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Abstract

Plenoptic imaging is a technology by which a three dimensional representation of
the world can be captured in a single image. Previous research has focused on the
technology itself, with very little focusing on applications of the technology. This
thesis presents an investigation into its potential application to the field of retinal
imaging, with the aim of producing three dimensional images of the retina at a
cheaper cost than the current gold standard of retinal imaging, optical coherence
tomography. Both a theoretical and practical approach have been utilised through
the means of computational simulations and plenoptic imaging through the use
of a commercial camera. The key novel contributions presented throughout this

thesis are:

e Computational simulations of light transport in the retina to investigate
the potential of plenoptic retinal imaging. Initial investigations focused on
using ballistic photons to quantitatively measure the depth of different layers
in the retina. However, as only 0.35% of light reached the retinal pigment
epithelium without scattering, it was determined this would not be practical.
By then looking at the angular distribution of photons reflecting from the
retina, this indicated that the distribution was not a function of the thickness
of the retina. Therefore, surface topography would be the most appropriate

avenue to pursue.



e Through imaging surfaces with limited features with a Raytrix R11 plenoptic
camera, it was noted that the depth recovered was not correct. By then
applying texture, both inherent in the scene and by projecting texture, the

recovered depth improved significantly.

e A work-flow has been developed to compute quantitative, metric depth values
whilst imaging different scenes with a plenoptic camera, rather than the

relative, virtual depth.

e Investigation of characteristics and concepts of plenoptic based imaging for
application in retinal imaging. Developed work flows for imaging both flat
planes and spheres, and the improvement of the depth recovery by projecting

various patterns onto the scenes.

e Novel cost effective production of microlens arrays. Preliminary experiments
to fabricate lenses of appropriate specifications for the manufacturing of a
retinal plenoptic camera were performed, showing promise for future exper-

iments to develop.

The computational simulations showing how retinal layered imaging was not pos-
sible with the use of a plenoptic camera, but surface imaging was, drove the direc-
tion of the project towards the presented focus on recovering quantitative depth
of featureless surfaces. The study to fabricate novel, cost effective microlens ar-
rays stemmed from the aim to produce a low cost alternative to optical coherence
tomography. Although the conclusion of this work did not lead to a functioning
microlens array for the purpose of building a plenoptic camera, significant steps

were taken to build a foundation for future development.
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Chapter 1

Introduction

According to the World Health Organisation, an estimated 253 million people are living
with vision impairments, of which 36 million are blind [2]. However, 80% of all vision
impairments can be prevented or cured. Retinal imaging could play a major role in
helping to reduce this figure. Unfortunately, the high costs associated in purchasing the
equipment necessary to image in three dimensions is prohibitive in many parts of the
world. This thesis comprehensively evaluates the potential of imaging the retina with a
plenoptic camera, the ability and accuracy of a plenoptic imaging system to recover actual
depths of a variety of object geometries, and finally investigates microlens fabrication at
a fraction of the cost of buying one commercially. As a plenoptic camera, which gains 3D
information from a single image acquisition, contains the same components as a normal
camera but with the only addition being a microlens array, it is hypothesised that 3D
images of the retina would be achievable from a single image at a reduced cost of current

retinal imaging methods.

The visualisation of the retina in three dimensions has made the diagnosis of diseases
such as glaucoma and diabetic macular edema far more straightforward. The current
gold standard for achieving this is optical coherence tomography (OCT), however, this
piece of equipment is often too expensive so is not widely available throughout the world.

Plenoptic imaging offers a new method for capturing three dimensional data about the
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world from a single image, with the only additional cost from a standard digital camera
being the addition of a microlens array. This technology therefore has the potential to

achieve the diagnostic results of an OCT at a greatly reduced cost.

The development of photographic cameras have come a long way in terms of both the
digitisation and improved resolution of the images over the years. However the basic con-
cept has not changed; a two dimensional representation of the three dimensional physical
world. This representation fails to distinguish between two rays of light originating from
different depths if they are deposited onto the same pixel. This concept has advanced
recently with the development of computational imaging. The field has focused on en-
coding the rays of light entering a camera before they are incident on the sensor. Then

by decoding the raw image more information about the scene can be gained.

One example of a computational imaging technique is a plenoptic camera, first developed
by Ng et al [3] to capture the full 4D light field of a scene (more details on the light field
can be found in Section 1.1). A plenoptic camera is constructed by placing a microlens
array between the main lens and the sensor, splitting rays which would usually hit a single
pixel onto different ones, depending on the depth of the source. The information recorded
by a plenoptic camera allows a number of different computations to be performed on a
single image, including digital refocusing, changing the perspective and extending the
depth of field. However it is the ability to quantitatively measure the depth of an object
and provide a surface map of a scene which is most exciting when applying this technology

to the field of retinal imaging, or indeed, any form on quantitative imaging.

Imaging of the retina has developed over the years from two dimensional fundus images to
the current gold standard of optical coherence tomography (OCT). OCT has the ability to
gain high resolution three dimensional images of the retina, which help with the diagnosis
of diseases such as age-related macular degeneration and glaucoma [4]. However, the cost
of OCT can be large and too expensive for many small medical centres and many hospitals

and surgeries in the developing world. Without the ability to image the retina in 3D many

20



retinal diseases may either not be diagnosed, or diagnosed much later on increasing the

severity of the disease.

The aim of this thesis is to investigate whether it is possible to extract the relevant 3D
information using a plenoptic camera, and whether this technology may bring advantages

to retinal imaging.

1.1 The Light field function

The term light field dates back to the work from Gershun [5] into expressions for light
sources projecting illumination patterns, with Ashdown [6] continuing this area of re-
search. In terms of imaging, light fields can be seen as a set of two-dimensional images of
the same scene but from viewpoints with slight variations [7, 8]. The light field function
is derived from the plenoptic function, which can be described as the radiance, L which
is a function of position and direction in a static scene with a fixed illumination, where
radiance is measured in watts / m? steradians [7]. This radiance is said to be a function of
5-dimensions, L(x,y, z,0, ¢) where z,y and z represent the position and 6 and ¢ describe
direction (see Figure 1.1) [9]. However, in the absence of occluders (opaque objects which
block all light), this function becomes 4-dimensional as the radiance of a single ray of
light becomes constant between two points along the length of the ray, i.e. we lose a
dimension because we can collect no information about the origin of that ray of light in
one dimension as there are no occluders to block the light [10]. This new 4D function is

generally called the light field and is what is used to capture light field images [5].

The concept of the 4D light field is conceptionally very similar to that of epipolar volumes
from the field of computer vision [11]. It has been shown that these epipolar volumes,
along with holographic stereograms, can be captured by translating a camera [12]. This
concept has been adopted to capture the light field, along with using arrays of cameras
[13]. A more comprehensive look at how the 4D light field can be captured, other than

with a plenoptic camera, is given in Sect