only 

occurs in Carnduff-1. The dominance of this species denotes shallow marine; inner neritic 

environment (Jones, 1994). Even though this shallow marine taxon is not found in the 

equivalent age of Ballinlea and Magilligan Boreholes, this shallow marine taxon was dentified 

from the examined Tircrevan Burn exposure (continuation sequence of subsurface 

Magilligan).  

 

 

8.3 Comparisons of biostratigraphical microfossils with adjacent region 

 

The youngest Northern Ireland Early Jurassic strata are earliest Early Pliensbachian in age, 

recovered from the Ballinlea-1 Borehole (Figure 8.3). Many of the nearest records from 

adjacent basins reach Mid-late Toarcian age such as the Cardigan Bay Basin (Copestake & 

Johnson, 2014), Portland-Wight Basin (Ainsworth et al., 1998a, 1998b; Ainsworth & Riley, 

2010), and West Ireland basins; Porcupine, Slyne, Erris and Donegal (Ainsworth, 1990) (Figure 

8.2). Yet, shorter age found in the Fastnet Basin, southwest Ireland (only up to Early Toarcian, 

Ainsworth, 1986) and offshore Inner Hebrides, west Scotland (up to Late Pliensbachian; 

Ainsworth & Boomer, 2001). The comparisons of microfaunas only limited to the Great Britain 

and Ireland sites as listed below (Table 8.1). 
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Figure 8.2: Location map of studied sites and their adjacent boreholes, outcrops and basins. (M: 
Magilligan Borehole; B: Ballinlea-1 Borehole; C: Carnduff-1 Borehole; 1: Tircrevan Burn; 2: White 
Park Bay; 3: Ballintoy; 4: Kinbane Head, 5: Ballygalley; 6: Waterloo Bay, Larne (this study). 7: 
Redcar. 8: North Cliffe, 9: Hotham (Lord, 1971); 10: Holwell Quarry, 11: Cloford Quarry 
(Copestake, 1982); 12: East Quantoxhead (Hylton, 1998); 13: Doniford Bay (Clémence et al., 
2010; Clémence & Hart, 2013); 14: Lyme Regis (Macfadyen, 1941; Barnard, 1949);  MF: Mochras 
Farm Borehole (Copestake & Johnson, 1981, 1989, 2014); W: Wilkesley Borehole, PL: Platt Lane 
Borehole, SP: Stowell Park Borehole, HL: Hill Lane Borehole, BR: Burton Row Borehole 
(Copestake & Johnson, 1981, 1989); Kerr McGee 97/12-1 (Ainsworth & Riley, 2010); English 
Channel (Ainsworth et al., 1998a, 1998b); L135/4-1 (Ainsworth & Boomer, 2001); Elf 55/30-1 
(Ainsworth & Horton, 1986); Fastnet Basin (Ainsworth, 1989); Donegal, Porcupine, Slyne and 
Erris Basins (Ainsworth, 1990)). 

 
  



 

222 
 

Site Country Author 
 

Mochras Borehole, Stowell Park Borehole, Burton 
Row Borehole, Hill Lane Borehole, Wikesley 
Borehole, Plate Lane Borehole 
 

Wales and 
England 

Copestake & Johnson, 
1981, 1989 

Mochras Borehole (Cardigan Bay Basin) Wales Copestake & Johnson, 
2014 
 

L134/5-1 well (Offshore Inner Hebrides) Scotland Ainsworth & Boomer, 
2001 
 

Kerr McGee 97/12-1 well (Portland-Wight Basin) English 
Channel, 
England 
 

Ainsworth & Riley, 
2010 

Lyme Regis (Dorset coast) South West 
England 
 

Macfadyen, 1941 

Lyme Regis (Dorset coast) South West 
England 
 

Barnard, 1949 

North Cliffe, Hotham and Redcar (Yorkshire) Northern 
England 
 

Lord, 1971 

East Quantoxhead (West Somerset) South West 
England 
 

Hylton, 1998 

Doniford Bay (West Somerset) South West 
England 

Clémence et al., 2010; 
Clémence & Hart, 
2013 
 

Cloford quarry and Holwell quarry (Somerset) South West 
England 
 

Copestake, 1982 

98/6-7, 98/6-8, 98/7-2, 98/11-1, 98/11-2, 98/11-3, 
98/11-4, 98/13-1, 98/16-2A, 98/16-1, 98/18-1, 
98/22-2, 98/23-1, 99/16-1, 99/18-1, 99/12-1, 
Lulworth Banks (Portland-Wight Basin) and 
Seabarn Farm, Radipole-1, Winterborne Kingston, 
Wytch Farm, Sandhills-1, Bottom Copse-1, 
Marchwood-1, Southampton-1, Chilworth-1, Hoe-
1, Crocker Hill-1, Portsdown-1, Portsdown-2, 
Horndean-1, Middleton-1, Humbly Groove 
(adjacent onshore) 

English 
Channel, 
England 

Ainsworth et al., 
1998a, 1998b 
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Elf 55/30-1 well (Fastnet Basin) Offshore 
Southwest 
Ireland 
 

Ainsworth & Horton, 
1986 

BP 56/26-1, BP 56/26-2, Cities Service 63/4-1, 
Cities Service 63/10-1, Deminex 56/21-1, Deminex 
56/21-2, Elf 55/30-1, Elf 64/2-1, Ranger 63/8-1, 
Texaco 56/22-1 (Fastnet Basin) 
 

Offshore 
Southwest 
Ireland 

Ainsworth, 1989 

Amoco 12/13-1A (Donegal Basin), Amoco 19/5-1 
(Erris Trough), BP 26/22-1A (North Porcupine 
Basin), Elf 27/13-1 (Slyne Trough), Gulf 26/21-1 
(Porcupine Bank) 
 

Offshore 
West 
Ireland 

Ainsworth, 1990 

 
Table 8.1: The adjacent boreholes and outcrops involved in microfaunas comparison discussed in this 
chapter  
 

 
 

8.3.1 Foraminifera bioevents  

 

The Ballinlea-1 yields a typical European Boreal Atlantic foraminiferal fauna which is 

dominated by calcareous benthic taxa and very scarce agglutinated taxa. These show very 

close affinities with Ireland and Great Britain boreholes Hettangian to Early Pliensbachian 

foraminifera especially from Mochras Borehole (Copestake & Johnson, 2014) and offshore 

Inner Hebrides (Ainsworth & Boomer, 2001). Similarities and differences are discussed below. 

Note that only stratigraphically and environmentally important markers are emphasized in 

this discussion.  

 

The latest Rhaetian to Early Pliensbachian biostratigraphical indicators proposed by Copestake 

& Johnson (2014) are widely occurred in NW Europe especially from the adjacent areas of 
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Mochras Borehole, Cardigan Bay Basin. The presence of these species in adjacent borehole, 

basins or exposures are summarised in Table 8.2 below. 

 

Indicator species 
of foraminifera 
biozonation 

Age, ammonite chronozone 
and ammonite 
subchronozone (based on 
Copestake & Johnson, 2014) 
 

Great Britain and 
Ireland boreholes, 
basins and exposures 

Northern 
Ireland 
sections  
(this study) 

Paralingulina 
tenera collenoti 

Late Rhaetian-Hettangian 
(Angulata Chronozone, 
Complanata-Depressa 
Subchronozone) 

Mochras, Stowell 
Park, Burton Row, Hill 
Lane, Wilkesley, Plate 
Lane boreholes 
(Copstake & Johnson, 
1981, 1989). 
 

Ballinlea-1 
Borehole, 
Carnduff-1 
Borehole, 
Magilligan 
Borehole. 

Reinholdella 
planiconvexa  

Rhaetian-Early Pliensbachian 
(Jamesoni Chronozone, 
Taylori Chronozone) 

Mochras Borehole 
(Copestake & 
Johnson, 2014); 
Offshore Inner 
Hebrides (named as 
Reinholdella spp. with 
Oberhausella; 
Ainsworth & Boomer, 
2001); 
Fastnet Basin 
(Ainsworth & Horton, 
1986); Doniford Bay 
exposure (Clemence 
et al., 2010; Clemence 
& Hart, 2013) 
 

Ballinlea-1 
Borehole, 
Carnduff-1 
Borehole, 
Magilligan 
Borehole. 
 

Ichthyolaria 
terquemi barnardi 

Hettangian (Planorbis 
Chronozone, Johnstoni 
Subchronozone-Angulata 
Chronozone, Depressa 
Subchronozone) 

Mochras Borehole 
(Copestake & 
Johnson, 2014); 
Portland-Wight Basin 
(English Channel; 
Ainsworth et al., 
1998a). 
 

Ballinlea-1 
Borehole. 

Planularia 
ineaquistriata 

Hettangian (Liasicus 
Chronozone, Portlocki 
Subchronozone)-Late 

Mochras Borehole 
(Copestake & 
Johnson, 2014); 

Ballinlea-1 
Borehole, 
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Sinemurian (Raricostatum 
Chronozone, Aplanatum 
Subchronozone) 

Portland-Wight Basin 
(named as Zone FJ3 in 
this basin; Ainsworth 
et al., 1998a); 
Kerr McGee 97/12-1, 
Portland Wight Basin 
(Ainsworth & Riley, 
2010); East 
Quantoxhead 
exposure (West 
Somerset; Hylton, 
1998); Dorset 
exposures 
(Macfadyen, 1941; 
Barnard, 1949);  
 

Magilligan 
Borehole, 
Carnduff-1 
Borehole, 
Ballintoy 
exposure. 

Dentalina langi Hettangian (Angulata 
Chronozone, Complanata 
Subchronozone) 

Portland-Wight Basin 
(English Channel; 
Ainsworth et al., 
1998a); Dorset 
exposure (Barnard, 
1949). 
 

Ballinlea-1 
Borehole. 

Marginulina prima 
insignis  

Hettangian (Angulata 
Chronozone, Complanata 
Subchronozone)-Late 
Pliensbachian (Spinatum 
Chronozone, Hawskerense 
Subchronozone) 

Mochras Borehole 
(Copestake & 
Johnson, 1989, 2014); 
Eastern Mendips 
exposures (Somerset, 
Copestake 1982). 
 

Ballinlea-1 
Borehole, 
Carnduff-1 
Borehole,  
Tircrevan 
Burn 
exposure. 
 

Marginulina prima 
incisa 

Hettangian (Angulata 
Chronozone, Complanata 
Subchronozone)-Late 
Pliensbachian (Spinatum 
Chronozone, Hawskerense 
Subchronozone).  

Mochras Borehole 
(Copestake & 
Johnson, 1989, 2014); 

Ballinlea-1 
Borehole, 
Carnduff-1 
Borehole, 
Magilligan 
Borehole, 
Tircrevan 
Burn 
exposure. 
 

Mesodentalina 
matutina 

Hettangian (Angulata 
Chronozone, Complanata 
Subchronozone)-Late 
Pliensbachian (Spinatum 

Mochras Borehole 
(Wales, Copesake & 
Johnson, 2014); East 
Quantoxhead 

Ballinlea-1 
Borehole, 
Carnduff-1 
Borehole, 
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Chronozone, Hawskerense 
Subchronozone) 

exposures (West 
Somerset; Hylton, 
1998); Eastern 
Mendips (West 
Somerset; Copestake, 
1982); Dorset 
(Barnard, 1949) 

Magilligan 
Borehole, 
White Park 
Bay 
exposure, 
Kinbane 
Head 
exposure, 
Ballintoy 
exposure, 
Tircrevan 
Burn 
exposure. 
 

Involutina liassica Rhaetian-Toarcian 
(Tenuicostatum Chronozone, 
Semicelatum Subchronozone) 

Mochras Borehole 
(Copestake & 
Johnson, 2014); 
Portland-Wight Basin 
(named as Zone FJ3 in 
this basin; Ainsworth 
et al., 1998a); 
Kerr McGee 97/12-1 
(Portland-Wight 
Basin; Ainsworth & 
Riley, 2010); 
offshore Inner 
Hebrides (Ainsworth 
& Boomer, 2001). 
 

Absent 

Paralingulina 
tenera substriata 

Hettangian (Planorbis 
Chronozone, Planorbis 
Subchronozone)–Lower 
Sinemurian (Bucklandi 
Chronozone, Conybeari 
Subchronozone) 

Mochras Borehole 
(Copestake & 
Johnson, 2014); East 
Quantoxhead 
exposures (West 
Somerset; Hylton, 
1998). 
 

Ballinlea-1 
Borehole, 
Carnduff-1 
Borehole, 
Magilligan 
Borehole. 
 

Neobulumina 
bangae 

Latest Hettangian (Angulata 
Chronozone, Complanata 
Subchronozone)-Late 
Sinemurian (Obtusum 
Chronozone, Obtusum 
Subchronozone) 

Mochras Borehole 
(Copestake & 
Johnson, 2014); 
Portland-Wight Basin 
(named as 
Neobulimina sp. 2 in 
this basin; Ainsworth 
et al., 1998a). 

Ballinlea-1 
Borehole. 
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Astacolus speciosus Hettangian (Liasicus 
Chronozone, Portlocki 
Subchronozone)-Late Jurassic 

Mochras Boreholes 
(Copestake & 
Johnson, 2014); East 
Quantoxhead 
exposures (West 
Somerset; Hylton, 
1998);  

Ballinla-1 
Borehole, 
Carnduff-1 
Borehole, 
White Park 
bay 
exposure, 
Kinbane 
Head 
exposure. 
 

Marginulina turneri Early Sinemurian (Turneri 
Chronozone) 

Mochras Borehole 
(Copestake & 
Johnson, 2014). 
 

Ballinlea-1 
Borehole. 

Vaginulina listi Hettangian (Angulata 
Chronozone, Complanata 
Subchronozone)-Early 
Bajocian 

Mochras Borehole 
(Copestake & 
Johnson, 2014);  
Fastnet Basin 
(Ainsworth et al., 
1989); Eastern 
Mendips exposure 
(Somerset, 
Copestake, 1982). 
 

Ballinlea-1 
Borehole; 
Ballintoy 
exposure. 

Paralingulina 
tenera 
subprismatica 
 

Early Sinemurian 
(Semicostatum Chronozone, 
Sauzeanum Subchronozone)-
Late Pliensbachian 
(Margaritatus Chronozone, 
Gibbosus Subchronozone) 
 

Mochras Borehole 
(Copestake & 
Johnson). 

Ballinlea-1 
Borehole; 
White Park 
Bay 
exposure. 

Astacolus 
semireticulatus 

Early Sinemurian 
(Semicostatum Chronozone, 
Scipionianum 
Subchronozone-Turneri 
Chronozone, Birchi 
Subchronozone) 

Mochras (Copestake 
& Johnson, 2014); 
Portland-Wight Basin 
(Ainsworth et al., 
1998a); 
Kerr McGee 97/12-1 
(Portland-Wight 
Basin, Ainsworth & 
Riley, 2010); 
Fastnet Basin 
(Ainsworth & Horton, 
1986).  
 

Absent 
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Reinholdella 
margarita 
margarita 

Sinemurian (upper 
Semicostatum Chronozone, 
Sauzeanum Subchronozone–
lower Obtusum Chronozone, 
Stellare Subchronozone) 

Mochras Borehole 
(Copestake & 
Johnson, 2014); 
Portland-Wight Basin 
(named as Zone FJ3 in 
this basin; Ainsworth 
et al., 1998a). 
 

Ballinlea-1 
Borehole. 

Vaginulinopsis 
exarata 

Hettangian-Late 
Pliensbachian 

Mochras Borehole 
(Copestake & 
Johnson, 2014); 
Inner Hebrides 
(Ainsworth & Boomer, 
2001). 
 

Absent 

Brizalina liasica  Late Sinemurian (Obtusum 
Chronozone, Obtusum 
Subchronozone)-Early 
Toarcian (Serpentinum 
Chronozone, Exaratum 
Subchronozone) 
 

Mochras Borehole 
(Copestake & 
Johnson, 2014). 
 

Ballinlea-1 
Borehole, 
White Park 
Bay 
exposure. 

Ichthyolaria 
terquemi 
squamosa 

Late Sinemurian (Oxynotum 
Chronozone, Oxynotum 
Subchronozone)–Early 
Toarcian (Tenuicostatum 
Chronozone, Semicelatum 
Subchronozone) 

Mochras Borehole 
(Copestake & 
Johnson); Dorset 
exposures 
(Macfadyen, 1941; 
Barnard, 1949) 

Ballinlea-1 
Borehole, 
White Park 
Bay 
exposure, 
Ballintoy 
exposure. 
 

Marginulina prima 
spinata 

Late Sinemurian 
(Raricostatum Chronozone, 
Raricostatum 
Subchronozone)-Early 
Toarcian (Serpentinum  
Chronozone, Exaratum 
Subchronozone) 
 

Mochras Borehole 
(Copestake & 
Johnson, 2014); Lyme 
Regis exposure 
(Dorset, Macfadyen, 
1941) 
 

Ballinlea-1 
Borehole, 
Ballintoy 
exposure, 
Kinbane 
Head 
exposure. 

Marginulina prima 
interrupta 

Late Sinemurian 
(Raricostatum Chronozone, 
Raricostatum 
Subchronozone)-Early 
Toarcian (Tenuicostatum 
Chronozone, Semicelatum 
Subchronozone).  

Mochras Borehole 
(Copestake & 
Johnson, 2014). 
 

Ballinlea-1 
Borehole, 
Kinbane 
Head 
exposure. 
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Reinholdella 
pachyderma 
humilis 

Late Sinemurian 
(Raricostatum Chronozone, 
Aplanatum Subchronozone)-
Early Pliensbachian (Jamesoni 
Chronozone, Jamesoni 
Subchronozone) 
 

Mochras Borehole 
(Copestake & 
Johnson, 2014). 
 

Ballinlea-1 
Borehole. 

Mesodentalina 
varians hauesleri 

Early Sinemurian (Turneri 
Chronozone, Birchi 
Subchronozone)-Middle 
Toarcian (Bifrons 
Chronozone, Crassum 
Subchronozone) 

Mochras Borehole 
(Copestake & 
Johnson, 1989, 2014), 
Fastnet Basin 
(Ainsworth, 1989), 
Portland-Wight Basin 
(Ainsworth et al., 
1998a), offshore Inner 
Hebrides Basin 
(Ainsworth & Boomer, 
2001) and Kerr 
McGee 97/12-1 
(Portland-Wight 
Basin, Ainsworth & 
Riley, 2010); Dorset 
exposure (Barnard, 
1949). 
 

Ballinlea-1 
Borehole, 
White Park 
bay 
exposure. 

Nodosaria issleri Late Sinemurian (Obtusum 
Chronozone, Obtusum 
Subchronozone-Raricostatum 
Chronozone, Aplanatum 
Subchronozone) 

Mochras Borehole 
(Copestake & 
Johnson, 1989, 2014), 
Fastnet Basin 
(Ainsworth, 1989), 
Portland-Wight Basin 
(Ainsworth et al., 
1998a), offshore Inner 
Hebrides Basin 
(Ainsworth & Boomer, 
2001) and Kerr 
McGee 97/12-1 
(Portland-Wight 
Basin, Ainsworth & 
Riley, 2010). 
 

Ballinlea-1 
Borehole, 
White Park 
Bay 
exposure. 

Paralingulina 
tenera occidentalis  

Late Sinemurian 
(Raricostatum Chronozone, 
Macdonnelli 
Subchronozone)-Early 

Mochras Borehole 
(Copestake & 
Johnson, 2014). 
 

Absent 
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Toarcian (Serpentinum 
Chronozone, Exaratum 
Subchrnozone).  
 

Vaginulinopsis 
denticulatacarinata 

Late Sinemurian (Obtususm 
Chronozone, Obtusum 
Subchronozone)-Early 
Pliensbachian (Davoei 
Chronozone, Figulinum 
Subchronozone) 
 

Mochras Borehole 
(Copestake & 
Johnson, 2014). 
 

Ballinlea-1 

Verneuilinoides 
mauritii 

Late Sinemurian? - Lower 
Pliensbachian? (Davoei 
Chronozone) 

Mochras Borehole 
(Copestake & 
Johnson, 1989, 2014); 
offshore Inner 
Hebrides (Ainsworth 
& Boomer, 2001). 
 

Absent 

 
Table 8.2: The important biostratigraphical taxa in Great Britain, Ireland and this study 

 

 
 
 
Although in general, the Northern Ireland Early Jurassic microfaunas are similar to adjacents 

region, there are still some obvious difference recorded between them.  One of them is the 

first appearance of flood Reinholdella planiconvexa in the Carnduff-1 Borehole, which came 

earlier than other places, this confirmed by the first occurrences of Planorbis sp. on it top bed. 

Copestake & Johnson (2014) described this bioevent as typical in the Northwest Europe 

Hettangian sediments (Johnstoni Subchoronoze of Planorbis Ammonite Chronozone). Due to 

the absence of ammonite data in Ballinlea-1 and Magilligan boreholes, the first appearance of 

flood Reinholdella planiconvexa in both boreholes are interpreted as proposed by Copestake 

& Johnson (2014); base JF2 biozone of Johnstoni Ammonite Subchronozone, Hettangian. 

 



 

231 
 

Another distinctive difference is the absent of important JF biozone markers in studied 

boreholes such as Involutina liassica, Astacolus semireticulatus, Vaginulinopsis exarata and 

Paralingulina tenera occidentalis. 

 

At the upper part of JF3 biozone (Angulata to Bucklandi Ammonite Chronozones), Involutina 

liassica occurs commonly or consistent in the Mochras Borehole (Copestake & Johnson, 1989, 

2014) but infrequent in the Portland-Wight Basin (named as Zone FJ3 in this basin; Ainsworth 

et al., 1998a), Kerr McGee 97/12-1 (Portland-Wight Basin; Ainsworth & Riley, 2010) and 

offshore Inner Hebrides (Ainsworth & Boomer, 2001). Unfortunately, not a single specimen of 

I. liassica is found in Ballinlea-1 or any other of examined Northern Ireland sections. This 

absence may be cause by unsuitable habitat or dissolution of their tests as they are aragonitic. 

 

The occurrence of important JF5 biozone marker; A. semireticulatus that described from the 

Mochras Borehole (Cardigan-Bay Basin; Copestake & Johnson, 2014), Portland-Wight Basin 

(Ainsworth et al., 1998a), Kerr McGee 97/12-1 (Portland-Wight Basin, Ainsworth & Riley, 

2010) and the Fastnet Basin (Ainsworth & Horton, 1986) are devoid in any Northern Ireland 

analysed samples. The other important JF5 marker is Vaginulinopsis exarata which numerous 

in the early of Semicostatum Ammonite Chronozone of Mochras Borehole (Copestake & 

Johnson, 2014) and very rare in offshore Inner Hebrides (Ainsworth & Boomer, 2001) also 

absence in Ballinlea-1. The cause for the absence of these two stratigraphic markers are 

uncertain. 
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The important Early Pliensbachian stratigraphic marker; P. t. occidentalis which recovered 

from Mochras Borehole (Copestake & Johnson, 2014) is not found from Ballinlea-1. This is 

probably due to the thin sequence of Ballinlea Early Pliensbachian sediments. However, the 

intermediate form of P. t. occidentalis and P. t. tenera does occur within Ballinlea ranges from 

the latest Sinemurian up to earliest Plienbachian sections.   

 

8.3.2 Ostracods bioevent 

 

The Ballinlea-1 latest Triassic ostracods fauna shows no direct correlation with Fastnet Basin, 

North Celtic Sea, Porcupine, Slyne, Erris and Donegal Basins due to the assemblage of marginal 

ostracods; Darwinula and Lutkevichinella in these Ireland basins (Ainsworth & Horton, 1986; 

Ainsworth et al. 1989; Ainsworth, 1989, 1990) being absent from the northern Irish sequences. 

These taxa are recorded throughout Hettangian of the Ireland basins above, whereas in 

Rathlin Basin (Ballinlea-1 borehole), Darwinula has not been found in any samples and only 

two specimens of Lutkevichinella hortonae have been recovered in the non-marine Ballinlea-

1 Collin Glen Formation (Mercia Mudstone Group). 

 

The latest Rhaetian to lowermost Early Sinemurian sediments of Northern Ireland Borehole 

(Ballinlea-1, Carnduff-1 and Magilligan) possess low diversity ostracod assemblage but 

abundant by Ogmoconchella aspinata, Ektyphocythere translucens and Ogmoconcha 

hagenowi. These taxa have a widespread geographical distribution, occurring throughout 

northwest Europe from strata of similar age. The nearest basins that can be highly correlated 

with this occurrence are Inner Hebrides (Ainsworth & Boomer, 2001), Cardigan Bay Basin 
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(Mochras Borehole) (Boomer, 1991), Kerr McGee 97/12-1 (Portland-Wight Basin, Ainsworth 

& Riley, 2010) and Portland-Wight Basin (Ainsworth et al., 1998a). There is a slightly 

contradictory fauna noticed from offshore west and southwest Ireland; recovered with 

abundant of O. serratostriata at Hettangian age together with high number of marginal genera 

such as Darwinula and Lutkevichinella (Ainsworth & Horton, 1986; Ainsworth, 1989, 1990). 

The existence of non-marine taxa in the Ireland Hettangian sediments indicates that Ireland 

was still apart of land during latest Rhaetian, contrary to the Northern Ireland and much of UK 

which shallow-marine environment was already developing. The marine ostracods O. 

ellipsoidea (O. aspinata synonym) only start to appear during latest Hettangian to the earliest 

Sinemurian (offshore west and southwest Ireland; Ainsworth & Horton, 1986; Ainsworth, 

1989, 1990).  

 

The diverse but declining abundance of Late Sinemurian ostracods assemblages at Ballinlea 

are still dominated by the Metacopina (typical NW Europe species) but different taxa; 

Ogmoconcha eocontractula, Ogmoconchella danica, Ogmoconchella mouhersensis, and 

Ogmoconchella gruendeli. The assemblages also become diverse by Podocopina such as 

genera Ektyphocythere, Gammacythere, Pleurifera, Isobythocypris, Paracypris and 

Nancythere. The similar occurences recorded in the offshore Inner Hebrides (Ainsworth & 

Boomer, 2001), Mochras Borehole (Boomer, 1991), Fastnet Basin (Ainsworth & Horton, 1986). 

Meanwhile in and the Kerr McGee 97/12-1, Portland-Wight basin, the Late Sinemurian has 

very low abundance and diversity of ostracods fauna (Ainsworth & Riley, 2010). The only  
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Figure 8.3: Latest Rhaetian to Early Jurassic sequences in Northern Ireland and England (Tr=Triassic; 
RH=Rhaetian; E. Sine=Early Sinemurian; L. Sine= Late Sineurian; E. Plien=Early Pliensbachian; L. 
Pliens=Late Pliensbachian; E. Toarcian=Early Toarcian; L. Toarcian=Late Toarcian). 

 

 

contrast is the presence of Lophodentina striata in the Mochras Borehole (Boomer, 1991) that 

is not found in Ballinlea-1 or even anywhere else.  

 

The Ballinlea-1 Early Pliensbachian ostracod abundance and diversity slightly drops due to 

relatively sea-level fall in the earliest Pliensbachian. The assemblages comprise common 

Metacopina such as rare Ogmoconchella danica, common and consistent of Ogmoconchella 

eocontractula and Ogmoconchella gruendeli. The Podocopina is diverse but occur 

sporadically. The similar pattern and Early Pliensbachian assemblages documented in the 
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Portland-Wight Basin (Ainsworth et al., 1998a), Kerr McGee 97/12-1 (Portland-Wight Basin, 

Ainsworth & Riley, 2010), offshore Inner Hebrides (Ainsworth & Boomer, 2001), Fastnet Basin 

and North Celtic Sea (Ainsworth & Horton, 1986). 
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Chapter 9 

Palaeogeography and palaeobiogeography summaries 

 

Gordon (1970) classified Early to Late Jurassic foraminifera into five types of assemblages which 

develop based on temperature controls and broad geotectonic-sedimentary environment. Three 

of these types are boreal shelf type assemblages, while the remaining two are Tethyan type 

assemblages. 

 

The Boreal Realm includes northern two-thirds of Europe, western interior region of North 

America, Russian platform, Sinai, Somaliland and few places in the southern hemisphere (Gordon, 

1970). Despite this, both Boreal and Tethyan assemblages do occur in border zones like Mexico, 

Switzerland and Austria (Gordon, 1970). The shelf assemblages indicate a shelf sea setting are 

close to the land that supplies coarse to fine terrigenous sediments and where the progression of 

carbonate deposition occur (Gordon, 1970). The three types shelf assemblages (Gordon, 1970) 

are summarised below: 

1) Nodosariid (now called as Lagenida) and Nodosariid-mixed assemblage (Nodosariid not 

less than one-fifth of all specimens and no other apparent calcareous foraminifera 

present). 

2) Calcareous benthonic species other than nodosariids (at least one quarter of all 

specimens). 
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3) Dominant of simple agglutinated assemblages such as Ammodiscus, Trochammina, and 

Reophax (agglutinated taxa at least four-fifths of overall specimens).  

 

Another two assemblages; complex agglutinated species assemblage and planktonic assemblage 

belong to the Tethyan Zone, associated with the Tethys Ocean. The Tethyan type assemblage is 

recorded from the Mediterranean, Middle East, Himalayas and Indonesian archipelago (Gordon, 

1970). These two assemblages populated since Early Jurassic but are best known from the Middle 

Jurassic to Late Jurassic. The Tethyan assemblages described by Gordon (1970) are: 

1) Dominant of complex agglutinated species such as Pseudopfenderina, Everticyclammina 

and Lituosepta. 

2) Planktonic assemblage.  Even though Gordon (1970) proposed this assemblage, he was 

doubting whether they are completely planktonic (holoplanktonic) or not. Previously 

Fuchs (1967, 1971, 1973, 1975, 1977) claimed that Triassic Oberhauserella as planktonic 

foraminifera origin, unfortunately after careful examinations by F. Rӧgl (Natural History 

Museum, Vienna), A. Gӧrӧg (Budapest, Hungary), Hart et al. (2002) and Hudson et al. 

(2009), they decided that this genus is a benthonic species which has flattened umbilical 

sides and entirely lack of the inflated chambers (Hart et al., 2002; Hudson et al., 2009). 

Nonetheless, based on Hart et al. (2002, 2003), Oberhauserella quadrilobata (one of 

planktonic taxa proposed by Fuchs and also association of Praegubkinella spp. from Wernli 

(1995) study) probably planktonic ancestor as they are more inflated yet remains benthic 

(or quasi-planktic) throughout their life. The morphological change in O. quadrilobata 
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prompted by early Toarcian oceanic anoxic event (Hart et al., 2002, 2003). In addition, 

Hudson et al. (2009) stated that the planktonic foraminifera first evolved on the shelf edge 

of the western Tethys after the global extinction of early Toarcian and right after a 

dysaerobic event in the Exaratum Subzone, the sea level highstand and the δ13C excursion. 

Later in Bajocian-Bathonian, the meroplanktonic (partially planktic) Conoglobigerina 

appeared, which possibly from evolution of Praegubkinella racemosa (Wernli, 1995) and 

Conoglobigerina are restricted to the northern side of the Tethys (Hart et al., 2002). 

Gordon (1970) stated that possibly Tethys was the homeland of the globigerinids in Late 

Bajocian-Lower Bathonian. He also concluded that later the planktonic migrated to the 

shelf of northern two-thirds of Europe based on Bignot and Guyader (1966) observation 

of 5% Globigerina within dominant benthic taxa from Oxfordian sediments in Le Havre 

constitute, northern France. The first appearance of planktonic foraminifera also 

discovered from the Oxfordian sections of Furzedown Clays, Dorset Coast, the species are 

Globuligerina oxfordiana, Haeuslerina helvetojurassica and Compactogerina sp. cf. C. 

stellapolaris (Oxford et al., 2002). Gordon (1970) suggestion about the migration of 

planktonic had supported by the evidence that Globigerina balakhmatovae in Late 

Bajocian-Early Bathonian, northeastern Caucasus is very resembled to Globigerina 

oxfordiana from the northern France (Bignot & Guyader, 1966) and Britain (Oxford et al., 

2002).   
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Different foraminiferal assemblage divisions were established by Basov & Kuznetsova (2000). 

They categorised Hettangian-Tithonian (Jurassic) foraminiferal assemblages into three divisions; 

Tethyan, Boreal-Atlantic and Arctic. The only difference of Basov & Kuznetsova (2000) 

classification with Gordon (1970) is the Boreal Realm assemblages (shelf type assemblage) which 

Basov & Kuznetsova (2000) recognised as two subdivisions; Boreal Atlantic Realm (e.g. Mochras 

Borehole, UK; Copestake & Johnson, 2014) and Boreal Arctic Realm (e.g. Barents Sea shelf, Russia; 

Basov et al., 2009). The Boreal Atlantic Realm is located at the south of Boreal Realm with the 

dominance of Lagenida and epistominiid association, whereas in the north, Boreal Arctic Realm 

yields Lagenida and ammodiscid association (agglutinated foraminifera as the dominant type). 

According to Nikitenko (2008), the deposition of sands, silts and clay in arctic sea resulted on 

predominant occurrence of agglutinated taxa (e.g. Ammodiscus, Glomospira, Glomospirella, 

Saccammina, and Trochammina) with occasional benthic foraminifera (e.g. Astacolus, Lenticulina, 

Pseudonodosaria, and Nodosaria). The arctic sea (such as middle Siberia, northern Alaska, Arctic 

Canada) have very contrast foraminifera assemblage to the Boreal Atlantic Realm because the 

former dominant by simple agglutinated form while the latter rich by benthonic calcareous form 

(Nikintenko, 2008). 

 

In the present study, the Northern Ireland Jurassic foraminifera are typical shelf assemblages, to 

be specific the European Boreal Atlantic Realm (situated at the northern hemisphere (Figure 9.1). 

This classification based on the predominant occurrence of Lagenida members (type one 

assemblage) throughout most of the studied sections. Yet, the type two shelf assemblage; 
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‘’calcareous benthonic species other than nodosariids’’ also recorded in several horizons. These 

non-nodosariid taxa such as Miliolida and Robertinida are sometimes notably abundant; for 

example, the flood of Robertinida (R. planiconvexa) in Hettangian of all three boreholes and the 

richness of Miliolida (Cornuspira liasina) in the earliest Sinemurian sections of Carnduff-1 

Borehole. Throughout this study, no samples showed ‘’dominant simple agglutinated 

assemblages’’ although a single sample from Magilligan Borehole (MAG106.96) has abundant 

simple agglutinated foraminifera. Yet they only constituted one third of the entire sample 

because the agglutinated species in MAG106.95 appeared together with abundant calcareous 

taxa such as Eoguttulina liassica and Cornuspira liasina. 

 

The Northern Ireland ostracod assemblages are mostly dominated by Metacopina such as 

Ogmoconchella aspinata, Ogmoconcha hagenowi, Ogmoconchella danica and Ogmoconcha 

eocontractula with additional diversity provided by the Podocopina particularly Ektyphocythere. 

These species occur at similar levels throughout the northwest Europe, such as in western 

Germany (Drexler, 1958); Yorkshire (England; Lord, 1971), Danish embayment (Denmark; 

Michelsen, 1975), Paris Basin (France; Donze, 1985) and Mochras Borehole (Wales; Boomer, 

1991). Furthermore, these species are not just common in NW Europe but also in few parts of 

southern hemisphere, Arias (2006) suggests the frequent occurrence of Ogmoconchella aspinata 

in Australian Hettangian, while Boomer & Ballent (1996) conclude that the northern hemisphere 

(Mochras Borehole) is linked with southern hemisphere (Argentina) through a proto-Atlantic 

rather than Tethyan seaway. This is also supported by the hypothesis of Arias (2006) which  
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Figure 9.1 the Palaeogeographic map during Early Jurassic together with location of Britain and 
Ireland (red box). (Scotese, 1997) 

 

 

suggested that throughout the Hettangian to Late Pliensbachian, the high degree of similarity 

between European ostracods assemblages and Argentina is high especially in the Early 

Pliensbachian.  

 

Moreover, northern Tethyan Late Triassic (latest Rhaetian)-Early Jurassic ostracods assemblages 

such as in Portugal, Spain, Turkey and Himalayas are not much different with northwest Europe 

(Lord, 1988). This close similarity also noticed within the Tethyan and the southern hemisphere. 

Within these three divisions, only arctic sea comprises contrast ostracods assemblage. This 
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proved by Nikintenko (2008) study; the ostracod assemblages in the Arctic (known from mid 

Siberia, northern Alaska and Arctic Canada) are very sparse compared to the abundant ostracods 

fauna in the Boreal Atlantic Realm; this rarity is likely due to unfavourable environments 

(Nikitenko, 2008).  
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Chapter 10 

Conclusion 

 

10.1 Introduction 

 

The examination of 142 samples from 9 different localities resulted in the recovery of 24,530 

foraminifera and 6,410 ostracods specimens. The specimens belong to 7 orders, 16 families, 29 

genera and 167 species of benthic foraminifera, whilst 69 ostracods species are from 4 suborders, 

14 families, 19 genera and 5 unknown affinity. The foraminifera assemblages consist almost 

exclusively calcareous benthic foraminifera dominated by the Lagenida, albeit a single sample 

from the Magilligan Borehole exhibits localised peaked agglutinated foraminifera. While, the 

most abundant ostracod specimens belong to the smooth-shelled Metacopina.  The most 

abundant species throughout the study is Paralingulina tenera plexus, but the profusion and 

dominance of other groups was also observed particularly within Hettangian strata.  For example, 

Miliolida (Cornuspira liasina), Robertinida (Reinholdella planiconvexa) and agglutinated (Reophax 

sp. and Trochammina canningensis).   

 

The picking process was undertaken throughout 63 µm to 500 µm fractions but chiefly the 

microfossils found from 125 -250 µm fraction. Smaller size fractions are crucial for the 

identification of small species and recognition of juvenile forms, especially in the discovery of 

important biostratigraphically taxa such as Reinholdella planiconvexa, Ichthyolaria terquemi 
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barnardi, Brizalina liasica, Paralingulina tenera plexus and the ostracod Nanacythere together 

with environmental markers like Ophthamlidium spp., Cornuspira liasina and Spirillina infima. The 

tests of microfossils are excellent to moderately well-preserved throughout most samples 

including aragonitic types. The only exception being those tests extracted from Carnduff-1 as they 

are often poorly preserved due to calcite overgrowth. This makes species classification difficult, 

especially Paralingilina tenera plexus as this group needs careful ribs examinations to 

differentiate them. 

 

 

10.2 Biostratigraphy and age of sediments 

 

The biostratigraphically valuable foraminifera permitted determination of Jurassic Foraminifera 

Biozones following the Copestake & Johnson (2014) scheme. The youngest biozone encountered 

is JF9a, recorded from two localities in North Co. Antrim, Ballinlea-1 Borehole and White Park Bay 

exposures. In this study, the most complete Northern Ireland Waterloo Mudstone Formation is 

from Ballinlea-1 which yields biozone JF1 to JF9a (Hettangian-Early Pliensbachian); followed by 

both shorter successions from Magilligan and Carnduff-1 boreholes (Rhaetian-JF3 of the latest 

Rhaetian to Early Sinemurian age). Even though WPB exposures (Mitchell, 2004) and Port More 

Borehole (Wilson & Manning, 1978; Warrington, 1997) had previously been considered to have 

their youngest sediments from Ibex Ammonite Chronozone (equivalent to the end JF9a-basal 

JF9b) of Early Pliensbachian age, the youngest sections interpreted in this research are of the 
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Jamesoni Ammonite Chronozone (JF9a biozone) of Early Pliensbachian age documented from 

WPB and Ballinlea-1 Borehole (see Chapter 4 and 7 for detailed discussions). Therefore, the 

Waterloo Mudstone Formation (Lias Group) in Northern Ireland spans the time range from the 

Late Rhaetian (Late Triassic) to Early Pliensbachian (Early Jurassic) and this study proved that 

Ballinlea has the most complete and thickest Early Jurassic strata. 

 

The investigation of Northern Ireland Waterloo Mudstone Formation exposures brings to the 

conclusion that younger sections; Late Sinemurian (Raricostatum Ammonite Chronozone) 

onwards are scattered in north Co. Antrim, whilst older sections (latest Rhaetian-Early 

Sinemurian) crop out along the eastern margin of Co. Antrim. In northern Co. Londonderry, to the 

west of Co. Antrim, this area composed exposures of Early Sinemurian age. Variations in the 

completeness of Early Jurassic beds preserved at the surface and subsurface resulted from 

structural events occurred between Pliensbachian and Cenomanian (Warrington, 1997) which 

included faulting (George, 1976; Fletcher, 1997 in Warrington, 1997), uplift (Simms & Jeram, 

2007), and pre-Cretaceous erosion (Broughan et al., 1989; Simms & Jeram, 2007). This is evident 

in boreholes sections represented by variable thickness and age.  

 

While Ballinlea-1 possesses the thickest succession of the Waterloo Mudstone Formation, the 

thickest documented Hettangian strata comes from the adjacent Magilligan Borehole. The 

Hettangian beds from Magilligan, Carnduff-1 and Ballinlea-1 are about 93 m, 90 m and 65 m thick 

respectively.  The differences in thickness are presumably due either differential sedimentation 
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rates because of slightly palaeodepth settings or greater degree of post-depositional compaction 

of the sediments. 

 

The widespread mudstone deposition cause by the Late Triassic progressive transgression permits 

the recovery of benthic microfauna following on from the global Triassic-Jurassic boundary mass 

extinction. Throughout latest Rhaetian to Hettangian, the microfauna diversity in the region of 

the UK and Ireland is generally low (alpha diversity usually less than 5), often monospecific or 

colonised by shallow marine species; Eoguttulina liassica or opportunistic taxa; Ogmoconchella 

aspinata.  The profuse occurrence of the small aragonitic taxon Reinholdella planiconvexa during 

the mid Hettangian reflects a stagnant marine environment as they are prone to low-oxygen 

condition at the sea-floor.  

 

 

10. 3 Palaeoenvironments 

 

The most widespread poor-oxygenated environments in Northern Ireland occurred during 

Hettangian age (Figure 10.1) and allowed the opportunistic species such as Reinholdella 

planiconvexa (Haynes, 1981; Bernhard 1986; Koutsoukos et al 1990; Boutakiout & Elmi, 1996; 

Hylton & Hart, 2000; xnSbbagasti & Ballent, 2002; Ballent et al., 2006) to colonise the ecology. 

However, local environmental conditions also affected the microfaunal assemblages, for instance, 

the abundant occurrence of simple agglutinated foraminifera (Reophax sp. and Trochammina 
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canningensis) and shallow type calcareous benthic foraminifera (Eoguttulina liassica and 

Cornuspira liasina) within latest Hettangian strata of Magilligan borehole denotes low sea-levels 

(Gordon, 1970; Jones, 1994; Jones, 2013). This significant numbers of simple agglutinated 

foraminifera only appeared in the Magilligan Borehole.  

 

During earliest Sinemurian, a shallow setting of deposition can be seen from the Tircrevan Burn 

exposure, Magilligan and Ballinlea-1 boreholes. The exposure comprises 13 m of the Tircrevan 

Sandstone Member; fine sandstone with mud drapes which indicates the marginal setting , tidal 

to sub-tidal (Nichols, 2009). While in Ballinlea-1 and Magilligan, the increase of quartz grains in 

the earliest Sinemurian cutting samples results from the influence of a shallow setting. This 

regional picture of lowstand at this time correlates with global relative sea-level drop in the 

earliest Sinemurian (refer to Figure 1.2 and Figure 1.3 from Chapter 1).   

 

From the mid Early Sinemurian to Early Pliensbachian, the relatively higher diversity of the 

microfaunas (the alpha index diversity greater than 5) particularly represented by members of 

the Lagenida indicates well-oxygenated outermost-inner to middle shelf, open marine 

environments (Nagy & Alve, 2010). However, during the Late Sinemurian some sediments 

indicate deeper environments, from outermost-middle to outer shelf. These are suggested by the 

abundant and dominance of deep water taxa such as Reinholdella pachyderma humilis (Johnson, 

1976), the genus Ophthalmidium (Jones, 2013) and species Brizalina liasica (Haynes, 1981; Jones, 

2013).  
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Another important event within Late Sinemurian is the hiatus and absence of the Oxynotum 

Ammonite Chronozone in southern England (Cope et al. 1980 in Boomer & Ainsworth, 2009) 

which is also reflected in this study where the Obtusum-Oxynotum Ammonite Chronozone (JF6-

JF7) are missing within the Ballinlea-1. Another Northern Ireland locality exhibits this event is in 

the Port More Borehole where the Obtusum and Oxynotum Ammonite Chronozes are missing 

within the borehole (Wilson & Manning 1978).  Hallam (1978, 1981) describes this event as 

regressive phase which prevailed throughout NW Europe. The species used to interpret the 

palaeoenvironments in this study are listed in Table 10.1  

 

Microfossil Abundant or dominant by 
species/genus 

Oxygen-
level/Palaeoenvironment  

Reference 

Foraminifera Reinholdella planiconvexa Opportunistic species 
 
 
 
 
 
Biotic stress 
 
Stagnant sea-bottom 
 
 
Withstand poorly-
oxygenated 
environments 
 
 
Inner to middle shelf 
environment 
 

Bernhard 1986 
Koutsoukos et al 1990 
Boutakiout & Elmi, 1996 
Sagasti & Ballent, 2002 
Ballent et al., 2006 
 
Clémence & Hart, 2013 
 
Brouwer, 1969 
Johnson, 1976 
 
Haynes, 1981 
Hylton & Hart, 2000 
 
 
 
Johnson, 1976 
 

Reinholdella Deep, open-marine, 
middle to outer shelf 
(below Aragonite 
Compensation Depth) 

Brouwer, 1969 
Johnson, 1976 
Hylton & Hart, 2000 
Jones, 2013 
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Reinholdella pachyderma  Outermost middle shelf 
or outer shelf 

Johnson, 1976 
 
 

Diverse of Lagenida 
members 

Favourable environment 
and normal marine inner-
mid shelf 

Nagy & Alve, 2010 
 
 
 
 

Low diverse of Lagenida 
member 
 

Inner neritic 
environment  

Brooke & Braun, 1972 

Paralingulina tenera plexus 
or elongated form of 
Lagenida 
 

Opportunistic species, 
adapt in confined 
environment 
 

Rey et al., 1994 
Reolid et al, 2012 

Astacolus speciosus Low-oxygen condition Reolid et al., 2012 
 

Uncoiled Lenticulina Adaptations to live near 
the sediment or water 
interface 
 

Haynes, 1981 

Nodosaria Tolerant with suboxic 
environment 

Jones, 2014 

 

Ophthalmidium Deep marine Jones, 2013 
 

Brizalina liassica Deep marine, outer shelf 
 
 
Ability to tolerate lower 
oxygen conditions 

Haynes, 1981 
Jones, 2013 
 
Boltovskoy, 1972 
 
 

Eoguttulina liassica Shallow marine 
 
Opportunistic species 

Jones, 2013 
 
Nocchi & Bartolini, 1994 
 

Cornuspira liasina Shallow marine (tropical 
carbonate setting), inner 
neritic 

Jones, 1994 
Haynes, 1981 
 
 

Spirillina Shallow marine Copestake & Johnson, 1981 
 
Shipp & Murray, 1981 
 

Reophax Shelf sea setting Gordon, 1970 
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Trochammina canningensis Sehlf sea setting Gordon, 1970 
 
 

Ostracods Ogmoconchella aspinata Tolerate wide range 
environment 
 
Opportunistic species 
 
 
Inner shelf 

Boomer & Ainsworth, 2009 
 
Ainsworth, 1989 
Ainsworth & Boomer,2001 
Ainsworth & Riley, 2010 
 
Ainsworth, 1989 
 

Isobythocypris Slightly lower oxygen 
level, shallow marine  

Ainsworth & Boomer, 2001 
 
 

Ektyphocythere translucens Improvement of bottom 
water 

Ainsworth & Boomer, 2001            
 
  

 
Table 10.1 The Early Jurassic foraminifera and ostracods palaeoenvironmental indicators recovered from 
Northern Ireland analysed samples. 
 

 

 



 

251 
 

 

 

 

 

Figure 10.1: Summary and correlation of lithostratigraphy logs, Fisher’s alpha diversities, palaeoenvironment interpretations and oxygenation interpretations of studied localities; both boreholes and 

outcrops. MM: Mercia Mudstone Formation, CG: Collin Glen Formation. (the bigger version of this figure is folded inside the envelop attached).
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10.4 Recommendation for further study: 

 

- The detailed study of ammonites from Carnduff-1 (in progress) and Magilligan core 

samples together with exposures are necessary to resolve the problem in the 

biozonation or age assignation either cause by early appearance or absence of 

biostratigraphical benthic micro-organism. 

 

- Conducted higher resolution (every 2 m or 5 m depending on the samples avaibility) 

microfaunas analysis to fill in gaps in the data especially the Triassic-Jurassic 

boundary and age or biozonation transition. 

 

- Conducted bulk isotopes of core samples; Carnduff-1 Borehole (in progress for 

publication) and Magilligan Borehole. 
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Figure A 

 

1. Dentalina langi Barnard, Ballinlea-1 Borehole BAL845, lateral view, height 1540 µm, width 

310 µm, diameter of aperture 90 µm. 

 

2. Ichthyolaria terquemi squamosa (Terquem & Berthelin), Ballinlea-1 Borehole BAL425, 

lateral view, height 559 µm, width 178 µm. 

 

3.  Marginulina aff. turneri Copestake & Johnson, Ballinlea-1 Borehole BAL580, lateral view, 

height 626 µm, width 198 µm. 

 

4. Marginulina sherborni Franke, Ballinlea-1 Borehole BAL425, lateral view, height 889 µm, 

width 230 µm. 

 

5. Marginulina prima incisa Franke, Ballinlea-1 Borehole BAL540, lateral view, height 622 µm, 

width 156 µm. 

 

6. Marginulina prima interrupta Terquem, Ballinlea-1 Borehole BAL530, lateral view, height 

378 µm, width 111 µm, thickness 111 µm. 

 

7, 8. Vaginulina listi (Bornemann). G, Ballinlea-1 Borehole BAL595, lateral view, height 515 

µm, width 152 µm; H, Ballinlea-1 Borehole BAL570, lateral view, height 626 µm, width 236 µ. 
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9. Vaginulinopsis denticulatacarinata (Franke), Ballinlea-1 Borehole BAL410, lateral view, 

height 526 µm, width 193 µm. 
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Figure B 
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Figure B 

 

1. Lenticulina muensteri ssp. A, Ballinlea-1 Borehole BAL490, lateral view, diameter of coil 575 

µm. 

 

2. Eoguttulina liassica (Strickland), Ballinlea-1 Borehole BAL465, lateral view, height 511 µm, 

width 200 µm, thickness 156 µm. 

 

3, 4. Reinholdella sp. A, Ballinlea-1 Borehole BAL855, dorsal view and ventral view 

respectively, 454 µm. 

 

5, 6, 7, 8. Reinholdella margarita margarita (Terquem). E, F. Ballinlea-1 Borehole BAL430, 

dorsal view and ventral view respectively, diameter 454 µm; G, H. Ballinlea-1 Borehole 

BAL430, dorsal view and ventral view respectively, diameter 441 µm.  
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Figure C 
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Figure C 

 

1, 2. Reinholdella robusta Copestake & Johnson, Ballinlea-1 Borehole BAL430, dorsal view and 

ventral view respectively, diameter 441 µm. 

 

3, 4. Reinholdella dreheri (Bartenstein), Ballinlea-1 Borehole BAL570, dorsal view and ventral view 

respectively, diameter 379 µm. 

 

5, 6. Reinholdella sp. B, Ballinlea-1 Borehole BAL545, dorsal view and ventral view repectively, 

diameter 219 µm. 
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Plate 1 
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Plate 1 

 

1-3. Paralingulina tenera substriata (Nørvang). 1, Carnduff-1 Borehole CRN176, lateral view x240; 

2, Carnduff-1 Borehole CRN176, lateral view x240; 3, Carnduff-1 Borehole CRN 186, lateral view 

x260. 

 

4-8. Paralingulina tenera tenuistriata (Nørvang).4, Ballinlea-1 Borehole BAL400, aperture view 

x940; 5, Ballinlea-1 Borehole BAL385, aperture view x860; 6, Ballinlea-1 Borehole BAL425, lateral 

view x400; 7, Ballinlea-1 Borehole BAL530, lateral view x310; 8, Ballinlea-1 Borehole BAL560, 

lateral view x430. 

 

9-13, 18, 19. Paralingulina tenera pupa (Terquem). 9, Magilligan Borehole MAG146, lateral view 

x275; 10, Ballinlea-1 Borehole BAL410, lateral view x370; 11, Ballinlea-1 Borehole BAL530, lateral 

view x350; 12, Ballinlea-1 Borehole BAL425, lateral view x320; 13, Carnduff-1 Borehole CRN306.6, 

lateral view x310; 18, Carnduff-1 Borehole CRN306.6, lateral view x250; 19, Magilligan Borehole 

MAG131.1, lateral view x250. 

 

14-17. Paralingulina tenera collenoti (Terquem).14, Magilligan Borehole MAG146, lateral view 

x250; 15, Ballinlea-1 Borehole BAL935, lateral view x290; 16, Carnduff-1 Borehole CRN301.6, 

lateral view x275; 17, Magilligan Borehole MAG151, lateral view x250. 
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Plate 2 
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Plate 2 

 

1-9. Paralingulina tenera tenera (Bornemann). 1, Ballinlea-1 Borehole BAL580, lateral view x255; 

2, Ballinlea- 1 Borehole BAL490, lateral view x245; 3, 3, Ballinlea-1 Borehole BAL520, lateral view 

x290; 4, Carnduff-1 Borehole CRN259, lateral view x300; 5, Ballinlea-1 Borehole BAL845, lateral 

view x300; 6, Ballinlea-1 Borehole BAL400, aperture view x670; 7, Ballinlae-1 BAL845, lateral view 

x340; 8, Ballinlea-1 Borehole BAL610, lateral view x380; 9, Ballinlea-1 Borehole BAL550, lateral 

view x310.  

 

10-15. Paralingulina tenera subprismatica (Franke). 10, Ballinlea-1 Borehole BAL500, lateral view 

x370; 11, Ballinlea-1 Borehole BAL465, lateral view x100; 12, Ballinlea-1 Borehole BAL520, lateral 

view x285; 13, Ballinlea-1 Borehole BAL530, lateral view x380; 14, Ballinlea-1 Borehole BAL425, 

lateral view x470; 15, Ballinlea-1 Borehole BAL425, lateral view x580. 

 

16. Paralingulina esseyana (Deecke), Ballinlea-1 Borehole BAL490, lateral view x600. 

 

17. Paralingulina minuta (Franke), Ballinlea-1 Borehole BAL595, lateral view x700. 

 

18-20. Paralingulina lanceolata (Haeusler). 18, Magilligan Borehole MAG178.43, lateral view 

x590; 19, Magilligan Borehole MAG146, lateral view x470; 20, Ballinlea-1 Borehole BAL520, lateral 

view x410.  
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21. Paralingulina longiscata longiscata (Terquem). Ballinlea-1 Borehole BAL510, lateral view 

x400. 

 

22, 23. Paralingulina cernua (Berthelin). 22, Carnduff-1 Borehole CRN176, lateral view x450; 23, 

Ballinlea-1 Borehole BAL730, lateral view x360. 

 

24. Paralingulina paranodosaria (Copestake & Johnson), Ballinlea-1 Borehole BAL595, lateral 

view x370. 
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Plate 3 
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Plate 3 

 

1, 2, 15. Ichthyolaria brizaeformis (Bornemann). 1, Ballinlea-1 Borehole BAL425, lateral view x520; 

2, Ballinlea-1 Borehole BAL425, lateral view x510; 15, Ballinlea-1 Borehole BAL570, lateral view 

x210. 

 

3. Ichthyolaria terquemi terquemi (d’Orbigny), Ballinlea-1 Borehole BAL520, lateral view x530. 

 

4. Ichthyolaria terquemi barnardi (Copestake & Johnson), Ballinlea-1 Borehole BAL885, lateral 

view x500. 

 

5, 6, 13, 14. Ichthyolaria terquemi bicostata (d’Orbigny). 5, Ballinlea-1 Borehole BAL400, lateral 

view x800; 6, Ballinlea-1 Borehole BAL425, lateral view x520; 13, Ballinlea-1 Borehole BAL730, 

lateral view x 290; 14, Ballinlea-1 Borehole BAL380, lateral view x250.  

 

7-10. Ichthyolaria terquemi sulcata (Bornemann). 7, Ballinlea-1 Borehole BAL570, lateral view 

x480; 8, Ballinlea-1 Borehole BAL715, lateral view x300; 9, Magilligan Borehole MAG76.69, lateral 

view x270; 10, Ballinlea-1 Borehole BAL410, lateral view x250. 

 

11, 12. Ichthyolaria terquemi squamosa (Terquem & Berthelin). 11, Ballinlea-1 Borehole BAL490, 

lateral view x290; 12, White Park Bay WPB2, lateral view x240. 
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Plate 4 
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Plate 4 

 

1, 4, 9, 14. Nodosaria mitis (Terquem & Berthelin). 1, Ballinlea-1 Borehole BAL425, aperture view 

x3700; 4, Ballinlea-1 Borehole BAL560, lateral view x530; 9, Ballinlea-1 Borehole BAL685, lateral 

view x360; 14, Ballinlea-1 Borehole BAL595, lateral view x250.  

 

2, 3, 5-8. Nodosaria issleri Franke. 2, Ballinlea-1 Borehole BAL400, aperture view x740; 3, Ballinlea-

1 Borehole BAL430, lateral view x600; 5, Ballinlea-1 Borehole BAL560, lateral view x320; 6, White 

Park Bay WPB3, lateral view x400; 7, Ballinlea-1 Borehole BAL540, lateral view x350; 8, Ballinlea-

1 Borehole BAL490, lateral view x330.  

 

10. Nodosaria prima d’Orbigny, Ballinlea-1 Borehole BAL715, lateral view x390. 

 

11. Nodosaria radiata (Terquem), Ballinlea-1 Borehole BAL530, lateral view x440.  

 

12. Nodosaria columnaris Franke, Ballinlea-Borehole BAL475, lateral view x520. 

 

13. Nodosaria kuhni Franke, Ballinlea-1 Borehole BAL790, lateral view x440. 

 

15. Nodosaria novemcostata Bornemann, Carnduff-1 Borehole CRN189.85, lateral view x250. 
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16. Nodosaria sexcostata Terquem, Ballinlea-1 Borehole BAL580, lateral view x260. 

 

17. Nodosaria porrecta Terquem, Carnduff-1 Borehole CRN170.7, lateral view x240. 

 

18. Nodosaria tenera Franke, Ballinlea-1 Borehole BAL745, lateral view x275.  

  



 

296 
 

Plate 5 

 

 



 

297 
 

Plate 5 

 

1, 2, 14-18. Nodosaria metensis Terquem. 1, Carnduff-1 Borehole CRN216.75, aperture view 

x1450; 2, Carnduff-1 Borehole CRN216.75, aperture view x660; 14, Ballinlea-1 Borehole BAL595, 

lateral view x280; 15, Carnduff-1 Borehole CRN216.75, lateral view x450; 16, Magilligan Borehole 

MAG122, lateral view x360; 17, Magilligan Borehole MAG112, lateral view x410; 18, Magilligan 

Borehole MAG131.1, lateral view x210. 

 

3, 8-11. Nodosaria fontinensis Terquem. 3, Ballinlea-1 Borehole BAL395, aperture view x640; 8, 

Ballinlea-1 Borehole BAL540, lateral view x480; 9, Ballinlea-1 Borehole BAL395, lateral view x430; 

10, Ballinlea-1 Borehole BAL570, lateral view x255; 11, Ballinlea-1 BAL425, lateral view x380. 

 

4, 12. Nodosaria rara Franke. 4, Ballinlea-1 Borehole BAL425, aperture view x910; 12, Ballinlea-1 

Borehole BAL490, lateral view x420. 

 

5. Nodosaria cf. kunzi Paalzow, Ballinlea-1 Borehole BAL400, lateral view x730. 

 

6, 7. Nodosaria hortensis Terquem. 6, Ballinlea-1 Borehole BAL695, lateral view x420; 7, Ballinlea-

1 Borehole BAL935, lateral view x490. 

 

13. Nodosaria lagenoides Wisniówskim, Ballinlea-1 Borehole BAL785, lateral view x370. 
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Plate 6 
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Plate 6 

 

1. Nodosaria sp. A, Ballinlea-1 Borehole BAL530, lateral view x690.  

 

2. Nodosaria sp. B, Ballinlea-1 Borehole BAL400, lateral view x890. 

 

3. Nodosaria crispata Terquem, ballinlea-1 Borehole BAL730, lateral view x700. 

 

4-7. Nodosaria nitidana Brand. 4, Ballinlea-1 Borehole BAL400, lateral view x790; 5, Ballinlea-1 

Borehole BAL400, aperture view x740; 6, Ballinlea-1 Borehole BAL530, lateral view x410; 7, 

Ballinlea-1 Borehole BAL500, lateral view x510. 

 

8. Nodosaria pseudoclaviformis (Copestake & Johnson), Ballinlea-1 Borehole BAL400, lateral view 

x500. 

 

9. Nodosaria germanica Franke, Ballinlea-1 Borehole BAL510, lateral view x580. 

 

10, 11. Nodosaria primitiva Kübler & Zwingli.10, Carnduff-1 Borehole CRN241.5, lateral view x570; 

11, Ballinlea-1 Borehole BAL440, lateral view x540. 
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12, 13. Nodosaria claviformis Terquem. 12, Ballinlea-1 Borehole BAL425, lateral view x500; 13, 

Ballinlea-1 Borehole BAL520, lateral view x450. 

 

14. Nodosaria simplex (Terquem), White Park Bay WPB1, lateral view x280. 

 

15. Nodosaria apheiloloculla Tappan, Ballinlea-1 Borehole BAL685, lateral view x480. 

 

16. Nodosaria pseudoregularis Canales, Ballinlea-1 Borehole BAL540, lateral view x540. 
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Plate 7 
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Plate 7 

 

1-8, 13. Pseudonodosaria vulgata. 1, Ballinlea-1 Borehole BAL385, aperture view x390; 2, 

Magilligan Borehole MAG179.43, lateral view x610; 3, Ballinlea-1 BAL490; lateral view x410; 4, 

Ballinlea-1 Borehole BAL410; lateral view x420; 5, Ballinlea-1 Borehole BAL560, lateral view x410; 

6, Ballinlea-1 Borehole BAL490, lateral view x400; 7, Ballinlea-1 Borehole BAL385, lateral view 

x390; 8, Ballinlea-1 Borehole BAL570, lateral view x350; 13, Ballinlea-1 Borehole BAL845, lateral 

view x280.  

 

9, 12. Pseudonodosaria dubia. 9, Ballinlea-1 Borehole BAL510, lateral view x340; 12, Ballinlea-1 

Borehole BAL520, lateral view x250. 

 

10, 11. Pseudonodosaria multicostata. 10, Ballinlea-1 Borehole BAL530, lateral view x295; 11, 

Ballinlea-1 Borehole BAL560, lateral view x205. 
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 Plate 8  
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Plate 8 

 

1, 6, 14, 15. Marginulina prima rugosa Bornemann. 1, Ballinlea-1 Borehole BAL400, aperture view 

x710; 6, Ballinlea-1 Borehole BAL385, aperture view x580; 14, Ballinlea-1 Borehole BAL550, lateral 

view x290; 15, Ballinlea-1 Borehole BAL385, lateral view x295.  

 

2, 3. Marginulina prima prima d’Orbigny. 2, Ballinlea-1 Borehole BAL385, lateral view x500; 3. 

Ballinlea-1 Borehole BAL425, lateral view x410.  

 

4, 5. Marginulina prima praerugosa Nørvang. 4, Ballinlea-1 Borehole BAL400, lateral view x450; 

5, Ballinlea-1 Borehole BAL500, lateral view x410. 

 

7-9, 13. Marginulina prima spinata (Terquem). 7, Ballinlea-1 Borehole BAL400, aperture view 

x520; 8, Ballinlea-1 Borehole BAL400, lateral view x440; 9, Ballinlea-1 Borehole BAL510, lateral 

view x550; 13, White Park Bay WPB4, lateral view x290. 

 

10-12. Marginulina prima interrupta Terquem. 10, Ballinlea-1 Borehole BAL425, lateral view x400; 

11, Ballinlea-1 Borehole BAL540, lateral view x520; 12, Ballinlea-1 Borehole BAL510, lateral view 

x285. 
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16-18. Marginulina prima incisa Franke. 16, Carnduff-1 Borehole CRN211, lateral view x250; 17, 

Ballintoy BLT1, lateral view x240; 18, Ballinlea-1 Borehole BAL685, lateral view x275. 

 

19-21. Marginulina prima insignis (Franke). 19, Ballinlea-1 Borehole BAL730, lateral view x180; 

20, Ballinlea-1 Borehole BAL730, lateral view x260; 21, Carnduff-1 Borehole CRN211, lateral view 

x320. 
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Plate 9 
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Plate 9 

 

1. Marginulina picturata (Terquem & Berthelin), Ballinlea-1 Borehole BAL425, lateral view x610. 

 

2. Marginulina hamus (Terquem), Ballinlea-1 Borehole BAL570, lateral view x490.  

 

3, 4. Vaginulina parva Franke. 3, Carnduff-1 Borehole CRN284.6, lateral view x550; 4, Ballinlea-1 

Borehole BAL440, lateral view x440. 

 

5. Saracenella mochrasensis Johnson, Copestake & Herrero, Ballinlea-1 Borehole BAL920, lateral 

view x440. 

 

6. Vaginulina neglecta Terquem, Carnduff-1 Borehole CRN170.7, lateral view x240. 

 

7. Vaginulina curva Franke, Ballinlea-1 Borehole BAL595, lateral view x285. 

 

8. Marginulina aff. turneri Copestake & Johnson, Ballinlea-1 Borehole BAL580, lateral view x265. 

 

9, 10. Vaginulina listi (Bornemann). 9, Ballinlea-1 Borehole BAL580, lateral view x260; 10, 

Ballinlea-1 Borehole BAL595, lateral view x286. 
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11-14. Marginulina sherborni Franke. 11, Ballinlea-1 Borehole BAL410, lateral view x250; 12, 

Ballinlea-1 Borehole BAL395, lateral view x240; 13, Ballinlea-1 Borehole BAL400, lateral view 

x190; 14, Ballinlea-1 Borehole BAL530, lateral view x104.  
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Plate 10 
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Plate 10 

 

1, 2. Prodentalina subsiliqua (Franke). 1, Ballinlea-1 Borehole BAL400, aperture view x800; 2, 

Ballinlea-1 Borehole BAL530, lateral view x420. 

 

3. Prodentalina sinemuriensis (Terquem), Ballinlea-1 Borehole BAL730, lateral view x480. 

 

4, 5. Prodentalina tortilis (Franke). 4, Carnduff-1 Borehole CRN176, lateral view x540; 5, Ballinlea-

1 Borehole BAL355, lateral view x490. 

 

6, 7. Prodentalina crenata (Schwager). 6, Magilligan Borehole MAG146, lateral view x460; 7, 

Magilligan Borehole MAG146, lateral view x430. 

 

8. Prodentalina paucicosta (Terquem). Ballinlea-1 Borehole BAL920, lateral view x460. 

 

9, 10. Prodentalina paucicurvata (Franke). 9, Ballinlea-1 Borehole BAL745, lateral view x350; 10, 

Carnduff-1 Borehole CRN301.6, lateral view x420. 

 

11, 12. Prodentalina terquemi (d’Orbigny). 11, Ballinlea-1 Borehole BAL440, lateral view x460; 12, 

Ballinlea-1 Borehole BAL845, lateral view x290. 
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13, 14. Prodentalina clavata (Terquem). 13, White Park Bay WPB1, lateral view x400; 14, White 

Park Bay WPB3, lateral view x295. 

 

15-18. Prodentalina parvula (Franke). 15, Carnduff-1 Borehole CRN296.2, lateral view x360; 16, 

Carnduff-1 Borehole CRN319.5, lateral view x360; 17, Carnduff-1 Borehole CRN319.5, lateral view 

x500; 18, Carnduff-1 Borehole CRN319.5, lateral view x430. 
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Plate 11 

 

 



 

313 
 

Plate 11 

 

1, 19. Dentalina pseudocommunis Franke. 1, Ballinlea-1 Borehole BAL890, lateral view x295; 19, 

Ballinlea-1 Borehole BAL935, lateral view x290. 

 

2, 3. Prodentalina vetutissima (d’Orbigny). 2, Magilligan Borehole MAG112, lateral view x290; 3, 

Carnduff-1 Borehole CRN319.5, lateral view x510. 

 

4. Prodentalina bicornis (Terquem), Carnduff-1 Borehole CRN314.9, lateral view x360. 

 

5. Prodentalina arbuscula (Terquem), Ballinlea-1 Borehole BAL520. Lateral view x310. 

 

6. Prodentalina nodigera (Terquem & Berthelin), White Park Bay WPB1, lateral view x380. 

 

7. Prodentalina cf. perlucida (Terquem), Carnduff-1 Borehole CRN264.2, lateral view x295. 

 

8. Prodentalina aff. mucronata (Neugeboren), Carnduff-1 Borehole CRN176, lateral view x265. 

 

9, 18. Mesodentalina varians varians (Terquem). 9, Ballinlea-1 Borehole BAL400, lateral view 

x370; 18, Ballinlea-1 Borehole BAL490, lateral view x190. 
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10. Mesodentalina tenuistriata (Terquem), Ballinlea-1 Borehole BAL400, lateral view x270. 

 

11, 12. Mesodentalina varians haeusleri (Schick). 11, Ballinlea-1 Borehole BAL500, lateral view 

x150; 12, Ballinlea-1 Borehole BAL530, lateral view x290. 

 

13-17. Mesodentalina matutina (d’Orbigny). 13, Ballinlea-1 Borehole BAL560, lateral view x260; 

14, Ballinlea-1 Borehole BAL570, lateral view x260; 15, White Park Bay WPB3, lateral view x240; 

16, Ballinlea-1 Borehole BAL475, lateral view x250; 17, Ballinlea-1 Borehole BAL580, lateral view 

x260. 

 

20. Prodentalina torta (Terquem), Ballinlea-1 Borehole BAL475, lateral view x190.  
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Plate 12 
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Plate 12 

 

1-3. Lenticulina muensteri polygonata (Franke). 1, Ballinlea-1 Borehole BAL355, lateral view x900; 

2, Ballinlea-1 Borehole BAL400, lateral view x570; 3, Ballinlea-1 Borehole BAL355, lateral view 

x500. 

 

4-10. Lenticulina muensteri muensteri (Roemer). 4, Ballinlea-1 Borehole BAL440, lateral view 

x390; 5, Kenbane Head KB1, aperture view x700; 6, Ballinlea-1 Borehole BAL510, lateral view 

x295; 7, Ballinlea-1 Borehole BAL540, lateral view x205; 8, Ballinlea-1 Borehole BAL570, lateral 

view x260; 9, White Park Bay WPB6, internal view x275; 10, Ballintoy BLT1, internal view x340. 

 

11-13. Lenticulina muensteri ssp. A. 11, Ballinlea-1 Borehole BAL490, lateral view x260; 12, 

Ballinlea-1 Borehole BAL510, lateral view x260; 13, Ballintoy BLT1, lateral view x245. 
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Plate 13 
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Plate 13 

 

1. Lenticulina sp. A, Ballinlea-1 Borehole BAL465, lateral view x280.  

 

2-7. Lenticulina varians varians (Bornemann). 2, White Park Bay WPB3, lateral view x296; 3, 

Ballinlea-1 Borehole BAL540, lateral view x320; 4, White Park Bay WPB7, aperture view x710; 5, 

Ballinlea-1 BAL960, lateral view x350; 6, Ballinlea-1 Borehole BAL730, lateral view x360; 7, 

Ballinlea-1 Borehole BAL580, lateral view x250. 

 

8-12. Astacolus speciosus (Terquem). 8, Ballinlea-1 Borehole BAL685, lateral view x300; 9, 

Ballinlea-1 Borehole BAL560, lateral view x320; 10, Ballinlea-1 Borehole BAL580, lateral view 

x280; 11, Ballinlea-1 Borehole BAL845, lateral view x290; 12, Ballinlea-1 Borehole BAL410, lateral 

view x360. 

 

13, 14. Astacolus scalptus (Franke). 13, Ballinlea-1 Borehole BAL490, lateral view x520; 14, 

Ballinlea-1 Borehole BAL720, lateral view x450.  

 

15. Astacolus primus (d’Orbigny), Ballinlea-1 Borehole BAL490, lateral view x460. 
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Plate 14 
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Plate 14 

 

1-4. Planularia inaequistriata (Terquem). 1, Ballinlea-1 Borehole BAL730 x75; 2, Ballintoy BLT1, 

lateral view x275; 3, Ballintoy BLT1, internal view x275; 4, Ballinlea-1 BAL560, lateral view x250. 

 

5. Planularia pulchra (Terquem), Ballinlea-1 Borehole BAL570, lateral view x275. 

 

6, 9. Planularia protracta (Bornemann). 6, Ballinlea-1 Borehole BAL400, lateral view x290; 9, 

Ballinlea-1 Borehole BAL730, lateral view x440. 

 

7, 8. Planularia pauperata Jones & Parker. 7, Ballinlea-1 Borehole BAL465, lateral view x570; 8, 

Ballinlea-1 Borehole BAL730, lateral view x440. 

 

10. Bullopora globulata globulata Barnard, Ballinlea-1 Borehole BAL355, lateral view x480. 

 

11. Vaginulinopsis erzingensis (Neuweiler), Ballinlea-1 Borehole BAL720, lateral view x390. 

 

12, 13. Vaginulinopsis denticulatacarinata (Franke). 12, Ballinlea-1 Borehole BAL415, lateral view 

x630; 13, Ballinlea-1 Borehole BAL425, lateral view x300.  
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Plate 15 
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Plate 15 

 

1, 2. Lagena natrii Blake. 1, Carnduff-1 Borehole CRN284.6, lateral view x560; 2, Ballinlea-1 

Borehole BAL730, lateral view x510. 

 

3. Lagena liasica (Kübler & Zwingli), Ballinlea-1 Borehole BAL790, lateral view x440. 

 

4. A, Magilligan Borehole MAG158, lateral view x690. 

 

5. Lagena semisulcata Copestake & Johnson, Ballinlea-1 Borehole BAL730, lateral view x700. 

 

6. Reussoolina laticosta (Terquem & Berthelin), Magilligan Borehole MAG146, lateral view x690. 

 

7. Reussoolina minutissima (Kübler & Zwingli), Ballinlea-1 Borehole BAL550, lateral view x480. 

 

8. Reussoolina? lacrimaforma (Copestake & Johnson), Ballinlea-1 Borehole BAL865, lateral view 

x510. 

 

9-13. Eoguttulina liassica (Strickland). 9, Magilligan Borehole MAG126.12, aperture view x710; 

10, Magilligan Borehole MAG106.95, aperture view x880; 11, Carnduff-1 Borehole CRN319.5, 
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lateral view x500; 12, Ballinlea-1 Borehole BAL465, lateral view x320; 13, Magilligan Borehole 

MAG106.95, lateral view x340. 

 

14, 15. Procerolagena lanceolata (Terquem). 14, Ballinlea-1 Borehole BAL490, lateral view x360; 

15, Carnduff-1 Borehole CRN290.85, lateral view x250.  

 

  



 

324 
 

Plate 16 

 

 

  



 

325 
 

Plate 16 

 

1-12. Reinholdella planiconvexa (Fuchs). 1, Ballinlea-1 Borehole BAL920, dorsal view x550; 2, 

Ballinlea-1 Borehole BAL920, dorsal view x460; 3, Magilligan Borehole MAG158, dorsal view x870; 

4, Magilligan Borehole MAG158, side view x840; 5, Magilligan Borehole MAG126.12, dorsal view 

x860; 6, Magilligan Borehole MAG126.12, dorsal view x930; 7, Magilligan Borehole MAG126.12, 

dorsal view x1000; 8, Magilligan Borehole MAG126.12, side view x1150; 9, Magilligan Borehole 

MAG126.12, ventral view x780; 10, Magilligan Borehole MAG146, ventral view x900; 11, Ballinlea-

1 Borehole BAL920, ventral view x580; 12, Magilligan Borehole MAG158, side view x840. 

 

13-15. Reinholdella mochrasensis Copestake & Johnson. 13, Ballinlea-1 Borehole BAL450, dorsal 

view x480; 14, Ballinlea-1 Borehole BAL545, ventral view x380; 15, White Park Bay WPB1, side 

view x440. 
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Plate 17 
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Plate 17 

 

1, 2. Reinholdella sp. A. 1, Ballinlea-1 Borehole BAL855, dorsal view x340; 2, Ballinlea-1 Borehole 

BAL890, dorsal view x470.  

 

3. Reinholdella dreheri (Bartenstein), Ballinlea-1 Borehole BAL570, dorsal view x290. 

 

4-6. Reinholdella pachyderma humilis Copestake & Johnson. 4, Ballinlea-1 Borehole BAL490, 

ventral view x320; 5, Ballinlea-1 Borehole BAL490, dorsal view x400; 6, Ballinlea-1 Borehole 

BAL490, dorsal view x410. 

 

7-11. Reinholdella robusta Copestake & Johnson. 7, Ballinlea-1 Borehole BAL430, dorsal view 

x320; 8, Ballinlea-1 Borehole BAL430, dorsal view x360; 9, Ballinlea-1 Borehole BAL415, dorsal 

view x320; 10, Ballinlea-1 Borehole BAL425, ventral view x610; 11, Ballinlea-1 borehole BAL425, 

ventral view x350. 

 

12. Reinholdella margarita margarita (Terquem), Ballinlea-1 Borehole BAL510, dorsal view x350.  
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Plate 18 
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Plate 18 

 

1, 2. Spirillina tenuissima Gümbel. 1, Carnduff-1 Borehole CRN198.6, lateral view x520; 2, 

Magilligan Borehole MAG146, lateral view x680. 

 

3, 4. Spirillina infima (Strickland). 3, Ballinlea-1 Borehole BAL845, lateral view x490; 4, Magilligan 

Borehole MAG106.95, lateral view x790.  

 

5, 6. Cornuspira liasina Terquem. 5, Carnduff-1 Borehole CRN191.3, lateral view x540; 6, Carnduff-

1 Borehole CRN182.9, lateral view x580. 

 

7, 10. Spiroloculina concentrica Terquem & Berthelin. 7, Ballinlea-1 Borehole BAL790, lateral view 

x390; 10, Ballinlea-1 Borehole BAL540, lateral view x680. 

 

9, 11, 12. Ophthalmidium liasicum (Kübler & Zwingli). 9, Magilligan Borehole MAG131.1, lateral 

view x520; 11, Ballinlea-1 Borehole BAL400, lateral view x750; 12, Ballinlea-1 Borehole BAL520, 

lateral view x200.  

 

13. Ophthalmidium macfadyeni tenuiloculare Copestake & Johnson, Ballinlea-1 Borehole BAL490, 

lateral view x500. 
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8, 14, 15. Ophthalmidium macfadyeni macfadyeni Wood & Barnard. 8, Ballinlea-1 Borehole 

BAL465, lateral view x510; 14, Ballinlea-1 Borehole BAL400, lateral view x880; 15, Ballinlea-1 

Borehole BAL400, lateral view x770.  
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Plate 19 
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Plate 19 

 

1-4. Brizalina liasica Terquem. 1, Ballinlea-1 Borehole BAL425, aperture view x1600; 2, Ballinlea-

1 Borehole BAL400, lateral view x700; 3, Ballinlea-1 Borehole BAL385, lateral view x550; 4, 

Ballinlea-1 Borehole BAL490, lateral view x490.  

 

5-8. Neobulimina bangae (Copestake & Johnson). 5, Ballinlea-1 Borehole BAL885, lateral view 

x520; 6, Ballinlea-1 Borehole BAL730, lateral view x620; 7, Ballinlea-1 Borehole BAL530, lateral 

view x600; 8, Ballinlea-1 Borehole BAL410, lateral view x710. 

 

9. Haplophragmoides kingakensis Tappan, Ballinlea-1 Borehole BAL720, dorsal view x720. 

 

10. Reophax sp. A, Magilligan Borehole MAG106.95, lateral view x810. 

 

11. Trochammina canningensis Tappan, Magilligan Borehole MAG106.95, dorsal view x810. 

 

12. Ammodiscus siliceous (Terquem), Ballinlea-1 Borehole BAL595, lateral view x260. 

 

13. Textularia sp. A, Ballintoy BLT1, lateral view x295. 
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Plate 20 
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Plate 20 

 

1-4. Ogmoconcha hagenowi Drexler. 1, Carnduff-1 Borehole CRN264.2, lateral view x225, right 

valve; 2, Magilligan Borehole MAG19, lateral view x310, carapace (LV>RV); 3, Ballinlea-1 Borehole 

BAL845, dorsal view x360, carapace (LV>RV); 4, Ballinlea-1 Borehole BAL820, lateral view x260, 

carapace (LV>RV). 

 

5, 6. Ogmoconcha eocontractula Park. 5, Ballinlea-1 Borehole BAL410, lateral view x360, 

carapace; 6, Ballinlea-1 Borehole BAL465, lateral view x340, left valve. 

 

7-15. Ogmoconchella aspinata (Drexler). 7, Ballinlea-1 Borehole BAL920, lateral view x245, 

carapace (LV>RV); 8, Carnduff-1 Borehole CRN296.2, lateral view x245, carapace (LV>RV); 9, 

Magilligan Borehole MAG122, lateral view x290, carapace; 10, Magilligan Borehole MAG158, 

lateral view x255, left valve; 11, Carnduff-1 Borehole CRN296.2, lateral view x270, right valve; 12, 

Magilligan Borehole MAG112, internal view x330, right valve; 13, Magilligan Borehole MAG122, 

dorsal view x235, carapace (LV>RV); 14, Ballinlea-1 Borehole BAL845, lateral view x275, carapace 

(LV>RV); 15, Ogmoconchella sp. B, Magilligan Borehole MAG50.85, lateral view x410, carapace 

(LV>RV). 
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Plate 21  
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Plate 21 

 

1-3, 10.  Ogmoconchella danica Michelsen. 1, Ballinlea-1 Borehole BAL490, lateral view x310, 

carapace (LV>RV); 2, Ballinlea-1 Borehole BAL410, lateral view x275, left valve; 3, Ballinlea-1 

Borehole BAL480, dorsal view x410, carapace (LV>RV); 10, Ballinlea-1 Borehole BAL490, lateral 

view x530, carapace of juvenile (LV>RV). 

 

4-7. Ogmoconchella mouhersensis (Apostolescu). 4, White Park Bay WPB4, lateral view x275, right 

valve; 5, White Park Bay WPB7, lateral view x240, right valve; 6, White Park Bay WPB2, lateral 

view x260, left valve; 7, White Park Bay WPB1, lateral view x245, left valve. 

 

8, 9. Ogmoconchella gruendeli (Malz, 1971). Ballinlea-1 Borehole BAL400, lateral view x245, right 

valve; 9, Ballinlea-1 Borehole BAL400, lateral view x270, left valve. 
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Plate 22 
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Plate 22 

 

1, 2. Pleurifera harpa (Klingler & Neuweiler). 1, Ballinlea-1 Borehole BAL480, lateral view x470, 

right valve; 2, Ballinlea-1 Borehole BAL400, lateral view x310, right valve. 

 

3. Pleurifera plicata (Apostolescu), Ballinlea-1 Borehole BAL540, lateral view x430, carapace 

(LV>RV). 

 

4-6. Pleurifera vermiculata (Apostolescu). 4, White Park Bay WPB5, lateral view x470, right valve; 

5, Bsllinlea-1 Borehole BAL510, lateral view x510, right valve; 6, Ballinlea-1 Borehole BAL490, 

dorsal view x295, carapace (LV>RV). 

 

7, 8. Isobythocypris tatei Coryell. 7, Ballinlea-1 Borehole BAL960, dorsal view x360, carapace 

(LV>RV); 8, Ballinlea-1 Borehole BAL845, lateral view x295, carapace (LV>RV). 

 

9, 13. Isobythocypris sp. A. 9, Ballinlea-1 Borehole BAL560, lateral view x290, carapace; 13, 

Ballinlea-1 Borehole BAL745, lateral view x530, carapace of juvenile (LV>RV). 

 

10. Bairdia molesta Apostolescu, Carnduff-1 Borehole CRN182.9, lateral view x 295, carapace 

(LV>RV). 
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11. Liasina lanceolata (Apostolescu), Ballinlea-1 Borehole BAL410, lateral view x330, carapace 

(LV>RV). 

 

12. Bairdia donzei Herrig, White Park Bay WPB5, lateral view x295, left valve. 

 

14. Paracypris semidisca Drexler, Ballinlea-1 BAL425, lateral view x530, carapace (RV>LV). 

 

15, 16. Paracypris redcarensis Blake. 15, Ballinlea-1 Borehole BAL790, dorsal view x410, 

carapace (RV>LV); 16 Ballinlea-1 Borehole BAL910, lateral view x360, carapace (RV>LV). 
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Plate 23 
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Plate 23 

 

1-7. Ektyphocythere translucens (Blake). 1, Ballinlea-1 Borehole BAL820, lateral view x330, 

carapace (LV>RV); 2, Ballinlea-1 Borehole BAL845, lateral view x310, left valve; 3, Carnduff-1 

Borehole CRN264.2, lateral view x285, left valve; 4, Carnduff-1 Borehole CRN273.2, lateral view 

x235, left valve; 5, Magilligan Borehole MAG126.12, lateral view x320, carapace (LV>RV); 6, 

Magilligan Borehole MAG131.1, lateral view x340, left valve; 7, Magilligan Borehole MAG131.1, 

dorsal view x350, carapace (LV>RV). 

 

8, 9. Ektyphocythere retia (Ainsworth). 8, Magilligan Borehole MAG65.35, dorsal view x420, 

carapace (LV>RV); 9, Magilligan Borehole MAG65.35, lateral view x240, left valve. 

 

10, 11. Ektyphocythere mooeri (Jones). 10, Magilligan Borehole MAG65.35, lateral view x350, left 

valve. 11, Magilligan Borehole MAG65.35, lateral view x340, right valve. 

 

12. Ektyphocythere luxuriosa (Apostolescu), Ballinlea-1 Borehole BAL845, lateral view x330, right 

valve. 

 

13-15. Ektyphocythere triebeli (Klingler & Neuweiler). 13, Ballinlea-1 Borehole BAL685, lateral 

view x330, carapace (LV>RV); 14, Ballinlea-1 Borehole BAL845, lateral view x300, right valve; 15, 

Ballinlea-1 Borehole BAL510, lateral view x285, left valve.  
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Plate 24 
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Plate 24 

 

1, 7, 9. Ektyphocythere sp. A. White Park Bay WPB5, lateral view x320, left valve; 7, Ballinlea-1 

Borehole BAL530, dorsal view x280, carapace (LV>RV); 9, Ballinlea-1 Borehole BAL490, lateral 

view x320, carapace (LV>RV). 

 

2, 11. Ektyphocythere herrigi (Ainsworth). 2, White Park Bay WPB5, lateral view x360, left valve; 

11, Ballinlea-1 Borehole BAL490, lateral view x360, right valve.  

 

3, 8. Ektyphocythere lacunosa (Ainsworth). 3, Ballinlea-1 Borehole BAL580, lateral view x320, right 

valve; 8, Ballinlea-1 Borehole BAL510, lateral view x380, carapace (LV>RV). 

 

4-6. Ektyphocythere vitiosa (Apostolescu). 4, White Park Bay WPB3, lateral view x420, right view; 

5, White Park Bay WPB2, lateral view x290, left view; 6, Ballinlea-1 Borehole BAL545, lateral view 

x280, carapace (LV>RV). 

 

10. Ektyphocytheres sinemuriana (Ainsworth). 10, Ballinlea-1 Borehole BAL510, lateral view x380, 

right valve. 

 

12. Ektyphocythere exiloreticulata (Ainsworth), Ballinlea-1 Borehole BAL510, lateral view x285, 

left valve. 
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13. Gammacythere faveolata Michelsen, White Park Bay WPB5, lateral view x540, right valve. 

 

14, 15. Gammacythere ubiquita Malz & Lord. 14, Ballinlea-1 Borehole BAL410, lateral view x300, 

right valve; 15, Ballinlea-1 Borehole BAL480, lateral view x310, left valve. 
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Plate 25 
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Plate 25 

 

1-3. Acrocythere oeresundensis (Michelsen). 1, Ballinlea-1 Borehole BAL425, lateral view x540, 

right valve; 2, Ballinlea-1 Borehole BAL540, lateral view x350, right valve; 3, Ballinlea-1 Borehole 

BAL425, dorsal view x560, carapace (LV>RV). 

 

4, 5. Acrocythere gassumensis (Michelsen). 4, Ballinlea-1 Borehole BAL845, lateral view x470, 

right valve; 5, Ballinlea-1 Borehole BAL580, lateral view x680, right valve. 

 

6. Nanacythere paracostata Michelsen, 1975, Carnduff-1 Borehole CRN221.75, lateral view x600, 

right valve.  

 

7-9 Nanacythere elegans (Drexler). 7, Carnduff-1 Borehole CRN259, lateral view x520, right valve; 

8, Carnduff-1 Borehole CRN216.75, lateral view x570, left valve; 9, Carnduff-1 Borehole CRN284.6, 

dorsal view x470, carapace. 

 

10. Nanacythere aequalicostis Park, Carnduff-1 Borehole CRN241.5, lateral view x420, right valve. 

 

11-14. Cytherella sp. A. 11, Magilligan Borehole MAG146, lateral view x470, left valve; 12, 

Carnduff-1 Borehole CRN241.5, lateral view x280, right valve; 13, Carnduff-1 Borehole CRN241.5, 

lateral view x230, left valve; 14, Magilligan Borehole MAG146, lateral view x340, right valve. 
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Plate 26 

 

 

 



 

348 
 

Plate 26 

 

1. Paradoxostoma pusillum (Michelsen), Carnduff-1 Borehole CRN259, lateral view x480, left 

valve. 

 

2. Trachycythere tubulosa tubulosa Triebel & Klingler, Ballinlea-1 Borehole BAL410, lateral view 

x500, left valve. 

 

3. Ektyphocythere sp. C, White Park Bay WPB5, lateral view x790, carapace. 

 

4. Polycope minor Michelsen, Carnduff-1 Borehole CRN176, lateral view x510, carapace. 

 

5. Polycope pumicosa Apostolescu, Carnduff-1 Borehole 176, lateral view x500, valve. 

 

6, 8. Polycope cerasia Blake. 5, Carnduff-1 Borehole CRN241.5, lateral view x470, valve; 7, 

Carnduuf-1 Borehole CRN182.9, lateral view x350, valve. 

 

7. Laphodentina lacunosa Apostolescu, Ballinlea-1 BAL790, lateral view x280, left valve. 

 

9. Polycope cincinnata Apostolescu, Carnduff-1 Borehole CRN182.9, lateral view x270, valve. 
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10. Polycope sp. A Carnduff-1 Borehole CRN182, lateral view x240, valve. 
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Plate 27 
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Plate 27 

 

1. Cryptaulax abcisum Terquem & Piette (microgastropod), Carnduff-1 Borehole CRN301.6, lateral 

view x 225. 

 

2. Tricariida sp. (microgastropod), Ballinlea-1 Borehole BAL520, lateral view x 220. 

 

3, 4. Gyrodes sp. (microgastropod). 3, Ballinlea-1 Borehole BAL875, lateral view x 280; 4, Ballinlea-

1 Borehole BAL510, lateral view x 350. 

 

5, 6, 9. Plagiostoma giganteum Sowerby (microbivalve). 5, Ballinlea-1 Borehole BAL920, lateral 

view x 165; 6, Carnduff-1 Borehole CRN290.85, lateral view x 220; 9, Ballinlea-1 Borehole BAL760, 

lateral view x 340. 

 

7. Entolium sp. (microbivalve), Carnduff-1 Borehole CRN296.2, lateral view x 215. 

 

8. Cardinia sp. (microbivalve), Carnduff-1 Borehole CRN301.6, lateral view x 255.  

 

10, 11, 12. Fish tooth. 10, Carnduff-1 Borehole CRN264.2, lateral view x 280; 11, Magilligan 

Borehole MAG173.54, lateral view x 295; 12, Magilligan MAG151, lateral view x 225. 
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13. Bivalve umbo, Carnduff-1 Borehole CRN290.85, lateral view x 250.  
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Plate 28 
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Plate 28 

 

1. Echinoderm spine and base, Ballinlea-1 Borehole BAL730, lateral view x 150.  

 

2. Diademopsis spine (Echinoderm). 2, Ballinlea-1 Borehole BAL465, lateral view x 275.  

 

3, 4. Echinoderm spine. 3, Ballinlea-1 Borehole BAL760, cross-section x 450; 4, Ballinlea-1 

Borehole BAL940, cross-section x 260. 

 

5. Echinoderm part, Ballinlea-1 Borehole BAL465, lateral view x 220. 

 

6, 7, 8, 9. Ophiuroid parts. 6, Magilligan Borehole MAG70.22, lateral view x 300; 7, Magilligan 

Borehole MAG122, lateral view x 220; 8, Carnduff-1 Borehole CRN176, lateral view x 230; 9, 

Magilligan Borehole MAG76.69, lateral view x 225. 

 

10. Achistrum bartensteini Frizzell & Exline (Holothurian), Magilligan Borehole MAG131.1, lateral 

view x 320. 

 

11, 12. Theelia sp. (Holothurian sclerites). 11, Carnduff-1 Borehole CRN176, top view x 650; 12, 

Carnduff-1 Borehole CRN176, top view x 760. 
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13. Binoculites terquemi Deflandre-Rigaud (Holothurian), Magilligan Borehole MAG106.95, lateral 

view x 460 
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APPENDIX A 

TAXONOMIC INDEX 

(page numbers in bold refer to the main descriptions of the taxonomy and their plates) 

 

Foraminifera  

 

Ammodiscus siliceous (Terquem, 1862); 97, 237, 239, 271, 332 

Astacolus primus (d’Orbigny, 1849); 318 

Astacolus scalptus (Franke, 1936); 318 

Astacolus speciosus (Terquem, 1858); 85, 86, 131, 137, 141, 207, 208, 227, 249, 318 

Brizalina liasica (Terquem, 1858); 101, 102, 137, 144, 203, 228, 244, 247, 249, 332 

Bullopora globulata globulata Barnard, 1949; 320 

Cornuspira liasina Terquem, 1866; 97, 98, 153, 159, 169, 179, 220, 240, 243, 244, 247, 249, 329 

Dentalina langi Barnard, 1950; 76, 131, 171, 173, 225, 280 

Dentalina pseudocommunis Franke, 1936; 313 

Eoguttulina liassica (Strickland, 1846); 90, 91, 129, 152, 155, 158, 175, 178, 240, 246, 249, 283, 

322 

Haplophragmoides kingakensis Tappan, 1955; 332 

Ichthyolaria brizaeformis (Bornemann, 1854); 292 

Ichthyolaria terquemi barnardi (Copestake & Johnson, 2014); 61, 131, 224, 244, 292 

Ichthyolaria terquemi bicostata (d’Orbigny, 1849); 212, 292 
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Ichthyolaria terquemi squamosa (Terquem & Berthelin, 1875); 62, 63, 136, 209, 210, 211, 228, 

280, 292 

Ichthyolaria terquemi sulcata (Bornemann, 1854); 212, 292 

Ichthyolaria terquemi terquemi (d’Orbigny, 1849); 292 

Lagena liasica (Kübler & Zwingli, 1866); 322 

Lagena natrii Blake, 1876; 322 

Lagena semisulcata Copestake & Johnson, 2014; 322 

Lenticulina muensteri muensteri (Roemer, 1839); 80, 81, 84, 212, 316 

Lenticulina muensteri polygonata (Franke, 1936); 316 

Lenticulina muensteri ssp. A; 84, 85, 200, 283, 316 

Lenticulina sp. A; 317 

Lenticulina varians varians (Bornemann, 1854); 82, 125, 127, 136, 197, 201, 318 

Marginulina aff. turneri Copestake & Johnson, 2014; 75, 133, 136, 227, 280 

Marginulina hamus (Terquem, 1866); 306 

Marginulina picturata (Terquem & Berthelin, 1875); 307 

Marginulina prima incisa Franke, 1936; 68, 69, 132, 153, 157, 171, 173, 174, 225, 281 

Marginulina prima insignis (Franke, 1936); 67, 68, 132, 153, 157, 173, 174, 225, 305 

Marginulina prima interrupta Terquem, 1866; 70, 136, 207, 208, 210, 211, 228, 280, 304 

Marginulina prima praerugosa Nørvang, 1957; 72, 304 

Marginulina prima prima d’Orbigny, 1849; 69, 72, 304 

Marginulina prima rugosa Bornemann, 1854; 71, 72, 304 
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Marginulina prima spinata (Terquem, 1858); 73, 136, 137, 208, 209, 210, 213, 228, 304 

Marginulina sherborni Franke, 1936; 280, 308 

Mesodentalina matutina (d’Orbigny. 1849); 77, 78, 80, 157, 171, 173, 207, 208, 210, 211, 213, 

225, 314 

Mesodentalina tenuistriata (Terquem, 1866); 314 

Mesodentalina varians haeusleri (Schick, 1903); 79, 314 

Mesodentalina varians varians (Terquem, 1866); 313 

Neobulimina bangae (Copestake & Johnson, 2014); 102, 103, 133, 174, 226, 332 

Nodosaria apheiloloculla Tappan, 1955; 300 

Nodosaria cf. kunzi Paalzow, 1917; 297 

Nodosaria claviformis Terquem, 1866; 299 

Nodosaria columnaris Franke, 1936; 294 

Nodosaria crispata Terquem, 1866; 299 

Nodosaria fontinensis Terquem, 1870; 297 

Nodosaria germanica Franke, 1936; 299 

Nodosaria hortensis Terquem, 1866; 297 

Nodosaria issleri Franke, 1936;64, 136, 137, 210, 229, 294 

Nodosaria kuhni Franke, 1936; 294 

Nodosaria lagenoides Wisniówski, 1890; 297 

Nodosaria metensis Terquem, 1863; 177, 297 

Nodosaria mitis (Terquem & Berthelin, 1875); 64, 294 



 

xxi 
 

Nodosaria nitidana Brand, 1937; 299 

Nodosaria novemcostata Bornemann, 1854; 294 

Nodosaria porrecta (Terquem, 1866); 295 

Nodosaria prima d’Orbigny, 1849; 294 

Nodosaria primitiva Kübler & Zwingli, 1866; 299 

Nodosaria pseudoclaviformis (Copestake & Johnson, 2014); 299 

Nodosaria pseudoregularis Canales, 2001; 300 

Nodosaria radiata (Terquem, 1866;) 294 

Nodosaria rara Franke, 1936; 297 

Nodosaria sexcostata Terquem, 1858; 295 

Nodosaria simplex (Terquem, 1858); 300 

Nodosaria sp. A; 299 

Nodosaria sp. B; 299 

Nodosaria tenera Franke, 1936; 295 

Ophthalmidium liasicum (Kübler & Zwingli, 1866); 329 

Ophthalmidium macfadyeni macfadyeni Wood & Barnard, 1946; 98, 99, 330 

Ophthalmidium macfadyeni tenuiloculare Copestake & Johnson, 2014; 329 

Paralingulina cernua (Berthelin, 1879); 290 

Paralingulina esseyana (Deecke, 1886); 289 

Paralingulina lanceolata (Haeusler, 1881); 176, 289 

Paralingulina longiscata longiscata (Terquem, 1870); 290  



 

xxii 
 

Paralingulina minuta (Franke, 1936); 289 

Paralingulina paranodosaria (Copestake & Johnson, 2014); 290 

Paralingulina tenera collenoti (Terquem, 1866); 48, 49, 51, 55, 60, 129, 130, 139, 156, 170, 171, 

206, 224, 287 

Paralingulina tenera pupa (Terquem, 1858); 49, 50, 51, 58, 59, 60, 287 

Paralingulina tenera subprismatica (Franke, 1936); 52, 53, 567 60, 133, 136, 227, 289 

Paralingulina tenera substriata (Nørvang, 1957); 49, 54, 55, 59, 60, 131, 132, 157, 171, 173, 174, 

226, 287 

Paralingulina tenera tenera (Bornemann, 1854); 56, 57, 125, 129, 212, 289 

Paralingulina tenera tenuistriata (Nørvang, 1957); 58, 59, 60, 200, 287 

Planularia inaequistriata (Terquem, 1863); 87, 88, 130, 131, 320 

Planularia pauperata Jones & Parker, 1860; 320 

Planularia protracta (Bornemann, 1854); 320 

Planularia pulchra (Terquem, 1866); 320 

Procerolagena lanceolata (Terquem, 1858); 323 

Prodentalina aff. mucronata (Neugeboren, 1856); 313 

Prodentalina arbuscula (Terquem, 1866); 313 

Prodentalina bicornis (Terquem, 1870); 313 

Prodentalina cf. perlucida (Terquem, 1858); 313 

Prodentalina clavata (Terquem, 1858); 311 

Prodentalina crenata (Schwager, 1865); 310 
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Prodentalina nodigera (Terquem & Berthelin, 1875); 313 

Prodentalina parvula (Franke, 1936); 311 

Prodentalina paucicurvata (Franke, 1936); 310 

Prodentalina sinemuriensis (Terquem, 1866); 310 

Prodentalina subsiliqua (Franke, 1936); 310 

Prodentalina terquemi (d’Orbigny, 1849); 310 

Prodentalina torta (Terquem, 1858); 314 

Prodentalina tortilis (Franke, 1936); 310 

Prodentalina vetutissima (d’Orbigny, 1849); 313 

Pseudonodosaria dubia (Terquem, 1870); 302 

Pseudonodosaria multicostata (Bornemann, 1854); 302 

Pseudonodosaria vulgata (Bornemann, 1854); 65, 66, 302 

Reinholdella dreheri (Bartenstein, 1937); 285 

Reinholdella margarita margarita (Terquem, 1866); 327 

Reinholdella? mochrasensis Copestake & Johnson, 2014; 325 

Reinholdella pachyderma humilis Copestake & Johnson, 2014; 92, 136, 143, 229, 247, 249, 327 

Reinholdella? planiconvexa (Fuchs, 1970); 93, 126, 130, 140, 152, 153, 155, 156, 159, 166, 167, 

170, 171, 176, 177, 206, 218, 219, 224, 230, 240, 243, 246, 248, 325 

Reinholdella robusta Copestake & Johnson, 2014; 94, 285, 327 

Reinholdella sp. A; 95, 96, 232, 327 

Reinholdella sp. B; 285 
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Reophax sp. A; 104, 178, 237, 243 246, 249, 332 

Reussoolina minutissima (Kübler & Zwingli, 1870); 322 

Reussoolina? lacrimaforma Copestake & Johnson, 2014; 322 

Saracenella mochrasensis Johnson, Copestake & Herrero, 1996; 307 

Spirillina infima (Strickland, 1846); 100, 244, 329 

Spirillina tenuissima Gümbel, 1862; 97, 100, 178, 203, 244, 249, 329 

Spiroloculina concentrica Terquem & Berthelin, 1875; 329 

Textularia sp. A; 332 

Trochammina canningensis Tappan, 1955; 105, 178, 237, 239, 243, 246, 250, 270, 332 

Vaginulina curva Franke, 1936; 86, 307 

Vaginulina listi (Bornemann, 1854); 133, 227, 280, 307 

Vaginulina neglecta Terquem, 1866; 307 

Vaginulina parva Franke, 1936; 307 

Vaginulinopsis denticulatacarinata (Franke, 1936); 88, 89, 137, 213, 230, 281, 320 

Vaginulinopsis erzingensis (Neuweiler, 1959); 320 

 

Ostracods 

 

Acrocythere gassumensis (Michelsen, 1975); 107, 120, 346 

Acrocythere oeresundensis (Michelsen, 1975); 121, 346 
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Bairdia donzei Herrig, 1979; 339 

Bairdia molesta Apostolescu, 1959; 153, 338  

Cytherella sp. A; 346 

Ektyphocythere exiloreticulata (Ainsworth, 1989); 343 

Ektyphocythere herrigi (Ainsworth, 1989); 343 

Ektyphocythere lacunosa (Ainsworth, 1989); 343 

Ektyphocythere luxuriosa (Apostolescu, 1959); 341 

Ektyphocythere mooeri (Jones, 1872); 341 

Ektyphocythere retia (Ainsworth, 1989); 173, 341 

Ektyphocythere sp. A; 343 

Ektyphocythere sp. C; 348 

Ektyphocythere translucens (Blake, 1876); 107, 118, 119, 129, 130, 139, 153, 157, 197, 198, 205, 

206, 214, 232, 250, 341 

Ektyphocythere triebeli (Klingler & Neuweiler, 1959); 341 

 Ektyphocythere vitiosa (Apostolescu, 1959); 343 

 Ektyphocythere sinemuriana (Ainsworth, 1989); 343 

Gammacythere faveolata Michelsen, 1975 204, 210, 213; 344 

Gammacythere ubiquita Malz & Lord, 1976 200; 344 

Isobythocypris sp. A; 338 
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Isobythocypris tatei Coryell, 1963; 153, 197, 338 

Laphodentina lacunosa Apostolescu, 1959; 348 

Liasina lanceolata Apostolescu, 1959; 339 

Nanacythere aequalicostis Park, 1987; 153, 346 

Nanacythere elegans (Drexler, 1958;) 346 

Nanacythere paracostata Michelsen, 1975; 346 

Ogmoconcha eocontractula Park, 1984; 115, 116, 136, 207, 208, 211, 233, 234, 240, 334 

Ogmoconcha hagenowi Drexler, 1958; 109, 111, 113, 127, 131, 132, 138, 141, 153, 157, 174, 

205, 218, 232, 240, 334 

Ogmoconchella aspinata (Drexler, 1958); 108, 109, 111; 119, 126, 127, 129, 130, 131, 132, 138, 

139, 140, 153, 157, 167, 169, 170, 171, 174, 176, 177, 179, 197, 198, 205, 206, 207, 214, 

218, 232, 233, 240, 246, 250, 334 

Ogmoconchella danica Michelsen, 1975; 110, 112, 116, 133, 136, 138, 200, 204, 207, 208, 211, 

233, 234, 240, 336. 

Ogmoconchella gruendeli (Malz, 1971); 139, 214, 234, 235, 336 

Ogmoconchella mouhersensis (Apostolescu, 1959); 111, 114, 133, 136, 207, 208, 211, 233, 336 

Paracypris redcarensis Blake, 1876; 339 

Paracypris semidisca Drexler, 1958; 339 

Paradoxostoma pusillum Michelsen, 1975; 348 

Pleurifera harpa (Klingler & Neuweiler, 1959); 338 
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Pleurifera plicata (Apostolescu, 1959); 210, 338 

Pleurifera vermiculata (Apostolescu, 1959); 201, 338 

Polycope cerasia Blake, 1876; 348 

Polycope cincinnata Apostolescu, 1959; 348 

Polycope minor Michelsen, 1975; 348 

Polycope pumicosa Apostolescu, 1959; 348 

Polycope sp. A; 349 

Trachycythere tubulosa tubulosa Triebel & Klingler, 1959; 348 

 

Macrofossils  

 

Achistrum bartensteini (Holothurian fragment); 354 

Binoculites terquemi (Holothurian fragment); 355 

Cardinia sp. (microbivalve); 351 

Cryptaulax abcisum (microgastropod); 351 

Diademopsis spine (Echinoderm); 354 

Entolium sp. (microbivalve); 351 

Gyrodes sp. (microgastropod); 351 

Plagiostoma giganteum (microbivalve); 351 

Theelia sp. (Holothurian sclerites); 354  



 

xxviii 
 

Tricariida sp.(microgastropod); 351 
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APPENDIX B 

Recorded Northern Ireland Late Triassic-Early Jurassic foraminifera species and subspecies 

(All species and subspecies identified in this study) 

 

Ammodiscus siliceous  

Astacolus primus  

Astacolus scalptus  

Astacolus speciosus  

Berthelinella involuta involuta  

Berthelinella involuta striata  

Berthelinella sp. A  

Brizalina liasica  

Bullopora globulata globulata?   

Cornuspira liasina  

Dentalina dentaliniformis  

Dentalina langi  

Dentalina pseudocommunis   

Eoguttulina liassica  

Haplophragmoides kingakensis  

Ichthyolaria brizaeformis  

Ichthyolaria lignaria  

Ichthyolaria pupiformis  

Ichthyolaria terquemi barnardi  

Ichthyolaria terquemi bicostata  

Ichthyolaria terquemi squamosa  

Ichthyolaria terquemi sulcata  

Ichthyolaria terquemi terquemi  

Lagena liasica  

Lagena natrii  

Lagena semisulcata  

Lagena? hausleri  

Lenticulina muensteri muensteri   

Lenticulina muensteri polygonata   

Lenticulina muensteri ssp. A  

Lenticulina varians varians  

Loxostomum liasicum liasicum  

Loxostomum liasicum teres  

Marginulina hamus  
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Marginulina lamellosa  

Marginulina obliquecostulata  

Marginulina picturata  

Marginulina prima incisa   

Marginulina prima insignis   

Marginulina prima interrupta  

Marginulina prima praerugosa  

Marginulina prima prima   

Marginulina prima rugosa  

Marginulina prima spinata   

Marginulina sherborni  

Marginulina terquemi  

Mesodentalina matutina  

Mesodentalina tenuistriata  

Marginulina aff. turneri 

Mesodentalina varians haeusleri  

Mesodentalina varians varians  

Neobulimina bangae  

Nodosaria apheilolocula  

Nodosaria claviformis  

Nodosaria columnaris  

Nodosaria crispata   

Nodosaria denticulatacostata  

Nodosaria fontinensis  

Nodosaria germanica  

Nodosaria globulata  

Nodosaria hortensis  

Nodosaria issleri 

Nodosaria cf. kunzi  

Nodosaria kuhni  

Nodosaria lagenoides  

Nodosaria metensis   

Nodosaria mitis 

Nodosaria nitidana  

Nodosaria novemcostata  

Nodosaria porrecta  

Nodosaria prima   

Nodosaria primitiva  

Nodosaria pseudoclaviformis  

Nodosaria pseudoregularis  

Nodosaria radiata  

Nodosaria rara  
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Nodosaria sexcostata  

Nodosaria simplex  

Nodosaria sp. A  

Nodosaria sp. B 

Nodosaria sp. C  

Nodosaria sp. D  

Nodosaria sp. E 

Nodosaria tenera  

Nodosaria whittakeri  

Ophthalmidium liasicum 

Ophthalmidium macfadyeni macfadyeni  

Ophthalmidium macfadyeni tenuiloculare  

Paralingulina cernua  

Paralingulina esseyana  

Paralingulina lanceolata 

Paralingulina longiscata longiscata   

Paralingulina minuta  

Paralingulina paranodosaria   

Paralingulina sp. A 

Paralingulina tenera collenoti   

Paralingulina tenera pupa  

Paralingulina tenera subprismatica  

Paralingulina tenera substriata  

Paralingulina tenera tenera  

Paralingulina tenera tenuistriata   

Planularia breoni  

Planularia inaequistriata  

Planularia pauperata  

Planularia protracta   

Planularia pulchra   

Procerolagena lanceolata  

Prodentalina arbuscula  

Prodentalina bicornis  

Prodentalina breoni  

Prodentalina cf. breoni  

Prodentalina clavata  

Prodentalina crenata  

Prodentalina cf. guembeli  

Prodentalina integra  

Prodentalina aff. mucronata  

Prodentalina nodigera 

Prodentalina parvula  
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Prodentalina paucicosta 

Prodentalina paucicurvata 

Prodentalina cf. paucicurvata  

Prodentalina cf. perlucida   

Prodentalina pyriformis 

Prodentalina cf. radicula  

Prodentalina simplex  

Prodentalina sinemuriensis    

Prodentalina sp. A  

Prodentalina cf. subulata  

Prodentalina subsiliqua  

Prodentalina terquemi  

Prodentalina teutoburgensis  

Prodentalina torta  

Prodentalina tortilis  

Prodentalina vetustissima   

Pseudonodosaria dubia  

Pseudonodosaria multicostata  

Pseudonodosaria oviformis  

Pseudonodosaria vulgata   

Reinholdella dreheri  

Reinholdella margarita margarita  

Reinholdella? mochrasensis  

Reinholdella pachyderma humilis  

Reinholdella robusta 

Reinholdella sp. A (Reinholdella 

‘’praemacfadyeni’’)  

Reinholdella planiconvexa  

Reophax sp. A  

Reussolina laticosta  

Reussoolina aphela 

Reussoolina minutissima  

Reussoolina ovata  

Reussoolina? lacrimaforma  

Saracenella mochrasensis  

Spirillina infima  

Spirillina tenuissima  

Spiroloculina concentrica  

Trochammina canningensis    

Vaginulina curva  

Vaginulina listi  

Vaginulina cf. neglecta 
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Vaginulina parva  

Vaginulinopsis denticulatacarinata  

Vaginulinopsis mediomatricorum  

Vaginulinopsis pauperata  
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APPENDIX C 

Recorded Northern Ireland Late Triassic-Early Jurassic ostracods species  

(All species identified in this study) 

 

Acrocythere gassumensis  

Acrocythere michelseni?  

Acrocythere oeresundensis   

Bairdia molesta  

Bairdia sp. A 

Bairdiacypris? sartriensis  

Bairdiocopina sp.    

Cardobairdia sp.   

Cytherella sp. A  

Cytherelloidea sp. A  

Ekthypocythere retia  

Ektyphocythere betzi?  

Ektyphocythere cookiana  

Ektyphocythere exiloreticulata  

Ektyphocythere frequens  

Ektyphocythere herrigi  

Ektyphocythere lacunosa  

Ektyphocythere luxuriosa  

Ektyphocythere mooeri   

Ektyphocythere perplexa  

Ektyphocythere retia  

Ektyphocythere sinemuriana  

Ektyphocythere sp. A  

Ektyphocythere translucens  

Ektyphocythere triebeli  

Gammacythere faveolata 

Gammacythere ubiquita  

Isobythocypris elongata  

Isobythocypris sp. A 

Isobythocypris tatei  

Laphodentina lacunosa 

Liasina lanceolata  

Lophodentalina cf. pulchella  

Lutkevichinella hortonae  
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Nanacythere aequalicostis   

Nanacythere elegans  

Nanacythere firma 

Nanacythere paracostata  

Ogmocnchella danica  

Ogmoconcha eocontractula  

Ogmoconcha hagenowi  

Ogmoconchella aequalis   

Ogmoconchella aspinata  

Ogmoconchella bispinosa  

Ogmoconchella bristolensis  

Ogmoconchella danica  

Ogmoconchella gruendeli  

Ogmoconchella mouhersensis  

Paracypris redcarensis  

Paracypris semidisca  

Paracypris sp. A 

Paracypris? semidisca  

Paradoxostoma pusillum  

Paradoxostoma sp. A  

Pleurifera harpa  

Pleurifera plicata  

Pleurifera vermiculata  

Polycope cerasia   

Polycope cincinnata  

Polycope minor  

Polycope pelta   

Polycope pumicosa 

Polycope sp. A  

Trachycythere tubulosa seratina  

Trachycythere tubulosa tubulosa  
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APPENDIX D  

 Ballinlea-1 Borehole processed samples 

 

 

Processed by Azrin

Proccessed by Mark

HP: Hydrogen peroxide

FT: Freeze-thaw

BAL 345 Calcareous mudstone 2 HP 54 8 1 54.00

BAL 355 Calcareous mudstone 2 HP 65 6 1/2 32.50

BAL 365 Calcareous mudstone 2.5 79 21 1/4 19.75

BAL 370 Calcareous mudstone 2.5 HP 70 9 1/2 35.00

BAL 380 Calcareous mudstone 2.5 44 18 1/8 5.50

BAL 385 Calcareous mudstone 2.5 HP 72 8 1/2 36.00

BAL 395 Calcareous mudstone 2.5 78 36 1/10 7.80

BAL 400 Calcareous mudstone 2.5 HP 89 12 1/2 44.50

BAL 410 Calcareous mudstone 2.5 HP 91 7 1/4 22.75

BAL 415 Calcareous mudstone 2.5 95 54 1/16 5.94

BAL 425 Calcareous mudstone 3 HP 88 8 1/2 44.00

BAL 430 Calcareous mudstone 3 81 47 1/6 13.50

BAL 440 Calcareous mudstone 3 HP 56 7 1/2 28.00

BAL 450 Calcareous mudstone 3 78 48 1/6 13.00

BAL 465 Calcareous mudstone 3.5 HP 70 9 1/4 17.50

BAL 475 Calcareous mudstone 3.5 HP 72 9 1/4 18.00

BAL 480 Calcareous mudstone 3.5 72 8 1/10 7.20

2: light grey

3: olive grey

4: blueish grey

5: dark grey

6: black
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APPENDIX D (continued) 

Ballinlea-1 Borehole processed samples 

 

 

Processed by Azrin

Proccessed by Mark

HP: Hydrogen peroxide

FT: Freeze-thaw

BAL 490 Calcareous mudstone 3 HP 64 9 1/2 32.00

BAL 500 Calcareous mudstone 3 HP 56 7 1/2 28.00

BAL 510 Calcareous mudstone 3 HP 86 14 1/2 43.00

BAL 520 Calcareous mudstone 3 FT 75 14 1/2 37.50

BAL 530 Calcareous mudstone 4 HP 88 15 1/2 44.00

BAL 540 Calcareous mudstone 4 HP 93 14 1/2 46.50

BAL 545 Calcareous mudstone 4 77 45 1/5 15.40

BAL 550 Calcareous mudstone 4 HP 64 17 1/2 32.00

BAL 560 Calcareous mudstone 4 HP 84 17 1/2 42.00

BAL 570 Calcareous mudstone 4 HP 87 16 1/2 43.50

BAL 580 Calcareous mudstone 4.5 HP 79 16 1/4 19.75

BAL 595 Calcareous mudstone 4.5 FT 57 1 57.00

BAL 610 Calcareous mudstone 5 65 35 1/5 13.00

BAL 615 Calcareous mudstone 5 FT 60

Calcareous mudstone 6

BAL 670 Calcareous mudstone 3 64 54

BAL 675 Calcareous mudstone 5 66 51

2: light grey

3: olive grey

4: blueish grey

5: dark grey

6: black
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APPENDIX D (continued) 

Ballinlea-1 Borehole processed samples 

 

 
  

Processed by Azrin

Proccessed by Mark

HP: Hydrogen peroxide

FT: Freeze-thaw

BAL 685 Calcareous mudstone 4.5 FT 65 1/4 16.25

BAL 695 Calcareous mudstone 3 FT 51 15 1/4 12.75

BAL 700 Calcareous mudstone 2.5 FT 65 1/2 32.50

BAL 710 Calcareous mudstone 4 FT 54 1/4 13.50

BAL 715 Mudstone 3 84 31 1/8 10.50

BAL 720 Calcareous mudstone 3 FT 62 29 1/8 7.75

BAL 730 Limestone 4 FT 69 27 1 69.00

BAL 740 Limestone 4 FT 72 37 1/10 7.20

BAL 745 Limestone 3 FT 74 36 1/4 18.50

BAL 760 Limestone 4 FT 48 22 1/2 24.00

BAL 770 Calcareous mudstone 2.5 102 69 1/10 10.20

BAL 780 Limestone 3.5 FT 71 31 1/2 35.50

BAL 785 Limestone 3.5 106 63 1/32 3.31

BAL 790 Limestone 5.5 FT 63 29 1/4 15.75

BAL 800 Limestone 3.5 FT 70 35 1/4 17.50

BAL 810 Calcareous mudstone 4 73 29 1/4 18.25

BAL 815 Calcareous mudstone 3.5 84 33 1/2 42.00

BAL 820 Calcareous mudstone & sandstone 3.5 FT 66 29 1/4 16.50

BAL 830 Calcareous mudstone 3 FT 62 23 1/2 31.00

2: light grey

3: olive grey

4: blueish grey

5: dark grey

6: black
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APPENDIX D (continued) 

Ballinlea-1 Borehole processed samples 

 

 

Processed by Azrin

Proccessed by Mark

HP: Hydrogen peroxide

FT: Freeze-thaw

BAL 835 Calcareous mudstone 3.5 FT 72 22 1/4 18.00

BAL 845 Calcareous mudstone 2.5 FT 78 40 1/2 39.00

BAL 855 Calcareous mudstone 3 FT 62 1/2 31.00

BAL 860 Calcareous mudstone 3 59 31

BAL 865 Calcareous mudstone 2.5 FT 66 38 1/4 16.50

BAL 875 Calcareous mudstone 3 FT 64 45 1/2 32.00

BAL 885 Mudstone 2 60 38 1/8 7.50

BAL 890 Calcareous mudstone 3.5 FT 53 28 1/4 13.25

BAL 900 Calcareous mudstone 2.5 53 37 1/5 10.60

BAL 910 calcareous mudstone 3.5 FT 44 1/4 11.00

BAL 920 Mudstone 3.5 FT 50 33 1/8 6.25

BAL 925 Mudstone 4 FT 39 1/11 3.55

BAL 930 Mudstone 5 FT 48 1/8 6.00

BAL 935 Calcareous mudstone 3.5 FT 58 43 1/2 29.00

BAL 940 calcareous mudstone 2 43 24 1/4 10.75

BAL 950 calcareous mudstone reddish brown FT 50 1/4 12.50

BAL 960 calcareous mudstone 5 FT 63 46 1/4 15.75

BAL 970 mudstone greenish grey FT 17 13 1/4 4.25

BAL 980 mudstone reddish brown FT 22 1/4 5.50

2: light grey

3: olive grey

4: blueish grey

5: dark grey

6: black
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APPENDIX E 

Ballinlea-1 fossils and minerals data 

 

 
 

Super-abundant (S): >150 Common (C): 41-80 Rare (R): 1-9

Abundant (A): 81-150 Present (P): 10-40
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BAL345 A P P S P P

BAL355 C P P C P S P C P

BAL365 C C

BAL370 C P P P S A

BAL380 A A

BAL385 C C P P S A C

BAL395 A C P R

BAL400 A C C P C S C C R

BAL410 A C P P P C S P C R

BAL415 R C C

BAL425 A P P P P C A C C R

BAL430 A P P

BAL440 C P P P C P A A C P

BAL450 P R R R R R R S C R R

BAL465 C P R C P P C R

BAL475 S P P C R P R P C C P

BAL480 S C

BAL490 S C P P R P P C C C

BAL500 A P P P P P A C C

BAL510 S C P P P P C P C P

BAL520 S C P P R R P A C P P P

BAL530 S C R P P C C P P P

BAL540 A C R R P R P S P P

BAL545 P P R R R R R A P

BAL550 A C R R P P P P C C P P

BAL560 S C R R R R P R A C P R
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APPENDIX E (continued) 

Ballinlea-1 fossils and minerals data 

 

 

  

Super-abundant (S): >150 Common (C): 41-80 Rare (R): 1-9

Abundant (A): 81-150 Present (P): 10-40
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BAL570 S C R R P R R P P P A C P R

BAL580 A P R R P R R R P A C P P

BAL595 S P R R P R R R C P P

BAL610 R R R P R R P A P P

BAL615

BAL630

BAL670

BAL675 R A C R

BAL685 A C C P P P R C C P

BAL700 R R P R R P R C P R

BAL710 R R P R R R P R P A C P R

BAL715 R P A P R R R R P C C P R

BAL720 A R C R P R

BAL730 S P R R P P P P C P P

BAL740 A P R R C P R R C C R R

BAL745 A P R R R R R R P P P R

BAL760 C C R P C P P R C P

BAL770 R S R R P R

BAL780 R A C R P R C C C R

BAL785 P S R R

BAL790 P S P P P P R A A R R

BAL800 A A R R P R P R P C C P
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APPENDIX E (continued) 

Ballinlea-1 fossils and minerals data 

 

  

Super-abundant (S): >150 Common (C): 41-80 Rare (R): 1-9

Abundant (A): 81-150 Present (P): 10-40
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BAL810 A A P R C P R R A C R R

BAL815 R S R R

BAL820 R A R R P P R R S R C P P

BAL830 R C R R R R A P C P R

BAL835 R P R P R L C C R R

BAL845 R C R R R R R S C C P P

BAL855 C A R R P R P R

BAL860 R R R R

BAL865 P P R R P R R R P L C P P

BAL875 R R R R R R R L C P R

BAL885 C C P P R P R P R C C R R

BAL890 P P P P P P R P L C P R

BAL900 R S R R P R R R C P R

BAL910 P S C P P R R C P R

BAL920 S A R P L A C R R

BAL 925 R P R R P R R P P R R

BAL930 P P P C R P R P P

BAL935 P S C P P P R R P R C P R

BAL940 R R R

BAL950 R R R R P P R R

BAL960 P P R R R P R P R C P R

BAL970 R

BAL980 R R
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APPENDIX F 

Carnduff-1 Borehole processed samples 

 

 

colour index:

1 = white 4 = blueish  grey

2 = light grey 5 = dark grey processed for microfossils

3 = olive grey 6 = black FT: freeze-thaw

CRN170.7 3 calcareous mudstone FT 32 4 1/16 2.00

CRN176 4.5 calcareous mudstone FT 33 2 1/2 16.50

CRN182.9 4 limestone FT 38 7 1/8 4.75

CRN186 2 calcareous mudstone contains bivalve fossils FT 24 4 1/2 12.00

CRN189.85 4.5 calcareous mudstone present bivalve fossils FT 9 1 1 9.00

CRN191.3 3 calcareous mudstone FT 23 10 1/8 2.88

CRN198.6 3 calcareous mudstone few bivalve fossils FT 16 2 1/2 8.00

CRN202.9 5 calcareous mudstone FT 19 6 1/2 9.50

CRN211 3 calcareous mudstone FT 23 4 1 23.00

CRN216.75 4 calcareous mudstone FT 18 1 1 18.00

CRN221.75 3 calcareous mudstone FT 22 2 1/2 11.00

CRN232 3 calcareous mudstone FT 18 1 1 18.00

CRN238.8 4.5 calcareous mudstone FT 20 1 1 20.00

CRN241.5 3 calcareous mudstone FT 20 1 1 20.00

CRN248.3 3 calcareous mudstone FT 19 3 1/2 9.50

CRN252.5 4 calcareous mudstone present bivalve fossils FT 45 1 1 45.00

CRN259 4 calcareous mudstone FT 35 1 1 35.00

CRN264.2 4 calcareous mudstone FT 46 2 1 46.00

CRN273.2 4.5 calcareous mudstone FT 40 1 1 40.00

CRN284.6 4.5 calcareous mudstone FT 19 1 1 19.00

CRN290.85 4 calcareous mudstone FT 40 2 3/4 30.00

CRN296.2 3 calcareous mudstone FT 18 2 1 18.00

CRN301.6 3 calcareous mudstone FT 20 2 1 20.00

CRN306.6 4 mudstone FT 24 6 1/2 12.00

CRN314.9 4.5 calcareous mudstone FT 23 4 1/2 11.50

CRN319.5 5 siltstone few shell fragments FT 18 10 1/8 2.25

CRN324.35 3 mudstone FT 20 <1 0 0.00

CRN326 2 mudstone FT 48 6 1/2 24.00
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APPENDIX G 

Carnduff-1 fossils and minerals data 

 

Super-abundant (S): >150 Common (C): 41-80 Rare (R): 1-9

Abundant (A): 81-150 Present (P): 10-40 None (x): 0
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Remarks

CRN170.7 S P R R x R x x x P R x R P P R R x R

CRN176 S P R A x x x x R R R x R R x P R x x

CRN182.9 S S P P x x P x R R R x P R x R R x x

CRN186 S P S P x R P R x P R x P P R R R x x

CRN189.85 S A R P x x x R P R R x x R x R R x x

CRN191.3 A C P R x R x x x R R x R R R R R x x

CRN198.6 A A A S x R R x P R R x P R x R R x x

CRN202.9 R R C R x x R x x R R x C R x R R x x

CRN211 C A A S x P R R R R R x P R x R R x x

CRN216.75 A S A S x R R x P R R R R R x R R x x

CRN221.75 S S P S x x R x R R R x R R x R R x x

CRN232 R A R S x x R x C R P x x R x P P R x

CRN238.8 C R x x x R R R x R R x x R x P P x x

CRN241.5 C P x P x R R x x R R x R A P P P x x

CRN248.3 P S R S x x x x C P R x R P x P R x x

CRN252.5 A A P C x R R x S R R x R R x P R x x

CRN259 S P S R R R R R x R P x R C R P P x x

CRN264.2 S S P S x R R R R P P x R P x P R x x

CRN273.2 P A x R x R P x S R R x P P R P R x x

CRN284.6 C C R x x x C R x P R x P A A P R x x

CRN290.85 P S P C x S A x x P P x P P x P R x x

CRN296.2 A A P A x A S x R C R x x P x P R x x

CRN301.6 A P P P x A P x R R R x P P x P R x x

CRN306.6 P R C x x R S R x P x x x P R R R x x

CRN314.9 P C x R x R x x x x x x x C P R R x x

CRN319.5 C x C R x x x x x R x x x C C x x x x

CRN324.35 x x x x x x x x x x x x x S S R P x x 95% of residue is mica

CRN326 x x x x x x x x x x x x P C C x x x x
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APPENDIX H 

Magilligan provided and processed samples 

 

Colour Index: processed for microfossils 

1 = white FT: freeze thaw method

2 = light grey HP: hydrogen peroxide method

3 = olive grey

4 = blueish  grey

5 = dark grey

6 = black

R
em

ar
k

1s
t

2n
d

MAG19 Calcareous mudstone 2 FT 17 4 1/4 4.25

MAG42 Calcareous mudstone 1.5

MAG45.7 Calcareous mudstone 2 FT 9 3 1/4 2.25

MAG50.85 Calcareous mudstone 2 FT 15 6 1/2 7.50

MAG55.75 Calcareous mudstone 1.5 trace of iron nodules FT 11 3 1/4 2.75

MAG60.7 Limestone 1.5 trace of iron nodules

MAG65.35 Calcareous mudstone 3 FT 12 3 1/4 3.00

MAG70.22 Calcareous mudstone 2 trace of iron nodules FT 11 3 1/4 2.75

MAG76.69 Calcareous mudstone 2 trace of iron nodules FT 15 4 1/4 3.75

MAG77.5 Limestone 3 trace of iron nodules

MAG79 Calcareous mudstone 1.5 trace of iron nodules FT HP 7 3.5 1/2 3.50

MAG80.77 Calcareous mudstone 3

MAG84.6 Calcareous mudstone 4 trace of iron nodues
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APPENDIX H 

Magilligan provided and processed samples 

 

Colour Index: processed for microfossils 

1 = white FT: freeze thaw method

2 = light grey HP: hydrogen peroxide method

3 = olive grey

4 = blueish  grey

5 = dark grey

6 = black
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MAG85.63 Calcareous mudstone 3 FT 2 2 1 2.00

MAG92.72 Calcareous mudstone 2 FT 4 2 1 4.00

MAG101.8 Calcareous mudstone 3 FT 8 4 1 8.00

MAG106.95 Calcareous mudstone 3 FT 23 10 1 23.00

MAG112 Calcareous mudstone 3 FT 8 2 1 8.00

MAG117 Calcareous mudstone 1.5 FT 22 8 1 22.00

MAG122 Calcareous mudstone 3 FT 6 3 1 6.00

MAG126.12 Calcareous mudstone 3 FT 17 11 1/4 4.25

MAG131.8 Calcareous mudstone 4 FT HP 8 4 1/2 4.00

MAG141 Calcareous shale? 3 FT 23 10 1/4 5.75

MAG146 Calcareous mudstone 3 FT 8 2 1/4 2.00

MAG151 Calcareous mudstone 2 FT 7 3.5 1/2 3.50
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APPENDIX H (continued) 

Magilligan provided and processed samples 

 

Colour Index: processed for microfossils 

1 = white FT: freeze thaw method

2 = light grey HP: hydrogen peroxide method

3 = olive grey

4 = blueish  grey

5 = dark grey

6 = black
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MAG156.15 Calcareous siltstone 3 lamination of siltstone with fine sandstone

MAG158 Calcareous mudstone 5 FT 8 2 1/4 2.00

MAG161.7 Calcareous mudstone 3 FT 19 10 1/2 9.50

MAG163.22 Mudstone 4 lamination of light grey siltstone and blueish grey mudstone FT 6 6 1/2 3.00

MAG163.9 Mudstone 4 FT 4 4 1 4.00

MAG163.95 no samples provided

MAG172 no sample provided
MAG173.54 Calcareous mudstone 3 bivalve mould FT 9 8 1/4 2.25

MAG175.1 Calcareous shale 5.5 abundant of bivalve fossils FT 9 4.5 1/2 4.50

MAG175.58 Shale 5.5

MAG177.9 Shale 5.5 clearly seen ribs of bivalve  (Chlamys mayeri/Chlamys sp.) FT 19 15 1/4 4.75

MAG179.43 Calcareous mudstone 5.5 has bivalve fossils, lamination FT 6 3 1/2 3.00
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APPENDIX I  

Magilligan fossils and minerals data 

 

Magilligan borehole

Super-abundant (S): >150 Common (C): 41-80 Rare (R): 1-9

Abundant (A): 81-150 Present (P): 10-40 None (x): 0
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Remarks

MAG19 x R x x x x R x x R R x C x R R C P sandstone mostly in >500micro and 250-500micro fractions, quartz common in 63-250micro fraction

MAG45.7 x R x x x x x x x x x x A C P R C C white sandstone (matrix: silt; grain: quartz)

MAG50.85 R R R x x x x R x R x x P R R x x x

MAG55.75 x x x x x x x R x x x x C x P x C x

MAG65.35 C P P P P P R x P x x R x R R A A Fragment of sandstones are dominant(95%) in >500micro & 250-500 micro fractions 

MAG70.22 R R R C x R x x x R R R P x R R R R

MAG76.69 R P x A x R x R x R R x C x R R R x

MAG79 x R R R x R x x x R x x P x P R x x

MAG85.63 C R x R x x x x x R R R P 7 1 R x

MAG92.72 x x x x x x x x x x x x P R R R R P >500micro fraction consists of 100% fragment of quartz (sandstone contains quartz, biotite and muscovite)

MAG101.8 P R R P x C x x x R x R P R R R P P

MAG106.95 S x x x x C R C R R R R P P A R x x

MAG112 P C R P x A P P R R x R P x P R x x most of microbivalve and microgastropod covered by pyrite

MAG117 R x x x x P x x x x x x C C R R x C



 

xlix 
 

 

APPENDIX I (continued) 

Magilligan fossils and minerals data 

 

 

Magilligan borehole

Super-abundant (S): >150 Common (C): 41-80 Rare (R): 1-9

Abundant (A): 81-150 Present (P): 10-40 None (x): 0
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Remarks

MAG122 R R x R x x R R x x x R P x R R x x

MAG126.12 P R x x x R x R x x x P P P R R x x

MAG131.1 P P x R x R x C x R x P P x C R x x

MAG141 R R x x x x R P x x x R P P R R x R

MAG146 P C R C R P R P x R x R P x R R x x

MAG151 R P R P x R R R x x x R P x P R x x

MAG158 C A C A x x A C R R R R C x R R x x

MAG161.7 x P R x x x x x x x x P x R R R x x

MAG163.22 x x x x x x x x x x x x R x x x x x

MAG163.9 x x P R x x x x R R R x x x C R x x

MAG173.54 x x x x x x x x R x x x A C R P A x

MAG175.1 x x x x x x x x x P x x R x x x C x

MAG177.9 x x x x x x x x P C x x C C P R C x

MAG179.43 R x x x x x x x x x R x x x x x x x
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APPENDIX J 

Tircrevan Burn processed samples, fossils and minerals data 

 

 
 
 
 

 

Colour Index:

1 = white

2 = light grey

3 = olive grey

4 = blueish  grey

5 = dark grey

6 = black
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TB 05 Calcareous mudstone 4 HP 55 9 1/64 0.86

TB 04 Calcareous mudstone 4 HP 44 28 1/16 2.75

TB 03 Calcareous mudstone + sandstone 4+1 HP 46 7 1/8 5.75

TB 02 Fine sandstone (with black mud-drape) 1 HP 39 25 1/16 2.44

TB 01 Fine sandstone 1 HP 29 16 1/8 3.63

Processed for micrfossils

HP: hydrogen peroxide

S (super-abundant): >150 C (common): 41-80 R (rare): 1-9

A (abundant): 81-150 P (present): 10-40 x (none): 0
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TB 05 A A x x x R C x P x R x R C P P R x

TB 04 P C R A x P R x P R R x x C P R R x

TB 03 x x x x x x x x x x x C x P P x C P

TB 02 x x x x x x x x x x x S x P P x R x

TB 01 x x x x x x x x x x x S x P P x x x
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APPENDIX K 

White Park Bay processed samples 

 

 
  

Colour Index: Processed for micrfossils

1 = white HP: hydrogen peroxide

2 = light grey

3 = olive grey

4 = blueish  grey

5 = dark grey

6 = black

Sa
m

p
le

Li
th

o
lo

gy

C
o

lo
u

r

P
ro

ce
ss

ed
 (

m
et

h
o

d
)

In
it

ia
l w

ei
gh

t 
(g

)

Fi
n

al
 w

ei
gh

t 
(g

)

Fr
ac

ti
o

n

W
ei

gh
t 

p
ic

ke
d

 (
g)

WPB 07 Calcareous mudstone 4 HP 104 42 1/16 6.50

WPB 06 Calcareous mudstone 4 HP 99 38 1/16 6.19

WPB 05 Calcareous mudstone 4 HP 60 14 1/8 7.50

WPB 04 Mudstone 4 HP 55 18 1/8 6.88

WPB 03 Calcareous mudstone 4 HP 70 16 1/8 8.75

WPB 02 Calcareous mudstone 4 HP 29 5 1/4 7.25

WPB 01 Calcareous mudstone 4 HP 74 30 1/16 4.63
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APPENDIX L 

White Park Bay fossils and minerals data 

 

 

 
 

S (super-abundant): >150 C (common): 41-80 R (rare): 1-9

A (abundant): 81-150 P (present): 10-40 x (none): 0

Sa
m

p
le

 ID

Fo
ra

m
in

if
er

a

O
st

ra
co

d
s

Ec
h

in
o

d
er

m
 f

ra
gm

en
t

O
p

h
iu

ro
id

 f
ra

gm
en

t

C
ri

n
o

id
 s

te
m

 f
ra

gm
en

t

M
ic

ro
-g

as
tr

o
p

o
d

M
ic

ro
-b

iv
al

ve

Fi
sh

 t
o

o
th

H
o

lo
th

u
ri

an

Sh
el

l f
ra

gm
en

ts

Tr
ac

e 
fo

ss
il

Q
u

ar
tz

C
al

ci
te

M
u

sc
o

vi
te

B
io

ti
te

P
yr

it
e

C
ar

b
o

n
ac

eo
u

s 
m

at
er

ia
l

gl
au

co
n

it
e

sa
n

d
st

o
n

e

WPB 07 C x R x x x x x x R R x R A C R R x x

WPB 06 C P x x x R x x x C R P R P R R x R x

WPB 05 A C R x x x R x x R R R P A C R R x x

WPB 04 A P R R x R R x R R R R R P P P R x x

WPB 03 A P x x x R x x R R R x R C P R P x x

WPB 02 C P x R x x x x P R R R R C P x R x x

WPB 01 S C R R x R x x C x x x R C P x R x x


