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Abstract

Nowadays, there is an increasing data availability. Smartphones’ and wearable devices’

sensors, social media, web browsing information and sales recordings are only few of the

newly available information sources. Analysing this kind of information is an important

step towards understanding or even predicting human behaviour. The e↵ective utilisation

of the rich information that is hidden in such unstructured and noisy datasets remains an

open issue. In this dissertation, I propose novel techniques for uncovering the complex

dependencies between factors extracted from raw sensor data and real-world phenomena

and I demonstrate the potential of utilising the vast amount of human digital traces in

order to better understand human behaviour and factors influenced by it. In particular,

two main problems are considered: 1) whether there is a dependency between social media

data and traded assets prices and 2) how smartphone sensor data can be used to monitor

and understand factors that influence our stress level. In the former case, I firstly examine

the causal impact of Twitter sentiment on the stock prices of four tech companies. Then,

I focus on the detection of Twitter events that are associated with large fluctuations on

specific stock markets. In the second case, I attempt to find causal links between daily

activities, such as socialising, working and exercising, with stress. In this thesis, I focus

on uncovering the structural dependencies among factors of interest rather than on the

detection of mere correlation. Special attention is given on enhancing the reliability of

the findings by developing techniques that can better handle the specific characteristics

and limitations of the examined datasets. In detail, I propose a novel framework for

causal inference on observational time-series data that does not require any assumption

about the functional form of the relationships among the variables of the study and can

e↵ectively control a large number of factors. In addition, I have developed a causal

inference method that can handle data with noisy entries and result in more accurate

conclusions than existing approaches. Although the approaches developed during this

thesis are motivated by specific problems related to human-generated sensor data, they

are general and can be applied in any dataset with similar characteristics.



CHAPTER 1

INTRODUCTION

Nowadays, people generate vast amounts of data through the devices they interact with

during their daily activities, leaving a rich variety of digital traces. Indeed, our mobile

phones have been transformed into powerful devices with increased computational and

sensing power, capable of capturing any communication activity, including both mediated

and face-to-face interactions. User location can be easily monitored and activities (e.g.,

running, walking, standing, traveling on public transit, etc.) can be inferred from raw

accelerometer data captured by our smartphones [1, 2]. Even more complex information,

such as our emotional state or our stress level, can be inferred either by processing voice

signals captured by means of smartphone’s microphones [3, 4] or by combining infor-

mation, extracted from several sensors, which correlates with our mood [5, 6, 7, 8, 9].

Moreover, we keep track of our daily schedule by using digital calendars and we use social

media such as Facebook, Twitter and blogs to communicate with our friends, to share

our experiences and to express our opinion and emotions. Wearable devices that are able

to monitor physical indicators with a very high level of accuracy are also increasingly

popular [10].

Leveraging this rich variety of human-generated information could provide new insights

on a variety of open research questions and issues in several scientific domains such as

sociology, psychology, behavioural finance and medicine. For example, several works

have demonstrated that online social media could act as crowd sensing platforms [11];

the aggregated opinions posted in online social media have been used to predict movies

revenues [12], elections results [13] or even stock market prices [14]. Social influence e↵ects

in social networks have also been investigated in several projects either using observational
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data [15, 16] or by conducting randomised trials [17, 18]. Other works also use mobility

traces in order to study social patterns [19] or to model the spreading of contagious diseases

[20]. Moreover, smartphones are increasingly used to monitor and better understand the

causes of health problems such as addictions, obesity, stress and depression [21, 22, 9].

Smartphones enable continuous and unobtrusive monitoring of human behaviour and,

therefore, allow scientists to conduct large-scale studies using real-life data rather than lab

constrained experiments. In this direction, in [23] the authors attempt to explain sleeping

disorders reported by individuals, by investigating the correlations between sociability,

mood and sleeping quality, based on data captured by mobile phones sensors and surveys.

Also, in [24] the authors study the links between unhealthy habits, such as poor-quality

eating and lack of exercise, and the eating and exercise habits of the user’s social network.

However, both studies are based on correlation analysis and, consequently, they are not

su�cient for deriving valid conclusions about the causal links between the examined

variables. For example, an observed correlation between the eating and exercising habits

of a social group does not necessarily imply that eating and exercise habits of individuals

are influenced by their social group. Instead, the observed correlation could be due to the

fact that people tend to have social relationships with people with similar habits.

Some recent studies have examined the ability of social media to influence real-world

events by applying randomised control trials. For example, authors in [17] examine the

e↵ect of political mobilisation messages by using Facebook to deliver them to a randomly

selected population; the e↵ect of the messages is measured by comparing the real-world

voting activity of this group with the voting activity of a control group. Similarly, in

[18] authors use randomised trials in order to examine the social influence of aggregated

opinions posted in a social news website. Indeed, randomised control trials are a reliable

technique for conducting causal inference studies [25]. However, their applicability is

limited since they require scientists to gather data using experimental procedures and do

not allow the exploitation of the large amount of observational data. In many cases, it is

not feasible to apply experimental designs or it is considered unethical [26]. In addition,

experimental procedures might require the recruitment of a potentially large number of

participants which incurs additional costs.

Several methods for causality detection in observational data have been proposed
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[27, 28, 26]. Causal detection in observational data is based on the assumption that all

the factors that influence the relationship between two examined variables are observed.

This is a strong assumption which may not hold in some cases. Consequently any causal

conclusions could be biased and should be interpreted with caution. Nevertheless, causal-

ity studies with observational data could provide useful insights about the dependencies

among the examined factors.

When human digital traces are used to analyse complex phenomena such as the impact

of social, psychological and emotional factors on stock market prices, a large number of

variables need to be included in the study. This results in high-dimensional datasets,

which are often characterised by complex dependencies among the included variables. In

such cases, conducting explanatory data analysis in order to understand the underlying

data structure and the potential causal links is even more challenging. Moreover, human

digital traces usually include low level information that requires significant amount of

processing in order to extract features deemed important for a study. For example, in

[29] a sentiment index is inferred from Twitter data by applying text processing and

classification techniques and in [30] factors such as sleeping patterns, social interactions

and physical activity are inferred from raw sensor data. When key factors are inferred

from other observed characteristics, rather than directly measured, the amount of noise

resulted by inaccurate estimations may jeopardise the validity of the study.

1.1 Contribution

Considering the previously discussed opportunities arising from the vast amount of the

available human digital traces as well as the open issues on their e↵ective utilisation,

the main thesis of this dissertation is that uncovering the dependencies between factors

extracted from human digital traces and real-world events would allow us to better under-

stand human behaviour and events influenced by it. In order to support this statement

I will focus on the following research questions:

1. how can we extract meaningful information from raw sensor data and how can we

link this information to real-world phenomena?
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2. how can we discover causal links in complex high dimensional observational data?

3. how can we discover causality when there are noisy measurements?

More specifically, I present the design and evaluation of novel techniques that enable

researchers to unlock the potential of human generated sensor data by allowing them

to analyse not only correlation but also causality relationships. As it was previously

mentioned, current studies are mainly based on correlation analysis. However, in many

cases the observed correlations may occur incidentally [31] and may not represent the

true structural relationships among the examined variables. In this work, I attempt to

discover causal links instead of mere correlation. Motivated by the limitations of the

existing methodologies for causal inference, (these limitations are further discussed in

Chapter 2), I developed a causal inference method for time-series that does not require

any assumptions about the statistical relationships among the variables of the study and

can e↵ectively handle high-dimensional datasets. Then, I use this framework in order to

detect causal links in human digital traces. It should be noted that, any causality study

based on observational data is based on the strong assumption that all the factors that

influence the examined variables have been included in the study. Since it is usually hard

to include all the necessary factors, the term ‘causal’ should be only interpreted relative

to the observed variables of the study.

This dissertation is based on two main data sources: smartphone sensor data and social

media data. In particular, I use social media data in order to understand the impact of

behavioural factors on stock market prices. Features extracted from social media data are

used as indicators of the aggregated people sentiment and opinion about topics of interest.

Then, I examine the relationship of the extracted features with financial indicators in two

case studies. In the first study, I attempt to measure the causal impact of social media

sentiment on traded assets prices of four tech companies. In the second case, I examine

whether bursty topics in social media related to politics or finance can be associated with

stock market jitters. Finally, I use data captured by smartphone sensors in order to study

the impact of daily activities such as socialising, exercising and working on people stress

levels.

Finally, as it was previously mentioned, features extracted by human generated sensor
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data can be noisy and inaccurate. Motivated by this, I propose a novel approach for causal

inference when one or more key variables are observed with some noise. The proposed

method utilises the knowledge about the uncertainty of the real values of key variables

in order to reduce the bias induced by noisy measurements. Although the methodologies

developed for this dissertation aim to tackle specific issues related to causal inference from

human digital traces, they are general and they could be applied to other dataset types

with similar characteristics.

1.2 Thesis Outline

This dissertation is organised as follows:

• Since significant part of this dissertation focuses on causal inference, in Chapter 2 I

provide some background knowledge on the main existing methodologies on causality

detection. Special focus is given on Rubin’s counterfactuals framework [32] and on

quasi-experimental designs for causal inference, since the methodologies proposed

at this dissertation is based on these methods. I also present two other widely

used approaches on causal inference namely structural equation models (SEMs) [33]

and directed acyclic graphs [34]. Finally, I describe current approaches on causal

discovery in time-series data, emphasising on Granger-causality based methods and

methods based on transfer entropy and I discuss the advantages and limitations of

these methods.

• In Chapter 3, I propose a novel method for causal discovery in time-series data

based on Rubin’s counterfactuals framework [32]. This method is motivated by

the need for an approach that can e↵ectively handle high-dimensional data without

imposing any restrictions about the form of the dependencies (i.e. linear or non-

linear) among the variables of the study. I evaluate this method in comparison with

methods based on Granger-causality and transfer-entropy on synthetic data and I

demonstrate that the proposed framework is more e↵ective on avoiding false positive

causal conclusions.
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• In Chapter 4, I investigate the influence of social media on stock market. I first

present other works which have demonstrated that features extracted from social

media correlate with stock market prices and can be used to improve future prices

prediction. Then, I attempt to go one step beyond correlation and study the causal

impact of social media sentiment on the stock market prices of four tech companies.

I include in my study a large number of factors that could influence both social media

sentiment and traded assets such as currency exchange rates, commodities prices and

performance of other major companies and I use the method presented in Chapter

3 in order to study the causal link between the examined factors. In this chapter, I

also attempt to link bursty topics in social media related to finance or politics with

strong stock markets fluctuations. In more detail, I propose a novel event detection

method on Twitter, tailored to detect financial and political events that influence

a specific stock market and I apply this method on high-frequency intra-day data

from the Greek and Spanish stock market. I demonstrate that features extracted

from social media data could be useful indicators for the early detection of stock

market jitters.

• In Chapter 5, I present the problem of knowledge discovery from raw smartphones’

sensor data. Initially, I discuss how smartphone sensor data can be used to monitor

and understand human behaviour and how the extracted information can be used

to build applications that improve users well-being. I support this statement by

presenting existing studies on this domain. Afterwards, I conduct one case study

using smartphones sensor data. In more detail, I use StudentLife dataset [35], a

dataset containing smartphone data for 48 students from Dartmouth College, in

order to study the impact of daily activities such as socialising, exercising and

working on the stress level of participants. Information about participants daily

social interactions as well as their exercise and work/study schedule is not directly

measured; instead, I use raw GPS and accelerometer traces in order to infer high-

level information which is considered as implicit indicator of the variables of interest.

Also, pop-up questionnaires are used to track participants stress level. The causal

inference method presented in Chapter 3 is used to link users activities with their

stress level.
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• In Chapter 6, I examine the problem of causal inference when one or more key

variables are observed with some noise. This is a common problem, especially in

studies based on raw sensor data, where important information is often not directly

measured and it needs to be inferred from other low level characteristics. I propose

a novel causal inference approach, based on Rubin’s counterfactuals framework [32],

that takes into account the uncertainty about the real values of a noisy variable.

Noisy variables are handled as stochastic approaches and the method attempts to

maximise the probability that any bias in the study has been su�ciently reduced.

I evaluate this method in comparison with existing methods both on simulated and

real scenarios and I demonstrate that this approach reduces the bias and avoids

false causal inference conclusions in most cases.

• In Chapter 7, I summarise the contributions of this thesis and I discuss future

research directions.

1.3 List of Publications

During my PhD I have authored the following papers:

Chapter 3 and Chapter 4

• Fani Tsapeli, Mirco Musolesi and Peter Tino. “Non-parametric causality detection:

An application to social media and financial data.” Physica A: Statistical Mechanics

and its Applications 483 (2017): 139-155.

• Fani Tsapeli, Nikolaos Bezirgiannidis, Mirco Musolesi and Peter Tino. “Linking

Twitter Events With Stock Market Jitters.” Under review at EPJ Data Science.

Chapter 5

• Fani Tsapeli and Mirco Musolesi. “Investigating causality in human behavior from

smartphone sensor data: a quasi-experimental approach.” EPJ Data Science 4.1

(2015): 24.

Chapter 6
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• Fani Tsapeli, Peter Tino and Mirco Musolesi. “Probabilistic Matching: Causal

Inference under Measurement Errors.” In Proceedings of the International Joint

Conference on Neural Networks (IJCNN), 2017.

Papers not included in this thesis

• Abhinav, Mehrotra, Fani Tsapeli, Robert Hendley and Mirco Musolesi. “MyTraces:

Investigating Correlation and Causation between Users Emotional States and Mobile

Phone Interaction.” Proceedings of the ACM Conference on Interactive, Mobile,

Wearable and Ubiquitous Technologies (UbiComp) (2017).
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CHAPTER 2

BACKGROUND

In this chapter, I will introduce the two main problems that are considered in this thesis: 1)

the influence of social media on financial markets and 2) the analysis of human behaviour

using smartphones sensor data. I will discuss how my thesis relates to the previous works

on these subjects and I will justify the need of novel methods that would enable us to

better utilise these data. Since the main methods developed in this dissertation focus on

causal inference, at the third part of this chapter I present an overview of the existing

causal inference methodologies as well as my contribution on this domain.

2.1 Influence of Social Media on Financial Markets

According to the e�cient market hypothesis (EMH), stock prices are instantaneously

reflecting any external information and therefore, fundamental analysis, which utilises

information about exogenous factors such as news releases, cannot outperform technical

analysis [36]. However, several studies have reported evidence that exogenous factors

such as significant political and financial news or macroeconomic releases could cause

large fluctuations on stock market prices [37, 38].

Nowadays, online systems such as social media, web blogs, search engines etc., are able

to capture the reaction of people on news in real-time and their interest on specific topics.

Several works have previously examined the potential of information extracted from social

media, search engine query data or other web-related information to predict stock market

returns. For example, the correlation between sentiment extracted from Twitter data and
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stock market prices is examined in [39, 40]. Similarly, in [41] the authors show that metrics

extracted by social media are leading indicators of firms equity value. In [42] the authors

examine the mutual information between social media sentiment and hourly traded assets

prices. They found a statistically significant association only with a limited set of stocks.

The di↵erent behaviour that is observed for di↵erent companies is attributed mainly

to the fact that some company names or ticker symbols attract more message volumes

while for others the available information is not su�cient for the analysis. Also in [43]

the dependencies between microblogging sentiment and several financial indicators are

examined using fuzzy-set qualitative comparative analysis. Other features such us the

number of followers are also considered.

Other projects have been focussed on the possible use of sentiment analysis based on

social media data for the prediction of traded assets prices by applying a bivariate Granger

causality analysis [29, 44, 45] or regression models [46, 47]. In [48] authors propose a pre-

diction method based on machine learning. Also in [49] a support vector machine classifier

is trained in order to predict the direction of stock market movement using past prices

as predictors and features extracted from text posted on Yahoo Finance message boards.

Moreover, in [50] the authors train a classifier to predict daily up and down movements

of tech companies traded assets using as features the sentiment of relevant tweets and the

degree of stock market confidence. Researchers have also exploited additional information

from Twitter to predict stock market movement: examples include information based on

influential users [51] or interaction between users [52, 53].

In [54, 55] the authors have also demonstrated that search engine query data corre-

late with stock market movements. In [56] the authors propose a trading strategy that

utilises information about Wikipedia views. They demonstrate that their trading strategy

outperforms random strategy.

All the above mentioned studies, are based on bivariate models. Although their results

indicate that social media and other web sources may carry useful information for stock

market prediction, by using these techniques it is not possible to figure out whether

stock markets are actually influenced by this information or whether other factors are

influencing both stock market prices and users opinion captured by digital data. In order

to examine this, a causality analysis is required.
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Trading strategies that utilise both technical analysis and sentiment analysis are dis-

cussed in [57, 58]. These works focus on prediction rather than causal inference and they

are predominantly base on regression. Applying regression models for causal inference

su↵ers from two main limitations. First, stock market prices can be influenced by a large

number of factors such as stock market prices of other companies [59, 60], foreign currency

exchange rates and commodity prices. Such factors may also influence people sentiments.

Consequently, to eliminate any bias it is required to include a large number of predictors

in the regression model. The estimation of regression coe�cients in a model with a large

number of predictors can be challenging. These issues are discussed in more detail in Sec-

tion 2.3. Second, most studies on social media and stock market data are based on linear

regression models. However, other studies provide evidence of non-linear dependencies

[61]. Selecting an appropriate model is usually one of the most di�cult aspects of this

type of analysis. Inaccuracies in model specification, estimation or selection may result

in invalid causal conclusions.

In order to fill this gap, in Chapter 3, I propose a causal inference method for time-

series data that overcomes the limitations of existing approaches and can handle more

e↵ectively the specific datasets. Then, I apply this method in order to quantify the

influence of social media sentiment on traded assets prices [62].

The ability of Twitter sentiment to predict stock market movements has been ques-

tioned recently [63]. In particular, authors found no evidence of Granger-causality be-

tween Twitter sentiment and stock market prices when they tried to replicate the results

of Bollen et al. work [14] for a di↵erent time period. They suggest that the results of

Bollen’s paper are influenced by several biases on the dataset such as small time-period

that is considered in the analysis and the limitations of the applied sentiment analysis.

In my work, I examine the links between social media and stock market in significantly

larger time periods (4 years instead of 11 months). Also, I evaluate the performance of

the applied sentiment classification method. Then, the uncertainty about the real senti-

ment of tweets due to the limitations of the applied sentiment analysis method is included

in the study. Finally, I enhance the reliability of the results by conducting a sensitivity

analysis.

Moreover, it has been shown in [64] that social media may contain useful information
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mainly during the peaks of Twitter volume. In more detail, authors found only a weak

correlation between Twitter sentiment and stock market prices of companies from the

DJIA index when data from a large time-period are examined. However, they found

strong dependency when they examine only periods during which the Twitter volume is

high, suggesting that an abnormal Twitter stream may indicate a strong stock market

movement. Examining the links between social media and stock market during intervals

characterised by abnormal behaviour would enable us to better understand and predict

stock market jitters. However, this topic is currently unexplored.

In this dissertation I propose a novel method that detects bursty Twitter topics that

are linked with stock market jitters and I demonstrate that Twitter can be used in order

to spot early abnormal stock market movements. In addition, although several works

have provided evidence of correlation between web-related information sources and stock

market prices, little work has been done so far on understanding which features contained

in social media could be useful for the understanding of stock market movements. In

[42] the strength of the correlation between sentiment extracted from social media and

stock market prices of S&P500 companies is quantified. It is also shown that sentiment

contains more useful information compared to message volumes. Also, in [65] authors

provide useful insights about the correlation of specific text-related features (e.g. the

content of the news or the existence of fear/hope sentiment) and author-related features

(e.g. author’s reputation) with stock market prices. Instead of examining the influence

of a specific feature on stock market prices, the event detection method proposed at

this thesis combines information on the volume, sentiment and content of the tweets,

with information on their authors and geography, and construct feature vectors for each

group of tweets associated with an event. I apply a feature selection process in order to

understand which of the extracted features contain useful information.

Detecting emerging topics with wide interest on Twitter has been examined by several

previous studies. The main approach that is usually followed is the detection of bursty

terms (i.e., words or segments whose frequency on the Twitter stream is characterised

by some unusual pattern during a well-defined time period) followed by a grouping of

these terms based on their content similarity or similarities on their arrival patterns. For

example, in [66] the authors extract a set of emerging terms from the Twitter stream by
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assigning weights to each term based on its frequency as well as the importance of Twitter

users who use it and keeping only the highest weighted terms. The emerging terms are

grouped together by examining their co-occurrence on the same tweets. EDCoW [67]

also constitutes a representative example of this category of event detectors. EDCoW

performs a wavelet transformation on the frequencies of words and it uses vanishing

auto-correlations to eliminate words that do not experience any irregularities on their

arrival rates. Then, it creates a graph by using the pairwise correlations among the words

wavelets and applies a modularity-based graph partitioning in order to group the words

to events. On the same direction, TopicSketch [68] monitors the acceleration of words

and pairs of words in order to early detect bursty topics. Twevent [69] proposes the use

of word segments instead of single words and detects bursty words by examining the word

segments frequency and the number of di↵erent users that report these segments. Then,

word segments are grouped by examining the content similarity among them.

Other projects focus on detecting events of a specific type. For example, authors

in [70] detect local social events by monitoring microblogging activity in geographical

regions and reporting any unusual activity. Moreover, in [71] a system for detecting real

world events in real-time along with the geographical location of the event is presented.

The system uses keywords to detect specific event types. In particular, in [71] the authors

consider the problem of earthquakes detection as a case study.

My work substantially di↵ers from the existing event detectors, since my objective is

the detection of events that influence a specific stock market rather than the detection of

events in general or events of a specific type (e.g., financial events). Thus, my system does

not consider real world financial or political incidents that do not impact the examined

stock market as true events.

Finally, social media studies are not limited in the finance domain. For example,

several studies investigate whether election results or box o�ce revenues can be predicted

by analysing Twitter sentiment [72, 73, 74]. Others examine if Twitter can influence

election results [75]. In [76] authors study the information propagation from other social

media to Twitter. Although such studies demonstrate that social media could be useful

for understanding and predicting several real-world phenomena, their findings need to be

interpreted with caution. Such studies are largely influenced by the e�cacy of the applied
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sentiment detection method and sometimes their results show a only a weak dependency

between the examined factors. Recently the validity of the results of some of these studies

has been questioned [77, 78].

2.2 Human Behaviour Analysis based on Smartphone
Sensor Data

Nowadays, smartphones and wearable devices have become an indispensable part of our

lives. Since we are moving towards the era of the Internet of Things, the amount of human

generated sensor data is expected to increase even more. This opens new opportunities

to scientists studying human behaviour. So far, studies on human behaviour have relied

mainly on paper records. For example, the causal impact of social influence on human

behaviour [79, 80, 81, 82, 83], the impact of exercise on mood [84, 85] and factors that

influence employees or customers satisfaction [86, 87, 88, 89] are only some of the subjects

that have largely concerned sociology researcher. However, results based on questionnaires

su↵er from several limitations:

1. They may be inaccurate. Participants may intentionally or unintentionally provide

inaccurate responses.

2. They cannot capture participants behaviour, emotions or opinions at real-time.

Questionnaires usually ask participants to report their behaviour, emotions or opin-

ion about events that happened earlier within the day, week or even month.

3. Filling a questionnaire requires some e↵ort and time from participants and conse-

quently some people may be unwilling to participate to such studies.

On the other hand, smartphones and wearable devices o↵er continuous, real-time and

unobtrusive monitoring of human behaviour. Raw sensor data captured by smartphones or

wearable devices can be used to infer users location context (e.g. home, work, restaurant,

bar etc.) [90, 91], their emotions [92, 93, 94], their activity level [95, 96, 97, 98] and the

level of social interactions that they had [30]. The e�cient utilisation of this rich variety

of data could revolutionise the current approaches on human behaviour study.
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Several studies have utilised smartphone data in order to examine human behaviour

and emotions. In [99] authors examine the link between physical activity and happiness.

Physical activity is measured using smartphones’ accelerometer data and happiness lev-

els are self-reported by participants. Assessing the impact of travels and travel-related

activities on participants happiness has also been examined at [100, 101]. In [102] au-

thors present a large-scale study on the correlation of personality, mood and well-being

with sociability, activity and mobility. They also demonstrate that mobile sensing data

can be used for the prediction of users mood. Similarly, in [103] smartphone sensor data

and communication logs are used to assess daily mood patterns. Several works have pro-

vided evidence of links between phone usage patterns and mood [104, 105, 106] or other

behavioural characteristics such as alertness [107]. In addition, the StudentLife dataset

has been used to study the correlation between academic performance and sociability,

studying patterns, activity and mobility [108, 109].

The potential of utilising mobile phones in order to monitor people with mental health

problems such as depression or bipolar disorder has been examined in several recent studies

[110, 111, 112, 113]. Health o�cers and doctors in the area of mental health care can

continuously monitor the behaviour of patients and detect anomalies that may indicate the

need of intervention. For example, some studies provide evidence of correlation between

activity [112] or mobility [113] and depression levels. Thus, this low-level information

could provide useful insights about patients mental health state.

To the best of my knowledge, all the studies on this domain so far are based on

mere correlation. However, a correlation analysis is not su�cient in many cases. For

example, a correlation between mobility and happiness does not necessarily imply that

mobility increases happiness levels. People may visit more places during their leisure time

and they may also be happier when they do not have a busy work schedule. Thus, the

observed link between mobility and happiness could be due to a less demanding work

schedule. In this case, scheduling interventions prompting participants to go for a small

trip when they report low happiness level may not be helpful during busy days.

Motivated by the above mentioned limitation of current studies, I propose a method

for causal inference on smartphone sensor data. As it will be later discussed in Section

2.3, causal inference in observational data could be biased in case of missing confounding
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variables. Since, in many cases, key factors required for the analysis may not be captured

by smartphones, any findings should be interpreted with caution. I use this method in

order to understand the impact of daily activities, such as exercising and socialising, on

the stress level of 48 students.

2.3 Causal Inference

Causal analysis attempts to understand whether di↵erences on a specific characteristic Y

within a population of units are influenced by a factor X. Y is called response, e↵ect or

outcome variable and X treatment variable or cause. Units are the basic objects of the

study and they may correspond to humans, animals or any kind of experimental objects.

Y (u) and X(u) denote the outcome and treatment values measured for unit u respectively.

In order to claim that a value of a variable Y has been caused by a value of a variable

X [26]:

1. The value of variable Y should have occurred after the value of X.

2. There should be an association between the occurrence of these two values.

3. There should be no other plausible explanation of this association.

The key idea of causation theory is that, given a unit u, the value of the corresponding

response variable Y (u) can be manipulated by changing the value of the treatment variable

X(u) [114, 115]. Initially, I will consider X as a binary treatment variable, although later

in this section, the case of non-binary treatments is discussed. According to Rubin’s

framework [116], the causal impact of a binary treatment on a unit u can be assessed by

comparing the outcome Y1(u), if the unit has received the treatment, with the outcome

Y0(u), if the unit has not received the treatment. The fundamental problem of causal

inference is that it is not feasible to observe both Y1(u) and Y0(u) for the same unit u.

Instead, the average treatment e↵ect (ATE) can be estimated as:

E{Y1}� E{Y0} (2.1)
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where E{Y1} and E{Y0} are expectations w.r.t. uniform distribution over treated and

untreated units, respectively. The average treatment e↵ect can be estimated only if the

following three assumptions are satisfied:

1. The e↵ect variable Y is i.i.d..

2. The observed outcome in one unit is independent from the treatment received by

any other unit (Stable Unit Treatment Value Assumption - SUTVA).

3. The assignment of units to treatments is independent from the outcome (ignorabil-

ity). For example, let us consider a causal study about the e↵ects of an educational

program on students performance. The ignorability assumption is satisfied if the

selection of the students that will be involved in the study is independent of the

outcome i.e. both strong and weak students are equally likely to be selected for the

program. Ignorability can be formally expressed as Y1 ?? X, Y0 ?? X. The assump-

tion of ignorability requires that all the units have equal probability to be assigned

to a treatment. If this assumption does not hold, the units that received a treat-

ment may systematically di↵er from units that did not receive such a treatment. In

such a case the average value of the outcome variable of the treated units could be

di↵erent from that of other units, even if the treatment had not been received at

all.

In experimental studies, units are randomly assigned to treatments. Thus, both the

SUTVA and the ignorability assumptions are satisfied. However, in many cases it is not

feasible to conduct experimental causality studies. Several techniques for causal inference

in observational data have been proposed. In this section, I discuss the main methods

on this domain. I emphasise on the matching design framework, since the methods de-

veloped in this dissertation are based on this approach. The purpose of this section is to

provide some background knowledge on the main causal inference methodologies rather

than presenting an exhaustive literature review on causality.
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Symbol Description

N Number of units

P Number of confounding variables

Y Outcome variable, described with a 1⇥N vector

yu The outcome value of unit u

X Treatment variable, described with a 1⇥N vector

xu The treatment value of unit u

H P ⇥N matrix of confounding variables

hu the uth column of H, denoting a P ⇥ 1 vector of values of unit u for the P confounders

hp the pth row of H, denoting a 1⇥N vector of values of the N units for the pth confounder

hpu element in column u and row p of H, denoting the value of unit u for the p confounder

G Set of matched treated and control units

GU Set of matched treated units

GV Set of matched control units

D(hu, hv) Distance between vectors hu, hv

�(u, v) Distance between units u, v

Table 2.1: Notation.

2.3.1 Matching Design

I describe the treatment and outcome variables X and Y as 1 ⇥ N vectors, with N the

number of units and xu, yu the treatment and outcome values of the unit u respectively

(i.e. the uth elements of vectors X and Y ). I also define a P ⇥N matrix of P confounding

variables denoted as H. Confounding variables represent baseline characteristics of the

units that are considered relevant for the study. For example, in a medical study that

examines the impact of a drug, baseline characteristics could be the previous health

condition of the units (in this case patients), their age etc.. I denote as hu the uth column

of H, representing a P ⇥ 1 vector of values of unit u for the P confounding variables

and as hp the pth row of H, representing a 1⇥N vector of values of the N units for the

pth confounding variable. For more clarity, I summarise the notation that is used in this

chapter in Table 2.1.

As was previously mentioned, in experimental studies, ignorability can be achieved

by randomly assigning units to treatments. However, in observational studies this is not

feasible. Instead, the average treatment e↵ect can be estimated by relaxing ignorability
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to conditional ignorability [26]. According to the conditional ignorability assumption, the

treatment assignment is independent from the outcome, conditional on a set of confound-

ing variables, represented by matrix H. Thus, conditional ignorability is expressed as

Y1 ?? X|H and Y0 ?? X|H.

Matching methods attempt to achieve conditional ignorability by comparing the out-

come values of units with similar observed characteristics. In particular, if U is a set

of treated units and V is a set of control units (i.e., units which have not received the

treatment), matching methods match each treated unit u 2 U with the ”most similar”

control unit v 2 V . If G is the set of matched pairs of units, the average treatment e↵ect

is estimated as

E(u,v)2G{Y1(u)� Y0(v)} (2.2)

where the expectation is with respect to uniform probability distribution over G. The

(dis)similarity between units is measured as a distance between their confounding variable

values (for some metric).

Several methods for creating pairs of units (u, v) 2 G have been proposed. The

matching methods involve four steps [117]:

1. (Dis)similarity Estimation. In this step, a notion of (dis)similarity between

units is defined. The dissimilarity corresponds to a distance metric between the

confounding variable values of two units.

2. Matching Method. In the matching step, a method that creates pairs of treated

and control units (u, v) 2 G based on closeness of their confounding variables, as

it is defined in step 1, is applied. Units with similar values on their confounding

variables are matched.

3. Balance Check. In the balance check step, the remaining confounding bias due to

imperfectly matched units needs to be estimated. The balance can be examined by

checking the standardised mean di↵erence between the treated and control units, by

applying a t-test or a Kolmogorov-Smirnov test, or by examining the quantiles of the

matched units [117]. This checking has to be done for each confounding variable.
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If the resulted groups of matched treated and control units are not adequately

balanced, the method needs to be revised (i.e., the steps 1 and 2 are modified until

su�cient balance between the treated and control units has been achieved).

4. Treatment E↵ect Estimation. When su�cient balance has been achieved, the

average treatment e↵ect can be estimated using Eq. (2.2).

2.3.1.1 Distance Metrics

The simplest distance metric is the exact distance, according to which the distance between

two vectors hu, hv is zero only if all their elements are equal. Otherwise, their distance

is infinite. Matching with exact distance results in zero confounding bias. However, in

most cases, exact matching cannot be applied, especially when the study includes a large

number of confounding variables and/or some of them are continuous.

Euclidean or Mahalanobis distances are commonly used for measuring the dissimi-

larity between two vectors hu, hv. Another distance metric that is used to measure the

(dis)similarity between the confounding variables values of two units is the absolute dif-

ference on the propensity score [28]. The propensity score is the probability of a unit to be

assigned to a treatment conditional to its confounding variables values. The propensity

score is usually estimated using logistic regression, in which the binary treatment is re-

gressed on the confounding variables. The conditional ignorability assumption is satisfied

when the matched units have ‘approximately’ the same probability to be assigned to a

treatment.

2.3.1.2 Matching Methods

Several methods have been used for matching. The most straightforward method is Near-

est Neighbor Matching [117], which matches each treated unit to the control unit with the

lowest distance on the corresponding confounding variable values. In each simplest form,

each unit can be matched only one time. Some variations of this approach are discussed

later in this section.

One-to-one nearest neighbor matching may result in bad pairs when multiple treatment

units are ‘competing’ for a small number of control units. Moreover, the order in which
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units are matched may influence the quality of the matched pairs [28]. Optimal matching

[118, 119, 120] has been proposed in order to avoid these issues. Optimal matching

attempts to optimise a global distance measure among all matched pairs.

Subclassification can also be used for creating pairs of treated and control units [121].

Based on this method, units are split in groups or subclasses so that the distribution of

the confounding variables values is similar for both treated and control units belonging

to the same group. Propensity score quantiles can be used in order to split units into

subclasses.

Genetic Matching [122] is another popular matching method which uses a generalised

weighted Mahalanobis distance and applies an evolutionary search algorithm to determine

the weight that needs to be assigned in each confounding variable in order to achieve op-

timal pairs. Genetic matching uses as distance metric between the confounding variables

vectors hu, hv the following weighted Mahalanobis distance:

du,v,W =
p

(hu � hv)T ·W · (hu � hv) (2.3)

where W = (S� 1
2 )T ·W ·S� 1

2 , with W a P⇥P diagonal positive definite weight matrix and

S� 1
2 is the Cholesky decomposition of the sample covariance matrix of H = [h1, ..., hN ].

The diagonal elements ofW are selected by applying an evolutionary search algorithm that

attempts to find the optimal weights to minimise a loss function. Several loss functions

can be used. A commonly used loss is the minimum p-value of a t-test or a Kolmogorov-

Smirnov distributional test on the matched pairs of treated and control units resulting

from applying a givenW in the distance calculations between confounders. The loss is cal-

culated for each confounding variable. Thus, if pp is the p-value of the pth confounding vari-

able, the objective is to find a matrix W that minimises the minppp. Other loss functions

are based on comparisons of the quantiles of confounding variables for the matched treated

and control units. In detail, denote by GU and GV the sets of matched treated and control

units, respectively, i.e., for each pair (u, v) 2 G, u 2 GU and v 2 GV . For pth confounding

variable, I think of the corresponding values for matched treated units {hp
u : u 2 GU} as

realisations of a random variable Ap. Analogously, the values {hp
v : v 2 GV } of matched

control units will be considered realisations of a random variable Bp. Given a set of
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K quantiles ap(k) and bp(k) of Ap and Bp, respectively, I calculate a set of quantile

di↵erences �p = {|ap(k)� bp(k)|}Kk=1. Then, one of the following loss functions can be ap-

plied: 1) meanpmean�p, 2) maxp�p, 3) medianp�p, 4) meanpmax�p, 5) maxpmax�p,

6) medianpmax�p, 7) meanpmedian�p, 8) maxpmedian�p and 9) medianpmedian�p.

Matching Parameters

There are three key parameters that can be adjusted when applying a matching method:

• Many-to-one Matching: Instead of 1-to-1 matching (i.e., each treated unit is

matched with one control unit), k-to-1 matching can be applied (i.e., k controls are

used for each treated unit). In this case, the k control units with the lowest distance

are selected.

• Matching with Caliper Distance (Threshold): A caliper distance can be used

to avoid matching units with large distance (i.e., larger than the caliper distance)

in cases that a better match cannot be found.

• Matching with Replacement: Matching with or without replacement is another

key decision when this method is applied. If matching with replacement is applied,

each treatment unit can be matched with multiple control units; otherwise, each

control unit can be used only once. Matching with replacement can decrease bias

when there are multiple treated units with small distance to a single control unit.

Since some control units are used multiple times, the analysis could be dependent on

the selected control units. Frequency weights need to be used in order to eliminate

this bias.

2.3.1.3 Balance Check

After creating the set of matched units G, it is necessary to assess whether the resulted

treated and control groups of units are su�ciently balanced. This means that the distri-

bution of the baseline characteristics, described by the P confounding variables, of the set

of matched treated units GU must be similar to the distribution of the baseline character-

istics of the set of control units GV . The most commonly used metric for the estimation

of the balance between the matched treated and control units is the standardised mean
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di↵erence (SMD). For the confounding variable hp, the standardised mean di↵erence is

estimated as follows:

SMDp =
|h̄p

U � h̄p
V |

q

(�2
p,U + �2

p,V )/2
(2.4)

where h̄p
U and h̄p

V denote the sample mean of the pth confounding variable in the treated

and control groups respectively and �2
p,U , �

2
p,V their sample variances. The standardised

mean di↵erence needs to be estimated for each confounding variable. The groups GU and

GV are usually considered to be balanced if the standardised mean di↵erence is smaller

than 0.1 for each confounding variable. If propensity score matching is used, the balance

can be assessed by estimating the standardised mean di↵erence on the propensity score.

The p-values of statistical hypothesis tests, such as t-tests or Kolmogorov-Smirnov

distributional tests, have also been used to assess the balance between treated and control

groups. However, some studies suggest that statistical tests should not be used for balance

check since they depend on the sample size and therefore, low statistical power due to

limited number of samples could falsely results in false conclusions about the balance

[123].

Graphical balance diagnostics can also be used. For example quantile-quantile plots

can be used to assess the balance in each confounding variable [117]. In these plots,

the quantiles of the matched treated units are plotted against the quantiles of the control

units. When the two groups are balanced the empirical distributions for each confounding

variable should be similar for the treated and control subjects, thus the points of the plot

should approximately lie on the 45 degrees line. The graphical representation of the

standardised mean di↵erence before and after the matching procedure is applied can also

be used as a balance diagnostic [117].

2.3.1.4 Matching With Continuous Treatments

Although matching frameworks have been proposed mainly for bivariate treatment vari-

ables, some recent studies also consider continuous treatments [124, 125]. In such cases

units cannot be split into treatment and control groups. Instead, each unit can be matched

to any other unit. The goal of matching is to create pairs of units with similar values on
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their confounding variables but di↵erent treatment values. In [124] the distance between

units u, v is estimated as follows:

�(u, v) =
D(hu, hv) + ✏

(xu � xv)2
(2.5)

where D(hu, hv) is the distance between the vectors of confounding variables values of

units u and v (this can be the Euclidean distance, the Mahalanobis distance or any other

distance metric), ✏ > 0 a small constant and xu, xv are the treatment values of u and v,

respectively. With respect to unit v, unit u will be considered as treated if xu > xv. The

average treatment e↵ect is estimated as follows:

E(u,v)2G

n yu � yv
xu � xv

o

(2.6)

2.3.1.5 Unobserved Confounding Variables

Conditional ignorability cannot be achieved when one or more confounding variables are

unobserved. The main limitation of all non-experimental causality studies is that the

possibility that important confounding variables are missing cannot be eliminated. In

case of unobserved confounding variables, the assumption of conditional ignorability is

violated. Pre-test post-test designs can be applied in order to handle violations of the

ignorability assumption. According to the pre-test post-test design, the value of the

variable of interest (e↵ect) is observed both before and after the treatment is applied.

Thus, any changes to the observations can be attributed to the treatment. However, the

validity of this technique is weak [26]. The observed di↵erences may be due to maturation

i.e., the values of the observed variable may change over time. Selection bias could be

another threat to the validity of this technique. The examined units may share specific

characteristics that cause (or contribute to) the observed di↵erence on the e↵ect variable.

These limitation can be eliminated by combining pre-tests designs with matching.

In many cases, pre-test measurements are not available, thus pre-test post-test designs

cannot be applied. Another approach for evaluating whether the conditional ignorability

assumption is valid is to compare the outcome value on the treated group with the outcome

in multiple control groups. If a non-zero average treatment e↵ect is observed, then the
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result is less likely to be due to violations on the ignorability assumption.

Finally, a sensitivity analysis can be conducted in order to assess how the results

of the study would be influenced in the presence of unmeasured confounding variables

[118, 126]. In detail, let us denote with ⇡u the probability that unit u is assigned to a

treatment (i.e., X(t) = 1) and Ou = ⇡u/(1 � ⇡u) the odds of u to receive a treatment.

Then, I denote with � = Ou/Ov the ratio of the odds of two units u, v. If � = n, the

unit u is n times more likely to receive a treatment than unit v due to unobserved factors.

Under the conditional ignorability assumption (i.e., units are equally likely to receive a

treatment conditional to their observed characteristics), the ratio � should be equal to 1

for two matched time-samples u and v.

In [118], Rosenbaum applies the Wilcoxon’s signed rank test [127] for the resulted

matched treated and control pairs of a causality study under the null hypothesis that the

treatment has no e↵ect on the observed outcome variable. According to this method, for

each matched pair (u, v) a rank is assigned to the outcome di↵erence Y (u) � Y (v). The

Wilcoxon’s signed rank statistic W is estimated as the sum of the ranks of the positive

di↵erences (the interested reader can find a detail description of the method in [127]).

Under the null hypothesis, the mean value of W is S · (S + 1)/4, where S the number of

matched samples. When S is su�ciently large, the upper bound of the distribution of W

can be approximated by a normal distribution with mean �/(1+�) ·S · (S +1)/2. Thus,

the sensitivity on unobserved confounding variables can be assessed by computing the

upper bounds on the p-values of the Wilcoxon’s signed rank test for increasing � values.

2.3.2 Directed Acyclic Graphs for Causal Inference

What is missing from the potential outcome framework is a formal language for causal

analysis representation. Furthermore, randomised experiments and quasi-experiments do

not o↵er explanatory knowledge of an observed causal relationship. The ability to build

a causal explanation model from observation would facilitate the generalization of the

causal inference to a larger population than the one that has been tested (given that the

conditions that caused the observed e↵ect at the tested group hold also for the larger

group) and consequently, enhance the external validity of the study.
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In [27] Spirtes, Glymour and Scheines develop a stochastic framework for causal infer-

ence based on Directed Acyclic Graphs (DAGs). A DAG is represented by a set of vertices

(or nodes) and a set of edges (or arrows). The vertices correspond to the variables of the

study and the edges represent the relationships among the variables. A node X is called

parent of a node Y if there is an arrow from X to Y . In a probabilistic interpretation of a

DAG, an arrow from a node X to a node Y denotes that there is a statistical dependence

between them. If a set of nodes S blocks all paths from a node X to a node Y (i.e., there

is no path from X to Y that does not pass through a node that belongs to set S) then it

is said that S d-separates X and Y ; in this case Y is independent of X conditional to S

and this is written as X ?? Y |S.
A DAG can be built by utilising prior knowledge that the researchers may have. In

case that there is no adequate knowledge of the causal model, researchers can guess a

graph and then test their assumptions by using observational data. Arrows in the initial

model can be added or deleted by performing conditional independence tests. Discovery

algorithms have also been proposed for building DAGs from observational data without

the need of prior knowledge. A procedure has been proposed by Spirtes, Glymour and

Scheines [128]. The algorithm starts with a complete undirected graph where there are

arrows between all nodes. Then, for each pair of variables X and Y and for each set of

variables S the statistical dependence of X and Y conditional to S is examined. If S d-

separates X and Y , then the arrow between them is removed. Conditional independence

tests are also used to orient the direction of the arrows. Discovery algorithms have large

computational complexity (depending on the number of variables) and they may also

result in more than one equivalent graphs. PC algorithm [129], a modification of this basic

algorithm, reduces the computational complexity of the graph discovery by performing

the independence tests in some order and skipping unnecessary tests. Several tools have

been created for automatic causal discovery based on graph models [130, 131].

Under certain assumptions, a DAG can be interpreted as a causal graph. In a causal

graph, an arrow from X to Y denotes that X is a direct cause of Y . Mores specifically,

causal graphs are based on the following assumptions:

1. Causal Markov Condition. Each variable X in the graph is independent to any

other variable, excluding variables that are a↵ected by X, conditional on its direct
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causes.

2. Faithfulness. Given a graph that satisfies the Causal Markov Condition, any popu-

lation derived from this graph follows the same independent relationships with the

ones obtained by applying d-separation on the graph (as described in the 2nd and

3rd paragraphs of this section), i.e., any observed independences are not due to ‘co-

incidence’. Thus, the sampled data that are used in order to test the dependences

among the variables of the study and build the graph should be representative of

the real population. This is a reasonable assumption that needs to be made in any

causal inference study.

3. Causal Su�ciency assumption. All the common causes of any pair of variables

(X, Y ) of a causal graph are represented in the graph, i.e., there are not any un-

measured confounding variables. It should be stressed that the graph does not have

to contain all the causes of any variable in the graph.

2.3.3 Structural Equation Models

There is an alternative causal inference approach which describes each node on a causal

graph as a noise variable and derives a set of structural equation, one for each noise

variable [33]. For example, consider the causal graph of Figure 2.1. Assuming a linear

model, the following structural equations can be derived by the graph:

Z = UZ

N = ↵N · Z + UN

X = ↵X · Z + UX

Y = ↵Y · Z + �Y ·N + UY

The variables UN , UZ , UX and UY model any unknown independent factors (i.e., latent
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Figure 2.1: Example Graph

variables) that influence the variables N,Z,X and Y respectively and ↵N ,↵X ,↵Y , �Y are

real numbers. Non-linear models can also be used in order to model the dependencies

among the variables. Normally, researchers use some prior knowledge about the data in

order to create some reasonable structures i.e. some structures that are considered to be

acceptable based on researchers’ knowledge about the field. Then, the model is selected

by fitting the data to the candidate models. Goodness of fit measures can be used to

evaluate which structural equation model best describes the data.

Structural equation models are strongly related to DAGs. However, the causal struc-

ture is learnt by fitting the data into a model rather than by conducting conditional

independence tests. Structural equation models can include latent variables, thus they

can model the influence of unmeasured factors. On the other hand, they assume a specific

functional relationship among the variables. Any model misspecification could result in

misleading conclusions. In addition, functional models could be overfitted and thus, the

extracted relationships may not accurately describe the real structure of the causal model

[132].

2.3.4 Causality on Time-Series Data

All the previously described frameworks assume i.i.d. data, thus they cannot be directly

applied to time-series data. In this section, I describe the main approaches for causal

inference on time-series and I discuss their limitations. All causal inference methods

discussed in this section are based on the following assumptions:

• The data are stationary, i.e., the impact of a time-series X on a time-series Y is

independent of the time.
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• There is a maximum time-lag L so that there is no influence of any time-sample

Z(t� k) on any time sample R(t) for any t� k � L for any time-series Z, R.

2.3.4.1 Granger Causality

Causality studies on time-series have been largely based on Granger causality [133]. The

Granger causality test examines if past values of one variable are useful in prediction

of future values of another variable. In detail, a time-series X Granger causes a time-

series Y if modeling Y by regressing it on past values of both Y and X results in reduced

residual noise compared to a simple autoregressive model. According to the linear Granger

causality, a variable Y is represented as an autoregressive model as follows:

Y (t) =
L
X

i=1

↵i ⇥ Y (t� i) + e(t) (2.7)

where e(t) corresponds to random gaussian noise. Then, this model is enhanced by adding

lagged values of a variable X as follows:

Y (t) =
L
X

i=1

↵i ⇥ Y (t� i) +
L
X

i=1

�i ⇥X(t� i) + e(t) (2.8)

Variable X is considered to Granger cause Y , if adding lagged values of X at the

autoregressive model of Y improves the model significantly, according to some t-statistic

or f-statistic test [134].

A positive result on a Granger causality test does not necessarily imply that there is a

causal link between the examined time-series since the conditional ignorability assumption

is not satisfied, i.e., the values of both treatment variable X and control variable Y may

be driven by a third variable (confounding bias). In addition, it considers only linear

relationships. Granger causality has been extended to handle multivariate cases [135]

as well as non-linear cases [128, 130]. In [131] the authors propose the use of structural

equation models for time-series data. An additional model check procedure is applied after

fitting a model in order to reduce the amount of false positive causality results. Moreover,

in [136] the authors propose a time-series causality framework based on graph models.

The main advantage of the proposed method is the ability to model latent variables (i.e.
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unobserved confounding variables). However, this method performs worse than Granger

causality for large time-series sample sizes.

Causal inference based on functional models su↵ers from two main limitations. First,

estimation of model coe�cients in scenarios involving a large number of predictor time-

series or when the predictor variables are correlated (multicollinearity) can be challenging.

When data dimensionality is comparable to the sample size, noise may dominate the

‘true’ signal, rendering the study infeasible [31]. Second, it is di�cult to select a suitable

functional form (i.e. linear or non-linear). Inaccuracies in model specification, estimation

or selection may result in invalid causal conclusions.

2.3.4.2 Transfer Entropy

Non-parametric approaches (i.e. approaches that do not require the specification of a

model class) for causal inference in time-series based on transfer entropy have also been

proposed [137]. Transfer entropy is a model-free equivalent of Granger causality [138] and

describes the amount of reduction on uncertainty about a time-series Y given the past

values of Y when the past values of a time-series X are known and is estimated as follows:

TX!Y = H(Yt|Y �
t )�H(Yt|Y �

t , X�
t ) (2.9)

where H(Yt) denotes the Shannon’s entropy of Yt and Y �
t , X�

t denote the past of time-

series Yt and Xt respectively.

Although transfer entropy is originally designed for bivariate analysis, it has also been

extended to multivariate cases [139]. The multivariate case considers a set of time-series

S and examines whether the uncertainty about a time-series Y 2 S is reduced by learning

the past of a time-series X 2 S, when the past of the other time-series in S is known.

Thus, the transfer entropy on a multivariate analysis is estimated as follows:

TX!Y = H(Yt|S�
t \X�

t , Y
�
t )�H(Yt|S�

t \ Y �
t ) (2.10)

The main limitation of this approach is that it requires the estimation of a large

number of conditional probability densities, which might be particularly challenging on

continuous datasets [128]. Runge et al. [140, 141] propose the combination of transfer
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entropy with directed acyclic graphs in order to reduce the number of densities that need

to be estimated. In detail, causality is estimated by examining whether uncertainty about

time-series Y can be reduced by learning the past of X, when the parents of Y and X

are known. The parents PY of a time-series Y are defined as the minimum set of graph-

nodes which separate Y with the past of S \ {PY }. Although this modification reduces

significantly the number of density estimations that are required, the dimensionality of

the dataset may still be high (i.e. the number of parents of Y and X may be very large)

which imposes challenges on the estimation of transfer entropy.

2.3.5 My Contribution

My contribution on the causal inference domain is motivated by specific problems char-

acterising the datasets that are considered in this study. In particular:

1. I propose a novel method for causal inference in time-series based on the matching

design framework [62, 142]. The proposed method has two main advantages over

the existing approaches:

(a) In contrast to functional models (described in Sections 2.3.3 and 2.3.4.1), the

proposed method does not make any assumptions about the structural rela-

tionships among the examined variables and therefore it can handle better

non-linear cases. As was previously mentioned, some studies have provided ev-

idence of non-linear dependency between social media data and stock market

prices [61, 62]. In such cases, approaches that are based in linear models may

fail.

(b) It can better handle high-dimensional data, compared to the non-parametric

approaches described in Section 2.3.4.2. Stock market prices are influenced by a

large number of factors such as commodity prices, prices of other traded assets

and relevant news. Although studies on human behaviour using smartphone

sensor data usually involve a significantly lower amount of variables, they are

mostly based on relatively small datasets due to the di�culty of data collec-

tion; consequently, the analysis can be challenging even with small number of

31



variables.

The method is presented in detail in Chapter 3.

2. I propose a causal inference method that can handle noisy data [143]. In most of

the studies discussed in Sections 2.1 and 2.2 the variables of interest are not directly

measured; instead, they are inferred from other low level information. For example,

in [39, 40, 42] the sentiment of tweets is extracted by applying text processing

methods and therefore, it is not accurate. This issue has been neglected by previous

studies. In Chapter 6, I present a probabilistic causal inference method based on

the matching design framework that can handle stochastic variables and maximises

the probability that any bias has been eliminated.

2.4 Summary

In this chapter, I have introduced the two main problems that are examined in this thesis

i.e., understanding the influence of social media on stock market prices and analysing

human behaviour using smartphone sensor data. Currently, most works are based on cor-

relation analysis. Although these works provide valuable insights about the links among

the variables of interest, they cannot prove that the predictor variable is actually influenc-

ing the response. In this chapter, I have highlighted the importance of detecting causal

links in human digital traces. In order to prove causality, an experimental procedure

needs to be applied. However, in many cases, conducting randomised trials is not feasi-

ble. Consequently, applying causal inference methods based on observational data is the

best available option. Although the findings of any causality study based on observational

data should be interpreted with caution, such studies comprise a significant step towards

understanding human behaviour and phenomena influenced by it.

In addition, in this chapter, I have presented the main methods for causal inference in

observational data and I have discussed their strengths and limitations. Functional models

(described in Sections 2.3.3 and 2.3.4.1) have been widely used for causal inference in many

fields. The main limitation of such models is that they require the selection of a specific

functional form. Methods based on conditional independence tests (described in Sections
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2.3.2 and 2.3.4.2) are less restrictive. However, they often require large conditioning sets

and, therefore, could be unreliable when the size of the dataset is not adequate.

On the other hand, according to the matching design framework the data are adjusted

in order to ‘mimic’ a randomised trial. Matching design does not require any assumptions

about the functional form of the data and can better handle high-dimensional data. In

addition, the design is separated from the analysis and rules can be applied to assess

whether confounding bias has been su�ciently eliminated. However, matching design

assumes i.i.d. data and therefore, it cannot be applied for time-series analysis. In the

following chapter, I present a novel method for causal inference on time-series based on

the matching design framework.

, , , , , 500 , ,
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CHAPTER 3

MATCHING DESIGN FOR TIME-SERIES

As was previously discussed in Sections 2.3.4.1 and 2.3.4.2, causal inference in high-

dimensional time-series data is a challenging task. Given the limitations of the previously

discussed methods, in this chapter I discuss a novel framework for causal inference in

time-series that is based on matching design method presented in Section 2.3.1. Matching

design has several advantages over regression-based methods or those based on information

theory. However, it cannot be applied to time-series since it assumes that the objects of

the study are realisations of i.i.d variables. I reformulate the concept of matching design

to make it suitable for causal inference on time-series data. In this case, the time-series

collection includes treatment time-series X, response time-series Y and a set of time-series

Z which contain characteristics relevant to the study. The units of this study correspond to

time-samples; the tth unit is characterised by a treatment valueX(t), a response value Y (t)

and a set of values representing baseline characteristics Z(t). The baseline characteristics

of the units of the study are any features that can influence the outcome of the study

and also their treatment values. For example, let us consider a study about the impact of

tourism on the economy of a country; events like natural disasters or turmoils should be

considered as baseline characteristic of the study as they may influence both the economy

of the country (outcome variable) and the tourism (treatment variable). I assess the

causal impact of a time-series X on Y by comparing di↵erent units (i.e., time-samples)

on Y after controlling for characteristics captured in Z. As explained in the following

section, the proposed methodology assures that the objects are uncorrelated, which is a

weaker version of the independence assumption requirement of the matching design. The

main advantages of the proposed method are:
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• It is not based on assumptions about the functional form of the relationships among

the examined time-series (i.e., linear or non-linear). As was previously discussed,

methods based on matching do not require fitting the data into a model.

• It requires fewer conditional independence tests with significantly smaller condi-

tioning sets, compared to existing approaches based on transfer-entropy, thus it can

handle more e↵ectively high-dimensional data.

In the following sections, I will describe the proposed causal inference framework and I

will present an evaluation of this approach on synthetic data, in comparison with existing

approaches for causal inference in time-series data.

3.1 Mechanism Description

Let us denote by Y = {Y (tyi ) : i = 0, 1..., N} and X = {X(txi ) : i = 0, 1..., N} the

time-series that represent the e↵ect and the cause, respectively and by Z = {Z(tzi ) : i =
0, 1..., N} a set of time-series representing other characteristics relevant for the study. In

this study, I consider X as a binary treatment variable. As was previously discussed

in Section 2.3.1.4, matching design has been proposed also for non-binary treatments

[124, 125]. However, in this Chapter, I focus only on binary treatment variables. Let

me also denote by Y (l), X(l) and Z(l) the l-lagged versions of the time series Y , X and

Z, respectively (i.e., if X(txi ) the i-th sample of X, X(l)(txi ) = X(txi�l)). In Figure 3.1 I

provide a graphical representation of time-series X, X(1), ..., X(L). I define a maximum

lag value L and a set of time-series S ={Y , Y (1), ..., Y (L), X, X(1), ..., X(L), Z, Z(1), ...,

Z(L)}.
As I previously discussed in Chapter 2, the units of a study traditionally correspond

to experimental objects and the variables of the study describe the characteristics of the

units as well as the treatment they have received and the corresponding outcome. In my

framework, the units of the study correspond to time-samples of the set of times-series

S. For example, let us consider a study that examines the e↵ects of an industry on the

pollution level in a region based on weekly measurements. In this case, a unit of the study

corresponds to one week and the variables of the study to weekly pollution measurements,
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Figure 3.1: Graphical representation of time-series X along with its first l lagged versions.

industrial wastes and other relevant characteristics. In Figure 3.2 I graphically depict the

notion of a unit in my time-series matching design framework in comparison with the

traditional notion of unit on causality studies. In the rest of this chapter, the terms ‘unit’

and ‘time-sample’ will be used interchangeably.

In order to build a graph, I examine the dependencies between the variables X, Y

and all the other variables of the set S. In order to examine if two time-series X and Y

are independent (assuming that the time-series are stationary in the first two moments)

I can estimate the Pearson correlation coe�cient as follows:

rxy =

PN
u=0(X(txu)� X̄)(Y (tyu)� Ȳ )

q

PN
u=0(X(txu)� X̄)2

PN
u=0(Y (tyu)� Ȳ )2

with X̄, Ȳ the sample means of X, Y respectively. Vanishing correlation could be con-

sidered as indication of independence between the examined time-series. However, a

vanishing linear correlation is not always an adequate indication of independence. Al-

ternatively, Spearman rank correlation or mutual information could be used in order to

examine the dependencies between time-series.

In a directed acyclic graph representing a Bayesian network, an arrow from a vari-

able W to a variable Q is added only if Q is dependent of W , conditional on all direct

predecessors of Q. In our graph representation, I relax this condition as follows:

An arrow from a lagged node W (l) (including lag 0) to a non-lagged node Q exists if:

• W (l) precedes temporally Q, i.e., t1u < t2u, for any u; and
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Figure 3.2: Graphical representation of units. On the left side, u represents a unit on a
traditional causality study, characterised by its treatment value X(u), its response value
Y (u) and M other characteristics Z1(u), Z2(u)..., ZM(u). On the right side, tu represents
a unit on our time-series matching design framework. The unit is characterized by the
time-series values of set S at u� th time-sample.

• Q 6?? W (l)|Pm \ (W,W (1), ...,W (m)), where Pm is the set of the direct predecessors

of Q with maximum lag m and m < l.

Thus, in my graph representation, a direct edge between two nodes indicates a de-

pendence but not necessarily a causal link. Causality will be examined by applying the

matching design framework, where the direct predecessors of the treatment and outcome

time-series will serve as the confounding variables of the study. The main advantage of

the proposed framework is the requirement of a significantly lower number of densities

estimations and conditional independence testing compared to other causal inference ap-

proaches on time-series [137, 140, 141]. In detail, since we only need to examine the

dependence of a time-series Q with a time-series W conditional to the past of W , the

maximum conditioning set is L. In what follows I will discuss the details of my method-

ology and how the three general assumptions of causality studies (discussed in Chapter

2) are addressed.

Conditional Ignorability Assumption: I apply the Algorithm 1 in order to find the set

of time-series H that need to be controlled in order to satisfy the conditional ignorability

assumption. According to the proposed method, the resulted set contains all the direct
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Algorithm 1 Defining the set of confounding variables.

Input: The set of time-series S
Output: The set of confounding variables H
{Find the parents of Y.}
P1 :=predecessors(S, Y )
{Find the parents of X.}
P2 :=predecessors(S, X)
{Find the common parents of X, Y.}
H := P1 \P2

{This procedure returns a set P of the direct predecessors of node Q. P is a subset of
S.}
predecessors(S, Q)
P := {}
for i=0 to L do
{For all zero-lagged time-series}
for all S(0) 2 S do
{Find the lagged versions of S which are also parents of Q.}
B := (S(0), ..., S(i�1)) \P
if (Q 6?? S(i)|B) and (S(i) precedes Q) then
P := P [ S(i)

end if
end for

end for
return P

predecessors that nodes X and Y have in common. In Figure 3.3, I depict the resulted set

H of an example graph comprised by time-seriesX, Y andW as well as its lagged versions,

with maximum lag L = 2. The parents of X and Y are selected by conducting conditional

independence tests as described in Algorithm 1. For example, the arrow from X(1) to X

denotes that X 6?? X(1) and the arrow from X(2) to X that X 6?? X(2)|X(1). Similarly, the

arrow from W to X denotes that X 6?? W and the arrow from W (1) to X denotes that

X 6?? W (1)|W . The lack of arrow from W (2) to X denotes that X ?? W (2)|W,W (1). H

includes all the common parents of X and Y . Thus, all the variables that are correlated

with both X and Y time-series are included; hence, the set H is su�cient. However, H

may include also redundant time-series, i.e., some of the time-series included in H may

not correlate with X or Y conditional to a subset of H. In causality studies based on

regression, including redundant predictors on the model could result in overfitting and

would jeopardize the validity of the conclusions. Moreover, the application of methods
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based on conditional independence tests using information theoretic approaches would be

challenged by the inclusion of redundant covariates since it would require conditioning

on large sets of variables. In contrast, studies based on matching are less a↵ected by the

inclusion of redundant confounding variables (spurious correlations). Several methods

that enable matching on a large number of confounding variables have been proposed

[122, 144, 32]. In addition, researchers are able to apply balance diagnostic tests in order

to assess if any confounding bias has been adequately eliminated [145]; consequently, false

conclusions due to confounding bias can be diminished. Following the matching design,

the set of time-series H is controlled by creating a set of pairs of time-samples G where

each u-th time-sample with a positive treatment value X(txu) is matched with a vth time-

sample with zero treatment X(txv) such that H(thu) ⇡ H(thv). It should be noted that

only factors that precede temporally both Y and Y can influence the study. If a factor

precedes only the e↵ect variable (or the treatment variable), it cannot drive the values of

both treatment and e↵ect, thus it will not influence the study.

Stable Unit Treatment Value Assumption: Denote by P the set of time-series that are

direct predecessors of the e↵ect variable Y . Assuming X 2 P (if not, X is independent

of Y and therefore there is no causation), the assumption is violated if X(l) 2 P and

X(l) 62 H, for l > 0. Since units correspond to time-samples, X(l) 2 P implies that the

outcome value Y (tyu) at time tyu depends on the value of the treatment time-series X at

time txu�l. In order to satisfy the assumption, I modify the H set as follows:

H := ((X(1), ..., X(L)) \P) [H, (3.1)

satisfying Y (tyu) ?? X(txv)|H(thu), 8u 6= v.

I.i.d. assumption: Denote by Y1 the value of the outcome variable for the time-

samples that have a positive treatment value and with Y0 for time-samples with zero

treatment value. The average causal e↵ect is estimated as bE{Y1 � Y0|H}. In order to

enable statistical inference, the variable �Y := Y1 � Y0|H needs to be i.i.d.. If P the set

of direct predecessors of Y , the outcome value Y (tyu) of each time-sample tyu will depend

on the outcome value Y (tyu�l) if there is a time-series Y (l) 2 P. In case that Y (l) /2 H, the

i.i.d. assumption would be violated. In order to satisfy this assumption, I modify the set
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Figure 3.3: Example graph depicting the resulted set H when the impact of X on Y is
examined. At this example, X precedes temporally Y and W precedes X. The maximum
examined time-lag L is 2.

of time-series H as follows:

H := ((Y (1), ..., Y (L)) \P) [H (3.2)

Causal inference will be performed by matching on the modified set of time-series H

thus, the variable �Y := Y1 � Y0|H will be i.i.d.. Any matching method can be applied.

Researchers should choose a matching method that achieves su�cient balance between

the matched treated and control units by applying the framework described in Section

2.3.1.

3.2 Evaluation on Synthetic Data

In order to demonstrate the potential of this approach I assess its e↵ectiveness in detecting

causal relationships on linear and non-linear synthetic data. I also compare my approach

with a multivariate Granger causality model and with an information theoretic approach

based on Runge’s framework [141] and I demonstrate that the proposed method is more

e�cient on avoiding false causal conclusions. I denote with X = {X(txu) : u = 1, 2, ...N}
and Y = {Y (tyu) : u = 1, 2, ...N} the treatment and outcome time-series respectively and

with Z = {Z(tzu) : u = 1, 2, ...N} a set of M confounding variables. I also assume that
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Figure 3.4: Resulting graph after applying Algorithm 1 on the synthetic data whenM = 1
(i.e. there is only one confounding variable). The graph depicts the direct predecessors
of nodes X and Y . The set of nodes H will contain the direct predecessors that nodes X
and Y have in common. In the four examined cases X correlates with Y , though in Case
2 and Case 4, this is a spurious correlation due to the set of confounding variables Z.
There is also a spurious correlation of node X with node Y (1). X and Y are independent
to Z(1) conditional to Z and Y is independent to X(1) conditional to X.

tzu < txu < tyu, 8u. The relationships among X, Y and Z are described by the following

model:

X(txu) = hxx(X(txu�1)) + fxz(Z(t
z
u)) + ✏x(t

x
u) (3.3)

Y (tyu) = hyy(Y (tyu�1)) + fyz(Z(t
z
u))

+fyx(X(txu)) + ✏y(t
y
u) (3.4)

Zi(tzu) = hzi(Z
i(tzu�1)) + ✏zi(t

z
u), 8Zi 2 Z, (3.5)

where ✏x(txu), ✏y(t
y
u) and ✏zi(t

z
u) are i.i.d. Gaussian noise variables with zero mean and std.

dev. equal to 20 + 2 ·M , 10 + 2 ·M and 10, respectively.

I consider the following four cases:

Case 1. The model is linear. Thus,

fxz(Z(t
z
u)) =

X

i

↵xz,i · Zi(tzu)
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hxx(X(txu�1)) = ↵xx ·X(txu�1)

hyy(Y (tyu�1)) = ↵yy · Y (tyu�1)

fyz(Z(t
z
u)) =

X

i

↵yz,i · Zi(tzu)

fyx(X(txu)) = ↵yx ·X(txu)

hzi(Z
i(tzu�1)) = ↵zi · Z(tzu�1)

Case 2. I apply the linear model of Case 1, but I set fyx(X(txu)) = 0. In this case the

treatment time-series X does not have any causal impact on the outcome time-series.

Case 3. The associations of the confounding variables with the treatment and e↵ect

variables are non-linear. In particular, I assume that:

fxz(Z(t
z
u)) =

X

i

↵xz,i · (Zi(tzu))
2

fyz(Z(t
z
u)) =

X

i

↵yz,i · (Zi(tzu))
2

I use the linear equations of Case 1 for the rest of the functions.

Case 4. I use the non-linear model of Case 3, but I set fyx(X(txu)) = 0. In this

case, the multivariate linear Granger causality approach may return positive causality

result, even though the treatment time-series X(t) does not have any causal impact on

the outcome time-series.

I assume that time-series X is sampled before Y and that all time-series Z are sampled

before X. A unit (i.e. time-sample) t of the study is described by the set of time-series

values: S(tu) := (X(txu), Y (tyu), Z(t
z
u), X

(1)(txu), Y
(1)(tyu), Z

(1)(tzu)). I apply the following

three methodologies on the synthetic data generated using the models above in order to

assess the causal impact of variable X on Y :

Multivariate Granger Causality (MGC). I apply stepwise regression in order to

fit the data to a multivariate Granger causality model described by the following equation:

Y (tyu) = a1 · Y (tyu�1) +
(1)
X

l=0

bl ·X(txu�l) +
(1)
X

l=0

cl · Z(tzu�l) + � + ✏(tyu) (3.6)
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I conclude that X causes Y if X or any lagged version ofX is included in the regression

model.

Conditional Mutual Information Tests (CMI). Following Runge’s approach

[140], a causal graph is created by performing conditional independence tests using con-

ditional mutual information as described in Section 2.3.4.2.

Matching Design for Time-series (MDT). Following the proposed approach, I

apply Algorithm 1 in order to find the set of variables H that needs to be controlled

in order to achieve conditional ignorability. The resulted graph is depicted in Figure

3.4. H includes any Zi 2 Z that correlates both with X and Y . Moreover, I satisfy

the i.i.d assumption by including in H the time-series Y (1). In order to create groups

of treated and untreated units I first transform the time series X into a binary stream

X̃: X̃(txu) = 0, if X(txu) < µX ; X̃(txu) = 1, otherwise, where µX is the mean of X

(i.e. the u-th time-sample corresponds to a treated unit if X(txu) > µX). Then, I create

pairs of treated and untreated units (i.e. time-samples) by applying Genetic Matching

algorithm [122]. Genetic matching is a multivariate matching method which applies an

evolutionary search algorithm in order to find optimal matches which minimise a loss

function. Simpler matching approaches (e.g. nearest neighbour matching) were also

considered; however genetic matching resulted in more balanced treatment and control

groups. As a loss function, I used the average standardised mean di↵erence between the

treated and control units for all the confounding variables H i 2 H which is defined as

follows:

SMDH =
X

Hi2H

P

(th
u

,th
v

)2G |H i(thu)�H i(thv)|
|G| · �Hi

/|H| (3.7)

where G corresponds to the set of matched treated and control units (see Table 2.1).

Finally, the average treatment is estimated using Equation (2.2) and a t-test is used to

examine whether the average treatment e↵ect (ATE) is significantly di↵erent from 0.

I generate 100 samples for each time-series. I vary the number of confounding variables

M that are included at set Z from 10 to 50. In detail, I evaluate the three methodologies

forM = {10, 20, 30, 40, 50}. For eachM value, I repeat the study for 30 randomly selected

sets of model coe�cients (↵s). All model coe�cients are randomly generated from uniform
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distribution on [�4, 4] for the linear cases and on [�1, 1] for the non-linear cases. These

values are selected so that the resulted signal to noise ratio serves the needs of this study

(i.e., if the noise dominates the true signal, then any causality (or correlation) analysis

will fail to uncover the true relationships between the variables; on the other hand, if

the noise is very small compared to the true signal, any method will result in positive

conclusions). Finally, for each one of the 30 sets of model coe�cients I repeat each study

for 100 di↵erent noise realisations. For the nth noise realisation of the kth set of model

coe�cients, I define:

Sk,n =

8

<

:

1 if X was detected as cause of Y

0 otherwise
(3.8)

For the kth set of model coe�cients I also define Ak =
P100

n=1 Sk,n. In Case 1 and Case

3, Ak denotes the number of times that a causal relationship from X to Y is successfully

inferred (true positive) for the kth set of model coe�cients and di↵erent noise realisations,

while in Case 2 and 4 it denotes the number of times that a causal relationship is falsely

inferred (false positive). In Figure 3.5 I present the mean value of Ak, µA
k

along with

the standard error of the mean. According to my results, the proposed causal inference

technique reduces significantly the number of false positive causality conclusions while it

is slightly less successful on detecting real causality for M = 10. Multivariate Granger

causality achieves almost 100% accuracy on true causality detection both for the linear

(Case 1) and non-linear (Case 3) cases. However, it performs poorly in terms of avoiding

false positive conclusions. The performance of all the examined methods improves for

larger M values (apart from multivariate Granger causality on the linear cases). This is

due to the fact that, by adding more variables on the set Z, the dependence of Y and X

with each individual Z i 2 Z is weaker; consequently, although M covariates are used to

generate X and Y time-series, for large M values, only a subset of them has significant

e↵ect on them. Thus, cancelling out the e↵ect of Z is easier.
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Figure 3.5: Comparison of the MDT, CMI and MGC causality detection methods on
synthetic data.

3.3 Discussion

My results on the simulated experiments indicate that the proposed method is more

e↵ective on avoiding false positive causality conclusions. I have examined the performance

of the proposed method in datasets with up to 50 dimensions and 100 time-samples.

Extreme high-dimensional cases with p > n are not considered in this study. In such

cases, balancing treatment and control groups for each confounding variable would require

a large number of samples. Propensity score matching [146] represents an alternative

matching method that can e↵ectively handle a large number of confounding variables by

performing matching on a single balancing score, i.e. the propensity score. The propensity

score corresponds to the probability of a unit to be assigned to a treatment and it is usually

approximated by applying a logistic regression model of the treatment against the set of

confounding variables. High-dimensional propensity score matching [147] has also been

proposed in order to handle extreme high-dimensional cases with p >> n.

One of the main advantages of the proposed MDT (Matching Design for Time-series)
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method over multivariate Granger causality and CMI (Conditional Mutual Information

tests) is that the design of the study is separated from the analysis. The values of the

response time-series Y are not used during the matching process. The causal impact of

a time-series X on Y is evaluated only after su�cient balance between the treated and

untreated samples has been achieved. In contrast, in a regression-based analysis the re-

sponse time-series Y is used in order to learn the coe�cients of the predictor variables

of the study. Many studies suggest that regression-based methods for causal inference

are less reliable [148]. Moreover, the proposed method is non-parametric, while Granger

causality is based on assumptions about the model class (i.e. linear/non-linear relation-

ships). According to my results, linear Granger causality performs poorly when there are

non-linear relationships among the examined time-series.

In addition, as it was previously discussed, MDT requires significantly fewer condi-

tional independence tests and smaller conditioning sets. In detail, the maximum condi-

tioning set of the proposed method is equal to the maximum lag L, while the maximum

conditioning set of CMI is M · L (with M the number of confounding variables). Thus,

MDT can handle more e↵ectively datasets which include a large number of confounding

variables.

Moreover, the computational cost of creating the graph is significantly lower for MDT

compared to CMI. Assuming discrete time-series with values in a set V , the computational

complexity of creating a graph by applying the proposed method is O(|V |L ·M ·N), while

the computational cost of CMI is O(|V |M ·L ·M ·N), with |V | the size of set V . However,

causal inference with MDT requires an additional matching step, and consequently, its

computational complexity largely depends on the matching method that is applied. If a

simple nearest neighbour matching method is applied [117], the cost of finding the best

match of a single unit is O(|H| ·N), with |H| denoting the size of set H, and the cost of

matching all the units is O(|H| · N2). Thus, the overall computational cost of MDT is

O(|V |L ·N + |H| ·N2). However, when more complex matching methods, such as Genetic

matching [122], are applied, the computational cost of MDT can be significantly larger.

As was previously discussed in Section 2.3.1.2, genetic matching algorithm applies an

evolutionary search method in order to find optimal weights for each covariate. In each

algorithm iteration, a set of P weights for each one of the variables in set H is generated.
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P corresponds to the population size of the genetic algorithm. Then, nearest neighbour

matching is applied on the weighted variables of H for each one of the P weights. A loss

function is used to estimate the loss for each of the P resulted sets of matched pairs. If

the loss is su�ciently small for any of the P weights, the method terminates; otherwise

this process is repeated. A maximum number of iterations I can be used in order to

set an upper bound on the computational time of the method. In my experiments, I

used as loss function the average standardised mean di↵erence between the treated and

control units. The cost of loss estimation for each weights set is O(|H| · N). Thus, the

total computational cost of the matching process is O(I · P · |H| · N2). Although the

computational cost of MDT could be significantly larger than the cost of CMI, given

the availability of advanced computational resources, the computational e�ciency can be

traded for more reliable results. In my simulated experiments, the running time of CMI

was in order of seconds while the running time of MDT was in order of minutes, using a

2.6 GHz quad core CPU and 16 GB RAM.

Finally, I now discuss the assumptions behind my method, thus outlining situations

where the method is expected to perform well. There are four key ingredients in my

method:

1. I perform independence tests on time series pairs. There is no guarantee that if

there were higher-order dependencies among several time-series (e.g. the outcome

variable and two confounding variables), they would be detected by the pair-wise

tests.

2. The maximum conditioning set of the conditional independence tests that need to

be performed is determined by the largest lag L. The value of L is of course upper

bounded by the desire to have sample sizes large enough to yield su�cient power to

independence tests.

3. The matching procedure assumes that there is an overlap in the confounding vari-

ables’ values between the groups of treated and control units. If this is not the case,

the matching will not achieve su�cient balance.

4. The estimation of the average treatment e↵ect is influenced by the power of the

statistical test that is applied.
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3.4 Summary

In this chapter, I have presented a novel method for causal inference in time-series data.

The proposed method is based on the existing matching framework for i.i.d. data. It pro-

vides a methodology for deciding which time-series should be included in the study along

with appropriate time lags so that all the necessary conditions for applying the matching

framework are satisfied. Then, any of the existing matching methods can be applied and

the final conclusion is obtained by examining the average e↵ect of the treatment variable

on the the matched treatment and control samples. The main advantages of the proposed

method over existing approaches can be summarised as follows:

1. It is non-parametric i.e., it does not require any assumptions about the model class

(e.g. linear or non-linear). Thus, it can handle more e↵ectively non-linear cases.

2. It requires fewer conditional independence tests with smaller conditioning sets com-

pared to existing approaches and consequently, it is more e↵ective in high-dimensional

datasets.

3. The design of the study is separated from the analysis. The causal link between two

variables is examined only when any confounding bias has been su�ciently removed.

Thus, the proposed method avoids overfitting.

In order to assess the validity of the proposed method I have conducted an extended

evaluation with simulated experiments, in which the ground truth is known. In the next

chapters, I apply this approach on real datasets and I demonstrate its utility in extracting

useful knowledge from human-generated sensor data.
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CHAPTER 4

UNDERSTANDING THE IMPACT OF SOCIAL
MEDIA ON FINANCIAL MARKETS

In this chapter, I investigate the influence of social media on stock market prices. In

the first part, I apply the method presented in Chapter 3 in order to assess the causal

impact of social media sentiment on the traded assets of four technological companies. In

the second part, I focus on cases characterised by abnormal stock market movements. I

propose an event detection method that detects bursty topics on Twitter which are linked

with stock market jitters.

4.1 Causal Impact of Twitter Sentiment on Traded
Assets

As was previously, many studies so far have focused on using social media data for the

prediction of stock market prices. But to what extent do opinions expressed through

social media actually have a causal influence on stock market? Are stock market prices

influenced by the opinions and sentiments that are reported in social media, or is it the

case that stock market prices and sentiments are driven only by other (e.g. financial)

factors? Would the results have been di↵erent if we could manipulate social media data?

In order to answer such questions a causality study is required.

I will now discuss the application of the method described in Chapter 3 in order to

investigate whether information about specific companies and people reactions, extracted

from Twitter data, influence stock market prices. Indeed, Twitter enables us to capture
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people opinions about the target companies, the general optimism/pessimism of the pub-

lic about stock market movements and their reaction to news such as quarterly results

announcements or new product launches. Thus, factors related to the company perfor-

mance and people trust on the company are reflected on Twitter data. My study considers

the daily closing prices of four big tech companies based on USA: Apple Inc., Microsoft,

Amazon and Yahoo!. I estimate a daily sentiment index for each of these companies

by analysing the sentiment of related tweets (the details of this process are presented in

Section 4.1.2). My study is based on data gathered for four years, from January 2011 to

December 2014. In particular, I examine whether the sentiment of tweets that are posted

before stock market closing time influences the closing prices of the target stocks. In

order to eliminate any confounding bias, I need to control for factors that may a↵ect both

humans sentiments and the target stock prices. Potential influential factors on stocks

daily closing prices are their opening prices and their performance during the previous

days. Several works have also demonstrated that the performance of other big companies

(either local or overseas companies) could influence some stocks (see for example [59, 60]).

Foreign currency exchange rates may also cause money flows to overseas markets and con-

sequently influence stocks prices. Finally, commodities prices could a↵ect the earnings of

companies and, therefore, their stocks prices. In the next subsections I present the dataset

used for this study, the text processing method that was used in order to extract tweets

sentiment and the results of the causality analysis. In addition, I conduct a sensitivity

analysis, as described in Section 4.1.4 in order to evaluate the sensitivity of the results on

missing covariates.

4.1.1 Dataset Description

This study involves the following time-series:

The response time-series Y. The di↵erence on the closing prices of the target

stocks between two consecutive days. The time-sample t of the time-series corresponds

to the closing value of the day t minus the closing value of the previous day.

The treatment time-series X. A daily sentiment index that is estimated using

tweets related to the target stocks that are posted up to 24 hours before the closing time
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of the corresponding stock market. In order to ensure that the values of the treatment

variable are driven by information that was available before the closing time of the target

stocks, I omit from the study tweets posted up to one hour before the closing time. Thus,

the sentiment index of day u is estimated using all the tweets posted from 4:00 p.m.

(ET) time (i.e., the NASDAQ closing time) of day u � 1 to 3:00 p.m. (ET) time of day

u. Consequently, our treatment variable captures the people sentiment and reactions to

news at any time during the day, up to one hour before the stock market closing time. It

should be noted that by excluding tweets posted up to one hour before the stock market

closing time, we might exclude important information that comes up just before this time.

However, this information will be included in the next day sentiment index. Tweets are

filtered using the name of the company and the stock symbol as keywords.

The set of time-series Z. I consider the following time-series which might play a

role in this causality study:

1. The di↵erence between the opening and closing prices of two consecutive

days. This time-series is an indicator of the activity of the target stocks at the start

of the trading day.

2. The stock market prices of several major companies around the world.

In this study I include all the components of the most important stock market

indexes such as NASDAQ-100, Dow-30, Nikkei 225, DAX and FTSE. The study

could be influenced only by factors that precede temporally both the treatment and

e↵ect variables. Thus, I use the di↵erence between the opening and closing prices of

two consecutive days for stocks that are traded in the USA exchange markets. The

closing time of companies traded in the overseas markets precedes the closing time of

the USA stock exchange market, thus the time-series for all the overseas companies

stocks correspond to the di↵erence on the closing prices between two consecutive

days. Although the values of the treatment variable are driven by tweets that are

posted both before and after the corresponding values of the time-series associated to

the performance of big companies, for convenience, I consider that the time-sample t

of the treatment time-series occurs one hour before the USA stock exchange market

closing time on day t. Thus, the time-sample t of any of the time-series that are
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used to describe the performance of either a USA-based company or an overseas

company temporally precedes the t sample of the treatment time-series.

3. The daily opening values of foreign currency exchange rates minus the

previous day opening values. I include the exchange rates between Dollar and

British Pound, Euro, Australian Dollar, Japanese Yen, Swiss Franc and Chinese

Yen.

4. The di↵erence between the opening values of commodities for consecutive

days. I include the following commodities: gold, silver, copper, gas and oil.

4.1.2 Daily Sentiment Index Estimation

I classify each tweet as negative, neutral or positive using the SentiStrength classifier [149].

SentiStrength estimates the sentiment of a sentence using a list of terms where each term

is assigned a weight indicating its positivity or negativity. I updated the list of terms in

order to include terms that are commonly used in finance1. In total, 39% of the tweets

are classified as neutral, 34% as positive and 27% as negative.

Sentiment extraction from text may be inaccurate. Although this issue has been

disregarded in previous works [29, 44, 39], here, in order to account for such inac-

curacies on sentiment classification, I estimate a probability distribution function of

the daily sentiment instead of a single metric. Let us define a set of three objects

S = {positive, neutral, negative}. Each object i 2 S denotes a classification category.

Let us also define a random variable Vi as follows:

Vi =

8

>

>

>

<

>

>

>

:

0 if a negative tweet is classified in class i

1 if a neutral tweet is classified in class i

2 if a positive tweet is classified in class i

(4.1)

I derive the probability distribution functions of each random variable Vi, with i 2 S,

based on the classification performance results. I evaluate the performance of the classifier

1A list of the words that have been added or modified along with the assigned score is provided at
table B.1
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P (Vi = 0) P (Vi = 1) P (Vi = 2)

i = positive 0.05 0.27 0.68

i = neutral 0.03 0.91 0.06

i = negative 0.65 0.29 0.06

Table 4.1: Accuracy of the text classification for each classification category (confusion
matrix).

by manually classifying 1200 randomly selected tweets (200 tweets for each one of the four

examined companies). The probability distribution functions are presented in Table 4.1.

Let us define with Ni the number of tweets posted within a day that are classified in

category i. I define a random variable Vt that corresponds to the sentiment of a day t as

follows:

Vt =
X

i2S

Ni · Vi (4.2)

Moreover, since 2 is the maximum value of Vi, Vt 2 {0, 1, ..., 2 · Pi Ni}. I estimate

the probability distribution of Vt by deriving the probability-generating function under

the assumption that the real sentiment of a tweet is independent of the sentiment of

any other tweet conditional to the observed classification of the tweet sentiment (i.e., the

inferred sentiment by SentiStrength). Although the sentiment of a tweet may depend on

previously posted tweets, given that the probability of correctly inferring the sentiment

of a tweet is independent of the sentiment inference of any other tweet, this assumption

is realistic. The probability-generating function of Vt is expressed as follows:

GV
t

=
Y

i2S

(GV
i

(z))Ni =
Y

i2S

(
2

X

x=0

p(Vi = x) · zx)Ni (4.3)

The probability distribution function of Vt is estimated by taking the derivatives of

GV
t

. If Nt the number of tweets posted a day t, then, Vt 2 {0, 1, ...,Nt · M} and the

probability that the general sentiment of a day t is positive is given by the probability

Ppos(t) = P (Vt >
N

t

·M
2 ).
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Figure 4.1: Probability distribution function of having a positive movement on the traded
assets prices conditional to the sentiment of the tweets.

Figure 4.2: Correlation between the confounding variables and the treatment and e↵ect
time-series.

4.1.3 Results

I create a binary treatment variableX by applying thresholds on Ppos(t). More specifically,

a unit t, which describes the t day of the study is considered to be treated (i.e., X(t) = 1)
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if Ppos(t) � P 1
thresh and untreated (i.e., X(t) = 0) if Ppos(t) < P 0

thresh. I conduct my study

for three di↵erent pairs of thresholds. In detail, I consider a pair of thresholds T1, where

thresholds P 1
thresh and P 0

thresh are set to the 50th percentile of X, a pair of thresholds T2

where P 1
thresh is set to the 60th percentile of X and P 0

thresh to the 40th percentile of X

and finally a pair T3 where P 1
thresh and P 0

thresh are set to the 70th and 30th percentiles

respectively. By increasing the value of P 1
thresh and decreasing the value of P 0

thresh I

eliminate from the study days in which the estimated tweets polarity is uncertain either

due to measurement error or because the overall sentiment that is expressed during these

days is considered to be neutral. Although discretisation of a continuous variable results in

information loss that may jeopardise, in some cases, the reliability of the causal inference,

I enhance the validity of my conclusions by considering di↵erent threshold values.

I include in this study all the previously mentioned variables. I found that there is no

autocorrelation in the time-series, thus, since there is no dependence of our time- series on

their past values, I set the maximum lag L, which will be used to create the time-series set

S (see Section3.1), equal to 1 day. For each of the four target stocks, I applied Algorithm 1

in order to find the set of time-seriesH that needs to be controlled. I consider a correlation

to be statistically significant if the corresponding p-value is smaller than 0.05. I used

Spearman’s rank correlation in order to capture potentially non-linear relationships among

the examined variables. I observed that stock movements are significantly correlated with

the sentiment of tweets posted within the same day. These findings are in agreement with

results of other studies [29, 54, 39]. I also found that stock prices are independent of

past tweets sentiment conditional on more recent tweets. This indicates that any e↵ect of

tweets on stock prices is instant rather than long-term. Finally, according to my results,

the daily movement of the traded assets for the target companies does not correlate with

past days movements. This finding is consistent with the weak-form e�cient market

hypothesis [36] according to which, it is not feasible to predict stock market movements

by applying technical analysis. In Table 4.2 I present the correlation coe�cient of the

e↵ect variable Y with the treatment variable X and the 1-lagged variables X(1) and

Y (1) for each one of the four examined companies. In Figure 4.1 I present the empirical

probability distribution function of having a positive movement on the traded assets prices

conditional to the sentiment of the tweets P (Y (t) > 0|X(t)). The probability distribution
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function is estimated using data collectively for the four examined companies. My results

indicate that the probability of having a positive movement on the stock market does not

increase linearly with the daily tweets positivity index. Stock market movement is quite

uncertain when the positivity index of the tweets ranges between 0.35 and 0.65, while

the probability of having a positive movement is increasing for positivity index larger

than 0.65. Moreover, I notice a relatively high probability of having a positive movement

in days with sentiment positivity index lower than 0.1. Considering that daily tweets

sentiment captures the current and past stock market trends, this could be attributed to

the fact that investors may consider that it is a good time to invest money when assets

prices are low; consequently, this could give lead to an increase of stock market prices.

AAPL MSFT AMZN YHOO

X 0.393 0.155 0.237 0.273

X(1) 0.032 0.036 0.012 0.046

Y (1) 0.009 -0.003 -0.037 0.031

Table 4.2: Correlation of Y with X, X(1) and Y (1).

Moreover, I found that both the e↵ect and the treatment variables correlate with the

most recent stock prices of several local and overseas companies. The daily movements

of the target stocks correlate with US dollar exchange rates; however, currency exchange

rates do not have any impact on the treatment variable. In Table 4.3 I present the

number of variables from each category that will be included in the set H for the four

target companies and in Figure 4.2, I present the correlation coe�cients of the treatment

and e↵ect time-series with all variables in setH. For all the examined stocks, the strongest

confounder is their opening prices.

In order to eliminate the e↵ect of the confounding variables I need to match treated

and control units with similar values on their set of confounding variables. I create optimal

pairs of treated and untreated units by applying the Genetic Matching algorithm [122].

This is a multivariate matching method that applies an evolutionary search algorithm in

order to find optimal matches which minimise a loss function. I use as a loss function the

average standardised mean di↵erence between the treated and control units for all the

confounding variables H i 2 H which is defined as follows:
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AAPL MSFT AMZN YHOO

Nasdaq-100 Comp. 6 21 33 7

Nikkei Comp. 1 3 1 13

DAX Comp. 18 2 7 10

FTSE Comp. 10 3 12 26

Dow-30 Comp. 7 3 9 2

FOREX 0 0 0 0

Commodities 0 0 0 0

Table 4.3: Number of variables that are included in the setH for each of the four examined
companies.
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Figure 4.3: Normalized ATE for the three threshold pairs.

SMDH =
X

Hi2H

P

(t
u

,t
v

)2G |H i(tu)�H i(tv)|
|G| · �Hi

/|H| (4.4)

I check if su�cient balance between treated and untreated subjects has been achieved

by analysing the standardised mean di↵erence for each confounding variable. The remain-

ing bias from a confounding variable is considered to be insignificant if the standardised

mean di↵erence is smaller than 0.1 [150, 145].

I examine the causal e↵ect of the sentiment of tweets on the target stocks for the three

pairs of thresholds. I apply Equation (2.2) in order to estimate the average treatment

e↵ect (ATE). Under the assumption that the examined treatment has no impact on the

e↵ect variable, the ATE would be equal to 0. I use a t-test to assess how significant is the

di↵erence of the observed ATE value from 0. In Figure 4.3, I present the average treatment

e↵ect normalised by the variance of the e↵ect variable Y along with the 95% confidence

interval values. Confidence intervals are estimated by applying a t-test under the null
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Figure 4.4: Percentiles of treated units versus percentiles of matched control units.

hypothesis that the average e↵ect on the treated units is equal to the average e↵ect on

the control units. According to my results, the e↵ect of the tweets sentiment on the stocks

prices of all the examined stocks is statistically significant. I also observe that the causal

impact is stronger for larger values of the P 1
thresh and smaller P 0

thresh threshold values, i.e.,

the observed di↵erence on the e↵ect variable between the treatment and control groups

is larger when I consider only days for which there is less uncertainty on the estimated

tweets polarity. For Apple, it was not possible to create balanced treated and control

groups for the thresholds pair T3. This is due to the fact that the opening prices of the

AAPL stocks are very strongly correlated with both the e↵ect and treatment variables

and, therefore, there were not enough treatment and control units with similar values on

their confounding variables. Since causal conclusions are not reliable when the treated and

control groups are not balanced, I do not present results for Apple for this pair of threshold

values. In addition, I repeat my study for di↵erent time-periods using a two-year sliding
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window with six-month step. In Figure 4.5 I present the findings for the four examined

companies and the first pair of thresholds. According to my results, the di↵erence on

the estimated ATE is insignificant for the examined sub-periods. Finally, in Figure 4.4

I compare the distributions of the e↵ect variable Y for the treated and control units by

plotting their percentiles against each other. Under the hypothesis that the treatment

variable has no e↵ect on variable Y , the curve should be described approximately by y = x.

However, most of the points of the plot lie below the reference line y = x, indicating that

the majority of the percentiles of variable Y for the treated units are larger than the

corresponding percentiles for the control units.
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Figure 4.5: Normalised ATE for the threshold pair T1. The analysis is conducted in
two-year sub-periods using sliding windows with 6 months step.

4.1.4 Sensitivity Analysis

The main limitation of all non-experimental causality studies is that they are based on the

assumption that all confounding variables are known. However, in real scenarios there may

be unmeasured factors that influence the assignment of units to treatments. In such cases,

the conditional ignorability assumption is violated and consequently, any causal inference

result may be biased. In this study, I include a large number of potentially influential

factors, such as the performance of other companies traded assets, commodities prices and

currency exchange rates. However, there are other factors, such as inflation rates, political

changes or economic policy changes that could influence both people sentiment, captured
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through Twitter, and traded assets prices. Although such factors may be reflected on

the observed confounding variables (e.g. macroeconomic factors such as inflation rates

would also a↵ect the prices of other traded assets and consequently, the observed Twitter

sentiment may be independent of inflation rates conditional to the performance of other

assets included in the study), there may still be some bias due to unobserved factors.

�
Upper bound on p-value

AAPL AMZN YHOO MSFT

1.0 0.0000 0.0000 0.0000 0.0000

1.1 0.0000 0.0000 0.0000 0.0000

1.2 0.0000 0.0000 0.0000 0.0005

1.3 0.0000 0.0002 0.0000 0.0027

1.4 0.0001 0.0011 0.0003 0.0109

1.5 0.0003 0.0042 0.0010 0.0327

1.6 0.0009 0.0131 0.0034 0.0775

1.7 0.0021 0.0328 0.0091 0.1519

1.8 0.0043 0.0692 0.0209 0.2552

1.9 0.0082 0.1263 0.0419 0.3789

2.0 0.0142 0.2050 0.0749 0.5093

Table 4.4: Sensitivity Analysis.

In order to evaluate the sensitivity of my results on unobserved confounding variables,

I apply Rosenbaum’s method [118] described in Section 2.3.1.5. In Table 4.4, I present the

results of the sensitivity analysis for �  2.0 and for the T2 pair of thresholds. According

to my results, the causal influence of Twitter on Apple stock prices would be considered

statistically significant (with p-value 0.014) even if some days were twice more likely (i.e.,

� = 2) to have positive sentiment conditional to the observed confounding variables due

to unmeasured factors. Similarly, for Amazon the causal inference results are statistically

significant (i.e., p-value < 0.05) for �  1.9, for Yahoo! for �  1.7 and, finally, for

Microsoft my conclusion would be invalid for � � 1.6.
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4.2 Linking Twitter Events with Stock Market Jit-
ters

In the previous section, I have shown that there is strong evidence that there is causal

influence of social media on stock market data. Thus, social media may contain useful

information for the prediction of events of interest. Given this finding, in this section I

examine whether social media data can be used for the early detection of stock market

jitters. Identifying factors that could cause big movements on stock prices is very im-

portant for financial risk analysis and prediction [151, 152]. As was previously discussed,

several studies have shown that collective sentiment extracted from tweets can be linked

to traded assets prices and can be used to improve the prediction of stock market move-

ments. However, the exploitation of social media for early prediction of stock market

jitters is an interesting, yet unexplored research topic.

I propose a novel framework for detecting financial events on Twitter that impact a

specific stock market. Detecting bursts on tweets that correspond to real-world events has

been previously discussed in many studies [67, 68, 69]. However, my work substantially

di↵ers from these studies, since my objective is to identify Twitter events that are related

to large fluctuations on stock market. The proposed financial event detector (FED)

monitors the arrival rates of individual words in a stream of tweets related to finance or

politics and records an event when an unusual burst is detected. For each event I create a

feature vector containing information such as the number and type of words with unusual

increase on their arrival rates, the volume and the polarity of the related tweets as well

as geographical characteristics of the tweets and information about their authors. Then,

I exploit stock market data in order to train a classifier to recognise events that influence

stock market as positive and events with minimum or no impact as negative. Thus, my

method is trained to detect financial or political events that cause fluctuations on a specific

stock market. My method does not require any manual events labelling. Instead, I create

a training set by labelling as positive event vectors that co-occur with large movements on

the examined stock market and as negative all the other vectors. The classifier is updated

dynamically: after a new event (from the remaining set) is classified, the true event label

is learned by examining its impact on the stock market and the classifier is re-trained
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accordingly.

Typically, social media information is modelled as one-dimensional time-series, de-

scribing the evolution of a feature, such as tweets polarity or volume, over time. However,

I show here that using a single feature to model Twitter data results in wasting important

information. For example, negative criticism about an educational or health system re-

form could be a popular topic within a country and result in bursts of tweets with negative

sentiment; nevertheless, it will probably have minimum or no impact on the stock market.

On the other hand, news related to financial or political instability would probably be

commented by a larger number of di↵erent people and may have more global interest.

Consequently, features such as the number and the profile of di↵erent users discussing

a topic, the geographical characteristics of tweets (i.e., whether the topic of interest is

discussed locally or globally) as well as the individual bursty words associated with each

event may contain important information. Thus, instead of arbitrarily selecting a single

feature for representing Twitter information, I apply feature selection in order to find

an optimal subset of features that can be used to identify vectors reflecting important

information about the examined stock market. I support my argument by comparing the

proposed FED method with a modified version that uses single-feature vectors, which

contain only information about events sentiment.

I apply the proposed framework on the detection of events that influence the Greek and

Spanish stock markets for the period 03/2015 to 10/2015. I selected these two markets

since they were strongly influenced by the European crisis and they experienced high

volatility during the examined period. Although stock market jitters constantly occur in

many stock markets, the specific study requires the analysis of stock markets in which

a large number of strong movements is observed in a relatively small time period. I use

intraday 5-minutes returns of the ATHEX and IDEX stock market index. Moreover,

I apply a general-purpose state-of-the-art event detector on the Twitter dataset and I

demonstrate that such approaches fail to recognise events which influence stock market.

In the next sections, I provide a detailed description of the proposed method and I present

my results.
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4.2.1 Financial Event Detector

In this section I describe the components of the financial event detector (FED). The event

detection process is comprised by the following steps:

1. Bursty Words Detection. The arrival rate of each word in a stream of tweets is

estimated and a set of bursty words is extracted.

2. Events Feature Vectors Extraction. The busty words as well as information

extracted from tweets containing these bursty words (such as information related

to tweets polarity, geographical distribution and users characteristics) are used to

create feature vectors that represent events.

3. Events Filtering. All the detected Twitter events are not necessarily related to

stock market jitters. I use stock market data to train a classifier to recognise which

event feature vectors do have an impact on the stock market. The financial event

detector is trained for a specific stock market. The initial labeled training set is

created by utilising solely stock market data, without the need of manual labelling,

and the classifier is updated dynamically.

4.2.1.1 Bursty Words Detection

In order to detect bursty topics on a stream of tweets I apply a feature-based event

detection method, according to which the arrival rate of each word/feature contained in

each tweet is modeled as an inhomogeneous Poisson process. Let me denote by Nw the

number of occurrences of each word w in the collection of tweets. I estimate the arrival

rate �w(t) of word w as follows:

�w(t) =
N
X

i=1

f�(t� ti) (4.5)

where ti the time that the ith tweet containing the word w was posted and f� a Gaussian

kernel of bandwidth �. I characterize a word w as bursty during a specific time interval

by applying thresholds both on the rate of the word �w(t) and on the slope �0
w(t) of its

rate. In detail, a word w which was not bursty at time t � 1 will be bursty at time t

63



if �w(t) > TR and �0
w(t) > TS, for some threshold values TR, TS > 0. A word w bursty

at time t will not be bursty at time t0 > t if �w(t0) < TR. Hence, I examine only the

rate of the word in order to change its status from bursty to normal since, even if the

acceleration of the rate of a previously characterized bursty word is low, the word should

still be considered as bursty if it has a su�ciently high arrival rate. The rate of each word

is re-computed dynamically every time that a tweet containing that word is posted.

By applying a threshold on the word rates, I detect words with significant popularity

(i.e., high rate) within a time-period, while by applying a threshold on the rate slope I

avoid considering as bursty words which are popular most of the time. I use the same

thresholds for all the words instead of creating word-specific thresholds based on historical

rates. In this way, I not only reduce the number of free parameters but also avoid con-

sidering as bursty words which occur a relatively small number of times during a period

while they previously had zero or very low rate.

4.2.1.2 Events Feature Vectors Extraction

An event on Twitter at time t will exist if there is at least one bursty word at time t. I

represent events as time-dependent feature vectors (a detailed description of the features

is presented in Subsection 4.2.1.3). Only one event feature vector can be active during

any time t. Hence, if more than one Twitter events co-occur, they will all be associated

with the same feature vector and all bursty words describing these events will comprise

di↵erent features of the vector. An event starts when a bursty word is detected and it is

updated dynamically every time a significant change on its characteristics occurs. Thus,

multiple feature vectors may be created for the same event. In order to avoid unnecessary

overhead, I do not update an event every time an insignificant change occurs in any of

the feature values. Instead, I consider that a significant change on the over-all arrival

rate of all the words that are associated with the event indicates a noteworthy change

on the volume and characteristics of tweets and therefore, the event features need to be

re-estimated. I consider an increase in the overall arrival rate of words to be significant

if it is at least 10% of the previous value. Thus, let W the set of bursty words associated

with an event, a new feature vector for the same event that had its last update at time

t1 will be created at time t2 if:
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X

w2W

�w(t2) > 1.1 ·
X

w2W

�w(t1) (4.6)

The feature vector that corresponds to the most recent event update is created so that

it represents the strongest version of the event. More formally, denote by: Et
s

(t) the event

started at time ts and updated at time t, fi(t) the ith feature of the feature vector Et
s

(t),

N the number of features, Tu the set of the timestamps at which the event Et
s

has been

updated and tl 2 Tu the last time that the event has been updated. Then, the feature

vector Et
s

(tl) is estimated as follows:

Et
s

(tl) = {max
t2T

u

f1(t),max
t2T

u

f2(t), ...max
t2T

u

fN(t)} (4.7)

The rational behind this idea is that events need to be detected as early as possible,

thus the conditions for creating an event should be relatively ‘soft’. However, an initially

weak event may become stronger later and consequently the initial feature vector will not

fully represent the strength of the event. On the other hand, if an event occurs when the

stock market is closed, its strength may decrease by the time the stock market opens.

Nevertheless, a reaction of the stock market to the news is still expected. Thus, I decided

to update an event only when its strength has increased. If an event is active for more than

24 hours it is updated in order to remove any obsolete information. Since typically, the

news circulation is daily, the information contained in an event needs to be re-examined

after one day. This may result in discarding terms that are not bursty any more, reducing

the ‘strength’ of the event if the interest of users is gradually fading out, or it may leave

the event intact if there is a continuous interest on it.

The process of event detection and update is summarised in Figure 4.6. In detail, I

check for new tweets every �t seconds and I update the rate functions of all the words

that are contained in the new tweets. Then, the current set of bursty words is updated

accordingly (i.e., words which are not bursty any more are removed from the set and new

words which are bursty at the current time are added). While the set of bursty words is

empty, I check for new tweets every �t seconds until at least one word contained in the

tweets becomes bursty. Then, if there is no active event (i.e., the set of bursty words was

empty �t seconds before) I create a new event (i.e., a new feature vector Et(t), where t
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Figure 4.6: Event Detection Process.

the current time). If there is an active event and 24 hours have elapsed since its start

time, the current event is inactivated and a new event is created; otherwise, I create a

new feature vector, as described in equation (4.7), if the condition of equation (4.6) holds.

4.2.1.3 Features Description

The feature vectors include information about the bursty words that are associated with

the event, the tweets polarity and geographical distribution and the reputation and popu-

larity of tweets authors. Instead of using a separate feature for each bursty word, I create

categories of words that usually refer to the same subject by estimating the correlation

between the words rates. Words with highly correlated rates (i.e., similar arrival patterns)

may refer to the same subject [67]. I group words by performing hierarchical clustering,

where the ‘distance’ between two words w1, w2 with correlation coe�cient cw1,w2 is equal

to 1�cw1,w2 . The event Et
s

(t) started at time ts will be described by the following features

at time t:

• the maximum number of bursty words of each category of words that have been

bursty from the start of the event ts until time t. I denote by Wi(t) the set of bursty
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words of the ith category from time ts until time t and with |Wi(t)| the number of

elements in the set. Thus, there is one feature |Wi(t)| for each category i of words.

• the maximum bursty word rate in each word category i: Ri(t) = max
w2W

i

(t)
max
t
s

t0t
�w(t0)

• the maximum bursty word rate: R(t) = max
iN

Ri(t).

• the maximum bursty word rate slope:

S(t) = max
iN

max
w2W

i

(t)
max
t
s

t0t

d
dt0�w(t0).

• the number of verified users V (t) that have posted a tweet which contains at least

one bursty word from the start of the event until time t, normalised by the number of

tweets 1. According to Twitter, verified accounts are highly sought users in interest

areas including government, politics, journalism, business, etc., and thus include

authenticated accounts of the key players in major political and economic events.

• the average number of followers FAV G(t) of users who have posted a tweet containing

at least one bursty word. The number of followers of a Twitter user is an indication

of the impact his/her tweets may have.

• the maximum number of followers FMAX(t) between all the users who have posted

a tweet that contains at least one bursty word.

• the average geographical distance from the examined stock market location DAV G of

users who have posted a tweet associated with the event.

• the weighted average distance from the examined stock market location DW AVG:

calculated as DAV G, but this time each user is weighted by the corresponding pro-

portion of the followers, i.e., the number of her followers normalised by the total

number of all users followers.

• the location dispersion L(t) of the users who have posted a tweet associated with

the event. The location dispersion is an indication of whether the topic is discussed

mainly locally or whether there is a general interest for the event globally. It is

calculated using the coe�cient of variation (i.e., the ratio of the standard deviation

to the mean) of the distance from the event centre, among all event tweets.

1Note that a verified user will be counted for as many tweets as she will post in the event time interval.
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• the sentiment strength index SSI(t). I use SentiStrength [149] in order to estimate

the positivity and negativity index of the tweets that are associated with the event,

and calculate the tweet sentiment strength index as the sum of these two indices.

The event sentiment strength index is calculated as the absolute value of the average

sentiment strength index among all tweets related to that event . SentiStrength

has been optimised to detect finance-related sentiment by following the procedure

described in [149]. In detail, I have trained SentiStrength with finance-related terms

that have been manually assigned with a polarity weight. I used the list of positive

and negative finance-related terms that is described in [153]. Each positive term is

assigned the maximum SentiStrength weight and each negative term the minimum.

• the weighted sentiment strength index SSIW (t), which is the average sentiment

strength index among all tweets of the event, weighted by the number of followers

of each tweet author (as in DW AVG).

Thus, if N the number of word categories, an event will be characterised by a feature

vector of 2 ·N + 10 features: Et
s

(t) = {|W1(t)|, R1(t), |W2(t)|, R2(t), ... |WN(t)|, RN(t),

R(t), S(t), V (t), FAV G(t), FMAX(t), DAV G, DW AVG, L(t), SSI(t), SSIW (t)}. All features
are normalised to zero mean and unit variance. As I will describe in the following section,

feature selection will be applied in order to distinguish the features which are actually

important for the detection of events that influence the examined stock market.

4.2.1.4 Event Filtering

The last step of the event detection process is filtering out events that do not have any

impact on the examined stock market. In order to classify the events to positive (i.e.,

events that have an impact on a stock market) and negative (i.e., events that do not

influence stock market), I create a labelled training set using data related to a specific

stock market. Thus, the classifier is trained to recognise events that influence a specific

stock market. In detail, I first define a set of time-slots Ttrue during which an unusual

movement on stock market volatility is noticed and a set of time-slots Tfalse during which

the volatility is considered normal. In my analysis, I use the historic volatility which is

estimated over 1-day windows and corresponds to the variance of the logarithmic returns.
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Figure 4.7: Events Labelling Example.

Let us denote the volatility of stock market at time s with V(s) and the volatility slope

with V 0(s). Then, I set s 2 Ttrue if V 0(s) > Ttrue and s 2 Tfalse if V 0(s) < Tfalse,

where Ttrue > 0 and Tfalse > 0 are thresholds on the stock market volatility slope. I set

Ttrue > Tfalse in order to allow for a neutral zone and separate high volatility time-slots

belonging to Ttrue from the normal volatility ones belonging to Tfalse. I also define refer

to the set of time-slots that belong to the neutral zone as Tneutral.

Afterwords, I need to examine which event feature vectors co-occur with unusual

movements on stock market volatility. Since a stock market is open only at specific hours,

some events on Twitter may occur when the stock market is closed. However, the e↵ect of

these events (if any) will be visible only when the stock market opens. In order to match

the time at which an event occurred or was updated with the time that its impact was

visible in the stock market, I transform the update time t of each feature vector to the

first time t0 � t that the stock market is open. If multiple update times of the same event

match with the same stock market time t0, I keep only the most recent feature vector

and discard all the previous ones; the rational behind this decision is that the most recent

feature vector represents the event on its full strength. If multiple events (i.e., events with

di↵erent start times) match with the same stock market time, I keep all events. Finally,

an event that started at time ts, matched to the stock market time t0, will be assigned a

label Ct
s

(t0) as follows:
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Figure 4.8: Event Classification Process.

Ct
s

(t0) =

8

>

>

>

>

<

>

>

>

>

:

1 if min
s2T

true

|s� t0| < Ttime

�1 if min
s2T

neutral

|s� t0| < Ttime

0 otherwise

(4.8)

where Ttime a threshold that denotes the maximum time distance that a Twitter event

may have from a stock market event, value 1 is used to label positive events and value 0

negative. Event feature vectors with label �1 will be discarded from the training set. In

Figure 4.7 I present an events labelling example. The top graph depicts the volatility slope

and the bottom one the sum of the bursty words rates. In this example, I set Ttime = 1

hour. Event Et1 is detected when stock market is closed and it is updated at times t2,

t3 and t4. I discard the first three event vectors and I set the label of the most recent

event update (i.e., Et1(t4)) equal to 1. Event Et5 will also be discarded since, according

to the graph, there is a time sample s 2 Tneutral with less than one hour di↵erence from

the event detection time t5. Finally, the event vectors Et6(t6) and Et6(t7) do not co-occur

with any stock market jitter so they will be labeled as negative.

I create a labeled training set by using a subset of the available data. I reduce the

feature set by applying a feature selection process on the training set, thus keeping only

features useful for distinguishing positive events from negative events. Finally, I use these

reduced-dimensionality feature vectors to train a classifier.
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The event filtering is performed dynamically. This process is presented in Figure 4.8.

Each time a new feature vector is created (by the process described in Figure 4.6), I firstly

reduce the vector dimension by discarding insignificant features, I then match it to the

time t0 of the next stock market sample and, finally, I use the previously trained classifier

to assign a label Lt
s

(t0) to the event.

I am able to determine the actual label Ct
s

(t0) (Equation (4.8)) of the event only at

time t0 + Ttime. After the true label Ct
s

(t0) becomes available, I dynamically update the

classifier based on the estimated and true class labels Lt
s

(t0) and Ct
s

(t0), respectively.

4.2.2 Application to Stock Markets

I apply the proposed framework to verify whether there is a link between detected events

in social media (in this case Twitter) and events (large fluctuations) on the Greek and

Spanish stock markets. In particular, I estimated the historical volatility of the ATHEX

and IBEX stock market index by using 5-minutes intraday data for the period 01/03/2015

to 01/11/20151. I also downloaded Twitter data by tracking terms related to the Euro-

pean financial crisis. In order to select appropriate terms, I applied the RAKE keyword

extraction method [154] on the European debt crisis Wikipedia webpage2. I set the maxi-

mum number of words per keyword equal to 2 and the minimum number of occurrences in

the document equal to 4. 171 keywords were extracted in total. The Greek and Spanish

Twitter datasets will include only tweets which contain the terms Greece or Greek and

Spain or Spanish respectively. I use the data of the first 4 months to find the optimal

parameters for the classifier and the remaining data for the performance evaluation of

FED.

4.2.2.1 Thresholds Selection

One of the key design goals is to minimise the use of thresholds, and in any case to

understand and quantify the impact of the choice of di↵erent values on the performance

1Note that the Greek dataset corresponds to a period of around 7 months given that Greek stock
market was closed during July

2https://en.wikipedia.org/wiki/European debt crisis
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of the proposed approach. Thus, in this section I discuss several criteria for the selection

of threshold values.

v = 0.5 v = 1 v = 2 v = 4
GR ES GR ES GR ES GR ES

Missed Events 3 4 3 5 4 6 11 10
False Positives 28 24 27 24 27 23 26 22

Table 4.5: Sensitivity on the selection of the TR and TS threshold values.

Thresholds related to Words Arrival Rate, TR,TS. The values of these thresh-

olds regulate how often an event is created or updated based on the process described

in Figure 4.6. Large threshold values would result in missing events or in delayed event

detection. On the other hand, smaller values would result in more false positive events.

However, as described in Section 4.2.1.4, a classifier will be used to filter out false posi-

tives. I conducted an empirical evaluation in order to assess the sensitivity of the results

on the selection of these thresholds. In detail, I set

TR = max
w

h�w(t)it and TS = max
w

h�0
w(t)it,

where h�w(t)it and h�w(t)0it denote the average values of the functions �w(t), �0
w(t),

corresponding to the word w. The calculation of the maximum value is over all words in

the training data. I observe that for words with an unusual increase in their rate, this

mostly happens over short time intervals - most other words have just a constant and

very low arrival rate. Hence the resulting thresholds TR, TS are very small. I examine

the number of true events missed and the number of false positive events for {TR, TS} =

v · {TR, TS}, where v 2 {0.5, 1, 2, 4}. I present the results in Table A.1. My findings

indicate that there is a very small variation on the number of false positive events when I

increase the values of the TR and TS, while the number of true stock market events that

are missed increases significantly. In general, ‘weak’ Twitter events can be easily spotted

during the classification process and consequently the number of false positive events is

not strongly influenced by the selection of these thresholds. Thus, I set relatively small

values on TR and TS. In particular, I set TR = TR and TS = TS .

Thresholds on Volatility Slope, Ttrue,Tfalse. The thresholds have to be chosen

according to the specific application requirements, i.e., the “intensity” of the event under
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Feature
Ranking

GR ES

maximum rate value R(t) 1 1

maximum slope value S(t) 2 2

maximum number of followers FMAX(t) 3 4

weighted average distance from stock market location DW AVG 4 3

weighted sentiment strength index SSIW (t) 5 6

location dispersion L(t) - 5

Table 4.6: Selected non-word features

consideration. I examine the performance of FED for three di↵erent threshold values. In

detail, I set Ttrue = {2 · hV 0(s)is, 2.5 · hV 0(s)is, 3 · hV 0(s)is} and Tfalse = 0.8 Ttrue.

Threshold Ttime. This threshold denotes the maximum time di↵erence between a

Twitter event detection (or update) and a stock market jitter. As mentioned in Section

4.2.1.4, if the stock market is closed at the time of the event detection, the event detection

is formally shifted to the closest opening time of the stock market. In my study I set Ttime

equal to 1 hour. The selection of this time threshold is supported by previous works that

have shown that traders usually react promptly on news releases [155, 65]. Also, in [65]

authors found strong influence between financial tweets and stock market movements on

1-hour intervals suggesting that public traders need more time to evaluate the news.

4.2.2.2 Feature Selection

I use the training data to cluster words into categories, as described in Subsection 4.2.1.3.

I apply hierarchical clustering with cut-o↵ distance equal to 0.7, leading to 58 and 79

word categories for the Greek and Spanish datasets respectively. In order to select an

optimal cut-o↵ distance, I estimate the silhouette score [156] for di↵erent cut-o↵ distances,

ranging from 0.4 to 0.9. The silhouette score describes the average distance of the points

of each cluster to the points of the neighbouring clusters. For both datasets, the maximum

silhouette score is achieved for cut-o↵ distance equal to 0.7. The resulted silhouette scores

for both datasets are presented in Figure 4.9.

Only 34 and 41 of these categories contained at least one bursty word respectively for

the two datasets. Thus, since I create two features per word category (i.e. number of
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Figure 4.9: Average silhouette score for hierarchical clustering with di↵erent cut-o↵ dis-
tances.

bursty words in the category and maximum arrival rate among all words in the category),

the total number of word-related features for the Greek dataset is 68 and for the Spanish

82. As described in 4.2.1.3, I also use 10 additional features. To select only features

deemed important for distinguishing between positive and negative events I apply two

feature selection methods implemented in Weka [157], namely a correlation-based feature

selection algorithm [158] and an information gain based feature selection method [159].

Overall, 5 non-word features were selected for the Greek dataset and 6 for the Spanish with

both algorithms. The selected attributes along with their ranking based on the correlation-

based feature selection are presented in Table 4.6 (the results with the information gain

based algorithm are very similar and thus they are omitted). Finally, word features related

to 7 and 6 word categories were selected, respectively for the two datasets. In Table 4.7 I

present the stemmed words of the selected categories along with the selected features per

category.

In this case study, given that the time-period that is considered is relatively short,

the feature selection process is conducted one time and the same features will be used for

the whole study. In general, we cannot assume that important features will remain stable

over long time periods. Thus, the feature selection process might need to be repeated.
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Stemmed Words
Features

Ri(t) kWi(t)k
1 energy, sovereign, pipelin, sanct Yes Yes

2 send, reform, troik Yes No

3 money, fear, imf, stock, deb, default, pay, repay Yes Yes

4
progress, dijsselbloem, finmin, varoufak, min, eu-
rogroup

Yes Yes

5

press, europ, program, fin, govt, bank, deal, stat, nee,
bailout, cris, ecb, let, syriz, country, credit, support,
eurozon, meet, grexit, econom, polit, euro, greek, agr,
talk

Yes Yes

6 bahrain, eu, leav No Yes

7 bil, rep, loan, germ, germany No Yes

(a) Greece

Stemmed Words
Features

Ri(t) kWi(t)k
1 crit, infl, tax, issu Yes Yes

2
govern, ban, black, prep, tsipra, money, england, im-
pact, throughout

Yes Yes

3 mean, chin, ev, europ Yes Yes

4 neg, greec, inform, comp, demand, spend Yes Yes

5 reform Yes No

6 form, elect, perc, ecb, contribut, podemo, rajoy Yes Yes

(b) Spain

Table 4.7: Selected Word-related Features.

4.2.2.3 Evaluation

I apply the methodology discussed in Section 4.2.1.4 to train a support vector machine

classifier in an online manner to classify the future Twitter events into positive and nega-

tive. It has been noticed that there is not a clear separation between positive and negative

Twitter events. In such cases, the margin supported by the SVM classifier is essential in

order to achieve good performance. The classifier is first trained on an initial data segment

(training set), using 10-fold cross-validation to select the kernel type (linear, Gaussian and

polynomial), regularisation parameter and loss parameters (to deal with unbalanced class

problem - more negative events than positive ones). Polynomial kernels were selected
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Figure 4.10: Event Detection Results.

for both datasets (order 3 for the Greek dataset and 2 for the Spanish). After that, the

classifier is dynamically updated on the remaining data (keeping the hyper-parameters

and kernel type fixed) as described in Section 4.2.1.4. All the reported results are based

on predictions on unseen Twitter events from this remaining data. Overall 375 Twitter

events were detected on the Greek dataset and 349 on the Spanish one.

I estimate the precision, recall and F1 score of the event detection method by compar-

ing the real label Ct
s

(t0) with the predicted label Lt
s

(t0) for each Twitter event. I create

two binary streams C and L with all the real and predicted labels of Twitter events, re-

spectively. Since there may be stock market events without any matching Twitter event,

I update C and L as follows:

8t0 2 Ttrue and t0 /2 U , where U is the set of Twitter event times, create a new label

Ct0(t0) = 1 and Lt0(t0) = 0.

In Table 4.8 I present the classifier performance for the three di↵erent Ttrue thresholds.

For both the examined datasets, FED performs better for larger values on Ttrue i.e., when

it is trained to detect ‘stronger’ stock market fluctuations. I also observe slightly improved

performance on the Greek dataset. This could be justified considering that during the

examined period, Greece was a↵ected by a remarkable financial instability that resulted

on several stock market jitters.

In Figure 4.10 I present historical volatility of the ATHEX and IBEX stock market
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Ttrue
Precision Recall F1

GR ES GR ES GR ES

2 · hV 0(s)is 0.61 0.52 0.73 0.79 0.66 0.63

2.5 · hV 0(s)is 0.64 0.62 0.84 0.69 0.72 0.66

3 · hV 0(s)is 0.69 0.65 0.81 0.72 0.74 0.68

Table 4.8: Classification Performance

index, for the months after the training period. I also show the correctly and falsely

detected events, as well as the missed events for Ttrue = 3 · hV 0(s)is. According to my

results, the proposed mechanism successfully detects most of the stock market jitters

purely based on Twitter data. Interestingly, although not specifically trained to do so, all

detected stock market events were predicted as positive on Twitter before they appeared

on the stock market. Finally, there are some Twitter events falsely classified as positive.

These misclassifications usually occur in bursts. This can be explained by the fact that

my approach allows for multiple updated versions of the same event; if one feature vector

is misclassified, its subsequent updated versions will be probably misclassified too. One

hour after the first misclassified vector occurs, the classifier is updated with the new

sample, and consequently avoids repeating the same mistake on any similar subsequent

feature vectors.

4.2.2.4 Comparison With Baseline Event Detectors

I compare the performance of my approach with a) a state-of-the-art general-purpose

event detector and b) a sentiment-based event detector. For events detected when the

stock market is closed, I apply the process used in FED, i.e., such events will be shifted

to the opening time of the stock market. If this time is more than 24 hours ahead of the

event time (during the weekend), the event will be discarded. If more than one Twitter

events are matched to the same stock market time, I keep only the ‘stronger’ event. The

strength of an event is defined based on the event detection method described in the

remaining of this section.

General-purpose Event Detector. Although several methods for bursts detection

on social media data have been proposed, to the best of my knowledge, this is the first
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Figure 4.11: ROC Curves.

work that attempts to identify events that influence a specific stock market. The most

similar approach to FED is EDCoW. Both FED and EDCoW monitor changes on the

arrival rates of individual words in order to trigger the detection of an event and they

group bursty words based on the correlations between their arrival patterns. However, in

contrast to FED, which uses word groups to construct Twitter event features, EDCoW

creates a separate event for each word group. Finally, for each event, EDCoW estimates a

value ✏ representing the ‘strength’ of the event based on the number of its words as well as

the correlations among them and filters-out non-significant events (i.e., events with low ✏

value). I perform event detection in 2-hour windows. Similarly to this approach, I assign

a label C(tw) to each event E(tw) detected during a window started at time tw as follows:

C(tw) =

8

>

>

>

<

>

>

>

:

1 if 9s 2 Ttrue, tw  s  tw + 2h

�1 if 9s 2 Tneutral, tw  s  tw + 2h

0 otherwise

(4.9)

The total number of true positive and false positive events is given by the number of

1- and 0-labels in C, respectively. I also estimate the number of false negative by counting

the the number of stock market jitters for which there was no event detected. In Table

4.9 I present the performance of EDCoW for the three Ttrue thresholds and three di↵erent

values on the � parameter of EDCoW that is used to define when the correlation between

two words (or the autocorrelation of one word) is significant. These results correspond to

the optimal threshold on ✏ value, which is used to filter-out non-significant events (i.e., the
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� Ttrue
Precision Recall F1

GR ES GR ES GR ES

10

2 · hV 0(s)is 0.35 0.39 0.22 0.27 0.27 0.32

2.5 · hV 0(s)is 0.31 0.33 0.21 0.22 0.25 0.26

3 · hV 0(s)is 0.31 0.35 0.22 0.22 0.26 0.27

20

2 · hV 0(s)is 0.21 0.24 0.33 0.28 0.25 0.26

2.5 · hV 0(s)is 0.18 0.22 0.30 0.30 0.23 0.25

3 · hV 0(s)is 0.18 0.23 0.31 0.32 0.23 0.27

40

2 · hV 0(s)is 0.19 0.25 0.60 0.47 0.29 0.33

2.5 · hV 0(s)is 0.17 0.22 0.56 0.49 0.26 0.30

3 · hV 0(s)is 0.17 0.23 0.54 0.49 0.26 0.31

Table 4.9: EDCoW Event Detection.

threshold for which I achieved the highest F1 score). Note, that such an evaluation favors

EDCoW method over FED, as the performance estimates will be positively biased. In

spite of that, the EDCoW performs poorly for all the examined � values. This indicates

that it is not feasible to detect Twitter events that influence the stock market solely by

searching for bursts in the Twitter stream.

Sentiment-based Event Detector. Given that most studies on the influence of

social media on the stock market only examine the impact of text sentiment, I compare

FED with a sentiment-based event detector. A direct comparison with existing methods

is not feasible, since, to the best of my knowledge, their purpose is either to prove a

dependency between social media and stock market or to predict future values rather

than the detection of jitters. Thus, I adjust FED in order to use only information about

tweets sentiment. In detail, I estimate the weighted sentiment strength index SSIW (t),

described in Section 4.2.1.3, using 2-hour sliding windows with 5 minutes step size. I then

apply an event detection method similar to the proposed FED approach: I create an event

at time t if hSSIW (t)it  SSIW (t) and I update the event when there is a 10% increase in

its sentiment value. I label events as positive or negative by applying Equation (4.8) and I

train a Support Vector Machine classifier in order to predict the events’ classes. In Table

4.10 I present the precision, recall and F1 score of the sentiment-based event detector for

the three di↵erent Ttrue thresholds. My results indicate that event classification based

solely on sentiment performs poorly, since it is not possible to distinguish between events
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Ttrue
Precision Recall F1

GR ES GR ES GR ES

2 · hV 0(s)is 0.23 0.21 0.79 0.74 0.37 0.34

2.5 · hV 0(s)is 0.22 0.23 0.76 0.77 0.34 0.35

3 · hV 0(s)is 0.23 0.23 0.79 0.76 0.36 0.35

Table 4.10: Sentiment-based Event Detection.

of negative sentiment that influences stock market (e.g., fears of political instability or

bankruptcy) and those that do not (e.g., negative opinions/gossips about politicians).

2 · hV0(s)is 2.5 · hV0(s)is 3 · hV0(s)is
GR ES GR ES GR ES

EDCoW 0.0695 0.0724 0.000476 0.000623 0.000736 0.001282
Sentiment 0.1634 0.1921 0.000933 0.001648 0.004825 0.007225

Table 4.11: P-values of the DeLong test under the null hypothesis that the AUC of the
FED approach is equal to the AUC obtained with the EDCoW and Sentiment-based
method.

Finally, in Figure 4.11 I present the receiver-operating-curves (ROC) for FED, EDCoW

and the sentiment-based event detector (with � = 40) for the three Ttrue thresholds. The

ROC curves are created by applying sequential event evaluation. For the EDCoW method

they are created by varying the threshold on ✏ value used in filtering-out non-significant

events. In addition, I applied the DeLong method in order to assess whether there is

a statistically significant di↵erence between the ROC curves of the examined methods.

The p-values under the null hypothesis that there is no di↵erence between the area under

the ROC curve (AUC) of the FED approach and the other two examined methods are

presented in Table 4.11.

4.2.2.5 Mutual Information Analysis

In this Section I use mutual information to examine the dependence between the Twitter

events and the stock market jitters. I represent events in the stock market using the binary

stream C of real event classes and Twitter events with the binary stream L of predicted

Twitter event classes. The binary streams are not i.i.d.. The probability of a stock market

jitter will normally be higher when strong fluctuations have been previously observed and
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lower in more ‘stable’ periods. Thus, I model the binary streams C, L as Markov chains

by applying the Causal State Splitting Reconstruction (CSSR) algorithm [160]. CSSR

creates a Markov model which best represents the underlying probabilistic model of the

streams. The resulted model is a two-state Markov chain (i.e., the probability of having

an event labeled as positive/negative at time t depends only on the event label at time

t� 1). I denote the probabilities of state i for C and L with ⇡C
i and ⇡L

i respectively and

the transition probabilities from state j to state i with pCi|j and pLi|j. Then, the entropy

rates of C, L are estimated as follows [161]:

H(C)=�
1

X

i=0

⇡C
i ·

1
X

j=0

pCj|i log p
C
j|i

H(L)=�
1

X

i=0

⇡L
i ·

1
X

j=0

pLj|i log p
L
j|i

I measure the reduction of uncertainty about C during a time unit t if I utilise knowl-

edge about L during t by measuring the mutual information rate MIR(C,L) [162] given

by the following equation:

MIR(C,L) = H(C) +H(L)�H(C,L) (4.10)

where H(C,L) denote the joint Shannon entropy of C, L estimated as:

H(C,L)=�
1

X

i=0

1
X

j=0

⇡C,L
i,j ·

1
X

k=0

1
X

l=0

pC,L
k,l|i,j log p

C,L
k,l|i,j (4.11)

where ⇡C,L
i,j the joint state probability of C and L for states i, j, respectively and pC,L

k,l|i,j

the joint transition probability of C and L from states i to k and j to l, respectively.

In Figure 4.12 I present the mutual information rate between C and L, when L is

estimated by applying a) the proposed FED method, b) the EDCoW method and c)

the sentiment-based event detector, for the three di↵erent Ttrue threshold values. The

estimation of MIR is based only on unseen Twitter events (i.e., I do not use the training

set). My results indicate significant dependence between stock market jitters and events

detected by the FED approach and much weaker dependence when sentiment-based or
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EDCoW event detection is applied.
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Figure 4.12: Mutual Information Rate between real events and predicted events

Since the sample size is relatively small, I need to examine whether the estimated

mutual information is spurious. In order to do this, I shu✏e the data 1000 times and I

estimate the mutual information between the shu✏ed time-series. In Table 4.12, I present

the 99th percentile of the resulted distribution of the 1000 mutual information values.

Based on these results, the 99th percentiles are significantly smaller than the mutual

information between our event time-series and the time-series of the stock market jitters.

2 · hV 0(s)is 2.5 · hV 0(s)is 3 · hV 0(s)is
0.0252 0.0256 0.0212

Table 4.12: 99th percentile of the distribution of the mutual information values for the
shu✏ed time-series.

4.3 Summary

In this chapter, I have studied the impact of social media on stock market prices. In

the first part of this work, I examine the causal impact of tweets polarity on the traded

assets of four companies. A large number of factors, such as commodities prices and

prices of other traded assets, has been included in the study. The study is based on

observational data rather than experimental procedures. Indeed, causality studies that

are based on observational data rather than experimental procedures could be biased in
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case of missing confounding variables. However, conducting experimental studies is not

feasible in most cases. In this work I have minimised the risk of biased conclusions due

to unmeasured confounding variables by including a large number of factors in the study.

Additionally, I have conducted an analysis on the sensitivity of my conclusions on missing

confounding variables. I have estimated a sentiment index indicating the probability that

the general sentiment of a day, based on tweets posted for a target company, is positive.

My results show that Twitter data polarity does indeed have a causal impact on the stock

market prices of the examined companies. It should be noted that, since all the examined

companies belong to the technological sector, my findings cannot be directly generalised

for any company. Nevertheless, I believe that social media data could represent a valuable

source of information for understanding the dynamics of stock market movements.

On the basis of this conclusion, in the second part of this chapter, I have examined

whether social media data can be used for the detection of stock market jitters. I have

proposed FED (Financial Event Detector), a novel event detection method which focuses

on early detection of events in Twitter that influence a specific stock market. I have

modelled Twitter data as multi-dimensional feature vectors by utilising a rich variety of

information. I have applied feature selection in order to find which of these features are

important for distinguishing between events that influence stock market and insignificant

events. I have demonstrated that using only information about tweets sentiment is not

adequate for the detection of stock market jitters. I have trained a classifier, solely by

utilising stock market data, to recognise which of the detected events will cause strong

fluctuations on the examined stock market. I apply this method to the Greek and Spanish

stock market and I demonstrate that FED achieves up to 74.32% F1 score. Moreover,

I show that general-purpose event detectors fail to recognise events that influence stock

market. I have also show the association between strong stock market fluctuations and

the detected Twitter events by estimating the mutual information between these two

variables.

Finally, this study has been based on news related to the European financial crisis and

on two particular stock markets which were strongly influenced by these events. Although

these findings provide evidence that information extracted from Twitter could be utilised

in order to better understand and detect early factors that influence stock market, the
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extrapolation of these findings in more financial markets requires additional work. In

addition, the proposed method is based on many free parameters. In detail, researchers

need to specify the cut-o↵ frequency for the words clustering step, the thresholds on

the words arrival rate, the maximum time di↵erence between a Twitter event and the

associated stock market event and the threshold that defines when a change on an event

should be considered significant. However, I have assessed the performance of the method

with di↵erent thresholds and I have justified the selection of some threshold values by

conducting additional analysis.
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CHAPTER 5

UNDERSTANDING HUMAN BEHAVIOUR USING
SMARTPHONE SENSOR DATA

In this chapter, I discuss the benefits of leveraging digital devices in order to continuously

and unobtrusively collect data that would facilitate studies on human behaviour. The

purpose of this study is to propose a generic causal inference framework for the analysis

of human behaviour using digital traces. More specifically, I demonstrate the potential of

automatically processing human generated observational digital data in order to conduct

causal inference studies based on quasi-experimental techniques. I support this claim by

presenting an analysis of the causal e↵ects of daily activities, such as exercising, socialising

or working, on stress based on data gathered by smartphones from 48 students that were

involved in the StudentLife project [35] at Dartmouth College for a period of 10 weeks. It is

also worth noting that although previous studies have provided evidence of peer influence

on individuals mood ([82, 80]), the information about the social network of participants

is not su�cient to examine the impact of such factors on stress level. The main goal

of the StudentLife project is the study of the mental health, academic performance and

behavioural trends of this group of students using mobile phones sensor data. To the best

of my knowledge, this is the first observational causality study using digital data gathered

by smartphones.

Information about participants’ daily social interactions as well as their exercise and

work/study schedule is not directly measured; instead, I use raw GPS and accelerometer

traces in order to infer high-level information that is considered as implicit indicator of

the variables of interest.

No active participation of the users is required, i.e., answering to pop-up question-
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naires. I automatically assign semantics to locations in order to group them in four

categories: home, work/university, socialisation venues and gym/sports centre. By group-

ing locations into these four categories and continuously monitoring the spatio-temporal

traces of users, I can derive high-level information as follows:

• Work/University. By analysing the daily time that users spend at their workplace

I can infer their working schedule. Prolonged sojourn time at work/university could

be considered as an indicator of increased workload.

• Home. The time that participants spend at home could serve as a rough indicator of

their social interactions. Prolonged sojourn time at home could imply limited social

interactions or social interactions with a restricted number of people. In general,

spending time outside home usually involves some social interaction. An estimation

of the total daily time that participants spend at any place apart from their home

and working environment could serve as a rough indicator of their non-work-related

social interactions.

• Socialisation Venues. By monitoring users visits at socialisation venues, such

as pubs, bars, restaurants etc., I can infer the time that they spend relaxing and

socialising outside home during a day.

• Gym/Sports-centre. Indoor workout can be captured by tracking participants’

visits to gyms or sports centres. Outdoor activity can be measured using accelerom-

eter data.

In the following sections, I initially present a general methodology for causal inference

based on observational sensor data. Afterwards, I apply the proposed framework to the

StduentsLife dataset in order to understand the impact of daily activities on participants

stress level. Finally, I discuss the limitations of the proposed approach and I summarise

my findings.
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Figure 5.1: Causal Inference Methodology.

5.1 Methodology Description

In this section, I describe the process of causal inference based on observational sensor

data. The process is summarised at Figure 5.1. In the following paragraphs each step of

this process is analysed.

Data Collection. Smartphones are equipped with a wide range of sensors and are

able to capture a rich variety of information. Accelerometer and GPS tracking sensors

are able to track our position and movement; communication logs describing our com-

munication through phone calls, SMS messages, emails or through social networks can

be captured; photos and video/audio recordings also comprise an important information

source. In addition, wearable devices, equipped with biopotential, chemical and stretch

and pressure sensors, are able to sense physical and chemical properties of users’ bodies

and have enabled innovative applications in the domains of health, wellness and fitness.

high-level Information Extraction. Raw sensor data need to be processed in order

to extract higher level information. For example, several researchers have used location

traces in order to extract significant places, location context (e.g., home, work, restaurant

etc.) and high-level activities (e.g., work, sleep, leisure etc.) [163, 90, 164, 91]. In [165]

authors use a rich variety of information captured by smartphones, including GPS traces,

audio signal and photos, in order to extract location context. Automatically understand-

ing location context as well as the underlying high-level activity would enable a detailed

and unobtrusive monitoring of daily human activities and could facilitate many sociolog-

ical studies. For example, in a study about the influence of exercise on mental health,
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labelled location data would enable researchers to infer participants physical activity by

examining their location history (i.e., visits to gyms, courts or other similar places). In

addition, accelerometer data can be used for activities recognition such as sitting, walking,

running [95, 96, 97, 166] or even more complex activities such as eating and sleeping [98]

and wearable devices data can be used for emotions recognition [92, 93, 94].

Although the advances on sensors technology have enabled the inference of high-level

information, inference methods su↵er from limitations and inaccuracies. Inaccurate infer-

ence of the information of interest may result in inducing bias in the study. This issue is

extensively discussed in Chapter 6. Due to the limitations of inference methods but also

due to the lack of suitable sensors for specific types of data, researchers may need to use

pop-up questionnaires prompting the user to provide necessary information along with

sensor data.

Selection of Variables. After extracting high-level information from the available

data, researchers need to define the variables of the causality study. In many cases,

the variables of interest are not directly measured; instead, other factors can be used as

indicators of the missing variables. For example, in a study measuring the impact of work

schedule on participants stress level, the exact work schedule may not be available; instead

the time that participants spend at a location labeled as ‘work’ can be used as indicator

of the work schedule. As was previously discussed in Chapters 2 and 3, researchers need

to select suitable variables that represent the treatment and the outcome variables of the

study as well as the variables that may influence both the treatment and the outcome

values.

Units Description. In a causality study based on human-generated sensor data,

normally there are multiple time-series for each participant in the study i.e., for each

participant there may be a time-series describing his/her location during the period that

the data were collected, a time-series describing his/her activities etc.. An object/unit

of the study represents the ‘state’ of a participant during a specific time-frame (i.e.,

his/her location, activity, emotional state etc.). Thus, there are multiple objects for each

participant. Since the ‘state’ of a participant may depend on his/her past ‘state’, the

objects of the study are not realisations of i.i.d variables and consequently, a traditional

matching approach for causal inference, as discussed in Chapter 2 cannot be applied.
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Symbol Description

ti Time-period

o Participant identifier

D The set of days during which the dataset was collected

Y o
t
i

The time-series that describes the outcome values of participant o during the ti
time-periods sampled daily (Y o

t
i

= {Y o
t
i

(d) : d 2 D})

Xo
t
i

The time-series that describes the treatment values of participant o during the ti
time-periods sampled daily (Xo

t
i

= {Xo
t
i

(d) : d 2 D})

Zo
ti

A set of time-series describing other characteristics relevant for the study for
participant o during the ti time-periods sampled daily (Zo

ti
= {Zo

ti
(d) : d 2 D})

L The maximum time-lag

Y
o,(l)
t
i

The l-lagged version of time-series Y o
t
i

X
o,(l)
t
i

The l-lagged version of time-series Xo
t
i

Z
o,(l)
ti

The l-lagged version of time-series Zo
ti

So
ti

A set of all the time-series for participant o and time-intervals ti:

So
ti
= {Y o

t
i

, ...Y
o,(L)
t
i

, Xo
t
i

, ...X
o,(L)
t
i

,Zo
ti
...,Z

o,(L)
ti

}
Y (l) A set of all the l-lagged version of time-series Y o

t
i

: Y = {Y o
t
i

, 8ti, o}
Y (l) A set of all the l-lagged version of time-series Xo

t
i

: X = {Xo
t
i

, 8ti, o}
Z(l) A set of all the l-lagged version of time-series Zo

ti
: Z = {Zo

ti
, 8ti, o}

S A set of all the time-series: S = {Y, ...Y(L),X, ...X(L),Z...,Z(L)}

Table 5.1: Notation.

In addition, user behaviour and activities’ pattern are strongly influenced by the time

of the day. For example, a user may work on a normal morning shift and usually has some

physical exercise during the evening. He/she may also tend to be more stressed during

the working hours (i.e morning) and more relaxed during the evening. A study measuring

the causal impact of exercise on participants stress level would be biased if it was based on

comparisons between evening time-samples, during which a participant had some exercise,

and morning time-samples during which there was no physical exercise. Thus, the time-

period is an important confounding variable of the study. In order to avoid any bias

induced by matching units describing participants’ ‘state’ at di↵erent time-periods of the

day (i.e., morning, afternoon etc.), I assign a time-period identifier in each unit. Only

units with the same time-period identifier can be matched (i.e., compared). Thus, each

day should be split in smaller periods (e.g., early morning, morning, afternoon, etc.).

The exact number of time-periods per day is a parameter that should be defined by the
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Figure 5.2: Graphical representation of units. On the left side, o represents a unit on a
traditional causality study, characterised by its treatment value X(u), its response value
Y (u) and M other characteristics Z1(u), Z2(u)..., ZM(u). On the middle, tu represents a
unit on the time-series matching design framework introduced in Chapter 3. On the right
side, (o, ti, d) represents a unit on a causality study with smartphones data, based on the
proposed framework. It should be noted that u on the left side denotes a unit in the
study, which corresponds to a participant. o at the right side, also denotes a participant
in the study; however, in this case a unit is not defined only by the participant.

researcher based on the data availability and the type of the study.

The outcome variable of participant o during the ti time-periods of the study is de-

scribed by the time-series Y o
t
i

= {Y o
t
i

(d) : d 2 D}, with D a set of the days of the study.

Similarly the time-series Xo
t
i

= {Xo
t
i

(d) : d 2 D} represents the treatment time-series for

participant o during the ti time-periods and Zo
ti
= {Zo

ti
(d) : d 2 D} represents a set of

time-series describing other characteristics relevant for the study. Moreover, I define the

time-series sets Y = {Y o
t
i

: 8ti, o}, X = {Xo
t
i

: 8ti, o} and Z = {Zo
ti
: 8ti, o}. I use the no-

tation introduced in Chapter 3 in order to describe the lagged versions of the time-series.

In detail, I denote by Y o,(l)
t
i

, Xo,(l)
t
i

and Zo,(l)
ti

the l-lagged versions of the time series Y o
t
i

, Xo
t
i

and Zo
ti
, respectively (i.e., if Xo

t
i

(d) is the d-th sample of Xo
t
i

, then Xo,(l)
t
i

(d) = Xo,(l)
t
i

(d�l)).

Following the approach introduced in Chapter 3, I define a maximum time-lag L and

a set of time-series So
ti
= {Y o

t
i

, ...Y o,(L)
t
i

, Xo
t
i

, ...Xo,(L)
t
i

,Zo
ti
...,Zo,(L)

ti
} for each participant o

and each di↵erent time-period (i.e., morning time-period, afternoon time-period etc.) ti.

Then, a unit of the study describes the ‘state’ of a participant o during the ti time-period

of day d and corresponds to the d-th time-sample of the set of time-series So
ti
. In Figure

5.2, I provide a graphical representation of the notion of unit in comparison with the unit
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representation in a traditional causality study and the unit representation based on the

time-series framework introduced in Chapter 3.

Algorithm 2 Defining the set of confounding variables.

Input:
The set of time-periods T
The set of participants P
The sets of time-series S = {Y, ...Y(L),X, ...X(L),Z...,Z(L)}

Output: The set of confounding variables H
H := {}
for i=l to L do
{For all zero-lagged sets of time-series}
for all S(0) 2 S do
{Find the lagged versions of S which are also parents of Q.}
B := (S(0), ..., S(l�1)) \P
if (IsIndependent(S(l), X, B))and (IsIndependent(S(l), Y , B)) then
H := H [ S(l)

end if
end for

end for

{This procedure returns TRUE if R is not independent of Q conditional to set B}
IsIndependent(R, Q, B)
pval := {}
for all p 2 P do
for all ti 2 T do
Examine the null hypothesis that Qo

t
i

?? Ro
t
i

|Bo
ti

pval := pval [ (p-value of the independence test)
end for

end for
Combine p-values on the pval set using Fisher’s method
if (null hypothesis is rejected) then
return TRUE

end if
return FALSE

Selection and Application of a Matching Method. After defining the units and

the variables of the study, the causal impact of a factor X on a factor Y can be assessed by

applying the matching design framework. However, as it was previously mentioned, the

objects of the study are not realisations of i.i.d. variables and, therefore, the traditional

matching framework cannot be applied. In addition, in this case, each variable of the

study (e.g., the stress level of the participants) is described by multiple time-series, i.e.,

one time-series per participant and per time-period. Thus, the matching design for time-
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series data framework presented in Chapter 3 is not directly applicable to this scenario.

In order to overcome this problem, the process described in Section 3.1 will be applied for

each time-series set So
ti
. In detail, the independence tests need to be applied separately for

each set of time-series So
ti
and the resulted p-values of the tests are combined using Fisher’s

method [167] in order to find the final conditioning set H. This process is described by

Algorithm 2. Afterwards, the conditioning set H is updated as described in Section 3.1

in order satisfy the Stable Unit Treatment Value Assumption and the i.i.d. Assumption.

Then, each treated unit (o, ti, d) (i.e., Xo
t
i

(d) = 1, assuming a binary treatment vari-

able) needs to be matched with a control unit, which has similar values on the variables

of the conditioning set H, as described in Section 3.1. The exact matching method that

will be applied will be selected based on the dataset characteristics. As was previously

mentioned, a treatment unit (o, ti, d) can be matched only with a control unit (o0, ti, d0)

(i.e., units must refer to the same time-period ti). Moreover, researchers may choose to

match only units that refer to the same participant (i.e., o = o0). However, in studies

based on relatively small datasets, this may not be feasible since the statistical power of

the test may be significantly reduced.

Balance Evaluation. After applying a matching method, the balance at each vari-

able of the conditioning set H is evaluated as described in Section 2.3.1.3. If su�cient

balance has not been achieved, the matching method is revised and the process is repeated.

Evaluation of Causal Impact. Finally, when su�cient balance has been achieved,

the causal impact of X on Y is evaluated using equation (2.2) as described in Section

2.3.1.

5.2 Impact of Daily Activities on Humans Stress Level

5.2.1 Dataset Description

The StudentLife dataset contains a rich variety of information that was captured either

through smartphone sensors or through pop-up questionnaires. In this study I use only

GPS location traces, accelerometer data, a calendar with the deadlines for the modules

that students attend during the term and students responses to questionnaires about their
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Algorithm 3 Location clustering
Input: Set of location points L = {l1, l2, ..., ln}
Output: Set of Clusters C = {c1, c2, ..., cm}
C := {}
for each l 2 L do
if accuracy(l)>50 then
continue

end if
locationClusteredF lag := 0
for each c 2 C do
H := {Zj,k : Zj,k 2 P}
if distance(l, centroid(c))<50 then
c := c [ {l}
locationClusteredF lag := 1
break

end if
end for
if locationClusteredFlag = 0 then
newCluster := {l}
C := C [ {newCluster}

end if
end for

stress level. Students answer these questionnaires one or more times per day.

I use the location traces of the users to create location clusters. GPS traces are

provided either through GPS or through WiFi or cellular networks. For each location

cluster, I assign one of the following labels: home, work/university, gym/sports-centre,

socialisation venue and other. Labels are assigned automatically without the need for

user intervention. In order to increase the quality of the location estimation, I consider

only GPS samples with less than 50 meters accuracy. Moreover, I ignore any sample that

was collected while the user was moving. For each new GPS point, I create a cluster only

if the distance of this point from the centroid of any of the other existing clusters is more

than 50 meters. Otherwise, I update the corresponding cluster with the new GPS sample.

Every time a new GPS sample is added to a cluster, the centroid of the cluster is also

updated. The pseudo code of the location clustering algorithm is presented in Algorithm

3.

Each location cluster is labeled as home, work/university, gym/sports-centre, sociali-

sation venue or other. The label socialisation venue is used to describe places like pubs,
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bars, restaurants and cafeterias. The label other is used to describe any place that does

not belong to the above mentioned categories. I label as home the place where people

spend most of the night and early morning hours (i.e., the most significant place from

24:00 to 06:00). In order to find clusters that correspond to gyms/sports-centres or social-

isation venues I use the Google Maps JavaScript API [168]. The Google Maps JavaScript

API enables developers to search for specific types of places that are close to a GPS point.

The type of place is specified using keywords from a list of keywords provided by this API.

I use the centroid of each unlabelled cluster to search for nearby places of interest. Places

that correspond to gym/sports-centres are specified by the keyword gym and places that

correspond to socialisation venues are specified by the keywords bar, cafe, movie theatre,

night club and restaurant. For each unlabelled cluster I conduct a search for nearby points

of interest. If a point of interest with distance less than 50 meters from the cluster cen-

troid is found, I label the cluster as gym/sport-centre or socialisation venue depending on

the point of interest type. Otherwise the cluster is labeled as other. Any place within the

university campus that is not labeled as gym/sport-centre or socialisation venue is labeled

as work/university. In Figure 5.3 I present the percentage of time that students spend

on average in each of the five location categories that were mentioned above. According

to Figure 5.3 students spend the majority of the their time at home and at university.

During night and early morning hours, the location of around 60% of the samples has

been labeled as home while the majority of samples from 9:00 to 20:00 are labeled as

university.

I use information extracted from both accelerometer data and location traces to infer

whether participants had any exercise (either at the gym or outdoors). The StudentLife

dataset does not contain raw accelerometer data. Instead it provides sequences of activi-

ties classified by continuously sampling and processing accelerometer data. The activities

are classified to stationary, walking, running and unknown.

I also use the calendar with students’ deadlines, which is provided by the StudentLife

dataset, as an additional indicator of students workload. I define the set of all days that

the student o has a deadline as Do
deadline. I define a variable Do(d) that represents how

many deadlines are close to the day d for a user o as follows:
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Figure 5.3: Percentage of time that students spend on average in each of the five location
categories.

Do(d) =

8

<

:

Pj2Do

deadline

j
1

j�d
, if j � Tdays < d < j

0, otherwise
(5.1)

Thus, Do(d) will be equal to zero if there are no deadlines within the next Tdays days,

where Tdays is a constant threshold; otherwise, Do(d) will be inversely proportional to the

number of days remaining until the deadline. In my experiments I set the Tdays threshold

equal to 3. I found that with this value the correlation between the stress level of the

participants and the variable Do(d) is maximised.

Finally, the StudentLife dataset includes responses of the participants to the Big Five

Personality test [169]. The Big Five Personality Traits describe human personality us-

ing five dimensions: openness, conscientiousness, extroversion, agreeableness, and neu-

roticism. The personality traits of participants can be used to describe some baseline

characteristics of the units and, for this reason, I include them in the study.

5.2.2 Causality Analysis

I apply the causal inference framework described in Section 5.1 in order to assess the

causal impact of factors like exercising, socialising, working or spending time at home on
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stress level. 1

5.2.2.1 Variables

Initially, I define the variables that will be included in the study as follows:

1. Ho
t (d): denotes the total time in seconds that the user o spent at home during day

d until time t. I also define H = {Ho
t (d) : 8o, 8d}.

2. U o
t (d): denotes the total time in seconds that the user o spent at university during

day d until time t. I also define U = {U o
t (d) : 8o, 8d}.

3. Oo
t (d): denotes the total time in seconds that the user o spent in any place apart

from his/her home or university during day d until time t. I also define O = {Oo
t (d) :

8o, 8d}.

4. Eo
t (d): denotes the total time in seconds that the user o spent exercising during day

d before time t (it is estimated using both location traces and accelerometer data).

I also define E = {Eo
t (d) : 8o, 8d}.

5. Co
t (d): denotes the total time in seconds that the user o spent at any socialisation or

entertainment venue during day d before time t. I also define C = {Co
t (d) : 8o, 8d}.

6. So
t (d): denotes the stress level of user o that was reported on day d and time

t. Stress level is reported one or more times per day. Thus, in contrast with

the above mentioned variables, So
t (d) is not continuously measured. I also define

S = {So
t (d) : 8o, 8d}.

1There are some studies that provide evidence that mood of individuals is influenced by the mood of
their peers (see for example [82, 80]). However, the dataset limitations do not allow me to investigate
whether the stress experienced by a participant could influence his/her social circle. In order to examine
this aspect, I create a friendship network based on the the phone calls/SMSes of the users. However, the
resulting friendship network is composed of only 19 students out of 48 (i.e., there were only 19 students
with at least one friendship link to another student). Moreover, all the users are not active during all
the days of the study (e.g., some users do not report their stress level every day). In order to study the
impact of friends’ stress, I need to consider only samples for which I have information for both the stress
level of the student taken into consideration and the stress level of his/her friends. This reduces the size
of the dataset by 73%. The sample is not su�cient to derive statistically significant results. For this
reason, the impact of the social network of individuals is not considered in this study.
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7. Do(d): represents the upcoming deadlines as described in Equation 5.1. I also define

D = {Do(d) : 8o, 8d}.

8. Eo, N o, Ao, Co, Oo: these five variables denote the extroversion, neuroticism, agree-

ableness, conscientiousness and openness of user o based on his Big Five Person-

ality Traits score respectively. I also define E = {Eo : 8o}, N = {N o : 8o},
A = {Ao : 8o}, C = {Co : 8o} and O = {Oo : 8o}.

In this study, I examine the e↵ects of five treatments, denoted by the variables H, U ,

O, E and C on the stress level of participants, which is described by the variable S.

5.2.2.2 Units

As was previously mentioned in Section 5.1, each unit of the study describes the ‘state’

of a participant during a time-period of a day. I define a set of time-periods T = {4 am,

8 am, 12 pm, 16 pm, 20 pm, 24 pm}. A time-period ti corresponds to the ith element

of T . Then, I create the time-series: Ho
t
i

= {Ho
t
i

(d) : d 2 D}, U o
t
i

= {U o
t
i

(d) : d 2 D},
Oo

t
i

= {Oo
t
i

(d) : d 2 D}, Eo
t
i

= {Eo
t
i

(d) : d 2 D}, Co
t
i

= {Co
t
i

(d) : d 2 D}, So
t
i

= {So
t
i

(d) :

d 2 D}, Do
t
i

= {Do
t
i

(d) : d 2 D}, Eo
t
i

= {Eo
t
i

(d) : d 2 D}, N o
t
i

= {N o
t
i

(d) : d 2 D},
Ao

t
i

= {Ao
t
i

(d) : d 2 D}, Co
t
i

= {Co
t
i

(d) : d 2 D} and Oo
t
i

= {Oo
t
i

(d) : d 2 D} by sampling

the corresponding time-series at the times indicated by the set T . Since the variable So
t (d)

is not continuously measured, it is not feasible to sample it for time ti. Instead, I define

So
t
i

(d) as the average stress level of unit o in day d between time ti and ti+1. Thus, So
t
i

(d)

is estimated as follows:

So
t
i

(d) = S̄o
t (d), for ti  t  ti+1 (5.2)

In addition, there is one time-sample per day for the variableDo
t
i

, thusDo
t
i

(d) = Do
t
j

(d),

8ti, tj 2 T . Similarly, the extroversion, neuroticism, agreeableness, conscientiousness

and openness of each participant is measured one time during the experiment. Thus,

Eo
t
i

(d) = Eo
t
j

(d0), N o
t
i

(d) = N o
t
j

(d0), Ao
t
i

(d) = Ao
t
j

(d0), Co
t
i

(d) = Co
t
j

(d0) and Oo
t
i

(d) = Oo
t
j

(d0),

8ti, tj 2 T and 8d, d0 2 D.

Finally, I define the maximum time-lag L equal to 1 day. I found that there is no
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dependence of the participants stress level on events that happened in the past conditional

to their previous day state, thus 1 day time-lag is su�cient. Then, for each participant o

and each time-period ti, I define the set of time-series So
ti
= {Ho

t
i

, Ho,(1)
t
i

, U o
t
i

, U o,(1)
t
i

, Oo
t
i

,

Oo,(1)
t
i

, Eo
t
i

, Eo,(1)
t
i

, Co
t
i

, Co,(1)
t
i

, So
t
i

, So,(1)
t
i

, Do
t
i

, Do,(1)
t
i

, Eo
t
i

, Eo,(1)
t
i

, N o
t
i

, N o,(1)
t
i

, Ao
t
i

, Ao,(1)
t
i

, Co
t
i

,

Co,(1)
t
i

, Oo
t
i

, Oo,(1)
t
i

}. Then, a unit (o, ti, d) of the study is described by the d -th time-sample

of the set of time-series So
ti
. Units with missing values are discarded from the study i.e.,

if for participant o there is no stress level report during the ti time-period of day d, the

unit (o, ti, d) is discarded.

Units need to be split into control and treatment groups. I consider binary treatments

by applying thresholds to the examined treatment variables. The threshold values are

selected so that there is su�cient number of treated and control units. The impact of the

threshold selection on the causal inference is evaluated by examining di↵erent thresholds.

For each of the four examined treatments (i.e., U , O, E, C) the units are split as follows:

1. U : a unit (o, ti, d) will be a treatment unit if U o
t
i

(d) < Ūt
i

� ↵ · Ūt
i

and control unit

if U o
t
i

(d) � Ūt
i

+↵ · Ūt
i

, for a constant ↵ 2 [0, 1), where Ūt
i

is the sample mean value

of U over all participants and days for the time-period ti. Thus, I consider to have

a positive treatment value when the university sojourn time is relatively small.

2. O: treatment units are all the units with Oo
t
i

(d) > Ōt
i

+ ↵ · Ōt
i

and control all the

units with Oo
t
i

(d)  Ōt
i

� ↵ · Ōt
i

, where Ōt
i

is the sample mean value of O over

all participants and days for the time-period ti. Thus, I consider to have a positive

treatment value when the time spent in any non-work-related place outside home is

relatively large.

3. E: treatment units are all the units with Eo
t
i

(d) > 0, i.e., all the units that denote

that a user o had some exercise at day d before time ti. In the control group are

units with Eo
t
i

(d) = 0.

4. C: similarly to the treatment variable E, treatment units are units with Co
t
i

(d) > 0

and control units with Co
t
i

(d) = 0

Thus, when the treatment variables U and O are considered, units are classified as

treated and untreated based on the time participants have spent at university or at any
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place apart from their home and university, respectively. However, in order to examine the

impact of exercising and visiting socialisation venues, the binary treatments are defined

by considering only whether there was some exercising activity or a visit to a socialisation

place or not. I do not study the impact of these factors by considering also the duration

of these events since the amount of the data is not su�ciently large.

5.2.2.3 Matching

As was previously mentioned in Section 2.3.1, in causality studies based on observational

data, conditional ignorability need to be achieved by controlling the factors that influence

both the treatment and the outcome variables of the study. While there is a large number

of factors that could influence the stress level of participants, the study could be biased

only by factors that have a direct influence on both the stress level and the variable that

is considered as treatment in the study. Thus, in this case I need to specify factors that

could influence both the daily activities of participants and their stress level. For exam-

ple, the workload of students can influence their activities (e.g., in periods with increased

workload some students may choose to change their workout schedule, etc.) and their

stress level. Since the workload cannot be directly measured using only sensor data from

smartphones, I use other variables that provide implicit indicators of workload as con-

founding variables, such as the time that students spend at home and university and their

deadlines. Moreover, participants choice to do an activity may exclude another activity

from their schedule and it may also influence their stress level. For example, someone

may choose to spend some time in a pub instead of following his/her normal workout

schedule. The previous day stress level may also influence both next day’s activities and

stress level. Finally, several studies have demonstrated that stress level fluctuations are

a↵ected by personality traits [8]. In general, more positive and extrovert people tend

to be able to handle stress better than people with high neuroticism score. Moreover,

personality characteristics may correlate with the daily schedule that people follow. For

example, more extrovert people may spend less time at home and more time in social

activities.

In order to find the set of variables that need to be controlled in order to reduce

confounding bias, I apply Algorithm 2. Independence is tested by estimating the Kendall
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rank correlation. In Table 5.2, I present the resulted p-values. Variables that do not

correlate with any of the treatment or outcome variables are omitted.

S H U O E C

H 0.3557 0 6 · 10�128 7 · 10�182 0.0161 2.7 · 10�6

U 0.004 6 · 10�128 0 2 · 10�6 0.042 0.024

O 6 · 10�5 7 · 10�182 2 · 10�6 0 10�7 10�13

E 0.0081 0.0161 0.042 10�7 0 0.222

C 9 · 10�5 2.7 · 10�6 0.024 10�13 0.222 0

S(1) 2.7 · 10�59 0.967 0.0071 0.055 0.3897 0.046

D 0.024 2.5 · 10�6 0.0014 0.0018 0.002 0.0076

E 1.69 · 10�11 2.27 · 10�5 0.059 4.9 · 10�4 4.1 · 10�5 0.0037

N 1.81 · 10�14 0.004 1.2 · 10�5 2.3 · 10�16 0.013 6 · 10�6

A 0.007 0.21 0.15 0.047 0.006 0.002

C 0.057 0.078 0.01 0.47 0.352 0.214

O 0.604 0.006 0.005 2.1 · 10�5 4.7 · 10�4 0.95

Table 5.2: P-values of Kendall correlation under the null-hypothesis that the examined
variables are independent.

Finally, in Table 5.3, I present the resulted conditioning set H for each treatment

variable. Based on the results of Table 5.2, the time that students spend at home does

not correlate with their stress level. Thus, the variable H will not be included in the

causality study. The causal impact of each treatment variable U,O,E and C on the

e↵ect variable S will be examined using all the variables that correlate with both the

treatment and e↵ect based on Table 5.2 as confounding variables. I consider a correlation

to be significant enough if the p-value is smaller than 0.1. While the variables O and C

are strongly correlated, I do not include C in the set of confounding variables when the

treatment is the variable Oo
t
i

(d), since my goal is to study the impact of spending time

in any place (including socialisation venues) apart from home and working environment.

Finally, as discussed in Sections 2.3.1 and 5.1, since S(1) correlates with S, S(1) needs to

be included in the conditioning set H in order to satisfy the i.i.d. assumption.

As was previously discussed in Section 5.1, units can be matched only if they refer to

the same time-period. However, since the dataset is relatively small, matching is allowed

between units of di↵erent participants. Participants personality characteristics are used
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Treatment Conditioning Set H

U S1 D O E C E N C
O S1 D U E E N A -

C S1 D U O E N A -

E D U E N A - - -

Table 5.3: Confounding variables for the di↵erent applied treatments.

as confounding variables in order to reduce the bias induced by di↵erences on participants

behaviour due to their personality.

5.2.2.4 Balance Check

In order to create balanced treated and control pairs of units I apply the Genetic Matching

method [170]. Other simpler matching approaches (such as nearest neighbour matching

and stratification) were also examined, however Genetic Matching reduced the confound-

ing bias more e↵ectively. In order to assess if the treated and control pairs are su�ciently

balanced, I check the standardised mean di↵erence for each confounding variables of the

study as described with equation (6.8).

5.2.3 Results

I conduct a causal inference study for each one of the four examined treatments that

were discussed above. In each study, I use as confounding variables all the variables that

are presented in Table 5.3. I report my findings collectively for the whole population. I

also repeated these studies separately for participants with high and low extroversion and

participants with high and low neuroticism scores in order to investigate whether some

of the examined treatments have a di↵erent causal impact on these sub-populations. I

decided to conduct additional studies separately for these sub-populations because neu-

roticism and extroversion are strongly correlated with stress level according to Table 5.2.

Participants are classified as highly extroverts if their extroversion score is higher than the

average extroversion score; otherwise, they are classified as member of the low extrover-

sion sub-population. Correspondingly, I define two sub-populations of participants with
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Figure 5.4: Distribution of neuroticism and extroversion scores.

high neuroticism (i.e., participants with neuroticism score higher than the average) and

participants with low neuroticism scores. In Figure 5.4 I present the distribution of the

neuroticism and extroversion scores of the participants.

In Figure 5.5 I show the average treatment e↵ect (ATE) normalised by the average

stress level of the control units along with the 95% confidence intervals for each one of the

four examined treatment variables. For the treatment variables U and O I present results

for ↵ equal to 0, 0.05, 0.1 and 0.15. I do not present results for larger ↵ values since the

number of samples that are discarded is large and the remaining data are not su�cient for

statistically significant conclusions. In Figure 5.6 and Table 5.4 I present the standardised

di↵erence, as described in Equation (6.8), for all the confounding variables that were used

in each one of the causation studies. According to my results, the standardised di↵erence

between treated and control samples is smaller than 0.1 for all the confounding variables

thus any confounding bias has been su�ciently minimised.

My results indicate that the time that students spend at university has only a weak

causal impact on the stress level when participants’ samples are split into treatment

and control groups using an ↵ value equal to 0.15. In detail, participants report 3.1%

(with confidence interval ±0.7%) lower stress level the days that their sojourn time at

university is 15% lower than the average university sojourn time of the whole population

compared to days that the university sojourn time is 15% larger than usual. However,

when the analysis is limited to people with high extroversion score, there is no statistically

significant evidence that the time that students spend at university has any causal e↵ect

on stress. When smaller ↵ values are considered, the causality score is close to zero for
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Figure 5.5: Percentage improvement on the stress level of treated units compared to
control units when each one of the examined treatments is applied. Results are presented
along with the 95% confidence interval. Confidence intervals are estimated by applying a
t-test under the null hypothesis that there is no improvement on the stress level.

the examined set of students.

Based on my results, the time that students spend in any place apart from their home

and university has a significantly strong causal impact on their stress level. As depicted

in the second part of Figure 5.5, students reported around 3% (with confidence interval

±0.65%) lower stress level the days that they spend more time outside than the average

time compared to days that they spend less time outside (i.e., ↵ = 0), when the whole

set of participants is considered. Similar results are observed when the study is repeated

separately for students with high and low extroversion and students with high and low
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Figure 5.6: Standardized mean di↵erence between treated and control samples for each
confounding variable when the applied treatment is the variable U (top figure) and the
variable O (bottom figure). The standardized di↵erence for all the confounding variables
is less than 0.1, thus the groups are balanced.

neuroticism scores (the observed di↵erence is not statistically significant given the 95%

confidence intervals of the study). When the value of ↵ is increased, the causal impact of

the examined variable is stronger. For ↵ = 0.15, the improvement on the stress level for

students who spend more time outside is 14.45% (with confidence interval ±1.5%) when

the total population is considered. The results are similar when the study is limited to

students with high extroversion score and students with low neuroticism scores. However,

the examined variable has a significantly lower impact on stress level when only students

with high neuroticism score and students with low extroversion score are considered.

In the third part of Figure 5.5, I examine the impact of exercising or visiting sociali-

sation venues on stress level. While the variable C is strongly correlated with the stress

level, according to my results, there is no causal link between them. This indicates that,

while people benefit from spending time outside home or working environment in general,
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there is no statistically significant benefit from visiting specific venues. Finally, exercising

has positive e↵ect on the stress level of the examined population. When I examine the

four di↵erent sub-populations separately, I observe that exercising has a stronger positive

e↵ect on the stress level of participants with high neuroticism score while there is no

statistically significant benefit for people with high extroversion score. The impact on

people with low neuroticism score is also weak.

S(1) D U O E N A
C �0.0035 0.0442 0.0046 �0.0148 �0.0069 �0.0065 0.0001

E - 0087 �0.0011 - 0.0047 0 0.0043

Table 5.4: Standardized di↵erence between treated and control samples for each one of
the confounding variables when the applied treatments correspond to the variables C and
E.

5.2.4 Sensitivity Analysis

In this study, I have considered the most important factors that may influence both

participants stress level and their daily activities. However, it is not feasible to assure

that there are no other unmeasured factors that may influence the results. For example,

some participants could be motivated by their friends to participate in a group exercise.

The social interaction with their friends during the training program may also has a

positive impact on their stress level. Thus, the observed link between stress and exercise

could be actually due to the involved social interactions.

�
Upper bound on p-value

U O E

1.0 0.032 0.0004 0.007

1.1 0.091 0.0012 0.016

1.2 0.255 0.0023 0.034

1.3 0.347 0.0078 0.061

1.4 0.591 0.023 0.123

1.5 0.784 0.042 0.285

Table 5.5: Sensitivity Analysis.
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In order to assess the bias due to unmeasured confounding variables, I conduct a

sensitivity analysis based on Rosenbaum’s method [118] described in Section 2.3.1.5. In

Table 5.5, I present the results of the sensitivity analysis for �  1.5 and for the treatment

variables U , O and E. The results are obtained on the whole participants population.

For the treatment variables U and O results are obtained with ↵ = 0.15. According to

my analysis, the observed causal link between U and S is very sensitive in the presence

of unobserved confounding variables. The impact of exercise on the stress level could be

also biased in case of unmeasured factors while the impact of O on S is more robust.

5.3 Discussion and Limitations

In this Chapter, I have highlighted the opportunities that arise by the utilisation of

smartphone sensor data and I have presented a framework for detecting causal links on

human behaviour by utilising such datasets. In this section, I discuss the limitations of

the proposed approach.

The main limitation of any causal inference study based on observational data is

that it could be biased in case of missing confounding variables. However, conducting

experimental studies is not feasible in many cases due to either practical or ethical reasons.

Smartphones as well as wearable devices can capture a large variety of data and o↵er

useful information about users’ daily activities. Additional information that may be

needed in a study could be provided by the users through pop-up questionnaires. Thus,

by leveraging this technology, scientists could obtain su�cient information in order to

conduct reliable causal inference studies. Nevertheless, the possibility that unmeasured

factors may influence the study cannot be eliminated, and consequently, any results should

be supplemented by a sensitivity analysis.

In addition, in many cases it is hard to prove that the variable representing the treat-

ment precedes temporally the variable representing the outcome. For example, in this

case study, the stress level of users is not measured continuously; instead it is reported

up to four times per day. Thus, it is not feasible to accurately know whether an action

preceded the reported stress level or the stress level simply had not been reported before

the action. In addition, the emotional state of a participant could be influenced also by
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the anticipation of an action or event. For example, a participant may report increased

happiness level when a trip has been scheduled. In this case, the emotional state of the

participant is influenced by the upcoming trip although the outcome, i.e., the emotional

state precedes temporally the cause, i.e., the trip. Given these limitations, in this study,

the condition that the cause needs to precede temporally the outcome is ignored. Thus,

although the proposed method uncovers relationships stronger than mere correlation,

strong claims about the existence of a causal link between the examined variables should

be avoided.

In addition, as it was previously discussed in Section 5.1, inferences based on sensor

data could also be inaccurate either due to noisy sensor measurements or due to the fact

that the variable of interest is inferred by the sensed data rather than directly measured.

For example, in this case I assume that a visit to a sports centre implies that the user had

some exercise. However, the user may have visited this place to attend a sport event or just

to meet friends. This issue is farther examined in Chapter 6. Nevertheless, inferring this

high-level information using raw sensor data instead of pop-up questionnaires has several

advantages: 1) it o↵ers a more accurate representation of participants activities over time

since data are collected continuously; 2) data are collected in an obtrusive way without

requiring participants to provide any feedback; this minimises the risk that some users will

quit the study because they are dissatisfied because of the amount of feedback that they

need to provide; 3) data gathered through pop-up questionnaires may not be objective

since participants may provide either intentionally or unintentionally false responses.

It should be noted that the dataset that was used in this study contains sensitive

information about participants. It has been shown that location traces contain adequate

information in order to identify users [171, 172]. This dataset contains also highly sensitive

information about participants mood and personality. The dataset has been released

without any obfuscation and can be used solely for research purposes while it is required

that researchers will not attempt to identify participants.

Finally, this case study involves a limited number of participants who do not consti-

tute a representative sample of the population; therefore extrapolating general conclusions

about the causal impact of the examined factors on stress level is not feasible. However,

the purpose of this work is to demonstrate the potential of using smartphones for con-
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ducting large-scale studies related to human behaviour, rather than present a thorough

investigation on factors influencing the stress level of the participants.

5.4 Summary

In this chapter, I have proposed a framework for causal inference using smartphones

sensor data. I demonstrate the potential of utilising this information in order to better

understand human behaviour by studying the causal e↵ects of several factors, such as

working, exercising and socialising, on stress level of 48 students using data captured

by means of smartphone sensors. This study does not consider the impact of social

influence on stress level of individuals mainly because of dataset limitations. My results

suggest that exercising and spending time outside home or university have a strongly

positive causal e↵ect on participants’ stress level. I have also demonstrated that the time

participants stay at university has a positive causal impact on their stress level only when

it is considerably lower than the average daily university sojourn time. However, this

impact is not remarkable.

Moreover, I have observed that some of the examined factors have di↵erent impact

on the stress level of students with high extroversion score and on students with high

neuroticism score. More specifically, more extrovert students benefit more from spending

time outside home or university, while more neurotic students benefit more from exercis-

ing. Investigating whether there is a causal impact between students’ personality and the

way that di↵erent activities impact their stress level is out of the scope of this study.

My study mainly relies on raw sensor data that can be easily captured with smart-

phones. I have demonstrated that information extracted by simply monitoring users’

location and activity (through accelerometer) can serve as an implicit indicator of several

factors of interest such as their working and exercising schedule as well as their daily

social interactions.

Despite the previously discussed limitations of the proposed method, smartphones

sensor data enable the continuous and unobtrusive monitoring of users and could rev-

olutionise the way that causality studies on human behaviour and emotional state are

conducted. To the best of my knowledge, this investigation comprises the first step to-
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wards this direction.
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CHAPTER 6

CAUSAL INFERENCE UNDER MEASUREMENT
ERRORS

In the previous chapters, I have discussed how human-generated sensor data can be used

to better understand human behaviour and events influenced by it. Significant part

of this thesis focuses on discovering causal relationships among factors of interest. For

example, in Chapter 4 I have examined the causal impact of Twitter sentiment on the

traded assets prices. In Chapter 5 I have also studied the causal impact of daily activities

such as exercising, working and socialising, on the stress level as well as the causal links

between smartphones usage and mood. In these works, key variables of the causality

study are not directly measured. Instead, they are inferred from raw data. In particular,

in [142] I use the location context (e.g., home, work, entertainment place etc.) in order

to understand the daily time that participants spent working, socialising and exercising.

However, the real location context is not known; instead, it is inferred from smartphone

sensors and, consequently, it could be inaccurate. Location context could provide valuable

information about users’ daily schedule and activities and could facilitate many studies

on human behaviour. However, requesting users to continuously label their location data

would be inconvenient and may discourage them from participating in such studies. Also

labelling might not be feasible in commercial applications as well.

Moreover, as it was previously discussed in Chapter 4, several studies attempt to

link Twitter sentiment with stock market prices. However, the real text sentiment is not

known; instead, it is inferred by applying text processing and classification techniques and

consequently, subject to inaccuracies. Moreover, several studies have shown that social

media data in some countries have undergone censorship [173]. In such cases, sentiment
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or opinion tracking could be biased.

Inaccuracies on the estimation of key variables in causality studies may jeopardise the

validity of the results. However, the vast amount of social media and smartphone sensor

data contain low level information that requires significant amount of pre-processing in

order to extract valuable data. Consequently, it is important to develop new causal

inference techniques that could handle unobserved or inaccurately measured data. Latent

variable models have been used to handle such cases [174, 175]. Scientists usually attempt

to estimate the values of a latent variable from other observed variables by fitting the data

in a structural equation model [174]. However, the selection of a proper model is a complex

task that may result in misspecification and overfitting.

To the best of my knowledge, the problem of handling noisy variables in causality

studies based on the matching design framework has not been addressed so far. In this

section, I propose probabilistic matching, a matching method that takes into account

the uncertainty about the real values of a noisy variable and attempts to find optimal

pairs of units in order to maximise the probability that the matched units have similar

characteristics. My method is based on the assumption that a probability distribution

describing the real values of each unobserved variable is known or can be approximated.

Although this assumption may restrict the applicability of the proposed method, it is

realistic in many scenarios. For example, when an inference procedure is applied in

order to learn the values of an unobserved variable L from some observed attribute C, a

probability distribution Pr(L|C) can be approximated, as I discuss later in Section 6.2.

I evaluate the proposed matching framework on two di↵erent simulation studies in com-

parison with a conventional matching method. I demonstrate that probabilistic matching

reduces significantly the confounding bias and results in more accurate causal conclusions.

I also evaluate my method on a real dataset. In particular, I use the social media dataset

described in [176] in order to test whether text messages containing URLs tend to be

reposted more often. This dataset includes a rich variety of features extracted from the

Weibo microblogging service for 111 users along with a manually assigned binary label

for each user indicating whether he/she has been characterised as spammer or not. In

this scenario, I assume that the spammer label is an unobserved confounding variable

and I apply a spammer detection method [177] in order to infer a label for each user
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Symbol Description

L̃ Variable with measurement errors, described with a 1⇥N vector

Lu Random variable with Pr(Lu|L̃ = l̃u)

Xu Stochastic variable describing the treatment of u

X 1⇥N vector of stochastic variables describing the treatments of the N units

H P ⇥N matrix of stochastic confounders

Hu uth column of H, denoting a P ⇥ 1 vector of random variables for unit u

Hp pth line of H, denoting a 1⇥N vector of random variables for the
p confounding variable

Hp
u

Element in column u and line p of H, denoting a random variable
for the pth confounding variable of unit u

D(Hp
u, H

p
v ) Distance between random variables Hp

u, H
p
v

D(Hu, Hv) Distance between random variables vectors Hu, Hv

DH
u

,H
v

P ⇥ 1 vector of distances between the P random variables Hp
u, H

p
v

Table 6.1: Notation.

from other observed attributes. I map the classification outputs to probability distribu-

tions describing the probability of a user to be a spammer and I use these probability

distributions to the matching framework. I demonstrate that the number of URLs in

text messages indeed influences the number of reposts. I repeat the causality study by

applying a conventional matching method in two scenarios: 1) the ground truth binary

spammer identifier is known and 2) only the noisy spammer identifier inferred from the

data is known. The results of the first scenario serve as the ground-truth. I demonstrate

that my results come in agreement with the conclusions of the first scenario, while the

examined conventional matching method fails to detect the causal link.

6.1 Probabilistic Matching

Probabilistic Matching is based on the matching with continuous treatments framework

discussed in Section 2.3.1.4. In particular, I extend this method in order to handle cases

where treatment and/or one or more confounding variables may have noisy or censored

measurements. In this chapter I use the notation presented in Table 2.1. The additional

notation that is needed is summarised in Table 6.1.
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I assume that for each unobserved variable L there is an observed noisy version L̃.

For example, L̃ could be a location label inferred from smartphone sensor data (and

consequently subject to inaccuracies) and L the real unknown location label. I also

assume that for each observation l̃u of L̃ the corresponding random variable Lu has known

probability distribution Pr(Lu|L̃ = l̃u). In the following, I will consider the general case

where all the key variables are noisy with the understanding that in the case of no noise

the corresponding distribution reduces to the delta function:

Pr(Lu|L̃ = l̃u) =

8

>

<

>

:

1 , Lu = l̃u

0 , Lu 6= l̃u

(6.1)

Denote by Xu the random variable describing the treatment of unit u and with X a

1⇥N random vector of treatment variables of all units. I also denote by Zp
u the random

variable describing the pth confounding variable of unit u and with Z a P ⇥N matrix of

random variables Zp
u. As before, Z

p will denote the pth row of H and Hu its uth column.

My objective is to find pairs of units with minimum distance � as given in Equation

(2.5). However, if the treatment and/or any of the confounding variables are noisy, the

real distance cannot be calculated. Consequently, the applied matching method may

result in poor matches. I attempt to improve the matching by including the knowledge

about the uncertainty of the variables into the matching process. Suppose I have a notion

of a distance D(Xu, Xv) between random variables Xu, Xv and a distance D(Hu, Hv)

between random vectors Hu and Hv. I need to find pairs of units u, v that minimise

�(u, v) =
D(Hu, Hv)

D(Xu, Xv)
(6.2)

I need to define a suitable distance metric D for the random variables. Commonly

used distance metrics for distributions such as f-divergence metrics (e.g., Kullback-Leibler

divergence) are not suitable in this case, since my objective is to estimate the probability

that the values of two random variables Xu, Xv are close (i.e., Pr(|Xu�Xv| < ✏), where ✏

a small positive constant). Since the distance metric needs to measure also the proximity

between the values of two random variables, I suggest a metric that is based on comparison

of the quantiles of the examined variables. Let me denote by qX
u

(k) the kth quantile of
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variable Xu, k = 1, 2, ..., K. Then, I define D(Xu, Xv) as follows:

D(Xu, Xv) =
1

K
·
s

X

k

(qX
u

(k)� qX
v

(k))2 (6.3)

If X is not noisy, the quantile values will be the same and D(Xu, Xv) reduces to the

Euclidean distance of xu and xv.

6.1.1 Probabilistic Genetic Matching

Although several distance metrics can be used as the distance between random vectors

D(Hu, Hv), in this work, I propose Probabilistic Genetic Matching (ProbGenMatch), a

modified version of the Genetic Matching distance metric. Before I introduce the Proba-

bilistic Genetic Matching method, I extend the Genetic Matching method [122] described

in Section 2.3.1.2 for continuous treatments based on the framework described in Section

2.3.1.4. Although Genetic Matching has been proposed only for binary treatments, it can

be extended to continuous treatments by modifying Equation (2.5) as follows:

�(u, v) =
du,v,W + ✏

|xu � xv| (6.4)

The loss function also needs to be modified in order to penalise any matrix W that

results in matched units with similar treatments. I think of the absolute di↵erences on

the pth confounding variable values of the matched treated and control units {|hp
u � hp

v| :
(u, v) 2 G} as realisations of a random variable Ap. Then, I define a set of K quantiles

�p = {qp(k)}Kk=1. The loss function can be selected based on this quantiles set as described

in Section 2.3.1.2.

Then, I further extend Genetic Matching for continuous treatments to Probabilis-

tic Genetic Matching that can handle also stochastic variables. Denote by DH
u

,H
v

=

[D(H1
u, H

1
v ), D(H2

u, H
2
v ), ..., D(HP

u , H
P
v )]

T the P ⇥ 1 vector of distances D(Hp
u, H

p
v ) be-

tween the P random variables Hp
u, Hp

v , p = 1, 2, ..., P (see Equation (6.3)). Then, I

calculate D(Hu, Hv) by modifying the Genetic Matching distance of Equation (2.3) as

follows:
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D(Hu, Hv) =
q

DT
H

u

,H
v

· (S� 1
2 )T ·W · S� 1

2 · DH
u

,H
v

(6.5)

The loss function used to select the optimal weight matrixW also needs to be modified.

I use the quantiles-based loss functions described in Section 2.3.1.2. In particular, for each

pair of units (u, v) 2 G I define a random variable:

Ap
u,v =

|Hp
u �Hp

u|
|Xu �Xv| (6.6)

I denote by apu,v(k) the k
th quantile of Ap

u,v. I also define the average k-th quantile for

the pth confounding variable, āp(k) = 1
|G| ·

P

(u,v)2G apu,v(k). Finally, I collect the average

quantiles in the set�p = {āp(k)}Kk=1 to be used in a quantile-based loss functions described

in Section 2.3.1.2.

6.1.2 Implementation

ProbGenMatch has been implemented as an R package and it is based on the Matching R

package, an open source software which implements several matching methods. ProbGen-

Match takes as input the probability distributions for all the confounding variables and

treatment variable for all the units of the study (along with other optional parameters)

and returns the matched pairs according to the previously described framework. If all

the variables of the study are observed without any measurement errors, then ProbGen-

Match is equivalent to the continuous Genetic Matching approach that I presented in

Section 2.3.1.4. If also the treatment variable is binary, ProbGenMatch is equivalent to

the Genetic Matching framework [122].

Many-to-one Matching. The application of many-to-one matching or matching

with replacement (discussed in Section 2.3.1.2) in scenarios with continuous treatments

is not straightforward since units cannot be grouped to treated and control. Previously

presented matching methods with continuous treatments are using one-to-one matching,

i.e., each unit can be used only one time. In this implementation, I o↵er the option to use

each unit multiple times. In detail, researchers can decide about the maximum number

of times M that units are allowed to be used. Since this may result in some units being
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used multiple times while others not, I use frequency weights in order to eliminate the

induced bias. Thus, for each matched pair (u, v) 2 G I assign a frequency weight:

f(u,v) = 0.5 ·
⇣ 1

nu

+
1

nu

⌘

where nu, nv the number of times the units u, v have been used respectively.

Caliper Distance. Matching with caliper distance has been previously proposed as

a way to impose restrictions on the maximum allowed dissimilarity between the matched

units [148]. A caliper distance is simply a threshold that defines the maximum allowed

di↵erence of two units on their confounding variable values. In this implementation I

also support matching with caliper distance as an optional parameter. For stochastic

confounding variables, a probability threshold Tprob should be provided along with the

caliper distance. This probability threshold allows the matching of two units only if the

probability to have a larger di↵erence than the caliper distance on their confounding

variable values is smaller than Tprob. My implementation also allows users to specify a

threshold on the minimum di↵erence between the treatment values of two matched units.

For stochastic treatment variables, a probability threshold should be provided along with

the minimum treatment di↵erence threshold.

Computational Cost. ProbGenMatch requires more computational resources than

traditional genetic matching. In detail, the cost of estimating the distance between two

confounder vectors, as described at Equation (2.3) is O(P ) and the cost of estimating the

distances between all units pairs is O(P ·N2). In contrast, ProbGenMatch requires O(K)

in order to estimate the distance between two random variables, as described by Equation

(6.3), O(K · P ) for the estimation of the distance between two confounder vectors and

O(K · P ·N2) for the estimation of the distances between all units pairs.

6.2 Evaluation

I evaluate the proposed probabilistic matching framework on two synthetic and one real

dataset. All the examined scenarios include one unobserved variable L along with an

observed noisy version L̃. I use as baselines for the evaluation:
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1. the traditional Genetic Matching (GenMatch) approach which treats L̃ as the true

variable.

2. the optimal Genetic Matching (OptGenMatch), where I assume that L is observed

without any noise. The performance of Genetic Matching under this optimal sce-

nario serves as an upper bound to the performance of my method. The results

obtained by OptGenMatch will be considered as ground-truth.

I use the synthetic datasets to evaluate the performance of the proposed framework

on di↵erent noise levels. I also examine the sensitivity of my approach to the parameters

described in Section 6.1.2 and, in particular, to the minimum allowed treatment di↵erence

and to the maximum number of times M that each unit can be used at the matching

procedure. Simulated experiments are the most reliable method for assessing the strengths

and limitations of the examined methods since the ground-truth is known. In addition,

the characteristics of the dataset can be chosen so that the impact of the di↵erent method

parameters can be evaluated. Finally, I apply my method on the social media dataset

described in [176] in order to test whether text messages containing URLs tend to be

reposted more often.

The three methods are evaluated using the following criteria:

• Average Treatment Di↵erence. The matched units need to have large di↵erence

on their treatment values. When the treatment di↵erence on the matched units is

small, the impact of the treatment on the outcome variable may fade-out.

• Remaining Confounding Bias. As was previously discussed in Section 2.3.1, the

resulted groups of matched treated and control units need to have similar distribu-

tions on their confounding variables values. I use the standardised mean di↵erence,

as described in Section 2.3.1.3, in order to assess whether su�cient balance has been

achieved.

• True/False Positive Causality Conclusions Rate. When units with similar

treatment values are matched and/or when the remaining confounding bias is large,

the average treatment e↵ect could be falsely considered as statistically significant

(false positive result) or insignificant (false negative result). The ground truth (i.e.,
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whether there is a causal link or not between the examined treatment and outcome

variables) is known for the synthetic datasets and therefore, the rate of true/false

positive causality conclusions rate can be estimated. In the study on the real dataset,

I use as ground-truth, the result of the (OptGenMatch method.

6.2.1 Synthetic Dataset

I consider a binary variable L describing the class of objects represented by D-dimensional

vectors of real numbers. I consider two types of vectors. The first type corresponds to

positive examples (i.e., vectors that belong to the class L = 1). The data in each of the

D dimensions of the first vector type are generated by a Gaussian process with mean

value 1 and standard deviation �1. The second type of vectors corresponds to negative

examples (i.e., L = 0) and their values in each dimension are generated by a random

Gaussian process with mean �1 and standard deviation �2. I train a Support Vector

Machine classifier on this synthetic dataset and afterwards I use the classifier on unseen

synthetic data (generated with the same procedure) in order to learn a label L̃ for each

vector. Then, I map the SVM outputs into probabilities by applying the process described

in [178]. For each vector v, the probability distribution of random variable Lv corresponds

to the output of this mapping procedure.

In this test case, I consider two-dimensional vectors (i.e., D = 2) and I set �1 = 1. I

test the performance of my matching framework with di↵erent noise levels on the observed

variable L̃ by increasing �2 from 1 to 2 with step 0.2. By increasing the variance of the

second vector type, I make the vectors less separable and consequently, the resulted classes

L̃ are less accurate. In all experiments, unless it is di↵erently stated (i.e., Section 6.2.2.2),

I set the maximum number of times M that each unit can be used equal to 5 for all the

examined methods.

6.2.1.1 Unobserved Treatment Variable

In the first case, I consider L as the treatment variable. I generate two confounding vari-

ables H1 = ↵1 ·L+ e1 and H2 = ↵2 ·L+ e2, where e1, e2 correspond to random Gaussian

noise with mean 0 and variance 1 and 2 respectively and ↵1,↵2 are model coe�cients.
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Figure 6.1: Average treatment di↵erence between the matched units.

In the following results, I do not use a caliper distance for the confounding variables. I

set the minimum allowed distance between the treatments of matched units equal to 0.1

and the maximum allowed probability that the matched units have a treatment di↵erence

larger than 0.1 equal to 0.25. I repeat the study for 10 randomly selected sets of model

coe�cients (↵s). All model coe�cients are randomly generated from a uniform distribu-

tion on [0, 1]. For each one of the 10 sets of model coe�cients I repeat each study for

100 di↵erent noise realisations. In Figure 6.1 I present the average treatment di↵erence

between the matched units for the three examined matching algorithms along with the

95% confidence intervals. The OptGenMatch method always avoids matching units with

the same treatment value. Thus, given that in this scenario I consider binary treatments,

the average treatment di↵erence is always equal to 1. According to my results, the perfor-

mance of both GenMatch and ProbGenMatch declines for higher noise levels (i.e., larger

�2). However, ProbGenMatch significantly outperforms GenMatch by avoiding matching

units with the same treatment for more than 88% of the matched pairs for all examined

noise levels.

When the resulted group of matched units contains pairs with the same treatment

level, the impact of the examined treatment on the outcome variable cannot be reliably

assessed by comparing the matched units on their outcome values. I demonstrate this by

generating the following outcome variable:

Y = �0 · L+ �1 ·H1 + �2 ·H2 + nu + en (6.7)

where �0, �1, �2 are model coe�cients, nu is a uniform random variable on [0, 4] and en

is Gaussian noise with mean 0 and variance 1. All � coe�cients are randomly generated
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Figure 6.2: Percentage of true positive causality conclusions.

from a uniform distribution on (0, 1]. For non-zero �0, the treatment variable L has a

causal impact on Y . I apply a Wilcoxon non-parametric test in order to examine whether

the average treatment e↵ect, (Equation (2.6)) is significantly di↵erent than zero. When

the performance of OptGenMatch is examined, I use as treatment (i.e., the variable X

of Equation (2.6)) the binary variable L, while for GenMatch and ProbGenMatch I use

the noisy variable L̃. I repeat the study for 10 di↵erent sets of model coe�cients and 100

realisations of nu, en, for all the groups of matched units resulted after applying the three

examined methods, as it was previously described. In Figure 6.2 I depict the average

percentage of times that the null hypothesis of the Wilcoxon test (i.e., that the average

treatment e↵ect is equal to zero) was rejected with p-value equal to 0.05. OptGenMatch

successfully detects the causal impact of L on Y in most cases, while ProbGenMatch

significantly outperforms GenMatch.

6.2.1.2 Unobserved Confounding Variable

In the second case, L corresponds to a binary confounding variable. In detail, I consider a

continuous treatment variable X that follows a uniform distribution on [0, 1]. The binary

confounding variable L follows a binomial distribution with success probabilities given

by the vector of probabilities PS = 1/(1 + e�t), where t = ↵0 + ↵1 · X. I also create a

confounding variable H1 = ↵1 ·X + e1. I evaluate the performance of the three examined

matching approaches by generating di↵erent realisations of the model coe�cients and

noise e1, as it was previously described in Section 6.2.1.1. I assess the remaining bias

due to imperfect matches by calculating the standardised di↵erence in means for each

confounding variable as described in Section 2.3.1.3. In detail, for the binary confounding
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Figure 6.3: Remaining bias for the two confounding variables.

variable L, I consider the values { l
u

x
u

�x
v

: (u, v) 2 G} as realisations of a random variable

CU and the values { l
v

x
u

�x
v

: (u, v) 2 G} as realisations of a random variable CV . Then the

standardised di↵erence in means for the confounding variable L is estimated as:

|C̄U � C̄V |
q

(�2
U + �2

V

)/2
(6.8)

where C̄U , C̄V are the mean values of CU , CV respectively and �2
U , �

2
V their variances.

The same process is followed for the estimation of the standardised di↵erence in means

for H1.

In Figure 6.3 I present the standardized di↵erence in means for the two confounding

variables (i.e., the binary variable L on the top and the continuous H1 on the bottom).

OptGenMatch always matches units with the same value on L and therefore, there is zero

bias. The proposed ProbGenMatch method achieves also low bias, smaller than 0.1 for

all the noise levels and significantly outperforms GenMatch. Finally, all methods achieve

similar performance on the continuous confounding variable H1, which is considered to be

observed without any noise, although the performance of ProbGenMatch is slightly worse

for large noise levels.

Failing to su�ciently eliminate the bias induced by confounding variables may result in

false positive causality conclusions. I demonstrate this by considering again the outcome

variable of Equation (6.7). This time I set �1 = 0, thus, there is no causal impact of
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H1 on Y . In Figure 6.4 I present the rate of the false positive causality conclusions (i.e.,

the average percentage of times that the null hypothesis of the Wilcoxon test was not

rejected) along with the 95% confidence interval. ProbGenMatch achieves up to 8% lower

false positive rate than GenMatch.
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Figure 6.4: Percentage of false positive causality conclusions.

6.2.2 Location-based Synthetic Dataset

In this scenario, the latent variable L represents the daily time that the participants of

a study spend in entertainment venues such as pubs, restaurants, bars, etc. I assume a

study based on smartphone sensor data, where participants do not report their location;

instead, location, along with the underlying context (i.e., work, home, restaurant etc.)

is inferred from other raw sensor data. Several methods for automatic location label

inference have been proposed [179, 180]. However, the real location context cannot be

inferred accurately. As was previously discussed, location context could be very important

for studies examining the impact of social behaviour or daily activities (e.g., exercising,

socialising etc.) on well-being indicators such as stress level [142] or eating disorders [24].

I synthetically generate a location dataset based on the description of the real dataset

presented in [179]. In [179], authors gather several sensor data along with ground truth

labels for the locations of 36 participants and they apply a method for automatic loca-

tion label inference. In order to generate the dataset, I define a variable P denoting a

location label. As described in [179], I consider 7 location labels: home, work, college,

entertainment, food, shops and other. Pu(t) denotes the location of a participant at day u

and time t and it is sampled on an hourly basis. The variable Pu(t) is generated so that it

simulates the daily human location patterns. In detail, the location pattern that is used
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Algorithm 4 Generate Hourly Location Labels

Output: Pu

{Create binary (i.e., True/False) indicators for daily activities using generateBina-
ryIndicator function (Algorithm 5)}
weekDay := generateBinaryIndicator(0.714) {weekDay is True with probability 0.714
(5 out of 7 days are weekdays)}
lunchOutside := generateBinaryIndicator(0.5)
dinnerOutside := generateBinaryIndicator(0.5)
entertainmentWD := generateBinaryIndicator(0.4)
entertainmentWE := generateBinaryIndicator(0.5)
shop := generateBinaryIndicator(0.4)
other := generateBinaryIndicator(0.3)
{Initialise hourly location labels Pu with label home}
for t=1 to 24 do
Pu(t) = home

end for
{Use function set (Algorithm 6) to create a label}
currentTime := 8 {Set current time equal to 8 (start of working day)}
if (weekDay) then
{If it is a weekday, set ‘work’ label for 7-10 hours, starting from currentTime}
Pu, currentTime := setLabel(currentTime, 7, 10, work)
{if lunchOutside is True, set location label at 12:00 equal to ‘food’}
if (lunchOutside) then
Pu(12) =food

end if
{If entertainmentWD, set ‘entertainment’ label for 1-3 hours, starting from current-

Time}
if (entertainmentWD) then
Pu, currentTime := setLabel(currentTime, 1, 3, entertainment)

end if
{If it’s weekend and entertainmentWE is true, set ‘entertainment’ label for 2-5 hours,

starting from currentTime}
else if (entertainmentWE) then
Pu, currentTime := setLabel(currentTime, 2, 5, entertainment)

end if
{If shop, set the currentTime label equal to ‘shop’}
if (shop) then
Pu(currentT ime) = shops
currentTime := currentTime + 1

end if
{If other, set ‘other’ label for 1-3 hours, starting from currentTime}
if (other) then
Pu, currentTime := setLabel(currentTime, 1, 3, other)

end if
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{If dinnerOutside, set ‘food’ label for 1-3 hours, starting from currentTime}
if (dinnerOutside) then
Pu, currentTime := setLabel(currentTime, 1, 3, food)

end if

in this study simulates a user who spends 6-8 hours at his workplace during the weekdays.

During the weekdays he has lunch outside his workplace with probability 0.5. He also has

dinner outside his home with probability 0.5. After the work he visits an entertainment

place with probability 0.4 for 1-3 hours and at the weekends he visits an entertainment

place with probability 0.5 for 2-5 hours. The probability to visit a store any day is 0.4

and the probability to visit any other place is 0.3. The process of generating the Pu(t)

variable for each day u is described by Algorithm 4.

Algorithm 5 Function generateBinaryIndicator.
Input: probTrue: the probability that the activity will take place
Output: A binary indicator (True/False) denoting whether or not the activity will take
place
generateBinaryIndicator(probTrue)
{Create a random variable S with uniform distribution on [0, 1]}
S ⇠ U(0, 1)
s := random sample from S
{The probability that a random sample s from S is larger than probTrue is probTrue.
So, the binary indicator will be True with probability probTrue}
if s > probTrue then
return False

else
return True

end if

I also define a variable Eu(t) as follows:

Eu(t) =

8

>

<

>

:

1 , Pu(t) =entertainment

0 , otherwise
(6.9)

Finally, I create a variable L, with values lu =
P

Eu(t) for each day u. However, in a

real study, where participants would probably be unwilling to continuously provide labels

for their location data, L would be a latent variable. I generate the discrete variable P̃ (t)

denoting the inferred location label based on the method described in [179] by utilising the

confusion matrix (Table 3 of [179]) that presents the performance of the proposed location
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Algorithm 6 Function setLabel.

Input:
Pu: location label per hour
currentTime: the current time
label : the activity label (i.e., work, food etc.)
minActivityTime: the minimum time of the activity
maxActivityTime: the maximum time of the activity

Output: currentTime, Pu

setLabel(Pu, currentTime, minActivityTime, maxActivityTime, label)
{Create a random variable S with uniform distribution on [minActivityTime, maxAc-
tivityTime]}
S ⇠U(minActivityTime, maxActivityTime)
{Set the activity time by randomly sampling from S}
activityTime := random sample from S
{Set the location label equal to label for time equal to activityTime, starting from
currentTime}
for t=currentTime to (currentTime+activityDuration) do
Pu(t) =label

end for
{Change currentTime}
currentTime := currentTime + activityTime
return Pu, currentTime

inference method. According to this matrix, only 41% of the places with resulted label

entertainment are correctly labeled while the rest 59% of the places actually correspond

to college (4%), work (4%), shops (4%), food (33%) and others (9%). I create a noisy

variable P̃ (t) by randomly inserting bias on P (t) based on these results. Then I define

Ẽu(t) as:

Ẽu(t) =

8

>

<

>

:

1 , P̃u(t) =entertainment

0 , otherwise
(6.10)

I also create L̃u with values l̃u =
P

Ẽu(t) for each day u. Finally, based on the perfor-

mance of the location inference method, I create a random variable Lu with probability

distribution Pr(Lu|P̃u(1), P̃u(2), ...P̃u(24)). I normalise L, L̃ to [0, 1].
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Figure 6.5: Average Treatment Di↵erence between the matched units.

6.2.2.1 Impact of Minimum Treatment Di↵erence Threshold

I use L as the unobserved treatment variable and I generate the confounding variables

H1, H2 as it is described in Section 6.2.1.1. In this scenario, I examine the impact of

the allowed minimum treatment di↵erence on the three examined matching methods. In

detail, let me denote with Tmin the minimum allowed treatment distance. I vary Tmin from

0.05 to 0.4 with 0.05 step. For ProbGenMatch I set the maximum allowed probability that

the treatment di↵erence is smaller than Tmin equal to 0.25. In Figure 6.5 I present the

average treatment di↵erence between the matched treated and control groups achieved by

the three examined matching algorithms. According to my results, there is not significant

impact of the treatment di↵erence threshold on the average treatment di↵erence when

the OptGenMatch method is applied. There is an improvement on the performance of

GenMatch for the threshold values 0.2 to 0.3, however its performance is decreased for

larger than 0.3 thresholds. Since the threshold is applied on the observed noisy variable L̃

and not on L, large threshold values may prevent the matching of units that are actually

good matches. ProbGenMatch is not strongly influenced by the treatment di↵erence

threshold, however its performance is also decreasing for large threshold values.

Finally, I generate again an outcome variable as described in Equation (6.7) in order

to examine the influence that the resulted matching may have on a causality study. I

examine the rate of true positive causality conclusions for the three examined methods

by repeating the process described in Section 6.2.1.1 and I present my results in Fig-

ure 6.6. ProbGenMatch achieves a higher rate of true positive conclusions compared to

GenMatch, however their di↵erence is less significant compared to the binary treatments

case examined in Section 6.2.1.1. This is reasonable considering that for binary noisy

treatments matching will result more often in pairs with the same treatment value; thus,
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Figure 6.6: Percentage of True Positive Causality Conclusions.
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Figure 6.7: Average Treatment Di↵erence between the matched units.

the treatment e↵ect will be weaker.

6.2.2.2 Impact of Parameter M

In this section, I examine the impact of the maximum number of times M that each unit

can be used. I set the minimum allowed treatment di↵erence Tmin equal to 0.1 and I

vary M from 2 to 8. All the other settings are the same with those described in Section

6.2.2.1. In Figure 6.7, I present the average treatment di↵erence between the matched

treated and control groups for the three examined matching algorithms. According to

my results, the M parameter slightly influences only the performance of GenMatch while

there is no significant di↵erence in the performance of the other two methods. GenMatch

performs better when M is set equal to 2. Since GenMatch uses the noisy treatment

variable L̃ for the matching, a unit that is falsely assumed to have large dissimilarity on

its treatment value with some others can be matched multiple times when a large M value

is used; consequently, the resulted matching could be worse in such cases.
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6.2.3 Social Media Dataset

In this section, I evaluate my method on a real dataset. I use the microblogPCU dataset,

which is available in the UCI Machine Learning repository [176], in order to examine

whether the number of URLs included in microblog messages influences the number of

times that these messages are re-posted. The MicroblogPCU dataset has been collected

from the Sina Weibo microblog and contains information about the profiles of 782 users,

their social network and their microblog activity. It also contains ground-truth binary

labels indicating whether a user is a spammer or not for 111 users.

I use the ratio of messages with URLs as the treatment variable of the study and

the number of re-posts as the outcome variable. Spammers tend to use more URLs

in their messages and spammers messages are re-posted less often. Thus the spammer

binary indicator should be used as a confounding variable. I also use other indicators that

correlate both with the treatment and the outcome variables as confounding variables.

In detail, I found that the number of posts, the class level of the user account (this is

an indicator assigned by Weibo) and the number of followers correlate with both the

treatment and outcome variables.

I assume that the binary spammer indicator is unknown and it needs to be inferred

from the data. I apply the method described in [177] in order to classify the users to

spammers and non-spammers. I extract attributes from the text content and users profiles

as described in [177]. I use all the attributes of [177] apart from the number of times a user

replied to a message or received a reply and whether a message is a reply message, since

this information is not provided in this dataset. Also, instead of the user account age, I

use the user account class. The interested reader should refer to [177] for a complete list

of all the extracted features. Then, I apply the chi-squared feature selection method in

order to find the most important attributes. Six attributes were selected, namely: 1) the

fraction of tweets with URLs; 2) the user account class; 3) the average number of URLs

per message; 4) the number of followees; 5) the average number of hashtags per message;

and 6) the average number of re-posts. Following the procedure of [177], I use Weka [181]

to train a support vector machine classifier. I use only the data for the 111 users for which

a ground-truth label is available. I use 50% of the dataset for training and the rest for

testing. 76% of the spammers and 82% of the non-spammers are correctly classified. The
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Balance on L Wilcoxon test p-value

OptGenMatch 0.014 0.005

GenMatch 0.36 0.15

ProbGenMatch 0.15 0.041

Table 6.2: Causality Study Results

classifier is more successful on recognizing the spammers and less on recognising the non-

spammers compared to [177]. This di↵erence can be attributed to the di↵erences between

the dataset characteristics of the two studies. It should be noted that the specific dataset

and methodology for classification of users to spammers and no-spammers is used solely to

demonstrate the validity of the proposed causal inference framework on real datasets and

the purpose of this study is not to conduct an evaluation on the performance of di↵erent

methods for detecting spammers.

I define as L the ground-truth binary label indicating whether a user is spammer. I also

define as L̃ the inferred label based on the above-mentioned process. I also create a random

variable Lu for each user u and I obtain a probability distribution for each Lu by mapping

the SVM outputs into probabilities. I match the users based on their confounding variables

values by applying the three examined approaches. The results obtained by OptGenMatch

serve as the ground-truth. Finally, I use the Wilcoxon test to examine whether the

mean value of the outcome variable for the treated units significantly di↵ers from the

mean outcome value of the control units. In Table 6.2 I present the mean di↵erence

(see Equation (6.8)) achieved for the binary confounding variable L with the 3 examined

methods. I also present the p-values of the Wilcoxon test under the null hypothesis that

the treatment variable has no e↵ect. Both OptGenMatch and ProbGenMatch reject the

null hypothesis with p-value smaller than 0.05. However, when the treatment and control

pairs are created by applying the GenMatch method, the remaining bias on the binary

indicator L is large and results in the false conclusion that there is no significant impact

of the number of URLs included in text messages to the number of re-posts.
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6.3 Discussion

The development of the proposed probabilistic matching method has been motivated by

the fact that many human generated sensor data contain high-level information that is

inferred from lower level data with some degree of uncertainty. In contrast to previous

approaches, probabilistic matching handles noisy data as stochastic variables and attempts

to derive reliable causality conclusions by maximising the probability that confounding

bias has been su�ciently eliminated. The method is based on the assumption that a

probability distribution for each noisy variable is known or can be approximated. If

there is not enough information for the reliable estimation of the required probability

distributions, the e�cacy of the method might be jeopardised.

I firstly evaluate the performance of the proposed method on simulated datasets. In

simulation studies, the ground truth is known, thus it is easier to assess the validity of the

examined methods. In addition, simulated studies o↵er the flexibility to adjust the dataset

characteristics so that the impact of the di↵erent method parameters can be assessed. I

compare Probabilistic Genetic Matching with the traditional Genetic Matching i.e., the

deterministic version of the examined method. I also consider the optimal case where all

the variables are observed without any measurement error in order to estimate an upper

bound on the performance of the examined methods. The key findings of this evaluation

can be summarised as follows:

• When the treatment variable is observed with some noise, we may end up matching

units with similar treatment level. When comparing units with similar treatment

level, the treatment e↵ect will appear weakened and this may result in false negative

causality conclusions. On the other hand, when one or more confounding variables

are noisy, the matching method may result in unsuitable pairs of units. Conse-

quently, the confounding bias will be su�ciently eliminated and this may result in

false positive causality conclusions. ProbGenMatch handles better these two issues,

compared to the traditional genetic matching, by incorporating information about

the uncertainty about the variables’ true values into the matching process.

• ProbGenMatch is less e↵ective for more noisy variables. This is reasonable, since

more noisy data will result in less suitable matches. However, ProbGenMatch is more
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robust compared to traditional genetic matching and significantly outperforms it for

all the examined noise levels.

• ProbGenMatch is not strongly influenced by the selection of the matching parame-

ters. In particular, it is moderately influenced by the minimum required treatment

di↵erence on the matched units, while there is no significant influence by the selec-

tion of the maximum number of times M that a unit is allowed to be used on the

matching process. On the other hand, GenMatch is more vulnerable on the selection

of these parameters. This is due to the fact that by imposing more restrictions on

the matching process, suitable matches are more unlikely to be found.

Finally, I demonstrate the applicability of the method by conducting a causality study

on a real dataset. Noisy data impose challenges on the causality analysis and every e↵ort

should be made in order increase the data quality. However it is often not feasible to

obtain accurate datasets. In such cases, the proposed approach results in more suitable

matches and consequently, it is more likely to acquire valid causal conclusions.

6.4 Summary

In this Chapter, I have examined the problem of causal inference when key variables

of the study are unobserved or noisy. I have proposed probabilistic matching, a novel

method that utilises the knowledge about the uncertainties on the variables of the study

in order to improve matching. I have defined a distance metric, based on Genetic Matching

distance, that measures the dissimilarity between units by examining the di↵erence on the

quantiles of the stochastic variables of the study. My method is based on the assumption

that probability distributions describing the values of the unobserved variables are known

or can be approximated. Although this requirement could be restrictive, I have discussed

scenarios which satisfy this assumption and I have demonstrated the applicability of my

approach using both simulated and real datasets. I have shown how noisy variables can

jeopardise the validity of the causality analysis and I have evaluated the performance of

the proposed method in datasets with di↵erent noise levels. I have also examined the

sensitivity of the method on di↵erent parameters values. I have compared probabilistic
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matching with the traditional Genetic Matching and I have shown that my approach is

able to find better matches and, consequently, achieves more accurate causal conclusions.
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

We produce daily vast amounts of data through both our online and o✏ine activities.

We use social media and web blogs in order to express our opinion and socialise. Search

engines, web blogs and online newspapers are our main source of information and online

shopping is getting more and more popular. In addition, smartphones and wearable

devices have become an indispensable part of our lives. These devices, equipped with a

rich variety of sensors, enable the continuous and unobtrusive monitoring of our o✏ine

activities.

The purpose of this thesis was to demonstrate how such information from diverse

sources can be combined in order to better understand human behaviour and factors in-

fluenced by it. Instead of searching simply for correlation relationships, which may occur

incidentally and may not represent the real structure of the data, I have attempted to

detect stronger dependencies among the factors of interest which could provide better

insights about the underlying mechanisms that influence the values of the examined vari-

ables. In this direction, I have developed novel techniques that enable the more e↵ective

utilisation of human-generated sensor data. Although the methods developed in this the-

sis are motivated by problems and properties that characterise this specific kind of data,

they are general and could be applied to any dataset with similar properties.

In this dissertation I focused on two case studies. In the first one, I investigated

the link between social media and finance and I provided evidence of cause and e↵ect

dependencies. In the second case study, I demonstrated how smartphone sensor data can

be utilised for the detection of daily activities that influence our stress level.
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7.1 Thesis summary and contributions

The contribution of this thesis is twofold. Firstly, I have developed novel methods that

facilitate the extraction of useful insights from human-generated sensor data. In detail:

1. In Chapter 3, I have discussed a novel method for causal inference in observational

time-series data. The method is based on the matching design framework and it

does not require any assumptions about the functional structure of the data. I have

conducted an extensive evaluation using synthetic data and I demonstrated that my

method is more e↵ective in avoiding false positive causality conclusions compared

to widely used existing methods. Then, in Chapter 4 I applied this method in order

to study the causal e↵ect of behavioural and emotional factors, captured by social

media data, on the traded assets of four companies. In addition, in Chapter 5,

the proposed method was modified in order to handle smartphone sensor data. A

complete framework for causal inference from smartphone sensor data is discussed.

2. In Chapter 4, I have discussed FED, an event detection method tailored to detect

bursty Twitter topics that influence a specific stock market. FED models bursty

Twitter topics as multi-dimensional feature vectors. Then, a classifier is trained to

recognise which of the detected Twitter events are linked with stock market jitters

on a specific stock market. The classifier is trained by utilising volatility data from

the targeted stock market without requiring any manual labelling of the events. The

proposed method was tested on real data from the Greek and Spanish stock markets

and it successfully predicted the majority of stock market jitters.

3. Finally, motivated by the need for a method that could handle datasets with noisy

measurements (such as high-level information that has been inferred from raw sensor

data with some uncertainty), in Chapter 6 I have proposed a causal inference method

based on the matching design framework that takes into account the uncertainty

about the real values of the variables and attempts to improve the reliability of the

study by maximising the probability that any confounding bias has been su�ciently

eliminated. The method has been tested both on synthetic and real datasets and I

have shown that it results in more reliable causal conclusions compared to existing
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approaches.

Secondly, the data analysis conducted as part of this dissertation resulted in interesting

findings and it featured the potential benefit that the analysis of smartphones and social

media datasets could bring on finance and human behaviour studies. In detail:

1. In Chapter 4, I have provided evidence of causal links between the sentiment ex-

tracted from social media and prices of traded assets. I have also shown that it

is feasible to detect bursty Twitter topics that are linked with strong stock mar-

ket jitters. These findings demonstrate that social media could contain valuable

information for the understanding of the dynamics that drive stock market prices.

2. While most studies so far examine the links between the sentiment extracted by

social media and finance, in Chapter 4 I have shown that other features such as

the geographical distribution of tweets and information about their authors could

contain useful information for the understanding of strong stock market fluctuations.

3. In Chapter 5 I have shown that exercising and spending time outside home or uni-

versity influences our stress level. Moreover, I have shown that di↵erent factors

have di↵erent impact on the stress level of people with di↵erent personality char-

acteristics. For example, I found that students with high extraversion score benefit

more from spending time outside home or university, while students with high neu-

roticism score benefit more from exercising. Although this study was limited to a

small population of university students and consequently we cannot derive general

conclusions for the whole population, these findings could be a starting point for

larger-scale studies.

An important lesson learnt during this thesis is that in order to derive reliable con-

clusions about the links between di↵erent factors of interest it is important to collect a

rich variety of information that represents all the factors related to the study. However,

sometimes it is not feasible to have access to all the necessary information due to privacy

issues, limitations of the data mining methods or due to participants unwillingness to

manually provide important information that cannot be collected by other means. In

addition, it might happen the analysis is based on a human-generated sensor dataset that
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has been collected in the past. Such datasets usually cannot be supplemented with ad-

ditional information that may be required, since further data collection campaign might

not be feasible. However, this does not mean that such datasets are useless and that any

conclusions about the dependencies among the examined variables should be avoided.

Instead, in this thesis I emphasise the importance of supporting any findings with an

additional sensitivity analysis in order to assess their robustness in case of missing con-

founding variables. In any case, the limitations of the study need to be clearly described

and any results should be interpreted with caution.

In addition, a significant insight from this study is that noisy and inaccurate measure-

ments may result in misleading conclusions about the dependencies among the examined

factors. Considering that most studies based on human-generated sensor data require the

inference of high-level information from raw sensor data, inaccurate values resulted due to

the limitations of the applied inference methods are prevalent. Nevertheless, this issue has

been largely ignored at previous studies. In this thesis, I have discussed the importance

of assessing the impact that uncertainties about the real data values may have on this

type of studies.

Overall, the most important lesson learnt during this thesis is that, although the

existing datasets and the devices and methods that are used for the data collection and

analysis su↵er from several limitations, the findings resulted from such studies are still

valuable. However, the limitations of any study should be clearly stated and every e↵ort

needs to be made in order to improve the reliability of the results.

7.2 Future directions

This thesis raises several interesting questions and the findings of this study could be the

starting point of further research in this domain.

Firstly, in order to detect causal links in human-generated sensor data a large number

of factors relevant to the study needs to be measured. For example, participants’ location

context, activities, communication patterns and emotional state are important factors for

any study on human behaviour. This information is highly sensitive. Several recent works

have shown that users’ identity can be inferred simply by analysing his/her location traces
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[171, 172]. Obfuscation techniques, according to which noise is intentionally added into

the data, have been proposed in order to protect users’ identity [182, 183]. Protecting

users’ privacy while also preserving the validity of the data is an open research issue.

In addition, several factors important for the understanding of human behaviour are

inferred from raw sensor data rather than directly measured. Consequently, the perfor-

mance of the inference methods that are applied has a significant impact on the validity of

the results. Accurate inference of the location context, activities, emotions or other high-

level information from sensor measurements is a challenging research topic that requires

further investigation.

Moreover, the findings presented in Chapter 4 are only a first step towards under-

standing the influence of social media on traded assets prices. These findings need to be

further strengthened by repeating the studies on larger datasets. In particular, in this

thesis, I have provided evidence of causal links between Twitter sentiment and the stock

market prices of four tech companies. Repeating this study on traded assets of compa-

nies from di↵erent domains is essential in order to investigate the generalisability of the

conclusions. Also, I have shown that it is feasible to detect bursty Twitter topics that

influence a targeted stock market. Although my findings are confirmed for two di↵erent

stock market datasets, an extensive evaluation larger stock market datasets for longer

time periods needs to be conducted in order to investigate whether the results are consis-

tent. This study requires several years of data in order to ensure that stock market jitters

influenced by di↵erent factors are included in the dataset. However, obtaining such large

datasets is hard for university-level projects.

Similarly, the findings presented in Chapter 5 about the impact of daily activities on

the stress level of 48 participants are based on a relatively small dataset that includes

only college students and consequently cannot be generalised for the whole population.

Unfortunately, currently, there are no freely-available large datasets suitable for such

a study. Recently, an e↵ort to create a rich dataset from sensor data recorded from

smartphones and smartwatches of participants with diverse demographic background has

started [184]. This initiative could greatly facilitate the research on several domains that

depend on this kind of data.

Finally, this work has been focused mainly on causality detection. Detecting causal
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links enables us to better understand the human behaviour and other factors of interest

that are influenced by it and could be a first step towards the prediction of events or

behaviours of interest. Such prediction models would be an interesting future direction.

7.3 Outlook

To summarise, in this thesis I have attempted to utilise smartphone sensor data and

social media data in order to understand human behaviour and phenomena influenced

by it. I have developed novel techniques that aim at uncovering strong dependencies

among the examined factors rather than mere correlation relationships. I hope that the

findings of this study will inspire more research in this direction. Moreover, the methods

developed during this dissertation are general and can be applied to any dataset with

similar properties, thus I hope that they will be useful for researchers and practitioners

in a variety of research areas. Although the availability of social media data and sensor

data captured by smartphones and wearable devices is gradually increasing, in my opinion

there has been little e↵ort on enhancing the reliability of these data and ensuring that

a demographically diverse pool of users has been taken into account as well as that

the statistical power of the dataset is su�cient in order to derive valid conclusions. In

this dissertation I have highlighted the importance of improving the reliability of the

collected data and methods that are applied for the data processing. I hope that this

work will instigate new studies that will attempt to reveal the structural dependencies

among interesting factors and will improve our understanding on a variety of social and

economic phenomena.
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APPENDIX A

LISTS OF TWITTER KEYWORDS

The following table presents the keywords that were used for tweets filtering during the

financial event detection study presented in Section 4.2. Keywords were extracted from

the wikipedia webpage on European Financial crisis using RAKE keyword extractor.

Keyword Score

united kingdom 4.0

european union 4.0

fiscal compact 4.0

odious debt 4.0

euro area 4.0

sovereign debt 4.0

european commission 3.92307692308

gdp ratio 3.90909090909

public debt 3.9

year maturity 3.85714285714

great recession 3.83333333333

citation needed 3.81818181818

spending cuts 3.8125

structural reforms 3.8125

main article 3.81060606061

financial markets 3.79653679654

growth pact 3.79166666667
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debt levels 3.78571428571

interest rate 3.78571428571

economic growth 3.72715053763

maastricht treaty 3.7

greek government 3.66920374707

year bonds 3.65217391304

bailout programme 3.57509157509

record high 3.57142857143

european countries 3.56451612903

debt level 3.55555555556

european banks 3.55555555556

deficit spending 3.55324074074

budget deficit 3.54074074074

debt crisis 3.53968253968

financial crisis 3.47907647908

restore competitiveness 3.46666666667

bailout package 3.41025641026

budget deficits 3.38333333333

austerity measures 3.32894736842

eurozone countries 3.00896057348

eurozone crisis 2.98412698413

funds 1.80769230769

budget 1.8

growth 1.79166666667

measures 1.75

deficit 1.74074074074

private 1.73684210526

bailout 1.71794871795

government 1.70491803279
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package 1.69230769231

states 1.6875

increase 1.66666666667

bonds 1.65217391304

amount 1.61538461538

announced 1.6

terms 1.6

capital 1.59090909091

deficits 1.58333333333

austerity 1.57894736842

countries 1.56451612903

level 1.55555555556

economies 1.55555555556

banks 1.55555555556

crisis 1.53968253968

default 1.53846153846

governments 1.53333333333

agreed 1.52941176471

proposed 1.5

stability 1.5

including 1.5

taxes 1.5

raise 1.5

economy 1.5

lower 1.5

support 1.46153846154

eurozone 1.44444444444

currency 1.44444444444

provide 1.44444444444
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based 1.42857142857

economists 1.42857142857

elections 1.42857142857

progress 1.42857142857

wages 1.42857142857

money 1.41666666667

state 1.41666666667

agreement 1.4

write 1.4

investors 1.375

finance 1.33333333333

found 1.33333333333

series 1.33333333333

suggested 1.33333333333

borrowing 1.33333333333

forecast 1.3

inflation 1.28571428571

prevent 1.28571428571

balance 1.28571428571

required 1.28571428571

years 1.25

months 1.25

businesses 1.25

greece 1.24705882353

country 1.24444444444

collateral 1.22222222222

future 1.22222222222

short 1.22222222222

focus 1.2
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benefit 1.2

conditional 1.2

france 1.2

collapse 1.2

portugal 1.2

services 1.2

attempt 1.2

bring 1.16666666667

follow 1.16666666667

downgraded 1.16666666667

ensure 1.16666666667

financed 1.16666666667

proposal 1.16666666667

create 1.16666666667

resulting 1.16666666667

e↵ect 1.16666666667

ireland 1.15384615385

finland 1.15384615385

implementation 1.14285714286

called 1.14285714286

germany 1.13333333333

troika 1.11764705882

return 1.11111111111

order 1.11111111111

result 1.08333333333

october 2012 1.08333333333

june 2012 1.07692307692

spain 1.06666666667

europe 1.05882352941
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hoped 1.0

japan 1.0

argued 1.0

cyprus 1.0

issues 1.0

pledged 1.0

condition 1.0

moody 1.0

september 2011 1.0

break 1.0

comply 1.0

netherlands 1.0

borrow 1.0

yield 1.0

continue 1.0

di�cult 1.0

reduce 1.0

estimated 1.0

contributed 1.0

formation 1.0

beginning 1.0

figure 1.0

austria 1.0

total 1.0

addition 1.0

leading 1.0

expected 1.0

5 billion 1.0

replaced 1.0
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making 1.0

february 2012 1.0

forced 1.0

italy 1.0

currencies 1.0

centre 1.0

response 1.0

purchase 1.0

cutting 1.0

Table A.1: RAKE keywords along with the corresponding score
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APPENDIX B

UPDATED SENTISTRENGTH DICTIONARY

Table B.1 presents the list of the keywords added at the SentiStrength classifier that have

been used for the Tweets sentiment classification along with the assigned positivity or

negativity weight.

Keyword SentiStrenth

Score

gain* 5

grow* 3

high* 5

lift* 5

loss* -5

low* -4

lunch* 2

miss* -3

more 2

promising 4

rally 2

reject* -4

rise 3

sale -2

sales 3

sell -2
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soar* 5

sour -5

spike* 5

strong 5

surge* 5

top 5

tough -4

under -3

up 2

weak* -5

win 3

win* 4

wow* 5

Table B.1: Added or modified keywords on SentiStrength along with the assigned posi-
tivity/negativity score.
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