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Abstract

This work summarises investigations into the superconductivity in 122-

structure, I4/mmm symmetry materials; the heavy-fermion TlNi2Se2, and

the iron-arsenides (Ba0.5K0.5)Fe2As2 and KFe2As2. Small-angle neutron scat-

tering (SANS) was used to study the vortex lattice (VL) of single crystal

samples of these superconductors under temperature, field and angle modula-

tion. We observe a linear response of the form factor to temperature variation

for TlNi2Se2 and KFe2As2, concurrent with nodal and unconventional super-

conductivity. Weak VL anisotropy and no VL morphology were observed in

TlNi2Se2 and (Ba0.5K0.5)Fe2As2 respectively, whereas KFe2As2 experiences

strong VL anisotropy. Observations of (Ba0.5K0.5)Fe2As2 confirm Pauli para-

magnetic effects (PPE) above 0.1Hc2 . PPE are seen near Tc for KFe2As2, but

not for TlNi2Se2. Literature review regarding the Fermi surface and electron

bands confirms van Hove singularities (vHs) near the Fermi level (EF ) for all

three materials. This provides some explanation of the variation in pairing

symmetry for similarly structured superconductors. The tuning of the vHs

with respect to EF determines the symmetry of the gap function as well as the

effective mass of the electrons for TlNi2Se2, (Ba1−xKx)Fe2As2 and KFe2As2.



ACKNOWLEDGEMENTS

First, I would like to acknowledge my supervisor Elizabeth Blackburn for the guid-

ance and opportunities for more than three years of postgraduate research and

three years of undergraduate study. Elizabeth has been invaluable to my success

as a physicist. Elizabeth has been encouraging and honest with feedback, as well

as compassionate during a low point in my mental health. On top of all that I

have been able to travel extensively on experiments and conferences, occasionally

with some complex funding applications, due to the extensive research opportunities

provided by Elizabeth and this field. I wish her all the best at her new position in

Lund and very much look forward to working with her again in the future.

I would like to acknowledge the Condensed Matter Group, particularly Ted For-

gan for his work ethic and diligence on experiments. I don’t think I will work with

anyone more knowledgeable of experimental condensed matter physics or have more

enthusiasm for experimentation. I would like to acknowledge Randeep Riyat for

many lifts and interesting conversations at conferences and schools, Lingjia Shen for

his dry sense of humour on long experiments and Emma Campillo for her company

and conversation in a very empty office.

I would also like to acknowledge the many instrument scientists and collaborators

I have met and worked with. Specifically, I acknowledge Bob Cubitt for his patience

and good humour with a clumsy new PhD researcher. I acknowledge Jorge Gavilano

for his perseverance and assistance in the face of dilution problems and a very

shy neutron beam. I would also like to acknowledge Hazuki Kawano-Furukawa for

her consistent cheery disposition on difficult experiments and bringing many tasty

Japanese snacks to keep us going.

I would like to acknowledge the tremendous efforts of Stephen Pollard and

Philippa Jefferies for being talented and enthusiastic undergraduates who helped

a great deal on experimentation and analysis and covering some of the late shifts at



the ILL. I would like to acknowledge Minoru Soda for taking the lead on the initial

EXED/HFM analysis due to my non-existent Python© coding skills.

I would very much like to acknowledge Ian Stevens, welfare tutor. His patience

and knowledge of the welfare and counseling systems and the university helped me

navigate through a difficult period of my academic life. His positive attitude and

follow-up meetings have been most encouraging.

I acknowledge my Mum and Dad who, despite not understanding a word of

my papers or my attempts to explain my PhD, have shown emotional and not

insignificant financial support. I am sure that they, most of all, are glad of my

completion of this thesis given that it means I will be able to start a career and

will no longer be penniless. I am also sure that my Mum will be pleased that her

prediction, that the moment I enter University I would never leave, has more or

less come true. I also acknowledge my sister Marcie, who has provided me with the

occasional new phone, money, and glib remarks. I would also like to acknowledge

Simon, Beverley, Fiona and Lorna, who have regularly provided over the past four

years the closest thing I can call a holiday. My visits to see them, be it in Texas,

Lancaster or the Netherlands, have always provided a good deal of respite.

Most of all I would like to acknowledge my fiancée, Ellie Bennett. Together we

have supported each other through our undergraduate and postgraduate studies,

even though we have completely different disciplines (I like to think I’ve picked up

some Assyriology along the way). Without each others mutual support and love

during mental health problems, family loss and travelling for work I don’t think we

would have been as successful as we have been. I owe her a great deal. Now we are

at the end of our studies, we can finally be employed and have that long awaited

marriage ceremony we both deserve.



Contents

1 INTRODUCTION 1

1.1 London model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Vortex lattices in the London model . . . . . . . . . . . . . . . . . . . 4

1.2.1 Anisotropic London theory . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Non-local London theory . . . . . . . . . . . . . . . . . . . . . 9

1.3 Ginzburg-Landau (GL) model . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 The Clem model . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Bardeen-Cooper-Schreiffer (BCS) theory . . . . . . . . . . . . . . . . 21

1.5 Non-local corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6 Classification of superconductivity: d-wave and unconventional su-

perconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.6.1 Classification of unconventional superconductors with respect

to symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.7 Upper critical field in Type-II superconductors . . . . . . . . . . . . . 32

1.8 Multigap superconductivity . . . . . . . . . . . . . . . . . . . . . . . 34

2 SMALL-ANGLE NEUTRON SCATTERING FROM MAGNETIC

STRUCTURES - EXPERIMENTAL METHODS 37

2.1 Introduction to small angle neutron scattering . . . . . . . . . . . . . 37

2.2 Scattering theory for an ideal periodic potential . . . . . . . . . . . . 38

2.3 Small-angle neutron scattering from a VL . . . . . . . . . . . . . . . 40

2.4 Ewald sphere theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 Sample and sample environment . . . . . . . . . . . . . . . . . . . . . 49

2.6.1 Dilution refrigeration in the 17 T cryomagnet . . . . . . . . . 51

2.6.2 Preliminary calculations . . . . . . . . . . . . . . . . . . . . . 54

2.7 Identification of pairing mechanisms . . . . . . . . . . . . . . . . . . . 56



2.8 Perfecting the VL by oscillating the field . . . . . . . . . . . . . . . . 58

3 THE ROLE OF THE FERMI SURFACE AND ELECTRONIC

STRUCTURE IN DETERMINING THE PAIRING SYMMETRY 61

3.1 Electronic structure in KFe2As2 . . . . . . . . . . . . . . . . . . . . . 62

3.2 Electronic structure in doped variations of

(Ba1−xKx)Fe2As2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Electronic structure in TlNi2Se2 . . . . . . . . . . . . . . . . . . . . . 72

3.4 Comparing the 122, I4/mmm superconductors . . . . . . . . . . . . . 76

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 ANISOTROPY IN THE VL OF KFe2As2 80

4.1 Properties of KFe2As2 and motivation for SANS studies . . . . . . . . 80

4.2 Previous investigations in KFe2As2 . . . . . . . . . . . . . . . . . . . 82

4.3 Anisotropy in the VL . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.2 Effects of field on the anisotropy . . . . . . . . . . . . . . . . . 87

4.3.3 Effects of rotation in Ω on the anisotropy . . . . . . . . . . . . 89

4.4 Evidence of Pauli paramagnetism and multiband superconductivity . 91

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 HIGH FIELD STUDY OF SUPERCONDUCTING (Ba0.5K0.5)Fe2As2 97

5.1 Properties of (Ba0.5K0.5)Fe2As2 and motivation for SANS studies . . . 97

5.2 Results for (Ba0.5K0.5)Fe2As2: D33 beamline, ILL July 2016 . . . . . 99

5.2.1 Field dependence of the form factor . . . . . . . . . . . . . . . 101

5.2.2 Temperature dependence of the form factor . . . . . . . . . . 103

5.2.3 Identifying the pairing mechanism of (Ba0.5K0.5)Fe2As2 . . . . 105

5.2.4 Non-local corrections to the superfluid density . . . . . . . . . 108

5.3 Results for (Ba0.5K0.5)Fe2As2: EXED beamline, High Field Magnet

(HFM), HZB July 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . 112



5.3.1 Instrumentation for EXED/HFM . . . . . . . . . . . . . . . . 112

5.3.2 Experimental technique and data extraction for EXED/HFM . 113

5.3.3 Integrated intensity at high-field (B ≥ 14 T) . . . . . . . . . . 116

5.3.4 Field dependence of the form factor: Comparison with low-

field data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3.5 Temperature dependence of the form factor . . . . . . . . . . 119

5.3.6 Penetration depth under high-field . . . . . . . . . . . . . . . 122

5.3.7 Evidence for Pauli limiting above 16 T . . . . . . . . . . . . . 126

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 STUDY OF THE PAIRING MECHANISMS IN TlNi2Se2 128

6.1 Properties of TlNi2Se2 and motivation for SANS studies . . . . . . . 128

6.2 Previous investigations . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3 Heat capacity studies of TlNi2Se2 . . . . . . . . . . . . . . . . . . . . 134

6.4 Preliminary results for TlNi2Se2: SANS-I, PSI, November 2015 . . . . 141

6.5 Results for TlNi2Se2: D33 beamline, ILL, December 2016 . . . . . . . 147

6.5.1 Vortex lattice structure . . . . . . . . . . . . . . . . . . . . . . 148

6.6 Field- and angle-dependent anisotropy of the VL in

TlNi2Se2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.6.1 Field dependence of the vortex lattice form factor . . . . . . . 156

6.6.2 Temperature dependence of the vortex lattice form factor . . . 159

6.6.3 FWHM of the VL spots vs field and temperature . . . . . . . 163

6.6.4 Comparison of the integrated intensity data with ideal models 166

6.6.5 Calculation of the penetration depth and the superfluid density169

6.7 Non-local corrections to the superfluid density . . . . . . . . . . . . . 174

6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7 FINAL SUMMARY 180

8 APPENDICES 183



8.1 Appendix A: Analysis using GRASP . . . . . . . . . . . . . . . . . . 183

8.2 Appendix B: Suitably modelling the integrated intensity, form factor

and penetration depth . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.3 Appendix C: Numerical method for modelling the gap function . . . . 189

8.4 Appendix D: Publications . . . . . . . . . . . . . . . . . . . . . . . . 195

8.4.1 Publications arising from work in this thesis . . . . . . . . . . 195

8.4.2 Other publications arising during the thesis period . . . . . . 195



List of Figures

1 Sketches of the penetration depth in the a − b plane for H ‖ c for (a)

isotropic and (b) anisotropic cases from work in [12]. Panel (c) shows the

VL in the case of γ > 1 for both the real and reciprocal representations;

where x∗ ≡ kx, y∗ ≡ ky are reciprocal axes. . . . . . . . . . . . . . . . . 8

2 Diagrams of the Fermi surface symmetry given the nature of the pairing

mechanism. (a) The Fermi surface of a conventional superconductor. The

thick line is the Fermi surface cross-section, the thin line is the ampli-

tude of the order parameter. (b) The Fermi surface of an unconventional

superconductor. The thick line is the Fermi surface, the thin line is the

amplitude of the order parameter. The order parameter has less symmetry

than the Fermi surface [66]. . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Instrumentation for a SANS investigation of a sample. This specifically

shows the internal functioning of the SANS-I instrument at SINQ , PSI,

Switzerland. Image sourced from [38]. . . . . . . . . . . . . . . . . . . . 38

4 The array of black spots indicate the reciprocal lattice. ki and kf are

the incoming and outgoing wavevectors, respectively. The origin, O, of

the diffraction is also the point about which the sphere originates, in the

sense that the initial point of scattering occurs at O (in this case a 2-D

circle is used). In the case presented above only one spot satisfies the

Bragg condition by lying on the Ewald sphere surface and generating the

scattering vector ∆k, which is equal to the reciprocal vector between the

two points in the lattice. The Bragg angle of scattering is given as 2θ,

which is the angle between ki and kf [39]. Image taken from work in [66]. 45

5 The layout of the ISIS spallation system with proton accelerator, target

stations, and instrumentation. [42] . . . . . . . . . . . . . . . . . . . . . 46

6 Layout of the fission reactor source, beam guides and instrumentation at

the Institute Laue-Langevin, Grenoble, France [44]. . . . . . . . . . . . . 47



7 D33 instrumentation at the ILL, Grenoble, France. The top image shows

the velocity and choppers used to select the wavelength and resolution

of the wavelength. The middle image shows the collimation sections and

apertures used to align and attenuate the neutron beam. The bottom

image illustrates the neutron path after diffraction. The detectors are

adjustable to match the q range available. The image is taken from [43]. . 48

8 TlNi2Se2 mozaic made from 6 samples of approximately 2 mm by 3 mm

surface area and 0.13 mm thickness. They are aligned with the c axis

perpendicular to the mounting plate and the a and b axes co-aligned along

the length and width of the mounting plate, respectively. This image is

the sample setup for the preliminary measurements conducted at PSI,

November 2015. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9 Side-cut view of the 17 T magnet bore for inserting the variable tempera-

ture insert (VTI). Shown here is the orientation of the magnet and sample

space as well as the direction of an incoming beam of particles [63]. . . . . 50

10 Phase diagram of a 3He/4He mixture with respect to temperature and

concentration of 3He as a molar fraction [64, 65]. . . . . . . . . . . . . . 52

11 Schematic of a dilution refrigeration insert equivalent to that used in the

TlNi2Se2 experiments for SANS at ILL and PSI. The pumps at the top

are external and at room temperature [66]. The green box is the inner

vacuum can which is placed into the variable temperature insert (VTI) of

the cryomagnet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



12 SANS images of the VL in YNi2B2C with inset of longitudinal shaking and

inverse shaking field oscillations. Image (a) shows a 100 mT FC to 2 K

without any shaking procedure. Image (c) shows the VL after a 10% longi-

tudinal inverse shake after FC showing better resolution of the hexagonal

vortices as they have become mobile and settled to equilibrium. Image (b)

shows the shaking and inverse shaking field oscillations associated with the

wiggling procedure. Image taken from work in [67]. . . . . . . . . . . . . 59

13 1st and 2nd Brillouin Zone (BZ) of a tetragonal crystal structure [70]. This

outlines the points of reference and lines of symmetry in reciprocal space

when exploring the Fermi surface and band structure of the 122 materials

in this work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

14 (a) ARPES results showing the Fermi surface intensity with kz = π. The

blue lines indicate the Fermi surfaces as a guide to the eye. (b) ARPES

intensity plot for the blue dotted line direction in (a) labelled #1 and

corresponding to the Z-A symmetry line. This data set shows a saddle

point at V(0.5π/a, 0), highlighted by the dotted blue square. (c) ARPES

intensity plot along the direction in (a) labelled #2, which is aligned to

the (0.5π/a, ky) symmetry line. The insets in (b) and (c) are momentum

distribution curves (MDCs) taken from the areas highlighted by the dotted

blue boxes. (d) Energy distribution curve going through the saddle point

in (b). The lower portion of (d) indicates the theoretical components for

modelling the energy distribution (an asymmetric shape, as previously

discussed) [73]. All of the above measurements were made at 7 K and the

images were taken from work in [72]. . . . . . . . . . . . . . . . . . . . . 64



15 (a) 3-D fit from the ARPES data showing the saddle point and the band

dispersion around it. (b) Comparison between DOS calculated from ARPES

results and from scanning tunnelling spectroscopy (STS). (c) Top image

shows the intensity plot of log (1/|∇E|) calculated form the ARPES results

for band dispersion, corresponding to k-dependence. This is integrated

with limits of ±5 meV around the saddle point at V. The lower image is

the corresponding energy contours as dotted lines showing the binding en-

ergy of the saddle points overlaid on the gap function, assuming the highly

likely s± pairing symmetry. Images taken from work in [72]. . . . . . . . 65

16 Phase diagram of (Ba1−xKx)Fe2As2 with respect to doping levels for var-

ious temperatures. The Lifshitz transition around the M point is high-

lighted in green and shows the shift in band structure around M. Image

taken from work in [75]. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

17 EDCs of (Ba0.1K0.9)Fe2As2 from ARPES measured at T = 50 K. Measure-

ments are made along the Γ-X direction with LDA calculations presented

as red lines (kz = 0) and black lines (kz = π). Image taken from work in

[78]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

18 Intensity plots of the band structure of (Ba0.6K0.4)Fe2As2. All dots in

the following sub-plots are from energy distribution curve (EDC) peaks.

(a) Plot near Γ (T = 15 K). (b) Plot near Γ (T = 150 K). (c) Plot near

M (T = 15 K). (d) Second derivatives of the spectra near M. The inset

indicates the locations of the ARPES measurements in the BZ in relation

to the sub-plots (a)-(d). Images taken from work in [78]. . . . . . . . . . 69

19 (a) FS of (Ba1−xKx)Fe2As2 for x = 0.7. (b) FS of (Ba1−xKx)Fe2As2 for x

= 0.9. Images taken from work in [82]. . . . . . . . . . . . . . . . . . . . 70



20 (a) ARPES FS intensity map, kz = 0. (b) ARPES FS intensity map,

kz = π. The symbols indicate the positions of kF and the red lines in

(b) designate cuts through the FS for ARPES intensity analysis, which is

given for cuts 1-4 in Figure 21 for x = 0.9. Images taken from work in [82]. 71

21 (a) ARPES intensity plot for cut 1, kz = π for ε pockets. (b) ARPES

intensity plot for cut 2, kz = π for ε pockets. (c) ARPES intensity plot for

cut 3, kz = π for ε pockets. (d) ARPES intensity plot for cut 4, kz = π

for ε pockets. Cuts here refer to Figure 20 for the case of x = 0.9. Images

taken from work in [82]. . . . . . . . . . . . . . . . . . . . . . . . . . . 72

22 LDA band structure corresponding to lines of high symmetry for TlNi2Se2.

The width of the line indicates the spectral weight of the Se 4p orbitals.

The dotted line oval indicates the saddle feature of interest. The right

hand side inset shows the DOS from the LDA calculations. It can be seen

from the secondary inset, in the top right, that there is a peak in the DOS

caused by the saddle point at the Fermi surface. Image taken from work

in [83]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

23 (a) Plot of the FS at the Z point. Coloured lines indicate directions for

analysis of the FS in ARPES. (b) 3-D plot of the band structure at Z.

(c) ARPES results taken along the C1 and C2 directions indicated in (a).

These were taken at T = 5 K. (d) Dispersion of bands in (c). (e) ARPES

results taken along the C3 direction as indicated in (a). (f) Dispersion of

bands in (e). Images are taken from work in [83]. . . . . . . . . . . . . . 74

24 Maps of the FS for the kz = 0, π planes. These are the integrated intensities

of the ARPES measurements in [83] within ±5 meV of EF , with electronic

bands overlaid for clarity. (a) kz = 0 plane centred on Γ. (b) kz = π plane

centred on Z. (c) and (d) are taken at 555 meV below EF . EB denotes the

sampling energy below EF . Images are taken from work in [83]. . . . . . . 75



25 Schematics of the FS of KFe2As2, (Ba0.5K0.5)Fe2As2 and TlNi2Se2, re-

spectively. (a) FS of KFe2As2. (b) FS of (Ba0.5K0.5)Fe2As2. (c) FS of

TlNi2Se2, here we label β instead of δ used previously in Figure 24 in or-

der to illustrate the similarities between the concentric cyclinders in (a)

and (b) at Γ with those in TlNi2Se2 at Z. The FS is centred on Z in the

1st BZ in (c), unlike (a) and (b) which are centred on Γ in the 1st BZ. . . 77

26 Magnetisation and resistivity measurements taken for sample characteri-

sation. For the magnetisation, a field of 1 mT was applied, with the upper

curve presenting field cooling and the lower curve zero-field cooling. The

sample information is contained within the resistivity graph, alongside the

residual resistivity ratio (RRR). Figure taken from work in [109] . . . . . 81

27 VL diffraction patterns of KFe2As2 at 2 K and 0.2 T for both the [010]

(a)-(e) and [1̄10] (f)-(j) orientations. In the work by Kawano-Furukawa et

al. [12] the angle Ω is denoted more generally as α, while the angles β and

η are defined in images (a) and (f), respectively. Figure taken from work

in [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

28 VL diffraction patterns of KFe2As2 for T < 0.35 K and 0.2 T for both

the [010] (a)-(e) and [1̄10] (f)-(j) orientations. In the work by Kawano-

Furukawa et al. [12] the angle Ω is denoted more generally as α, while

the angles β and η are defined in images (a) and (f), respectively. Here

another misalignment angle φ is also defined due to the weak signal for

measuring η. Figure taken from work in [12] . . . . . . . . . . . . . . . . 83

29 γ, the anisotropy, versus the applied angle α for the [h0l] orientation. Sep-

arate data sets are given for the T < 0.35 K and T = 2 K measurements.

Figure taken from work in [12] . . . . . . . . . . . . . . . . . . . . . . . 84



30 Normalised for factor of the two top/bottom spots and the four left/right

spots in the [h0l] configuration. Field is set to 0.2 T and T < 0.35 K.

The form factors are normalised to the values at α = 0◦. The fits were

produced using λ = 203 nm, c = 0.52 and ξ = 13.5 nm for Bc2 = 1.8 T

and T = 50 mk. The anisotropy γ = 3.35 was also used. Figure taken

from work in [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

31 (a) Sample mosaic mounted on four parallel aluminium plates with a cad-

mium window. The total mass of the samples is ≈ 2 g. (b) Coordinate

systems of the experiment. The directions are defined as z parallel to H

and y parallel to b, also known as the basal plain [86]. The magnetic field

is rotated by some angle Ω away from the a− b plane. Neutron spins are

denoted by ±σ and are parallel or antiparallel to H. The neutron beam is

incident in the z−y plane and at angle φ, to the field direction H. Q is the

scattering vector of the VL. The transverse and longitudinal modulation

components of the applied field are identified by hx and hz. (c) Diagram

of the hexagonal VL experiencing anisotropy. The VL spots lie on an

ellipse in reciprocal space, with the anisotropy ratio, ΓV L describing the

major/minor axis ratio of the ellipse. The area of the ellipse is determined

by A = πQ2
0, where Q0 is defined by equation 112. Given the anisotropy

follows an ellipse, only the two red spots are needed to determine Q0 and

thus the area and ΓV L. Figure published in [86]. . . . . . . . . . . . . . . 86

32 Measurements (f)-(j) are made at a fixed angle Ω = 10◦. The anisotropy

clearly increases with increasing field. The white line has been added as a

guide to the eye to show the decrease in the VL ellipse minor-axis in the

same scale for increasing field. The central area has been masked in order

to cover imperfect background subtraction while the colour scale for each

image is adjust individually in order to make the spots for the larger fields

clearly visible. Figure published in [86]. . . . . . . . . . . . . . . . . . . 88



33 The VL anisotropy, ΓV L variation with respect to the applied field. Two

separate angles of rotation in Ω are included as well; being the two small-

est angles of rotation available.The dashed lines with graded grey areas

represent the relative maximum possible values of the anisotropy for the

angle Ω, defined as ΓMax
V L = 1/ sin Ω. Figure published in [86]. . . . . . . . 88

34 Measurements (a)-(e) are made at a fixed field B = 0.4 T. The anisotropy

clearly increases with increasing angle. The central area has been masked

in order to cover imperfect background subtraction, this beign a circular

area from (a) to (d) and a strip in (e). The colour scale for each image is

adjusted individually in order to make the spots for the larger fields clearly

visible. Note that image (e) here is identical to image (f) in Figure 33.

The strip is applied due to increased background scattering off of the Alu-

minium plates and crystal defects at small Ω.Image (a) still faintly shows

the other 4 VL spots in the first domain. All images are normalised to Q0

for both axes. Figure published in [86]. . . . . . . . . . . . . . . . . . . 89

35 ΓV L calculated as a function of Ω using equation 113 to generate the fit

curves in red and blue, with respective y-axis intercepts of Γac = 5.2 and

Γac = 10.8. The 1.0 T and 1.4 T data sets are combined for a fit, given

their close overlap. The black lines are from fits obtained in previous work

by Kawano-Furukawa et al. [12] at low fields. The grey bars represent

the areas of Ω which are equivalent to the grey areas in Figure 33. Figure

published in [86]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



36 A VL rocking curve showing the scattered intensity versus the rocking

angle, φ, relative to the rocking centre φ0 = 0.8◦. Rather than a single

central scattering peak aligned to φ0 as we would expect, instead there are

three peaks. There is the central non-spin-flip peak due to longitudinal

field modulation (hz) and the two larger spin-flip peaks caused by Zeeman

splitting from the transverse field modulation (hx). In this rocking scan

λn = 8 Å and the spin-flipped peaks are located at ±0.4◦. Figure published

in [86]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

37 Intensity ratios of spin-flip to non-spin-flip peaks versus Ω (a) and ap-

plied field (b). Given that the spin-flip peaks correspond to only one spin

orientation each, they are summed for a total integrated intensity of the

spin-flip contribution. The fit line in (a) is calculated using equation 114

and the values in Figure 35. In (b) the fit lines are from the London model

(Christen formula) and the field dependence of ΓV L from Figure 37. Figure

published in [86]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

38 Ratio of the Pauli paramagnetic contribution to the form factor parallel

to the vortices hz, using equation 116. Also used are the ratio values

from Figure 37(b). Included is a black line representing an exponential fit.

Figure published in [86] . . . . . . . . . . . . . . . . . . . . . . . . . . 95

39 (a) Resistivity measurements on grown samples of (Ba0.5K0.5)Fe2As2 with

the measurement of resistivity ‖ ab at varying fields. (b) Resistivity mea-

surements on grown samples of (Ba0.5K0.5)Fe2As2 with the measurement

of resistivity ‖ c at varying fields. There is a narrower spread of Hc2 values

for each field for H ‖ ab, indicating that the c axis is more sensitive in the

superconducting state to changes in field. . . . . . . . . . . . . . . . . . 98

40 Prediction of the approximate Hc2 behaviour extrapolated from the Lon-

don theory, details from the sample grower and the data available in this

work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



41 Comparative images of the diffraction patterns from azimuthal ω scans

with a maximum rock of ±3◦ for high fields and ±2◦ for low fields. There

is a second domain visible via the apparent spots above and below the

left- and right-most spots at 12 T and 16 T. The second domain’s signal is

much weaker for lower fields. The diffraction pattern signal is clearly still

very strong up to 16T. White hexagons are used to illustrate the apparent

positions of the two visible domains at these field, temperature and angle

settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

42 Rocking curves of the left- and right-most spots of the diffraction pattern

from Figure 41. The spots under analysis are highlighted in Fig. 41 by

the red sector boxes. For high fields a rock of ±3.5◦ is used to contain

some sufficient background. For lower fields smaller rocks of ±2◦ were

used instead to save time. The units for the y axis represent the number

of counts per total amount of scan time per point within the red sector

boxes in the analysis. The x axis is represented by the azimuthal angle ω. 101

43 (a) |F (q)| vs field at 3 K averaged using multiple spots in the VL for

better statistics. Above 6 T very little change in the |F (q)| is observed,

opening up the possibility of Pauli paramagnetic effects at stronger fields

and ensuring that a VL will easily be observable for fields above 16 T. The

low |F (q)| below 6 T is possible due to disorder in the VL at low fields.

(b) |F (q)| vs field at 3 K. Similar to (a) except the ω and φ scans are not

combined in an average, they are separated in order to look for potential

disagreement with respect to direction of rotation. . . . . . . . . . . . . . 102

44 Integrated intensity (I(q)) results as a function of temperature. These

results are the averages between the φ and ω scans. The integrated inten-

sities are extracted from gaussian fits to the rocking curves, like those in

Figure 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



45 Form factor calculated from the temperature scan integrated intensities in

Figure 44 using the Christen formula. A core correction term is used with

c ≈ 0.52 using the value from the related compound KFe2Ass [109, 12] and

an approximated Pippard coherence length of ξ0 ≈ 1.53 nm (κ ≈ 81). . . . 104

46 The normalised integrated intensity (I(q)) at 2 T, 6 T and 16 T vs temper-

ature, compared to models of I(q) behaviour according to the BCS theory

for s-wave pairing, and a nodal model that also covers potential d -wave

pairing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

47 |F (q)| at 2 T, 6 T and 16 T calculated using the Christen formula (equa-

tion 104) rearranged. Previously the |F (q)| calculations contained a vary-

ing value of ξ(T ) with temperature, however here the core correction values

are roughly cancelled out in normalisation. Once again, as with Figure 46,

the data clearly indicates a strong adherence to s-wave behaviour. . . . . 107

48 Calculations of λ(T ) from the modified London model (taking into account

core corrections) for each applied field. These results are compared to the

expected London calculation of the evolution of λ(T ) with fits for compar-

ison. However the model diverges at T = Tc, whereas the application of a

magnetic field means the results will diverge at a lower temperature which

has been estimated from the form factor temperature data and confirmed

by the fitting procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

49 Calculated superfluid density using the previously calculated penetration

depths from the temperature scan data. Core corrections have been taken

into account with the form factor to produce the penetrations depths

for these calculations. The model accompanying the data points is a

modified version of the BCS model for the penetration depth; which is

(λeff (T )/λ(0))−2 = 1− t4, but using the calculated parameters in the fit-

ting procedure from Figure 48. The results have been normalised to the

largest signal response, the 6 T data. . . . . . . . . . . . . . . . . . . . . 109



50 Non-local coupling contributions. This data represents residual ratio cal-

culations of n(T ) and ρ(T ) for (Ba0.5K0.5)Fe2As2 as before in this work,

with n(T ) as the calculated superfluid density from the penetration depth

data and ρ(T ) being the BCS model and equation 64 used to generate

these results. Once again at y = 1 the non-local contribution is com-

pletely minimised, indicated by the black reference line. The dotted lines

are the Amin/White models of the non-local contribution indicating the

expected behaviour for each field [102, 96]. . . . . . . . . . . . . . . . . . 110

51 Superfluid density calculated from measured data compared to the Am-

in/White predictions using equation 63 with the non-local limiting tem-

perature, T ∗ for (Ba0.5K0.5)Fe2As2. The Amin/White models, plotted

with dashed lines, produce larger values for the superfluid density than

those calculated from the form factor. This comparison suggests a slightly

weaker non-local coupling effect than predicted and a smaller superfluid

density as a result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

52 Schematic of the EXED beamline including the HFM and detectors. Dur-

ing the experiment all four detectors were positioned behind the HFM

relative to the beam guide. This is because we are not measuring any

large angle scattering, as our Q vector is in the realm of small angles ≈ 1◦.

This image was sourced from [103]. . . . . . . . . . . . . . . . . . . . . 113

53 Technical details of the High Field Magnet (HFM). The image shows only

the cryomagnet and sample stage of the HFM/EXED beamline. This

image was sourced from [103] . . . . . . . . . . . . . . . . . . . . . . . 114



54 Single contour scan at 1.3 K and 25.5 T for ω = −3.4◦. A large area in

the centre of the diffraction pattern is the masked-out direct beam. The

arrows indicate the approximate positions of two spots, identified as the

top- and bottom-right of the hexagonal VL. Included is the q-space square

used for analysis of the image in order to extract the integrated intensity.

This is much like the sector boxes in GRASP. The q space is in units of Å−1 115

55 Contour image of overlapped scans of raw data from ω = 2.0◦, 1.6◦, -1.5◦,

-2.7◦, -3.0◦ and -3.2◦. These scans combine the tracked information about

the beam stop as well in order to subtract the background and mask the

direct beam. These scans were all taken at 20 T and 1.3 K. . . . . . . . . 117

56 Averaged integrated intensity of the flux lattice of (Ba0.5K0.5)Fe2As2. Re-

sults are averaged over the top- and bottom-most spots available for anal-

ysis. These spots can be seen in Figures 54 and 55. . . . . . . . . . . . . 117

57 Averaged |F (q)| versus field with the EXED and D33 data combined to

show the continuation of the form factor behaviour. The EXED data is

averaged over top and bottom spots while the D33 data is averaged over

the ω and φ scans, as previously discussed in the D33 experiment section. 118

58 Fit and bounds for the Ginzburg-Landau approximation for upper critical

field and critical temperature behaviour fitted to the D33 results for Tc

and the 14 T set from the EXED investigation. . . . . . . . . . . . . . . 119

59 Form factor, |F (q, T )| versus temperature, T for both the EXED and D33

results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

60 Normalised form factors for each of the applied fields in the high field

range. Sets are presented with increasing field in descending order. Data

is presented alongside ideal s-wave and nodal models for the form factor

behaviour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

61 Penetration depth, calculated from the form factor, versus temperature.

At the highest temperature, the signal is very weak, hence the large errors. 123



62 Penetration depths, λ(T ) versus temperature, T presented separately for

each field. These results are presented alongside ideal models for penetra-

tion depth behaviour, given a specific dominant pairing mechanism; s-wave

or nodal symmetry. Increasing field strength is presented in descending order. 125

63 The crystal structure of superconducting TlNi2Se2 [48]. The crystal has

lattice parameters: a = b = 3.889 Å and c = 13.413 Å. . . . . . . . . . . . 128

64 Specific heat results for TlNi2Se2 at varying fields against T 2. The left

hand inset shows the results for below 1.7 K. The right inset shows the

magnetic field dependence of the electronic specific heat coefficient, γN ,

also known as the Sommerfeld coefficient. Figure from [48] . . . . . . . . 129

65 Normalised thermal conductivity per unit temperature of TlNi2Se2 vs

H/Hc2 . This graph shows the TlNi2Se2 data compared to other materials

such as the single-band s-wave superconductor, Nb [54], the multiband s-

wave superconductor, NbSe2 [55] and the d-wave superconductor, Tl-2201

[56]. Additionally there are two nickel-pnictide superconductors BaNi2As2

[57] and SrNi2P2 [58]. Image is taken from work in [47]. . . . . . . . . . . 131

66 Combined heat capacity and thermal conductivity results against field

showing a two gap structure in the electron pairing with the smaller energy

gap overcome at field H∗ ≈ 0.36 T. Image is taken from work in [47]. . . . 133

67 Heat capacity per unit Kelvin, C/T at 0 T (superconducting phase) and

0.9 T (normal phase) versus T 2; these units are chosen to maintain parity

with Figure 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



68 (a) Heat capacity per unit Kelvin versus temperature for fields up to 0.3 T.

Above this field the superconducting phase was suppressed to temperatures

below the accessibility of the PPMS, which was calibrated down to 1.81 K.

(b) Theoretical calculation of Bc2 , Bc1 and Bc compared to the results form

the heat capacity scans. The value for the critical temperature associated

with the applied field is take from the centre of the initial slope increase

of the heat capacity, representing the middle of the phase transition. . . . 136

69 Sommerfeld coefficient, calculated from the normal state data points, ver-

sus applied field. Shown are the expected Sommerfeld behaviour for BCS

superconductors [10, 48] and the behaviour observed by Wang et al. [48]. . 137

70 Unitless adjusted heat capacity per unit temperature, Ces/γNT versus

reduced temperature, T/Tc. These results are modeled in the same manner

as in [48] using Ces(T ) = C0e
−∆/kBT . The results are presented with the

fit applied in [48] and a fit to this new data set. . . . . . . . . . . . . . . 139

71 Heat capacity at 0 T from 2 K to 4K showing the superconducting tran-

sition upon cooling. Heat capacity data has been fit with a power law

model, C = aT b to check for unconventional behaviour in the supercon-

ducting state [10, 48]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

72 Diffraction pattern from D11 at the ILL of TlNi2Se2, wiggle cooled φ rock

of −2◦ to 2◦ in steps of 0.2◦ counting for 180 s at 150 mT. Field was

wiggled at ±5 mT from 5 K to 1.4 K. The two degenerate hexagonal VLs

are drawn in black for clarity. These scans were conducted by Randeep

Riyat, from the Condensed Matter Group, University of Birmingham. . . . 142

73 The SANS-I beam intensity values vs neutron wavelength for selected val-

ues of collimation. Image taken from [38]. . . . . . . . . . . . . . . . . . 143



74 Diffraction pattern of the VL in TlNi2Se2 at 0.2 T and 0.1 K. The pat-

tern shows intensity in counts per standard monitor, with a monitor of

100 for this scan (monitors of 50 were taken for the background scans).

Two hexagonal VL domains are clearly visible with the top two spots at

approximately ±15◦. This scan does not indicate any anisotropy in the

system, however the lower gap function is not yet suppressed, according

to previous investigations. The top-most right and bottom-most left spot

were combined to find the q value for the peaks. Theses peaks had the most

exposure to the neutron beam as they lie approximately along the axis of

rotation for the rocking curve. The q-value was found at q = 6.75×107 m−1. 145

75 The averaged and Lorentz corrected |F (q)|. The results show a marked

decline in |F (q)| above 0.2 T. However there is a lack of results around

the predicted transition point to see the suppression of the smaller gap

function. This is predicted to be at ' 0.29 T. . . . . . . . . . . . . . . . 145

76 Diffraction patterns produced from the preliminary results at PSI on SANS-

I for TlNi2Se2 for fields of 0.3 T to 0.6 T and a temeprature of 0.1 K to

0.13 K for all scans. (a) Diffraction pattern of the VL in TlNi2Se2 at 0.3

T and 0.1 K. The pattern has the same monitor settings as previously

described. Two hexagonal VL domains are partially visible. The q-value

was found at q = 8.3 × 107 m−1. (b) Diffraction pattern of the VL in

TlNi2Se2 at 0.4 T and 0.1 K. The pattern has the same monitor settings

as previously described. The q-value was found at q = 9.84×107 m−1. (c)

Diffraction pattern of the VL in TlNi2Se2 at 0.6T and 0.1K. The pattern

has the same monitor settings as previously described. The q-value was

found to be q = 1.15× 108m−1. . . . . . . . . . . . . . . . . . . . . . . 146



77 (a) Diffraction pattern of the VL under an ω (san) rock of ±0.8◦ in steps

of 0.05◦ at 2 minutes per point. As there is no rotation of the centre of the

rock relative to the field, the secondary domain is still visible. Hexagons in

white indicate the two domains in the diffraction pattern. The red sectors

indicate the sector boxes used for extracting the integrated intensities from

the diffraction images in GRASP software. See section 8.1, Appendix A

for details on the use of GRASP and sector boxes. (b) Similar to (a) but at

a fixed rotation of Ω = 10◦ to remove the second domain (see Figure 78b).

Here the diffraction pattern χ is defined relative to the y − x axes of the

image. The opening angle η in (a) is defined in the χ coordinate system. . 148

78 (a) Image of the mosaic of the seven single crystal samples. These samples

are approximately 0.13mm thick and have a total volume of 4.68×10−9m3.

The solid lines indicate the a-plane alignment of the crystals, rotated to

45◦. The dashed lines indicate the rocking axes relative to the crystal axes,

with φ rocks being a rotation about the horizontal x-axis and ω rocks a

rotation about the vertical y-axis. Fixed displacements in ω, which act

as a new zero point for rocking, are denoted by Ω. (b) Orientation and

angles of the sample with respect to the applied field and neutron beam.

Included are the rocking angles (φ and ω) and displacement angle (Ω). . . 150

79 Anisotropy of the VL as calculated using equation 111. Reference line at

ΓV L = 1 indicates the area where there is no anisotropy in the VL. All

three values of Ω indicate the same behaviour of a linear relationship of

the anisotropy with respect to the field with a negative gradient. . . . . . 151

80 Anisotropy of the VL with respect to Ω, at 0.1 T, 0.2 T and 0.3 T. The data

is fitted to equation 113 with the values for Γac taken from the measured

values of ΓV L(Ω = 0) in Figure 79. . . . . . . . . . . . . . . . . . . . . . 153



81 Calculation of the average opening angle η for the top and bottom spot

angular gap. A deviation from 60◦ would indicate a contraction or expan-

sion in the shape of the hexagonal VL along one of the axes. Generally, the

results sit within error of isotropy, while at high fields the larger deviations

in angle are also accompanied by much larger errors due to the weak VL

signal here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

82 Area of the hexagon made by the six VL spots evolving with field. The

area was calculated by summing the areas of each of the six triangles in

the VL using the η and Q values for each spot-pair. . . . . . . . . . . . . 155

83 Integrated intensity measurements vs field (B) for varying Ω, averaged

over the ω and φ rocks, under field variation with 1st and 2nd domains

summed to a total intensity. . . . . . . . . . . . . . . . . . . . . . . . . 157

84 Integrated intensity measurements vs field (B) for varying Ω, averaged over

ω and φ rocks, under field variation with just the 2nd domain contributions. 157

85 Integrated intensity measurements vs field (B) for Ω scans with only the

1st domain contributions. We see a signal strength increase for greater

displacement angles of Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . 158

86 Measured Q values of the field dependent data versus the applied field. If

there was a discrepancy in the applied field or any anisotropy, there would

be a deviation from the expected Q line. There is some deviation from the

expected Q for the 0◦ data set between 0.25 T and 0.4 T, but not for the

whole range nor all values of Ω. . . . . . . . . . . . . . . . . . . . . . . 159

87 Form factor (|F (q)|) measurements vs field (B). Note the increase in the

form factor signal with increased angle carried through from the integrated

intensity. The results show a slight deviation from linear behaviour with

a log(y) axis. This is indicative of a non-constant Gaussian term for the

core correction, which could suggest a coherence length value that varies

more than just at the regime of T → Tc as we would normally expect. . . 160



88 (a) Integrated intensity versus temperature (T ) averaged over the ω and

φ scans. The scans were taken at 0.15 T as this presented the largest

integrated intensity signal from the field dependent results, see Figure 85.

(b) Integrated intensity versus temperature for the ω and φ scans sepa-

rately. For the majority of the temperature range there is good agreement

between the scans, with most of the temperature scan points for ω and φ

within error of each other. At the extremes of the temperature range there

is somewhat more divergence. . . . . . . . . . . . . . . . . . . . . . . . 160

89 (a) Average form factor versus temperature calculated using the Christen

formula (equation 104) and averaged over the ω and φ scans. (b) Form

factor versus temperature for the separate ω and φ scan results; also cal-

culated using equation 104. These results highlight some divergence in

behaviour above T = 2.3 T. . . . . . . . . . . . . . . . . . . . . . . . . 161

90 (a) Measured Q value averaged over the ω and φ scans with respect to

temperature. A reference line is also added showing the expected Q value

for the applied field, Q = 5.7474 × 107 m−1 for B = 0.15 T. (b) Separate

ω and φ scan values for Q. There is generally good agreement except for

the anomalously different values at 0.5, 0.7 and 0.9 K for φ that are much

closer to the expected value. . . . . . . . . . . . . . . . . . . . . . . . . 162

91 FWHM of the VL spots in ω with respect to applied field (B) for the

full range of angles accessed. The results broadly conform to a power law

relation, with the 30◦ results showing a marginally broader FWHM. . . . 164

92 FWHM of the VL spots in ω with respect to temperature (T ) at Ω = 30◦.

Overall there is a linear decrease in the FWHM with respect to temperature. 164



93 (a) Integrated intensity vs temperature (T ) with null hypothesis approach

using the Prozorov et al. [92] models. (b) Same approach as in (a) but

for the form factor, |F (q, T )|. These graphs are the same approach for

modelling the data as in the chapter investigating (Ba0.5K0.5)Fe2As2, with

the data sets of the rocking scans averaged together in order to see the

integrated intensity and form factor behaviour of the whole VL. This ap-

proach does, to some extent, screen out potential anisotropy and multiple

pairing mechanisms tied to different crystal axes, however. . . . . . . . . 166

94 Models for each pairing mechanism as outlined previously compared to the

integrated intensity data and form factor calculations for φ scans and ω

scans. (a) is the comparison between the integrated intensity calculated

from the raw data in GRASP with the models for the integrated intensity

for s-wave and nodal gap structures, as outlined in the previous section.

(b) is the same approach as in (a) but for the form factor; where the data

is calculated from a rearranged Christen Formula. . . . . . . . . . . . . . 168

95 The averaged penetration depth, 〈λ(T )〉 vs T , for the whole of the VL

calculated from |F (q, T )| and fitted using a power law relation from the

Prozorov framework, equation 108. The results for the φ and ω scans have

been averaged over both data sets with a fit line for the average. The full

fits are: λ0 = 153.42± 2.08 nm, Tc = 3.68± 0.09 K and p = 1.31± 0.11. . 169

96 Figure showing the penetration depth (λ(T )) vs T calculated separately

for the φ and ω scans from |F (q, T )| for the separate φ, ω scans and fitted

using a power law relation from the Prozorov framework, equation 108.

The graph shows the data sets for the φ scans and the ω scans separately

and includes fitted curves for both. The full fits are: λω0 = 156.52 ± 1.75

nm, Tωc = 3.60 ± 0.05 K, pφ = 1.37 ± 0.09 and λφ0 = 149.60 ± 4.58 nm,

T φc = 3.90± 0.25 K, pφ = 1.20± 0.24 . . . . . . . . . . . . . . . . . . . . 170



97 Penetration depth anisotropy, γωφ with respect to temperature, T between

the φ and ω scans, or the y and x axes of the VL diffraction pattern.

Calculated by the ratio of λ(T ) for the φ and ω scans; which correspond to

the [110] and [1̄10] planes, respectively. This calculation suggests isotropy

dominates for the majority of the temperature range as expected for a

tetragonal crystal, up to 2.5 K. Above this point in reciprocal space the x

axis of the VL overtakes that of the y axis up to γφω(T ) ≈ 0.7. . . . . . . 172

98 The superfluid density, ρ(T ) versus T . The results here are calculated from

the averaged λ(T ) from Figure 95 and the fitting line is also a rearrange-

ment of the averaged λ(T ) fit. The red ρ(T ) line is the BCS theory for the

superfluid density: ρ(T ) = 1− (T/Tc)
2. . . . . . . . . . . . . . . . . . . 173

99 The non-local contribution towards the superfluid density. This is calcu-

lated using equation 64 to create a ratio of the non-local and local super-

fluid densities. The solid blue line represents the point at which the ratio

reaches unity, n(T ) = ρ(T ). The local superfluid density is taken as the

simple BCS model, assuming s-wave behaviour, while the non-local su-

perfluid density is calculated from the data. Included is the Amin/White

model, which is the ideal ratio if there are strong non-local coupling effects. 175

100 Superfluid density calculations comparing the n(T ) calculated from the

data with a BCS model of ρ(T ) = 1−(T/Tc)
2. Included is the Amin/White

model of maximal non-local coupling contributions. . . . . . . . . . . . . 176



101 Image of the main user interface (UI) window for GRASP (version 7.02).

SANS data is loaded as numors, a number designating a single measure-

ment point in a rocking angle. The first order Bragg spots are visible,

with a central mask covering the direct beam noise. The window panels

are available for ILL scans for higher q events but are not used in this

investigation. A sector box can be chosen over any of the spots for analy-

sis (or any space on the diffraction image), defined by an inner and outer

radius and an angular width. . . . . . . . . . . . . . . . . . . . . . . . . 184

102 Image of a sans angle (ω) rocking curve output by GRASP. This graph

is generated by a parameter analysis over a sector box. The y-axis is

measured in total sector box counts per unit of experimental time, in the

case of ILL the scan time is unchanged due to the stability of the beam.

The x-axis has a direct equivalence with ω, such that zero corresponds to

a direct beam straight through the sample. . . . . . . . . . . . . . . . . 185
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1 INTRODUCTION

The first two chapters of this thesis look at superconductivity theory in general,

outlining the principles required in order to investigate the vortex lattice (VL) in

a superconductor using small-angle neutron scattering (SANS). This is followed by

the specific investigations into three superconducting materials that share a 122

chemical structure and an I4/mmm tetragonal space symmetry; one of which is a

nickel-chalcogenide, while the other two are iron-arsenides.

The third chapter is a literature review and regards the electron band structure

of TlNi2Se2 and

(Ba1−xKx)Fe2As2 compounds, with the latter varied in doping levels. In order to

fully understand the variation between these very similarly structured materials

a literary review of the available evidence is presented for comparison. The key

feature is a van Hove singularity that commonly appears across all the materials

presented in this thesis but varies in tuning level with respect to the Fermi level and

specific location in the Fermi surface. It is this feature that heavily influences the

appearance of nodes in the gap structure, the presence of heavy fermion behaviour

and the pairing symmetry in the materials investigated.

The fourth chapter of this thesis presents investigations into the anisotropic VL

and Pauli limiting behaviour in KFe2As2. Again, these studies are SANS investi-

gations of the VL under field, temperature and angular variation. This material

is known as a highly anisotropic unconventional superconductor with evidence for

multiple gaps and nodes in the gap structure. Some previous investigations have

attributed this to a d -wave gap symmetry but recent SANS studies (some of which

are presented in this thesis) indicate a nodal s-wave pairing symmetry, with strong

Pauli limiting effects.

The fourth chapter covers the investigations into the (Ba0.5K0.5)Fe2As2 at very

high fields. This is a relative of the compound, KFe2As2 and is the 50% doped
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(Ba1−xKx)Fe2As2. This material has a high critical temperature of Tc ≈ 37 K in

comparison to the other two materials and an unmeasured upper critical field, esti-

mated to be as high as Hc2 ≈ 140 T. As such this material was subjected to high

field SANS studies in two investigations covering fields up to 25.5 T. Similar to

the previous two sections this material was investigated for field and temperature

dependence to establish the superconducting pairing symmetry as well as any evi-

dence for anisotropy with respect to field for comparison to KFe2As2. The evidence

presented in this thesis indicates that (Ba0.5K0.5)Fe2As2 is an s-wave superconduc-

tor, with no observable anisotropy or VL rearrangement but with emerging Pauli

limiting behaviour at T → Tc for high fields (B > 14 T).

In chapter six investigations into the VL of Ni-chalcogenide TlNi2Se2 are pre-

sented. Preliminary SANS results are given, followed by a larger investigation using

SANS with temperature, field and angle dependent results as well as some heat

capacity data. This is done to approach the question of the pairing mechanism

operational in this heavy-fermion superconductor. These results include angular

dependent investigations to probe gap anisotropy in the superconductivity, which is

considerable in similar materials of its space symmetry and structure. This material

has only been synthesised as a superconducting single crystal material since 2013

and as such few investigations have been conducted. The literature that is available

suggests potential multi-gap and d -wave pairing symmetry. The work presented

in this thesis attempts to explore some of the previous conclusions by establishing

pairing symmetry and behaviour of the VL with respect to temperature and field.

Evidence presented in this thesis suggests a single nodal gap, but not necessarily

d -wave given a lack of observed VL rearrangement or anisotropy. This contrasts

with previous conclusions of multi-gap, nodeless superconductivity.
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1.1 London model

The London Model was outlined by the London brothers in 1935 [1], who proposed

a microscopic description for the behaviour of a superconductor in magnetic and

electric fields, that was consistent with the observations of Onnes [2] and Meissner

[3]. Here, we follow their model by considering a superconducting particle in a

quantum mechanical context. However, Bardeen, Lewis et al. [4, 5] later added to

this way of thinking by considering the superconducting sate as two fluids, a fluid

of superconducting particles and a fluid of normal particles. The superconducting

particle has charge e∗ and mass m∗, moving through a vector potential A, and will

have a momentum

p = m∗vs + e∗A. (1)

The * denotes the fact that we cannot assume that the mass and the charge are

equivalent to an electron’s mass and charge. In the ground state, the superconduct-

ing particle is assumed to have no net momentum, 〈p〉 = 0. We also hold this to be

true when a finite external field is applied, thus imposing the field gauge ∇ ·A = 0,

known as the London gauge. We may then rearrange Equation 1 to find the particle

velocity in the ground state:

〈vs〉 =
−e∗A
m∗

. (2)

This can be incorporated into the general equation for current density to generate

an expression for the superconducting current density:

Js = nse
∗ 〈vs〉 =

−nse∗
2
A

m∗
. (3)

where ns is the superconducting particle density and the superconducting particle

velocity is taken as an average over all particles. As we have established the London

gauge in order to satisfy our zero net momentum ground state, the consequence is
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that ∇ · Js = 0. If we take the time derivative of the current density we then get

the following:

dJs
dt

=
nse
∗2E

m∗
. (4)

This is the first London equation, and it implies perfect conductivity as the ap-

plied electric field accelerates the superconducting electrons as opposed to sustaining

a steady state current flow.

If we take the curl of Equation 3 then we get the following:

∇2B =
1

λ2
L

B. (5)

This is the second London equation, which introduces an internal magnetic field

B and the London penetration depth

λL =

√
m∗

µ0nse∗
2 . (6)

By solving the second London equation it can be shown that for any applied

magnetic field penetrating normal to the surface, the field will decay at an expo-

nential rate over length scale of the London penetration depth, λL. This essentially

means that any external magnetic field is expelled from the superconductor, as if in

perfect diamagnetism. This is known as the Meissner effect, or Meissner state [3].

1.2 Vortex lattices in the London model

The London model is empirical by nature and so cannot account for emergent prop-

erties such as the vortex lattice (VL) and the existence of Type-II superconductors.

Here we introduce the observation that superconductors can be split into two groups,

Type-I and Type-II. So far we have operated on the assumption of Type-I, where

the superconductor undergoes a single transition between the normal state and the

superconducting state (Meissner state) via a first order phase transition. Here we
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introduce the concept of the mixed state in Type-II superconductors. In the Meiss-

ner state, all flux is expelled up to a skin depth, defined by the penetration depth.

In the case of Type-II materials, there is a mixed state between the Meissner and

Normal state where some flux is permitted through the superconductor. This is

screened by supercurrents to separate the flux lines, with some finite radius of nor-

mal state, from the superconducting bulk. These flux lines are observed to arrange

as a regular, periodic vortex lattice (VL) in the superconductor. To understand the

VL we must modify the London model to fit the empirical evidence. To do this we

must return to the current density, Eq. 3.

Let us consider a single flux line. Outside of this flux line, Eqs. 3 and 5 hold

true. To incorporate the flux core, we insert a two-dimensional delta function into

the curl of Equation 3:

∇× Js +
nse
∗2

m∗
B = Φ0δ2(r)ẑ. (7)

This can be rewritten as

λ2
L∇2B−B = −Φ0δ2(r)ẑ (8)

where the delta function accounts for the position of the flux line, the unit vector

ẑ attributes the flux line direction normal to the superconductor surface and Φ =

hc/2e = 2 × 10−15 Tm2 is the magnetic flux quantum. The flux quantum is the

amount of flux in a vortex in the mixed state in a Type-II superconductor. This

flux is quantised and confirmed by experimentation [6, 7]. This does not formally

forbid nΦ0 amount of flux being present in a flux core (as is the formal solution

in Ginzburg-Landau theory for flux quantisation [8, 9] ) as the premise of n = 1 is

based on semi-classical arguments, the assumption of a ground state and the inexact

London equations but a departure from flux quantisation of n = 1 has never been

observed. The exact solution [10] for the case of a single flux line gives the spatial
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variation of the magnetic field of the flux line:

Bz(r) =
Φ0

2πλ2
L

K0

(
r

λL

)
. (9)

where r is the radial distance from the flux line core and K0 is the modified, zeroth

order Bessel function. From this we must look at the two extreme cases, being close

to the core and far from it, respectively.

Bz(r) =


Φ0

2πλ2L
ln
(
λL
r

)
r � λL

Φ0

2πλ2L

√
πλL
2r
e−r/λL r � λL

(10)

For r � λL, this is consistent with Eq. 5. By knowing the free energy per

unit length of the flux line, we may understand the requirements for a stable VL by

minimising the free energy. To do this we must take Equation 5 and by manipulating

it with a vector identity and multiplying by B we obtain, λ2(∇ × B)2 + B2 which

is equivalent to the left hand side of Equation 8. We may therefore write the free

energy as:

F =
1

2µ0

∫
(B2 + λL|∇ ×B(r)|2)d3r. (11)

Unfortunately this integral is divergent due to the field divergence as r → 0 (the

flux core). To have such a divergent field would require unsustainable and increasing

supercurrents. To mitigate this we expand the flux core to a finite area, rather than

a delta function. However, the premise of the London interpretation is that there

is a local relationship between the supercurrent density and the vector potential at

the same point. This is only possible if the flux line core size is negligible compared

to the penetration depth. Otherwise we must include non-local corrections to the

relationship between the vector potential and the supercurrents. This is discussed

further in Section 1.2.2.

Nonetheless, the London model remains a powerful tool for describing VLs. To
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this effect we may extend Equation 8 for an ideal VL:

λ2
L∇2B−B = −Φ0ẑ

∑
i

δ2(r− ri) (12)

where i denotes the number of flux lines in the VL. The lattice is periodic in the

distribution of vortices, which means that the internal field B is dependent on the

position within the superconducting crystal. As such we must describe the field as

B(r) and expand as a Fourier series to satisfy these aforementioned conditions.

B(r) =
∑
q

Bqe
iq·r (13)

where q is the reciprocal lattice vector and Bq are the Fourier coefficients of the

internal field. To get the Fourier coefficients in full we must substitute Equation 13

into Equation 12 and integrate with respect to the unit cell of the crystal. This

yields

Bq =
Φ0nL

1 + λ2q2
=

〈B〉
1 + λ2q2

(14)

where nL is the number-density of vortices which when multiplied by the flux quan-

tum gives 〈B〉, the average induction in the superconductor. These Fourier com-

ponents are directly measurable, as we will discuss later and demonstrate. Conse-

quently we may directly calculate the London penetration depth λL from this.

1.2.1 Anisotropic London theory

We have so far assumed an isotropic system with the London Model. However, there

are many materials where this is not the case and anisotropic properties are observed.

The London Model can be modified to incorporate anisotropy in the effective mass,

while maintaining the invariance of the free energy. To do this we must replace the

effective mass with a normalised mass tensor, mij[11]. This generates the following
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Figure 1: Sketches of the penetration depth in the a − b plane for H ‖ c for (a)
isotropic and (b) anisotropic cases from work in [12]. Panel (c) shows the VL in
the case of γ > 1 for both the real and reciprocal representations; where x∗ ≡ kx,
y∗ ≡ ky are reciprocal axes.

analogue to Equation 11

F =
1

2µ0

∫
[B2 + λ2

Lmij(∇i ×B)(∇j ×B)]d3r. (15)

For simplicity, λ has been altered to contain an average mass term, m̄ rather than

the effective mass term. We align the crystal axes with the principal directions of the

mass tensor such that the mass tensor is diagonal with the following components:

mxx = ma
m̄

, myy = mb
m̄

and mzz = mc
m̄

then normalise the mass tensor m̄ = mambmc.

We will assume field penetration along ẑ, such that we look at the inequality between

only ma and mb. In the a−b plane we may describe the anisotropy as a dimensionless

ratio of the penetration depths: γab = λa
λb

. This anisotropy can also have an effect

on the result in equation 14 by putting anisotropy into the Fourier components of

the internal field modulation in the VL state.

In the case of an isotropic superconductor, the vortices of a VL can be aligned on

a circle, demonstrating an isotropic hexagonal VL. For the anisotropic case, γ 6= 1,

then an ellipse overlays the vortices for the VL. The circle of the isotropic case has
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been distorted by a scalar transformation. The a direction has been distorted by

√
γab
−1 and the b direction is distorted by

√
γab. Figure 1 is a simplified represen-

tation of anisotropy in the VL. Any orientation of VL distortion satisfies the same

free-energy requirements [13] outlined in equation 15. This is because the anisotropic

VL can always be mapped back to the isotropic case by a scale transformation as

outlined earlier. However, when an arbitrary angle is introduced to the applied field

with respect to the crystal axes, the London model does make a prediction [13] as to

the preferred alignment of the VL with respect to the crystal axes. The alignment is

such that the nearest neighbour of a single flux line will be perpendicular to the axis

of rotation for that arbitrary rotation of some angle for the superconductor with

respect to the field.

1.2.2 Non-local London theory

Pippard [14] proposed a non-local relationship between the current density and the

vector potential to generalise the London model. In the local London model, Js(r)

is proportional to A(r) at any point r. Pippard’s argument was that the current

at a point r depends on A(r) throughout a volume of some radius l (an arbitrary

length scale for the moment) about the point r. Pippard argued that the length,

l over which this was true was the Pippard coherence length, ξ0. We can make an

uncertainty-principle argument for the value of the coherence length as follows: Only

electrons with energies which reside within kTc of the Fermi energy can contribute

at Tc as the superconducting phenomenon sets in at this point. Using the Fermi

velocity, vF , these electrons must therefore have a momentum range of ∆p ≈ kTc/vF .

Thus we can make the uncertainty argument:

∆x >
~

∆p
≈ ~vF
kTc

(16)
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which gives the coherence length as:

ξ0 = a
~vF
kTc

(17)

where a is an unknown constant. Pippard later fit this to aluminium and tin [15]

to find an a value of 0.15 (later, BCS theory showed this to be 0.18). Now we have

generated the coherence length and the penetration depth we can look at how the

interplay between these two parameters defines the behaviour and type of super-

conductor. We may generate the following cases: Type-I superconductors where

ξ0 >
√

2λL and Type-II superconductors, ξ0 <
√

2λL. Within this we may also

say that for ξ0 ' λL we have Weakly Type-II superconductors and at ξ0 � λL,

strongly Type-II superconductors. In Type-I superconductors there are only two

stable phases, the normal and superconducting phase. The latter has the char-

acteristic of expelling all magnetic flux. This is a consequence of the penetration

depth being smaller than the coherence length. The flux lines are screened by the

fact the larger coherence length generates a positive free energy requirement that

screens flux lines from penetrating the surface of the superconductor due to the

strong supercurrent response. In the Type-II case there is a mixed phase between

the fully superconducting Meissner state and periodic flux cores of Normal state,

whereby some flux lines are allowed to penetrate into the superconductor. This is

because A(r) varies sharply over λ meaning the supercurrents that screen the fields

are weaker. This permits flux lines to penetrate the surface of the superconductor.

When ξ is applied as a length scale, it can be interpreted as the length over which

if A(r) varies from its maximum value, and then the response of the superconducting

current is diminished and the penetration depth is enhanced as a result to a value

much larger than the prediction from the local London model. This is the case when

r is in proximity to a flux line core. Consequently, A(r) can still vary rapidly over a

distance less than ξ0 in the case of Type-I superconductors, and weakly Type-II su-
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perconductors. For strongly Type-II superconductors non-local corrections become

less important until they disappear for the limit λl/ξ0 = κ→∞. As a result of this,

Pippard proposed the following relationship:

Js(r) = − 3

4πξ0

nse
∗2

m∗

∫
R[R ·A(r′)]

R4
e−R/ξdr′ (18)

where R = r− r′. Here we also have ξ which is the coherence length in an impure

material, and so Pippard assumes scattering of the electrons from imperfections

occurs. This invokes the need to relate ξ to the mean free path of a normal metal,

l. The coherence length of a pure material, ξ0 is related to ξ and l by the following

equation:

1

ξ
=

1

ξ0

+
1

l
(19)

which demonstrates that for a sufficiently large mean free path, the coherence length

has little dependence on the internal scattering, making it very important that a

sample is pure, referred to as clean, to minimise unwanted scattering effects. In

cases of high impurity or ‘dirty’ superconductors the mean free path, l becomes a

more important parameter as it suppresses non-local effects by reducing ξ.

We have touched on how non-local effects can arise from the rapid variation of

A(r) over distances less than ξ when ξ is sufficiently large compared to λ. However,

there are non-local effects that arise in strongly Type-II superconductors predicted

by Kogan [16, 17, 18] that affect the VL which we discuss in section 1.5.

1.3 Ginzburg-Landau (GL) model

Ginzburg-Landau theory is a phenomenological approach to superconductivity based

upon thermodynamics and the use of an order parameter. This model describes the

thermodynamic state of a superconductor and applies an order parameter to describe

the collective behaviour of the superconducting quasi-particles. The Ginzburg-

Landau model is also very powerful for dealing with spatial inhomogeneity, such

11



as at the interface between the normal and superconducting regions in the interme-

diate state of a Type-I or the mixed state of a Type-II superconductor.

We must introduce two concepts. The order parameter, ψ, is zero for T ≥ Tc and

finite for all temperatures below the critical temperature, Tc. This order parameter

can be described as a pseudowavefunction ψ(r). This wavefunction describes the

local density of superconducting electrons as part of a variational method, utilising

the complex (and continuous) nature of the order parameter. The principle of the

Ginzburg-Landau approach is the variational method; so long as ψ is small and

varies gradually in space, the free energy density of such a system can be described

by increasing powers of |ψ|2n and |∇ψ|2n. We limit the powers to even numbers as

the order parameter, ψ is complex. We begin the derivation of the model by writing

the macroscopic free energy density:

F = F (T ) + α(T )|ψ(r)|2 +
β

2
|ψ(r)|4 + · · · (20)

The free energy can be minimised if α vanishes for T ≥ Tc, so we give α a

temperature dependence: α(T ) = a(t − 1) where t = T/Tc. Now if we minimise

Equation 20 we obtain the following:

|ψ| =

 0 T > Tc√
α(T )
β

T < Tc

(21)

This accounts for the change of sign of α about Tc and the finite, positive value of

|ψ| below Tc. However, we have already established the premise that the Ginzburg-

Landau approach can account for spatial inhomogeneity. Equation 21 does not

include all the necessary information for spatial variance in ψ, so we must intro-

duce energy gradient terms to account for this. Using the wavefunction definition,

ψ = |ψ|eiφ(r) and the Hamiltonian for a charged particle moving through an electro-
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magnetic field we can define the following:

~2

2m∗
|∇ψ(r)|2 =

~2

2m∗

∣∣∣∣(∇− ie∗A

~

)
ψ(r)

∣∣∣∣2 (22)

We can now modify the free energy density to include this term

F = F (T ) +
B2

2µ0

+ α(T )|ψ(r)|2 +
β

2
|ψ(r)|4 +

~2

2m∗

∣∣∣∣(∇− ie∗A

~

)
ψ(r)

∣∣∣∣2 (23)

By minimising with respect to ψ and ψ∗ we can reduce Equation 23 to the first

of the Ginzburg-Landau differential equations

αψ + β|ψ|2ψ − ~
2m∗

(
∇− ie∗A

~

)2

ψ = 0 (24)

To get the second Ginzburg-Landau differential equation we must minimise the

free energy with respect to A. This allows us to consider the supercurrent density.

Js = − i~e
∗

2m∗
(ψ∗∇ψ − ψ∇ψ∗)− e∗

2

m∗
|ψ|2A (25)

These two equations above can be used to provide the length scales for the

Ginzburg-Landau model in one dimension. If we assume an absence of any electro-

magnetic fields, and introduce our definition of |ψ| from Equation 21 we may extract

the Ginzburg-Landau coherence length.

ξ(T ) =

√
~2

2m∗|α(T )|
(26)

We must note that this coherence length is not the same as the Pippard coher-

ence length in Equation 17, as the Ginzburg-Landau value diverges for temperatures

approaching Tc, whereas the Pippard coherence length for non-local electrodynamics

essentially remains constant. For pure metals well below Tc these two values are ap-

proximately similar, otherwise they differ. This Ginzburg-Landau coherence length
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represents the shortest distance over which the order parameter will vary from it’s

maximal bulk value, |ψ0| to zero.

A second length scale can be extracted from the Ginzburg-Landau equations. If

we take Equation 25 and assume we are at T = Tc, then ψ(r) = 0 and the equation

becomes

Js =
−e∗2

m∗
|ψ|2A (27)

Where we had previously defined in Equation 21 that |ψ|2 = α(T )/β. We may

prescribe the term |ψ|2 to be equivalent to the superconducting carrier density,

|ψ|2 = ns. Thus if the superconducting carrier density falls to zero then there is no

supercurrent. Now we may tie in to the London model and create a GL penetration

depth defined as

λ(T ) =

√
m∗β

µ0e∗
2α(T )

(28)

This means that in the GL approach the penetration depth and the coherence

length are temperature dependent. So the dimensionless ratio for determining the

extent to which a superconductor is Type-II in behaviour is now temperature de-

pendent:

κ =
λ(T )

ξ(T )
(29)

Now we shall return to the first GL equation, Equation 24, in order to expand

to the Abrikosov solution to describe the Abrikosov or VL state of a Type-II super-

conductor. The phase transition from normal to the superconducting (mixed) state

in a Type-II superconductor is second order. So we may assume that ψ is very small

for fields just below Hc2 and zero at Hc2 . Thus we can drop the term |ψ|2ψ from

equation 24 as it is small. Next we must choose a gauge for the fields. For simplicity

we shall choose B = (0, 0, B) and A = (0, Bx, 0), also known as the Landau gauge.
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If we also introduce the cyclotron frequency, ωc = e∗B/m∗ we may turn the first GL

quation into the following:

(
− ~2

2m∗
∇2 − i~ωcx

δ

δy
+
m∗ω2

c

2
x2

)
ψ(r) = |α(T )|ψ(r) (30)

which has the same form as Schroedinger’s equation for a charged particle in a

magnetic field. If we want eigenvalues for this system in order to describe the

Abrikosov state, we must set up a trial function: ψ = ei(kyy+kzz)f(x). Where f(x) is

unknown but ψ describes a plane wave now in the y-z plane. If we substitute this

trial function in Equation 30 we get the following

− ~2

2m∗
d2f

dx2
+
m∗ω2

c

2

(
x+

~ky
m∗ωc

)2

f =

(
|α| − ~2k2

z

2m∗

)
f. (31)

As with the Schroedinger equation, our energy eigenvalues are associated with a

simple harmonic oscillator (SHO)

|α| =
(
n+

1

2

)
~ωc +

~2k2
z

2m∗
. (32)

At H = Hc2 we will have the lowest possible energy state available to us. This

means we can set n = 0 and kz = 0 for this field to describe the state, giving us

|α(H = Hc2)| = 1
2
~ωc. To relate this to the field we can substitute in the definition

of the cyclotron frequency, the GL coherence length and Φ0 (the flux quantum) to

get the upper critical field of the superconductor:

Bc2 = µ0Hc2 =
Φ0

2πξ2
(33)

This is an important result as it describes the distribution of the flux lines in the

Abrikosov state. This equation describes one single flux line for every unit of area,

2πξ2. This becomes even more important later for the conservation of the VL area

when considering anisotropy with respect to applied field. This makes sense as ξ is
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the length over which the order parameter decreases from its maximal value to zero.

It will do this in the presence of a flux line. However, if the number density of flux

lines were higher then the order parameter within the defined area would fall off to

0 a lot faster, meaning ξ no longer correctly describes the behaviour of the order

parameter. We may also use this result to identify the difference between Type-I and

Type-II superconductors as well as the condensation energy of the superconductor.

We must go back to Equation 20 and substitute in the solution |ψ| = −α/β, which

gives the thermodynamic condensation energy defined by a critical field: µ0H
2
c /2 =

α2/2β. Now if we combine this with Hc2 we can arrive at a way of separating Type-I

and Type-II superconductors with the following:

Hc2 =
√

2κHc (34)

This equation creates a separation point of κ = 1/
√

2 for Type-I and Type-II

materials. Type-II materials can now be identified by Hc2 > Hc for κ > 1/
√

2 and

Type-I by Hc2 < Hc for κ < 1/
√

2. As Hc represents a condensation point, for

Type-II superconductors the order parameter will gradually increase from Hc2 for

a decreasing field implying a second order transition. Whereas for Type-I super-

conductors they remain in the normal state below Hc for a decreasing field until

Hc2 < Hc is reached and the order parameter will jump discontinuously from 0 to

|ψ|2.

We must now consider the case that we cannot ignore the cubic term in Equa-

tion 24, which is how Abrikosov [20] looked at Type-II materials. However the

inclusion of |ψ|2ψ introduces non-linearity and the differential equation becomes

harder to solve. The first step is to create a trial function that is consistent with the

interpretation of a SHO system with Landau levels, and to consider only the lowest

Landau level such that n = 0 and kz = 0. Thus our trial function is

ψ = C exp

[(
− ~ky
mωc

− x
)

1

ξ(T )2
+ ikyy

]
, (35)
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where C is a normalisation constant that is zero for H ≥ Hc2 and ~ky
mωc

is the shift in

the lowest Landau level. This trial function is modelled as a Gaussian with its size

in space determined by the coherence length, ξ(T ). This trial function cannot be

left as it is in this form as we need to define the shift in the lowest Landau level by

constraining ky to non-infinite degeneracy by periodicity. If we define a new length

parameter, ly, over which ky is periodic such that ky = 2πn/ly and n ∈ Z, we may

now use the Landau correction

~ky
mωc

=
2π~n
mωcly

=
Φ0n

Bly
(36)

such that the trial function becomes

ψ =
n=∞∑
n=−∞

Cn exp

[
−
(
x+

nΦ0

Bly

)
1

ξ(T )2
+
i2πny

ly

]
(37)

Cn must be chosen in order to minimise the free energy. We have removed infinite

degeneracy in y, so we must do the same with x by enforcing two conditions. Firstly,

periodicity in Cn with Cn+υ = Cn and υ ∈ Z. Secondly a periodic length of lx =

υΦ0/Bly where υ = 1 is a square VL and υ = 2 is a hexagonal VL (isotropic).

The periodicity conditions phenomenologically account for the nucleation of the VL

just below Hc2 with an arrangement of one flux quantum per unit cell of the VL.

Abrikosov solved the first GL equation with this trial function to get the following

free energy density [21]

F = F0 +
1

2µ0

(
B2 − (B − µ0Hc2)

2

1 + βA(2κ2 − 1)

)
(38)

Where βA =
〈ψ4〉
〈ψ2〉2 is the Abrikosov parameter. For constant values of ψ it has the

value of unity, but becomes larger for functions which are more localised. Increasing

values of βA lead to less favourable values of free energy with regards to the shape

of the VL. To explain, if we take an extreme example of a local solution, where
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only a small fraction, f of volume is filled we can represent this as βA = f−1. This

means the condensation energy of the VL is smaller than for a solution which fills

more space and can be represented as βA ≈ 1. The numerical value of βA is found

through optimising the set of Cn for which βA is smallest. The numerical solution

for a square lattice was found by Abrikosov, βA = 1.18 and the hexagonal lattice

was calculated by Kleiner [22], βA = 1.16. Consequently the hexagonal lattice is

slightly energetically more favourable than a square lattice. We can come to the

same conclusion via a close-packing argument. If we define the lengths a� and a4

for the nearest neighbour distances of a square and hexagonal (or triangular) lattice,

respectively. For a square lattice the nearest neighbour distance is

a� =

(
Φ0

B

)1/2

(39)

and for a hexagonal lattice

a4 =

(
4

3

)1/4(
Φ0

B

)1/2

= 1.075

(
Φ0

B

)1/2

(40)

which means that a4 > a�. Given that flux lines mutually repel each other, this

means that greater stability is achieved by a larger spacing between the flux lines.

So, a hexagonal arrangement is marginally preferred over a square one. However,

the difference between the two arrangements in energy terms is only ≈ 2%. This

means that even a very small anisotropy in the system and the symmetries of the

underlying crystal lattice can induce arrangements of flux lines other than isotropic

hexagonal.

Brandt [23] analysed the results of the G-L theory to obtain a form factor (F (q))

description with field dependence for the VL close to the critical temperature. The

following is valid for any κ value that qualifies as a Type-II superconductor in the

18



hexagonal VL arrangement.

Fhk =
(−1)νe

πν√
3 (B −Bc2)

1 + 1.16(2κ2 − 1)
(41)

where

ν = (h2 + hk + k2) (42)

with [h, k, l] representing the Miller indices of the VL. As we approach Tc the form

factor of the VL falls linearly to zero - this is strongly supported by measurements

of Nb [24].

1.3.1 The Clem model

This model is not formally used in the analysis of the results conatined in this work,

however the approach highlights some of the considerations needed for looking at

Type-II materials and as such is added here for completion. Within the GL theory

is the ability to provide an approximation that covers the divergent limit in the

London model in the vicinity of a VL core. Clem [25] solved the second GL equation,

equation 25, for a single flux line with a variational approach. Firstly we must define

our coordinate system in cylindrical space: ρ =
√

(x2 + y2), φ = tan−1(y/x) and z

parallel to the field lines. Then we rewrite the second GL equation as

Jφ =
−µ0

λ2

(
aφ −

Φ0

2πρ

)
f 2 (43)

Where Jφ and aφ are the supercurrent density and magnetic vector potential along

φ̂, respectively. The unit vector is important as it needs to satisfy the London gauge

and vanish at the flux line core. Here, ρ is the radial coordinate and f(ρ) is a

spacially varying function of ψ such that

ψ(ρ) = f(ρ)e−iφ =
( ρ
R

)
e−iφ (44)
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Where R =
√

(ρ2 + ξ2
ν) and ξ2

ν is related to the GL coherence length such that

ψ is a value which minimises the free energy. We may obtain a solution to aφ by

combining ∇ × B = µ0J and B = ∇ × A and substitute in equation 43 for the

current density then we get the following

d

dρ

[
1

ρ

d

dρ
(ρaφ)

]
− f 2

λ2
aφ = − Φ0f

2

2πλ2ρ
(45)

We require modified Bessel functions, Kn(x), in order to solve for aφ. This yields

the following solution

aφ =
Φ0

2πρ

[
1−

RK1

(
R
λ

)
ξνK1

(
ξν
λ

)] (46)

Using B = ∇×A we can generate the following magnetic field component

Bz =

(
Φ0

2πλξν

)
K0

(
R
λ

)
K1

(
ξν
λ

) (47)

Now we need to introduce the reciprocal lattice vector for the VL, G by taking

the Fourier transform of the field component

Fz(G) =
Φ0K1

(
ξν(G

2 + λ−2)
1
2

)
(G2 + λ−2)

1
2λK1ξνλ−1

(48)

which gives the form factor of the VL, the variation of the magnetic field of the

vortices. However, we can simplify this expression by assuming a limit of large κ

such that λ
ξ
� 1, which gives the following

g =
ξν
√

1 + G2λ2

λ
(49)

Fz(G) = 〈B〉 gK1(g)

1 + G2λ2
. (50)

This is essentially the London model, and we can see parallels with equation 14,

but with the addition of the Bessel functions and g to account for the contribution
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of the cores. This is also why the field is given as an average induction over the

z axis. As these equations are fundamentally derived from the GL theory they

are consequently only valid near the critical temperature. This makes sense as

the core corrections are not as important for well below Tc due to low flux line

density. However, there is a lot of similarity between the Clem model and the

London model due to the assumption that local electromagnetism is sufficient. This

is maintained within the Clem model by the gK1 term as it provides suppression of

the contributions of the flux lines at small distances from the flux line cores. Both

the Clem and London models support this assumption, provided the aforementioned

condition of κ� 1.

The materials approached in this work do not fully fit the criteria for the Clem

model being the most effective approach. With the emphasis of the investigations

on low temperature features due to the interest in nodal and unconventional super-

conductivity and only (Ba0.5K0.5)Fe2As2 satisfying κ � 1, this model is presented

for completion and is not formally used in the analysis, as previously mentioned.

1.4 Bardeen-Cooper-Schreiffer (BCS) theory

So far we have approached superconductivity phenomenologically, where laws of

thermodynamics and electrodynamics are applied to empirical data with certain

simplifying assumptions and limiting cases in order to validate a reasonable descrip-

tion of superconductivity. If we want a deeper understanding of superconductivity

and the ability to make predictions for behaviour, we require a theory that tackles

superconductivity from a microscopic perspective; this requires invoking quantum

mechanics and using the tools therein.

A comprehensive microscopic description of quantum mechanics was provided

by Bardeen, Cooper and Schreiffer (BCS) [26] in 1957. Cooper [27] and Froelich [28]

presented the framework for the BCS theory with the premise that electrons could

form a bound state for an arbitrarily weak interaction potential. The justification
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for this is the instability of the Fermi sea of electrons against the formation of a

bound pair of electrons by the exchange of phonons. To explore the origins of the

electron-phonon coupling that provides the binding mechanism, we create a two-

particle wavefunction at the lowest energy state. Assuming no net momentum (spin

up and spin down pair for equal and opposite momenta) we have the following

wavefunction:

ψ0(r1, r2) =
∑
k

gke
ik·(r1−r2) (51)

where gk is a weighting function. Given that the electrons must have equal and

opposite spin for the lowest energy state, we must assume an antisymmetric case

and consider only the sum of the products of cos k · (r1 − r2). This is the spin singlet

case. The cosine components give a larger probability amplitude for the electrons to

be near each other, implying an attractive interaction. The spin singlet wavefunction

can be described by the following:

|ψ〉 =
1√
2
|↑↓ 〉−| ↓↑〉 (52)

This is an s-wave pairing with equal and opposite spin, consequently there is

no net angular momentum; l = 0. To describe superconductivity we require a

wavefunction that can take into account every electron in a Fermi level as one of a

pair, with each pair contributing to a many-particle coherent wavefunction. To do

this we must define a Cooper pair creation operator derived from electron creation

operators for opposite spin. We define the following pair creation operator; P̂ †k =

c†k↑c
†
-k↓, which is made up of two creation operators which generate electrons with

opposite momenta and spin. This is assuming the lowest energy state, the vacuum

state |0〉, as the supercodnucting state must be a ground state. This has been

outlined in previous theory sections to some extent but is all them ore important

here with a quantum mechanical treatment. Taking into account the probability of

a pair state being unoccupied, |uk|2 and occupied, |vk|2 such that |uk|2 + |vk|2 = 1.
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We may write the following wavefunction:

|ΨBCS〉 =
∏
k

(u∗k + v∗kP̂
†
k)|0〉 (53)

The wavefunction |ΨBCS〉 represents the superconducting ground state. This

state is equivalent to the Fermi sphere for the following conditions: if uk = 1 for

|k| > kF or vk = 1 for |k| < kF . However, for uk, vk 6= 1 there is a distribution

of occupation over the Fermi surface. This distribution has a width in reciprocal

space equivalent to k = ξ−1
0 which is equivalent to the Pippard coherence length,

previously discussed. But here the equivalence between the BCS value of ξ0 and

the Pippard length ξ is limited to T = 0 K. In the Pippard case the value of ξ

doesn’t vary much with temperature, but they essentially represent the same thing.

In the Pippard approximation ξ represents the smallest size of the charge carrying

wave-packet in a superconductor. In the BCS case ξ0 varies smoothly with T and

describes the separation between the states in the Fermi surface, in real space it

describes the actual separation length of a Cooper pair.

In order to understand the Cooper pairs we need to investigate the binding

energy of the pair and the energy state the pairs occupy. For this we set up a BCS

Hamiltonian:

Ĥ =
∑
kσ

(
~2k

2m
− µ

)
c†kσc

†
-kσ +

1

2

∑
k k’

c†k↑c
†
-k↓Vk’ kck’↑c-k’↓ (54)

where Vk’ k is the matrix element that describes the two-particle interaction of the

Cooper pair and µ is the chemical potential. To solve the above we may treat

the occupation probabilities as variables that need chosen values which minimise

the total energy of the Cooper pair. By minimising the Hamiltonian we acquire

the expression for the energy spectrum of excitations for a Cooper pair (treated

as a quasiparticle) when introduced to the ground state in the BCS theory. Using
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εk = ~2k
2m

, this expression is as follows:

Ek =
√

(εk − µ)2 + |∆k|2 (55)

∆k is the superconducting gap function, which is uniform across k-space but is only

dependent on the momentum. This value is actually half of the total binding energy

of a Cooper pair, with the zero temperature value of the biding energy dependent

on the critical temperature of the superconductor. BCS found this relationship to

be

Egap = 2∆(T = 0K) = 3.52kBTc. (56)

The gap function is analogous to the order parameter as BCS theory shows

that the gap energy falls to zero at T = Tc. Gor’kov [29] later showed that the

order parameter and the gap function were indeed directly related, with a further

interpretation that the order parameter wavefuntion was in fact the wavefunction of

the Cooper pairs, based on the motion of the centre of mass of the pair.

The gap, ∆, exists over the the whole Fermi surface. Below this energy, quasipar-

ticle states are not not accessible. However, above this energy magnitude the nature

of the the states is dependent on the occupation probabilities and the position in

k-space. Well below the Fermi surface there is little to no occupation, so |vk|2 ' 1

and the states are more like electrons. Well above the surface when |uk|2 ' 1, the

states are more like holes. But the image is not so binary nearer the Fermi surface

where there are mixed characteristics for the quasiparticle states, behaving like elec-

trons and holes. From [10] and [21] we have the means to find the mixed excitation

energies using the Bogoliubov-Valatin fermion creation and annihilation operators

to diagonalise the BCS Hamiltonian. The operators are

γ̂k↑ = u∗kck↑ − v∗kc
†
-k↓ (57)
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γ̂†-k↓ = ukc
†
-k↓ + vkck↑. (58)

The above operators diagonalise the BCS Hamiltonian with the same energy

spectrum results as with the BCS wavefunction. This means we can describe single

particle excitations above ∆ as well as explain the emergence of ∆. Now we have

a microscopic theory for an ideal system. In a real system there are perturbations,

inhomogeneities in real space caused by the underlying crystal lattice, impurities,

and flux lines. These spatial inhomogeneities are sources of scattering for quasi-

particles and can be accounted for as a scattering potential, U(r). The flux lines

however can be accounted for as periodic fluctuations in the gap function caused by

the flux cores. Consequently, the gap function is now a spatially varying parameter,

∆(r). We now have to change our operators to be position dependent rather than

momentum dependent in order to account for the above inhomogeneities. To do this

we define our Bogoliubov transformation in a more generalised manner

Ψ̂↑(r) =
∑
n

[
un(r)γ̂n↑ − v∗n(r)γ̂†n↓

]
(59)

Ψ̂↓(r) =
∑
n

[
un(r)γ̂n↓ + v∗n(r)γ̂†n↑

]
(60)

The above are annihilation operators with respect to position dependent func-

tions, un(r) and vn(r) which are chosen so that we may diagonalise the Hamiltonian.

To do this the position dependent functions must satisfy the following, coupled,

Bogoliubov-de Gennes equations:

Ĥun(r) + ∆(r)vn(r) = Enun(r) (61)

−Ĥ∗vn(r) + ∆∗(r)un(r) = Envn(r) (62)

In order to satisfy this coupled pair of equations, we must determine ∆(r) from

the available values of u and v. These equations can demonstrate that for a high

κ value, ∆ varies rapidly over a distance equivalent to the GL coherence length,
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ξ(T, r).

1.5 Non-local corrections

Non-local coupling effects can enhance the superfluid density in a superconductor.

These effects of spin coupling are usually only seen in strongly coupled d -wave

systems, where at the nodes of the gap on the Fermi surface the coherence length

diverges due to the momentum dependence of ξ0 such that ξ0(k) ∝ 1/∆k [96]. This

creates loci of highly non-local points on the Fermi surface in the vicinity of the nodes

where ξ � λ0, even in strongly Type-II superconductors this can be very important

and a non-local approach to looking at the superfluid density has been developed

for looking at the d -wave cuprates by Amin et al. [101]. The extent to which non-

local coupling effects are active in the material in determining the behaviour of the

superfluid density with temperature can be an indication of interesting mechanisms

that would not otherwise be noticeable. Small to negligible contributions of non-

local coupling would be consistent with non-d -wave nodal gap structure or weakly

coupled d -wave pairing [96, 101, 102, 109].

By using the approach by Amin et al.[101, 102] one may observe when non-local

effects are influencing the superfluid density with respect to T variation. Generally,

the low-T behaviour of ρ would become modified from a linear to a T 3 dependence

with the presence of non-local coupling effects. This modification would become

apparent below a characteristic temperature, T ∗ = ∆0ξ0q/kB that usually indicates

the temperature below which non-local coupling is an active effect. The consequence

of the shift from linear to T 3 behaviour is the appearance of weak low-T dependence.

This is in contrast to the work of Volovik et al. [32] that points to high sensitivity

of unconventional superconductors to changes in temperature in low-T conditions.

If we take ρ(T ) to be the unaltered (BCS), local superfluid density and define a new

term

n(T ) = 1− (1− ρ(T ))

(
Tc + T ∗

Tc

)(
T 2

T 2 + (T ∗)2

)
(63)
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as the superfluid density calculations which we assume contain non-local contribu-

tions; where T ∗ is the previously defined cut-off temperature and ρ(T ) is the purely

local superfluid density from the BCS theory [10]. We can keep in mind however,

that White et al. [96] demonstrated that the T ∗ term was insensitive to fitting

procedures and could vary considerably without detrimentally affecting a n(T ) fit.

The non-local term represents a fit to a low-T trend, rather than an equation

with microscopic justification, and so represents a more phenomenological approach

to supporting claims of non-local coupling effects, as a result of unconventional

pairing mechanisms. To establish the presence of non-local coupling effects, we need

to rearrange equation 63 to analyse just the non-local component of the data as a

function of temperature as follows:

1− n(T )

1− ρ(T )
=

(
Tc + T ∗

Tc

)(
T 2

T 2 + (T ∗)2

)
. (64)

n(T ) is the calculated value of the superfluid density using the available superfluid

density data from an investigation and so is assumed to contain some non-zero, non-

local contribution to the superfluid density even if this contribution is very small.

ρ represents the BCS theory for the expected superfluid density, ρ = 1 − (T/Tc)
2.

Equation 64 places the two definitions of the superfluid density in a ratio of n(T )

and ρ(T ). This will leave a unitless magnitude that represents the strength of non-

local coupling effects with the relationship roughly fitting a y = x/(x + 1) shape.

Therefore the value of the non-local contribution tends towards unity with increasing

temperature, which represents a complete match between ρ and n meaning zero

non-local contributions (this is of course a low-T effect, so the coupling contribution

should disappear for T → Tc). This means that we should see a much stronger non-

local contribution at low-temperature, which is in keeping with the predictions of

Amin et al.[92, 102, 101] mentioned earlier. This approach will be used later in this

work to look for non-local coupling contributions in order to analyse the likelihood
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of the strong coupling d-wave case for explaining the presence of unconventional

superconductivity.

1.6 Classification of superconductivity: d-wave and uncon-

ventional superconductivity

Returning to the quantum mechanical picture of superconductivity in BCS theory,

we may classify the type of pairing for the Cooper pairs beyond the simple case of

spin-up and spin-down electrons paired with equal and opposite momentum. We

start with the pair amplitude [30] describing the pair formation in momentum-

space using familiar creation and annihilation operators with spin states, σ and

momentum, k

gkσ1σ2 ≡ 〈ĉ−kσ1 ĉkσ2〉 (65)

where the total momentum k = (k1 − k2). The Pauli principle requires that under

spin or momentum exchange, the pair amplitude is anti-symmetric such that

gkσ2σ1 = −gkσ1σ2 . (66)

With this we may classify a superconductor with respect to its spatial parity

and spin rotational symmetry. For the case of singlet pairing, where the total spin

is S = 0, the pair amplitude is

gkσ1σ2 =

 0 gk

−gk 0


σ1σ2

= gk(iΣ2)σ1σ2 (67)

Where we can equivalently relate gk to Equation 52 as gk = 1
2
[gk↓↑ − gk↑↓] and

Σ2 is a Pauli spin matrix (Σx, Σy or Σz). Equation 66 requires that, with respect

to the momentum, even parity is maintained. Simply put in spatial terms: g−k =

gk. To get to the crux of the matter regarding the definition of s, d and p-wave
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superconductivity we must look at the spherical harmonic description of our pair

amplitude:

gk =
m=l∑
m=−l

almYlm(k̂) (68)

The spherical harmonics are described by Ylm, with the orbital angular momentum

l and the z-projection m. We can classify the pairing mechanism using the orbital

angular momentum, l. For the case of singlet pairing (S = 0), l may take the values

of 0, 2, 4, etc. We may label these states as s-wave (l = 0), d-wave (l = 2) and so

on. So we may define d-wave pairing as spin singlet (S = 0) pairing with orbital

angular momentum l = 2, consequently we will have a superconducting Cooper pair

state with non-zero net momentum.

BCS pairing is often described as the s-wave case, previous defined by spin or-

bitals (l = 0). To be classified as a BCS superconductor the BCS transition must

satisfy the following two characteristics simultaneously. Firstly, formation of bosons

by the pairing of electrons (the Cooper pairs), and secondly the condensation of

these bosons into a ground state which is distinctly characterised by being macro-

scopically phase coherent. This is similar to a Bose-Einstein Condensate (BEC).

However, this doesn’t preclude the case of the formation of Cooper pairs and con-

densation into phase coherence do not happen simultaneously. Thus it is possible

to have pair formation above Tc but phase coherence setting in below Tc creating

a pseudogap [31]. Higher orbitals, such as l = 2 in the d -wave case, can produce a

non-isotropic gap over the Fermi surface. However, the presence of unconventional

superconductivity is not limited to the higher orbital cases. Primarily the defini-

tion of unconventional superconductivity is an argument of symmetry in the gap

structure with respect to the Fermi surface, which we will explore in the subsequent

section.
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(a) (b)

Figure 2: Diagrams of the Fermi surface symmetry given the nature of the pairing
mechanism. (a) The Fermi surface of a conventional superconductor. The thick
line is the Fermi surface cross-section, the thin line is the amplitude of the order
parameter. (b) The Fermi surface of an unconventional superconductor. The thick
line is the Fermi surface, the thin line is the amplitude of the order parameter. The
order parameter has less symmetry than the Fermi surface [66].

1.6.1 Classification of unconventional superconductors with respect to

symmetry

As established in the BCS description of superconductivity, the Fermi sea is unstable

to the formation of bound pairs, irrespective of how weak the binding strength of

the pair is, provided that it is attractive. The pair potential is characterised by

the attractive interaction V
(s)
kp and combines the pair amplitudes of the scalar and

vector averaged pair amplitudes, gk and gk, respectively. These pair amplitudes are

combined into the following pair potentials:

∆(k) = −
∑
p

V
(0)
kp gp (69)

d(k) = −
∑
p

V
(1)
kp gp (70)

These can also be referred to as the order parameters of the superconducting

phase. We may now relate these to the maximum value of the temperature depen-

dent pair potential ∆0(T ) with a momentum dependent orbital component f(k)
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∆(k) = ∆0(T )f(k) (71)

d(k) = ∆0(T )f(k) (72)

With this description we can compare the symmetry of the orbital component of

the pair amplitude to the symmetry of the Fermi surface. If the symmetries are the

same then we may describe the superconductor as conventional. However, if there

is different symmetry between the orbital component and the Fermi surface then we

can classify the superconductor as unconventional.

To express this in terms of symmetry groups, we begin with the symmetry group

G which describes the given point symmetry of the superconducting solid. Then

there is the time-reversal symmetry of the superconducting transition, R and the

gauge symmetry, U(1). The superconducting gap defines a coherent state with

Cooper pairs sharing a coherent phase, this phase is described by the wavefunction

of the Cooper pair. To minimise energy costs at the phase gradients, we say the

phase is practically constant within the system. This phase parameter defines a

long-range-order that breaks gauge symmetry. Thus we develop the full symmetry

of the normal state, described by Γ = U(1)×R×G. In a conventional superconduc-

tor only the gauge symmetry is broken at the superconducting transition. However

in unconventional systems the point-symmetry properties are also broken. Conse-

quently, this broken symmetry can lead to nodes or zeroes in the order parameter.

These manifest as points or lines along the Fermi surface where the order parameter

vanishes. This creates gapless points on the Fermi surface.

As a consequence we have to account for a gapless excitation spectrum across

the Fermi surface. This has been shown to alter the low-temperature behaviour of

physical properties in the superconductor. Specifically, it has been categorised by

Volovik [32] that the heat capacity dependence, with respect to temperature, changes

depending on the symmetry of the order parameter with respect to the Fermi surface.
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For conventional superconductors an exponential relationship is observed: C(T ) =

C0e
(−∆/kBT ), but for unconventional superconductors there is instead a power law:

C(T ) ∼ T n where n is determined by the topology of the nodes or zeros in the order

parameter. For example, T 2 behaviour of the specific heat in the superconducting

state indicates line nodes, whereas T 3 behaviour is indicative of point nodes in the

order parameter. This has been both confirmed by experimental fits and classified

theoretically by Volovik and Gor’kov [32]. The crux of the theoretical framework is

based on the availability of states at low temperature. In systems with nodes it is

always possible to excite quasiparticles at any temperature. This means that line

nodes have a greater capacity than point nodes for these types of excitations at low

temperature. Overall, the net effect is nodal systems are much more sensitive to

variation in temperature in the low-T regime.

1.7 Upper critical field in Type-II superconductors

There are two mechanisms for collapsing the superconducting mixed state in a Type-

II superconductor. The first and most common form is through orbital-field limiting.

The second, less common, mechanism is through Pauli limiting. The application of

a field higher than either of the aforementioned limits will result in the destruction

of the superconducting mixed state.

Orbital limiting describes the emergence of the VL and how the density of the

VL determines the destruction of the mixed state. In the mixed state, supercurrents

form in vortices around the flux line cores. This screens the bulk of the supercon-

ductor from the flux inside the core. In the mixed state, the size of the core doesn’t

increase with field, but the flux core density does increase. Eventually, the density

of these cores is sufficient that the cores overlap. At this point the material is now

composed of only normal regions (the flux cores) as the cores are no longer screened

from the bulk. In this state we may say that the orbital limiting field has been

reached and the material is no longer superconducting. We have previously found
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this field by linearising the first GL equation 24, so we may re-write the solution as

µ0H
Orb
c2

=
Φ0

2πξ2(T )
(73)

The other mechanism, Pauli limiting, is caused by Zeeman splitting of single

electron energy levels under a sufficiently high magnetic field. In the normal state

under a magnetic field, spins align parallel or anti-parallel to the applied field lines

through the material. However, the Cooper pairs in the spin singlet superconducting

state must be negligibly susceptible to spin polarisation in order to maintain super-

conductivity. The field required to polarise a Cooper pair must be energy equivalent

to the condensation energy or larger. Once this is field is reached, the Pauli-limited

upper critical field, the superconductivity is destroyed. Chandrasekhar [33] and

Clogston [34] estimated this field to conform to the following relation

µ0H
P
c2

=

√
2∆

gµB
(74)

Where g is the electron g-factor, g = 2, µB is the Bohr magneton and ∆ is the

previously defined superconducting gap. One may compare the effects of these two

mechanisms in destroying superconductivity by the Maki ratio

αM =
√

2
BOrb
c2

BP
c2

. (75)

For the majority of superconductors Pauli-limiting is a small contribution to

the destruction of superconductivity at high fields, such that αM � 1. Materials

that exhibit heavy fermion behaviour, where the effective mass of the electron is an

order of magnitude larger than the electron mass, often exhibit strong Pauli-limiting

behaviour (also referred to as a paramagnetic effect). Evidence for a material having

dominant paramagnetic or orbital effects is in the nature of the transition from

the mixed to the normal state near Hc2 and Tc. On approaching Hc2 if the phase
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transition is of the second order then the orbital-limiting is the dominant mechanism,

If the phase transition is first-order then Pauli-limiting is dominant.

1.8 Multigap superconductivity

Later in this thesis we will be looking at evidence for multiple gaps in supercon-

ductors, specifically TlNi2Se2. There are superconductors that have more than one

superconducting gap function such as the borocarbides and oxypnictides. The G-L

theory for this kind of system is outlined by Askerzade [35] and Orlova et al. [36],

which we will briefly cover here.

Using the G-L theory and starting with equation 20 as a basis, we may write the

free energy of a two-gap system as:

F [Ψ1,Ψ2] =

∫
d3r(F1 + F12 + F2 +

H2

8π
) (76)

where Fi has the familiar G-L definition of

Fi =
~2

4mi

∣∣∣∣(∇− 2πiA

Φ0

)
Ψ2
i

∣∣∣∣+ αi(T )Ψ2
i +

βi
2

Ψ4
i + c.c. (77)

and

F12 = ε(Ψ1Ψ∗2 + c.c.) + ε1

((
∇+

2πiA

Φ0

)
Ψ∗1

(
∇− 2πiA

Φ0

)
Ψ2 + c.c.

)
(78)

where i denotes either band one or two so Fi is the free energy of the separate

bands. The coefficient αi is similarly defined as for Equation 20, αi = γi(T − Tci),

while γi is a constant of proportionality. Once again β has the same definition as

previously defined in the G-L theory. The terms ε and ε1 describe the inter-band

mixing of the two order parameters and their respective gradients. In the same

vein as Equation 24, we may minimize the free energy in order to yield the G-L

differential equations for two-gap superconductors. We maintain one dimension as
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before with A = (0, Hx, 0) for the following results

− ~2

4m1

(
d2

dx2
− x2

l4s

)
Ψ1 + α1Ψ1 + εΨ2 + ε1

(
d2

dx2
− x2

l4s

)
Ψ2 + β1Ψ3

1 = 0 (79)

− ~2

4m2

(
d2

dx2
− x2

l4B

)
Ψ2 + α2Ψ2 + εΨ1 + ε1

(
d2

dx2
− x2

l4B

)
Ψ1 + β1Ψ3

2 = 0 (80)

where the coefficient lB is a characteristic length term that governs quantum phe-

nomena in magnetic fields. It is also known as the magnetic length term. It is

related to the applied field: l2B = ~
eB

. For example for an electron under B = 1 T,

we get lB ≈ 2.5 × 10−8 m. If we consider using Ψi(r) = |Ψi(r)|e(jφi(r)) in Equa-

tions 76 and 78, where φi is the phase of the order parameters, we may obtain the

equilibrium values of the moduli squared of the order parameters without an applied

magnetic field.

|Ψ10|2 = −α
2
2(T )(α1(T )α2(T )− ε2)

ε2β2α1(T ) + β1α3
2(T )

(81)

|Ψ20|2 = −α
2
1(T )(α1(T )α2(T )− ε2)

ε2β1α2(T ) + β2α3
1(T )

(82)

We may also define the phase difference between the two order parameters at

equilibrium as well with the following:

cos (φ1 − φ2) =

 1 if ε < 0

−1 if ε > 0
(83)

where φ here is the phase of a single gap.

There are additional consequences to having multiple gaps. The existence of

more than one gap will generate a penetration depth associated with each gap, λi.

These gaps will not likely have the same critical field and temperature associated

with them. These additional variables need to be considered and account for the

superconducting state acting like the superposition of two or more states, due to the
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existence of multiple non-identical gaps. A consequence of this is that these gaps

need not have the same value and thus Hc2 and Tc will be different for each gap.

This introduces discontinuities in the superconducting state where one gap may be

suppressed by a sufficiently high field but a larger gap is not, meaning a portion of the

Cooper Pairs associated with the smaller gap are now normal. In addition, should

one or more of these gaps be strongly associated with a particular orientation in the

Fermi surface, this will introduce a directional dependence and anisotropy into the

superconducting state. A good example of this is seen in KFe2As2, where two gaps

are associated with the c-axis and ab-plane of the crystal structure, respectively;

this introduces a high level of anisotropy as a result [91, 86]. It is also not necessary

that two or more gaps share the same symmetry over the Fermi surface as well.
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2 SMALL-ANGLE NEUTRON SCATTERING

FROM MAGNETIC STRUCTURES -

EXPERIMENTAL METHODS

2.1 Introduction to small angle neutron scattering

In the previous section we have introduced superconductivity and the concept of the

VL. In order to investigate the superconductor and the VL we require a magnetic

probe that is sensitive to the VL. It is in the use of neutrons that we find such a

magnetic probe, given that neutrons have no charge, generally weakly interact with

matter but have a magnetic moment. It is with the technique of neutron scattering

that we may probe the VL and observe changes with respect to field, temperature

and angle of rotation.

Small-angle neutron scattering (SANS) is an effective Bragg scattering method

for probing structures of the order of 101 − 103 Å. Neutrons possess a magnetic

moment (they are spin 1/2) and so can be affected by the presence of magnetic

fields, but without being perturbed by the presence of electric fields. Neutrons also

have complex relationships for the scattering and absorption cross sections with

respect to nuclear mass, this does makes neutrons suitable for heavier elements

(unlike X-rays) but can make materials like hydrogen problematic.

We can derive the wavelength requirements for Bragg diffraction by calculating

the lattice parameter for a VL using:

a =

√
Φ0

B
sin(β) (84)

where a is the lattice parameter, Φ is the magnetic flux quantum, B is the applied

field and β is the angle for the lattice shape (so 60◦ for a hexagon). If we choose a
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field of B = 1 T for a hexagonal VL then a = 480 Å. This is significantly larger than

the underlying lattice parameter of a crystal which will be of the order of 3− 10 Å.

If we insert this into the Bragg equation:

nλ = 2d sin(θB) (85)

with a thermal neutron wavelength of λ ≈ 10 Å and setting d = a then we get

a Bragg angle of θB ≈ 1◦. This technique is very useful for many mesoscopic

structures, especially periodic magnetic structures such as superconducting VLs.

An example of the neutron scattering apparatus can be seen in Figure 3.

Figure 3: Instrumentation for a SANS investigation of a sample. This specifically
shows the internal functioning of the SANS-I instrument at SINQ , PSI, Switzerland.
Image sourced from [38].

2.2 Scattering theory for an ideal periodic potential

In order to set up scattering theory for SANS studies of the VL we must begin with

a framework in quantum mechanics with some arbitrary periodic potential. Overall

this can be described by the following Schrödinger equation for a neutron:

[
−~2

2mn

∇2 + V (r)

]
Ψ(r) = EnΨ(r). (86)

Here we have the neutron mass mn, the neutron energy En and the wavefunction

Ψ(r). To bring in a periodic scattering potential we use V (r), but we need to main-

tain the case of weakly interacting scattering by applying the Born approximation,
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so we use V (r) as a perturbation. By doing this we keep the scattering amplitude

simple and proportional to the Fourier transform of V (r) with respect to reciprocal

space q.

Following on from this premise, the probability of a change in neutron momentum

can be described by Fermi’s Golden Rule

Γki→kf =
2π

~
|〈kf |V (r)|ki〉|2 ρf (87)

where ki and kf are the initial and final neutron wavevectors, respectively with |k〉

as the wavefunction of the neutron. We represent the final density of states for the

neutron to be ρf , with the assumption of energy conservation for the whole system

and a lack of dependence on the neutron spin.

For a scattering event we must consider the time-dependent differential cross-

section, which represents the probability for a given neutron to be scattered into a

solid angle. We use the following,

dσ

dΩ
=

1

φndΩ

∑
k∈dΩ

Γki→kf , (88)

where dΩ is the solid angle and φn is the neutron flux. If we take equation 87

and write it in standard form (rather than Dirac notation) and insert it into equa-

tion 88 we obtain the following representation of scattering within the framework of

quantum mechanics:

dσ

dΩ
=
( mn

2π~2

)2
∣∣∣∣∫ e(−ikf ·r)V (r)e(iki·r)dr

∣∣∣∣2 . (89)

The previous value of ρf has been normalised in the above calculation to give
(
mn

2π~2
)2

[37]. To bring in a periodic potential we need to define V (r) fully:

V (r) =
N∑
j

V̂ (r−Rj) (90)
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where N is the number of weak scatterers in an array and Rj is the centre of the

scattering array. Then we define rf = ri −Rj and insert the full description of the

potential into equation 89 with the definition of the scattering vector q = ki − kf

to get the following

dσ

dΩ
=
( mn

2π~2

)2

∣∣∣∣∣
∫
V̂ (rf )e

(iq·rf )drf

N∑
j

e(iq·Rj)

∣∣∣∣∣
2

. (91)

The above can be written for any scattering system with a periodic potential of

weak scatterers and condensed in the simpler representation as

dσ

dΩ
= |F (q)|2S(q) (92)

where S(q) is the structure factor and F (q) is the form factor. The structure factor

describes how the neutrons are scattered by the periodic potential

S(q) =

∣∣∣∣∣
N∑
j

eiq·Rj

∣∣∣∣∣
2

. (93)

The form factor describes the scattering amplitude of a single scattering element in

the array of weak scatterers

F (q) =
mn

2π~2

∫
V̂ (r)e(iq·r)dr (94)

and effectively describes the Fourier transform of the scattering potential.

2.3 Small-angle neutron scattering from a VL

We now need to develop the general scattering theory in the previous section in

such a way that it applies to scattering from a periodic magnetic potential, in our

case a VL. This means developing the previous differential scattering cross section

from equation 92 to contain magnetic field terms for the periodic potential. The
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scattering potential can be described by the following

V̂ (r) = −γµNB(r) (95)

where γ = 1.92 is the unitless gyromagnetic ratio for a neutron, µN is the nuclear

magneton and B(r) is the field distribution of the VL. For a VL, in the ideal case,

there is only a single field component along the c axis as a result of a field applied

along z ‖ c so B = (0, 0, B). We can now begin to adopt equation 92 to describe

the VL case for the differential cross section:

dσ

dΩ
=
( mn

2π~2

)2

γ2µ2
N

∣∣∣∣∫ B(r)e(iq·r)

∣∣∣∣2 S(q). (96)

We have provided a form factor by defining the periodic potential of the VL, we

now need to define the structure factor. This means summing over the scattering

potential of the VL at each of their positions, signified by Rj. Given that the vortices

are parallel to the field direction in z and can be interpreted as finitely-sized rods,

we can use the following vector: Rj = µax̂+νbŷ. The structure factor can therefore

be defined as

S(q) =

∣∣∣∣∣
M−1∑
µ=0

e(iµaqx) +
M−1∑
ν=0

e(iνbqy)

∣∣∣∣∣
2

(97)

where M =
√
N (where N are the number of points at which there is a vortex),

µ and ν are the dummy variables for the x and y directions and a and b are also

the respective magnitudes for this vector description. As this description of the

structure factor is a series of exponentials, we may combine these into trigonometric

functions and instead write

S(q) =
sin2 (aqxM/2) sin2 (bqyM/2)

sin2 (aqx/2) sin2 (bqy/2)
(98)

We can simplify the conditions by assuming N is very large and at these N
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points the structure factor is very sharp and delta-like and zero everywhere else.

The locations of these points of sharp amplitude can be described with Miller indices

notation as a vector,

Gh,k = 2π

(
h

a
,
k

b

)
(99)

where Gh,k is a reciprocal lattice vector for the VL. For N number of vortices and

the assumption that the amplitude is effectively a delta-function at Gh,k we may

write the simplifying case:

S(q) =
8π3N

V

∑
G

δ(2)(q−G). (100)

where V is the volume of a reciprocal lattice unit cell, and the prefactor is obtained

by integrating over this unit cell. Now that we have both the structure and form

factor, we may now substitute these expressions into the differential cross-section in

equation 96 to give

dσ

dΩ
=
(γ

4

)2 8π3N

V Φ2
0

∑
G

|F (G)|2δ(2)(q−G) (101)

where we have included Φ0 = h/2e, the magnetic flux quantum by rearranging the

prefactor in equation 96. The delta function, δ(2)(q −G) represents the condition

by which elastic scattering and Bragg scattering is satisfied i.e. when q = G. This

means the momentum vector of the scattering neutrons matches a reciprocal lattice

vector in the VL array, whilst the Bragg condition of elastic scattering, |ki| = |kf |,

is also held.

The presence of the delta function suggests that when the Bragg condition is

satisfied in elastic scattering conditions our differential cross-section become infinite.

In reality this is not the case and a Bragg reflection is finite in size. This is due to

imperfections in the VL and limitations on instrumental resolution. This means we

instead approach the differential cross-section with a finite volume in the reciprocal
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space over which the Bragg conditions are applied. We do not measure the partial

differential cross-section in an experiment though, instead the integrated intensity

is measured as the reciprocal lattice vector is rotated with respect to the Ewald

sphere; a concept which will be explored later in this thesis.

To generate the aforementioned integrated intensity, the partial differential cross-

section needs to be integrated over all directions in real-space. This produces the

total cross section of a scattering event, σT . This total cross section then needs to be

integrated as a function of the angle of rotation that the reciprocal lattice vector goes

through. From an experimental viewpoint, the differential scattering cross-section

represents the final state of the neutron and the likely position it will be detected

on the detector bank. What is measured is the intensity as counts per pixel on

the detector, essentially setting a resolution on the detector bank as a limit to the

total cross-section. Here we give the final results of the two previously mentioned

integrations:

I(G) =

∣∣∣∣ dσdΩ

∣∣∣∣ λ2
nφn

4π2G cos ζ
=

2πV φnλ
2
n

Φ2
0G cos ζ

(γ
4

)2

|F (G)|2 (102)

where λn is the neutron wavelength, φn is the neutron beam flux per unit area and ζ

is the Lorentz angle; the angle between the reciprocal lattice vector and the normal

to the axis of rotation. In experimental terms φn is acquired via a measurement of

the direct beam. If we hold Bragg conditions and successful scattering to be true

then q and G are equivalent and interchangeable. I(G) represents the intensity

over some parameter, usually the Bragg angle. Equation 102 is sometimes known as

the Christen formula, with the notation of q ≡ G [37][62] . In this case it is good

practice to define the reflectivity of the VL, normalised to the neutron flux of the

beam

R(G) =
I(G)

φnA
. (103)

where we define A as the area of the sample face illuminated by the neutron beam. A
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common result can be seen in the above equations, the integrated intensity and the

reflectivity are both proportional to |F (G)|2 and 1/G, respectively. Although F (G)

dominates the behaviour of a measured integrated intensity, it is not wholly reliable

to predict a value for the form factor or integrated intensity for a given sample, as it

relies on parameters that are difficult to determine. A good estimate can be predicted

from sample and instrument information. For a SANS investigation of the VL,

the integrated intensity is extracted from direct measurement and analysis through

GRASP software (see Appendix 8.1). This process if followed by rearrangement of

equation 102 for the form factor of the VL.

2.4 Ewald sphere theory

To provide a geometric and visual framework for the two previous sections it is useful

to invoke the Ewald sphere interpretation of elastic scattering in reciprocal space,

illustrated in Figure 4. The size of the sphere is defined by the wavevectors ki and

kf where these are the incident and final vector of a scattering event, respectively.

We define the incident wavevector as ki = 2π/λn and invoke the elastic scattering

condition: ki = kf . The radius of this sphere is r = ki. This means that if all possible

ki and kf originate from the same point then the ends of these wavevectors all lie on

the surface of a sphere. To satisfy the Bragg condition for scattering the scattering

vector must be equivalent to a reciprocal lattice vector. The difference between the

incident and final wavevector is known as the scattering vector: ∆k = kf −ki. This

means, geometrically, that as the two vectors, kf and ki, are the same length then

the scattering vector must lie on the surface of the sphere with a radius of 2π/λ.

This sphere is known as the Ewald sphere.

This model works such that if the tip of the vector ki is placed at the point of

origin, O, of the reciprocal space then diffraction may only ever occur on points

that directly lie on the surface of the Ewald sphere. Thus as one rotates a crystal

the Ewald sphere rotates about the origin point of the reciprocal lattice and points
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Figure 4: The array of black spots indicate the reciprocal lattice. ki and kf are the
incoming and outgoing wavevectors, respectively. The origin, O, of the diffraction is
also the point about which the sphere originates, in the sense that the initial point of
scattering occurs at O (in this case a 2-D circle is used). In the case presented above
only one spot satisfies the Bragg condition by lying on the Ewald sphere surface and
generating the scattering vector ∆k, which is equal to the reciprocal vector between
the two points in the lattice. The Bragg angle of scattering is given as 2θ, which is
the angle between ki and kf [39]. Image taken from work in [66].

of scattering within the lattice pass through the Ewald sphere, so as one rotates

a crystal, peaks of scattering are detected as the sphere cycles through reciprocal

lattice points within the lattice and scattering vectors are created that equal a

reciprocal lattice vector as discussed before.

To connect again to the Bragg condition, the angle between the incoming and

outgoing wavevectors is 2θB, where we have previously defined θB as the Bragg

angle. In the case of SANS this angle is very small, no larger than the order of a

degree. We can deduce from figure 4 that as the angle of rotation is increased more

lattice vectors are satisfied. In the case of SANS, especially when looking at a VL,

it is advantageous to satisfy multiple reciprocal lattice vectors at once by having an

Ewald sphere that crosses through multiple points of scattering with rotation for a

given radius of the sphere.
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Figure 5: The layout of the ISIS spallation system with proton accelerator, target
stations, and instrumentation. [42]

2.5 Instrumentation

For SANS, neutrons can be produced by two possible sources, fission and spallation.

In the case of fission, this requires a nuclear fission reactor with an opening in one

side. The opening will have a moderator in it to mediate the speed of the neutrons

(and so their wavelength) which leads to one or more beam guides for transporting

the neutrons towards scattering instruments. In the case of spallation, this process

is not provided by reactor fuels. Hydrogen is ionised to produce protons, these

are accelerated in pulses that collide with a target such as mercury (Oak Ridge

National Laboratory [41]) or lead (Paul Scherrer Institute [40]). Upon striking the

target neutrons are produced. These are similarly directed into a moderator and

then into beam guides. Examples of the layout of these types of facilities are shown

in Figures 5 and 6 for spallation and fission, respectively.

The instrumentation between the beam guides and the detector is summarised

in Figures 3 and 7 as examples at PSI and ILL, respectively. Before the neutrons

reach the detector they must first pass through a velocity selector. This is a rotating

device covered in blades approximately parallel to the beam that absorb neutrons.
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Figure 6: Layout of the fission reactor source, beam guides and instrumentation at
the Institute Laue-Langevin, Grenoble, France [44].

By rotating at a set frequency, one may select neutrons of a particular wavelength

with a width of about 10%. The beam is then incident upon a standard monitor: a

low efficiency detector to give a measure of the incident beam. The neutrons then

pass through the collimator. The collimator is divided into sections of between 1 m

to 3 m of either waveguides coated in super-mirrors (highly reflective at low angles)

or a collimator with a highly absorbing coating. By selecting the right combination

of these sections one may control the divergence of the beam that interacts with

the sample and the detector. For example, if one replaced each section of guide

with the absorbing sections from the beam output towards the velocity selector, the

divergence would be greatly reduced. However, this procedure also greatly reduces

the flux. This often leads to a value judgement while conducting an experimental

investigation on SANS beamlines to balance the count time with the resolution, given

the amount of beam time available and the strength of the signal being investigated.

The detector needs to be between 4-20m from the sample in order to screen out
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Figure 7: D33 instrumentation at the ILL, Grenoble, France. The top image shows
the velocity and choppers used to select the wavelength and resolution of the wave-
length. The middle image shows the collimation sections and apertures used to align
and attenuate the neutron beam. The bottom image illustrates the neutron path
after diffraction. The detectors are adjustable to match the q range available. The
image is taken from [43].

48



as many direct, undiffracted neutrons as possible (additionally there is a cadmium

or boron beam-stop in order to prevent the detector saturating from undiffracted

neutrons). These aspects are shown in Figure 7 which illustrates the detector tube

for D33, ILL, Grenoble, France (as one of the instruments used in the following

investigations in this thesis) to be around 14m long. This tube is evacuated with

the detector mounted on railings that can position the detector along the length of

the tube, parallel to the beam. The detector contains 3He which produces a 764

KeV proton and 3H on absorbing a neutron. The protons then pass through a gas

in the detectors which ionises when protons interact with it. This ionisation event is

detected as a pulse by a grid of high voltage wires, which can pinpoint the location

of the original neutron event. This grid arrangement works very intuitively building

pixels to form a 2D image.

2.6 Sample and sample environment

Superconductivity investigations require that the sample be held at low, variable

temperature with a variable field. This can be achieved using a cryomagnet. There

are multiple designs but are generally configured by a vacuum jacket surrounding a

liquid nitrogen layer, with a liquid helium bath around the evacuated sample space

and potentially the magnet (depending on design and if the magnet is supercon-

ducting). The helium bath can sometimes be pumped on to achieve as low as 2 K or

a dilution refrigerator insert can be used to reduce the temperature to ≈ 100 mK.

In the case of many VL experiments in SANS as with this one, the samples

are arranged as a mosaic with their axes co-aligned on an Al plate, including a Cd

window to reduce the total background signal, as seen in Figure 8 . The sample

plate is fixed on the end of a sample stick and inserted into the sample space, which

is then evacuated. The position of the sample is aligned with two Al windows on

either side of the sample so there is less attenuation for the beam. Cryomagnets

for this type of investigation are built with a superconducting magnet surrounding

49



Figure 8: TlNi2Se2 mozaic made from 6 samples of approximately 2 mm by 3 mm
surface area and 0.13 mm thickness. They are aligned with the c axis perpendicular
to the mounting plate and the a and b axes co-aligned along the length and width of
the mounting plate, respectively. This image is the sample setup for the preliminary
measurements conducted at PSI, November 2015.

Figure 9: Side-cut view of the 17 T magnet bore for inserting the variable tempera-
ture insert (VTI). Shown here is the orientation of the magnet and sample space as
well as the direction of an incoming beam of particles [63].

the sample and cooled by liquid helium. These magnets are usually a single long

solenoid or a pair of solenoids that produce a field parallel to the beam, this sets up

a vortex lattice in an orientation conducive to Bragg scattering with neutrons.

To adjust the angle of the cryomagnet, when using a monochromatic beam and

satisfying Bragg conditions, the entire cryomagnet is mounted on an adjustable table

that can move the cryomagnet in x, y, the polar angle φ and the azimuthal angle ω.

The sample can also be rotated in ω independent of the field to a fixed displacement

angle, labelled as Ω here by the use of a motor attached to the sample rod at the

top of the cryomagnet.
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For the preliminary investigation for TlNi2Se2 at SANS-I the MA7 (which has a

maximum field of 7 T) magnet was used although the field only needed to be able

to drive up to 1T. For the main investigation of TlNi2Se2 and the first investigation

up to 16 T for (Ba0.5K0.5)Fe2As2 the D33 beamline was used. The University of

Birmingham 17 T cryomagnet was used for both investigations [63] with a dilution

insert for TlNi2Se2. This cryomagnet has an outer vacuum jacket, then a 77 K

shield of liquid nitrogen. A 4.2 K liquid helium bath surrounds the magnet [63].

To control the temperature of the sample a variable temperature insert (VTI) is

applied, which the sample is connected to. The VTI consists of a thermally isolated

gold-plated copper ring, which is cooled by a brass tube fed from the helium bath.

The flow of helium to the VTI is regulated by a computer controlled needle valve.

The cryomagnet can achieve fields of B < 17 T with the field aligned horizontally

so that the field can be aligned approximately parallel to the neutron beam; this

is shown in Figure 9. The temperature and field stability of this cryomagnet is

very good and the dilution insert is stable for temperatures from 100 mK up to

approximately 4 K. An Attocube© attachment allows rotation of the sample rod

with respect to field alignment in the azimuthal ω plane while the cryomagnet at

D33 is mounted on a table capable of adjusting the position of the instrumentation

in x, y and the polar angle φ.

2.6.1 Dilution refrigeration in the 17 T cryomagnet

In order to support stable mK range temperature access for field and temperature

scans, a dilution refrigeration insert was used for both the PSI and ILL investiga-

tions, and so we will cover the physics and function of dilution refrigeration systems

here.

Dilution refrigeration is made possible by the phase separation of He when mixed

as 3He and 4He upon cooling below a certain temperature. Referring to the phase

diagram of 3He/4He mixtures vs temperature in Figure 10, we see that there is a λ
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Figure 10: Phase diagram of a 3He/4He mixture with respect to temperature and
concentration of 3He as a molar fraction [64, 65].

point, or tri-critical point, at Tλ = 0.86 K for a concentration of xλ ≈ 68% 3He [64].

The shaded region is not accessible so therefore at T < Tλ the mixture separates

into a 3He rich phase and a 4He rich phase, this is also called the 3He dilute phase,

hence dilution refrigeration. At T < 0.86 K we see in the Figure that there is a

concentration of x ≈ 6.6% where there will always be a finite fraction of 3He in

the dilute phase. As the 3He rich side has a lower density it floats to the top and

sits above the dilute phase, separated by a phase boundary. This phase boundary

effectively separates an ordered, majority 3He phase from a disordered majority 4He

phase.

The cooling power of this arrangement lies in the transfer of 3He atoms from

the 3He rich phase to the dilute phase underneath. This is achieved by pumping on

the mixture. 3He will preferentially evaporate; this breaks the equilibrium in the

dilute phase. We can see from the phase diagram that even at T = 0 K there is

a finite percentage of x ≈ 6.6% 3He in the dilute phase. This means that while

pumping on the mixture, the finite number of 3He atoms in the dilute phase will
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Figure 11: Schematic of a dilution refrigeration insert equivalent to that used in the
TlNi2Se2 experiments for SANS at ILL and PSI. The pumps at the top are external
and at room temperature [66]. The green box is the inner vacuum can which is
placed into the variable temperature insert (VTI) of the cryomagnet.

evaporate, thus breaking equilibrium. To restore equilibrium 3He atoms from the

3He rich phase will have to cross the phase boundary to the dilute phase to replace

the lost 3He atoms. This process of crossing the phase boundary is endothermic [65],

and the heat supplied to the 3He atoms comes from the wall of the mixing chamber

in contact with the mixture. For the purposes of continuous refrigeration 3He is

supplied to the mixing chamber using 3He atoms evaporated from the dilute phase

in a cyclical process. This cooling cycle can be applied for all temperatures as there

is always a finite fraction of 3He in the dilute phase, as seen in Figure 10. This

dilution refrigeration mode was adopted for the dilution refrigeration system on the

preliminary PSI experiment and the main ILL experiment for TlNi2Se2, covered

later in this work.

We see in Figure 11 a schematic for a dilution refrigeration system. The diagram

shows the essential components for maintaining the continuous cycle required for

cooling. The 1 K pot provides initial condensation of the mixture, but is insufficient

to reduce the mixture to the 0.86 K required for phase separation of the mixture.
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Additional cooling of the mixture is provided by heat exchangers between the still

and the 3He going to the mixing chamber. Between the 1 K pot and the mixing

chamber is a flow impedance, this is to apply additional pressure to the mixture to

ensure condensation of the gas.

Another consideration is that the mixture ratio of the 3He to 4He should be

chosen such that the phase separation boundary resides in the mixing chamber and,

as shown in the schematic, the surface of the liquid dilute phase is in the still.

This arrangement allows for ease of pumping on the liquid surface where the 3He

will evaporate from the dilute phase (as previously described). A technique for

accelerating the cooling process is to heat the still to accelerate 3He evaporation,

which would accelerate the rate of endothermic exchange of 3He atoms across the

phase boundary if performed carefully. As described in the caption, the pumping

system is external and at room temperature; evaporated 3He gas passes through

these pumps to be filtered and recycled back through an initial 77 K cold trap for

pre-cooling before reaching the 1 K pot.

2.6.2 Preliminary calculations

To determine the suitability of SANS for an investigation the scattering and absorp-

tion cross-sections of the sample for neutrons must be known as well as an integrated

intensity estimation. As an example we will use TlNi2Se2 which features later in

this work and was investigated on the D33 (ILL) beamline. TlNi2Se2 has an approx-

imate thermal neutron cross-section of 0.358 cm−1 and a linear attenuation factor of

1.245 cm−1 [45]. The samples are approximately 0.13 cm thick, mounted on 0.6 mm

thick Al, so there should be few neutron losses from scattering or absorbing from

the sample.

To determine the integrated intensity prediction for a measurement we look back
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to the integrated intensity in equation 102,

I(q) = 2πV λ2
nφn

(γ
4

)2 |F (q)|2

Φ2
0q cos ζ

(104)

where I(q) is the integrated intensity measured in counts s−1A−1 (where A is amps),

V is the total volume of sample under investigation, λn is the neutron wavelength

(≈ 1 nm), γ is the neutron g-factor, φn is the flux for the neutron beam. |F (q)| is the

form factor of the VL and is calculated later in this section in Equation 105. Here q

is the magnitude of the associated reciprocal vector for the scattering and a is the

maximum size of the VL. cos ζ is the Lorentz factor, where ζ is the angle between the

reciprocal lattice vector and the plane normal to the axis of rotation for the rocking

curve. The magnetic flux quantum is Φ0. However, we would need to estimate the

form factor |F (q)| and the Lorentz factor, by making some assumptions regarding

the penetration depth and the coherence length for the former and assuming we’re

looking at a scattering vector normal to the axis of rotation for the latter.

The motivation for investigation is to extract the form factor of the VL, used in

Equation 104 as |F (q)|. The form factor for the isotropic London model is [124]:

|F (q)| = Becq
2ξ2

1 + q2λ2
L

(105)

where B is the applied field, q is the scattering vector for the VL, λL is the Lon-

don penetration depth, ξ is the coherence length and c is an empirical core cut-off

parameter taken between 0.5 and 2. The value for this is obtained from fitting the

form factor data. The form factor is important as it is proportional to the super-

fluid density, |F (q)| ∝ ρs and the superfluid density is inversely proportional to the

penetration depth squared, ρs ∝ 1/λ2
L. By knowing the behaviour of the superfluid

density and penetration depth we may gain a deeper understanding of the super-

conducting state. We can also more accurately determine the coherence length with
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this investigation using the following:

ξ(T ) =

√
Φ0

2πBc2(T )
. (106)

By observing the melting of the flux lattice at the boundary between the normal

and superconducting states we can increase the precision with which we know the

coherence length.

2.7 Identification of pairing mechanisms

In order to properly model the likely pairing mechanisms we need to develop a

means of analysing I(q) and F (q) with respect to temperature variation. For the

results of the investigations of superconductors presented in this work, the temper-

ature dependent results for the integrated intensity should be directly compared

to ideal models of I(q) and F (q) with temperature variation, for all relevant pa-

rameters within the Christen formula. Subsequently the penetration depth can be

characterised for two main pairing mechanisms: s-wave and nodal/d-wave pairing

(including gap structures with line and point nodes). To do this we must apply

a known framework for these pairing mechanisms. The models we will use in this

work have been applied using the framework summarised by Prozorov [92], which

is an accumulation and simplification of the groundwork for the more general theo-

retical case by Izawa, Maki et al. for nodal pairing with point nodes and line nodes

[99, 100]. To develop the more general model that includes point and line nodes,

we start with the two-fluid model of the penetration depth developed by Bardeen,

Lewis et al., mentioned earlier in the discussion of the London Model [5, 4, 10]

λ(T ) =
λ(0)√
1− t4

; (107)

where t = T/Tc. This approach gives reasonable estimates for λ(T ), but it only

represents an ideal for a clean, local BCS superconductor.
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In order to develop the theory to cover a broad array of superconductors we use

the framework of Prozorov, which builds upon the Lewis approach using empirical

fits. The Prozorov approach describes the temperature dependent penetration depth

much like the BCS two-fluid model, but with a key variation. The new framework

introduces a phenomenological variation of the power law for the penetration depth

as such:

λ(T ) =
λ0√

1−
(
T
Tc

)p (108)

where λ0 is the London penetration depth at zero temperature and p is a power that

typically has a value between 1 and 4. In the classic BCS theory the power is often

given as p = 4 for s-wave pairing over the superconducting gap [10]. However, as

outlined by Prozorov et al. [92, 93, 94], previous attempts to model the penetration

depth have shown that a power law, with p allowed to vary for a fit, is quite robust

and when fitted can be indicative of the pairing mechanism dominant in the material.

The framework outlined by Prozorov demonstrates that p takes the following values

for a given pairing mechanism: p = 2 for s-wave and p = 4/3 for line and point

nodes in the gap structure, including d -wave superconductivity. Empirical fits of

Prozorov and two-fluid approaches have shown that p = 4 is not universal [92, 10, 4],

with p = 2 being a better representation of s-wave behaviour.

If we take the I(q) data and |F (q)| calculations and plot them versus tempera-

ture, rather than a fit of these data sets, we can apply a null hypothesis. By using

equations 104, 105 and 108 we can set the power laws for the penetration depth to

represent the ideal case for each of the pairing mechanisms then see how the data

compares. These elements combined in their ideal cases for each pairing mechanism,

for the conditions of the investigation at the ILL on D33, produce models for the

integrated intensity and form factor behaviour with respect to temperature.

The penultimate step is to insert the form factor function (equation 105) into

the Christen formula (equation 104) with the other conditions of the investigation
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to produce models for how the integrated intensity should look with respect to

temperature variation. Looking at the form factor is useful but has its limitations

due to the lack of knowledge surrounding the evolution of ξ and other terms, but by

rearranging the Christen formula to calculate the form factor from the data, we do

not need to know specific information about some of the terms. This null hypothesis

approach is fairly robust as it avoids integrated intensity or form factor fits with large

numbers of parameters, some of which not much is known about. Finally, following

from this we may rearrange equation 108 to calculate the penetration depth from

the form factor and apply direct fits; given the small number of parameters in

equation 108 this should be trivial. This section of theory will be referenced later

in the analysis of both (Ba0.5K0.5)Fe2As2 and TlNi2Se2.

2.8 Perfecting the VL by oscillating the field

To measure at a given field-temperature point, the superconductor must be field

cooled (FC), so that the field is only changed when the sample is in the normal

state. This reduces the probability that the sample will be damaged when the field

strength is changed or the angle of the sample is changed due to a lack of pinned

flux in the normal state. However, FC can lead to imperfections in the VL because

of pinning to crystal defects and impurities. This makes a reliable measurement of

VL structural transitions less likely as a lack of coherence in the VL will impede the

interference between scattered neutrons to produce Bragg peaks.

Dewhurst et al. [67] performed an investigation into oscillating or wiggling/shak-

ing the field around the desired field in order to unpin vortices from pinning sites by

applying longitudinal (shaking) and transverse (inverse shaking) procedure for the

applied field in order to reduce the VL closer to a well ordered state for the field and

temperature conditions applied. The longitudinal or shaking procedure is where the

AC field is parallel to the applied DC field. This is applied by a sinusoidal variation

of the current in the magnet. In the case of the transverse- or inverse-shaking pro-
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Figure 12: SANS images of the VL in YNi2B2C with inset of longitudinal shaking
and inverse shaking field oscillations. Image (a) shows a 100 mT FC to 2 K without
any shaking procedure. Image (c) shows the VL after a 10% longitudinal inverse
shake after FC showing better resolution of the hexagonal vortices as they have
become mobile and settled to equilibrium. Image (b) shows the shaking and inverse
shaking field oscillations associated with the wiggling procedure. Image taken from
work in [67].

cedure a separate split coil has to be mounted around the sample such that the AC

shaking field is perpendicular to the DC applied field. There is an initial decrease in

the amplitude of the field in the transverse case before following the same sinusoidal

amplitude variation as the longitudinal procedure; illustrated in Figure 12.

Dewhurst found that wiggling with a frequency of 10 Hz to 100 Hz at an ampli-

tude of 10 mT to 100 mT was sufficiently effective. This procedure works through

the oscillating field acting as an alternating torque across vortices pinned to pinning

sites. The torque is only felt if the vortex is pinned, so when the VL is reduced

to equilibrium, no torque is felt. However, although the procedure improves ori-

entational order for the VL, if competing forces such as the surface or background

pinning are strong, then the shear and bulk moduli of the VL will be greater than

the tilt modulus of the wiggling procedure. This will lead to vortices bending rather

than unpinning, reducing longitudinal order for the sake of orientational order.

It was also observed that inverse wiggling (an initial reduction in the field in a

cosine2 manner) was more effective than wiggling. This is likely due to the initial

reduction in field lowering the magnetic pressure and improving mobility for the
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vortices. Figure 12 illustrates this procedure, as it shows an initial ‘square’ VL im-

age under FC conditions with no wiggling, where the hexagonal spots are poorly

resolved. Subsequently after warming again and then applying an FC cooling fol-

lowing by a 10% longitudinal inverse-wiggle the VL appears as a hexagonal lattice

as it has now achieved equilibrium.
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3 THE ROLE OF THE FERMI SURFACE

AND ELECTRONIC STRUCTURE IN

DETERMINING THE PAIRING

SYMMETRY

As all three compounds being investigated by SANS in this thesis have the same 122

structure, also known as the ThCr2Si2-type structure [68], whereby they have the

same arrangement of atoms in space but the sites are occupied by different elements.

In the case of the Fe-based superconductors this is denoted by the chemical formula

AEFe2Pn2 where AE is alkaline earth metal from group 2A of the periodic table.

These are typically Ca, Ba, Sr or Eu. Pn is a pnictide, an element from group 15

of the periodic table. In this class of superconductor it is typically As or P. These

crystals, TlNi2Se2 and the Fe-based superconductors, form in a tetragonal structure

with the I4/mmm space group symmetry.

Since 2008 a wide family of Fe-base superconductors has emerged with structures

including: 1111, 122, 111, 112, 245, 11 and others. Fe-base superconductors have a

number of advantages such as high upper critical fields induced by doping, as we will

see later in this work. In particular the 122 family of Fe-based superconductors that

takes the specific form of (Aa1−xBbx)Fe2As2 is of great interest given the particularly

high sensitivity to doping. In this work we look at the substitution of Ba and K

for Aa and Bb, respectively. This yields the parent compound (Ba1−xKx)Fe2As2,

with BaFe2As2 as the fully overdoped and KFe2As2 the fully underdoped limits. In

fact BaFe2As2 is not superconducting and requires pressure or doping to enter the

superconducting regime [69].

It is vitally important to know what the variations are in the Fermi surface (FS)

and band structure in each compound in order to draw comparisons. The overlaps
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Figure 13: 1st and 2nd Brillouin Zone (BZ) of a tetragonal crystal structure [70].
This outlines the points of reference and lines of symmetry in reciprocal space when
exploring the Fermi surface and band structure of the 122 materials in this work.

between the three compounds in this thesis suggests that there is likely one or more

common features in the electronic structure that may explain the pairing symme-

try in the superconducting state, or one or more of the superconducting properties.

Similarly, investigating the differences in band structure will highlight why the vari-

ations between these very similarly structured superconductors exist. This kind of

approach will allow us to make much more general statements regarding the effects

of band structure and magnetic ordering on the development of the superconducting

phase in materials with this common crystal structure. Overall this will allow us

to contextualise any SANS findings regarding the pairing symmetry and the gap

structure.

3.1 Electronic structure in KFe2As2

In this chapter we will illustrate and compare the electronic band structures in

KFe2As2 using local density approximations (LDA) and angle-resolved photoemis-

sion spectroscopy (ARPES) results. In the subsequent diagrams we label bands with

α, β, γ, δ, ε etc. These indicate the size of the surface area of the electronic band

in the Fermi surface with α being the largest area. IT is common, when looking at

doping effects, that these bands will shift in size and position. In these instances
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the band labels are maintained for clarity, rather than reordering the band labels

based on size. In Figure 13 we also show the 1st and 2nd BZ of a tetragonal crystal

to illustrate the lines of symmetry and points of reference in reciprocal space when

we later refer to FS and band structure measurements.

A saddle point in the electronic band structure of a material introduces inter-

esting properties and effects, with interplays between the effective electron mass,

the symmetry of the gap structure in a superconductor and the relation between

these and charge/spin density waves (CDW/SDW). The flat parts of the saddle

curve can be characterised as van Hove singularities (vHs) [71], as they create a

singularity or non-smooth point in the density of states (DOS) due to being a

point of divergence caused by the point of zero gradient in the energy spectrum

∇E = ~2k/m = ~
√

2E/m, where the DOS is proportional to the inverse of the

energy gradient, g(k) ∝ 1/∇E.

ARPES measurements of KFe2As2 [72] indicate a vHs at -3.9 meV below the

Fermi surface (EF ) with an asymmetrical peak in the density of states (DOS)

due to the larger contribution from the occupied states compared to unoccupied

states (which is consistent with hole-dominated systems such as KFe2As2). The

vHs appears along the Z-A symmetry line with the saddle specifically appearing

at V(0.5π/a, 0) as shown in Figure 14. If we take the perpendicular cut we see a

hole-like lobe instead with its maximum at V. Additionally these results indicate

no dispersion in kz, making this a 2-D feature dominated by the dxy orbital. How-

ever, we have a temperature dependent factor on the size/height of the electron-like

lobe of the saddle point. The peak position of the vHs (the bottom of the saddle

in V) shifts from -3.9 meV at 0.5 K to -5.4 meV at 10 K. When these two data

sets are overlapped and subtracted to account for the superconductivity, we see a

superconducting gap emerge in the 0.5 K data. Crucially, the vHs is present in both

the normal and superconducting phase, with a 1 meV gap feature, that disappears

above 4 K, corresponding to a superconducting gap.
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Figure 14: (a) ARPES results showing the Fermi surface intensity with kz = π. The
blue lines indicate the Fermi surfaces as a guide to the eye. (b) ARPES intensity plot
for the blue dotted line direction in (a) labelled #1 and corresponding to the Z-A
symmetry line. This data set shows a saddle point at V(0.5π/a, 0), highlighted by
the dotted blue square. (c) ARPES intensity plot along the direction in (a) labelled
#2, which is aligned to the (0.5π/a, ky) symmetry line. The insets in (b) and (c)
are momentum distribution curves (MDCs) taken from the areas highlighted by the
dotted blue boxes. (d) Energy distribution curve going through the saddle point
in (b). The lower portion of (d) indicates the theoretical components for modelling
the energy distribution (an asymmetric shape, as previously discussed) [73]. All of
the above measurements were made at 7 K and the images were taken from work in
[72].
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Figure 15: (a) 3-D fit from the ARPES data showing the saddle point and the
band dispersion around it. (b) Comparison between DOS calculated from ARPES
results and from scanning tunnelling spectroscopy (STS). (c) Top image shows the
intensity plot of log (1/|∇E|) calculated form the ARPES results for band dispersion,
corresponding to k-dependence. This is integrated with limits of ±5 meV around
the saddle point at V. The lower image is the corresponding energy contours as
dotted lines showing the binding energy of the saddle points overlaid on the gap
function, assuming the highly likely s± pairing symmetry. Images taken from work
in [72].

From Figure 15 we can see there is clearly a bright spot indicating a large peak

in the DOS at the V point from image (c), indicating a vHs associated with each of

the 4 saddle points. Additionally, the overlay on the gap function in (c) shows that

the V point vHs sits exactly on the white lines, which represent the line nodes in

nodal s-wave pairing, also known as s± pairing, in the gap function. From the DOS

calculations in the 1st BZ, we find that 80% of the states at EF come from the 4

saddle points. Whilst at the same time, as we enter the superconducting state, it is

found that the suppression of the DOS at zero energy is only 20%, which means that

the majority of the DOS at the Fermi level are un-gapped in the superconducting

state. However, in [72] it is established that the sample is very clean and as such

this large amount of un-gapped DOS cannot be due to scattering from impurities.

The presence of four vHs means that the electron lobes contribute greatly to the

DOS, explaining the large specific heat coefficient value γ, the Sommerfeld coeffi-

cient for free electrons. Simultaneously, the presence of the vHs at the line nodes as

shown in Figure 15 means we can say that the vHs must have some sort of role in the
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pairing symmetry. Previous investigations [74] indicate a multi-gap structure with

the largest nodeless gap appearing on the inner hole pocket on the FS, an unconven-

tional superconducting gap sits in an intermediate position of the FS with octet-line

nodes and then on the outermost part of the FS there is a small, almost zero, gap.

The octet line nodes refers to an eightfold reversal of the sign of the pairing sym-

metry along the node. There is evidence to suggest that Fe-pnictides show much

greater overlap between nodal s-wave gap structure and the FS than other potential

pairing mechanisms. Specifically in this case, and also seen in Ba0.6K0.4Fe2As2, we

find that a gap function of cos kx cos ky closely matches the FS of the Fe-pnictide

family [76, 77]. The pairing function of cos kx cos ky has nodal lines going through

the four vHs as shown in Figure 15(c), which provides an excellent framework for

describing the superconducting pairing mechanism of KFe2As2 and other Fe-pnictide

superconductors. In [74] and [72] it is assumed that the vHs do not actually con-

tribute much to the pairing mechanism and the s± pairing is robust and unaffected,

otherwise the vHs would contribute an additional unconventional pairing that would

coexist with the s± symmetry. This is not unreasonable as a pairing of dx2−y2 would

have a mechanism of cos kx−cos ky, which also has line nodes going through the four

vHs points. We will demonstrate later with the SANS studies that the s± picture

is very strong, with weak evidence supporting any kind of d-wave pairing.

3.2 Electronic structure in doped variations of

(Ba1−xKx)Fe2As2

KFe2As2 represents the most underdoped case for the compound (Ba1−xKx)Fe2As2,

otherwise referred to as the x = 1 case. The doping of BaFe2As2 with K produces

vastly different properties in terms of the variation in Hc2 and Tc due to a high level

of sensitivity to doping. This would indicate that this compound is very sensitive to

small changes in the electron doping levels; suggesting drastic variations in electronic

band structure with little variation in the doping level, x.
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Figure 16: Phase diagram of (Ba1−xKx)Fe2As2 with respect to doping levels for
various temperatures. The Lifshitz transition around the M point is highlighted in
green and shows the shift in band structure around M. Image taken from work in
[75].

For the case of x = 0.4 [75, 78], the optimally doped case (Tc = 37 K) for the

superconducting phase and very close to our experimental case of x = 0.5, LDA

calculations predict 3 hole-like FSs at the centre of Γ and 2 electron-like FSs centred

near M; with the features dominated by the Fe 3d electrons. However, there were

discrepancies found between the LDA calculations and the ARPES results, mainly

due to the fact that ARPES shows, in the case of x = 0.4, to be strongly correlated.

This is evidenced by the presence of a strong EDC peak within 1 eV of EF from the

Fe 3d orbitals (DMFT calculations on the other hand accurately predict the value

of 1 eV).

As can be seen in Figure 17, the LDA calculations do not account for the saddle

like feature at Γ that produces two hole-like lobes from the α and β bands around a

central electron-like pocket. These lobes are also measured in the superconducting

state. The α band reaches at most a peak of ≈ 20 meV above EF .

Figure 18 (c) shows near the M bands a clear saddle point in the γ and δ bands,

with the troughs of the saddles sitting at approximately 15 meV and 60 meV, re-

spectively, below EF . When compared across the bands, the top of the α band and

the trough of the γ band saddle are only separated by ≈ 35 meV, unlike the 120

meV predicted by LDA. The bands can be summarised as: (α,β) hole-like; centred
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Figure 17: EDCs of (Ba0.1K0.9)Fe2As2 from ARPES measured at T = 50 K. Mea-
surements are made along the Γ-X direction with LDA calculations presented as red
lines (kz = 0) and black lines (kz = π). Image taken from work in [78].

at Γ, (γ,δ) electron-like; centred at M. Investigations using ARPES conducted by

Ding et al. [78] suggest a coherence length of ξ0 ≈ 9− 14 Å, with a Fermi velocity

of around vF ≈ 3.2 × 104 ms−1. A later section in this work will demonstrate that

this is not far from the results of SANS investigations for x = 0.5, estimating the

coherence length to be ξ0 ≈ 15 Å given an estimate of Hc2 ≈ 140 T. This is not

vastly different, but the value of the coherence length varies little for high critical

field values due to the inverse square root dependence of ξ0 on the field strength of

the upper critical field.

We also see from the ARPES results at x = 0.4 in Figure 18 that the super-

conducting gaps are identical at α, β, γ and δ with an approximate gap value of

∆ ≈ 5.6 meV. The following effective masses are also measured in units of me:

m∗α = 4.8, m∗β = 9.0, m∗γ = 1.3, and m∗δ = 1.3. These values as well as the similar

gaps shows there is strong band coupling and thus effective interband scattering

between the FSs. Ding et al. suggests this likely plays a dominant role in the

pairing mechanism for this material. What we can also obtain from these results

is the free electron coefficient of the specific heat, γ = πNAk
2
Ba

2m∗/3~2 for each

band [78]: γα = 7.2 mJmol−1K−2, γβ = 13.6 mJmol−1K−2, γγ = 2 mJmol−1K−2 and

γδ = 2 mJmol−1K−2. The total free electron coefficient in the superconducting state

is γSCTotal ≈ 32 mJmol−1K−2 and in the normal state is γNTotal ≈ 64 mJ−1K−2mol.
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Figure 18: Intensity plots of the band structure of (Ba0.6K0.4)Fe2As2. All dots in
the following sub-plots are from energy distribution curve (EDC) peaks. (a) Plot
near Γ (T = 15 K). (b) Plot near Γ (T = 150 K). (c) Plot near M (T = 15 K). (d)
Second derivatives of the spectra near M. The inset indicates the locations of the
ARPES measurements in the BZ in relation to the sub-plots (a)-(d). Images taken
from work in [78].

Studies in [75] and [78] show the cases of varying x = 0.9 to x = 0.4 and the

Lifshitz transition that occurs in-between. A Lifshitz transition is a change in the

topology of the Fermi surface in momentum-space (k-space) [79]. We see with dop-

ing that Tc can shift from above 30 K to as low as 3 K due to the FS topology

evolving with doping levels. Other ARPES studies have shown that doped com-

pounds of (Ba1−xKx)Fe2As2 have a complex nodal superconducting gap near Γ [74],

we shall see something similar in the SANS results for KFe2As2 later in this work.

This result is consistent with investigations into the thermal conductivity at low

temperature as well [80] [81]. Given the high probability of nodal s-wave pairing in

high K doping compounds and the SANS investigations presented later in this work

showing evidence that at x = 0.5 we see BCS s-wave pairing, it would be reasonable

to suggest that there is likely a fundamental change in the superconducting order

parameter between x = 1 and x = 0.5. An investigation by Xu et al. [82] suggests
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Figure 19: (a) FS of (Ba1−xKx)Fe2As2 for x = 0.7. (b) FS of (Ba1−xKx)Fe2As2 for
x = 0.9. Images taken from work in [82].

that the fundamental change occurs somewhere below x = 0.9 in the doping regime,

with x = 0.4 exhibiting nodeless gap behaviour similar to the x = 0.5 compound

studied under SANS in the previous chapter.

In [82] it is demonstrated that as the doping level enters the range 0.8 < x < 0.9

upon increasing x, in the vicinity of the centre of M, four small off-centre FS pockets

emerge as hole-like lobes that are then measurable at x = 0.9. At this doping level

the superconducting gaps at T = 0.9 K are isotropic, with Tc = 9 K. The emergence

of the lobes and the evolution of the FS is evident in Figure 19. This critical

temperature is not too far from the value for KFe2As2 which demonstrates that either

side of the FS topology rearrangement, the Lifshitz transition, the pairing symmetry

of the superconducting gap does not change very much as a result according to the

inference in [82]. Later in this work we will be analysing the SANS investigations

into x = 0.5, 1 compounds and comparing their pairing symmetries to the work

discussed in this chapter. A shift in the pairing symmetry between 0.5 < x < 1

would likely be a result of this Lifshitz transition.

Further to this, in [82] it is demonstrated that due to the Lifshitz transition the

intensity of the off centre M electron-like lobes that cross EF is similar between the

x = 0.9 and x = 1.0 case compared to the x = 0.7 case. In addition, the lobes

at M peak slightly below EF in the x = 0.7 case. This suggests that doping more

K pushes the electronic bands above EF . In fact Xu et al. [82] cannot rule out a

small electron pocket nested at M caused by hole doping towards x = 1.0. We have

already demonstrated the existence of a saddle point and a van Hove singularity in
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Figure 20: (a) ARPES FS intensity map, kz = 0. (b) ARPES FS intensity map,
kz = π. The symbols indicate the positions of kF and the red lines in (b) designate
cuts through the FS for ARPES intensity analysis, which is given for cuts 1-4 in
Figure 21 for x = 0.9. Images taken from work in [82].

KFe2As2 earlier in this chapter. This suggests that above the Lifshitz transition,

not only do we have an evolution of the pairing mechanism but also a creation of

a saddle point and van Hove singularity that may very well underpin the nodal

symmetry of the gap function, as previously discussed.

If we look at Figure 21 we can see the saddle points for the ε bands potentially

crossing the Fermi level. The peak of this band is very close to EF and the band

is narrow at this resolution, making it difficult to judge for certain how far below

the trough of the saddle sits under EF and by how much the peaks sit above EF .

This interpretation of the evidence in Figure 21 is consistent with what has been

seen previously for x = 0.4 and x = 1.0; where in the former case we know that this

compound has saddle points in the electronic bands and in the latter case we know

that these cross the Fermi surface.

The superconducting gaps detected via the ARPES method are as such: ∆kz=0
α/α′ =

3.6 meV, ∆kz=0
β = 2.7 meV, ∆kz=π

α = 2.7 meV and ∆kz=π
α′ = 2.5 meV. These re-

sults demonstrate that the superconducting gap is approximately isotropic, with

all measurements in [82] along Γ-M suggesting little change in the superconduct-
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Figure 21: (a) ARPES intensity plot for cut 1, kz = π for ε pockets. (b) ARPES
intensity plot for cut 2, kz = π for ε pockets. (c) ARPES intensity plot for cut 3,
kz = π for ε pockets. (d) ARPES intensity plot for cut 4, kz = π for ε pockets. Cuts
here refer to Figure 20 for the case of x = 0.9. Images taken from work in [82].

ing gap along kz in the case of the Γ-centred hole-like FS for x = 0.9. As seen in

KFe2As2, discussed in the previous section, the global pairing function is likely to

be cos kx cos ky from the strong coupling approach [76, 77].

ARPES studies also highlight the absence of nodes around Γ, much like in the

case for the fully overdoped x = 1.0 case, discussed previously. This again indicates

an inconsistency with a d -wave interpretation of the gap symmetry of x ≥ 0.9. We

do however, observe nodes in ε that cannot be explained by a simple gap function due

to the position of the ε FS lobes being far from the nodal lines. Overall this createsa

complex picture of the FS. We will see later in this work that SANS investigations

do not strongly support a d-wave interpretation. However, we will also see SANS

results for x = 0.5 demonstrate a lack of evidence for nodal superconductivity.

3.3 Electronic structure in TlNi2Se2

ARPES studies by Xu et al. [83] go some way to revealing the band structure

of TlNi2Se2 and attempt to explain the heavy fermion behaviour of this supercon-

ductor. By comparing density functional theory (DFT) calculations with ARPES

measurements we can describe the band structure. Previous investigations into

TlNi2Se2 [83] have pointed to an unusual saddle point (referred to as a camelback-

shape in [83]) near EF at the Z point. In most Fe-pnictides [70] this saddle point
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Figure 22: LDA band structure corresponding to lines of high symmetry for
TlNi2Se2. The width of the line indicates the spectral weight of the Se 4p orbitals.
The dotted line oval indicates the saddle feature of interest. The right hand side
inset shows the DOS from the LDA calculations. It can be seen from the secondary
inset, in the top right, that there is a peak in the DOS caused by the saddle point
at the Fermi surface. Image taken from work in [83].

is usually sitting entirely in the unoccupied states. Once again, like we have seen

in the Fe-based superconductors, there are van Hove singularities in the FS. In this

case however the Fermi level actually crosses the saddle point created by the γ band,

generating a lobe at the Z point. This looks like an electron-like pocket at the Z

point surrounded by a concentric hole-like pocket. In fact we will see at the Z point

that there are four γ band lobes centred on Z, very similar to the fourfold lobes seen

previously in KFe2As2.

Figure 22 indicates from calculations that a saddle point should sit very close to

the Fermi level, with the peaks of the saddle actually crossing EF while the trough

does not. The saddle is roughly centred at k = (0, 0, π), the Z point of the 1st BZ.

In Figure 23(b) four lobes become apparent in the FS around the Z point, be-

tween which are flat parts. The peak intensity of the hole-like lobes are in con-

cordance with the four-fold symmetry of the underlying lattice. The peaks at the

top of the γ band near the saddle point lie at ≈ 15 meV above EF at T = 150

K and the trough sits at ≈ 18 meV below EF . These saddle points create vHs as

previously discussed for the case of KFe2As2 as they cause a divergence in the DOS.

This effect can be seen in the inset of Figure 22. Thus we have four vHs in this band

structure in the vicinity of EF . These points are likely the explanation for the heavy

fermion behaviour in this compound as the vHs just below the Fermi level will drive
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Figure 23: (a) Plot of the FS at the Z point. Coloured lines indicate directions for
analysis of the FS in ARPES. (b) 3-D plot of the band structure at Z. (c) ARPES
results taken along the C1 and C2 directions indicated in (a). These were taken at
T = 5 K. (d) Dispersion of bands in (c). (e) ARPES results taken along the C3
direction as indicated in (a). (f) Dispersion of bands in (e). Images are taken from
work in [83].

up the effective masses at the saddle point and for all the electrons associated with

the central electron-like lobe. This is due to the gradient of the dispersion curve

being inversely proportional to the electron mass: ∇E = ~2k/m∗, and the DOS is

inversely proportional to ∇E.

Figure 24 is a clearer ARPES illustration of the FS and band structure for both

the kz = 0 and kz = π planes. Here we can clearly see the fourfold nesting of the

electron-like lobes of the γ band within the hole-like δ band. Specifically, Figure 24c

shows the fourfold nested lobes creating the saddle point at the FS. The DOS near

EF is identified as being mainly contributed by the Ni 3d electrons [83], as shown in

Figure 22. The saddle point at Z is considered to originate from the hybridisation

of the Ni-dxy and Se-pz orbitals as this is a very common feature in metal pnictides

and chalcogenides. We see this directly by observing that the band structure, as

calculated from the ARPES results, of TlNi2Se2 is very similar to the Fe-pnictide

BaFe2As2 and the Co-pnictide BaCo2As2 [78, 84]. This suggests a universal band

structure (with small variations) for TlNi2Se2, BaFe2As2 and BaCo2As2.
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Figure 24: Maps of the FS for the kz = 0, π planes. These are the integrated
intensities of the ARPES measurements in [83] within ±5 meV of EF , with electronic
bands overlaid for clarity. (a) kz = 0 plane centred on Γ. (b) kz = π plane centred
on Z. (c) and (d) are taken at 555 meV below EF . EB denotes the sampling energy
below EF . Images are taken from work in [83].
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However, in the case of TlNi2Se2, the chemical potential is shifted such that EF

crosses the saddle point. Specifically the chemical potential sits in the range 2 meV

< EB < 17 meV, where EB is the binding energy of the chemical potential µ. This

allows the γ band to cross the chemical potential along the Γ-X and Z-M directions.

This effect is largely due to the presence of more 3d electrons in TlNi2Se2 (3d8.5)

compared to BaFe2As2 (3d6) and BaCo2As2 (3d7), allowing the existence of the small

electron-like pockets surrounded by concentric hole-like pockets, the consequences

of which are seen in Figure 24. However, this small range of tuning available to

the chemical potential explains the dramatic change in the band structure with

chemical potential tuning for this family of superconductors. This can be seen in

KNi2Se2 [133] which has a Tc of 0.8 K, 4 times smaller than in TlNi2Se2, for a

chemical potential shift of less than 30 meV for the Lifshitz transitions between

these materials [79]; this means that Tc is incredibly sensitive to doping.

3.4 Comparing the 122, I4/mmm superconductors

In terms of explicit similarities of TlNi2Se2 to (Ba1−xKx)Fe2As2 and KFe2As2, all

three have large specific heat capacity coefficients, with KFe2As2 having γ ≈ 94

mJmol−1K−2 [85] compared to γ ≈ 40 mJmol−1K−2 [48] and 〈γ〉 ≈ 43 mJmol−1K−2

(from this work) for TlNi2Se2 (notwithstanding the γ ∝ H0.5 behaviour). Similar

response to pressure has also been observed for TlNi2Se2 [134] and KFe2As2 [87],

with Tc being suppressed with increasing pressure. As discussed previously, we have

established that a vHs is considered responsible for the nodal superconductivity in

KFe2As2 [86, 87, 72], as is highly likely in the case of TlNi2Se2.

Figure 25 illustrates a simplified picture of the FS in KFe2As2, (Ba0.5K0.5)Fe2As2

and TlNi2Se2, respectively. In Figure 25, KFe2As2 and (Ba0.5K0.5)Fe2As2 the FS is

centred on Γ, with the lobes centred on the M point, while the FS of TlNi2Se2 is

centred on Z, with the lobes centred around Z. We can see the similarity clearly

between the fourfold lobes found around the M point in KFe2As2 and the Z point
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(a) (b) (c)

Figure 25: Schematics of the FS of KFe2As2, (Ba0.5K0.5)Fe2As2 and TlNi2Se2, re-
spectively. (a) FS of KFe2As2. (b) FS of (Ba0.5K0.5)Fe2As2. (c) FS of TlNi2Se2, here
we label β instead of δ used previously in Figure 24 in order to illustrate the similar-
ities between the concentric cyclinders in (a) and (b) at Γ with those in TlNi2Se2 at
Z. The FS is centred on Z in the 1st BZ in (c), unlike (a) and (b) which are centred
on Γ in the 1st BZ.

in TlNi2Se2. It is these lobes that generate the vHs within a fine tuning range of

chemical potential that are responsible for the heavy fermion behaviour and very

likely responsible for the unconventional superconductivity observed in these mate-

rials. Another similarity can be drawn between the β bands in Figure 25, where

we see the three concentric cylinders around the Γ point in the FS of KFe2As2 [88]

and (Ba0.5K0.5)Fe2As2, while we see one cylinder centred on the Z point in TlNi2Se2,

nesting the saddle point and the fourfold lobes of the γ band. We can also see

the transition in electronic energy levels with doping between Figures 25a and 25b,

where we have lost the saddle points, the vHs, of the ε bands at EF . They now sit

below EF , removing the effects of the vHs on the formation of Cooper pairs at the

FS.

3.5 Conclusions

It is reasonable to suggest that the common feature of nodes in the gap function

between TlNi2Se2 and (Ba1−xKx)Fe2As2 is due in large part to the vHs present near

the Fermi surface in each respective material and the doped variations of the lat-
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ter. The saddle features observed in the electronic bands of each of the compounds

explains the heavier effective masses measured for these materials, with the largest

effective mass measured for TlNi2Se2; where more 3d electrons are contributed at

the saddle points and the trough of the saddle in TlNi2Se2 sits closest to EF , com-

paratively. What we also observe is that in the case of TlNi2Se2 and KFe2As2, where

the Fermi level does cross through the saddle points, we measure nodal pairing sym-

metry in the SANS results and from the ARPES results. However, in the case of

(Ba1−xKx)Fe2As2 for x < 0.9 we see a Lifshitz transition in the ε bands. Later we

will compare this with observed pairing behaviours with decreasing K content in the

SANS investigations. Also in the case of x < 0.9 we observe that EF shifts to above

the peak of the saddles of the electron bands. This means we no longer have nested

electron-like lobes inside hole-like lobes, but we still have the high effective masses

and specific heat coefficients associated with the vHs.

What we also can draw comparisons with is the nature of the nested lobes pro-

duced by the unusual saddle bands in the case of TlNi2Se2 and KFe2As2. In KFe2As2

we saw four vHs surrounding the Z point at V (along the Z-A line). This happens

to also align with the pairing symmetry line nodes for a nodal pairing function

of cos kx cos ky, indicating that this symmetry alignment likely has a role to play

in the pairing symmetry of the superconducting phase. The fourfold symmetry

of the TlNi2Se2 hole lobes surrounding the electron lobe at the vHs will become

important for comparison later with the SANS results, in the same way we have

established some explanations for the interactions between the FS and gap struc-

ture for KFe2As2. Given the pairing symmetry of KFe2As2, it would suggest that

not only do the presence of vHs explain the heavy fermion similarities between these

compounds, but the alignment of the vHs with underlying symmetry appear to have

a role to play in the pairing mechanism (and it’s evolution with doping) in these

122, I4/mmm structures. At the same time, the ARPES results have demonstrated

the immense sensitivity the saddle alignment has to the Fermi level, due to the
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small window of energy within which EF can cross between the trough and peak of

a dispersion curve saddle point. Later in this work we present SANS studies that

complement the literature review of ARPES investigations, and reinforce many of

the conclusions drawn here.
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4 ANISOTROPY IN THE VL OF KFe2As2

In this section figures are included from related work of collaborators and from work

conducted in [86] of which the author of this thesis was a contributing author and

investigator during the SANS investigations into KFe2As2. The provenance of the

figures is included in the captions for the sake of clarity and transparency.

4.1 Properties of KFe2As2 and motivation for SANS studies

Iron-based superconductors were discovered in 2008 with the high Tc material

LaFeAsO1−xFx, Tc = 26 K [110]. This was a surprising development as the large

magnetic moment of iron is usually a prerequisite for long-range spin-ordering in

materials for (anti)ferromagnetic phases and this is often thought of as a competing

phenomena with the spontaneous emergence of paired electrons in superconductivity

[111]. The appearance of, and subsequent research into, Fe-based superconductors

dispelled the idea that Fe was antagonistic to superconductivity.

KFe2As2 is a 122 iron pnictide material with I4/mmm space symmetry. It be-

longs to a broader family of iron-based superconductors, and is the fully over-doped

version of the (Ba1−xKx)Fe2As2 materials. Previous work [112, 113] on this material

has pointed to nodes in the superconducting order parameter, indicating possible

nodal s-wave pairing or d -wave pairing.

This material has a critical temperature of Tc ≈ 3.6 K and an upper critical

field of Bab
c2

(0) = 8.6 T and Bc
c2

(0) = 1.8 T determined by Abdel-Hafiez et al. [85].

KFe2As2 also has a large Sommerfeld coefficient, γn = 94 mJ mol−1K−2 and some

evidence to suggest there might be multiband effects [12, 85, 86, 109]. Previous

SANS investigations into KFe2As2 with B ‖ c have shown a distorted VL for all

fields and temperatures accessed, even up to H → Hc2 . In this upper field regime,

similar tetragonal materials like CeCoIn5 [89] have displayed a great sensitivity of

the VL to the gap structure.
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Figure 26: Magnetisation and resistivity measurements taken for sample character-
isation. For the magnetisation, a field of 1 mT was applied, with the upper curve
presenting field cooling and the lower curve zero-field cooling. The sample informa-
tion is contained within the resistivity graph, alongside the residual resistivity ratio
(RRR). Figure taken from work in [109]

This material was also observed to have nodal behaviour in the superfluid density.

Although one could posit a d -wave symmetry for this behaviour, previous ARPES

studies [74] did not see line nodes on all the Fermi sheets, nor is there evidence to

suggest that the optimally doped (Ba1−xKx)Fe2As2 (x ≈ 0.4 for highest Tc) has any

nodes, precluding a smooth transition under doping.
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Figure 27: VL diffraction patterns of KFe2As2 at 2 K and 0.2 T for both the [010]
(a)-(e) and [1̄10] (f)-(j) orientations. In the work by Kawano-Furukawa et al. [12]
the angle Ω is denoted more generally as α, while the angles β and η are defined in
images (a) and (f), respectively. Figure taken from work in [12]

4.2 Previous investigations in KFe2As2

Previous investigations in this material have been conducted by Kawano-Furukawa

et al. since 2011, primarily focused on SANS studies of the VL at the SANS-I

beamline, SINQ, Paul Scherrer Institute (PSI), Switzerland. Samples were grown

[109] in a potassium flux with a FeAs precursor at 900◦C for 10 hours in a vacuum.

This is then mixed in the following atomic ratio K:As:FeAs = 3:2:2. This mixture is

heated again in an aluminium crucible sealed in a steel tube, heated to 900◦C for 10

hours, as before. This was then cooled at a rate of -1K/hour to 650◦C before being

finally quenched. The samples produced in this way are plate-like single crystals

with typical dimensions of 7× 7× 0.5 mm3. These were then prepared as a mosaic,

with co-aligned axes, on aluminium plates for SANS studies. Samples in the initial

experiments [12] were grown at the Karlsruhe Institute of Technology (KIT) while

crystals in later experiments (the majority of the work presented here [86]) were

grown at the National Institute of Advanced Industrial Science and Technology

(AIST) by Kunihiro Kihou. Samples of both sources provided results that were

qualitatively very similar. The sample quality was confirmed by Kawano-Furukawa

et al. [12] using magnetisation and resistivity measurements, presented in Figure 26.
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Figure 28: VL diffraction patterns of KFe2As2 for T < 0.35 K and 0.2 T for both
the [010] (a)-(e) and [1̄10] (f)-(j) orientations. In the work by Kawano-Furukawa et
al. [12] the angle Ω is denoted more generally as α, while the angles β and η are
defined in images (a) and (f), respectively. Here another misalignment angle φ is
also defined due to the weak signal for measuring η. Figure taken from work in [12]

The results in Figure 27 show VL diffraction patterns for a range of applied fields

and angles at a fixed temperature of 2 K. Here a displacement angle of α is defined.

This describes the angle between the normal of the sample face (the c-axis) and the

applied field. In images (a) and (f) we clearly see the degenerate second domains

for the case of the angle α = 0◦. For the case of (a) to (e), in the [h0l] orientation,

the rotation of the field towards the [100] (or a) axis suppresses the second domain

rapidly. We also see that both domains maintain their orientation with respect

to angle, with the first domain becoming more distorted with increasing angle for

(a) to (e). However, in the case of the diffraction patterns (f) to (j) we see the

degeneracy remains for higher angles in the [hhl] case, with the domains changing

their orientation with respect to angle. Essentially, the two domains distort and

rotate until they overlap as one aligned domain.

In Figure 28 we see the low temperature regime for the same field as in Figure 27.

Once again we see in the [h0l] case, images (a) to (e), that the second domain rapidly

disappears with an increase in angle while the first domain becomes increasingly

distorted. For images (f) to (j) in the [hhl] orientation we see the second domain

once again persist up to large angles, with both domains respecting the underlying

crystal symmetry. For images (f) to (j) the signal for measuring η becomes very
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Figure 29: γ, the anisotropy, versus the applied angle α for the [h0l] orientation.
Separate data sets are given for the T < 0.35 K and T = 2 K measurements. Figure
taken from work in [12]

weak with angle and so φ is defined as a new misalignment angle.

The anisotropy given in Figure 29 can be calculated by fitting the VL to an

ellipse and extracting the major and minor axis ratio for each field. This method

remains valid provided the VL symmetry remains the same such as in the [h0l] case,

but unlike the [hhl] orientation where we see significant reorientation with respect

to angle, α. The γ used in this work is defined in the anisotropic London model,

referred to at the beginning of this work but fully outlined by Kogan [11]. This

anisotropy is given as

γ(α) =

(
1

γ2(α = 90◦)
sin2 α +

1

γ2(α = 0◦)
cos2 α

)−0.5

(109)

We may simplify this equation by taking the London simplification of γ2(α =

0◦) = 1 and including the fact that in both cases of (a) at α = 0◦ there is some

visible distortion. To reflect this we rewrite equation 109 as

γ(α) = A

(
1

γ′2
sin2 α + cos2 α

)−0.5

(110)

The above equation is used to fit the data in figure 29 for the case of T < 0.35

K and T = 2 K. The fits produce the following parameters for the temperature
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Figure 30: Normalised for factor of the two top/bottom spots and the four left/right
spots in the [h0l] configuration. Field is set to 0.2 T and T < 0.35 K. The form
factors are normalised to the values at α = 0◦. The fits were produced using λ = 203
nm, c = 0.52 and ξ = 13.5 nm for Bc2 = 1.8 T and T = 50 mk. The anisotropy
γ = 3.35 was also used. Figure taken from work in [12].

ranges, respectively: A<0.35K = 1.03 ± 0.03, γ′<0.35K = 3.24 ± 0.21, and A2K =

1.06 ± 0.003, γ′2K = 3.35 ± 0.03. This means the SANS results in [12] indicate an

average anisotropy of γ ≈ 3.3. This is in close agreement to previous resistivity

measurements [129] that indicate γ = ρab/ρc ≈ 3.52.

The final calculations in the work by Kawano-Furukawa et al. in 2013 [12] looked

into the angular dependence of the form factor. From the extensive data gathered

on the anisotropy and the evolution of the VL with angle and field we can see from

Figure 30 that the form factor, with respect to angle, varies for the top/bottom and

left/right spots. The data shows that with rotation away from the c axis the left-

and right-most spots experience the increase in the penetration depth by a decrease

in the form factor; we can see this by comparing the VL diffraction patterns to

Figure 1. However in the top and bottom spots, we do not see this effect. This is

because the penetration depth here is mainly affected by the currents in the basal,

or a − b, plane. An additional contributing effect is that by rotating away from c

towards the basal plane increases Bc2 , which means for the top and bottom spots

B/Bc2 reduces. The net effect is shown in figure 30 with an enhancement of the form

factor for the top and bottom spots that increases with angle up to α ≈ 60◦ (based

on the fit) and with persistent enhancement over the left/right spots for the full
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Figure 31: (a) Sample mosaic mounted on four parallel aluminium plates with a
cadmium window. The total mass of the samples is ≈ 2 g. (b) Coordinate systems
of the experiment. The directions are defined as z parallel to H and y parallel to
b, also known as the basal plain [86]. The magnetic field is rotated by some angle
Ω away from the a− b plane. Neutron spins are denoted by ±σ and are parallel or
antiparallel to H. The neutron beam is incident in the z − y plane and at angle φ,
to the field direction H. Q is the scattering vector of the VL. The transverse and
longitudinal modulation components of the applied field are identified by hx and hz.
(c) Diagram of the hexagonal VL experiencing anisotropy. The VL spots lie on an
ellipse in reciprocal space, with the anisotropy ratio, ΓV L describing the major/minor
axis ratio of the ellipse. The area of the ellipse is determined by A = πQ2

0, where
Q0 is defined by equation 112. Given the anisotropy follows an ellipse, only the two
red spots are needed to determine Q0 and thus the area and ΓV L. Figure published
in [86].

angular range. The fit parameters were calculated in [12] and are given in Figure 30

for use in equation 105.

4.3 Anisotropy in the VL

4.3.1 Experimental setup

Figure 31 shows the schematics and sample setup for a series of SANS measurements

conducted at the SANS-I beamline, PSI between 2014 and 2016. The samples in

image (a) were co-aligned mosaics of smaller single crystals grown at at the National

Institute of Advanced Industrial Science and Technology (AIST). This arrangement
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was made so that the thickness of the sample presented to the neutron beam was

minimised while the volume was maximised. Image (a) shows the samples in the

b − c plane, as shown in image (b). As in previous works [109, 12], the anisotropy

will be defined by the distance between the top- and bottom-most spot. This is

demonstrated in image (c) where this distance is the minor axis of the ellipse that

the anisotropic VL spots lie on. Measurements were conducted in 2015 on the SANS-

I beamline, SINQ, PSI, Switzerland. Measurements were taken at T = 50 ± 10

mK with applied fields of 0.4 T to 2.6 T. The sample was cooled using a dilution

refrigerator insert into a cryomagnet, with a horizontal magnetic field. The dilution

refrigerator with mounted sample could rotate with the previously defined angle Ω

in the a− c plane, with the b crystal axis aligned vertically.

The sample was field cooled for each change in field and angle with a wiggle

procedure added to improve the quality of the VL. The amplitude of the field mod-

ulation (wiggle) was ±20 mT; additionally, Ω was changed before the value of B. A

neutron wavelength of λn = 8±0.8 Å and λ = 12±1.2 Å was used. The detector was

varied between 11 m and 18 m from the sample. The sample was also rocked about

the angle φ, with horizontal axis perpendicular to the incoming neutron beam, to

satisfy the Bragg condition. Equivalently rocked background measurements were

taken in zero field for subtraction from the foregrounds.

4.3.2 Effects of field on the anisotropy

Figure 32 illustrates five fields applied to the VL at a fixed angle of Ω = 10◦ with

respect to the basal plane (a−b). In order to distinguish between the anisotropy and

the increasing VL density with field, the axes in Figure 32 have been normalised

to Q0. Each image has also been normalised in the colour scale such that the

significantly weaker signals are still visible for comparison. It is very clear that

the anisotropy increases with increasing field as we see the minor axis of the VL

decrease, as indicated by the white lines, from 0.4 T to 2.2 T. The central region has
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Figure 32: Measurements (f)-(j) are made at a fixed angle Ω = 10◦. The anisotropy
clearly increases with increasing field. The white line has been added as a guide
to the eye to show the decrease in the VL ellipse minor-axis in the same scale
for increasing field. The central area has been masked in order to cover imperfect
background subtraction while the colour scale for each image is adjust individually
in order to make the spots for the larger fields clearly visible. Figure published in
[86].

Figure 33: The VL anisotropy, ΓV L variation with respect to the applied field. Two
separate angles of rotation in Ω are included as well; being the two smallest angles
of rotation available.The dashed lines with graded grey areas represent the relative
maximum possible values of the anisotropy for the angle Ω, defined as ΓMax

V L =
1/ sin Ω. Figure published in [86].

been masked as it contains the direct beam, this is unreflected and has an intensity

several orders of magnitude higher than the reflected intensity.

In Figure 33 the anisotropy with respect to the applied field is calculated from

the reciprocal space diffraction patterns using equation 111. Although for both

applied angles we see an increase in anisotropy with field, the effect is greater in the

Ω = 10◦ case. This is because at Ω = 15◦ the anisotropy saturates for B = 1.4 T

at ΓMax
V L (Ω) = 1/ sin Ω, due to Γac → ∞ effectively in equation 113. Due to weak

signal strength at high fields (B > 2.4 T), we were unable to accurately establish

the anisotropic saturation point for the Ω = 10◦ case. Larger angles are not included

88



Figure 34: Measurements (a)-(e) are made at a fixed field B = 0.4 T. The anisotropy
clearly increases with increasing angle. The central area has been masked in order
to cover imperfect background subtraction, this beign a circular area from (a) to (d)
and a strip in (e). The colour scale for each image is adjusted individually in order
to make the spots for the larger fields clearly visible. Note that image (e) here is
identical to image (f) in Figure 33. The strip is applied due to increased background
scattering off of the Aluminium plates and crystal defects at small Ω.Image (a) still
faintly shows the other 4 VL spots in the first domain. All images are normalised
to Q0 for both axes. Figure published in [86].

here due to the decreasing dependence of ΓV L on Γac for increasing Ω, which will

become apparent in the next section.

At 0.4 T we see that the anisotropy surpasses ΓHc2 ≈ 3.3 from previous studies

[109, 12]. We would expect Γac = ΓHc2 for all directions in the crystal for a super-

conductor that has an orbitally limited upper critical field, typically associated with

single-band superconductors. KFe2As2 is clearly a case where a single gap does not

explain the observed phenomenon, especially given the strong Hc2 anisotropy.

4.3.3 Effects of rotation in Ω on the anisotropy

For the case of the VL of a superconductor, the anisotropy of such a structure can

be characterised by the following unitless ratio:

ΓV L =

(
Q0

QV L

)2

, (111)

where QV L is the measured Q value in reciprocal space of the VL spots and Q0 is

the expected Q value of the VL spots in reciprocal space given the applied field, B.

The expected value of the spot position in reciprocal space for a hexagonal VL is

determined by the following equation [20],
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Q0 = 2π

√
B

Φ0 sin θ
= 2π

√
2B√
3Φ0

, (θ = 60◦). (112)

With regards to Ω dependent anisotropy, we would typically expect to see be-

haviour that conforms to the following relationship:

ΓV L =
Γac√

cos2 Ω + (Γac sin Ω)2
(113)

where Γac is the ratio between the major and minor axis of the VL in reciprocal

space, which can also be taken from the zero angle results due to the fact that

ΓV L(Ω = 0) = Γac.

Figure 34 shows the variation of the VL with respect to the applied angle Ω.

Once again we focus on the minor axis of the VL to find QV L, with Q0 previously

defined in equation 112. The relation of the anisotropy defined in equation 111 is

evident in these results as the minor axis measured as QV L decreases towards Q = 0

with a decrease in Ω towards the basal a − b plane under a constant applied field.

A rotation in Ω will align the samples such that at small Ω the transverse field

component (hz) will be closely aligned to the a− b plane. This means VL scattering

associated with this contribution dominates. Scattering with q-vectors parallel to

hx have an incredibly small signal due to these components not being aligned to the

vertical axis. This means these components are not perpendicular to the scattering

vector QV L. This motivated the use of φ scanning for the rocking curves and using

only the top and bottom spots here.

Figure 35 shows the angular dependence of the VL anisotropy at fields of 0.4 T,

1.0 T and 1.4 T. The full fit values for equation 113 for Γac are ΓV L(0◦) = 5.2±1.8 for

0.4 T and ΓV L(0◦) = 10.8+21.9
−4.7 for the combined high-field data. The high gradient of

the high-field data consequently produces an asymmetric error for the Γac fit. This

shows the VL of KFe2As2 to be exceedingly anisotropic for high field, compared to

the consistent value of ΓHc2 = 3.3 found in previous low temperature experiments
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Figure 35: ΓV L calculated as a function of Ω using equation 113 to generate the fit
curves in red and blue, with respective y-axis intercepts of Γac = 5.2 and Γac = 10.8.
The 1.0 T and 1.4 T data sets are combined for a fit, given their close overlap. The
black lines are from fits obtained in previous work by Kawano-Furukawa et al. [12]
at low fields. The grey bars represent the areas of Ω which are equivalent to the
grey areas in Figure 33. Figure published in [86].

[109, 12]. This is given the fact that these values are extrapolations to the condition

of the natural anisotropy at Ω = 0◦, Γac.

4.4 Evidence of Pauli paramagnetism and multiband super-

conductivity

In superconductors, a phenomenological indication of whether Pauli paramagnetic

effects will be present is obtained by comparing Hab
c2

in Tesla to Tc in Kelvin. If

the field is greater in magnitude then Pauli limiting effects are highly likely to be

observed [109, 12, 86]. A precise indication of Pauli limiting effects is the comparison

of the orbital limiting field to the Zeeman splitting (characterised by the Pauli

limiting field); this is described by the previous equations 73 and 74.

Previous results [85] and the results presented here indicate an anisotropic sup-

pression of Hc2 in the basal (a− b) plane, which suggests strong Pauli paramagnetic

effects in the a− b plane [90, 91], with fields suppressed below the orbital limit for

KFe2As2. Work by Zocco et al. also highlighted a transition in Hc2(T ) below 1.5 K

going from a 2nd-order transition at T > 1.5 K to a 1st-order transition at T ≤ 1.5

K that is attributed to Pauli limiting effects.
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Figure 36: A VL rocking curve showing the scattered intensity versus the rocking
angle, φ, relative to the rocking centre φ0 = 0.8◦. Rather than a single central
scattering peak aligned to φ0 as we would expect, instead there are three peaks.
There is the central non-spin-flip peak due to longitudinal field modulation (hz)
and the two larger spin-flip peaks caused by Zeeman splitting from the transverse
field modulation (hx). In this rocking scan λn = 8 Å and the spin-flipped peaks are
located at ±0.4◦. Figure published in [86].

Further evidence of Pauli paramagnetic effects is derived from the presence of

spin-flipped with non-spin-flipped diffraction peaks while rocking in φ under some

non-zero field. In Figure 36 we can see the emergence of spin-flipped peaks alongside

the non-spin-flipped peak at Ω = 10◦, B = 1.4 T. The amplitude of the scattered

intensity is proportional to the form factor, also known as the field modulation

|F (q)| ↔ |h|, such that I(q) ∝ |h|2, as established by the Christen formula (equa-

tion 104). Typically the form factor is proportional only to the longitudinal modu-

lation of the applied field B(r) in the plane of the superconductor that is normal to

B(r). This field component is denoted as hz and is labeled in Figure 31. However,

when we look at highly anisotropic superconductors there is a strong preference for

the currents in the vortex cores (also known as the screening currents) to flow within

the a − b plane. As the rotation angle Ω decreases, the a − b plane tends towards

a parallel alignment with the applied field. This rotation decreases the size of the

a− b plane seen by the neutron beam and drives up the dominance of the transverse

field modulation hx [114, 115]. The dominance of hx leads to Zeeman splitting of

the VL rocking curve, see Figure 36, as the incoming unpolarised neutrons feel the

static modulation of hx and equally align parallel or anti-parallel to hx. Still visible
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Figure 37: Intensity ratios of spin-flip to non-spin-flip peaks versus Ω (a) and applied
field (b). Given that the spin-flip peaks correspond to only one spin orientation each,
they are summed for a total integrated intensity of the spin-flip contribution. The
fit line in (a) is calculated using equation 114 and the values in Figure 35. In (b) the
fit lines are from the London model (Christen formula) and the field dependence of
ΓV L from Figure 37. Figure published in [86].

is the central non-spin-flip peak caused by those neutrons affected by the non-zero

value of hz [116, 117].

In order to compare the relationship between the spin-flip and non-spin-flip con-

tributions, we can divide |hx|2 by |hz|2 and eliminate the core correction term (which

cancels out due to its presence in both components) which leaves the only depen-

dence being on Ω and Γac. The calculation of the intensity ratio is outlined by

Thiemann et al. [114]:

ISF
INSF

=
|hx|2

|hz|2
=

(
(1− Γ2

ac) sin Ω cos Ω

cos2 Ω + Γ2
ac sin2 Ω

)2

. (114)

It is clear from Figure 37 that the spin-flip contribution scales as we would expect

with the angle Ω with reasonable consistency with the black fitted line in (a). But
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we do see a stronger spin-flip response for lower fields, which points to hx dominating

with angle, rather than overall field strength where hz would also be stronger. In (b)

we see a lack of conformity with the fitted models for field-dependent behaviour. The

results for two angles show a consistent decrease of the intensity ratio with applied

field increasing. This is additional evidence of Pauli limiting behaviour, alongside

the deviation of the high field values in (a). This is due to the polarisation of the

normal electrons in the screening currents in the vortex cores. When these electrons

polarise [118, 119] they do so commensurate with the VL periodicity, this enhances

the longitudinal form factor contribution hz and thus enhances INSF , decreasing the

value of the ratio for higher fields. We may then say that the non-spin-flip form

factor can be split between the VL contribution and the Pauli limiting contribution

such that hz = hLondonz + hPauliz .

By measuring this ratio we can show clear evidence of the Pauli limiting effects

provided we separate the Pauli limiting contribution:

ISF
INSF

=
|hLondonx |2

|hLondonz + hPauliz |2
(115)

By rearranging the above we may present the Pauli paramagnetic contribution to

the form factor with the following:

|hPauliz |
|hLondonx |

=

(
ISF
INSF

)−0.5

Measured

−
(
ISF
INSF

)−0.5

London

(116)

Where the ratio denoted London represents the London calculation of hLondonx /hLondonz .

The results of this analysis are presented in Figure 38 as a function of applied field.

It is clear that the Pauli paramagnetic effects increase with applied field over the

full field range with an exponential behaviour. There are no easily resolvable spin-

flipped peaks below 1 T and above 2.6 T the overall signal strength is too weak;

at higher fields we would expect signal saturation as Bapplied → BPauli
c2

and then

disappear, with BPauli
c2

= 5 T [120, 121].
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.

Figure 38: Ratio of the Pauli paramagnetic contribution to the form factor parallel
to the vortices hz, using equation 116. Also used are the ratio values from Fig-
ure 37(b). Included is a black line representing an exponential fit. Figure published
in [86]

Multiband superconductivity is primarily evidenced by the existence of anisotropy;

specifically Γac > 1 and ΓV L exhibiting field dependence. Intrinsic anisotropy in su-

perconductors arises from the ease with which Cooper pairs may travel along a

specific axis or within a specific plane in the underlying crystal. This is directly

related to the Fermi velocities in the Fermi surface sheets that carry the supercon-

ducting Cooper pairs. In a single band superconductor the intrinsic anisotropy can

be found by the following ratio: Γac = vab/vc. However, in the case of a multiband

superconductor we would expect an intermediate value that sits within the range

set by the multiple Fermi sheets that carry supercurrents [86, 122]. If these bands

then have different Fermi velocity ratios associated with them, then there will be

a field dependence of Γac as each band has its own gap value which is suppressed

by an applied field increase; bands with smaller energy gaps will be suppressed by

fields H < Hc2 .

4.5 Conclusions

We see that SANS studies have been more that sufficient to explore the anisotropy,

band structure and Pauli paramagnetic effects in KFe2As2. The available data so far

demonstrates a superconducting anisotropy that is highly dependent on the applied

field; this in turn is more evidence to suggest multiple superconducting bands. We

95



also see plenty of evidence demonstrating the existence of Pauli limiting effects. We

see that Γac exceeds the upper critical field anisotropy of 3.3 from previous results.

This strongly supports the interpretation of Pauli paramagnetic effects occurring

within the a − b plane. We see this in previous results as well when looking at the

form factor, where the left and right spots exhibit s-wave behaviour while the top

and bottom spots shows clear enhancement from Pauli paramagnetic effects.

The form factor clearly signify Pauli paramagnetic enhancements (PPE) in KFe2As2,

this sets a context for further potential observations of PPE in the other 122 ma-

terials in this thesis. The most obvious point of comparison will be in terms of

anisotropy. In the KFe2As2 case we see very strong anisotropy, indicative of multi-

band and Pauli limiting effects.

We will see in subsequent sections how this material compares to others in this

work, TlNi2Se2 and (Ba1−xKx)Fe2As2. Despite having very similar structures, and

values of Tc in the former case, we will see significant differences arising when com-

paring KFe2As2 to TlNi2Se2 and (Ba1−xKx)Fe2As2.
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5 HIGH FIELD STUDY OF

SUPERCONDUCTING (Ba0.5K0.5)Fe2As2

5.1 Properties of (Ba0.5K0.5)Fe2As2 and motivation for SANS

studies

It has been previously demonstrated that by doping the K site with Ba in the

iron-based compound KFe2As2, the Tc and Hc2 are driven to very high values [123,

125, 126]. We do not currently have a known, measured value of Hc2(T = 0) for

(Ba0.5K0.5)Fe2As2, or many of the other doping levels due to the incredibly high

predicted upper critical field that is currently not easily accessible experimentally,

especially not with a steady state horizontal field for SANS studies. Figure 40

represents a prediction of the behaviour of Hc2 with respect to the temperature,

with the area to the left of the blue line representing the superconducting state.

These predictions are based on the known values of the coherence length and some

of the values for the upper critical field conducted at high T by the crystal growers.

This prediction obviously has room for variation and later in this work we will

demonstrate how the contributions of the SANS temperature scans contribute to

a revision of these values. The other motivation for investigating this material is

due to the Pauli limiting effects demonstrated in the previous section for KFe2As2.

Given that the doping of 50% Ba to K has driven up Tc by an order of magnitude

and Hc2 by approximately two orders of magnitude it means that Pauli limiting

effects are even more likely to be detected at fields well below Hc2 .

Figures 39a and 39b show the resistivity measured on a similar single crystal

sample of (Ba0.5K0.5)Fe2As2 produced by the same crystal grower. These resistivity

results seem to indicate a broader spread of Tc values along c compared to the ab

plane with applied field strengths. This indicates that the superconducting state

along c is more sensitive to changes in field and could suggest potential anisotropy
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(a) (b)

Figure 39: (a) Resistivity measurements on grown samples of (Ba0.5K0.5)Fe2As2 with
the measurement of resistivity ‖ ab at varying fields. (b) Resistivity measurements
on grown samples of (Ba0.5K0.5)Fe2As2 with the measurement of resistivity ‖ c at
varying fields. There is a narrower spread of Hc2 values for each field for H ‖ ab,
indicating that the c axis is more sensitive in the superconducting state to changes
in field.

Figure 40: Prediction of the approximate Hc2 behaviour extrapolated from the Lon-
don theory, details from the sample grower and the data available in this work.

in the VL that would be measurable below 7 T for temperatures below 38 K. The

lower value of Tc for an equivalent field in the c plane suggests a larger evolving

penetration depth for B ‖ c. This would be detectable in the form of anisotropy

developing in the form factor as we change the angle with respect to the a− b plane.

In addition, the ω (azimuthal) and φ (polar) scans can generate penetration depth

results that could indicate the existence of anisotropy in the basal plane. This factor

is probed in TlNi2Se2 and presented in a later section (Figure 97).
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Figure 41: Comparative images of the diffraction patterns from azimuthal ω scans
with a maximum rock of ±3◦ for high fields and ±2◦ for low fields. There is a second
domain visible via the apparent spots above and below the left- and right-most spots
at 12 T and 16 T. The second domain’s signal is much weaker for lower fields. The
diffraction pattern signal is clearly still very strong up to 16T. White hexagons are
used to illustrate the apparent positions of the two visible domains at these field,
temperature and angle settings.

5.2 Results for (Ba0.5K0.5)Fe2As2: D33 beamline, ILL July

2016

For the investigation into (Ba0.5K0.5)Fe2As2 on the D33 beamline at the Institute

Laue-Langevin, Grenoble, France (ILL), high quality single crystal samples were

grown using the self flux method described in [127] and [128] (similar to the method

for KFe2As2) by Kunihiro Kihou of the National Institute of Advanced Industrial

Science, Japan. The samples were grown using a KAs flux grown with controlled

amounts of substituted compounds. The use of an FeAs flux is unsuitable for growing

high quality crystals due to the high melting temperature of Tm = 1030◦ C which

causes a loss of the more volatile K vapour, which also has a tendency to interact

destructively with the quartz container. Instead, with a KAs flux, Tm = 625◦

C and a stainless steel container which can sustain the high pressures of the K

vapour generated stable crystal growth. Typical crystals are grown to a size of 5
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× 5 × 0.2 mm3. These samples were then characterised by the grower, including

characterisation of superconducting properties.Single crystals of (Ba0.5K0.5)Fe2As2

were mounted on an Al plate. The total sample volume is 1.03 × 10−7 m3, sample

mass is 600 mg. If we include the Al plate, the sample area is 15 × 15 mm2, with

an additional Cd window around the mosaic. Inclusive of the Al plates, the total

sample thickness is 4 mm. The mosaic was aligned such that the single crystal c

axis was aligned parallel to B and approximately parallel to the neutron beam, as

outlined for KFe2As2.

However, in this investigation the dilution refrigeration insert is not used, but

the Birmingham 17 T magnet is. At 3 K we observe VL diffraction patterns be-

tween 6 T and 16 T and for 1 T, 1.4 T and 3 T there are weak VL signals with

resolvable rocking curves for each field. The diffraction patterns for 6 T to 16 T are

presented in Figure 41. Sector boxes are shown in red highlighting the area over

which the intensity of a diffraction spot is integrated in order to produce results.

These patterns clearly show the primary domain of the hexagonal VL, but with a

greater intensity for the left- and right-most spots as these spots were rocked over in

ω, the azimuthal plane, and so were exposed to a greater proportion of the neutron

intensity. Rocking curves were sampled from the diffraction patterns using GRASP

with sectors 30 pixels wide and 60◦ arc-length. This is to represent the fact that the

1st hexagonal domain of the VL should be easily segmented by 60◦ per spot on the

diffraction pattern. We also see a second domain VL which increases in intensity,

relative to the first domain, with increasing field. With this experimental set-up we

have only probed the VL lattice with fields up to ≈ 0.11Hc2 and as such with these

results we cannot rule out the potential presence of Pauli paramagnetism, nor can

we rule out structural changes in the VL with increasing field strength.

The integrated intensity data is extracted by the use of rocking curves as demon-

strated in Figure 42 for the case of 16 T and 3 K. The red sectors previously shown

apply the area over which the intensity is extracted from the sample rock. In this
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Figure 42: Rocking curves of the left- and right-most spots of the diffraction pattern
from Figure 41. The spots under analysis are highlighted in Fig. 41 by the red sector
boxes. For high fields a rock of ±3.5◦ is used to contain some sufficient background.
For lower fields smaller rocks of ±2◦ were used instead to save time. The units
for the y axis represent the number of counts per total amount of scan time per
point within the red sector boxes in the analysis. The x axis is represented by the
azimuthal angle ω.

case the rock is in the azimuthal plane. The rocking curves represent the intensities

with respect to ω and are fitted with Gaussian functions in this case (Gaussian fits

produced smaller errors than Lorentzian fits). From the Gaussian fit functions the

integrated intensity is given by the GRASP software. See section 8.1, Appendix A

for more details on this process.

5.2.1 Field dependence of the form factor

The first investigation was conducted at the D33 beamline at the ILL. Fields of 2 T,

6 T and 16 T were accessed as well as as temperatures up to Tc ≈ 37 K. The results

in Figure 43a demonstrate a very large form factor, |F (q)|, of 2 mT peaking at 6

T applied field, and with increasing field |F (q)| only decreases by 10% between 6 T

and 16 T. This suggests a trend of an unusually strong form factor signal that will

persist for even larger fields, this allows for the possibility of Pauli limiting behaviour
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(a) (b)

Figure 43: (a) |F (q)| vs field at 3 K averaged using multiple spots in the VL for
better statistics. Above 6 T very little change in the |F (q)| is observed, opening
up the possibility of Pauli paramagnetic effects at stronger fields and ensuring that
a VL will easily be observable for fields above 16 T. The low |F (q)| below 6 T is
possible due to disorder in the VL at low fields. (b) |F (q)| vs field at 3 K. Similar
to (a) except the ω and φ scans are not combined in an average, they are separated
in order to look for potential disagreement with respect to direction of rotation.

for higher fields. What also stands out is the significantly weaker signal below 6 T.

It seems that below this field there is significant disorder in the VL at low fields such

as to limit the strength of the coherent VL signal, despite the standard wiggle-cool

procedure being used here to ensure good ordering of the VL.

Given the small gradient of |F (q)| with respect to the field, it is difficult with the

data set in Figure 43b to be able to draw a good fit or a comment on the behaviour

with respect to field. This is likely in part due to the very high value of Hc2 , such

that we are looking at potentially only the lower 10 − 15% of the accessible field

relationship for this material.

We can also comment on the separated results in Figure 43b. If there were

any potential a-b anisotropy in the VL then we might see a difference between the

ω (azimuthal) and φ (polar) scans. Differences here could also indicate structural

evolution in the VL or shifts in the pairing mechanism or multi-gap effects. However,

the results between the two different rotational axes are strikingly similar and show

strong agreement with each other. We can also see for both graphs of |F (q)| vs B
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Figure 44: Integrated intensity (I(q)) results as a function of temperature. These
results are the averages between the φ and ω scans. The integrated intensities are
extracted from gaussian fits to the rocking curves, like those in Figure 42.

that the errors remain similar and small across the entire field range.

5.2.2 Temperature dependence of the form factor

Figure 44 shows the integrated intensity results averaged over the ω and φ scans.

Here we can see the elevated signal in the 6 T results, concurrent with the obser-

vations under field variation in Figure 43a. We have seen that under field variation

the signal peaks at ≈ 6 T, meaning 6 T would reasonably be the largest set of

temperature dependent signals. While the signal strength varies unintuitively the

intercept with the x-axis demonstrates the Tc variation with applied field conforms

to expectations. The integrated intensity signal evolves between the sets such that

the 6 T results follow an S-shape with a high gradient for intermediate temperatures,

while the 2 T and 16 T follow a lower gradient, almost linear, evolution with T . The

steeper gradient of the larger 6 T signal gives a stronger impression of T -dependent

variations compared to the 2 T and 16 T sets. Another feature unique to the 6 T

results is apparent plateauing of the integrated intensity at T ≤ 5 K, however we

don’t have any lower temperature data points to see the plateauing in comparison

to the potential low-T plateauing in the 2 T and 16 T sets for T < 3 K.
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Figure 45: Form factor calculated from the temperature scan integrated intensities
in Figure 44 using the Christen formula. A core correction term is used with c ≈ 0.52
using the value from the related compound KFe2Ass [109, 12] and an approximated
Pippard coherence length of ξ0 ≈ 1.53 nm (κ ≈ 81).

Figure 45 shows the temperature dependent form factor, calculated from the

integrated intensity results and the rearranged Christen formula, equation 104. As

with the integrated intensity we have an elevated signal strength over the other sets

for 6 T that falls below the signal strength of 2 T for high temperature T > 30

K. These results also suggest that even at T ≈ Tc the form factor signal will be

resolvable for high fields; given the signal strength is still in the mT range for 16 T.

This suggests that even at double this field strength the form factor will likely be

in the mT range. The weaker signal for the form factor at 2 T is most likely due to

high levels of disorder in the VL at low field. Although the coherence length also

varies with temperature, there is no available information outside of ideal models

for how the coherence length evolves with temperature here, so the approximation

of ξ(T ) ≈ ξ0 = 15.3 Å (calculated by the sample growers) is used as this is accurate

for most of the temperature range due to a comparatively low field compared to

Hc2 .

Again, we see no significant dips or aberrations in the behaviour of the form
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factor to indicate a rearrangement of the flux lattice from the results in Figure 45.

This is in direct contrast to the related compound KFe2As2 covered in the previous

section.

5.2.3 Identifying the pairing mechanism of (Ba0.5K0.5)Fe2As2

By comparing the integrated intensity with ideal models using the Christen Formula,

we can compare the results with the ideal case for each potential interpretation; a

null hypothesis approach as discussed earlier in this work (section 2.7). Figure 46

shows the results for each set of I(q) vs T data at 6 T, 12 T and 16 T compared to

two models: s-wave and nodal pairing symmetry.

Figure 46 indicates that consistently, for every field accessed, the data strongly

supports an s-wave interpretation. Equally the form factor calculations presented

using the Christen formula in Figure 47 support a strong adherence to a BCS, s-

wave behaviour for the gap symmetry. Not only is this result consistent across all

the fields accessed but there are no visible anomalies within the data to suggest

any kind of multiple gap structure or rearrangement of the gap symmetry or VL

structure. However, we do see an evolution in the signal at T → Tc from 2 T up to 16

T in both the integrated intensity and the form factor. This is a small enhancement

of the signal for 6 T above 22 K and a significant enhancement of the signal at 16 T

above 15 K. This response is outside of the established signal size we would expect

to see for the given models. This suggests that we are seeing an equivalent effect

to what was demonstrated previously with KFe2As2; there is a Pauli paramagnetic

effect enhancing the form factor signal at high fields. Given this, we would expect

to see further enhancement at higher fields.

The conclusions drawn from the null hypothesis approach to the data are sup-

ported by the subsequent penetration depth calculations in Figure 48. Each set of

|F (q)| calculations is then put into equation 105 to get λ(T ).

As can be seen from the fits, the powers for each field set all sit within error of
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Figure 46: The normalised integrated intensity (I(q)) at 2 T, 6 T and 16 T vs
temperature, compared to models of I(q) behaviour according to the BCS theory
for s-wave pairing, and a nodal model that also covers potential d -wave pairing.

106



Figure 47: |F (q)| at 2 T, 6 T and 16 T calculated using the Christen formula
(equation 104) rearranged. Previously the |F (q)| calculations contained a varying
value of ξ(T ) with temperature, however here the core correction values are roughly
cancelled out in normalisation. Once again, as with Figure 46, the data clearly
indicates a strong adherence to s-wave behaviour.

107



Figure 48: Calculations of λ(T ) from the modified London model (taking into ac-
count core corrections) for each applied field. These results are compared to the
expected London calculation of the evolution of λ(T ) with fits for comparison. How-
ever the model diverges at T = Tc, whereas the application of a magnetic field means
the results will diverge at a lower temperature which has been estimated from the
form factor temperature data and confirmed by the fitting procedure.

p = 2. This comfortably aligns the data to the s-wave model, which is of course

consistent with what we have already seen. Again there are no major anomalies

other than the continued overlap between the 2 T and 6 T data, due to an enhanced

6 T signal. Despite the signal enhancement, the power law is still very indicative

of BCS, rather than unconventional behaviour. We see at T → Tc the 16 T results

shift such that they fall into a more expected penetration depth compared to the

lower fields; this shift happens at 24 K. However, contrary to expectations we see

the 6 T, rather than the 2 T results display the smallest penetration depth, with

λ(B = 6T ) not increasing above the 2 T signal until 30 K, almost at Tc and with a

large error compared to the rest of the temperature range.

5.2.4 Non-local corrections to the superfluid density

Although the superfluid density calculations in Figure 49 don’t add to the analysis

of pairing mechanisms, especially given the fits are the recalculated fits from the

penetration depth, these results do very much highlight the stark difference in carrier
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Figure 49: Calculated superfluid density using the previously calculated penetra-
tion depths from the temperature scan data. Core corrections have been taken into
account with the form factor to produce the penetrations depths for these calcula-
tions. The model accompanying the data points is a modified version of the BCS
model for the penetration depth; which is (λeff (T )/λ(0))−2 = 1− t4, but using the
calculated parameters in the fitting procedure from Figure 48. The results have
been normalised to the largest signal response, the 6 T data.

numbers between the 6 T results and the other two fields; with the 2 T and 16 T

conforming to expectations for temperature dependence. It is not clear why the 6

T signal is so strongly enhanced over the other fields other than an argument of low

field disorder for B < 6 T. The field dependent scans shown in Figure 43a and the

VL patterns for low field scans indicate a greater amount of disorder for this regime

in the VL signal compared to the upper field regime. This would normally generate

much higher errors, compared to the high field regime. The following equation is

used to calculate the normalised superfluid density

ρ(T ) =

(
λ0

λ(T )

)2

(117)

where the value of λ0 is taken as the intercept with the y-axis.

By using the approach outlined in section 1.5 we can try to establish the likeli-

hood of strongly-coupled d-wave pairing being a driving mechanism in this material.

The onset of non-local effects as outlined by this phenomenological approach only
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Figure 50: Non-local coupling contributions. This data represents residual ratio
calculations of n(T ) and ρ(T ) for (Ba0.5K0.5)Fe2As2 as before in this work, with n(T )
as the calculated superfluid density from the penetration depth data and ρ(T ) being
the BCS model and equation 64 used to generate these results. Once again at y = 1
the non-local contribution is completely minimised, indicated by the black reference
line. The dotted lines are the Amin/White models of the non-local contribution
indicating the expected behaviour for each field [102, 96].

become apparent below a characteristic temperature, T ∗ = ∆0ξ0q/kB ≈ 8.0 K, be-

low which non-local coupling is effective. The consequence of the shift from linear

to T 3 behaviour is the appearance of weak low-T dependence. In this case, given

T ∗ ≈ 8 K, it would appear that a small portion of the superconducting regime should

be affected by non-local coupling contributions. We now use equations 63 and 64 to

establish a ratio by which we can observe any modulation in non-local effects.

We see in Figure 50 a varied response to non-local coupling in the superfluid

density. The models predict the 2 T set to have the weakest response of non-local

coupling, but calculations point to it having the strongest response but also the

closest response to the Amin/White predictions. The 6 T set has the weakest non-

local coupling response and the 16 T set falling in between. This means that the non-

local coupling is approximately inversely proportional to the form factor response,

while the Amin/White models predict a very different behaviour. Additionally we

see the models indicating the 16 T and 6 T results being quite close together and of

a similar shape of curve. Instead the calculations indicate some degree of similarity
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Figure 51: Superfluid density calculated from measured data compared to the Am-
in/White predictions using equation 63 with the non-local limiting temperature, T ∗

for (Ba0.5K0.5)Fe2As2. The Amin/White models, plotted with dashed lines, produce
larger values for the superfluid density than those calculated from the form factor.
This comparison suggests a slightly weaker non-local coupling effect than predicted
and a smaller superfluid density as a result.

between the 2 T and 16 T results with the 6 T set as the main outlier. In fact the 6

T set very rapidly converges to unity for the non-local coupling contribution; above

10 K the non-local coupling is within error of unity. Equivalently the 6 T and 2 T

results converge on unity well before the models predict them to, suggesting weak

non-local spin coupling.

When we look at the superfluid density calculations in Figure 51 we see a great

degree of similarity between the different field sets. However, the superfluid density

does appear to be slightly stronger for weaker fields, as one would expect. The

Amin/White models predict a superfluid density that is more persistent at low

temperatures compared to the calculations. Once again the 2 T results appear to be

the closest match to the Amin/White model but still fall short. These calculations

suggest there is not a particularly significant non-local coupling contribution at any

field, this is in line with the previous conclusions that we are likely looking at an

s-wave superconductor that is very strongly Type-II (κ ≈ 81), so generally strong

non-local coupling effects are going to be weak according to the London model and
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the work of Volovik [10, 32], discussed earlier in this work.

5.3 Results for (Ba0.5K0.5)Fe2As2: EXED beamline, High

Field Magnet (HFM), HZB July 2017

A second investigation with (Ba0.5K0.5)Fe2As2 took place in July 2017 at HZB using

the small-angle neutron scattering beam-line for extreme environments and using

the high field magnet (EXED/HFM). This was a time-of-flight (TOF) experiment

that uses a range of neutron wavelengths, rather than rocking the sample in order

to probe the Bragg conditions for the superconducting VL. Previously we have

discussed the beam in monochromatic terms. In TOF the beam is pulsed, during

flight in the beam-line the faster neutrons in the “white”, polychromatic beam will

arrive first, this broadens out the pulse to some known time. The breadth of this

pulse and the bandwidth of neutrons can be selected by the use of chopper discs as

discussed previously for controlling the width of monochromatic beams at PSI and

ILL. This experiment used fields up to 25.5 T for similar temperatures to the ILL

experiment. Fields accessed were 14 T and 16 T for an overlap with the ILL data

as well as 20 T and 25.5 T for the high-field scans. The aim of this experiment was

to probe for potential Pauli paramagnetic effects for higher fields by looking at the

persistence of the VL signal up to 25.5 T compared to the peak signal previously

seen at 16 T.

5.3.1 Instrumentation for EXED/HFM

As previously described, the high field measurements were conducted over a second

experiment at HZB using the EXED/HFM instrumentation [104]. The TOF setup

allows for neutrons to be available from 0.7 to 15 Å. Due to the chopper setup,

the system can operate between a narrow 0.6 Å beam and broad 14.4 Å beam.

Choppers are available from ∆t ≈ 6µs up to ∆t ≈ 5000µs for balancing intensity and

resolution. The diffraction pattern is picked up by six 3He linear position detector
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Figure 52: Schematic of the EXED beamline including the HFM and detectors.
During the experiment all four detectors were positioned behind the HFM relative
to the beam guide. This is because we are not measuring any large angle scattering,
as our Q vector is in the realm of small angles ≈ 1◦. This image was sourced from
[103].

banks that subdivide 204 linear position detector tubes. The cryomagnet is a hybrid

system with a water cooled resistive coil inserted in a room temperature bore inside

of the superconducting coil. Together these provide up to 26 T horizontal field, with

30◦ conical openings at either end for access to neutron scattering. The magnet sits

on a rotating table that allows for a maximum of 12◦ rotation, giving a maximum

possible scattering angle of 2θmax ≈ 27◦. The horizontal rotation of the magnet is

denoted by the angle ω, similarly defined in previous sections.

5.3.2 Experimental technique and data extraction for EXED/HFM

Temperatures were accessed from 1.3 to 33 K and fields from 14 to 25.5 T. For chang-

ing the field the wiggle-cool method was used as previously described for KFe2As2

and (Ba0.5K0.5)Fe2As2 at the ILL with a constant wiggle field of ∆B = ±0.005 T.

Backgrounds were taken for each field accessed at 30 and 45 K. The detector was

rotated in the azimuthal plane to the following angles for scans: ω = 2.0◦, 1.6◦,

-1.5◦, -2.7◦, -3.0◦, -3.2◦, -3.4◦. These scans could be overlapped to provide a contour
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Figure 53: Technical details of the High Field Magnet (HFM). The image shows
only the cryomagnet and sample stage of the HFM/EXED beamline. This image
was sourced from [103]

region of the diffraction spots in q-space. Accessing these angles is important in

order to place measurable diffraction spots onto one of the detector banks. Given

the portable nature of the detector banks, there are gaps where neutrons cannot be

detected between the positions of the detector banks. A consequence of this setup

is that at each angle the beam stop needs to be tracked in order to make sure direct

beam does not impinge on the detector banks and cause saturation. This is because

the beam stop moves along a straight axis while the cryomagnet rotates, so the

beam stop tracking is non-linear and has to be confirmed for each potential angle of

measurement. In this case the beam stop position could be fit very reasonably by a

second order polynomial with a shallow curve: bsy = 0.3672ω2 − 69.643ω + 204.80,

with beam stop positions tested between 157 mm and 461 mm for that fit. The

chopper phases were set for < λ >= 6 Å and ∆λ = 7 Å.

An example of a single scan can be seen in Figure 54. Here the angle is set

to ω = −3.4◦ at base temperature, 1.3 K and a field of 25.5 T. The position of
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Figure 54: Single contour scan at 1.3 K and 25.5 T for ω = −3.4◦. A large area
in the centre of the diffraction pattern is the masked-out direct beam. The arrows
indicate the approximate positions of two spots, identified as the top- and bottom-
right of the hexagonal VL. Included is the q-space square used for analysis of the
image in order to extract the integrated intensity. This is much like the sector boxes
in GRASP. The q space is in units of Å−1

the spots to be analysed is denoted by the arrows in the image, with most scans

during this experiment showing the top- and bottom-right spots of the hexagonal

VL to be most prominent. The smearing in the spots in an arc is due to the use

of a broader range of neutron wavelengths than in the monochromatic case of the

ILL and PSI experiments, given those outlying wavelengths from the average will

satisfy the Bragg conditions at different angles of diffraction. Included in Figure 54

is the sector box in q space that is laid over the diffraction image centred on the

identified Bragg spots. With this box (in units of Å−1) a curve of the intensity vs q

can be plotted from extracting the number of counts per pixel with respect to pixel

position in q-space with the background subtracted. The area between the intensity

curve and the background is calculated to find the integrated intensity value at that

field and temperature. This process is repeated for many diffraction patterns with

layered contour plots, like in Figure 55, to improve the resolution of the diffraction

spots and the overall signal strength for the VL Bragg spots.

By combining the scans from many angles across several detectors a more com-
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prehensive image of the VL can be seen. An example of the contour combination

can be seen in Figure 55. Here we see combined scans at 20 T and 1.3 K producing

a VL with a visible left- and right-most diffraction spots and an upper and lower

spot on the left hand side of the VL diffraction pattern. This data is incompatible

with GRASP and so has to be analysed manually by defining the q space bounds

of the spots for the same process that GRASP is purpose built for; creating a curve

for the intensity of a defined image space then integrating that Gaussian/Lorentzian

curve for the integrated intensity. From this basis the data can be taken forward

in much the same manner as before with regards to modelling and calculating the

form factor. I must acknowledge and thank Minoru Soda, Research Associate of

the Institute of Solid State Physics, University of Tokyo for doing the bulk of the

initial conversion of the data from raw diffraction patterns to integrated intensities

using Mantid© [105, 106, 107, 108] software and Python™, and Maciej Bartkowiak,

Helmholtz-Zentrum Berlin, Germany for coding support and later image rendering

and analysis.

5.3.3 Integrated intensity at high-field (B ≥ 14 T)

Figure 56 shows the integrated intensity signals from the EXED/HFM experiment

with respect to temperature. We can see that the 25.5 T signal is the smallest,

as expected, but it is surprising to see that the 20 T and 25.5 T signals are both

persistent up to the range of 25 K to 30 K. This is somewhat unexpected given that

we have previously seen that the 16 T signal at D33 dissipated by ≈ 28 T. Another

unexpected feature is the additional signal strength seen in the 16 T results for

the high temperature regime. This feature is not observed as clearly in the D33

results until normalised and compared to the models in Figure 47, where we see an

enhancement of the signal above 17 K. In this case it would appear that the same

enhancement is present, but clearer.
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Figure 55: Contour image of overlapped scans of raw data from ω = 2.0◦, 1.6◦,
-1.5◦, -2.7◦, -3.0◦ and -3.2◦. These scans combine the tracked information about the
beam stop as well in order to subtract the background and mask the direct beam.
These scans were all taken at 20 T and 1.3 K.

Figure 56: Averaged integrated intensity of the flux lattice of (Ba0.5K0.5)Fe2As2.
Results are averaged over the top- and bottom-most spots available for analysis.
These spots can be seen in Figures 54 and 55.
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Figure 57: Averaged |F (q)| versus field with the EXED and D33 data combined to
show the continuation of the form factor behaviour. The EXED data is averaged
over top and bottom spots while the D33 data is averaged over the ω and φ scans,
as previously discussed in the D33 experiment section.

5.3.4 Field dependence of the form factor: Comparison with low-field

data

The field dependent results in Figure 57 show the D33 and EXED results together.

The EXED high field data demonstrates a steeper gradient and faster decrease in

form factor than the gradient set by the low field data from the D33 investigation,

indicating a much faster fall-off in signal strength with field than previously ex-

pected. Despite this we are still seeing a form factor signal of ≈ 1 mT for an applied

field of 25.5 T. A field of 25.5 T is still only ≈ 18% of the theoretical upper critical

field for this material. As such, probing even higher fields could yield an |F (q, T )|

signal that behaves unexpectedly with field on approach to the upper critical field

(notwithstanding Pauli limiting effects). Given this, there is a reasonable overlap
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Figure 58: Fit and bounds for the Ginzburg-Landau approximation for upper crit-
ical field and critical temperature behaviour fitted to the D33 results for Tc and the
14 T set from the EXED investigation.

between the intermediate fields of 14 T and 16 T (within error); the trend of the

EXED high data would suggest a signal suppressed at ≈ 50 T if the behaviour

remained unchanged for higher fields. This is significantly lower than the 140 T

predicted, but the 50 T value is a linear extrapolation, it does not take into account

that the |F (q)| might flatten out at even higher fields, or even rise due to Pauli

paramagnetism. The likelihood of a persistent signal above 50 T is not insignificant

given the large |F (q)| signal at the fields already accessed.

5.3.5 Temperature dependence of the form factor

As a result of the difficulty in establishing the trend of Tc with respect to applied

field for the EXED results, the D33 results and the 14 T results of EXED were used

to provide four data points to fit a Ginzburg -Landau (G-L) model of the potential

behaviour of Bc2 and Tc for larger fields. By fitting the values of Tc(2T) = 33.5

K, Tc(6T) = 32.8 K, Tc(14T) = 31.0 K and Tc(16T) = 30.3 K extracted from the
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Figure 59: Form factor, |F (q, T )| versus temperature, T for both the EXED and
D33 results.

potential intercepts of the D33 form factor data with the x-axis and using the G-

L equation Bc2(T ) ≈ Bc2(0)(1 − (T/Tc)
2), we get fits of Bc2(0) = (78.84 ± 16.18)

T and Tc = (34.03 ± 0.56) K. This fit and the bounds of the fit are plotted in

Figure 58. This result is used to gauge the values of Tc for 20 T and 25.5 T, where

an estimation of Tc is much more difficult. These values are subsequently predicted

to be Tc(20T) = 29.4 K and Tc(25.5T) = 28.0 K and are used in the models for the

analysis in this section and later sections. The modelled upper critical field value of

Bc2 ≈ 78.8 T is much smaller than the value of 140 T predicted from the coherence

length from previous work.

We see from Figure 59 that the high field scans, 20 T and 25.5 T, generally

conform to expectations of a decreased overall signal strength for all temperatures

accessed. Generally, there is good agreement at low temperature for the overlap

fields of 14 T and 16 T. This breaks down somewhat above 20 K for the 16 T EXED

data where the signal experiences an unusual enhancement not seen in the previous
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Figure 60: Normalised form factors for each of the applied fields in the high field
range. Sets are presented with increasing field in descending order. Data is presented
alongside ideal s-wave and nodal models for the form factor behaviour.
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16 T data set. The high field data continues the expected trend of a flattening-out

of the form factor signal over the accessed temperatures, however the Tc for these

fields remains high for all fields accessed. This is expected to some extent given we

are still below 20% of the predicted Bc2 of this material, but the data indicates very

little change in Tc for increased applied field.

Similar to the process with the (Ba0.5K0.5)Fe2As2 D33 data, we present here

the EXED high-field data normalised alongside ideal models. This null hypothesis

approach compares pairing symmetry models of the form factor to the normalised

data to establish trends and similarities. We can see from Figure 60 that below

20 K, for all fields, the results broadly adhere to an s-wave model for form factor

behaviour. However, above 20 T we see significant deviations from all models with

an overall increase in signal for all fields except the 14 T data set (which does not

exhibit this behaviour). The adherence to an s-wave model is not unexpected given

the lack of observed variation in the VL structure with field variation. This is also

expected for the high field results given the low field results showed a very strong

correlation with an s-wave interpretation and similarly showed no variation in the

VL structure with field variation.

This deviation is consistent with previous observations made on the form factor

that showed an enhancement of the temperature dependent signal for T → Tc. The

relative enhancement between the fields is more apparent here due to the normali-

sation process and the comparison to the models. We again see a significantly larger

enhancement of the signal for 16 T in the EXED data.

5.3.6 Penetration depth under high-field

The penetration depth, λ(T ) was calculated from the form factor, using the previous

framework outlined using equation 105. The penetration depth for the high field

scans are presented in Figure 61. Here, we see the successively high fields producing

results consistent with expectations for a material with such a high predicted Hc2 .
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Figure 61: Penetration depth, calculated from the form factor, versus temperature.
At the highest temperature, the signal is very weak, hence the large errors.
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The previous D33 low field results yielded λ16T
0 ≈ 140 nm. In the EXED results

the 16 T set gives λ16T
0 ≈ 133 nm but with a margin of error of 7.8 nm, placing it

broadly in agreement with previous results.

We do see a continuation of trends for the 20 T and 25.5 T results with a fitting

procedure. Both 20 T and 25.5 T yield power law fits of p20T = 1.97 ± 0.25 and

p25.5T = 2.00±0.77, which puts them very much in line with an s-wave interpretation

as expected, but with errors reflecting the greater degree of uncertainty in the EXED

results. The 14 T and 16 T fits are not so clear. We can see the consequences of

the stronger form factor than expected for the 16 T set at high temperature has

produced a much smaller penetration depth than expected for high temperature at

this field. The behaviour is not in line with expectations and produces power-law fit

parameters outside of the expected bounds for this material’s behaviour; with fits

giving unconventional behaviour p < 2 for 14 T and poor overall fitting for the 16

T set. This is likely due to the large signal enhancement in the EXED results for

T → Tc.

We can gain a better picture of the behaviour of the penetration depth by com-

paring each field set with the Prozorov [92] power-law approach used in previous

sections. In Figure 62 we see each of the four fields in the temperature dependent

scans compared to power-law models representing the s-wave and nodal cases. We

would expect to see parity between the overlap fields of 14 T and 16 T with the

low field scans from the D33 investigation. However, there are features that do not

align with what we have seen previously. Broadly speaking, the majority of the

results conform to the s-wave model but in some cases this breaks down for high

temperature. In these cases a mixture of large uncertainty and weak signal make it

difficult to interpret penetration depth behaviour at T → Tc. We can say at least

that the high field results generally point to the same conclusions supported by the

low field data.
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Figure 62: Penetration depths, λ(T ) versus temperature, T presented separately for
each field. These results are presented alongside ideal models for penetration depth
behaviour, given a specific dominant pairing mechanism; s-wave or nodal symmetry.
Increasing field strength is presented in descending order.
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5.3.7 Evidence for Pauli limiting above 16 T

Given the likely s-wave pairing mechanism being dominant in this material we can

use the BCS model to describe the gap size for (Ba0.5K0.5)Fe2As2. In BCS theory

the zero temperature gap is estimated as ∆0 = 1.76kBTc which gives a value of

∆0 ≈ 5.6± 0.1 meV.

If we combine the gap function estimate with the calculation for the Pauli limiting

field, equation 74, we get a prediction for when we might see definitive Pauli limiting

effects. The predicted Pauli limiting field in this approach is BPauli
c2

≈ 69 T. This

gives a Maki parameter of αM ≈ 2, which is incredibly high, given that for most

superconductors αM � 1. This indicates that although the orbital field is possibly as

high as 140 T, the Pauli limiting field would destroy the superconductivity at fields

of 70 T. This falls in line with the trend we see in Figure 57 where the prevailing

gradient of the high field data suggests an x-axis intercept above 50 T; but given

the limits of applied fields we cannot be certain that this behaviour would persist

without probing much higher fields.

The key evidence is the increase in the form factor signal above that of the

expected s-wave model in the temperature scan data that evolves with increasing

applied field. The increase in signal in the regime of T → Tc correlates with an

increase in field in the D33 data. In the EXED data we still see this enhancement,

more or less, but the proportionality to field increase is unclear in comparison to

the D33 data. The field dependent data does not probe high enough fields at the

temperature settings applied to probe areas of possible PPE behaviour, unlike in the

results in the previous chapter for KFe2As2. However, the response in the temper-

ature dependent data is sufficient to reasonably say there is likely PPE behaviour

detectable for B ≥ 16 T.
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5.4 Conclusions

In the case of (Ba0.5K0.5)Fe2As2 We have seen a response from low and high field

data supporting the interpretation of a BCS, s-wave gap. It appears to be no VL

rearrangement under field variation and comparison to models shows a strong corre-

lation with an s-wave interpretation. However, we have not probed to high enough

fields to rule out possible variation of the VL orientation or emerging anisotropy, nor

have we subjected the sample to large angular variation under the same experimental

conditions as for KFe2As2.

Even though the pairing symmetry has not presented any evidence of nodes

or unconventional behaviour we have seen some evidence to suggest PPE in this

material. The Pauli limiting effects develop from 16 T upwards in applied field and

are evident from 17 K upwards in temperature. The D33 results show a smooth

increase in this response above 17 K but the EXED results are less consistent, this

is in part due to the significant differences in experimental procedure and analysis

between the D33 and EXED data sets. However, the high-field EXED data still

supports the interpretation of PPE above 17 T for B ≥ 16 T.

The results of both the EXED and D33 investigations demonstrate that the 50%

doping of Ba content not only significantly shifts the upper critical field and critical

temperature but also shifts the symmetry of the gap function on the Fermi surface

as evidenced by the difference in pairing mechanism, if we compare the results

of (Ba0.5K0.5)Fe2As2 with that of KFe2As2. It is clear that there are differences

between the electron band levels as a function of doping from Section 3, with the

pairing symmetry shown to depend on the subtle shifts in energy bands, precluding

the presence of nodes in (Ba0.5K0.5)Fe2As2, but permitting them in KFe2As2 and

TlNi2Se2.
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6 STUDY OF THE PAIRING MECHANISMS

IN TlNi2Se2

6.1 Properties of TlNi2Se2 and motivation for SANS studies

Figure 63: The crystal structure
of superconducting TlNi2Se2 [48].
The crystal has lattice parame-
ters: a = b = 3.889 Å and c =
13.413 Å.

TlNi2Se2 is a Type-II superconductor, with the

first significant investigation done in 2013 [48],

when it was first synthesised as a superconduct-

ing single crystal. It is a Ni-chalcogenide with

body-centered tetragonal structure and space

group I4/mmm. TlNi2Se2 also exhibits heavy

fermion behaviour with electron masses mea-

sured at (14−20)me, despite not containing any

elements normally associated with this type of

behaviour, such as uranium or cerium.

Figure 63 shows the structure of the com-

pound TlNi2Se2. There are alternating layers

of Tl and Ni-Se, much like the structure of

Fe-arsenide superconductors. It has no known

structural transitions below 300 K, much like the

Ni-pnictides. In the normal state it is a Pauli

paramagnet and becomes superconducting at Tc = 3.7 K, with an upper critical field

of Hc2 = 0.802 T which is easily accessible experimentally. Conservative estimates

using the values for coherence length ξ = 20.3 nm and Fermi velocity vF = 5.484×104

ms−1 [47][48] give a penetration depth of λ ≈ 200 nm. This was calculated using

the London penetration depth equation, λ =
√

(m∗/µ0nse2), with the maximum

effective mass of m∗ = 20me, and an estimate of the Cooper pair density, donated

by 1.5 free electrons per Ni atom [48], of ns ≈ 3× 1028 m−3.
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Figure 64: Specific heat results for TlNi2Se2 at varying fields against T 2. The left
hand inset shows the results for below 1.7 K. The right inset shows the magnetic
field dependence of the electronic specific heat coefficient, γN , also known as the
Sommerfeld coefficient. Figure from [48]

There are some considerations to make with this material that limit its use. From

an applications perspective the material is difficult to work with as it is brittle and

hard and so cannot be formed into many particularly useful shapes. The thallium

content is problematic as it is a dangerous, skin-contact, heavy-metal poison. This

is compounded by the fact that the crystals available are small and brittle as well

as being very sensitive to moisture and air exposure; when not in use they are kept

under a He atmosphere to prevent decay. This means handling of these samples

must be taken with great care. Crystal manufacture is also problematic from a

safety perspective as the thallium and selenium content in powdered form (and

to a lesser extent, nickel) makes manufacturing a more hazardous procedure than

with most metallic superconducting compounds. It is not feasible to produce these

samples on site in Birmingham. We have obtained these samples from Dr Minghu

Fang at the Zheijiang University, Hangzhou, China.
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6.2 Previous investigations

Previous investigations into TlNi2Se2 have been almost entirely conducted by Hong

et al. [47] and Wang et al. [48]. They have also grown their crystals to a very high

quality and supplied seven single crystal platelet samples for use in Birmingham.

These crystals are ≈ 0.13 mm thick, with sides of ≈ 2 mm ×3 mm, but this varies

slightly between the samples. The samples have an average mass each of 6 mg.

Wang et al. [48] confirmed the basic parameters of TlNi2Se2 as a superconductor,

such as the critical temperature and field, and investigated the specific heat in

order to probe the heavy electron behaviour. The normal state specific heat can

be modelled by CN = γNT + βT 3 + δT 5. Figure 64 shows that for zero field, the

specific heat goes to zero as T → 0 K. At low temperature regions the phonon

contribution to the heat capacity is negligible, the electron contribution is largest.

This means that the linear electronic contribution of the heat capacity is zero, so

therefore almost all the electrons enter the superconducting state. By increasing the

field, the linear contribution also increases. The relationship between this coefficient

and the applied field indicates how the electrons contribute to the specific heat and

may be indicative of what type of electron pairing is occurring in a superconductor,

discussed below.

The right inset in Figure 64 shows the field dependence of the linear Sommerfeld

coefficient, γN , in the mixed state. This contribution in the mixed state is calculated

by fitting to the normal state heat capacity for the mixed state region. γN is normally

attributed to the normal state, in the superconducting state it comes from the

unpaired electrons in the vortex cores. For s-wave superconductors, this contribution

to the heat capacity is like a normal metal as it is proportional to the number of

cores containing free, unpaired electrons. This means that γN should behave linearly:

γN(H) = γ0H/Hc2 . However the inset shows clearly that this is not the case. The

fitted line in the inset is γN(H) = 58.33H0.5. This type of behaviour is normally
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Figure 65: Normalised thermal conductivity per unit temperature of TlNi2Se2 vs
H/Hc2 . This graph shows the TlNi2Se2 data compared to other materials such as the
single-band s-wave superconductor, Nb [54], the multiband s-wave superconductor,
NbSe2 [55] and the d-wave superconductor, Tl-2201 [56]. Additionally there are
two nickel-pnictide superconductors BaNi2As2 [57] and SrNi2P2 [58]. Image is taken
from work in [47].

observed in d -wave cuprate and some heavy fermion superconductors [49, 50, 51].

This behaviour can be indicative of d -wave behaviour, however we must be cautious

as there are s-wave superconductors that also exhibit this behaviour such as NbSe2

[52, 53].

Wang et al. used the data to estimate the effective mass of the electrons. Starting

from an estimated coherence length of ξ0 =
√

(Φ0/2πHc2) = 20.3 nm, we may then

calculate the Fermi velocity, vF = kBTcξ0/0.18~ = 5.484 × 104 ms−1. If we assume

a spherical Fermi surface, the Fermi wave vector is kF = (3π2Z/Ω)1/3 where Ω is

the unit cell volume and Z is the electrons per unit cell. Assuming Z = 6 (1.5

electrons per Ni atom) we obtain kF = 9.6×109 m−1. By combining this result with

m∗ = ~kF/vF we get m∗ ≈ 20me, confirming the heavy fermion behaviour.

The later investigation by Hong et al. focused on the nature of the gap structure.

This investigation also looked at the thermal conductivity and combined it with the
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specific heat data to provide more information on the electron pairing in TlNi2Se2.

A measurement of the thermal conductivity can be modeled by κ/T = κ0/T +

b/T 2. Figure 65 shows the normalised Wiedemann-Franz Law expectations for the

superconducting state, κ0/T and normal state, κN0/T = L0/ρ0 ≈ 40 mWK−2cm−1,

where the latent heat, L0 = 2.45×10−8 WΩK−2 and the residual resistivity is ρ = 0.6

µΩcm. The Wiedemann-Franz Law in general states that the ratio of the thermal

conductivity to the electrical conductivity is proportional to the temperature: κ/σ =

LT [59]. This is important as it identifies the role of heat and electrical transport on

the free electrons in a material. The Wiedemann-Franz Law is not entirely accurate

for all materials (it was developed before quantum mechanics to describe metals)

but does provide a way of comparing materials based on their ratio of thermal

to electrical conductivity with respect to temperature. By comparing values of

the normalised thermal conductivity with other materials we can move closer to

a classification of the type of superconductivity in TlNi2Se2. The ratios between

superconducting and normal state near 0K of the measured Wiedemann-Franz Law

values, ([κ0/T ]/[κN0/T ]) are 0.44% and 0.12% for two independent samples.

Using these values we can make a comparison between TlNi2Se2 and d -wave

superconductors. The value of κ0/T in zero field for a d -wave superconductor can be

estimated for TlNi2Se2 using the quasi-two-dimensional approximation [60, 61, 59]:

κ0

T
' ~γNv2

F

2π∆0

(118)

Where vF is the same as given above, γN is similarly calculated in a fitting

procedure as 40 mJmol−1K−2 and ∆0 is the maximum superconducting gap which

Wang et al. predicted as the upper of the two fitted gaps, ∆2 = 2.01kBTc. If TlNi2Se2

is a quasi-two-dimensional d -wave superconductor then we should obtain a value of

κ0/T ' 3.22 mWK−2cm−1 which is a ratio of ≈ 8%κN0/T . This is ≈ 20 times higher

than observed in the samples, making a d-wave interpretation inconsistent from

this comparative perspective. Additionally, the ([κ0/T ]/[κN0/T ]) curve is shaped
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Figure 66: Combined heat capacity and thermal conductivity results against field
showing a two gap structure in the electron pairing with the smaller energy gap
overcome at field H∗ ≈ 0.36 T. Image is taken from work in [47].

ambiguously insofar as it could be compared easily to the multigap and nodal s-

wave superconductors. But it is clearer in Figure 65 that it does not align with the

d -wave Tl-2201 superconductor or the strongly s-wave superconductor, Nb. These

observations suggest the pairing symmetry is less likely to be d -wave whilst not

ruling out an unconventional case.

It is conceivable that the sample is dirty, which has affected its properties. Super-

conductors can be classified as clean or dirty, as covered in section 1.5.To determine

this for TlNi2Se2, we calculate the mean free path of the electron, le = τvF where τ

is the time between collisions. We then compare the le in the normal state with ξ0

to find the clean and dirty limits, le � ξ0 and le � ξ0 respectively. We can estimate

the mean free path and use the previously calculated coherence length, ξ0 = 20.3

nm. We can calculate the mean free path using the following:

κ

T
=

1

3
γNvF le. (119)

This yields the electron mean free path le ' 677 nm. We compare this value to the

clean limit of le/ξ � 1, which gives le/ξ ' 33.3. We can therefore be sure that the

samples are in the clean limit.

Figure 66 is the second part of the investigation by Hong et al.. This combines the

thermal conductivity as a ratio with the residual specific heat, measured by Wang
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et al. at varying fields, where we have already shown that this has a value of zero at

zero field. Figure 66 shows a rapid increase up to a field H∗, whereupon the smaller

gap is suppressed. One can estimate the ratio of the smaller gap, ∆s to the larger

gap ∆l, by plotting the data in Figure 66. In the region of H∗ < H < Hc2 , the Fermi

sheet with the smaller gap energy is suppressed by the applied field, and so only

the larger gap contributes to the rise in (κ0/T )/(Cres/T ), resulting in the change in

gradient above H∗, where H∗ ' 0.36Hc2 = 0.29 T. Given that Hc2 ∝ ∆2/v2
F , we can

estimate that ∆small/∆large ≈ 0.6.

6.3 Heat capacity studies of TlNi2Se2

To supplement the SANS work conducted on these samples, an additional inves-

tigation was conducted to compare with the previous investigations into the heat

capacity with respect to field and temperature. The key previous findings were that

the heat capacity phase transition peak in the superconducting phase could be bet-

ter modelled by a two-gap system and that the Sommerfeld constant followed a field

dependent behaviour of γN ∝ H0.5, typically associated with d -wave systems [48].

The subsequent heat capacity investigation presented here was conducted in

situ at the University of Birmingham using a Quantum Design Physical Property

Measurement System (PPMS). The PPMS has a heat capacity puck calibrated down

to 1.81 K, setting the available temperature range for measurement. This is in

comparison to the 0.5 K accessed in previous work [48]. Initially the heat capacity

was measured for the superconducting state over a temperature range of 2-4 K at

0 T, compared to the normal state measured over the same temperature range but

for 0.9 T, well above Hc2 . These results are shown in Figure 67. The results show

a comparable value of the peak heat capacity, with peak heat capacity after the

superconducting transition reaching C/T ≈ 140 mJ mol−1 K−2 for 0 T. This is

compared to Figure 64 which shows a heat capacity peak of C/T > 120 mJ mol−1

K−2.
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Figure 67: Heat capacity per unit Kelvin, C/T at 0 T (superconducting phase)
and 0.9 T (normal phase) versus T 2; these units are chosen to maintain parity with
Figure 64.

To recap from earlier discussions of the heat capacity results in the work of Wang,

Hong et al., the heat capacity can be modelled in the normal state by CN(T ) = γT+

δT 3 + βT 5, γN is the Sommerfeld constant and δ and β are other numerical fitting

constants. By solving for C/T we can fit the data with γ as the zero temperature

intercept of the y-axis, γ0. By establishing the value of γ0 for each field we can

develop a description of the behaviour of the Sommerfeld coefficient, γN . To establish

the superconducting behaviour of the heat capacity we measure the normal state

heat capacity and the heat capacity with the superconducting transition as shown

in Figure 67. We must then normalise the data that includes the phase transition

to the background of the normal state: Ces = C −Clatt, this effectively removes the

contribution of the ion lattice leaving only the contribution of the electrons to the

heat capacity.

Results in Figure 68a demonstrate the heat capacity response over the tempera-

ture range of 2 K to 4 K for fields up to 0.3 T. We can see a clear suppression of the

superconducting phase as the field strength increases. Unfortunately we were unable
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(a) (b)

Figure 68: (a) Heat capacity per unit Kelvin versus temperature for fields up to 0.3
T. Above this field the superconducting phase was suppressed to temperatures below
the accessibility of the PPMS, which was calibrated down to 1.81 K. (b) Theoretical
calculation of Bc2 , Bc1 and Bc compared to the results form the heat capacity scans.
The value for the critical temperature associated with the applied field is take from
the centre of the initial slope increase of the heat capacity, representing the middle
of the phase transition.

to probe to lower temperatures due to calibration limits on the heat capacity puck,

this means fields were only probed up to 0.3 T. Above 0.3 T the superconducting

state was suppressed below the calibration temperature for measurement. We see in

Figure 68a that there is uniform overlapping of the normal state part of the curve

for each applied field.

The results of analysing the field sets in Figure 68a give the values for Bc2 versus

temperate by finding the mid-point of the initial heat capacity slope as the peak

develops from the phase transition upon cooling to the superconducting state. The

values for the upper critical field are presented in Figure 68b alongside the theoretical

predictions from earlier work, using the coherence length calculated in [48] and using

the Ginzburg-Landau framework [10].

The results of the measured upper critical field indicate a more suppressed su-

perconducting state than expected, suggesting a more linear phase diagram than the

Ginzburg-Landau prediction for the upper critical field behaviour in the low-field

regime, explored by the heat capacity study. According to theoretical calculations
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Figure 69: Sommerfeld coefficient, calculated from the normal state data points,
versus applied field. Shown are the expected Sommerfeld behaviour for BCS super-
conductors [10, 48] and the behaviour observed by Wang et al. [48].

we are in the superconducting mixed state at that field and temperature.These

results are somewhat in disagreement to previous resistivity and magnetisation re-

sults which confirmed an upper critical field of 0.8 T. This could suggest that the

behaviour of the Bc2 curve versus temperature deviates from expectations. If the

behaviour does in fact deviate at much higher fields in the low-T regime this would

explain why the conditions of 0.5 T and 0.15 K act as if they are much closer to the

boundary line between the normal and superconducting states while still approxi-

mately maintaining a zero temperature value of Bc2 = 0.8 T. It is also reasonable

that the experimental conditions made it difficult to detect a weak but present signal

for fields much closer to Bc2 , and with a longer count time a VL may have been re-

solvable for fields above 0.5 T. It would also be possible to resolve this by measuring

the heat capacity at higher fields, however this would require having calibration for

lower temperatures, which has not been possible.

A key indicator, identified in the literature [48], of unconventional superconduc-

tivity is the unusual behaviour of the Sommerfeld constant in the heat capacity in
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the normal state. Previously the Sommerfeld coefficient had exhibited a relation-

ship with the field of γN = 58.33H0.5; this is often associated with d -wave behaviour

[48]. Typically we would expect the Sommerfeld coefficient to be linear with field,

γN = γ0B/Bc2 in a standard BCS case as the number of free electrons contributing

to the heat capacity is proportional to the strength of the applied field, as previously

discussed at the beginning of this chapter regarding the work of Wang et al. We

see in Figure 69 the difference between the previous fit and the BCS case, but what

is more apparent is that the new Sommerfeld coefficient data does not conform to

either model and appears to be (for most of the field range) independent of the field

and hold a roughly constant average value of γN ≈ 43 mJ mol−1 K−2.

The low field behaviour is unreliable due to the number of data points in the

normal state being minimal for the full scan width in T and the lowest point of the

normal state being further from T = 0 K. This introduces a lot of uncertainty in a fit

for the y-axis intercept to acquire the γ0 value. As such it is reasonable to distrust

the data range of B ≤ 0.2 T. Attempted fits using the power law framework to these

results has produced untenable results with high margins of error and unphysical

behaviour. Further investigation of the heat capacity, specifically the Sommerfeld

coefficient, would be prudent in order to establish the free electron behaviour under

field and temperature variation. As the investigation currently stands, these results

do not conform to the behaviour seen in [48] whilst also clearly not conforming to a

conventional model, however they are of an agreeable magnitude with the previous

normal state fit at 6 T in [48] yielding γN ≈ 40 mJ mol−1 K−2 compared to an

average value in this investigation of γN ≈ 43 mJ mol−1 K−2. This at least supports

the previous discussions in this investigation that clearly point to an unconventional

model to describe the superconductivity in this material.

As previously discussed in this section, we may extract just the free electron

component of the heat capacity, Ces by normalising to the background (the normal

state). Figure 70 shows the adjusted free electron component of the heat capacity
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Figure 70: Unitless adjusted heat capacity per unit temperature, Ces/γNT versus
reduced temperature, T/Tc. These results are modeled in the same manner as in
[48] using Ces(T ) = C0e

−∆/kBT . The results are presented with the fit applied in
[48] and a fit to this new data set.

calculated from the 0 T data set and the background at 9 T in Figure 67. The dotted

black line represent the two-gap fit from [48], ∆0 = 2.01kBTc, while the blue line

represents the fit to the calculation of Ces from the new data, ∆0 = 1.23kBTc. We

also find very different values of the pre-factor, C0 with the previous results yielding

C0 = 65.69 mJ mol−1 K−1 and the new fit giving C0 = 19.53 mJ mol−1 K−1.

This new calculation and fit for the unitless representation of the free electron

behaviour in the superconducting state deviates fairly significantly from previous

results. We see a more suppressed gap function that does not conform to standard

predictions for the gap function for unconventional behaviour. Prozorov et al. [92,

101, 30] outlined limits for the gap function given certain pairing symmetries for

the Cooper pairs. The standard BCS fit is ∆s−wave
0 = 1.76kBTc, but for nodal and

d -wave behaviour is enhanced; two-dimensional d -wave behaviour can be described

by ∆d−wave
0 = 2.14kBTc.

Given that all our current analysis thus far points to an enhanced gap function it

seems there are limitations to our data and with the approach to the analysis. Pri-
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Figure 71: Heat capacity at 0 T from 2 K to 4K showing the superconducting
transition upon cooling. Heat capacity data has been fit with a power law model,
C = aT b to check for unconventional behaviour in the superconducting state [10, 48].

marily we are lacking in low temperature data for a fuller comparison; the previous

work on heat capacity was able to access almost double the low temperature regime

that we have been able to access. This makes fitting functions more challenging

as the data set ends further from the y-axis, so a greater amount of uncertainty is

incurred when attempting to establish a fitting model and parameters with a great

degree of accuracy. As a result we take the analysis in Figure 70 with some degree

of skepticism until a larger temperature range is accessed; it is possible that at low

temperatures the data still conforms to the previous fit but near Tc there is some

artificial suppression of the gap function.

If we return to fitting the heat capacity data under zero field, we have another

option besides the BCS fit of C(T ) ∝ e−∆/kBT . Instead we can use a power law

fit of C(T ) = aT b, which corresponds to unconventional effects that make the su-

perconductor more sensitive to temperature variation in the low-T regime [32]. In

Figure 71 we show the heat capacity results at zero field cooling through the su-

perconducting transition with a power law fit made to the superconducting state

curve up to the transition peak. In a power law fit, the size of the power can tell
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you about what kind of unconventional system you are looking at, with the general

interpretation being C(T ) ∝ T 2 for line nodes and C(T ) ∝ T 3 for point nodes in the

gap [10]. In this case we see a fit of C(T ) ≈ 0.24T 2.71, where we have the specific

power fit of b = 2.710 ± 0.014. This is a good fit with small errors, indicating a

tendency towards the point nodes interpretation of the gap structure.

6.4 Preliminary results for TlNi2Se2: SANS-I, PSI, Novem-

ber 2015

In order to test whether a signal was detectable for the SANS-I experiment, the six

available samples were aligned using X-ray diffraction (XRD) with the Brüker D5000

available at the University of Birmingham. This method uses Bragg diffraction to

determine the inter-atomic spacing in crystals. By looking for Bragg peaks at the

[004], [404] and [044] vectors, the alignment of the crystal could be determined

([004] etc were chosen due to structure factor considerations). The samples are

flat platelets. We confirmed that the largest flat face of the platelet samples was

perpendicular to the c-axis. As the samples are tetragonal down to the lowest

temperatures, their a and b axes are equal, so as long as these are aligned at 90◦

with each other. Then there will be a clear diffraction pattern when conducting

a SANS investigation. Otherwise a rotation in a sample out of alignment would

produce a pattern where, rather than a hexagonal pattern for the VL being seen,

slightly rotated hexagonal VLs would produce an azimuthally smeared diffraction

pattern.

Figure 72 shows the diffraction pattern produced by the D11 instrument at the

Institute Laue-Langevin (ILL) in Grenoble in July 2015. These scans were performed

at the end of a different experiment by Randeep Riyat. This image is compiled from

twenty one scans of 180 s each that rock the sample φ from −2◦ to 2◦ in steps of 0.2◦,

where φ is the polar angle of the sample. This rock in φ is why the spots on the left

and right hand side of the image are brightest because these sides have been sampled
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Figure 72: Diffraction pattern from D11 at the ILL of TlNi2Se2, wiggle cooled φ
rock of −2◦ to 2◦ in steps of 0.2◦ counting for 180 s at 150 mT. Field was wiggled at
±5 mT from 5 K to 1.4 K. The two degenerate hexagonal VLs are drawn in black for
clarity. These scans were conducted by Randeep Riyat, from the Condensed Matter
Group, University of Birmingham.

more often compared to the top and bottom of the sample due to the rocking curve

measurement. Twelve spots are seen with no obvious smearing evident. This points

to two degenerate hexagonal VLs, this means the VL is twofold degenerate; the same

twofold degeneracy is seen in KFe2As2 [12]. The degeneracy in KFe2As2 becomes

interesting when the sample is rotated relative to the field and neutron beam or

the field is varied in strength, as both VL domains rotate at different rates until

they become one VL domain and then the single domain will distort with increasing

angle or field strength. It is possible this effect could be observable in TlNi2Se2 with

variation in field and angle.

For the preliminary experimental investigation at PSI we used a collimation of

18 m and a wavelength of 8 Å. Our beam intensity, according to Figure 73, is ≈ 105

counts s−1cm−2mA−1. However, we need to take into account the rocking curve

width and move to a more standard unit of length than cm. Assuming a rocking

curve width of 1◦, yielding ≈ 2 × 107 counts s−1m−2mA−1. Next we must divide
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Figure 73: The SANS-I beam intensity values vs neutron wavelength for selected
values of collimation. Image taken from [38].

by the PSI neutron current for SANS-I, 2000 mA. This gives a predicted integrated

intensity of ≈ 104counts s−1m−2, which can be applied as an approximated solution

using the Christen formula in order to find a predicted value for |F (q)|. This pre-

dicted intensity is sufficient for a signal to be detected at SANS-I for a 1◦ rocking

curve width at q = 0.0105 Å−1 in a 0.5 T field.

The results from the ILL and preliminary scans at PSI indicated that the clearest

results, that is the best spot intensity in a given time, was found to be with a rocking

curve of ±1.4◦. This gave the best image for representing the results as well as

providing enough intensity for the scan time.

Results from PSI in November 2015 were sparse, there were problems with the

target station and the dilution mixture stability over the range of 0.1 K to 4 K

leading to a loss of a significant amount of scanning time. Nonetheless they were

useful for motivating subsequent investigations at the ILL, with four clear diffraction

patterns that confirmed estimations of the penetration depth of the order ≈ 200 nm

but the investigation had insufficient evidence to conclusively demonstrate whether

a second gap function is suppressed at around 0.29 T or not.

Figure 74 shows the first of four scans with a clear diffraction pattern of two
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hexagonal VL domains. This image is the clearest of the four with the strongest

signal and highest integrated intensity. This scan also yields the largest form factor

for the VL, which we will compare with the other scans later in this section.

Figure 76a shows a much weaker signal for the two degenerate diffraction pat-

terns, however it is still visible with a q value consistent with predictions. It is

here that we can make a reasonably informed comment on the suppression of the

smaller gap function. It is possible that this is the explanation for the rapid drop

in integrated intensity between the 0.2 T results and the 0.3 T result with the 0.4

T and 0.6 T results in Figures 76b and 76c, respectively, showing a steady decline

in signal strength compared with the difference between the 0.2 T and 0.3 T signal

difference. However, this is not thoroughly conclusive in showing the suppression

of the lower gap function below 0.3 T, but it is complementary to previous results

by Hong et al.. Given the evidence supporting the suppression of the smaller gap is

dependent on the relatively low |F (q)| signal at 0.4 T or the higher signal at 0.6 T,

we cannot conclusively say that this data is in support of two gaps.

By 0.6 T the signal is very weak and extracting a q value using GRASP from this

data set proved difficult. However from this set we were able to generate FF values

for all four fields and a calculation of the London penetration depth using the 0.2 T

data. The London penetration depth was initially estimated, assuming a spherical

Fermi surface, using the Wang et al. calculations for coherence length to be of the

order of 200 nm. Using Equation 105 (without the exponential term) the London

penetration depth was calculated as λL ≈ 212 nm. This falls very close to our initial

predictions and allows us to make better estimates of the Cooper pair number density

and effective mass of the electrons in this heavy fermion superconductor. However

more data is required before we may make an accurate calculation of the penetration

depth, or other characteristic parameters, with any degree of certainty or with a

reasonably small error.

The calculated |F (q)| results from the measured integrated intensity are shown
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Figure 74: Diffraction pattern of the VL in TlNi2Se2 at 0.2 T and 0.1 K. The pattern
shows intensity in counts per standard monitor, with a monitor of 100 for this scan
(monitors of 50 were taken for the background scans). Two hexagonal VL domains
are clearly visible with the top two spots at approximately ±15◦. This scan does
not indicate any anisotropy in the system, however the lower gap function is not yet
suppressed, according to previous investigations. The top-most right and bottom-
most left spot were combined to find the q value for the peaks. Theses peaks had
the most exposure to the neutron beam as they lie approximately along the axis of
rotation for the rocking curve. The q-value was found at q = 6.75× 107 m−1.

Figure 75: The averaged and Lorentz corrected |F (q)|. The results show a marked
decline in |F (q)| above 0.2 T. However there is a lack of results around the predicted
transition point to see the suppression of the smaller gap function. This is predicted
to be at ' 0.29 T.
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(a) (b) (c)

Figure 76: Diffraction patterns produced from the preliminary results at PSI on
SANS-I for TlNi2Se2 for fields of 0.3 T to 0.6 T and a temeprature of 0.1 K to
0.13 K for all scans. (a) Diffraction pattern of the VL in TlNi2Se2 at 0.3 T and
0.1 K. The pattern has the same monitor settings as previously described. Two
hexagonal VL domains are partially visible. The q-value was found at q = 8.3× 107

m−1. (b) Diffraction pattern of the VL in TlNi2Se2 at 0.4 T and 0.1 K. The pattern
has the same monitor settings as previously described. The q-value was found at
q = 9.84×107 m−1. (c) Diffraction pattern of the VL in TlNi2Se2 at 0.6T and 0.1K.
The pattern has the same monitor settings as previously described. The q-value was
found to be q = 1.15× 108m−1.

in Figure 75. The results show a decline in |F (q)| above 0.2 T. There is insufficient

evidence to point to Pauli paramagnetic effects, however this is not entirely ruled

out due to the low number of data points acquired overall in this preliminary in-

vestigation. The suppression of a gap function in a multi-gap superconductor will

destroy Cooper pairs associated with that gap energy, reducing the variation of the

magnetic field associated with the VL as there are less Cooper pairs able to screen

out the penetrating field lines. However, the lack of data above 0.6 T as well as

below 0.2 T and intermediate fields means we do not have a clear indication of the

transition point where a smaller gap function might be suppressed if present in the

manner predicted by Wang, Hong et al.. Also we cannot see how |F (q)| behaves

at small and large field ranges, relative to Bc2 , as well as across broad temperature

ranges. All of these factors were strong motivators to continue investigation into

this material at the ILL with a more intense beam and more stable low-temperature

control.
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6.5 Results for TlNi2Se2: D33 beamline, ILL, December

2016

The following section represents the results and analysis for the investigation on

TlNi2Se2 on the D33 beamline, ILL in December 2016. The sample was subjected

to fields up to 0.6 T, and a temperature range of 100 mK to 3.5 K. The sample was

also rotated with respect to the applied field from 0◦ to 30◦, with the applied field

aligned parallel to the neutron beam and the sample aligned approximately parallel

to the neutron beam at 0◦ rotation of the sample c-axis with respect to the field.

In this investigation the sample was subjected to fields up to 0.5 T across four

angles of rotation in Ω: 0◦, 10◦, 20◦ and 30◦. However, for the 20◦ results a problem

was encountered. At this angle a large, asymmetric spot of reflection on the left-

hand side of the diffraction patterns was observed. The position and intensity of the

spot varied slightly with the rocking of the sample and as such it was concluded that

this was caused by a canted edge of the cadmium window surrounding the mosaic.

The right hand spot of the VL was not affected or obscured, however the left-hand

spots were. Point-by-point subtraction in GRASP was able to eliminate some of

the effects of the cadmium reflection, however this still left some spots with poorer

statistics in each of the rocking curves at this angle. This was especially problematic

at low field, where the VL left-hand spots were in the exact same region of q-space as

the Cd reflection. For higher fields this was partly mitigated by the increasing value

of q for the VL spot. The net effect of this made the 20◦ unreliable for comparison

to the other angles, given that any unusual or interesting behaviour would not be

reasonably separate from the varying reflection noise in the signal. This resulted in

this set of data being omitted from the analysis here.
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(a) (b)

Figure 77: (a) Diffraction pattern of the VL under an ω (san) rock of ±0.8◦ in steps
of 0.05◦ at 2 minutes per point. As there is no rotation of the centre of the rock
relative to the field, the secondary domain is still visible. Hexagons in white indicate
the two domains in the diffraction pattern. The red sectors indicate the sector boxes
used for extracting the integrated intensities from the diffraction images in GRASP
software. See section 8.1, Appendix A for details on the use of GRASP and sector
boxes. (b) Similar to (a) but at a fixed rotation of Ω = 10◦ to remove the second
domain (see Figure 78b). Here the diffraction pattern χ is defined relative to the
y − x axes of the image. The opening angle η in (a) is defined in the χ coordinate
system.

6.5.1 Vortex lattice structure

Preliminary data highlighted the prevalence of a strong signal for a secondary domain

of the VL, visible for the majority of the field ranges and temperatures accessed. In

order to clearly see the evolution of any structural changes in the VL, the secondary

domain needs to be suppressed. To do this the sample mosaic is altered compared to

the preliminary setup. Here the single crystals are arranged such that the a and b

axes are no longer aligned parallel to the φ and ω axes of rotation, respectively but

instead the samples are rotated such that the a and b axes are at 45◦ to the normal

of the ω and φ planes. This rotation was made in order to break the symmetry

between the second domain and the crystal structure for rotations away from c ‖ B

and thus suppress the second domain by angular variation. This arrangement is

illustrated in Figure 78a. In this investigation we also rotated the sample by a fixed
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displacement in ω with respect to the field, about which point the ω and φ rocks

were conducted. These fixed displacement angles are denoted by Ω and were taken

at 0◦, 10◦, 20◦ and 30◦. At Ω = 0◦ the second domain is preserved but for larger

angles the second domain integrated intensity rapidly falls as the secondary VL no

longer satisfies the same symmetry conditions of the underlying crystal symmetry

upon rotation in ω with the initial rotation of 45◦ normal to ω, previously outlined.

Figure 77a shows a very clean signal of a well ordered primary and secondary

domain, with only a low intensity signal for the top- and bottom-most spots due

to these spots being approximately parallel to the axis of the rocking angle ω, so

these spots underwent the least amount of rocking of all the VL spots. The two

hexagonal lattices are clearly well aligned, which is prevalent through all results

with a 0◦ rotation in Ω. The left- and right-most spots are highlighted by red sector

boxes to define the region of analysis in GRASP software, a process fully explained

in Section 8.1, Appendix A. These two highlighted spots have a Lorentz factor of

approximately unity in the ω scans and therefore are very useful for preliminary

analysis and establishing q values for the VL for this rocking orientation. For φ

scans there are no spots in the first domain that have alignment to the plane normal

to the φ rocking angle and so a Lorentz factor is of much more importance in that

case.

Observation of the VL structure evolution with field and temperature indicated

only small structural changes with no definitive shift to a rhombus or square shape,

as is characteristic for d -wave superconductors [89]. What we observe is the standard

evolution of the VL as a function of q in relation to the applied field B, as demon-

strated in equation 84. Instead the VL shows a remarkable stability and maintains

an isotropic hexagonal arrangement throughout despite evidence to suggest multiple

gaps and/or d -wave pairing symmetry. This provides very strong evidence from the

outset that a d -wave pairing mechanism or d -wave contribution is perhaps unlikely

here.
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(a) (b)

Figure 78: (a) Image of the mosaic of the seven single crystal samples. These samples
are approximately 0.13mm thick and have a total volume of 4.68×10−9m3. The solid
lines indicate the a-plane alignment of the crystals, rotated to 45◦. The dashed lines
indicate the rocking axes relative to the crystal axes, with φ rocks being a rotation
about the horizontal x-axis and ω rocks a rotation about the vertical y-axis. Fixed
displacements in ω, which act as a new zero point for rocking, are denoted by Ω. (b)
Orientation and angles of the sample with respect to the applied field and neutron
beam. Included are the rocking angles (φ and ω) and displacement angle (Ω).

6.6 Field- and angle-dependent anisotropy of the VL in

TlNi2Se2

During this investigation all the diffraction spots of the VL hexagonal pattern were

used for calculations and data analysis. In the case of the anisotropy however, we

do not want to take an average over all Q values, because this will partly mask any

anisotropy present in the VL. Instead we must choose an axis over which to measure

the Q values, here we choose the left- and right-most spots which sit on the x-axis,

see Figure 77a. These spots have a Lorentz factor of almost unity with respect to

the ω scan angle and thus the smallest error factor in that regard while the top spots

would have a Lorentz factor for either the φ or ω scans and thus a slightly larger error

associated with them, as well as a smaller signal size. However, other neighbouring

spots in the VL are also used to improve the statistics and interpretation for the
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Figure 79: Anisotropy of the VL as calculated using equation 111. Reference line
at ΓV L = 1 indicates the area where there is no anisotropy in the VL. All three
values of Ω indicate the same behaviour of a linear relationship of the anisotropy
with respect to the field with a negative gradient.

purposes of an anisotropy investigation, such as for the calculation of angles between

spots, which will be explored later in this work.

An anisotropy value greater than 1 would suggest that the QV L value for these

spots is much smaller than expected, while a value of anisotropy smaller than 1

suggests a much larger value of QV L than expected. This can be understood as

a contraction or expansion, respectively, of the VL hexagon along the x-axis in

reciprocal space.

The anisotropy of the underlying crystal structure has been measured to be

c/a = 3.47. In addition, previous resistivity measurements by Wang et al. sug-

gest an anisotropy of ρc/ρab = 1.57, which lend validity to the idea that the VL

should experience anisotropy when the field or angle, Ω, is maximised due to un-

derlying anisotropy in the system. What we observe from Figure 79 indicates that

the anisotropy is weak but not insignificant, with the results for ΓV L demonstrating

a range of 1.3 < ΓV L < 0.6 (including errors), with the low field results having

small errors and thus demonstrating that there is anisotropy in the system related
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to field modulation. A common behaviour for all the results at the accessed angles

is the generally negative linear gradient of the anisotropy, crossing from ΓV L > 1 to

ΓV L < 1 around 0.3 T. For the spots in question this means that the VL is slightly

contracted at low fields and slightly stretched at higher fields along the x -axis. This

effect is small, with some results for the higher fields still sitting within error of

ΓV L = 1. This drift of the top/bottom pairs of spots suggests a weak interaction of

the VL with some underlying preference with field modulation.

In order to establish an understanding of the anisotropy in a superconductor, the

relationship between Ω and ΓV L must be investigated. In this case we have a poor

correlation between the data points to support anisotropy in the VL, according to

fits using equation 113. If we look at the results in Figure 80 we can see that the

fit for 0.3 T is very poor, while the fits for 0.1 T and 0.2 T are fair at best. Overall

we can see that the anisotropy in this system is not absent but it is small and

doesn’t follow a clear model of behaviour; the fits for ΓV L do not entirely conform

to observed behaviour in all instances. The 0.3 T data demonstrates the weakest

adherence to the model. This is likely due to the difficulty of defining the centre

and drift of a VL diffraction spot with a weak signal for this higher field. We can

say that the anisotropy exists, but is weak and more sensitive to field rather than

angle variation. This picture may change with more data at higher or intermediate

angles.

If we revisit the field dependent anisotropy we can extend our analysis of the

ΓV L(B) data by applying linear fits; this will not only highlight the evolution with

respect to field but also allow comparisons between the angles. The fits are as follows:

ΓV L(0◦) ≈ −0.82B + 1.2, ΓV L(10◦) ≈ −0.54B + 1.2 and ΓV L(30◦) ≈ −0.58B + 1.2.

These fits reiterate the consistent negative gradient of the anisotropy across all

angles. There is a clear tendency for the anisotropy to consistently intercept at

zero field around ΓV L = 1.2 and for the anisotropy gradient to be larger for Ω =

0. It is clear that more angles and larger angles are needed to complement the
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Figure 80: Anisotropy of the VL with respect to Ω, at 0.1 T, 0.2 T and 0.3 T. The
data is fitted to equation 113 with the values for Γac taken from the measured values
of ΓV L(Ω = 0) in Figure 79.

investigation into anisotropy in order to provide more definitive angle- and field-

dependent analyses of the behaviour of the VL in TlNi2Se2.

Another method of assessing the anisotropy is to look at the opening angle be-

tween two spots. This angle should be 60◦ for an isotropic VL, where the opening

angle η is defined in Figure 77 and used for the top and bottom spot pairs (Fig-

ure 77a) then averaged to assess the general trend to reduce sensitivity to fluctu-

ations. The orientation of the VL spots, from the observations of η in Figure 81,

do undergo an evolution with respect to field; this behaviour of η is not what is

typically expected with regards to other examples of anisotropic VLs. If we refer

to the work in [12] by Kawano-Furukawa et al. on KFe2As2 we see an evolution

of η (β in [12]) from an approximately isotropic case to on average an increase of

∆η ≈ 5◦. However, this η data is consistent with figure 79 as it shows the excess

drift of the top/bottom spot pairs. The opening angle is compressed below 0.3 T,

and expanded above 0.3 T. This infers that the top/bottom spot pairs are moving

along the x-axis more rapidly with changes in field than for a purely isotropic VL

case. Given this consistency we can say that there is a weak anisotropy in the VL.
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Figure 81: Calculation of the average opening angle η for the top and bottom spot
angular gap. A deviation from 60◦ would indicate a contraction or expansion in
the shape of the hexagonal VL along one of the axes. Generally, the results sit
within error of isotropy, while at high fields the larger deviations in angle are also
accompanied by much larger errors due to the weak VL signal here.

This drifting of the VL, especially the expansion of the VL above 0.3 T, is likely due

to the VL spots weakly coupling to the ab-axes of the crystal (Figure 78a). This

is more probable when we consider that work by Xu et al. [83] demonstrates that

the nodes in the gap structure are concurrent with the fourfold symmetry of the

underlying crystal axis. This makes it reasonable that the VL spots would try to

align with this underlying symmetry with applied field modulation. However, this

effect is still very small and requires further investigation. Expansion on the case of

the nodal structure is discussed earlier in Section 3.

Overall the relationship between field and angle with the anisotropy of the VL

is weak in TlNi2Se2 Anisotropic behaviour is often considered a clear indicator that

a superconductor is unconventional [89] (but this argument is not exclusive). If we

refer back to the resistivity measurements in [48], it is reasonable to expect some

anisotropy evolving with angle due to the greater resistivity in the c-axis of the

crystal. This complements the clear anisotropy of the crystal structure between
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Figure 82: Area of the hexagon made by the six VL spots evolving with field. The
area was calculated by summing the areas of each of the six triangles in the VL
using the η and Q values for each spot-pair.

the ab plane and c-axis. But, the anisotropy maximum peak for the 0.1 T data is

ΓV L ≈ 1.24 for variation with Ω. We see similar values with respect to B as well in

Figure 79. The value of 1.24 for the anisotropy is not unity, and as such we must

pursue more intermediate fields and angles in order to fully explore the evolution of

the VL structure and the existence of weak anisotropy in this material. Overall the

anisotropy is very low in comparison to structural equivalents like KFe2As2 [86], but

this does not rule out the case of unconventional superconductivity being present in

this material, of which we have presented ample evidence previously in this work.

The final part of the anisotropy investigation regards the overall area of the

hexagonal VL created by the visible six spots in reciprocal space. The total area of

the unit cell VL is conserved due to flux quantization, even under anisotropy. The

total VL area is only dependent on the strength of the applied magnetic field. It

is possible that any fluctuations measured in the anisotropy are due to fluctuations

in the applied magnetic field, such as deviations from the intended target field or

additional field contributions under the experimental conditions. If this is the case
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then the measured area of the VL will deviate from the expected VL area as it is

conforming to the real field rather than the set field.

The side of the regular hexagonal VL is defined by equation 84. The area of a

hexagon is given as A = 3
√

3a2/2. This means the area of a hexagonal VL with

regular and equal sides q = 2π/a, in reciprocal space should evolve linearly with

the field in reciprocal space, Aq = 6πB/Φ0. We see the area behaves linearly, as

expected for the full field range accessed. In fact, the area conforms very closely to

the expected area for the fields applied, which suggests there is only minimal error

on the value of the applied field.

There is some divergence in area between the angle sets above 0.35 T. The 10◦

set undergoes a slight decrease in area, the 0◦ experiences a slight enlargement and

the 30◦ data fluctuates partially around the expected line of area. Some of the

fluctuations are explainable alongside the larger errors; the signal here is somewhat

weaker and so the centre of the spots used to define the Q values is less well-defined

but some of the fluctuations are outside of the error bounds. Further measurements

at larger and intermediate angles of Ω could perhaps indicate whether this is indeed

a feature above 0.35 T, or are just fluctuations. Analysis of the form factor did not

clearly indicate any large deviations in the expected applied field.

6.6.1 Field dependence of the vortex lattice form factor

Figure 83 shows the measured integrated intensity with the first and second domain

data summed together for a total integrated intensity signal from the ω and φ rocks.

The errors in the 2nd domain signal are large due to their small signal size in

comparison to the background. In some cases a signal above the background could

not be obtained for the second domain for Ω = 10◦, 30◦. The signal for the 2nd

domain was significantly stronger for Ω = 0◦ and comparable in magnitude to the

1st domain signal.

It is clear from Figure 84 that the signal strength and resolution for the 2nd
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Figure 83: Integrated intensity measurements vs field (B) for varying Ω, averaged
over the ω and φ rocks, under field variation with 1st and 2nd domains summed to
a total intensity.

Figure 84: Integrated intensity measurements vs field (B) for varying Ω, averaged
over ω and φ rocks, under field variation with just the 2nd domain contributions.
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Figure 85: Integrated intensity measurements vs field (B) for Ω scans with only the
1st domain contributions. We see a signal strength increase for greater displacement
angles of Ω.

domain rapidly falls with increasing angle; as expected for a second domain signal.

Interestingly, when summed for both domains, we see that the 30◦ signal is still

slightly enhanced over the 10◦ and 0◦. Either there is some mechanism occurring

that we are not aware of, such as the presence of some anisotropy in the VL, or

there is a discrepancy between the set field and the actual field applied that creates

the VL.

In the case of the 1st domain only we also see a slight increase in integrated

intensity for increasing Ω in Figure 85. This change in integrated intensity could

be due to an error in the applied field, meaning the field we expect is not the field

applied during the experimentation. To check this we can plot Q versus the applied

field B and check the results alongside the expected Q values.

The results in Figure 86 indicate that for almost the whole field range, for most

values of Ω, the Q value is as expected. However, in the case of the 0◦ data between

0.25 T and 0.4 T there is a noticeable discrepancy. If this is calculated backwards to

find the experienced field at that point we find an almost constant field discrepancy

of 39 − 42% higher field for that segment. It is not clear whether this is due to

anisotropy or a systematic error during experimentation, but it seems unlikely that
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Figure 86: Measured Q values of the field dependent data versus the applied field.
If there was a discrepancy in the applied field or any anisotropy, there would be a
deviation from the expected Q line. There is some deviation from the expected Q
for the 0◦ data set between 0.25 T and 0.4 T, but not for the whole range nor all
values of Ω.

an incorrect field was applied for a small segment of one set of scans for one angle.

The field dependent results are presented in Figure 87. The results are presented

with a logarithmic y-axis for the form factor; this is because a trend of linear or non-

linear relation to the field in a logarithmic representation indicates how the exponent

in the Gaussian correction term in equation 105 varies with field. The most obvious

change in the form factor is the increase of the signal strength with increasing angle.

Effectively the increase of Ω seems to improve the order of the VL and increase the

signal of the form factor by a small factor; as previously highlighted and discussed

for the integrated intensity. There is no visible feature in the data around 0.3 T,

which would correspond to the suppression field of H∗ = 0.36Hc2 = 0.29 T for the

smaller gap predicted by Wang et al. as shown in Figure 66.

6.6.2 Temperature dependence of the vortex lattice form factor

Observing changes in the VL with respect to temperature tends to produce results

that can be indicative of the pairing mechanism and the nature of the superconduc-

tivity in a material due to the strong temperature dependence of the characteristic
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Figure 87: Form factor (|F (q)|) measurements vs field (B). Note the increase in the
form factor signal with increased angle carried through from the integrated intensity.
The results show a slight deviation from linear behaviour with a log(y) axis. This
is indicative of a non-constant Gaussian term for the core correction, which could
suggest a coherence length value that varies more than just at the regime of T → Tc
as we would normally expect.

(a) (b)

Figure 88: (a) Integrated intensity versus temperature (T ) averaged over the ω and
φ scans. The scans were taken at 0.15 T as this presented the largest integrated
intensity signal from the field dependent results, see Figure 85. (b) Integrated
intensity versus temperature for the ω and φ scans separately. For the majority of
the temperature range there is good agreement between the scans, with most of the
temperature scan points for ω and φ within error of each other. At the extremes of
the temperature range there is somewhat more divergence.

parameters λ(T ), ξ(T ) and ∆(T ). As part of the investigations at ILL, sets of ω and

φ scans were taken at a displacement angle of Ω = 30◦ rotation and 0.15 T with the

temperature varied from 0.1 K to 3.5 K. The rotation angle (Ω) was chosen as it had
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(a) (b)

Figure 89: (a) Average form factor versus temperature calculated using the Christen
formula (equation 104) and averaged over the ω and φ scans. (b) Form factor versus
temperature for the separate ω and φ scan results; also calculated using equation 104.
These results highlight some divergence in behaviour above T = 2.3 T.

given the largest integrated intensity signal in the previous sets of field dependent

data (see Figure 85). The field of 0.15 T was also chosen for the large integrated

intensity signal in the field dependent data, as seen in Figure 85, whilst the spots

of the VL in q-space are not too close to the beam-stop for 7Å. A wavelength of

12 Å was used for some of the field dependent data for very low fields but this was

not used in the temperature dependent scans for expediency and consistency during

experimentation.

The results in Figure 85 show the temperature dependent integrated intensity

averaged over the ω and φ scans. For this work we will make calculations using both

the averaged and split results in order to highlight discrepancies in the split data

that might be indicative of anisotropy or multi-gap behaviour, whilst also producing

averaged behaviour alongside.

Figures 89a and 89b represent calculations using the Christen formula. The

results of the separate ω and φ scans show a divergence between the scan angle results

for T > 2.3 K. This divergence has not been hinted at in previous literature regarding

the heat capacity or thermal conductivity, it could be evidence of anisotropy in the

superconducting state or a disparity in the size of the gap between two different
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(a) (b)

Figure 90: (a) Measured Q value averaged over the ω and φ scans with respect to
temperature. A reference line is also added showing the expected Q value for the
applied field, Q = 5.7474 × 107 m−1 for B = 0.15 T. (b) Separate ω and φ scan
values for Q. There is generally good agreement except for the anomalously different
values at 0.5, 0.7 and 0.9 K for φ that are much closer to the expected value.

directions in the crystal. It is possible this is representative of a feature or some

mechanism of the superconductivity. However, we must rule out that there isn’t a

systematic error in the applied field for these scans. If the field deviated from the

set field during experimentation, this would affect the Q value of the VL spots, the

integrated intensity and thus any calculations made using I(Q). In order to check

this we must compare the Q values of the scans to the expected Q for the applied

field.

The values presented in Figures 90a and 90b show a clear and near-consistent

deviation of both sets of scans from the intended applied field, apart form three

anomalous results at low temperature (0.5-0.9 K) in the φ scan set. The rough

average of the scans is Q ≈ 5.5 × 107 m−1, this translates into a field of B = 0.14

T; this is ≈ 8% smaller field than expected, but the differences between the ω

and φ scans are minor compared to the overall difference between the expected Q

and the average Q of both sets. This isn’t concurrent with the field dependent Q

discrepancies from Figure 86 that show the applied field was larger than expected

but only for the regime of 0.25 T to 0.4 T. The excess field for the field dependent

investigation may likely be due to an additional remnant field adding to the applied
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field during scanning. Alternatively there may have been some discrepancies with

the VL lattice preparation in this temperature regime.

The discrepancy for the temperature dependent scans is much smaller and fairly

consistent in size for all temperatures accessed. The decline in the Q value at high

temperatures coincides with a dramatic increase in error size and so indicates that

the drop off in Q is likely tied to the difficulty of measuring a signal and ascertaining

the Q value of diffraction spots with weak signals. As such, the majority of the Q

values presented here broadly conform to a constant applied field within 8% of the

target applied field of 0.15 T. This is fairly significant however, analysis of the overall

area of the VL with respect to the Q in Figure 82 demonstrates that for the field

dependent results these problems were not mirrored. If we also look to the impact

of anisotropy on the measured values of Q in the previous section, it is conceivable

that anisotropic variation of the VL had a role in the deviations observed here.

6.6.3 FWHM of the VL spots vs field and temperature

For both the |F (q)| vs B and |F (q)| vs T results, the full-width half-maximum

(FWHM) of the rocking curves that generate these results can give some indication

as to whether the application of stronger magnetic fields or an increase in tempera-

ture affect the disorder in the VL. Typically we would expect increasing temperature

to cause greater disorder in the VL and thus increase the FWHM as the number of

screening electrons (Cooper pairs) is reduced for a given field.

The FWHM of the temperature scan data in Fig. 92 taken from the rocking

curves indicates a slight decrease in the FWHM with increased field. The behaviour

of the FWHM with respect to the field is comparable to that of the integrated

intensity with respect to field. This suggests the FWHM is tied to the size of the

overall signal of a VL spot above the background, rather than being proportional to

the applied field strength.

From Figure 91 we can see a rapid drop in the FWHM between 0.05 T and
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Figure 91: FWHM of the VL spots in ω with respect to applied field (B) for the
full range of angles accessed. The results broadly conform to a power law relation,
with the 30◦ results showing a marginally broader FWHM.

Figure 92: FWHM of the VL spots in ω with respect to temperature (T ) at Ω = 30◦.
Overall there is a linear decrease in the FWHM with respect to temperature.
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0.3 T, with the FWHM leveling out above 0.3 T. The results are fitted as follows:

yFWHM
0◦ = 0.0720B−0.889, yFWHM

10◦ = 0.0716B−0.915 and yFWHM
30◦ = 0.0797B−1.013,

essentially FWHM ∝ 1/B. With increasing angle the overall FWHM increases

slightly while the rate of decrease of the FWHM also goes up with increasing angle;

this is consistent with the slight increase in signal strength with Ω. We see that the

pre-factor increases from 0.0716 to 0.0797 from 0◦ to 30◦ and the power goes from

-0.889 to -1.013 within the same interval. This might suggest that at smaller angles

we see less disorder in the form of a smaller FWHM. However, this effect is only

strong for low fields as the high field results generally tend towards a levelling-out of

the FWHM, with some fluctuation and larger errors. This is indicative of a weak VL

signal, with results fluctuating around an equilibrium for the FWHM at the highest

fields. The fluctuations at high fields could indicate a slight increase in overall signal

size but are much more likely reflecting the large noise to signal ratio at these high

fields (as indicated by |F (q)|, where at high fields the form factor signal is very small

compared to the background).

What we can say is that the very large FWHM at very low fields may not en-

tirely be due to the larger signal overall, it is possible there is a contribution of

larger disorder in the VL for weaker magnetic fields. We see a different effect for the

FWHM with respect to the temperature. Figure 92 indicates that the FWHM falls

approximately linearly with T and can be fitted as FWHM = −0.0446T + 0.4697.

This small but steady reduction in FWHM with increasing temperature may suggest

that there is actually a slight decrease in disorder for the VL for the higher tem-

perature regime. If this is the case, it could be due to a higher temperature freeing

pinned flux lines and thus increasing the order of the VL as it rearranges towards

a more energetically favourable arrangement. However, we have outlined already a

wiggling procedure for cooling that normally mitigates any pinning issues. In the

case of the ILL investigation in December 2016 some scans were performed without

the wiggle-cooling procedure and the VL signal was significantly more disordered,
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(a) (b)

Figure 93: (a) Integrated intensity vs temperature (T ) with null hypothesis approach
using the Prozorov et al. [92] models. (b) Same approach as in (a) but for the form
factor, |F (q, T )|. These graphs are the same approach for modelling the data as in
the chapter investigating (Ba0.5K0.5)Fe2As2, with the data sets of the rocking scans
averaged together in order to see the integrated intensity and form factor behaviour
of the whole VL. This approach does, to some extent, screen out potential anisotropy
and multiple pairing mechanisms tied to different crystal axes, however.

with a weaker, smeared VL signal. It is likely that the small linear decrease in the

FWHM is in line with the clear linear decrease in the form factor signal, as illus-

trated in Figure 89a, and as such the FWHM is scaling with the total signal size

with respect to temperature.

6.6.4 Comparison of the integrated intensity data with ideal models

Figures 93 and 94 illustrate the application of the null hypothesis discussed earlier

(section 2.7). These figures show the comparison of the integrated intensity data and

form factor calculations (both split sets and averaged) compared to their respective

models, given a particularly strong emphasis of a pairing mechanism; either s-wave

or nodal.

It is immediately obvious in the case of Figure 93a and Figure 93b that the data

does not support a simple BCS, s-wave interpretation. Given the smaller errors in

the integrated intensity data, this can be used more reliably to state what kind of

pairing mechanism is dominant. Overall, it appears that the data strongly tends

towards a nodal behaviour for the the full range of the accessed temperature range
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at this angle of rotation (Ω = 30◦). It is very clear from the integrated intensity that

there are nodes in the gap structure but not necessarily d -wave pairing symmetry.

The form factor data in Figure 93b has slightly larger errors but still very strongly

aligns with the nodal model, even with some small fluctuations at the extremes of

the temperature range. As there appears to be no variation in alignment to the nodal

pairing symmetry model, and there are no discontinuities in the data, this might

lend one to think this points to a single nodal gap rather than multiple gaps which

was strongly indicated in previous work [48, 47]. Multiple gaps could take the form

of a large nodal gap and a smaller nodal or s-wave gap or vice versa or a pair of the

same symmetry. Any of these combinations could manifest when one of these gaps

is suppressed at a temperature below Tc for a non-zero magnetic field. However,

this is not observed. This does not rule out multiple gaps, in fact the previous

field-dependent anisotropy data makes multiple gaps a possibility, as previously

discussed. Obviously the data points at the lowest and highest temperatures in

the range do have some error overlap with the BCS model, this does not indicate

any kind of transition between symmetries because the superconducting state will

be suppressed at Tc regardless of the pairing symmetry and converges to the same

value at T = 0 K.

The separate ω and φ results in Figure 94a for the integrated intensity show good

agreement with each other; there is a good indication that the dominant pairing

symmetry is strongly nodal from this data. We do see some fluctuations around the

models but in general the integrated intensity null hypothesis is consistent and clear.

The ω and φ results for |F (q)| present a similar picture with regards to agreement to

the models but with a greater degree of divergence of the ω and φ scans from each

other. In Figure 94b we see more fluctuation in the value of the |F (q)| and a not

insignificant divergence between the scans at temperatures above 2 K where there

is a slight splitting between the data sets. The φ scans present a slightly stronger

overall form factor signal than the ω scans. There is also a section of divergence
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(a) (b)

Figure 94: Models for each pairing mechanism as outlined previously compared to
the integrated intensity data and form factor calculations for φ scans and ω scans.
(a) is the comparison between the integrated intensity calculated from the raw data
in GRASP with the models for the integrated intensity for s-wave and nodal gap
structures, as outlined in the previous section. (b) is the same approach as in (a)
but for the form factor; where the data is calculated from a rearranged Christen
Formula.

between the scan results for T > 2.3 K. These results are illuminating, as they hint

at potential anisotropy or multi-gap behaviour, but with the smaller gap looking to

be similar in size compared to the larger gap if this is the case. This is not fully in

line with what has been previously discussed about this material [48, 47] but does

lend some evidence towards a multigap picture of the superconducting state.Further

analysis of the penetration depth and gap function can provide the necessary clarity

regarding the pairing symmetry of the gap function.

Previous investigations covered in this thesis by Wang et al. have demonstrated

that multiple gaps are possible in the gap structure of this material, while also

demonstrating conflicting evidence on the presence of d -wave contributions from the

behaviour of the free electron term in the heat capacity behaviour [48, 47]. However,

even in the low-T regime there are minimal observable structural changes in the VL

(insofar as no change to rhombus or square VL or easily identifiable large shifts in

anisotropy), which is unusual if there is unconventional pairing under those condi-

tions given that d -wave superconductivity is often identified by structural changes

in the VL with field and temperature, as seen in CeCoIn5 [89]. But unusually the
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Figure 95: The averaged penetration depth, 〈λ(T )〉 vs T , for the whole of the VL
calculated from |F (q, T )| and fitted using a power law relation from the Prozorov
framework, equation 108. The results for the φ and ω scans have been averaged over
both data sets with a fit line for the average. The full fits are: λ0 = 153.42 ± 2.08
nm, Tc = 3.68± 0.09 K and p = 1.31± 0.11.

evidence from the null hypothesis demonstrated in Figure 93a is strongly indicative

of unconventional, potentially d-wave pairing symmetry; or otherwise some arrange-

ment of line and/or point nodes in the superconducting gap (given the lack of VL

rearrangement).

6.6.5 Calculation of the penetration depth and the superfluid density

An alternative method of arriving at a picture of the pairing mechanisms in a super-

conductor is trying to calculate or express the behaviour of the penetration depth,

λ(T ). If, as before, we calculate the form factor with respect to temperature as seen

in Figure 93b, we may then calculate the penetration depth. This is done by insert-

ing equation 105 into equation 104, then rearranging for λ(T ). This requires values

for some parameters that we don’t know very much about, or are known to vary

with temperature but for which we have no data to describe such a relationship.

Thus we must accept for this method that some assumptions at this stage must

be made for simplification. Firstly, we must use the value of the coherence length
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Figure 96: Figure showing the penetration depth (λ(T )) vs T calculated separately
for the φ and ω scans from |F (q, T )| for the separate φ, ω scans and fitted using a
power law relation from the Prozorov framework, equation 108. The graph shows
the data sets for the φ scans and the ω scans separately and includes fitted curves for
both. The full fits are: λω0 = 156.52±1.75 nm, T ωc = 3.60±0.05 K, pφ = 1.37±0.09
and λφ0 = 149.60± 4.58 nm, T φc = 3.90± 0.25 K, pφ = 1.20± 0.24

calculated in [48] from the heat capacity data; ξ0 = 20.3 nm. Then we must assume

that this remains approximately constant for the accessible temperature range over

which we will be making the numerical calculations.

Once a calculation of the penetration depth is made, it can be compared in a null

hypothesis as before or modeled by the previously outlined Prozorov framework us-

ing the power law description from equation 108. In Figure 95 the fit for the average

penetration depth over the whole VL gives the following values: λ0 = 153.42± 2.08

nm, Tc = 3.68±0.09 K and p = 1.31±0.11. This fit in relation to the models leaves

p very close to the nodal model value of p = 1.333. This places the fit, as can be seen

in the figure, very definitively in the realm of an unconventional nodal or d -wave

interpretation. If we take the φ and ω scans separately, and then plot a fitting curve

we get the results presented in Figure 96. Here we have the fitting parameters for

the ω scans: λω0 = 156.52± 1.75 nm, T ωc = 3.60± 0.05 K and pφ = 1.37± 0.09 and

for the φ scans: λφ0 = 149.60±4.58 nm, T φc = 3.90±0.25 K and pφ = 1.20±0.24. As
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shown in the figure, these data sets diverge considerably for T > 2 K, which could

suggest a growing separation between pairing symmetries at higher temperatures.

But, within the Prozorov framework both the ω and φ scan results indicate a very

close adherence to nodal behaviour up until 2 K, with the parameter that seems

responsible for the divergence being the split in Tc. The fitted values of Tc differ

by 0.3 K, and ≈ 8% difference, which primarily accounts for the splitting between

these scan sets.

This penetration depth disparity between the scans is less likely to be evidence

of an evolution of the gap function symmetry and more indicative of a disparity

in the penetration depth given whichever angle is being rocked in the scan. These

penetration depth calculations suggest that in the vertical rocking case for the φ

scans, the penetration depth is more suppressed at high temperature, while the

opposite is true of the horizontal rocking case for the ω scans. The net effect in

Figure 95 is that the average data and the average fit as a result align very closely

with the middle of these two sets, which is the unconventional nodal model. Given

that the fitted parameters for the ω and φ scans, λ0, Tc and p are all in very close

agreement of each other and the average penetration depth, thus it is reasonable to

say that the overall behaviour indicated by this analysis is that of a nodal, possibly

d-wave, pairing symmetry. Of course the cause of this disparity could be due to

the previously suggested multigap interpretation of TlNi2Se2. Mulitple gaps with

separate Tc and Hc2 values could manifest in a spacial separation of the penetration

depth.

These fits indicate that perhaps there are multiple gaps, with the difference

between the two becoming apparent and outside error overlap above T = 2.5 K

as one is suppressed at a slightly smaller critical temperature. The separate power

law fits for p indicate that both the φ and ω fits sit fairly well aligned still to a

nodal interpretation despite the divergence. Something that is confirmed is the

lack of intrinsic anisotropy between the y and x axes (between the φ and ω scans,
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Figure 97: Penetration depth anisotropy, γωφ with respect to temperature, T be-
tween the φ and ω scans, or the y and x axes of the VL diffraction pattern. Cal-
culated by the ratio of λ(T ) for the φ and ω scans; which correspond to the [110]
and [1̄10] planes, respectively. This calculation suggests isotropy dominates for the
majority of the temperature range as expected for a tetragonal crystal, up to 2.5
K. Above this point in reciprocal space the x axis of the VL overtakes that of the y
axis up to γφω(T ) ≈ 0.7.

respectively). If we take the λ0 fits for each scan and take the ratio, the anisotropy

is γφω = λφ0(T )/λω0 (T ). The results for this ratio of the VL anisotropy in reciprocal

space is shown in Figure 97. In this Figure we see that an isotropic VL remains

roughly steady, which is what we would expect for a tetragonal crystal where a = b.

However, from 2.5 K upwards anisotropy appears. In this high-T regime the y − x

anisotropy drops linearly to roughly 0.7. This suggests that the penetration depth

in the x axis (the ω scans) overtakes that of the y axis (the φ scans). However, the

sample has been rotated by 45◦ within the a − b plane. This means that a is no

longer normal to the φ rock axis and b to the ω rock axis, respectively; they are

now 45◦ to the rocking axes, meaning we are rocking in the [11l] and [1̄1l] planes.

It is a surprising result to see this divergence then between the two rocking

directions above 2.3 K. This sudden shift in γφω(T ) is a measure of the divergence

in the penetration depth that we see at T ≥ 2.5K in Figure 96. This could indicate

172



Figure 98: The superfluid density, ρ(T ) versus T . The results here are calculated
from the averaged λ(T ) from Figure 95 and the fitting line is also a rearrangement
of the averaged λ(T ) fit. The red ρ(T ) line is the BCS theory for the superfluid
density: ρ(T ) = 1− (T/Tc)

2.

that at around 2.5 K one of the gaps in this multigap system is suppressed. If this

were the case, a sudden shift in anisotropy would make sense as one direction in the

crystal associated with one of the gaps would become more energetically preferential

for the Cooper pairs. Given that a has been rotated by 45◦, this could suggest there

is a difference in gap structure between the [110] and the [1̄10] directions.However,

the difference that becomes apparent between the φ and ω scans could very likely

be an experimental artifact, given the small margin of difference between the scans

and the weaker signal at T → Tc where the signal to noise ratio becomes poorer.

The penetration depth, specifically the results shown in Figure 95, can be further

utilised to look at the superfluid density behaviour. Using equation 117 for fitting

gives λ0 ≈ 153 nm from Figure 95. The superfluid density is normalised as a

ratio and so unitless and has a value ≤ 1, rather than an absolute measurement

of the number of superconducting electrons per unit volume of the material as this

would require exact knowledge of the effective electron mass. The effective mass is

estimated in [48] to be 14-20me, which would put the zero temperature number of

Cooper pairs to be of the order of 1027 per unit volume of the material. In this case
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we will remain with a ratio as it more accurately reflects the behaviour and can

be used in later calculations of the actual superfluid density in volume density of

carriers. From Figure 98 we can see that the superfluid density calculations are much

more linear compared to the BCS theory but with some variation at the extremes

of the temperature range. In general for a BCS superfluid density we would expect

little variation at low-T and a more rapid suppression at T → Tc. In the case of

TlNi2Se2 the superfluid density is much more linear, indicating a greater sensitivity

at low-T . This follows consistently from the modelling of unconventional behaviour

which shows much more sensitivity of the superconducting state at low-T .

6.7 Non-local corrections to the superfluid density

Although the possibility of a d -wave gap has been shown by the |F (q)| results and

the penetration depth fits, there is still some uncertainty surrounding the nature

of the pairing symmetry. We can investigate this further by taking into account

non-local effects from strongly coupled d -wave pairing in order to see the extent to

which unconventional pairing mechanisms are affecting the superfluid density. Even

a small contribution of the non-local coupling could be very indicative of strongly

coupled d -wave pairing in the system.

As previously discussed for (Ba0.5K0.5)Fe2As2, there are sometimes non-local

coupling effects that influence the superfluid density below a certain temperature

in a superconductor. Once again to analyse the non-local coupling contribution we

must begin with the superfluid density itself, calculated from the penetration depth,

to develop the description of the non-local coupling.

The calculated values in Fig. 99 demonstrate a weaker non-local coupling contri-

bution compared to the modeled expectation. The non-local contributions decrease

quickly at low temperature but overall follow a more linear relationship with respect

to temperature in comparison to the quadratic model. The non-local contribution

is predicted to persist right up to Tc. Instead we see it goes to unity just below Tc
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Figure 99: The non-local contribution towards the superfluid density. This is
calculated using equation 64 to create a ratio of the non-local and local superfluid
densities. The solid blue line represents the point at which the ratio reaches unity,
n(T ) = ρ(T ). The local superfluid density is taken as the simple BCS model,
assuming s-wave behaviour, while the non-local superfluid density is calculated from
the data. Included is the Amin/White model, which is the ideal ratio if there are
strong non-local coupling effects.
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Figure 100: Superfluid density calculations comparing the n(T ) calculated from the
data with a BCS model of ρ(T ) = 1− (T/Tc)

2. Included is the Amin/White model
of maximal non-local coupling contributions.

and decreases very quickly with increasing temperature compared to the non-local

model. This means non-local coupling contributions are present but contribute very

little compared to a strong coupling case. This does not rule out unconventional

pairing mechanisms but does show a strong coupling d -wave interpretation like that

for the cuprates [96, 101, 102] is very unlikely for TlNi2Se2. The evidence in Figure 99

indicates that the contributions are weaker than anticipated given the previous ev-

idence [48] suggesting a possible weakly coupled d -wave symmetry presence; this is

principally due to the overall weaker superfluid density than expected at low-T . The

behaviour of the superfluid density is also responsible for the more linear response

of the non-local contributions here and more in line with a local, s-wave, nodal

superconductor.

When we compare the ideal non-local model with the BCS model and the data

for the superfluid density we see some stark differences in Figure 100. We have

already seen that when compared with the models the data falls below the values

of the the BCS model. This demonstrates a suppression of the superfluid density,
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rather than an enhancement. However, having an almost linear superfluid density

is also unusual and indicative of non-BCS behaviour and in line with the low-T

sensitivity of nodal systems [32]. Overall, this presents a complex picture of the

pairing symmetry and the resultant effects for the superconductivity. Given that

this approach is an empirical one and is insensitive to fitting procedures it is entirely

reasonable that the superfluid density is suppressed (which is consistent with the

enhanced penetration depth for an unconventional superconductor), supporting the

picture of unconventional pairing symmetry from the framework of Prozorov. What

this shows is that the strongly coupled d -wave case is ruled out, so we are most

likely looking at a weakly coupled nodal superconductor.

6.8 Conclusions

The field dependent data indicates a small deviation in behaviour from the expected

form factor. This however, is coupled with the unexpected deviation of Q from

expectations in the intermediate field range for the 0◦ case and thus small deviations

could likely be fluctuations in the applied field or the VL order. As such the field

dependent data does not tell us much about the nature of the superconductivity

except for the consistent response of a slightly better signal for higher values of Ω.

The temperature dependent data is much more informative. We see a strong

correlation with nodal modelling for the integrated intensity, form factor and pene-

tration depth. Despite the lack of clearly observable rearrangement of the VL with

field or temperature, the temperature-dependent data is very clear in its support

of unconventional pairing mechanisms. This makes this material a strong candi-

date for nodal s-wave pairing (but with the possibility still open for weakly cou-

pled d -wave pairing) similar to the structurally similar iron-arsenide superconduc-

tor KFe2As2 [109, 12, 86]. This type of pairing is sometimes denoted as s±-wave to

reflect the changing sign of the gap over the Fermi surface.

What we can gather from the results is an interpretation of a very weak rela-
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tionship for the VL anisotropy. With respect to field we can see a general negative

gradient, passing through ≈ 0.3 T at the point of isotropy. However, with respect to

Ω a pattern is difficult to interpret. Given that there is some weak trend of a neg-

ative gradient to ΓV L with respect to applied field and the same results indicating

that there is almost a crossover at around 0.3 T from ΓV L > 1 to ΓV L < 1 it would

be reasonable to suggest that herein lies evidence of an anisotropic relationship with

field. The anisotropy reaches a maximum of ≈ 1.24 for the lowest fields, which is

not insignificant and not within error of isotropy. There is no visible, significant

reordering of the VL with field or angle as we would expect for d -wave supercon-

ductivity. One could be tempted to suggest that the lack of reordering is due to

pinning mechanisms, but given the wiggling procedure and the consistent evolution

of Q with respect to the applied field, this rules out the hypothesis of pinning effects

being the cause. The evidence does not rule out unconventional gap structure given

the strength of the form factor analysis and the existence of a small anisotropic

relationship of the VL with respect to field. Given the current understanding of

d-wave symmetry and VL behaviour in d-wave materials [89], it is unlikely that this

material is d-wave. Obviously this is not an exclusive argument and further evidence

could highlight the existence of d-wave pairing.

Overall the available evidence suggests weak anisotropy with respect to field.

The evidence does not support a clear relationship between Ω and Γ. This compares

starkly with the previously mentioned KFe2As2 that has a very high anisotropy of

up to ΓV L > 5 under appropriate field and angle settings. It seems that the I4/mmm

symmetry, despite having high crystal anisotropy between the a-b plane and c axis,

doesn’t automatically lend itself to large VL anisotropy under field or rotation in Ω.

From the heat capacity investigation we have established that the relation be-

tween the upper critical field and the critical temperature is not as expected from a

pure Ginzburg-Landau description of Hc2 . We see for the accessed low field regime

that the superconducting state is actually slightly more suppressed and the be-
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haviour of the upper critical field as a function of temperature is more linear than

expected. This is partly supported by the SANS results which showed very weak

signals for scans with fields of 0.6Hc2 and higher. The overall magnitude of the heat

capacity and the variation of the superconducting transition with respect to field in

the new data sets broadly conforms well to the previous investigations conducted on

this material. However, there is some deviation from previous results with regards to

the Sommerfeld coefficient and the free electron heat capacity in the superconduct-

ing phase. These discrepancies could likely be resolved with further investigation

at much lower fields. Despite this the heat capacity data does suggest unconven-

tional behaviour from the Sommerfeld coefficient as well as the power law fit which

characterises point nodes in the gap structure as the source of the unconventional

behaviour.
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7 FINAL SUMMARY

In this thesis we have primarily used SANS techniques to study the VL of heavy

fermion TlNi2Se2 and the iron-arsenides (Ba0.5K0.5)Fe2As2 and KFe2As2. All three

materials belong to the same crystal structure symmetry group of I4/mmm with a

122 chemical formula. Whilst having this common structure these three materials

differ in other respects. TlNi2Se2 is a heavy fermion material with potential d -wave

pairing and possibly multiple gaps, (Ba0.5K0.5)Fe2As2 has an exceedingly high upper

critical field of Hc2 ≈ 62.7− 140 T (depending on whether you’re looking at the G-

L model from Figure 58 or the coherence length calculation) while KFe2As2 has a

highly anisotropic VL.

Observations of the VL in TlNi2Se2 showed a small but not insignificant rela-

tionship between the anisotropy in the VL with respect field changes, but with more

uncertainty on the relation with angle. There is distinct lack of discontinuities in

the form factor to suggest a sudden suppression of a smaller gap in a multigap sys-

tem. Typically morphological transitions of the VL structure with field and angle

are hallmarks of unconventional and especially d-wave behaviour. KFe2As2 has been

identified as a highly anisotropic, nodal s-wave superconductor. This compares with

TlNi2Se2 which appears to have similar nodal s-wave gap structure but with sig-

nificantly weaker anisotropic VL behaviour. Distinctly, (Ba0.5K0.5)Fe2As2 shows no

signs of anisotropy or morphological changes to the VL with field at all. This is less

surprising given the strong adherence to a BCS model of superconductivity for the

field range accessed during this work. However, the maximum field accessed was

only ≈ 0.18Hc2 . This means it is conceivable that there are features we have not

seen due to the limitations of accessing steady state (DC) horizontal fields greater

than 25 T for SANS studies. Although the material has a strong adherence to BCS,

s-wave, behaviour there is good evidence of Pauli limiting effects from B ≥ 16 T

similarly seen in KFe2As2 but not in TlNi2Se2
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Review of the literature presents a common thread of van Hove singularities in

these materials but varying in tuning level, with d -electrons identified as the deter-

mining factor of the electron effective mass. The van Hove singularities, and their

position relative to EF , is suggested as the deciding factor in the structure of the

gap function and the presence of nodes in the gap. In the case of TlNi2Se2, the

Fermi level almost exactly bisects the saddle points of the electron energy bands,

creating a nested electron-like pocket inside a concentric hole-like pocket with four-

fold concurrent symmetry with the underlying crystal axes. This is highly likely

to be responsible for the nodal behaviour observed in this material and the weak

VL anisotropy with respect to field. For KFe2As2 we observe the same bisection,

in the saddle points of the electron bands, but with the additional feature that

there are four van Hove singularities around a single point in the Fermi surface that

corroborate very well with the suspected line-node gap function of cos kx cos ky. In

(Ba0.5K0.5)Fe2As2 the Lifshitz transition has shifted EF above the peaks of the elec-

tron band saddle point features. This means that the van Hove singularities in the

electron band structure no longer create nested hole-like or electron-like pockets but

the common feature is still responsible for the measured high effective masses and

specific heat coefficients for (Ba1−xKx)Fe2As2, x < 0.9.

In order to create greater understanding of the similarities between these ma-

terials, (Ba0.5K0.5)Fe2As2 should be subjected to angle variation in Ω under SANS

conditions for comparison to TlNi2Se2 and KFe2As2 as well as higher DC fields if

possible. Also, in order to understand more fully the effects of the Lifshitz tran-

sitions on the gap structure, a compound of (Ba1−xKx)Fe2As2 near the x = 0.9

transition should be similarly investigated in SANS looking at the VL behaviour.

Equally, there have been some ARPES studies conducted of TlNi2Se2, as well as S-

and K-doped compounds, but no SANS studies. By investigating the variations on

this compound under the same experimental conditions we may understand more

about the connection between the van Hove singularities and their relation to de-
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termining the gap structure and pairing symmetry. Additionally, TlNi2Se2 should

be subjected to larger displacement angles (Ω) for SANS investigations.
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8 APPENDICES

8.1 Appendix A: Analysis using GRASP

The source of the bulk of the analysis presented in this thesis, including the inte-

grated intensity, q values and angular positions, is from the use of GRASP software.

This is a Matlab® based software environment developed by C. D. Dewhurst, based

at the ILL [67]. The Matlab® basis makes the software very adept at handling

two-dimensional pixelated data from multidetectors, as is acquired from SANS ex-

periments.

The user interface is shown in Figure 101. The central colour-graded image is

a representation of the intensity of the diffracted neutrons incident on the multide-

tector, with each single 2-D image representing a single angle at which the intensity

was measured. These single images of summed intensity at one angle are assigned

a number known as a numor. In the case of the diffraction pattern in Figure 101

multiple angles have been loaded in to show the intensity distribution for many an-

gles summed into one image. This gives the intensity distribution of the diffraction

pattern for a whole rocking curve (or for what part of the curve is input as numors).

In essence this shows all the Bragg spots satisfied at multiple different angles in one

image (for first-order), giving the image of the VL.

Background data is taken by setting the sample in the normal state by warming

to T > Tc. This is preferred over raising the field to B > Bc2 as a change in field

creates a change in flux line density. If there are any pinning effects present in the

material, this will resist the motion of the flux lines as the field is changed. Thus

a change in field in the superconducting state runs the risk of damaging or even

destroying the sample (for all field changes the sample is warmed to the normal

state first). By scanning at identical angles but for the normal state (with low and

high field backgrounds set) we can subtract this from the foreground data to remove
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Figure 101: Image of the main user interface (UI) window for GRASP (version
7.02). SANS data is loaded as numors, a number designating a single measurement
point in a rocking angle. The first order Bragg spots are visible, with a central mask
covering the direct beam noise. The window panels are available for ILL scans for
higher q events but are not used in this investigation. A sector box can be chosen
over any of the spots for analysis (or any space on the diffraction image), defined
by an inner and outer radius and an angular width.
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Figure 102: Image of a sans angle (ω) rocking curve output by GRASP. This graph is
generated by a parameter analysis over a sector box. The y-axis is measured in total
sector box counts per unit of experimental time, in the case of ILL the scan time
is unchanged due to the stability of the beam. The x-axis has a direct equivalence
with ω, such that zero corresponds to a direct beam straight through the sample.

any effects of the neutrons diffracting from a feature that is not the VL. A direct

beam measurement is also taken with a different aperture in the background state

in order to centre the scans to the beam. This is important for thermal neutrons

used in SANS, at these wavelengths the neutrons are moving slowly enough to be

affected by gravity.

The direct beam in all the scans, even with attenuation, provides a lot of noise,

this is mitigated by a mask function which can manually screen a part of the diffrac-

tion image allowing the colour scale of the diffraction pattern to be adjusted in its

absence, for clarity. In this case a 20 pixel diameter mask centred on the direct

beam is masked out in Figure 101. A smooth function can also be applied to the

diffraction image. The smooth function is an applied Gaussian envelope from 1x1

pixels up to 5x5 pixels. The image in Figure 101 uses a 2x2 pixel Gaussian envelope,

this setting for smoothing is used for the majority of the analysis presented in this
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work. The use of a smooth function on the image improves the presentation and

clarity of the diffraction image but does not actually influence the statistical analysis

of the data, it is a visual tool only.

To acquire the rocking curve seen in Figure 102, a sector box is selected over the

image area of a spot. The sector box is defined by an inner and outer radius and an

angular width. To generate the rocking curve the pixel counts are summed for each

angle of the rocking curve within the selected box, generating an angular dependent

intensity curve for that sector box. In order to obtain the raw integrated intensity

for the rocking curve, one must fit the rocking curve with a suitable function and

integrated for the area between the curve and the background. For a strong, clear

signal a Lorentzian is desirable but for all of the scans presented here a Gaussian

was primarily used as it gave smaller errors in fitting, especially where signals were

comparatively weak.

The integrated intensity can then be used to find the form factor of the VL by

rearranging equation 104, which we will give again here for clarity:

I(q) = 2πV λ2
nφn

(γ
4

)2 |F (q)|2

Φ2
0q cos ζ

. (120)

Once again I(q) is the integrated intensity, V is the volume of the sample, λn is the

neutron wavelength, φn is the incident neutron beam flux, γ is the gyromagnetic

ratio of a neutron (≈ 2), |F (q)| is the form factor, Φ0 is the flux quantum, q is

the magnitude of the reciprocal lattice vector and ζ is the Lorentz angle. The

Lorentz angle is a correction for the reciprocal lattice vector if the spot position

being analysed does not align with the normal of the rocking axis. If the spot being

analysed is not perpendicular to the normal of the rocking axis then Ewald sphere

does not cut through this reciprocal spot directly; the correction angle accounts

for this. This angle can be determined by finding the centre of a spot with a

Gaussian fit for it’s angular position relative to the direct beam centre and the x−y
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coordinates of the diffraction image. The Lorentz angle is then that made between

the spot position and the normal of the rocking axis. GRASP can give the χ angular

position of a spot relative to the direct beam as (0,0) coordinates and the x-y axes

passing through this. The y-axis is taken as χ = 0◦.

8.2 Appendix B: Suitably modelling the integrated inten-

sity, form factor and penetration depth

The bulk of the analysis conducted for the TlNi2Se2 and (Ba0.5K0.5)Fe2As2 results to

ascertain a pairing symmetry for the Cooper pairs was the use of a null hypothesis

approach combined with the Prozorov et al. [92] framework and least-squares power-

law fits. For clarity we will redress the equations used in this process. The process

for obtaining a fit for the penetration depth and a representation of what the pairing

symmetry likely is begins with the Christen formula,

I(q) = 2πV λ2
nφn

(γ
4

)2 |F (q, T )|2

Φ2
0q cos ζ

(121)

with the data from GRASP providing the raw integrated intensity data. This equa-

tion rearranged provides the previously defined form factor F (q),

|F (q, T )| = 4Φ0

λnγ

√
I(q)q cos ζ

2πV φn
(122)

which can also be described by the following,

F (q, T ) =
Be−cξ(T )2q2

1 + q2λ(T )2
. (123)
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Once we have values for the form factor from the Christen formula, we rearrange

equation 121 to solve for the penetration depth as follows

λ(T ) =
1

q

√
Be−cξ(T )2q2

F (q, T )
− 1. (124)

It is at this point that a judgement should be made regarding the core correction

factor: e−cξ
2q2 . If enough detail is known about the coherence length, ξ(T ) and how it

varies with temperature and the material is very strongly Type-II (κ�
√

2) then the

core size does not conform well to the London assumption of δ-like (infinitesimally

small width). This will make the inclusion of the core-correction exponent necessary

as the existence of finite flux cores means interactions will not be confined locally

to the core, there will be non-local interactions between the inside and outside of

the core over the distance ξ0. However, if this is included then one may decide

on either using ξ0 (with the assumption that ξ only varies near T → Tc) or ξ(T )

and a guess or fit for the value of c. This is a correction term that is material

specific, with examples for KFe2As2 being fitted at c = 0.52 [109, 12] and c = 0.44

for YBa2Cu3O7−x [96, 120]. This term is difficult to fit without a great deal of

data available or a similar material from which to base this value. In the case of

(Ba0.5K0.5)Fe2As2, the value of c = 0.52 from the related compound KFe2As2 is used.

However, TlNi2Se2 is very new and as such there is no previous SANS studies or VL

studies with which to base this value. Given that we approximated κ ≈ 7.5, and we

only have an initial calculation of ξ0 from the heat capacity results in [48] but no

temperature variation data, the exponent would simply be a constant multiplying

factor of value < 1. With the null hypothesis an exponent of constant value will be

multiplied out for I(q, T )/(I(q, 0)), for example. Thus we may set the exponent for

the case of TlNi2Se2 to be ≈ 1 for the majority of the analysis.

Following from the calculation of the penetration depth, this data can be fitted
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with a least-squares approach for the penetration depth equation defined previously:

λ(T ) =
λ0√

1−
(
T
Tc

)p (125)

where the fitting procedure requires guesses for the variable parameters λ0, Tc and

p. If the data has large errors or a great deal of variance then it is prudent to switch

to a fixed value of Tc, as this is usually well known, and allow only λ0 and p to

vary. Once a fit is given, with reasonable uncertainties on the parameters, the value

of p can be compared to the Prozorov framework directly. This provides an initial

analysis based on the penetration depth calculations, however the more powerful

comparison of the integrated intensity and form factor to modelled behaviours is

provided by substituting the equation for λ(T ), with fixed values of p = 2 for s-wave

and p = 4/3 for nodal/d -wave, back into the equations for F (q) and I(q). By doing

this and normalising the models to a unitless ratio of f(x)/max(f(x)) ≈ f(x)/f(0)

alongside a similar procedure for the data we can look at how the data varies with

T accordingly alongside the models. This has proved to be a powerful method of

analysis, especially in the case of TlNi2Se2 where there has not been previous similar

studies of the VL.

8.3 Appendix C: Numerical method for modelling the gap

function

A complementary method of establishing the pairing mechanism in a material is to

directly find the gap function itself with respect to temperature. However, this is

very difficult, with much of the framework relying on equations that are approx-

imations or not analytically solvable. Presented in this appendix is a potential

numerical approach to finding and fitting the gap function from available form fac-

tor data. This method has limitations however, and as such was not used as part of
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the main argument for defining the pairing symmetry in the materials in this work.

The work presented in this appendix only attempts to fit the gap function for the

TlNi2Se2 data.

It is possible to establish a connection between the superfluid density ratio and

the gap function. To do so we must calculate the ideal model for a given pairing

mechanism by calculating the parameter which best represents the gap structure,

which is the gap function itself. The temperature dependent gap function is outlined

by Gross-Alltag [95] and White et al. [96] in a simplified form to be

∆(T ) = ∆0 tanh

(
πkBTc

∆0

√
a

(
Tc
T
− 1

))
, (126)

where ∆0 is the gap function at T = 0, kB is the Boltzmann constant, Tc is the crit-

ical temperature and a is a unitless coefficient that alongside ∆0 is indicative of the

pairing mechanism. In the case of a, the following values are used: s-wave, a = 1;

two-dimensional d -wave, a = 4/3; nodal s-wave [97], a = 2 and non-monotonic

d -wave [98], a = 0.38. Similarly for ∆0 we can apply pairing mechanism variations

with the following: s-wave; ∆0 = 1.76kBTc [10], d -wave; ∆0 = 2.14kBTc and nodal

s-wave; ∆0 = 2.77kBTc [92]. By setting the values for these two parameters and

applying the known value of Tc = 3.7 K a function for the gap with respect to tem-

perature, for the relevant temperature range, can be generated. A major drawback

of this equation is it is not analytically solvable for ∆0 and so a ratio of ∆(T )/∆0

cannot be obtained as a normalised starting point for a fit.

Getting the gap function from the superfluid density requires the same framework

as equation 126 using the process outlined in [95] and more clearly in [96]. We define

the following relationship

ρs(T ) = 1− 1

4πkBT
×
∫ 2π

0

∫ ∞
0

cosh−2

(√
ε2 + ∆2

k(T, φ)

2kBT

)
dφdε. (127)

where
√
ε2 + ∆2

k(T, φ) is the excitation spectrum, ∆k(T, φ) = ∆(T )∆k(φ) such that
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∆(T ) is the BCS gap function that can be modelled by the empirical formula in

equation 126 and ∆(φ) is the angular gap function. The angular gap function is

unitless but describes the azimuthal angular variation of the cylindrical Fermi sur-

face. For a completely cylindrical Fermi surface, 0 < φ < 2π describes the rotation

about the azimuthal angle, but for unconventional or nodal superconductors the

cross-section of the Fermi surface is no-longer a perfect circle to make a cylindrical

Fermi surface with. Thus ∆(φ) is heavily dependent on the pairing mechanism in

the material.

As equation 127 is not analytically solvable for ∆ and requires a numerical ap-

proach we must construct a numerical method for solving the gap function. We

have already established ρs(T ) with equation 117, and so must insert the values for

the energy ε with a large range, with respect to the size of the increment that ε

will count with in order to simulate the integral from zero to infinity. An array of

values for ∆(T ) is guessed and inserted into equation 127 for each step in temper-

ature, such that a set of values for the gap is tried for each single value of T and

ρ(T ). The values of ρ as a function of ∆ are then plotted against the value of ρ

for that temperature with error lines as limiting bounds for values of ∆ that satisfy

the numerical analysis. It is then a case of determining the intercept of the two as

shown in Figure 103. A drawback of this method is analysis of low-T gap functions.

The gradient of the fitting function for this process is very shallow around the in-

tercept with ρ, practically zero gradient upon crossing the ρ(T ) line. Consequently,

the number of values that can satisfy this intercept reasonably is very broad with a

large error associated with any value chosen from this procedure in this temperature

regime. As such the temperature range is approximately half of the full set.

In order to have a robust numerical solution in this case, functions for ∆(φ) also

need to be taken into account. These are typically broken down into 2-D pairing

mechanism functions for the variation in the polar or azimuthal axis in the Fermi

surface. For a BCS, s-wave interpretation ∆(φ) = 1. For d -wave pairing the Fermi
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Figure 103: Graph illustrating the numerical process for solving the gap function
from the calculated superfluid density. The red line is generated from values of the
superfluid density at a single temperature but an array of values for the gap. The
black line indicates the calculated value of ρ(T ) from the form factor data with the
blue lines indicating the error limits from that value. The intercept between the
black and red lines traced to the x -axis gives the best numerical guess value for the
gap at that temperature. The limits are determined by the same process; by looking
at where the red line intercepts the blue lines then extrapolating that to an upper
and lower value on the x -axis for the errors on the value of the gap. In the case
above, the temperature is 1.3 K. This process must be done for each temperature
in the array of values for ρ.

surface becomes more complex and is described by ∆(φ) = cos(2φ), creating point

nodes in the Fermi surface due to the variation in φ for a cylindrical Fermi surface.

For a nodal s-wave description we introduce the polar angle 0 < θ < 2π and use

∆(φ) = (1− sin4(θ) cos(4φ)) to describe the existence of point and line nodes for a

three dimensional case.

The data for the numerical fits is presented in Figure 104. This fit is only an

attempt with an s-wave model. The value for Tc comes very close to the measured

values (within 2σ), but the fit for ∆0 = 0.53 meV falls short of the previously

calculated ∆0 = 0.6375 meV by ≈ 10σ. The numerical results produce fairly small

errors but are far below expectations of the gap function. This indicates that the

s-wave model for gap behaviour is insufficient in describing the gap function from

the available data, lending more evidence to the interpretation of a nodal/d -wave

model as this necessitates a larger gap function overall.

It is a common problem with this method for the numerical results to break down
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Figure 104: Numerical fitting results for the gap function for each of the three pairing
mechanisms. The pink reference line is the value of ∆0 = 2.01kBTc = 0.6375 meV,
determined in [48]. The low temperature values for all of the pairing symmetries
are omitted as their errors blow up and the value of the gap drops unphysically
due to the nature of the fitting procedure, as previously described. The fit lines
are generated by a least squares fit of equation 126 to the data from the numerical
fitting procedure.

at low temperature. Consistently we see the errors blow up and the intercept outputs

decrease in a manner unsupported by the physics of the gap function. The source of

the issue with the outputs, for Figure 103, is due to the fact that at low temperature

an intercept between ρ(∆) and ρ(T = x) provides a wide range of values that are

capable of satisfying this intercept. This is particularly problematic given that at

low temperature the values of ρ tend asymptotically towards a constant value for

many values of ∆. This is seen in Figure 105, where the upper error bar intercept

essentially approaches infinity and at some values the fit line is so close to the value

of the superfluid density that an extremely large number of gap values satisfies the

numerical fit. In Figure 105 we can easily argue that above the intercept, all the

values of the gap essentially satisfy the numerical procedure.

Although fitting the gap function from the superfluid density can be a powerful

method of understanding the nature of the superconductivity in this material, this

method has limitations for certain temperature ranges and relies in this case on an

assumption of a constant value for the coherence length; which is a fair approxima-
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Figure 105: Graph of the numerical fits for ρ at T = 0.1 K for an s-wave integral
representation of ρ. Here it is clear that the numerical solutions produce many
values of ∆ that could satisfy the superfluid density, such that the upper error limit
on values of ∆(T ) for low temperature approaches infinity.

tion as long as we aren’t close to Tc. This method is likely to be somewhat more

powerful if more information on the evolution of the coherence length or the gap

function itself was available in order to supplement a numerical solution.

So far only an s-wave fit has been presented. Attempts to fit with the unconven-

tional gap structures using polar and/or azimuthal angle variation had other issues

for fitting. Using these additions requires nested loops for fitting to account for one

or more angles per energy increment. During the course of this work attempts were

made to fit the data using unconventional models for d -wave and nodal structures

but these had a tendency to produce unphysical features in the fitting and as such

did not produce enough data points to make a clear fit for comparison. What we

can say is that the s-wave fit highlights that a BCS approach is insufficient in this

case, however this approach is not as robust as the null hypothesis and analytical

approaches developed and presented earlier in this work.
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8.4 Appendix D: Publications

8.4.1 Publications arising from work in this thesis

S. J. Kuhn, H. Kawano-Furukawa, E. Jellyman, R. Riyat, E. M. Forgan, M.

Ono et al., Simultaneous evidence for Pauli paramagnetic effects and multiband

superconductivity in KFe2As2 by small-angle neutron scattering studies of the

vortex lattice, Phys. Rev. B 93, 104527 (2016).

E. Jellyman, P. Jefferies, S. Pollard, E. M. Forgan, E. Blackburn, A. T. Holmes,

et al., Unconventional superconductivity in the nickel-chalcogenide supercon-

ductor, TlNi2Se2, arXiv:1808.03207 [cond-mat.supr-con], 9th August 2018.

E. Jellyman, R. Riyat, A. T. Holmes, E. M. Forgan, E. Blackburn, H. Kawano-

Furukawa et al., High-field studies of the vortex lattice in superconducting

(Ba0.5K0.5)Fe2As2 by small-angle neutron scattering, Pending.

8.4.2 Other publications arising during the thesis period

L. Shen,* E. Jellyman, E. M. Forgan, E. Blackburn, M. Laver, E. Canévet et

al., Unconventional magnetic phase separation in γ-CoV2O6, Phys. Rev. B

96, 054420 (2017).

L. Shen, O. Zaharko, J. O. Birk, E. Jellyman, Z. He, E. Blackburn, Mag-

netic order in the quantum spin chain compound SrCo2V2O8: a single-crystal

neutron diffraction study in magnetic field, arXiv:1801.10237 [cond-mat.str-el],

30th January 2018.

R. Riyat, E. Blackburn, E. M. Forgan, y A. S. Cameron, A. T. Holmes, E.

Jellyman, et al., Field-dependent superconducting anisotropy and Pauli para-

magnetism in YBa2Cu3O7, Pending.
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