
0 

 

 

 

COMPUTATIONAL HYPOTHESIS 

GENERATION WITH GENOME-WIDE 

METABOLIC RECONSTRUCTIONS: 

IN-SILICO PREDICTION OF METABOLIC CHANGES IN THE 

FRESHWATER MODEL ORGANISM DAPHNIA TO 

ENVIRONMENTAL STRESSORS 

By 

James Bradbury 

 

 

A thesis submitted to the University of Birmingham for the degree of 

DOCTOR OF PHILOSOPHY 

 

 

School of Computer Science 

College of Engineering and Physical Sciences 

University of Birmingham 

 

September 2017  



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



1 

 

Abstract 

Computational toxicology is an emerging, multidisciplinary field that uses in-silico 

modelling techniques to predict and understand how biological organisms interact with 

pollutants and environmental stressors. Genome-wide metabolic reconstruction (GWMR) 

is an in-silico modelling technique that aims to represent the metabolic capabilities of an 

organism at a genomic scale by representing a metabolome as a network of connected 

nodes. GWMRs provide a platform for analysis, visualisation and contextualisation of 

omics datasets and have untapped potential for use in computational toxicology. 

Environmental metabolomics is the application of metabolomics to study how living 

organisms interact with their environment. Daphnia is an emerging model species for 

environmental omics whose underlying biology is still being uncovered. Creating a 

metabolic reconstruction of Daphnia and applying it in an environmental computational 

toxicology setting has the potential to aid in understanding its interaction with 

environmental stressors. Here, the fist GWMR of D. magna is presented, which is built 

using METRONOME, a newly developed tool for automated GWMR of new genome 

sequences. 

Active module identification allows for omics data sets to be integrated into in-silico 

models and uses optimisation algorithms to find hot-spots within networks that represent 

areas that are significantly impacted based on a toxicogenomic transcriptomics dataset. 

Previous work has used the active module identification approach with metabolic 

networks to investigate underlying genomic mechanisms behind known metabolic 

responses. Here, a method that uses the active modules approach in a predictive capacity 

for computational hypothesis generation is introduced. Active module identification is 
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used with the Daphnia GWMR to predict unknown metabolic responses to 

environmentally relevant human-induced stressors. 

A computational workflow is presented that takes a new genome sequence, builds a 

GWMR and integrates gene expression data to make predictions of metabolic effects. The 

aim is to introduce an element of hypothesis generation into the untargeted metabolomics 

experimental workflow. A study to validate this approach using D. magna as the target 

organism is presented, which uses untargeted Liquid-Chromatography Mass 

Spectrometry (LC-MS) to make metabolomics measurements. A software tool MUSCLE 

is presented that uses multi-objective closed-loop evolutionary optimisation to 

automatically develop LC-MS instrument methods and is used here to develop the 

analytical method. Some positive results are obtained, but difficulties with the dataset 

make it hard to draw any concrete conclusions. 
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1. Introduction 

1.1. Systems biology 

Systems biology endeavours to revolutionise our knowledge of how biological systems 

behave. Traditionally biological systems are studied using a top-down reductionist 

approach. This approach characterises, in high detail, individual components (such as 

genes, enzymes or metabolites) of a larger biological system to build up an understanding 

of the processes that these single elements are involved in. The systems biology approach 

differs in that it studies biological systems as a whole, striving toward developing a 

mechanistic understanding of biological systems at a systems level (Kitano, 2002).  

The ultimate goal is to transform biology into a precise science by establishing a holistic 

mechanism for studying biological systems, following established practices in systems 

engineering (Laszlo, 1996; Weinberg, 2011). Central to this is the generation of in-silico 

models that allow for complex biological systems to be modelled. These models often 

take the form of network graphs which can be used to describe the interactions between 

genes (Hecker et al, 2009), transcripts (McClure et al, 2016), proteins (Vazquez, 2010) 

and metabolites (Thiele & Palsson, 2010).  

This new approach to biology promises to modernise the field, allowing for complex 

biological behaviour to be studied and modelled. High throughput technologies have 

transformed biology into a big data science, which brings with it new and exciting 

challenges (Marx, 2013). In order to study and understand biological systems as a whole 

in this data rich environment, biologists must develop and apply new techniques through 

collaborations with computer scientists, statisticians and informaticians. 
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Systems biology has been made possible by the advent of high throughput omics 

technologies. These technologies allow for an unbiased, non-targeted snapshot of all 

elements at the level of interest (Figure 1.1) to be measured in a high throughput manner 

(Blankenburg et al, 2009). This fits with the holistic systems biology paradigm as it 

considers the biological systems being measured as a whole. These techniques provide a 

different starting point when conducting biological research; they are hypothesis 

generating rather than being hypothesis driven (Horgan & Kenny, 2011). 

1.2. Omics science 

Technologies exist for genomics, transcriptomics, proteomics and metabolomics for 

measurement of genes, mRNA, proteins and metabolites respectively. These technologies 

are relatively new are still experiencing rapid technological advancement (Scott & Treff, 

2010). This technological advancement has enabled a greater intersection between 

technology and biology, necessitating the need for the rapid advancement in the field of 

bioinformatics (Ning & Lo, 2010). 

Omics sciences are in an embryonic stage with a number of challenges being faced. 

Reproducibility is a big issue in omics science due to the complexity of the experimental 

designs and methods along with the sensitivity of the instruments used (Petricoin et al, 

2002a; Ransohoff, 2005; Zhu et al, 2003). This sensitivity coupled to the fact that so much 

biological information is being measured also results in noisy data sets, where meaningful 

biological information can be lost or hidden (Amariei et al, 2014; Anderson, 2010). Omics 

science has also transformed biological data sets into a high dimensional space, requiring 

a vastly different approach to interpretation, both in the sense of understanding statistical 

relevancy and biological interpretation of the data sets (Clarke et al, 2008). This further 

underlines the importance collaborations with computer scientists, statisticians and 
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informaticians to help face these challenges posed by this new way of conducting 

biological research. 

1.3. Computational methods and omics science 

The transformation of biology into a data rich discipline through the application of omics 

science has opened up a number of opportunities for computational methods to be applied. 

A wide range of challenges have presented themselves. Data processing, data storage data 

retrieval and data standardisation is now key to conducting omics scientific research 

efficiently (Berger et al, 2013).  

A large number of data processing tools exist for omics science  (Benton et al, 2010; 

Cacciatore et al, 2017; Chambers et al, 2012; Dao et al, 2011; Gentleman et al, 2004; 

Kuhl et al, 2012; Kurczy et al, 2015; Libiseller et al, 2015; Overbeek et al, 2005; Parsons 

et al, 2007; Scheltema et al, 2011; Selivanov et al, 2017; Smith et al, 2006; Tautenhahn 

et al, 2008; Xia et al, 2015). A number of these make use of clustering, optimisation, 

network modelling, data mining, signal processing and software engineering disciplines. 

Recently there has been a large effort to increase data standardisation (Rocca-Serra et al, 

2016; Salek et al, 2015) and management practices (Hastings et al, 2016; Haug et al, 

2017; Kale et al, 2016). Platforms such as galaxy (Goecks et al, 2010) and 

Worflow4Metabolomics (Giacomoni et al, 2015) are also available for standardising data 

processing (Davidson et al, 2016; Giacomoni et al, 2015; Karaman et al, 2016; Weber et 

al, 2017). 

1.4. Computational toxicology 

Computational toxicology is an emerging field that uses in-silico modelling techniques 

to predict and understand how biological organisms interact with pollutants, 
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environmental stressors and pharmaceuticals based on biological and chemical datasets 

(Rusyn & Daston, 2010). The field is inherently multidisciplinary, incorporating 

computer science, systems biology, biostatistics, toxicology, biochemistry, and medicine. 

The field has been accelerated by the advancement in in-silico modelling techniques for 

biological systems and the stream of high dimensional datasets produced by omics 

science. The natural progression of these techniques is to move toward a capability of 

using these models in a predictive capacity, to predict the biological response to 

chemicals, akin to traditional toxicology. Large scale omics studies involve a high number 

of samples and are costly, both in terms of time, personnel and the costs of procuring and 

maintaining complex analytical platforms, computational toxicology seeks to reduce this 

burden. 

Applications of computational toxicology include understanding the hazards and risks of 

chemicals, environmental science and drug safety (Reisfeld & Mayeno, 2012), and is also 

seen as a key to environmental health protection and regulatory decision making (Kavlock 

et al, 2009; Rusyn & Daston, 2010). There is a clear benefit to the use of computational 

toxicology in the field of environmental toxicology and metabolomics. 

1.5. Biological systems 

Through the use of omics technologies, the field of systems biology aims to generate 

detailed lists of biological components and ultimately reconstruct in-silico models of the 

comprehensive functional network of a living organism. This complex and multi-layered 

network (also known as the interactome) represents the complex biological interactions 

that take place within all living organisms, with layers representing the genome, 

transcriptome, proteome and metabolome (Figure 1.1).  
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Figure 1.1: Multi-layered biological network. The interaction between the genome, transcriptome, 

proteome and metabolome is also known as the central dogma. 

 

All of the information for each of these layers can be traced back to an organism’s genome 

sequence. A genome sequence consists of DNA, which constitutes the passive part of the 

biochemistry of the cell, with the active part being achieved through transcription which 

leads to proteins catalysing biochemical reactions as well as many other cell mechanisms. 

This is also known as the central dogma, Figure 1.1 shows how the different layers of the 

interactome interact. Each layer of the interactome can be measured using omics 

technologies, and has a dedicated field associated with it; genomics, transcriptomics, 

proteomics and metabolomics. 

1.6. Metabolomics 

The metabolome layer is the most downstream of the layers of the interactome. It is 

directly affected by the proteome, which is in turn affected by gene expression in the 
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transcriptome layer. The metabolic profile, or metabolome, of an organism can therefore be 

seen as a combination of its gene expression and cellular metabolism. In other words, the 

metabolome can be seen as the phenotype, or observable manifestation, of the changes in its 

gene expression (Fiehn, 2002) caused by interaction with an organism and its environment. 

Metabolomics is the application of omics technologies to measure all naturally-occurring 

low weight biological compounds, metabolites, within a given sample (Harrigan & 

Goodacre, 2012; Lindon et al, 2011; Wang et al, 2007) to study the interaction of an 

organism with its natural environment (Viant, 2008). Metabolites are the smallest 

components of the interactome, and are responsible for many biological functions such 

as producing energy and producing basic materials required for important life processes 

(Gancedo & Serrano, 1989; Meurant, 2012). Metabolism is the biochemical modification 

of these chemical compounds in cells and organisms.  

The process in which two or more metabolites (reactants) interact and produce other 

metabolites (products), is called a biochemical reaction, and are typically catalysed by at 

least one enzyme. Metabolic processes consist of a number of biochemical reactions 

chained together to form a metabolic pathway (Figure 1.2). These pathways achieve either 

the formation of another metabolic product to be used or stored in a cell, or the initiation 

of another metabolic pathway. Examples of metabolic pathways include the glycolysis 

pathway, which converts sugars into energy to be stored in cells, and the citric acid cycle, 

which releases stored energy. The collection of metabolic pathways within an organism 

is known as a metabolic network. 
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Figure 1.2: The glycolysis pathway (Moreno-Sanchez et al, 2008). This primary metabolic pathway is 

responsible for converting sugars into energy to be stored in cells. The arrows represent biochemical 

reactions that take place within a cell. 

1.6.1. Environmental metabolomics 

Environmental metabolomics is the application of metabolomics to study how living 

organisms interact with their environment. This application of metabolomics can occur 

in the natural environment of the target organism, or more commonly be applied under 

controlled laboratory conditions (Morrison et al, 2007). 



30 

 

Environmental metabolomics is often applied in the context of environmental toxicology. 

Environmental toxicology is a multi-disciplinary field involving biology, chemistry, 

environmental sciences as well as computational and mathematical disciplines. The goal 

is to measure the effect that harmful toxic chemicals have on biological organisms 

(Ankley et al, 2007) for the purpose of environmental monitoring or ecological risk 

assessment (Bundy et al, 2009). The field has seen substantial interest in recent years as 

stricter environmental protection regulations and subsequent testing methods have been 

developed and enforced (McCarty, 2012; McCarty, 2013). Aquatic environmental and 

ecological toxicology studies are deemed vital to this effort and have thus seen significant 

research activity (Brooks et al, 2016; Cedergreen, 2014; Hodson et al, 2007; McCarty et 

al, 2013; Sumpter & Jobling, 2013; Valavanidis et al, 2006). 

An environmental toxicology study usually involves the comparison of treated and 

untreated, or control, samples using one or many analytical techniques or platforms. 

Commonly these studies involve investigating the effects of human induced 

environmental stressors such as pesticides (Pestana et al, 2010), insecticides (Jansen et al, 

2015), fertilisers (Pivato et al, 2016) and various by-products of industry such as heavy 

metals e.g. lead (Offem & Ayotunde, 2008), mercury (Tsui & Wang, 2006) and cadmium 

(Qu et al, 2013). Model organisms are commonly used in environmental toxicology 

studies. 

1.6.2. Analytical platforms for metabolomics 

Metabolites are typically very low in molecular weight. As a result, in order to measure 

and characterise an organism’s metabolome, highly sensitive analytical techniques are 

required for metabolomics measurements (Lenz & Wilson, 2007). There are two principal 

technologies for making metabolomics measurements, Mass Spectrometry (MS) and 
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Nuclear Magnetic Resonance (NMR). NMR is very high throughput technology and has 

the major advantage of analyses being very reproducible amongst laboratories (Viant et 

al, 2009). NMR however is not very sensitive when compared to MS, meaning that low 

concentration metabolites are difficult to detect. This drawback can limit the suitability 

of using NMR for some metabolomics studies. 

MS is a high throughput technology and is extremely sensitive. The high sensitivity 

allows for low-concentration metabolites in a given biological sample to be measured in 

large numbers (Lenz & Wilson, 2007), making MS analysis the principal analytical 

platform for both general metabolomics studies (Gowda & Djukovic, 2014) as well as 

environmental metabolomics studies (Viant & Sommer, 2013). MS involves measuring 

the mass/charge (m/z) ratios of ionized metabolites. The output of a MS analysis is a 

spectrum of m/z values, with the relative abundancies of each feature (or metabolite) in 

the spectrum.  

A number of different type of MS based analytical platforms exist. Direct Infusion MS 

(DIMS) involves injecting samples directly into the ion source of a MS. DIMS has the 

advantage that it is extremely high throughput, and requires less biological mass per 

sample. The disadvantage of DIMS is that due to there being no chromatography, ion 

suppression and peak overlapping is likely to occur. Ion suppression is where more easily 

ionised metabolites reduce the ability of less ionisable metabolites from being ionised as 

they enter the MS. This results in the prevention of less ionisable metabolites from being 

detected and can also result in detected metabolites having a lower quantification 

accuracy (Hop et al, 2005). 
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Chromatographic pre separation can be used to better separate peaks in a MS spectra and 

reduce peak overlapping. This has the advantage of superior quantification and 

identification of metabolites when compared to DIMS, but with the disadvantage of 

increased analysis times (Allwood & Goodacre, 2010). Two principal chromatographic 

separation technologies exist, Gas-Chromatography (GC) and High-performance Liquid 

Chromatography (HPLC). GC-MS provides the best separation but with the disadvantage 

that that chemical derivatization of metabolites is required before analysis (Dunn et al, 

2008; Fiehn et al, 2000). HPLC analyses allow for a greater separation of a wider range 

of biological compounds, but it is a slower chromatographic technique than GC, and tends 

to result in lower peak resolution (Rohrs, 2006). HPLC is also more prone to ion 

suppression than GC. HPLC-MS is the most commonly used MS based analytical 

technique for metabolomics experiments as it is capable of good separation, is relatively 

rapid and requires less complex sample preparation (Gowda & Djukovic, 2014). All MS 

analysis presented in this thesis makes use of HPLC-MS analytical platforms. 

Regardless of the MS platform or the type of sample being studied, a MS method (or 

assay) must be used. Developing these methods is both time consuming and challenging. 

A HPLC-MS method consists of a set of values for a number of MS and LC instrument 

control parameters. MS parameters exist to control a number of voltages, temperatures 

and pressures associated with the ionisation processes. Generally, these parameters effect 

the sensitivity of the MS method, the metabolite adducts that are produced and ion 

suppression (Unger et al, 2013). LC parameters control the gradient of mobile phases 

applied passed through the stationary phase over the course of the run, as well as the 

column temperature and flow rate. These LC parameters mainly effect the separation of 
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compounds but also effect peak height, sensitivity and indirectly effect ion suppression 

(Meyer, 2013). 

HPLC-MS method development requires a high level of expertise, varying the LC and 

MS parameters systematically to optimise the analysis of a particular sample is impossible 

due to the sheer number of possible combinations of parameter values, and the time it 

takes to evaluate them. Typically, method optimisation is a manually performed task 

undertaken by an expert analytical chemist with high levels of expertise knowledge and 

experience in the analytical platform being used. 

1.6.3. Statistical analysis of metabolomics data sets 

Metabolomics data sets are multivariate, with each peak being treated as a variable. 

Metabolomics measurement typically produce peak tables in the form of a matrix 𝑿 

containing peak intensities, with 𝑁 rows representing observations or samples and 𝐾 

variables representing detected peaks (Beckonert et al, 2007; Wold et al, 2001). 

Unsupervised dimensionality reduction techniques such as principal components analysis 

(PCA) are often used to decompose the matrix 𝑿 to identify differences between classes 

and is widely used in metabolomics studies (Worley & Powers, 2013).  

PCA performs a linear transformation of the matrix 𝑿 into a lower dimension that 

preserves as much variance as possible from the original data (Jolliffe, 2002). PCA 

generates a set of principal components (PCs) which each describe a proportion of the 

datasets variance. The first PC, PC1 accounts for the highest amount of variance, with 

each subsequent PC accounting for a smaller amount of variance. Each sample data point 

has a vector V of n dimensions assigned to it, where n is the total number of PCs. The 
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score for each element of the vector corresponds to how much each sample reflects the 

variation described by the associated PC (Robertson, 2005). 

A PC scores plot plots N samples based on the values in the PC scores for each sample in 

the vector V. These plots allow for the similarities between samples to be visually 

observed. It is preferable for the samples in each class to be clustered with a clear inter-

class separation on the scores plots. The clusters allow for samples with comparable or 

disparate metabolome responses to be identified. These differences in metabolome 

responses can be indicative of a common response (Keun, 2006) i.e. to a given treatment 

in a toxicology study. 

Metabolomics datasets can also be interrogated using univariate statistical methods to 

interrogate pairwise differences between two classes in the data set and identify the 

individual peaks that contribute to these differences. Commonly applied tests include 

student’s t-tests, ANOVA and fold change analysis (Vinaixa et al, 2012). 

1.6.4. Metabolite annotation 

Metabolite annotation is the process of assigning chemical formulas and thus chemical 

identities to MS spectra. The annotation of metabolites is crucial to extracting biological 

meaning and interpretation from analytical metabolomics data sets (Creek et al, 2014). 

Metabolite annotation is far from trivial however and is a major bottleneck in 

metabolomics research.  

Many metabolites can have similar chemical structures, the same molecular formula and 

the same mass-to-charge ratio, making it difficult to confidently annotate a given MS 

signal. For example, the sugars Glucose and Fructose have the same molecular formula 

(C6H12O6) and therefore the same monoisotopic mass (180.063385 Da), with similar but 
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not identical chemical structures (Figure 1.3). Such similarities between measured 

metabolites can result in multiple structurally similar metabolites being assigned to MS 

peaks. Structurally similar metabolites can have a different metabolic and biological 

functions, so identifying them uniquely is important to accurately interpret any MS 

datasets biologically. 

 
Figure 1.3: The sugars Glucose and Fructose have similar but different structures but share the same mass 

and chemical formula. 

A typical untargeted MS study can contain hundreds or thousands of metabolites that all 

have varying concentration levels. This coupled to the fact that the expected metabolites 

in a given sample is unknown further complicates the annotation process (Dunn et al, 

2013).  

A four level system for assigning confidence to metabolite annotations exists (Sumner et 

al, 2007), with the highest annotation confidence level, level 1, being labelled as 

confidently identified compounds. Level 2 confidence is known as putatively annotated 

compound, and level 3 as putatively annotated compound classes, Level 4 compounds are 

unknown. Level 1 confidence is difficult to achieve, and level 2 putative annotation is a 

minimum level of confidence needed for MS peaks to be considered for biological 

interpretation of metabolomics data sets (Dunn et al, 2013). 

A number of software packages exist for automated annotation of metabolites in LC-MS 

data sets. MI-Pack (Weber & Viant, 2010), CAMERA (Kuhl et al, 2012), 
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PeakML/mzMatch (Scheltema et al, 2011), PUTMEDID-LCMS (Brown et al, 2011) and 

IDEOM (Creek et al, 2012) are some examples of freely available automated metabolite 

annotation software. All of these packages work in a similar manner. The MS spectra are 

analysed to find correlations between them. Because of how an MS system ionises 

compounds as they enter the instrument, many MS features or responses can relate to the 

same metabolite or compound, these are known as adducts. These adduct features should 

correlate in terms of retention time similarity, accurate m/z values within a permissible 

range and chromatographic peak shape (Dunn et al, 2013). These correlations can be used 

to assign molecular formula to MS features with increased confidence. Once molecular 

formula are identified, databases such as KEGG (Kanehisa et al, 2000), LipidMaps (Sud 

et al, 2007), HMDB (Wishart et al, 2012) and PubChem (Kim et al, 2016) are queried to 

see if there are any compounds with matching formulas. 

1.7. Genome-wide metabolic reconstruction 

Genome-Wide Metabolic Reconstructions (GWMRs) have the potential for use in 

environmental metabolomics based computational toxicology (Kesari, 2017). However, 

to date very little work has been published in this area (Blais et al, 2017; Kotera & Goto, 

2016; Topfer et al, 2015). GWMR is an in-silico modelling technique that seeks to 

represent the metabolic capabilities of an organism at a genomic scale. Reconstructed 

networks are a powerful tool that can prove extremely useful for linking experimental 

data with computational systems biology (Feist et al, 2009). GWMRs also provide a 

platform for analysis, visualisation and contextualisation of high throughput omics data 

sets (Francke et al, 2005), can help in understanding the global properties of metabolic 

networks (Ma & Zeng, 2003), and can guide metabolic engineering and hypothesis driven 

discovery (Oberhardt et al, 2009).  
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GWMRs are built using a bottom-up approach using an organism’s genome sequence to 

infer enzymatic metabolic reactions. GWMRs represent metabolic networks as a bipartite 

graph of nodes and edges, with reactions and metabolites each being represented as a 

different class of node, and edges linking reactions to the metabolites participating in 

them. Each reaction is linked to one or many catalysing enzymes which are in turn linked 

to one or many encoding genes (Figure 1.4).  

 

Figure 1.4: Relationship between genes, enzymes, reactions and metabolites in a metabolic 

reconstruction. Each reaction (R) is linked to one or many enzymes, which are in turn inferred from 

genes. Metabolites (M) participate in each reaction and are represented as a different class of node. 

Metabolites that are substrates or products to reactions are linked with an edge. 

 

The procedure for generating a GWMR is well defined by (Thiele & Palsson, 2010). Their 

highly detailed 96 step protocol can be broadly categorised into two stages; draft 

reconstruction and model curation. Draft reconstruction involves collecting a large set of 

biochemical reactions that are encoded in a genome sequence via enzymes and 

assembling them into a network along with the metabolites that participate in the 

reactions. Model curation involves manually checking the draft reconstruction to assure 

model accuracy. 
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1.7.1. Constraint-based modelling 

Constraint-based modelling is a technique that applies physiochemical constraints or 

limitations on a GWMR to describe possible behaviours of the target organism (Moreno-

Sanchez et al, 2008; Ramakrishna et al, 2001). Examples of constraints include; flux 

limitations, mass balance and energy balance. Constraint-based modelling assumes that 

the target organism can reach a steady state that satisfies the constraints for a specified 

environmental condition. Numerous steady-state solutions are conceivable, as the entire 

constraints on a system can never be fully known. Therefore, an optimisation is performed 

to find the optimal value for a given objective function that relates to the constraints, thus 

finding a physiologically meaningful steady state solution (Segre et al, 2002). 

Flux balance analysis (FBA) is a constraint-based modelling technique that uses the 

stoichiometry of the reactions within a GWMR to constrain possible solutions and to 

analyse the flow of metabolites through a GWMR. Linear programming is used to 

calculate optimal solutions with respect to an objective function (Edwards et al, 2002). 

The relationship amongst metabolite concentrations, 𝑥, and reaction activities, 𝑣, is 

described by the dynamic mass balance equation: 

𝑑𝑥

𝑑𝑡
= 𝑆. 𝑣 

𝑆 is the stoichiometric matrix, which is formed from the stoichiometric coefficients of the 

biochemical reactions that make up the GWMR. Each column of  𝑆 corresponds to a 

reaction, and each row corresponds to a metabolite. The values in the matrix are 

stoichiometric coefficients, which are always integers. Each column of the 𝑆 matrix 

describes a reaction and is constrained by its elemental balancing. Each row describes the 

set of reactions that the corresponding metabolite participates in, and also describes how 
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the reactions are interconnected. 𝑣 is a vector of reaction fluxes, or reaction activities. 

Under steady-state conditions, the above equation becomes: 

𝑆. 𝑣 = 0 

FBA seeks to find a set of steady-state values for the vector 𝑣 by defining an objective 

function, useing linear programming to find the optimal set of fluxes through the GWMR 

for the objective function (Segre et al, 2002)  

A commonly used objective function is the biomass objective function, which aims to 

find a flux distribution that results in the biomass precursors of the target organism being 

created through the metabolic reactions in the network in the correct proportions (Feist & 

Palsson, 2010). The biomass objective function can be used to predict cellular growth of 

an organism when placed in a particular growth medium (Orth et al, 2010). Examples of 

other FBA objective functions are: The minimisation of ATP production (Ramakrishna 

et al, 2001; Vo et al, 2004), the minimisation of a particular nutrient uptake (Famili et al, 

2003) and the maximisation of the production of particular metabolite(s) (Varma et al, 

1993). 

Steady-state flux distributions found with FBA can give insight into how the organism of 

interest responds under certain environmental conditions. If an unexpected result is 

obtained from FBA, i.e. predicted cellular growth under strictly controlled conditions is 

not as expected, it can provide insights into the accuracy of the GWMR and highlight 

potential errors in the network. It is important to note however that to accurately model 

cellular growth of an organism in a particular medium, the metabolic reactions describing 

the uptake of nutrients from the medium must be defined and included within the network 

(Cuevas et al, 2016). This is straightforward for organisms such as Saccharomyces 
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cerevisiae, whose uptake of glucose are typically modelled (Garcia Sanchez et al, 2012). 

FBA becomes much more challenging for organisms whose growth media are more 

complex, e.g. aquatic organisms such as Danio rerio (Bekaert, 2012). 

1.7.2. Automated draft GWMR 

A number of platforms exist for generating draft GWMRs in an automated way (Devoid 

et al, 2013; Karp et al, 2016; Moretti et al, 2016; Pinney et al, 2005; Swainston et al, 2011; 

Wrzodek et al, 2011), but usually they require either specific genome annotations or the 

target organism to have some presence in a genome or pathway database. For organisms 

with newly sequenced genomes, this is not always the case. Therefore, the use of 

automated tools for generating GWMRs for newly sequenced genomes can be 

problematic. For example, the Pathologic tool (Karp et al, 2011) requires genome 

annotations in the GenBank format (Benson et al, 2008), a NCBI maintained database of 

nucleotide sequences. Each sequence must be submitted to GenBank for inspection to 

generate a GenBank file. This extra process limits the suitability of Pathologic for 

generating GWMRs of new genome sequences when there is no immediate access to an 

appropriate GenBank file. Model SEED is a web based tool for automated GWMR based 

on genome annotations performed using the RAST algorithm (Overbeek et al, 2014). 

Model SEED can generate GWMRs for RAST genome annotations that are available on 

the Model SEED web page/database. Users can also upload their own sequences as 

FASTA files, but only plant and microbe sequences are accepted. 

1.7.3. Linking transcriptomics data to GWMRs 

Linking transcriptomics data to GWMRs is an area of research that has seen some 

attention recently. Transcriptomics datasets can be integrated with GWMRs, by using the 
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data to score nodes in the network. Transcriptomics data sets reveal genes which are over 

or under expressed, these genes can subsequently be linked to reactions in a GWMR 

(Figure 1.4). The active module identification approach, is a generalised method for 

searching a network to find connected sets of nodes that are deemed to be highly active 

under a certain condition (Ideker et al, 2002). The approach was originally used with 

protein interaction networks to find active modules representing connected sets of genes 

with higher levels of differential expression than the overall network, and has been 

successfully applied to metabolic networks (Bryant et al, 2013b; Cho et al, 2014; Deo et 

al, 2010; Wang et al, 2013; Wang et al, 2014).  

The active modules approach can be used to detect actively changing areas of the 

metabolic network effected by an external influence. Studies have used this approach to 

better understand known organism responses to chemicals (Bryant et al, 2013b; Cho et 

al, 2014; Deo et al, 2010), or to optimise production of industrially important metabolites 

(Wang et al, 2013; Wang et al, 2014). No work has used this approach to predict unknown 

organism response to chemical perturbation.  

Applying a computational toxicology approach to environmental metabolomics using 

GWMRs to predict how an organism will respond metabolically to an environmental 

stressor is of interest as it would allow for organism response to environmental 

perturbations to be hypothesised in-silico. The requirements for this would be a GWMR 

of the target organism, and a toxicogenomic transcriptomics dataset describing the 

transcriptional response of the target organism to some environmental stressor. 
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1.8. Daphnia 

Species of the genus Daphnia (often referred to as a water flea) are small aquatic 

crustaceans that inhabit many types of freshwater ecosystems such as ponds and lakes 

(Ebert, 2005; Lampert & Kinne, 2011), the most common species being Daphnia magna 

and Daphnia pulex. Daphnia is an extremely sensitive species within these ecosystems 

and as a result has been widely used as a model species for environmental toxicology 

studies (Iampolskii & Galimov Ia, 2005; Jansen et al, 2015; Lampert & Kinne, 2011; 

Martins et al, 2007), ecogenomic studies (Eads et al, 2008; Miner et al, 2012; Orsini et al, 

2012), and evaluating the impact of environmental change (Martins et al, 2007; Shaw et 

al, 2008). Daphnia are widely used as indicators of water quality and environmental 

health, and are also key models in evolutionary biology and the study of adaptive 

responses to environmental change (Frisch et al, 2014). 

 
Figure 1.5: Adult female Daphnia magna with eggs in its brood chamber. 
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Daphnia has an adaptable life cycle (Figure 1.6) that provides interesting mechanisms for 

coping with environmental changes. If there are no environmental stresses, Daphnia 

reproduce asexually and parthenogenetically. This means that all offspring are female and 

are genetically identical, which is extremely beneficial trait for conducting omics studies. 

Reproduction mechanisms can be altered in the presence of environmental stresses such 

as predation or chemical stress, sexual reproduction can occur which produces eggs which 

are in a protective structure called an ephippium, capable of surviving hundreds of years 

(Carvalho & Hughes, 1983; Doma, 1979; Frisch et al, 2014). 

 
Figure 1.6: Daphnia life cycle (Ebert, 2005). 

Daphnia has been used in a large number of toxicology omics studies (Altshuler et al, 

2011), including transcriptomics (Campos et al, 2013; David et al, 2011; Garcia-Reyero 
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et al, 2009; Orsini et al, 2016; Poynton et al, 2012; Rivetti et al, 2015), proteomics (Le et 

al, 2013; Otte et al, 2014; Rainville et al, 2014) and metabolomics (Bunescu et al, 2010; 

Nagato et al, 2013; Poynton et al, 2011; Taylor et al, 2008; Taylor et al, 2010). 

Daphnia’s is an important species in ecotoxicology, ecology and environmental studies. 

Its short parthogenetic life cycle that can develop genetically identical offspring is clearly 

an asset for a range of omics fields. It is no surprise that Daphnia is a quickly becoming 

a leading model species for environmental omics research, and Daphnia is an ideal 

candidate for environmental computational toxicology.  
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2. Research Objectives 

Daphnia is an extremely sensitive species in freshwater ecosystems and is widely used as 

a model for ecotoxicological studies (Iampolskii & Galimov Ia, 2005; Jansen et al, 2015; 

Lampert & Kinne, 2011; Martins et al, 2007; Shaw et al, 2008) and is therefore a key 

model species for evaluating ecological impact of environmental change. Increasingly, 

Daphnia is used as a surrogate species to understand genomic responses to environmental 

stressors that are important factors in human health and wellbeing, and is an emergent 

ecological model species (Harris et al, 2012; Stollewerk, 2010). The National Institutes 

of Health list Daphnia as one of 13 key model organisms for biomedical research (Ebert, 

2011). 

Omics science has transformed biological science into data rich discipline. A number of 

opportunities exist for computational methods to take advantage of this and can be applied 

to gain insight from these datasets or to construct in-silico models. Daphnia is clearly an 

important model species in environmental research, and there is still a lot to understand 

at a metabolomics and systems biology level. There is a clear case for using Daphnia as 

a target organism in an environmental computational toxicology context. GWMRs can be 

used in such a setting to gain insight into an organism’s metabolic response to a chemical 

perturbation (see Section 1.7). Daphnia is an established organism for omics science, and 

the required datasets for this type of approach; genome assemblies and transcriptomics 

datasets have recently become available (Colbourne et al, 2011; Orsini et al, 2016). 

This thesis will investigate the use of GWMRs as predictive models using a computational 

environmental toxicology approach. In-silico computationally-generated hypothesis of 

the unknown metabolic response of Daphnia to environmental stressors will be generated 
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followed by an attempt to validate them biologically. To achieve this, a workflow 

consisting of a number of distinct steps is developed. Figure 2.1 shows what this 

workflow will look like. The workflow is designed so that it can be used with any 

organism of interest provided there is a genome sequence and transcriptomic data set 

available and is also designed to be as automated as possible. The ultimate goal of this 

approach is to be able to make in-silico predictions of an organism’s metabolic response 

based upon a transcriptomics study. 

The overall aim of this thesis can be broken down into the following sub aims: 

• The development of a computational tool for the draft GWMR for organisms with 

newly sequenced genomes (Chapter 3). 

• The use of this tool to generate a draft Genome-Wide Metabolic Reconstruction 

of Daphnia magna (Chapter 4). 

• Computational hypothesis generation of D. manga’s metabolic response to 

environmental stressors using the draft GWMR (Chapter 5). 

• A computational tool for automated LC-MS method development, and its 

subsequent use to develop an LC-MS assay that will detect as many of the 

predicted metabolites as possible (Chapter 6). 

• Traditional metabolomics study to validate these hypotheses (Chapter 7). 

Omics science has shifted the biological sciences paradigm. Traditionally research was 

hypothesis testing, with the ability to measure vastly more entities at the same time using 

omics, this has enabled data-driven hypothesis generation. A criticism of this approach 

has seen omics science being compared to a fishing expedition, or blindly looking for 

interesting features in the data (Ning & Lo, 2010). The approach proposed in this thesis 
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is to computationally generate hypotheses in an unbiased way using genomics and 

transcriptomics data to predict metabolic responses. This allows for a metabolomics 

dataset to become hypothesis testing whilst at the same time be hypotheses generating. 
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Figure 2.1: Workflow for computational hypothesis generation using GWMR and transcriptomics data. A 

genome sequence is used to construct a draft GWMR. Transcriptomics data is then integrated into this 

network and the active module approach is used to generate computationally generated hypotheses of 

metabolic response. The metabolites within these predictions can be used with a closed-loop optimisation 

approach to automatically develop an analytical method for metabolite measurement. The hypotheses can 

then be experimentally verified. This experimental data can feed back into the GWMR to improve the 

model and hence is predictive capability.  

Genome Sequence 

Draft Metabolic 

Reconstruction 

Computationally 

Generated Hypotheses 

Hypothesis Testing - 

Metabolomics 

Transcriptomics 

Dataset 

Automated Method 

Development 



49 

 

2.1. Thesis organisation 

Figure 2.1 visualises the workflow that will be developed to address the research question 

posed. The first task is to build a draft Genome-Wide Metabolic Reconstruction (GWMR) 

of Daphnia. The genome sequences of D. pulex and D. magna are relatively new and thus 

Daphnia has very little presence in genome and pathway databases. A number of 

platforms exist for automated generation of draft GWMRs, however they are often not 

suitable for new genome sequences such as Daphnia (see section 1.7). In order to build a 

draft GWMR of Daphnia a software package, METRONOME, is developed for 

automated draft GWMR for new genome sequences which is documented in Chapter 3. 

Chapter 4 details the draft GWMR of D. magna using METRONOME and includes some 

analysis of the quality of the resulting network. 

Chapter 5 describes the use of the active modules approach to generate computational 

hypotheses of how the metabolic response of D. magna is effected by two chemical 

perturbations. Transcriptomics data from a D. magna environmental genomic toxicology 

study is used along with the draft GWMR generated in Chapter 4 to generate these 

predictions. As the predicted metabolic responses generated in Chapter 5 are unknown, a 

metabolomics study is also performed to attempt to validate the predictions. Chapter 6 

describes the software package MUSCLE, which performs closed-loop multi-objective 

evolutionary optimisation of LC-MS analyses. MUSCLE is then used to optimise a 

HLPC-MS method that is used in the metabolomics study. Chapter 7 describes the 

experimental design, data processing and statistical interpretation of the metabolomics 

study used to validate the computationally generated hypotheses from Chapter 5.   
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3. METRONOME: METabolic Reconstruction Of New genOMe 

sEquences 

Genome-wide metabolic reconstructions (GWMRs) model the metabolic capabilities of 

a target organism by representing biochemical reactions and metabolites in a network of 

connected nodes. GWMRs are a potent tool that can prove extremely useful for linking 

experimental data with computational systems biology and for computational hypothesis 

generation of metabolic response (Chapter 5). 

The highly detailed process for generating a GWMR is well defined. The first part of the 

process can be automated and a number of tools exist for this purpose. These tools 

however are limited when used to generate GWMR s for newly sequenced genome 

sequences, as they require detailed genome annotations or data curation.  

Here the flexible METRONOME platform is introduced for automated reconstruction of 

metabolic networks for new genome sequences that addresses these limitations. 

METRONOME is capable of finding enzyme encoding genes in a genome sequence and 

infer metabolic reactions without the need for the target organism to have a presence in 

genome/pathway databases. 

METRONOMEs effectiveness is demonstrated by comparing its performance at building 

draft GWMRs of model organisms with two popular automated tools which are not very 

suitable for use with new genome sequences. 

3.1. Introduction 

GWMRs seek to represent the metabolic capabilities of an organism at a genomic scale 

and are built using a bottom-up approach, using an organism’s genome sequence to infer 
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enzymatic metabolic reactions. Reconstructed networks are a powerful tool that can prove 

extremely useful for linking experimental data with computational systems biology (Feist 

et al, 2009). GWMRs also provide a platform for analysis, visualisation and 

contextualisation of high throughput omics data sets (Francke et al, 2005), can help in 

understanding the global properties of metabolic networks (Ma & Zeng, 2003), and can 

guide metabolic engineering and hypothesis driven discovery (Oberhardt et al, 2009). 

The procedure for generating a GWMR is well defined by (Thiele & Palsson, 2010). Their 

highly detailed 96 step protocol can be broadly categorised into two stages 1) draft 

reconstruction; and 2) model curation. Draft reconstruction involves collecting a large set 

of biochemical reactions that are encoded in a genome sequence via enzyme encoding 

genes and assembling them into a network along with the metabolites that participate in 

the reactions. Model Curation involves manually checking the draft reconstruction to 

assure model accuracy. 

A number of platforms (Devoid et al, 2013; Karp et al, 2016; Moretti et al, 2016; Pinney 

et al, 2005; Swainston et al, 2011; Wrzodek et al, 2011) exist for generating draft GWMRs 

in an automated way, but they all have limitations when being used with new genome 

sequences. Model SEED (Devoid et al, 2013) requires the organisms genome sequence 

to be included in their maintained database. The Pathway Tools software package (Karp 

et al, 2016) requires the target organism to have an annotated genome sequence to have 

been submitted to the GenBank database (Benson et al, 2008). MetaSHARK (Pinney et 

al, 2005), the SuBliMinaL (Swainston et al, 2011) toolbox and KEGGtranslator (Wrzodek 

et al, 2011) all require the target organism’s annotated genome sequence to be included 

in the KEGG collection of databases (Kanehisa et al, 2004).  



52 

 

Generating draft reconstructions for organisms with newly sequenced genomes using 

these automated tools is therefore not straightforward. For example, D. magna, a model 

species in environmental toxicology studies, has had its genome sequenced recently, but 

it is not yet publicly available. As a result the organisms annotated genome sequence has 

not been submitted to the GenBank database (Benson et al, 2008) and there are no 

organism specific database entries for D. magna in any of the key genomics or 

biochemical reaction databases. This rules out using any of the above-mentioned tools for 

generating a draft GWMR. These limitations of the currently available automated draft 

GWMR tools severely impedes the ability to conduct research using GWMRs for 

organisms with newly sequenced genomes. Here the METRONOME platform for the 

automated generation of draft GWMRs for new genome sequences is presented. 

METRONOME is a modular platform consisting of three key sub-modules. First, 

enzymes are assigned to the genome sequence by assessing the similarity of the input 

sequence with known annotations (Section 3.2.1). Secondly, the assigned enzymes are 

used to mine multiple databases/data sources for associated biochemical reactions 

(Section 3.2.2). Thirdly, information from different genome/reaction databases are 

merged (Section 3.2.3). The effectiveness of the pipeline is demonstrated by 

reconstructing draft GWMRs for two model organisms using a variety of tools (Section 

3.3). 

3.2. Methods 

Generating draft GWMRs involves transforming a genome sequence into a set of 

connected biochemical reactions. This is achieved by deciphering which genes encode 

enzymes. Enzymes act as catalysts to biochemical reactions which can be inferred to be 

present in the metabolome of the target organism. The METRONOME platform follows 
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this principle, and contains three main modules (Figure 3.1). The first module assigns 

enzymes to genes (Section 3.2.1). This module generates a set of enzyme-gene pairs, 

which can either be provided explicitly or generated from a genome sequence directly 

using the enzyme assignment sub-module. The second module is a biochemical reaction 

data mining module (Section 3.2.2). This module takes the enzyme-gene pairs from the 

enzyme assignment module as its input, and outputs a draft GWMR for each of the 

databases/sources that are selected to be data mined. The third module combines reactions 

and metabolites from multiple data sources into a single coherent network (Section 3.2.3). 

All networks are represented using the SBML format (Hucka et al, 2003), which is an 

open XML based file format for representing biological networks and is the most common 

format for representing metabolic reconstructions. METRONOME is written in Python 

and can either be run from the command line or using a GUI 
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Figure 3.1: The METRONOME pipeline consists of three main modules, enzyme assignment, data 

mining and merging. The enzyme assignment module generates a list of enzyme-gene pairs which is used 

by the data mining module to extract biochemical reactions from either a database or a SBML file. Each 

extraction produces a SBML file, which is then merged using the MetaNetX reconciliation database. 

3.2.1. Enzyme assignment module 

The starting point of the draft reconstruction process using METRONOME is a list of 

gene and enzyme pairs, with enzymes being represented using the E.C. number 

nomenclature (Bairoch, 1994). The pairs can be directly provided as a CSV file, or can 

be generated using the enzyme assignment module. The enzyme assignment module is 

designed to be flexible so that any algorithm, tool or technique for assigning enzymes 
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(Claudel-Renard et al, 2003; Curtis et al, 2013; Devoid et al, 2013; Li et al, 2003; Romero 

et al, 2005; Waterhouse et al, 2013; Zhao et al, 2013) can be applied. In this 

implementation, the OthoMCL (Li et al, 2003) algorithm is incorporated as detailed 

below.  

OrthoMCL based enzyme assignment  

OrthoMCL (Li et al, 2003) is a widely used (>2,500 citations) algorithm for assigning 

orthologous groups across a wide range of eukaryotic organisms using a Markov Cluster 

algorithm. OrthoMCL takes a protein sequence of an organism and finds similar 

sequences in other well characterised organisms in a protein by protein basis. E.C. 

numbers can be assigned reliably, providing an automated genome annotation that works 

well for unannotated genomes. 

An OrthoMCL enzyme assignment sub-module has been written that wraps up the 

algorithm and outputs a list of gene and enzyme pairs. The algorithm takes a sequence as 

a FASTA file, a text based representation of a nucleotide or peptide sequence, and returns 

files that link the input sequence to ortholog or paralog groups in an OrthoMCL 

namespace. The sub-module takes these output files and uses them to programmatically 

access the OrthoMCL REST web service to achieve the E.C. number assignment. 

This returns an XML object that contains a list of E.C. numbers that are assigned to the 

OrthoMCL group. The E.C. numbers can then be linked with the relevant gene ids 

consequently providing the gene-id enzyme pairs that are required for the data mining 

module. 
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3.2.2. Data mining module 

GWMRs are made up of nodes representing biochemical reactions and the metabolites 

that are associated with them. A number of databases exist for genome, pathway and 

metabolic information such as chemical structure, molecular weight and reaction 

stoichiometry. Each database has a different schema and contains some unique as well as 

common information (Altman et al, 2013). It is therefore beneficial to include as much 

information from the available sources as possible.  

The METRONOME data-mining module is designed so that information from a number 

of sources can be used for draft GWMR generation. Most sources of data are hosted 

online and have APIs for querying and accessing data from them. In order to extract data 

from a given database, a wrapper must be implemented that defines the methodology for 

extracting reactions and metabolites. Three methods must be written for each wrapper, 

ExtractReaction, ExtractMetabolite and BuildSMBL. The ExtractReaction method takes 

as input an Enzyme-Gene pair and appends the reaction ids linked with the given E.C 

number. The reaction id appended will be native to the given database that is being 

queried. The ExtractMetabolite method takes a reaction id and finds the ids of any 

metabolite that acts as either a substrate or product of the given reaction. METRONOME 

makes extensive use of Python dictionary data structures to assign information during the 

reaction and metabolite extraction process, as each database represents information in a 

different way, the flexibility proves useful as it allows for a wide range of information to 

be stored, minimising the required number web service calls.  

The BuildSBML method takes all of the reaction and metabolite information and uses it 

to construct an SBML object. This method is required for each sub-module, as the content 

of each database can vary greatly both in terms of content and representation.  
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SBML files contain lists of Species and Reactions. When representing metabolic 

networks in the SBML format, species represent metabolites, and reactions represent 

biochemical reactions. A reaction SBML object contains fields called listOfReactants and 

listOfProducts, which contain references to the relevant species objects. Reactants and 

products can be seen as input and output metabolites for a reaction respectively and each 

species can be a reactant and product in many reactions. Both species and reaction SBML 

objects contain a field called Notes which contains metadata. The Notes field is used to 

store a large range of useful information, including database references (for both Species 

and Reactions), enzyme and gene ids (for Reactions), chemical formulas, and structural 

chemical information using the SMILES (Weininger, 1988) and InChI (Heller et al, 2015) 

formats (for Species).  

Sub-modules can be written for extraction from any data source, but they can only be 

merged (Section 3.2.3) if that data source is represented in the MetaNetX database 

(Moretti et al, 2016). Table 3.1 contains the databases that are represented in MetaNetX. 

Some of these databases can be downloaded as flat files. Consequently sub-modules can 

be written that extract the reactions and metabolites from these files directly. This 

removes the need for using web-service calls but has the disadvantage that the download 

files can be too large to download. 

SBML Extraction 

METRONOME also provides a mechanism for extracting biochemical reactions from 

SBML files directly. SBML extraction is useful as some databases can be downloaded 

directly as SBML files, or previously constructed GWMRs can be used as a basis for a 

new draft GWMR. SBML extraction requires the same three methods to be defined. As 
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no web-service calls are needed using this method, extraction of reactions as metabolites 

can be performed quickly without the need to download large database flat files. 

KEGG Extraction Sub-Module 

METRONOME provides a sub-module for extracting biochemical reactions from the 

KEGG collection of databases (Kanehisa et al, 2014). KEGG is a comprehensive 

collection of databases that contain resources for understanding biological systems with 

databases for genomes, biological pathways, enzymes, reactions, chemical substances 

and much more. KEGG provides a REST API for accessing resources from any of the 

collection of databases, with a flat file database format or a tab delimited file being 

returned for each record. 

The KEGG extraction sub-module contains a parent class KEGGObject with sub-classes 

for each of the KEGG databases that are needed KEGGEnzyme, KEGGReaction and 

KEGGCompound. Each KEGGObject contains the flat file database file that is returned 

using the KEGG REST API. Each sub-class of KEGGObject contains some unique 

information such as substrate/product compounds for reactions and chemical formulas for 

compounds. 

The ExtractReactions method first extracts a KEGGEnzyme object by passing an E.C. 

number as an argument. The object is then examined for reaction ids, which are 

subsequently used to extract KEGGReaction objects. The Gene Id and E.C. numbers are 

stored in the KEGGReaction object before it is examined for compound ids. The 

ExtractMetabolites method is then called using these compound ids to extract 

KEGGCompound objects, with references to these objects being stored in the relevant 

KEGGReaction object. If at any point a duplicate E.C. number is passed, the reactions 
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associated with will have the Gene ID field updated to include the current gene id to avoid 

time-consuming web service calls. 

 
Algorithm: 3.1: KEGG extraction procedure. 

The BuildSBML method takes all of the KEGGReaction and KEGGCompound object 

and constructs a SBML object. 

MetaCyc Extraction Sub-Module 

A sub-module for extracting biochemical reactions from the MetaCyc (Caspi et al, 2014) 

database has also been written. MetaCyc is a database of metabolic pathways that covers 

all domains of life and contains a number of highly curated organism specific biological 

pathway resources. The SBML extraction mechanism has been used here as a SBML file 

containing the entire MetaCyc database can be easily exported using Pathway Tools, a 

free (for academic users) software package written and maintained by the MetaCyc team 

(Karp et al, 2016). 

The ExtractReactions method takes an E.C. number, iterates through all of the reactions 

in the MetaCyc SBML file and examines the metadata stored in the reactions notes field. 
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If the notes field contains the corresponding E.C. number, the reaction id is stored, along 

with the ids of the substrate and product metabolites. The BuildSBML method then takes 

the stored reaction and metabolite ids and constructs a SBML file by copying the relevant 

SBML objects to a new SBML file and adding the appropriate gene ids to each of the 

reactions. 

3.2.3. Network merging module 

Each data mining sub-module extracts biochemical reactions from a given source and 

generates a SMBL file containing a metabolic network. There is a large amount of overlap 

between various reaction and metabolite databases, but often databases either lack cross 

references, or contain duplicate or incomplete information. MetaNetX (Moretti et al, 

2016) is a repository that has reconciled a number of resources into a common namespace.  

3.2.3.1. MetaNetX metabolite and reaction reconciliation  

A large number of databases have been reconciled (Table 3.1) by comparing chemical 

structure, shared nomenclature, cross-references and reaction context (Bernard et al, 

2014).  

MetaNetX reconciliation of metabolites and reactions is achieved through several 

techniques. Metabolites are first reconciled based on their chemical structures. This is 

achieved by comparing two standardised string representations of chemical structures, 

SMILES (Weininger, 1988) and InChI (Heller et al, 2015), and merging where 

appropriate. In the case of stereoisomers, all reactions where the metabolite is present are 

inspected. If different reactions include different stereoisomers of a metabolite, then the 

reconciliation process assumes that they are biologically distinct and does not merge the 

metabolites. The second reconciliation step uses string-matching algorithms to merge 
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metabolites that have shared nomenclature. This is used as for some metabolite databases 

structural information is not present. Merging metabolite entries based on names can be 

problematic as many synonyms exist for metabolites and their classes between and 

sometime within different databases. Therefore, the MetaNetX reconciliation process 

only merges metabolites if their names exactly match. 

Reactions are first reconciled by looking at their participating metabolites and their 

stoichiometry and are merged if there is a match. Reactions are then reconciled based on 

shared cross-references from the source databases (Table 3.1). An iterative procedure of 

reconciliation of metabolites is then performed by looking at their reaction context. 

Reactions that share at least a single metabolite or cross reference are inspected. If two 

reactions share several reconciled metabolites, but some of the other metabolites in each 

of the reactions are unreconciled, the remaining metabolites are considered to possibly be 

the same. A rule based system is then applied to reconcile the metabolites if enough 

evidence, such as chemical formula or charge is present (Bernard et al, 2014). 

The MetaNetX reconciliation process is extensive and is proven to perform well (Bernard 

et al, 2014; Moretti et al, 2016). There are however some instances where MetaNetX is 

unable to reconcile metobiltes correctly, such as where metabolites are present in a 

database, but are not well represented in reactions, or where chemical structure 

information is unavailable. However, by using MetaNetX to merge the networks, 

METRONOME is able to assign a large number of database identifiers to species and 

reaction metadata fields in the SBML file, as well as avoiding duplicate information in 

the draft GWMR. 
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MetaNetX consists of a number of web-accessible tab delimited files which are loaded 

into memory at the start of the METRONOME merging process. The merging module 

looks at the SMBL files from each data mining sub-module and only adds each reaction 

or metabolite if it is not already in the network based on its MetaNetX id. This has the 

effect of consolidating the information contained within the SBML files.  

Table 3.1: Databases represented in MetaNetX. 

Database Description Reference 

BiGG Knowledgebase of over 70 published GWMR 

with standardised identifiers. Genomes are 

mapped to NCBI genome annotations and 

metabolites contain cross-references with 

KEGG, ChEBI, PubChem and more. 

(Schellenberger 

et al, 2010) 

BioPath Database of biochemical pathways that is based 

on the Roche Biochemical Pathways wall chart 

as well as metabolic reactions that have been 

reported in primary literature. 

(Forster et al, 

2002) 

ChEBI Database/dictionary of molecules with a focus 

on small, or low-weight, compounds 

(Hastings et al, 

2012) 

HMDB Database containing detailed information about 

metabolites found in the human body. 

(Wishart et al, 

2012) 

KEGG Collection of databases that form a resource for 

interpreting genome sequence data. Databases 

exist for genomes, biological pathways, 

enzymes, chemical substances and many more. 

(Kanehisa et al, 

2014) 

LIPIDMAPS Database that contains information about lipid 

species measured in mammalian cells. 

(Sud et al, 

2012) 

MetaCyc Database of metabolic pathways that cover all 

domains of life. A number of highly curated 

organism specific database exist that all use the 

Cyc postfix i.e. EcoCyc and YeastCyc. 

(Caspi et al, 

2014) 

Reactome Pathway database that contains many cross-

references. 

(Croft et al, 

2014) 

Rhea Manually annotated database of biochemical 

reactions. 

(Morgat et al, 

2015) 

The SEED Database of genome annotations that also 

includes genome linked biochemical reactions.  

(Overbeek et al, 

2014) 

UniProt Database of protein sequences and protein 

functional information. 

(Consortium, 

2015) 
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3.2.4. Output 

A number of files are generated by METRONOME. Intermediate SBML files are 

generated for each data mining process run, as well as a merged SBML file which 

represents the union of the SBML files. It is this merged SBML file that represents the 

final draft GWMR.  

Two csv files are also generated that contain lists of all of the reactions and metabolites 

along with the chemical formulas and structures, and all of the reconciled database 

identifiers generated using the merge module. These files provide a useful resource for 

inspecting the reactions and metabolites that are contained within the draft GWMR. 

3.3. Results 

In order to assess the effectiveness of the METRONOME pipeline, draft GWMRs are 

constructed for the model species Escherichia coli and Saccharomyces cerevisiae. 

Although the METRONOME is specifically designed for new genome sequences, these 

model species are chosen because they have well curated GWMRs that can be used as a 

benchmark to test the effectiveness of the pipeline. Two other automated tools for draft 

reconstruction are used to generate GWMRs of E. coli and S. cerevisiae; Pathologic (Karp 

et al, 2011) and Model SEED (Devoid et al, 2013).  

Pathologic is the algorithm that is used by the Pathway Tools software (Karp et al, 2016) 

and predicts metabolic pathways by inferring enzymatic reactions based on an annotated 

genome sequence and comparing to previously known information from the MetaCyc 

database (Caspi et al, 2014). Pathologic requires genome annotations in the GenBank 

format (Benson et al, 2008). GenBank is a NCBI maintained database of nucleotide 

sequences which need to be submitted to GenBank for inspection in order to generate the 
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required files. As a result, Pathologic can be unsuitable for generating GWMRs of new 

genome sequences due to the effort involved in generating a GenBank file. 

Model SEED is a web based tool for automated GWMR based on genome annotations 

performed using the RAST algorithm (Overbeek et al, 2014). Model SEED is only able 

to generate GWMRs for RAST genome annotations that are available on the Model SEED 

web page/database, or based on user uploaded FASTA files, for plant and microbe 

species. It is therefore not a suitable tool for generating GWMRs for new genome 

sequences that are not plants or microbes. 

Draft GWMRs for both E. coli and S. cerevisiae are built using METRONOME, 

Pathologic and Model SEED and the reactions contained in the resulting SBML files are 

compared with well curated GWMRs/database information about the species. For the 

GWMRs generated with Pathologic, the default parameters are used: Taxonomic pruning 

is enabled, the pathway prediction score cut-off is set to 0.15 and name-matching is set 

to enabled. For the GWMRs generated with Model SEED, the default parameters were 

also used: No public media formulation is selected, and the select template model 

parameter is set to Automatically select. For the METRONOME GWMRs, the OrthoMCL 

enzyme assignment sub-module (Section 3.2.1) is used along with the KEGG and 

MetaCyc data mining sub modules (Section 3.2.2). 

3.3.1. E. coli 

The E. coli K-12 MG1655 genome sequence (Blattner et al, 1997) is used (NCBI 

Taxonomy: 511145, GenBank Accession: U00096.2) to generate all E. coli draft 

GWMRs. The curated set of reactions come from two sources, EcoCyc (Keseler et al, 

2009) and KEGG (Kanehisa et al, 2004). EcoCyc is a well curated comprehensive 

database of E. coli biology and is part of the MetaCyc collection of databases. KEGG 
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contains detailed biological information for a number of organisms, including E. coli. 

Figure 3.2 and Table 3.2 show the overlap between the draft GWMRs generated using 

METRONOME, Pathologic and Model SEED with the curated set of reactions taken from 

EcoCyc and KEGG. 

 

Figure 3.2: E. coli reaction overlap between the curated set of reactions and the reactions contained within 

the draft GWMRs generated using METRONOME, Pathologic and Model SEED. 

In total there are 2,325 biochemical reactions in the E. coli curated set of which 512 (22%) 

are shared across all of the draft GWMRs, and 476 (20%) are not present in any of the 

draft GWMRs. METRONOME has the highest proportion of overlap with the curated set 

(67%), and Model SEED has the fewest (33%). METRONOME has the highest 

proportion of reactions that uniquely overlap with the curated set (16%), and Model 

SEED has the fewest (5%). Pathologic has the lowest proportion of un-curated reactions 

(27%), and also the lowest proportion of unique un-curated reactions (12%) with Model 

SEED having the highest (53% and 48%).  
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Table 3.2: Network stats for the E. coli draft GWMRs. The curated percentage is calculated as a 

proportion of the 2,325 reactions in the curated set. All of the other percentages are calculated relative to 

the total number of reactions within the respective draft GWMRs. The tool overlap describes the number 

of reactions that are common between the draft GWMR described by the row, and the draft GWMRs built 

using the other two tools. 

GWMR Total Curated  Unique 

Curated  

Un-curated  Unique  

Un-curated  

Tool 

Overlap 

METRONOME 2502 1559 

(67%) 

411 

(16%) 

943 

(38%) 

646 

(26%) 

1445 

(58%) 

Pathologic 1651 1202 

(52%) 

189 

(11%) 

449 

(27%) 

197 

(12%) 

1265 

(77%) 

Model SEED 1629 772 

(33%) 

77 

(5%) 

857 

(53%) 

782 

(48%) 

770 

(47%) 

 

3.3.2. S. cerevisiae 

The S. cerevisiae S288C genome sequence (Goffeau et al, 1996) is used (NCBI 

Taxonomy: 559292, GenBank Accession: NC_001133.9) to generate all S. cerevisiae 

draft GWMRs. The curated set of reactions come from two sources, YeastCyc (Christie 

et al, 2004) and KEGG (Kanehisa et al, 2004). YeastCyc is a well curated comprehensive 

database of S. cerevisiae biology and is part of the MetaCyc collection of databases. 

KEGG contains detailed biological information for a limited number of organisms 

including S. cerevisiae. Figure 3.3 and Table 3.3 show the overlap between the draft 

GWMRs generated using METRONOME, Pathologic and Model SEED with the curated 

set of reactions taken from YeastCyc and KEGG. 
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Figure 3.3: S. cerevisiae reaction overlap between the curated set of reactions and the reactions contained 

within the draft GWMRs generated using METRONOME, Pathologic and Model SEED. 

In total there are 1,743 biochemical reactions in the S. cerevisiae curated set of which 297 

(17%) are shared across all of the draft GWMRs, and 171 (10%) are not present in any of 

the draft GWMRs. METRONOME has the highest proportion of overlap with the curated 

set (76%) and Model SEED the fewest (23%). METRONOME has the highest proportion 

of reactions that uniquely overlap with the curated set (15%), and Model SEED has the 

fewest (1%). Pathologic has the lowest proportion of un-curated reactions (39%), and also 

the lowest proportion of unique un-curated reactions (22%) with Model SEED having the 

highest (64% and 57%).  
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Table 3.3: Network stats for the S. cerevisiae draft GWMRs. The curated percentage is calculated as a 

proportion of the 1,743 reactions in the curated set. All of the other percentages are calculated relative to 

the total number of reactions within the respective draft GWMRs. The tool overlap describes the number 

of reactions that are common between the draft GWMR described by the row, and the draft GWMRs built 

using the other two tools. 

GWMR Total Curated  Unique 

Curated  

Un-curated  Unique  

Un-curated  

Tool 

Overlap 

METRONOME 2339 1331 

(76%) 

353 

(15%) 

1028  

(44%) 

669  

(28%) 

1517 

(65%) 

Pathologic 1833 1123 

(64%) 

217 

(12%) 

710  

(39%) 

406  

(22%) 

1210 

(66%) 

Model SEED 1127 409 

(23%) 

8  

(1%) 

718 

(64%) 

638 

 (57%) 

481 

(43%) 

 

3.4. Discussion 

For a GWMR to be deemed of high quality, the 96-step protocol outlined in (Thiele & 

Palsson, 2010) should be followed. The protocol is divided into 4 key stages; draft 

reconstruction (steps 1-5), refinement of reconstruction (steps 6-37), conversion of 

reconstruction into computable format (steps 38-42) and network evaluation (steps 43-

94). METRONOME is capable of automatically generating draft GWMRs, covering steps 

1-5. Networks generated using METRONOME will require curation in order for them to 

be considered high quality. Curation is a largely manual process, but a number of the 

steps in the refinement process are made easier by the output files that are generated by 

METRONME (section 3.2.4), as they include metabolite formulas, reaction 

stoichiometry, reaction directionality, pathway information and metabolite identifiers 

when that information is available within the MetaNetX resource. 

Draft GWMRs for E. coli and S. cerevisiae are built using METRONOME and two other 

automated draft GWMR tools, Pathologic and Model SEED producing six draft GWMRs 

in total. The reactions contained in each draft GWMR is compared to a curated set of 

reactions. For each species, the curated set came from two reliable and well curated data 
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sources within the KEGG (Kanehisa et al, 2014) and BioCyc (Christie et al, 2004; Keseler 

et al, 2009) resources. The networks generated using METRONOME also extracted 

reactions and metabolites from the KEGG and BioCyc databases, but they are extracted 

based on the enzyme associations of reactions, and not on any association based on the 

species. This could have introduced some bias and could perhaps explain why the Model 

SEED automated draft reconstructions performed badly. 

Ideally well manually curated reconstructions of E. coli (Feist et al, 2007; Orth et al, 2011) 

and S. cerevisiae (Dobson et al, 2010; Heavner et al, 2013; Mo et al, 2009) that are 

independent from the KEGG and BioCyc databases would have been used for the 

comparisons to avoid any bias. Difficulties arise when taking this approach however as 

often manually curated reconstructions do not include database identifiers or enough 

metadata for the reactions and metabolites, making it hard to compare the contents of 

them with that of the draft reconstructions generated using the other tools. The relative 

performances of reconstruction tools should therefore be considered with this in mind. 

The reactions from each draft GWMR is compared to the curated set by looking at: The 

relative number of reactions in the draft compared to the curated set, amount of the 

curated reactions that are in the GWMR and the precision of the GWMR. Precision is 

measured as the percentage of the total reactions in the draft GWMR that are also in the 

curated set. Table 3.4 and Table 3.5 contain these results. 

Table 3.4: E. Coli draft GWMR accuracy information. The network size is calculated relative to the 

curated set of reactions. The curated reactions represent the total proportion of reactions within the 

network that are in the curated set. The precision is the total reactions in the draft GWMR that are also in 

the curated set. 

 METRONOME Pathologic Model SEED 

Network size 108% 71% 70% 

Curated Reactions 67% 52% 33% 

Precision 62% 73% 47% 
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The METRONOME E. coli draft GWMR is 108% the size of the size of the E. coli curated 

set capturing 67% of the reactions with a precision of 62%. 26% of the reactions in the 

METRONOME GWMR are not present in either the curated set or any other GWMR. 

The Pathologic E. coli GWMR is smaller than the curated set and is 11% more precise 

than the METRONOME GWMR but captures 15% less of the curated reactions. The 

Model SEED E. coli GWMR is slightly smaller than the Pathologic GWMR and it only 

covers one third of the curated reactions, has the worst precision and contains a large 

number of reactions that are not present in any other networks (48%). 

In summary, the E. coli GWMRs generated by METRONOME and Pathologic are more 

accurate than that generated by Model SEED. Pathologic has generated a more compact 

and more precise network, whereas METRONOME has generated a larger and less 

precise network. METRONOME however, has recovered the most of the curated set of 

reactions. 

Table 3.5: S. cerevisiae draft GWMR accuracy information. The network size is calculated relative to the 

curated set of reactions. The curated reactions represent the total proportion of reactions within the 

network that are in the curated set. The precision is the total reactions in the draft GWMR that are also in 

the curated set. 

 METRONOME Pathologic Model SEED 

Network size 134% 105% 65% 

Curated captured 76% 64% 23% 

Precision 52% 61% 36% 

 

The METRONOME S. cerevisiae draft GWMR is 134% the size of the size of the S. 

cerevisiae curated set capturing 76% of the reactions with a precision of 52%. 29% of the 

reactions in the METRONOME GWMR are not present in either the curated set or any 

other GWMR. The Pathologic S. cerevisiae GWMR is 105% the size of the curated set 

and is 9% more precise than the METRONOME GWMR but captures 12% less of the 
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curated reactions. The Model SEED S. cerevisiae GWMR is the smallest GWMR at 65% 

the size of the curated set. It only covers 23% of the curated reactions, has the worst 

precision and contains a large number of reactions that are not present in any other 

networks (57%). 

In summary, the S. cerevisiae GWMRs generated by METRONOME and Pathologic are 

more accurate than that generated by Model SEED. Pathologic has generated a more 

compact and more precise network, whereas METRONOME has generated a larger and 

less precise network. However, METRONOME has recovered the most of the curated set 

of reactions. 

After looking at the results of the two species draft GWMRs, there is a clear pattern, 

METRONOME draft GWMRs are the largest and recover the most curated reactions, 

Pathologic draft GWMRs are smaller than METRONOMEs, covering less of the curated 

set but are more precise. MODEL Seed draft GWMRs are the smallest, recover the least 

curated reactions and are the least precise.  

Table 3.6 shows how many MetaNetX cross references are present for various sets of 

overlapping reactions taken from the S. cerevisiae curated set and the S. cerevisiae draft 

GWMRs generated using METRONOME, Pathologic and Model SEED. The percentages 

show the proportion of reactions that have KEGG, MetaCyc or SEED ids in the MetaNetX 

reconciliation database. The proportion of reactions that have ids from the other databases 

represented in MetaNetX (Table 3.1) is also shown. 

The reactions that are present in the curated set as well as all three of the draft GWMRs 

have a high proportion of references in MetaNetX across all data sources. The uniquely 

overlapping reactions between the curated set and each of the three GWMRs is inspected: 
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Uniquely shared between METRONOME and the curated set 

The reactions have a higher proportion of KEGG ids (87%), followed by Model SEED 

(59%), suggesting that METRONOME mainly recovers its uniquely curated reactions 

from KEGG. 

Uniquely shared between Pathologic and the curated set 

As expected, the reactions have a far higher proportion of MetaCyc ids (96%), with 35% 

of reactions having KEGG ids and 41% Model SEED ids. This suggests that the uniquely 

curated reactions in the Pathologic draft GWMR come from MetaCyc 

Uniquely shared between Model SEED and the curated set 

No one database has a clearly higher proportion of ids, with 65% of reactions having 

KEGG ids, 75% having MetaCyc ids and 75% having Model SEED ids. This suggests 

that the Model SEED uniquely curated reactions are well cross-referenced across the 

different data sources.  

Uniquely shared between METRONOME and other tools – not in curated set 

The uniquely overlapping reactions between METRONOME and the other two tools is 

also inspected. The reactions that uniquely overlap between METRONOME and 

Pathologic have a far higher proportion of MetaCyc ids (96%). The overlapping reactions 

between METRONOME and Model SEED have a high number of Model SEED ids 

(92%), but also have a high number of KEGG ids (95%). 

The reactions that are solely in the curated set have a high proportion of MetaCyc ids, 

suggesting that either Pathologic does not do a great job of recovering all reactions from 
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YeastCyc, or that the curated reactions that come from the KEGG S. cerevisiae data 

source are not recovered by Pathologic but well cross referenced in MetaNetX. The 

unique reactions in the METRONOME, Pathologic and Model SEED draft GWMRs have 

a higher proportion of KEGG ids, MetaCyc ids and Model SEED ids respectively.  

The uniquely overlapping reactions between METRONOME and pathologic have a very 

high proportion of MetaCyc ids in MetaNetX, whereas the overlapping reactions between 

METRONOME and Model SEED have a high proportion of KEGG ids as well as Model 

SEED ids. This suggests that MetaNetX does a good job of reconciling KEGG and Model 

SEED reactions. 

Table 3.6: MetaNetX cross references of the S. cerevisiae curated set of reactions and the reactions 

contained within the draft GWMRs generated using METRONOME, Pathologic and Model SEED. 

Reaction set MetaNetX cross references 

Curated METRONOME Pathologic Seed KEGG MetaCyc SEED Other 

X X X X 97% 94% 94% 100% 

X X   87% 33% 59% 53% 

X  X  35% 96% 31% 44% 

X   X 63% 75% 75% 63% 

X    50% 75% 34% 43% 

 X   77% 56% 55% 43% 

  X  30% 96% 29% 39% 

   X 46% 37% 94% 55% 

 X X  16% 94% 15% 36% 

 X  X 95% 27% 92% 38% 

 

Pathologic is clearly the most precise draft GWMR tool however unlike METRONOME, 

a genome annotation is required before using the tool. In this instance well curated 

genome annotations have been taken from the NCBI database whereas METRONOME 

has used unchecked OrthoMCL genome annotations. METRONOMEs precision could 

be increased by inspecting the genome annotation prior to data mining or by including a 

GenBank parser. In reality this would not be feasible if METRONOME is being used for 
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its intended purpose of generating draft GWMRs for new genome sequences, which will 

not necessarily have accurate GenBank genome annotations available. 

Pathologic is developed by the team behind the MetaCyc database (Caspi et al, 2014) and 

as a result exploits a great deal of information from within it. The algorithm consists of 

two key steps. The first extracts enzymatic reactions from MetaCyc in a similar manner 

to the data mining step in METRONOME. The second step infers metabolic pathways 

using a rule based approach, adding reactions to the model as complete pathways (Karp 

et al, 2011). If the reactions from a given pathway are mostly absent, then the pathway is 

not added. This is a form of automated curation, and results in a number of reactions being 

cut from the model is a likely factor in the higher precision rates in Pathologic. 

Model SEED is part of the wider SEED (Overbeek et al, 2005) and RAST (Aziz et al, 

2008) family of software for annotating and analysing genomes and is linked very closely 

to it. The approach used in Model SEED differs to that of METRONOME and Pathologic 

in that it relies on its own ontology generated using the RAST genome annotation to infer 

the reactions. This is different to the way that METRONOME and Pathologic operate, 

using the common E.C. number ontology to infer reactions. As a result the generated 

GWMR is heavily reliant on the specifics of RAST genome annotation, which could 

explain why the Model SEED GWMRs have the least overlap with the curated set. 

METRONOME is the least restrictive tool and able to cope with unannotated genome 

sequences, whereas Pathologic and Model SEED both require prior genome annotations 

in specific formats (GenBank and RAST/SEED). Pathologic and Model SEED both build 

the GWMRs from a single source whereas METRONOME can be configured to use 

multiple sources. METRONOME requires the use of REST web services to generate a 
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draft GWMR. Pathologic is part of a wider software package, Pathway Tools, which 

requires a license and installation but does not require an internet connection to perform 

the reconstruction. Model SEED is entirely web based and the reconstruction is done 

entirely on external servers.  

Each of the three tools operates differently from each other and is suitable for different 

use cases. It could therefore be argued that it is not appropriate to compare the 

performance of METRONOME to that of Pathologic and Model SEED. However by 

comparing in this way confidence can be gained into METRONOMEs ability to generate 

draft GWMRs.  

It is clear that Pathologic and Model SEED are good at recovering reactions from their 

associated databases, however depending on what is considered to be the gold standard 

set of reactions, the performance of the draft GWMR process varies. METRONOMEs 

architecture allows for several sub-modules to be created to extract metabolic reactions 

from a variety of sources increasing its accuracy. However, with each extraction source 

added, the likelihood of extracting erroneous reactions increases, reducing the precision 

of METRONOMEs draft GWMR.  

The performance of the automated draft GWMR tools are accessed by measuring the 

proportion of reactions that are recovered from a pre-defined curated set. This curated set 

of reactions is a merger of two well curated metabolic reconstruction resources. There is 

a possibility that good values for the number of curated reactions and the precision those 

reactions could be achieved by chance. To further test this, a random gene set could be 

used as input to the various tools and the precision and accuracy of the resulting draft 

GWMRs measured. Another way would be to add noise into the input data by inserting 
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random genes and inspect the differences in performance of the tools. If significantly 

better results are achieved with this random or noisy data, it could indicate inadequacies 

in the automated draft reconstruction processes. 

3.5. Conclusion 

METRONOME is a lightweight flexible platform for automated draft GWMR that 

through appropriate configuration of sub-modules can take an unannotated nucleotide 

sequence as an input and return a draft GWMR as its output in the SBML format. 

Currently, METRONOME implemented OrthoMCL enzyme assignment, KEGG data 

mining and MetaCyc data mining sub modules, which extract enzymatic reactions from 

these sources.  

METRONOME then merges these extracted enzymatic reactions to form a single 

coherent network using the MetaNetX database. METRONOME does not require a 

genome annotation, meaning that it is suitable for use with newly sequenced genomes. 

By incorporating new modules, reactions can be extracted from multiple sources, 

including online databases and directly from SBML files. Through the use of the 

MetaNetX reconciliation project, the information from these sources can be coherently 

merged, and a large amount of useful database cross-links can be included. The end result 

of this is larger GWMRs that recover a high proportion of the known biochemical 

reactions for the two model organisms tested.  

Although METRONOME recovers the highest proportion known reactions for two model 

organisms, when compared to two popular automated draft GWMR tools, the GWMRs 

have a slightly lower precision than Pathologic. The precision could be improved by 

including a pathway inference step or by designing a more accurate enzyme assignment 
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sub-module, which once implemented can be straightforwardly incorporated into 

METRONOMEs highly flexible platform.  
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4. Draft GWMR of Daphnia magna using METRONOME Platform 

Species of the genus Daphnia are renowned models in ecotoxicology and are widely used 

as indicators of water quality and environmental health. They are also key models in 

evolutionary biology and the study of adaptive responses to environmental change. 

Genome-wide metabolic reconstructions (GWMRs) provide a platform for analysis, 

visualisation and contextualisation of high throughput omics data sets (Francke et al, 

2005), can help in understanding the global properties of metabolic networks (Ma & 

Zeng, 2003), and can guide metabolic engineering and hypothesis driven discovery 

(Oberhardt et al, 2009). 

A GWMR of a species of Daphnia is useful for constructing computational hypotheses 

about metabolic response to environmental insults or stressors. This chapter details the 

draft GWMR of Daphnia magna using the METRONOME platform (Chapter 3) which 

is then subsequently used to make predictions about metabolic response to two 

environmental stressors relevant to human-driven pollution (Chapter 5).  

Version 2.4 of the draft genome sequence of the Xinb3 strain of D. magna1 taken from 

wFleaBase (Colbourne et al, 2005) is used as the input to the METRONOME platform, 

which is configured to assign enzymes using OrthoMCL (Section 4.1) and to extract 

reactions and metabolites from the KEGG and MetaCyc databases (Section 4.2). The 

contents of the resulting draft GWMR are assessed by investigating the overlap between 

core and literature reported metabolic pathways (Section 4.3).  

 

                                                 
1 April 2010 - https://wiki.cgb.indiana.edu/display/magna/Daphnia+magna+Genome 
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4.1. Enzyme assignment 

The first step when using the METRONOME platform is to assign enzymes to the input 

genome sequence. Enzyme assignment is achieved using the OrthoMCL sub-module 

(Section 3.2.1), which consists of two key steps. The first uses the OrthoMCL algorithm 

to assign ortholog groups to the input sequence. The second uses the OrthoMCL web 

service to recover enzyme assignments for each of the assigned ortholog groups. 

 
Figure 4.1: Ten species with the highest number of OrthoMCL group matches with the xinb3 V 2.4 D. 

magna genome sequence. The data is generated using the enzyme assignment module of the 

METRONOME platform. 

 

The OrthoMCL algorithm found 17,468 ortholog matches of which 295 were not assigned 

to an OrthoMCL group. Of the remaining 17,173 matches, 8,255 unique OrthoMCL 
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groups across 109 species are found. Figure 4.1 shows the ten species with the most 

ortholog matches. The species with the most matches is Apis mellifera, or the western 

honey bee, and all but one of the top ten matches are phylogenetically similar species. 

Table 4.1 details all of the species for which orthologs are found. From the list of 

OrthoMCL groups, a total of 1,267 E.C. numbers, of which 1,142 were complete, are 

recovered and subsequently used in the data mining process (Section 4.2). 

 

Table 4.1: Number of unique OrthoMCL group matches within the xinb3 V 2.4  D. magna sequence per 

species. The data is generated using the enzyme assignment module of the METRONOME platform. 

Species OrthoMCL 

groups 

Species OrthoMCL 

groups 

Apis mellifera 1389 Micromonas 4 

Pediculus humanus 1020 Mycobacterium 

tuberculosis 

4 

Aedes aegypti 845 Trypanosoma congolense 4 

Anopheles gambiae 517 Agrobacterium tumefaciens 3 

Acyrthosiphon pisum 492 Burkholderia mallei 3 

Bombyx mori 483 Leishmania infantum 3 

Ixodes scapularis 469 Listeria monocytogenes 3 

Culex pipiens 321 Plasmodium falciparum 3 

Danio rerio 306 Trichomonas vaginalis 3 

Drosophila melanogaster 272 Yersinia enterocolitica 3 

Nematostella vectensis 269 Emericella nidulans 2 

Gallus gallus 201 Candida glabrata 2 

Mus musculus 153 Coccidioides immitis 2 

Takifugu rubripes 129 Cyanidioschyzon merolae 2 

Tetraodon nigroviridis 121 Cryptococcus neoformans 2 

Monodelphis domestica 112 Dehalococcoides 

ethenogenes 

2 

Equus caballus 111 Entamoeba invadens 2 

Macaca mulatta 92 Leishmania braziliensis 2 

Rattus norvegicus 91 Rhodopirellula baltica 2 

Ciona intestinalis 90 Ricinus communis 2 

Canis lupus 88 Staphylococcus aureus 2 

Ornithorhynchus anatinus 73 Toxoplasma gondii 2 

Homo sapiens 69 Wolbachia endosymbiont 

of Culex quinquefasciatus 

2 

Phytophthora ramorum  62 Aquifex aeolicus  1 

Trichoplax adhaerens 56 Archaeoglobus fulgidus 1 

Pan troglodytes 44 Babesia bovis 1 
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Species OrthoMCL 

groups 

Species OrthoMCL 

groups 

Chlorobium tepidum 28 Campylobacter jejuni 1 

Brugia malayi 25 Cryptosporidium muris 1 

Caenorhabditis elegans 20 Cryptococcus bacillisporus 1 

Caenorhabditis briggsae 18 Coccidioides posadasii 1 

Bacillus anthracis 15 Escherichia coli 1 

Burkholderia 

pseudomallei 

13 Entamoeba dispar 1 

Schistosoma mansoni 13 Francisella tularensis 1 

Ralstonia solanacearum 12 Gibberella zeae 1 

Dictyostelium 

discoideum 

11 Haloquadratum walsbyi 1 

Physcomitrella patens 11 Leishmania mexicana 1 

Phanerochaete 

chrysosporium 

10 Methanococcus 

maripaludis 

1 

Volvox carteri 10 Neurospora crassa 1 

Chlamydomonas 

reinhardtii 

9 Ostreococcus tauri 1 

Oryza sativa 8 Plasmodium chabaudi 1 

Vibrio cholerae 8 Rickettsia prowazekii 1 

Arabidopsis thaliana 7 Saccharomyces cerevisiae 1 

Brucella suis 7 Salmonella enterica 1 

Monosiga brevicollis 7 Shigella flexneri 1 

Tetrahymena thermophila 7 Streptococcus pneumoniae 1 

Clostridium botulinum 6 Schizosaccharomyces 

pombe 

1 

Geobacter sulfurreducens 6 Synechococcus 1 

Thalassiosira pseudonana 6 Trypanosoma brucei 1 

Archaeoglobus fulgidus 5 Trypanosoma brucei 1 

Aspergillus oryzae 5 Trypanosoma cruzi 1 

Coxiella burnetii 5 Treponema pallidum 1 

Kluyveromyces lactis 5 Thermoplasma volcanium 1 

Methanocaldococcus 

jannaschii 

5 Wolinella succinogenes 1 

Candida albicans 4 Yersinia pestis 1 

Laccaria bicolor 4   
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4.2. Data mining and network merging 

Two METRONOME data mining sub-modules are used to extract biochemical reactions 

from the KEGG (Kanehisa et al, 2014) and MetaCyc (Caspi et al, 2014) databases 

(Section 3.2.2). METRONOME builds draft GWMRs from each data source before 

merging them. Table 4.2 shows the number of reactions and metabolites that are in each 

of the D. magna draft GWMRs. The KEGG network has 2,249 reactions and 2,256 

metabolites and the MetaCyc network has 2,028 reactions and 2,562 metabolites. 

Table 4.2: Total number of reactions and metabolites in the KEGG, MetaCyc and merged D. magna draft 

networks generated using the METRONOME platform. 

Network # Reactions # Metabolites 

KEGG 2,249 2,256 

MetaCyc 2,028 2,562 

Merged 3,273 3,473 

 

The network merging procedure described in section 3.2.3 uses the MetaNetX (see 

section 3.2.3) database (Moretti et al, 2016) to merge the KEGG and MetaCyc networks. 

The merged network contains 3,273 reactions and 3,473 metabolites. Figure 4.3 shows a 

visualisation of the merged draft GWR of D. magna using the software package 

Cytoscape (Smoot et al, 2011).  
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Figure 4.2: Overlap of reactions and metabolites between the KEGG, MetaCyc and merged draft D. 

magna GWMRs generated using the data mining and network merging sub modules in the 

METRONOME platform. 

 

 
Figure 4.3: Cytoscape (Smoot et al, 2011) visualisation of the merged D. magna draft GWMR. Red and 

green nodes represent reactions and metabolites respectively. A metabolite node is linked to a reaction 

node if it is either a substrate or product of the reaction. 

Reactions Metabolites 
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Figure 4.2 shows the overlap between the KEGG, MetaCyc and merged D. magna draft 

networks. There are 877 reactions and 1,002 metabolites that were directly comparable 

between the KEGG and MetaCyc networks. The KEGG network has 1,273 and 1,132 

reactions/metabolites not in the MetaCyc network, and the MetaCyc network has 1,123 

and 888 reactions/metabolites not in the KEGG network.  

There are 99 reactions and 122 metabolites in the KEGG network, and 28 reactions and 

672 metabolites in the MetaCyc network that do not have an entry in MetaNetX and are 

therefore not included in the merged network. In total, 127 reactions and 342 metabolites 

extracted during the data mining process are not included in the merged network. 

There are 451 metabolites in the merged network that are not directly mapped to 

metabolites in either the KEGG or MetaCyc networks. This is likely due to how the 

MetaNetX database reconciles reactions from several sources (Table 3.1), this means that 

the reaction definitions can differ from the equivalent KEGG and MetaCyc definitions. 

Upon inspection, these 451 metabolites are all linked to MetaCyc entries that are labelled, 

“compound class”. This suggests that the MetaNetX reconciliation procedure (described 

in section 3.2.3.1) has reconciled some compounds in reactions in their more generic class 

form. An illustration of this is that the MetaCyc compound class an aliphatic N-acetyl-

diamine (MetaCyc id - Aliphatic-N-Acetyl-Diamines) is included in the 451 metabolites 

not found in the KEGG or MetaCyc network, and the metabolite acetylcadaverine 

(MetaCyc id - CPD-10194) is in the 672 metabolites unique to the MetaCyc GWMR. The 

metabolite acetylcadaverine sits below the metabolite class an aliphatic N-acetyl-

diamine in the MetaCyc ontology. 
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4.3. Network interrogation 

There is no published GWMR of D. magna, and there is little reported on the D. magna 

metabolome (Jones et al, in preparation). Subsequently, it is difficult to know how 

accurate the generated D. magna draft GWMR is. The KEGG collection of databases 

(Kanehisa et al, 2014) includes a database that contains a number of metabolic pathways 

which are made up of a number of KEGG modules. There is a KEGG pathway called the 

reference pathway (KEGG id: map01100), which contains all metabolic pathways 

represented in KEGG. The KEGG Mapper software (Kanehisa, 2013) allows for KEGG 

pathway maps to be coloured based on some user provided data. Figure 4.4 shows the 

KEGG reference pathway with all reactions and metabolites that are in the D. magna draft 

GWMR which have KEGG ids coloured in black. It can be seen that there is fairly wide 

coverage of the KEGG reference pathway in the reconstruction, with many complete 

pathways including core pathways corresponding to energy metabolism, carbohydrate 

metabolism, lipid metabolism and nucleotide metabolism. 

4.3.1. Core KEGG Modules 

Figure 4.5 shows three core KEGG modules (TCA cycle, Glycolysis pathway and Urea 

cycle) also coloured using KEGG Mapper, with reactions and metabolites present in the 

D. magna draft GWMR coloured in pink. Table 4.3 summarises the coverage of these 

modules. For all three modules there is 100% coverage of metabolites, however none 

have all of the reactions, with the lowest coverage being the TCA cycle with two thirds 

of the reactions covered. The best coverage in terms of reactions is the urea cycle which 

is only missing one reaction. 
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Table 4.3: Coverage of three core KEGG modules (Figure 4.5) in the D. magna draft GWMR. 

KEGG 

Module 

Id 

KEGG Module 

Name 

Module 

Reactions 

Module 

Metabolites 

Reactions 

in Model 

Metabolites 

in Model 

M00009 Citrate cycle (TCA 

cycle, Krebs cycle) 

18 12 66.66% 100.00% 

M00001 Glycolysis 

(Embden-Meyerhof 

pathway), glucose 

=> pyruvate 

15 11 73.33% 100.00% 

M00029 Urea cycle 5 9 80.00% 100.00% 
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Figure 4.4: KEGG reference pathway with all reactions and metabolites in the D. magna draft GWMR 

coloured in black.  
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Figure 4.5: Three core pathways coloured using KEGG Mapper (Kanehisa, 2013), all reactions and 

metabolites that are present in the D. magna draft GWMR are coloured pink. 

 

4.3.2. KEGG Pathways from literature 

Table 4.4 lists 13 KEGG pathways that have been reported in toxicology studies of D. 

magna (Garreta-Lara et al, 2016; Poynton et al, 2011), along with the coverage of them 

in the D. magna draft GWMR. For each of the pathways, the percentage coverage of the 

TCA-Cycle Glycolysis  Urea Cycle 
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reactions and metabolites is calculated. As with the core pathways listed in section 4.3.1, 

the general trend is that the metabolite coverage is better than the reaction coverage. In 

total 84.30% of metabolites and 54.94% of reactions from the pathways are in the D. 

magna draft GWMR. Five of the pathways have 100% metabolite coverage, and ten have 

a coverage of 80% or higher. 

 
Table 4.4: Coverage of 13 KEGG pathways reported in D. magna transcriptomics and metabolomics 

toxiocology studies (Garreta-Lara et al, 2016; Poynton et al, 2011) in the D. magna draft GWMR. 

KEGG 

Pathway 

Id 

KEGG Pathway 

Name 

Pathway 

Reactions 

Pathway 

Metabolites 

Reactions 

in Model 

Metabolites 

in Model 

ko00020 TCA cycle 63 52 66.67% 90.38% 

ko00052 Galactose 

metabolism 

26 31 38.46% 70.97% 

ko00061 Fatty acid 

biosynthesis 

10 10 70.00% 100.00% 

ko00220 Arginine 

biosynthesis 

16 21 43.75% 80.95% 

ko00250 Alanine, aspartate 

and glutamate 

metabolism 

19 19 57.89% 73.68% 

ko00260 Glycine, serine and 

threonine 

metabolism 

21 19 66.67% 94.74% 

ko00280 Valine, leucine and 

isoleucine 

degradation 

11 14 81.82% 100.00% 

ko00290 Valine, leucine and 

isoleucine 

biosynthesis 

23 28 47.83% 82.14% 

ko00310 Lysine degradation 12 10 83.33% 100.00% 

ko00400 Phenylalanine, 

tyrosine and 

tryptophan 

biosynthesis 

22 26 13.64% 69.23% 

ko00480 Glutathione 

metabolism 

2 3 100.00% 100.00% 

ko00500 Starch and sucrose 

metabolism 

6 7 16.67% 85.71% 

ko00620 Pyruvate 

metabolism 

2 2 50.00% 100.00% 
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4.4. Discussion and conclusion 

The METRONOME platform (Chapter 3) has been used to generate a draft GWMR of D. 

magna using the xinb3 reference genome taken from wFleabase (Colbourne et al, 2005). 

1,142 complete enzymes are assigned using the OrthoMCL algorithm and are used to 

extract biochemical reactions from the KEGG and MetaCyc databases and construct two 

networks which are subsequently merged into a single network containing 3,273 reactions 

and 3,473 metabolites, which forms the final D. magna draft GWMR. 

The contents of the network are then investigated by looking at the coverage of the KEGG 

reference pathway, three core KEGG pathway modules and thirteen KEGG pathways that 

have been highlighted in D. magna toxicology studies. A large amount of the KEGG 

reference pathway is included in the network, with many complete pathways present. The 

three core KEGG modules; TCA cycle, glycolysis pathway and urea cycle are well 

represented in the model, with 100% metabolite coverage and 71% reaction coverage. 

The thirteen literature reported KEGG modules are well represented in terms of 

metabolites, with 84.30% coverage, but have only 54.94% reaction coverage. The 

(Garreta-Lara et al, 2016) study however, which exclusively contributed nine of the 

thirteen pathways, contains no evidence for all of the metabolites in a given pathway 

being present. Only the fact that at least two metabolites that are within the pathways have 

been measured to be effected by the treatments being considered is reported. There is 

therefore no evidence that all of the metabolites within the KEGG pathways have been 

observed in D. magna.  

It is difficult to say how well the model represents the metabolome of D. magna as the 

complete list of expected reactions and metabolites is unknown. It is clear the D. magna 

draft GWMR is missing some reactions from some of the pathways that are expected to 



91 

 

be present as all of the participating metabolites and surrounding reactions are present. 

As discussed in section 3.4, the METRONOME platform would benefit from the 

inclusion of a pathway inference module such as the rule-based inference system used in 

Pathologic (Karp et al, 2011). That being said, the reaction, and especially the metabolite 

coverage of the highlighted pathways is satisfactory. The accuracy of the draft network 

could be improved by iterative time-consuming manual curation and performing Flux 

Balance analysis.  
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5. Computational Hypothesis Generation of Daphnia magna 

Metabolic Response Using Active Modules 

Traditional approaches for analysing transcriptomics datasets to assess metabolic changes 

involve performing enrichment analysis using the KEGG database tools (Wrzodek et al, 

2011) or Gene Ontology (GO) terms (Ashburner et al, 2000) using Gene Set Enrichment 

Analysis (GSEA) (Subramanian et al, 2005). These approaches are limited because they 

rely on inflexible pre-defined metabolic pathways or ontologies that do not necessarily 

represent the highly interconnected nature of the various metabolic networks. 

Active module identification is an alternative approach that uses biological network 

reconstructions to identify hot spots within a network that are not constrained by 

traditional ontologies or pre-defined pathways. The active module identification approach 

involves first scoring a network using transcriptomics data and then heuristically 

searching for highly connected sub-networks, or hot-spots, within the network that have 

substantially different scores compared to the background network. These hot-spots 

reveal the coordinated response of a biological network to the observed changes in gene 

expression in an unbiased way that does not rely on pre-defined pathways. The approach 

can be applied to different types of biological networks such as protein interaction 

networks and metabolic networks.  

The aim of this chapter is to take the draft GWMR of D. magna detailed in Chapter 4 and 

analyse it using the AMBINET algorithm (Bryant et al, 2013b), an extension of the 

original active modules algorithm (Ideker et al, 2002) for use with metabolic networks. 

Two transcriptomic RNA-Seq datasets from the STRESSFLEA (Orsini et al, 2016) 

project are used to score the network to be used by the AMBIENT algorithm. These 
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datasets measure the effect on the gene expression of D. magna when exposed to 

environmentally relevant concentrations of human-induced environmental stressors that 

are relevant in the context of human-driven pollution.  

The result of this is a set of sub-networks, or hot-spots, which contain reactions and 

metabolites representing areas of the D. magna metabolome that are predicted to be 

highly affected by the two conditions tested. This type of analysis has previously not been 

done with Daphnia and uses the AMBIENT algorithm in a different way than previously 

reported. Formerly, AMBIENT is used to investigate known organism behaviour (Bryant 

et al, 2013a; Bryant et al, 2013b), whereas here, unknown organism response to 

environmental stressors is investigated. The extracted sub-networks are subsequently 

expanded to KEGG modules and KEGG pathways that are derived from the active 

modules. The sub-networks, KEGG modules and KEGG pathways form computationally 

generated hypothesis about metabolic response of D. magna to the effects of the induced 

environmental stressors at different layers of granularity. 

5.1. Introduction 

The publication of the Daphnia pulex (Colbourne et al, 2011) and D. magna (Colbourne 

et al, in preparation) genome sequences has enabled RNA-Seq transcriptomic 

measurements of D. magna to be made. These measurements allow for the detailed 

analysis of the links between genes and the environment by measuring the effect on gene 

expression of an environmental stressor. Capitalizing on this, the STRESSFLEA 

consortium, a research network funded by the ESF EUROCORES Programme 

EuroEEFG generated a comprehensive set of RNA-Seq datasets obtained from exposing 

three isolates of D. magna to twelve biotic and abiotic environmental perturbations  

(Orsini et al, 2016). This rich RNA-Seq dataset enabled the identification of early stress 
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responses to ecologically relevant biotic and abiotic environmental perturbations at a 

transcriptomic level. These responses will undoubtedly have a downstream, effect at the 

metabolomics level. 

Several methods exist for interrogating GWMRs based on experimental data. 

Metabolomics data can result in a specific set of metabolites of interest which can then 

be mapped onto the relevant nodes in the network. A number of techniques exist for 

extracting possible paths through the network that link the mapped metabolites of interest. 

These include methods that extract the shortest (Holme, 2009) or lightest (Croes et al, 

2005; Croes et al, 2006) path between metabolites, find paths based on atom mapping 

(Blum & Kohlbacher, 2008) and chemical similarity between side compounds, and a 

method that is based on the PageRank algorithm used by Google for web searching 

(Lemetre et al, 2013). All of these methods require metabolomics data that identifies 

metabolites of interest, which may not always be available. 

Gene Set Enrichment Analysis (GESA) is a method that identifies genes that are over or 

under represented or expressed in a transcriptomics dataset (Subramanian et al, 2005) and 

can be used to extract Gene Ontology (Ashburner et al, 2000) (GO) terms (Lemetre et al, 

2013). These GO terms can act as a functional annotation and then be mapped to 

metabolic pathways or processes, thus highlighting area of a metabolome that should be 

affected by the varying gene expression observed in the transcriptomics data. These 

highlighted areas can be mapped onto a GWMR and then analysed using the methods 

previously outlined. 

Transcriptomics data can also be directly integrated with GWMRs. A number of methods 

exist for improving the prediction of flux-based analyses (Brandes et al, 2012; Colijn et 
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al, 2009; van Berlo et al, 2011), metabolic engineering of microbial cells (Kim & Reed, 

2012; Lee et al, 2012) and to generate context (or tissue) specific metabolic models based 

on gene expression patterns (Agren et al, 2012; Wang et al, 2012; Zur et al, 2010). 

The AMBIENT algorithm (Bryant et al, 2013b), an extension to the active modules 

approach (Ideker et al, 2002), uses a search heuristic to identify sub-networks within a 

metabolic reconstruction that are significantly affected by a change in gene expression. It 

works by linking the gene expression data to reactions in the GWMR based on the 

enzymes or proteins that specific reactions are linked to (see section 5.2.1).  

Here the AMBIENT algorithm, is used to identify sub-modules within the D. magna draft 

GWMR that are effected by two of the conditions studied in the STRESSFLEA project. 

KEGG pathway analysis is performed using the metabolites and reactions in the 

AMBIENT active modules. The resulting set of KEGG modules are predicted to be 

effected by the environmental stressors, therefore forming a computationally generated 

hypothesis of the effect on the D. magna metabolome. 

5.2. Active module identification 

The active module identification approach, is a generalised method for searching a 

network to find connected sets of nodes that are deemed to be highly active under a certain 

condition (Ideker et al, 2002). The approach was originally used with protein interaction 

networks to find active modules representing connected sets of genes with higher levels 

of differential expression than the overall network.  

One of the most popular approaches to identify active modules is the significant area 

search method, which consists of three generalised steps (Figure 5.1). The first step scores 

the nodes and/or edges of the network based on some biological data such as 

transcriptomic data. The second step is to formulate a scoring function, which scores sub 
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networks so that the overall activity of the contained nodes and their interactions is 

represented. Finally a search strategy is used to optimise the scoring function and identify 

sub networks which become the active modules (Mitra et al, 2013).  

A number of significant area search based methods for active module identification exist 

(Cabusora et al, 2005; Chowdhury & Koyuturk, 2010; Dao et al, 2011; Dittrich et al, 

2008; Fortney et al, 2010; Huang & Fraenkel, 2009; Nacu et al, 2007; Scott et al, 2006; 

Segal et al, 2003; Sohler et al, 2004) which are all based on the procedure described by 

(Ideker et al, 2002). Due to the NP-hard nature of searching for active modules, heuristic 

search techniques are usually employed although deterministic methods have also been 

utilised (Dittrich et al, 2008; Qiu et al, 2010) including linear programming (Backes et al, 

2012; Zhao et al, 2008). The original algorithm uses simulated annealing as its search 

heuristic (Ideker et al, 2002), but greedy search (Chuang et al, 2007; Hwang & Park, 

2009; Nacu et al, 2007; Rajagopalan & Agarwal, 2005) and genetic algorithms (Klammer 

et al, 2010) have also been used. 

 

Figure 5.1: The key steps in the generalised significant area search based approach to active module 

identification and how AMBIENT maps to this framework. 
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5.2.1. AMBIENT 

The AMBIENT (Active Modules for BIpartitE NeTworks.) algorithm (Bryant et al, 

2013b) is an extension of the original active modules algorithm, that is specifically 

designed for metabolic networks represented as bipartite graphs. Bipartite graphs are 

where the network has two classes of nodes, in this case metabolite and reaction nodes. 

AMBIENT is a significant area search based algorithm and as such follows the three key 

steps (Figure 5.1). 

Network scoring 

In the current algorithm, only reaction nodes are scored based on some input data. Each 

reaction node in a metabolic reconstruction is linked to at least one enzymatic gene. 

Transcriptomic fold change data for these enzymatic genes can be used to score the 

reaction nodes according to the rules outlined in Table 5.1. If a reaction is linked to a 

single gene, the log fold change of the transcript corresponding to that gene is used. If a 

reaction is linked to a single enzyme and to multiple genes, the mean of the corresponding 

log fold changes is used. If multiple enzymes are linked to a reaction, the mean of each 

of the enzyme log fold changes is used  

Metabolite nodes can also be scored using fold change data. However if this is not 

available, metabolite nodes are scored based on their degree. The degree of a metabolite 

node corresponds to how many reactions the metabolite is either a substrate or product 

of. Scoring metabolite nodes using the degree means that highly connected metabolites 

that participate in a number of metabolic processes are deemed more important. There is 

a danger to this approach however, as some metabolites like water or ATP are involved 

in an extremely large number of reactions, including them active modules can result in 

biologically meaningless active modules. These metabolites are known as currency 
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metabolites, and AMBIENT applies a penalty based on the degree of metabolites in active 

modules, thus favouring modules that do not contain very highly connected metabolites. 

Table 5.1: Rules for scoring reaction nodes using transcriptomic data. 

Reaction catalysed by Score 

Linked to a single gene Log fold change of transcript 

Single enzyme (multiple genes) Mean of log fold changes 

Multiple enzymes Mean of enzyme log fold changes 

 

Using this scoring mechanism will result in AMBIENT finding find up regulated 

modules. Down regulated modules can also be found, which is achieved by multiplying 

the reaction scores by -1. This has the effect giving the most down regulated reaction the 

highest score. 

Scoring function 

A module m represents a connected subgraph within the bipartite graph as a whole. Each 

module consists of r m reactions and c m metabolites. A module is assigned a score using 

equation (5-1). 

𝑆(𝑚) = ln⁡(𝑞)(∑𝑠(𝑟𝑖
𝑚)

𝐼

𝑖

− ⁡𝛼∑𝑤(𝑐𝑗
𝑚)

𝐽

𝑗

) 

(5-1) 

Where 𝐼 is the number of reactions and 𝐽 is the number of metabolites in module 𝑚, 𝑞 =

⁡𝑟𝑚 +⁡𝑐𝑚 or the total nodes in the module m, 𝑠(𝑟𝑖
𝑚) is the score of the reaction 𝑖 and 

𝑤(𝑐𝑗
𝑚) is the degree of the metabolite 𝑗 in the module⁡𝑚. The result of the second term 

being subtracted from the reaction scores is that modules that contain currency 

metabolites are penalised.  𝛼 is a constant defined as 
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𝛼 = ⁡
|𝑐| ∑ 𝑠(𝑟𝑖

+)𝐼
𝑖

|𝑟+| ∑ 𝑤(𝑐𝑗)
𝐽
𝑗

 

(5-2) 

Where 𝑟+is all reactions with a positive score. The 𝛼 term equates to the mean score of 

all positively scored reactions divided by the mean metabolite score across the complete 

network. This has the effect of ensuring that modules are not restricted by the weights of 

metabolite nodes and does not also generate large and biologically meaningless modules, 

essentially balancing the penalisation of currency metabolites but at the same time still 

favouring metabolites that have higher than average degree. The ln⁡(𝑞) term is added to 

favour large modules whilst at the same time not generating exceptionally large and 

therefore biologically meaningless modules, as the ln term saturates the overall module 

score as the size of the module increases. 

Search strategy 

As with the original active modules algorithm, simulated annealing is used as the search 

algorithm for AMBIENT. Simulated annealing is a search heuristic that mimics the 

atomic movement in a material that is heated and then cooled in a controlling manner. 

The algorithm is outlined in Algorithm 5.1. In the case of AMBIENT, each annealing step 

toggles a certain amount of neighbouring edges of the active modules rather than 

neighbouring nodes. This modification is made due to the bipartite representation of 

metabolic reconstructions. 
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Algorithm 5.1: The AMBINET simulated annealing algorithm. 

t represents the amount of edges that are toggled during a toggle step. T represents the 

effective temperature for annealing, which describes the acceptance of negatively scoring 

steps. The values of t init and T init are determined stochastically from the network (Bryant 

et al, 2013b). The temperature reduction criterion referenced in step 8 of the algorithm is 

set so that annealing steps occur until the sum of scores of the modules over does not 

change by at least 5%. If the temperature reduction criterion is met before the maximum 

number of annealing steps is reached, the values for t and T are multiplied by 0.9 and the 

annealing procedure resumes. This has the effect of reducing the amount of edges that are 

toggled during each annealing step, and relaxing the acceptance criteria in step 7. 

5.3. D. magna active module identification using AMBIENT 

The AMBIENT algorithm is used to find active modules in the draft GWMR of D. magna 

described in Chapter 4 based upon the transcriptomic data from the STRESSFLEA 

datasets (Orsini et al, 2016). The STRESSFLEA project uses D. magna as a model 

organism to investigate mechanisms of adaptation to environmental stressors using 

genomics tools. This involved exposing D. magna populations to twelve human induced 
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biotic and abiotic stressors. Transcriptomic RNA-Seq datasets were produced that 

measured the effect on gene expression that each of the twelve exposures had.  

RNA-Seq fold change data from two of the twelve original conditions is used, Pb 

(278µg/L) and Carbaryl (8 µg/L). These conditions are chosen as the analysis of the gene 

expression data sets showed that they had some of the highest number of well annotated 

genes among the twelve data sets (Orsini et al, 2018), and that they are also ecologically 

relevant as they are common pollutants. Pb is a common by-product of heavy industry 

and Carbaryl is a once common highly toxic agricultural insecticide associated with a 

number of diseases including cancer and diabetes (Popovska-Gorevski et al, 2017). Both 

of these human-induced environmental stressors have had significant environmental 

impact and can be found in freshwater systems across the planet.   

5.3.1. Results 

For each stressor, the AMBIENT algorithm is run with the maximum annealing steps set 

to 100,000 and the number of empirical significance tests set to 10,000. The algorithm is 

executed twice for each condition, once for detecting up regulated active modules and 

once for detecting down regulated active modules. For the purpose of this study, the up 

and down regulated active modules are combined. Table 5.2 summarises the active 

modules found using AMBIENT. Figure 5.2and Figure 5.3 visualise the largest Carbaryl 

and Lead AMBIENT modules. Appendix A contains visualisations and details of the 

metabolites contained for all generated AMBIENT modules. 
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Table 5.2: Summary of AMBIENT active module identification on the D. magna GWMR and two 

STRESSFLEA transcriptomic data sets. 

Condition Module # # Reactions # Metabolites 

Carbaryl 1 21 19 

Carbaryl 2 6 6 

Carbaryl 3 5 5 

Carbaryl 4 3 3 

Carbaryl 5 2 2 

Carbaryl 6 1 2 

Carbaryl 7 119 33 

Carbaryl 8 11 12 

Carbaryl 9 7 7 

Carbaryl 10 4 5 

Carbaryl 11 6 7 

Carbaryl 12 4 5 

Carbaryl 13 3 4 

Carbaryl 14 2 2 

Lead 1 129 47 

Lead 2 5 11 

Lead 3 12 3 

Lead 4 12 6 

Lead 5 6 3 

Lead 6 1 4 
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Figure 5.2: Visualisation of the Carbaryl active module #7. Generated using MetExploreViz (Chazalviel 

et al, 2017). 
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Figure 5.3: Visualisation of the Lead active module #1. Generated using MetExploreViz (Chazalviel et al, 

2017). 

5.3.2. KEGG analysis 

The identified active modules represent previously unknown areas of the D. magna 

metabolome that are predicted to be affected by the Lead and Carbaryl exposures. Chapter 

7 presents a metabolomics study that seeks to validate these predictions experimentally, 

as such, the predictions need to be placed into a context that can be validated 

experimentally.  

A total of 178 metabolites are contained within the identified active modules. Metabolite 

annotation is a significant challenge for metabolomics studies with even the most 
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advanced techniques resulting in low percentages of the measured signals being annotated 

(Benton et al, 2015; Stanstrup et al, 2013; Tautenhahn et al, 2012). In anticipation of 

potential low annotation rates from the metabolomics dataset, the KEGG collection of 

databases and software tools (Kanehisa et al, 2004) is used to extrapolate the contents of 

the active modules to different levels. 

The KEGG pathways database contain a large collection of metabolic pathways that 

contain metabolites and reactions. Each KEGG pathway consists of a number of KEGG 

modules, and also belongs to an area of metabolism. Figure 5.4 shows what this hierarchal 

structure looks like. The metabolites and reactions contained within the identified active 

modules are used along with the KEGG mapper software (Kanehisa, 2013) to identify 

KEGG modules, pathways and areas of metabolism have some representation in the 

identified active modules. The metabolomics datasets generated during the validation 

study will be analysed in the same way, to assess the effectiveness of the computationally 

generated hypotheses. 

 
Figure 5.4: Relationship between areas of metabolism, KEGG Pathways and KEGG Modules. 
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For each of the stressors, the reactions and metabolites from the identified active modules 

are passed to KEGG mapper. KEGG modules that contain at least two metabolites or 

reactions represented in the detected AMBIENT modules are extracted. KEGG pathways 

that contain any of these modules and areas of metabolism to which these KEGG 

pathways belong are also extracted. 

5.3.2.1. Carbaryl 

A total of 14 AMBIENT active modules are identified using the Carbaryl STRESSFLEA 

transcriptomic data, containing 193 reactions and 113 metabolites. In total 18 KEGG 

modules were found to contain at least two metabolites or reactions in the AMBIENT 

active modules. The coverage of these KEGG modules in terms of reactions and 

metabolites for the D. magna draft GWMR and AMBIENT active modules is shown in 

Table 5.3. 
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Table 5.3: KEGG modules that contain at least two metabolite or reactions in the AMBIENT active 

modules for the D. magna draft GWMR scored with the Carbaryl STRESSFLEA dataset. The overall 

coverage of each KEGG module in the D. magna draft GWMR and the coverage of the KEGG module in 

the AMBIENT active modules is shown. 

Module GWMR 

Coverage 

AMBIENT 

module coverage 

M00001 Glycolysis (Embden-Meyerhof pathway), 

glucose => pyruvate 

100.00% 9.09% 

M00004 Pentose phosphate pathway (Pentose 

phosphate cycle) 

100.00% 18.18% 

M00014 Glucuronate pathway (uronate pathway) 90.91% 27.27% 

M00066 Lactosylceramide biosynthesis 100.00% 66.67% 

M00068 Glycosphingolipid biosynthesis, globo-

series, LacCer => Gb4Cer 

100.00% 33.33% 

M00073 N-glycan precursor trimming 100.00% 33.33% 

M00078 Heparan sulfate degradation 70.00% 10.00% 

M00104 Bile acid biosynthesis, cholesterol => 

cholate/chenodeoxycholate 

100.00% 21.43% 

M00114 Ascorbate biosynthesis, plants, glucose-6P 

=> ascorbate 

80.00% 10.00% 

M00116 Menaquinone biosynthesis, chorismate => 

menaquinone 

47.37% 26.32% 

M00117 Ubiquinone biosynthesis, prokaryotes, 

chorismate => ubiquinone 

36.84% 21.05% 

M00128 Ubiquinone biosynthesis, eukaryotes, 4-

hydroxybenzoate => ubiquinone 

52.94% 23.53% 

M00129 Ascorbate biosynthesis, animals, glucose-1P 

=> ascorbate 

88.89% 22.22% 

M00131 Inositol phosphate metabolism, 

Ins(1,3,4,5)P4 => Ins(1,3,4)P3 => myo-

inositol 

100.00% 20.00% 

M00372 Abscisic acid biosynthesis, beta-carotene => 

abscisic acid 

18.18% 9.09% 

M00549 Nucleotide sugar biosynthesis, glucose => 

UDP-glucose 

100.00% 25.00% 

M00563 Methanogenesis, 

methylamine/dimethylamine/trimethylamine 

=> methane 

28.57% 28.57% 

M00565 Trehalose biosynthesis, D-glucose 1P => 

trehalose 

85.71% 57.15% 

 

Table 5.4 shows the KEGG pathways and areas of metabolism that are predicted to be 

affected by the Carbaryl treatment. 15 KEGG pathways that contain at least one of the 18 

identified KEGG modules and at least two metabolites or reactions from the AMBIENT 

active modules are identified. 6 areas of metabolism that the 15 KEGG pathways belong 
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to are also identified. Visualisations of these 15 KEGG pathways are shown in Appendix 

B. 

Table 5.4: KEGG pathways that contain at least contain at least one of the 18 identified KEGG modules 

and at least two metabolites or reactions from the AMBIENT active modules for the D. magna draft 

GWMR scored with the Carbaryl STRESSFLEA dataset. The area of metabolism that each pathway 

belongs to is also identified. 

KEGG Pathway Area of Metabolism 

map00010: Glycolysis / Gluconeogenesis Carbohydrate metabolism 

map00030: Pentose phosphate pathway Carbohydrate metabolism 

map00040: Pentose and glucuronate interconversions Carbohydrate metabolism 

map00053: Ascorbate and aldarate metabolism Carbohydrate metabolism 

map00120: Primary bile acid biosynthesis Lipid metabolism 

map00130: Ubiquinone and other terpenoid-quinone 

biosynthesis 

Metabolism of cofactors and 

vitamins 

map00500: Starch and sucrose metabolism Carbohydrate metabolism 

map00510: N-Glycan biosynthesis Glycan biosynthesis and 

metabolism 

map00520: Amino sugar and nucleotide sugar 

metabolism 

Carbohydrate metabolism 

map00531: Glycosaminoglycan degradation Glycan biosynthesis and 

metabolism 

map00562: Inositol phosphate metabolism Carbohydrate metabolism 

map00600: Sphingolipid metabolism Lipid metabolism 

map00603: Glycosphingolipid biosynthesis - globo 

and isoglobo series 

Glycan biosynthesis and 

metabolism 

map00680: Methane metabolism Energy metabolism 

map01200: Carbon metabolism Carbon metabolism 
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5.3.2.2. Lead 

A total of 6 AMBIENT active modules are identified using the Lead STRESSFLEA 

transcriptomic data, containing 165 reactions and 65 metabolites. In total 10 KEGG 

modules were found to contain at least two metabolites or reactions in the AMBIENT 

active modules. The coverage of these KEGG modules in terms of reactions and 

metabolites for the D. magna draft GWMR and AMBIENT active modules is shown in 

Table 5.5. 

Table 5.5: KEGG modules that contain at least two metabolite or reactions in the AMBIENT active 

modules for the D. magna draft GWMR scored with the Lead STRESSFLEA dataset. The overall 

coverage of each KEGG module in the D. magna draft GWMR and the coverage of the KEGG module in 

the AMBIENT active modules is shown. 

Module GWMR 

Coverage 

AMBIENT 

module coverage 

M00028 Ornithine biosynthesis, glutamate => 

ornithine 

50.00% 33.33% 

M00029 Urea cycle 92.86% 21.43% 

M00057 Glycosaminoglycan biosynthesis, 

linkage tetrasaccharide 

100.00% 44.44% 

M00117 Ubiquinone biosynthesis, prokaryotes, 

chorismate => ubiquinone 

36.84% 21.05% 

M00128 Ubiquinone biosynthesis, eukaryotes, 

4-hydroxybenzoate => ubiquinone 

52.94% 23.53% 

M00130 Inositol phosphate metabolism, PI=> 

PIP2 => Ins(1,4,5)P3 => 

Ins(1,3,4,5)P4 

100.00% 33.33% 

M00134 Polyamine biosynthesis, arginine => 

ornithine => putrescine 

100.00% 60.00% 

M00142 NADH:ubiquinone oxidoreductase, 

mitochondria 

100.00% 33.33% 

M00144 NADH:quinone oxidoreductase, 

prokaryotes 

100.00% 33.33% 

M00151 Cytochrome bc1 complex respiratory 

unit 

100.00% 50.00% 

 

Table 5.6 shows the KEGG pathways and areas of metabolism that are predicted to be 

affected by the Lead treatment. 8 KEGG pathways that contain at least one of the 10 
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identified KEGG modules and at least two metabolites or reactions from the AMBIENT 

active modules are identified. 5 areas of metabolism that the 8 KEGG pathways belong 

to are also identified. Visualisations of these 8 KEGG pathways are shown in Appendix 

B. 

Table 5.6: KEGG pathways that contain at least contain at least one of the 10 identified KEGG modules 

and at least two metabolites or reactions from the AMBIENT active modules for the D. magna draft 

GWMR scored with the Lead STRESSFLEA dataset. The area of metabolism that each pathway belongs 

to is also identified. 

KEGG Pathway Area of Metabolism 

map00130: Ubiquinone and other terpenoid-

quinone biosynthesis 

Metabolism of cofactors and 

vitamins 

map00220: Arginine biosynthesis Amino acid metabolism 

map00330: Arginine and proline metabolism Amino acid metabolism 

map00480: Glutathione metabolism Metabolism of other amino 

acids 

map00532: Glycosaminoglycan biosynthesis - 

chondroitin sulfate / dermatan sulfate 

Glycan biosynthesis and 

metabolism 

map00562: Inositol phosphate metabolism Carbohydrate metabolism 

map01210: 2-Oxocarboxylic acid metabolism 2-Oxocarboxylic acid 

metabolism 

map01230: Biosynthesis of amino acids Amino acid metabolism 
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5.4.  Discussion and conclusion 

The AMBIENT active modules algorithm (Bryant et al, 2013b) is used to identify sub-

modules within the D. magna draft GWMR (presented in Chapter 4) using two of the 

transcriptomic data sets from the STRESSFLEA consortium project (Orsini et al, 2016). 

The two environmental stressors chosen, Carbaryl and Lead, are human induced through 

their use in industry and agriculture and have had significant effects on ecological 

systems. AMBIENT active modules identify several metabolites and reactions that are 

predicted to be affected by the selected environmental stressors. A total of 178 

metabolites and 358 reactions make up these predictions. KEGG pathway analysis using 

these metabolites and reactions reveals a number of KEGG modules that are predicted to 

be affected. These KEGG modules are mapped to KEGG pathways which in turn belong 

to wider areas of metabolism (Figure 5.4). 

Table 5.7: Summary of the computationally generated hypotheses. The contents of AMBIENT modules 

are used to derive KEGG modules, pathways and areas of metabolism. These form predictions of how the 

D. magna metabolome is affected at different levels of granularity. 

 Carbaryl Lead 

AMBIENT Modules 14 6 

KEGG Modules 18 10 

KEGG Pathways 15 8 

Areas of Metabolism 6 5 

 

Table 5.7 summarises the number of KEGG modules, pathways and areas of metabolism 

that are predicted to be affected by the Carbaryl and Lead treatments. These predictions 

form computationally generated hypotheses about areas of the D. magna metabolome that 

are affected under the tested conditions. There are three levels that can be analysed; areas 

of metabolism, KEGG pathways and KEGG modules, each with increasing granularity.  
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It is worth noting that there are limitations to using transcriptomics data in the way in 

which it used by the AMBIENT algorithm. Transcriptomics data measures gene 

expression by looking at the abundance of mRNA, it does not measure protein abundance 

directly. The AMBIENT method assumes that if a gene is highly expressed, then the 

relevant enzymatic proteins are more active. This assumption may not always hold true 

(Horgan & Kenny, 2011). Ideally a proteomics study should also take place to validate 

these assumptions. This would however add significant cost and complication to any 

study (Petricoin et al, 2002a; Petricoin et al, 2002b). 

An alternative approach would be to use GSEA based pathway enrichment. This however 

relies heavily on GO terms and on rigid pre-defined metabolic pathways or ontologies 

that do not necessarily represent the highly interconnected nature of the various metabolic 

networks. It does not leverage a key benefit of representing a metabolome using a 

GWMR, that pre-defined pathways are not imposed on the network. The technique used 

by AMBIENT can reveal the coordinated response of a biological network to the observed 

changes in gene expression in an unbiased way. 

Chapter 7 details a metabolomics study that seeks to validate these predictions 

experimentally.  
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6. Closed-loop Optimisation of Liquid-Chromatography Mass 

Spectrometry 

The preceding chapters in this thesis detail the draft GWMR of D. magna and it use for a 

computational toxicology study to predict the unknown metabolic response of D. magna 

to two environmental stressors. This resulted in computationally generated hypotheses 

that predict the effect of the stressors on the D. magna metabolome. To validate this 

approach a metabolomics study will be carried out (Chapter 7 ), and as one of the principal 

analytical technique for metabolomics, LC-MS will be used to make the metabolomics 

measurements. 

Standard untargeted LC-MS methods exist that can be applied to this study, however in 

this case a LC-MS method that is optimised to detect as many of the metabolites that are 

predicted to be effected would be beneficial. LC-MS method development is not a trivial 

task and significant time and expertise. In this chapter, the MUSCLE (Multi-platform 

Unbiased optimisation of Spectrometry via Closed Loop Experimentation) software 

platform for automated closed-loop optimisation of LC-MS is presented. MUSCLE is 

designed in a modular way so that automated closed loop optimisation can be applied to 

targeted and untargeted LC-MS method optimisation across a range of LC-MS systems 

from any instrument manufacturer. MUSCLE can also be configured so that different 

optimisation algorithms can be applied. A modified version of the PESA-II algorithm is 

applied, and an extension PESA-II-FS is presented and also applied. 

MUSCLE is used to optimise a LC-MS method for use in the D. magna computational 

toxicology study presented in this thesis using a semi-targeted optimisation approach. 
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MUSCLE is also used to optimise several LC-MS methods for both targeted and 

untargeted analyses. 

6.1. Introduction 

LC-MS is widely used in analytical laboratories for measuring a range of (bio)chemicals 

and as the principal technology for metabolomics and proteomics. There are two distinct 

types of mass spectrometry based analytical approaches, targeted and untargeted (Figure 

6.1). Targeted analyses measure predefined number of chemically characterised and 

biochemically annotated molecules (Roberts et al, 2012), whereas untargeted analyses 

measure any molecule that can be ionized within a defined range of m/z values 

(Vinayavekhin & Saghatelian, 2010). Each approach has advantages and limitations. A 

targeted approach provides better quantification of known molecules at lower detection 

limits but does not allow for the discovery of unknown compounds. An untargeted 

approach provides a more comprehensive global measurement of the molecules within a 

sample but requires far more intricate informatics approaches to interpret the results 

(Menni et al, 2017).  
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Regardless of the LC-MS approach employed, development of new LC-MS methods or 

the transfer of existing methods between instruments and laboratories is time consuming 

and challenging. Simply put, this is because of the large number of LC and MS parameters 

that require optimisation. Varying all the possible parameters systematically to optimise 

the analysis of selected molecules is generally regarded as impossible because of the large 

search space created by the possible values for LC and MS parameters. 

Figure 6.1: (Menni et al, 2017) Differences between targeted and untargeted metabolomics using MS. For 

targeted analysis, the metabolites of interest are predefined, and the MS is configured to measure these 

metabolites only. For untargeted analysis, all metabolites that are contained within the sample are 

measured. Untargeted analysis requires for the measured peaks to be assigned to metabolites. 
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The traditional approach to achieving an LC-MS method involves a MS operator either 

fine tuning an existing method to suit the current set of needs, or developing a new method 

based on their expertise and experience with the analytical platform and the type of 

sample being used (Crowson & Beardah, 2001; Gassner & Weyermann, 2016; Koster et 

al, 2014; Vatansever et al, 2017; Widmer et al, 2002; Zelena et al, 2009; Zonaras et al, 

2016). This inevitably introduces a human induced bias as MS operators draw from their 

past experiences when designing new LC-MS methods. 

The problem of LC-MS method optimisation can be formulated as a multi-objective 

heuristic search problem that is suitable for optimisation using an evolutionary search 

based closed-loop optimisation approach (O'Hagan et al, 2005). Previous 

implementations of closed-loop optimisation of MS methods (both LC-MS and Gas 

Chromatography Mass Spectrometry (GC-MS)) were for a specific manufacturer’s 

analytical platform (O'Hagan et al, 2005; O'Hagan et al, 2007; Zelena et al, 2009). 

Extending this to further instruments would require extensive reprogramming, therefore 

significantly limiting the deployability and suitability of this approach for use with the 

wide range of LC-MS analytical platforms.  

Here the software platform MUSCLE (Multi-platform Unbiased optimisation of 

Spectrometry via Closed Loop Experimentation) (Bradbury et al, 2015) for fully 

automated closed-loop optimisation of LC-MS method development is presented. 

MUSCLE is completely instrument-manufacturer independent and can be used to 

optimise both targeted and untargeted analyses. MUSCLE is designed in a modular way 

so that different data processing pipelines, objective functions and algorithms can be used 

depending on the type of analysis, the analytical platform used and the requirements of 

the study.  The application of MUSCLE is demonstrated across a range of LC-MS 
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platforms for both targeted and untargeted analyses. A method optimisation using a 

hybrid of these analysis types (semi-targeted) is also presented. In each instance 

MUSCLE optimised methods provide an improvement on manually optimised methods. 

6.2. Methods 

MUSCLE is a standalone desktop application written in the Java programming language. 

User-defined Visual Scripts imitate the keyboard and mouse commands that an analyst 

would use to manually change parameters and launch an LC-MS/MS analysis, enabling 

MUSCLE to control multiple LC and MS parameters on any instrument (Section 6.2.1). 

Once an automated optimisation is set up using the software, the closed-loop optimisation 

process begins (Figure 6.2). A multi-objective genetic algorithm (MOGA) optimises the 

values of the LC and MS parameters, based upon the values of user-defined objective 

functions that measure, e.g., analytical sensitivity and analysis time (Section 6.2.3). The 

data processing is handled in a modular way so that it can be customised depending on 

the LC-MS platform used and the type of analysis (Section 6.2.2). 

Several components need to be configured to run a MUSCLE optimisation (Figure 6.3). 

An optimisation consists of an experiment and a configuration. An experiment describes 

the optimisation parameters and the mechanisms for changing the values using visual 

scripts (Section 6.2.1). Each experiment contains at least one visual script, which defines 

a set of keyboard and mouse commands used to enter instrument parameters. An 

experiment also contains parameter values for each optimisation parameter defined in a 

visual script. For each optimisation parameter, a minimum, maximum and step value is 

defined. These are used to define a possible set of discrete values that can be used for any 

of the optimisation parameters. For example, if for an optimisation parameter the 
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minimum value is 2.0, the maximum 3.0 and the step 0.5, the possible values are 2.0, 2.5 

and 3.0. 

 

Figure 6.2: MUSCLE closed-loop optimisation process. The genetic algorithm decides on a value for 

each of the LC and MS parameters which forms the proposed method. The proposed method is then input 

into the instrument software and the LC-MS data acquisition is initiated using visual scripting (Section 

6.2.1). The output data is then processed (Section 6.2.2) and assessed based on pre-defined objective 

functions (Section 6.2.3). The objective value information is passed back into the genetic algorithm and 

the process repeats until the desired number of LC-MS injections are complete. 

 

A configuration defines the optimisation algorithm and objective functions along with 

how the output data for each LC-MS injection is processed. It includes an algorithm, a set 

of objective measures and a data processing configuration. The algorithm defines which 

optimisation algorithm is being used along with some algorithm specific parameters e.g. 

crossover and mutation rates. Up to three objective measures are selected for each 

optimisation (Section 6.2.3). The data processing configuration (Section 6.2.2) defines 

which type of analysis (e.g. targeted or untargeted) is being used along with some analysis 

type specific settings such as hyper-parameter values or paths to .bat files. 
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Figure 6.3: MUSCLE optimisation architecture. An optimisation consists of an experiment and a 

configuration. The experiment defines the optimisation parameters and the mechanisms for changing the 

corresponding values using the instrument software. A configuration defines the optimisation algorithm 

and objective functions along with how the output data for each LC-MS injection is processed. 

 

6.2.1. Visual Scripting 

To make MUSCLE LC-MS platform independent, a visual scripting approach is used. 

This is where there is no direct communications link between the application and the 

software that controls the LC-MS instrument. Instead visual scripting enables direct 

visual references to be made to objects displayed on the screen, e.g. a File menu item or 

button, and allows MUSCLE to mimic the keyboard and mouse actions that a user would 

make when operating an LC-MS instrument. The java library Sikuli (Yeh et al, 2009) is 

used, providing a powerful and flexible API to allow users to create visual scripts that 
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can: left/double/right click on selected objects on the screen, enter text into text fields, 

and press keyboard keys e.g. enter and backspace.  

A wrapper around Sikuli allows for generation of visual scripts as a set of user defined 

commands (Table 6.1) that either enter LC or MS parameters or initiate LC-MS runs 

automatically. Click, double click and right click commands are defined by the user by 

selecting a region of the computer screen. The selected region is saved as an image and 

when the visual script is run, the region of the screen that matches the image is found, the 

mouse is moved to that region and then the click is performed. Figure 6.4 shows how the 

screen region for a click-based command is defined. 

Figure 6.5 shows a visual script for changing the LC gradient parameters for an 

optimisation (taken from optimisation described in Section 6.3.3), and Figure 6.6 shows 

how the minimum, maximum and step values for optimisation parameters are defined. 

Table 6.1: List of possible visual script commands. 

Command Type Description 

Click Click a region on the screen defined by a user selected image. 

Double Click Double click a region on the screen defined by a user selected 

image. 

Right Click Right click a region on the screen defined by a user selected image. 

Enter Text Enter some user defined text. 

Press a Key Press a keyboard key e.g. Enter, tab or delete. 

Enter Value Enter a value for an optimised parameter. The possible values that 

can be entered are defined in the experiment configuration. 

 



121 

 

 
 

Figure 6.4: For click based commands, the user selects a region of the screen which is saved as an image. 

When the command is run, the centre of that image is found (indicated by the red cross) and then the click 

is performed. 

 

 
 

Figure 6.5: Screenshot from MUSCLE software showing a visual script for changing optimisation 

parameters associated with a LC gradient (taken from the experiment in Section 6.3.3). The commands 

table lists the commands in the visual script, e.g. click commands and press-a-key commands. Enter value 

commands relate to optimisation parameters and must have minimum, maximum and step values defined 

for them for any experiment using the visual script (Figure 6.6). 
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Figure 6.6: Screenshot from MUSCLE software showing how minimum, maximum and step values are 

defined for enter value commands in visual scripts. 

 

This visual scripting approach is chosen as otherwise there would need to be 

programmatic access to the software working that controls the LC-MS instruments. This 

would require extensive customisation for each new instrument that is used. Visual 

scripting provides a solution that works in the same way for all instruments and is 

therefore future proof.  

The main limitation of using this visual scripting approach is that it relies on the 

generation of visual scripts which look to identify pre-defined images that should be 

visible on a computer screen. If these images are not visible on the screen e.g. if a message 

box appears, then the visual script cannot continue. The visual scripts must be developed 

meticulously to avoid any such issues occurring. Despite this limitation, the visual 

scripting approach is preferred as the alternative would be to gain programmatic access 

to the instrument software. This would limit the ability of MUSCLE to be used on any 
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analytical platform, as different programmatic access to each instrument would be 

required and would likely need to be configured in a different way. 

6.2.2. Data Processing 

Processing of LC-MS data is handled in a modular fashion. This allows the MUSCLE 

platform to be used for any type of LC-MS analysis with little modification. The heuristic 

search algorithm used for optimisation requires a mechanism for assessing the quality of 

each physical closed loop experiment, in this case an LC-MS run. This is achieved using 

the objective functions outlined in section 6.2.3. The data processing module acts as an 

intermediary between the LC-MS output data (hereby referred to as raw data) and the 

objective functions module. 

The data processing module has two components. The first component converts the raw 

data to an mzML file. The mzML format is an open-source file format for mass 

spectrometry data that is platform independent (Martens et al, 2011). File conversion is 

carried out using the msConvert application, which is part of the ProteoWizard toolkit 

(Chambers et al, 2012). msConvert has several program arguments that may be required 

depending on the type of analysis and the analytical platform being used. These can be 

set by modifying a .bat file, which runs the file conversion after each LC-MS run. 

Conversion to mzML is carried out for both targeted and untargeted analysis. 

The second component of the data processing module is responsible for analysing the 

mzML file and assessing the quality of the corresponding chromatogram. The approach 

used is different depending on the type of analysis but the overall objective is the same, 

to detect the features present within the injected sample along with some information 

about them e.g. retention time and intensity.  
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6.2.2.1. Targeted Analysis 

For targeted analysis, the MS instrument is configured to monitor selected transitions 

from a precursor ion to a product ion arising through fragmentation. This acquisition 

method is termed Selected Reaction Monitoring (SRM) and results in a signal being 

generated for each of the selected product ions in the mzML file, with a feature being 

represented as a peak within a signal. The detection of features thus becomes a two-

dimensional peak detection problem for a series of signals, as opposed to untargeted 

analysis, whereby the signals contained within the mzML file represent a three-

dimensional surface in which to detect peaks.  

A peak detection algorithm (Algorithm 6.1), is implemented to detect features within a 

mzML file containing multiple SRM signals.  

 
Algorithm 6.1: Targeted peak detection algorithm. 

 

The first part of each signal is analysed to derive a value for a noise threshold. Each peak 

must be at least higher than this threshold to be considered valid. The noise threshold is 

simply the median intensity value for the first 𝑥 values in the signal. 𝑥 is a free parameter 
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to be set but is typically set so that approximately the first half of a minute is checked. 

What value constitutes half of a minute of signal depends on the instrument and its scan 

rate. 

The first derivate of the signal (𝑓) is then calculated, this is as the points at which the 

derived signal crosses the x axis, so called zero-crossing points, correspond to a local 

maxima and therefore the top of a peak (Nguyen et al, 2010). A moving average filter 

(Shumway & Stoffer, 2010) is applied to smooth 𝑓. The formula shown in (1) is applied 

three times to the signal, with each point in the signal being replaced by the average of 𝑀 

adjacent points. This has the effect of removing very small peaks in the signal that are a 

result of noise (Figure 6.7).  

𝑦(𝑖) = ⁡
1

𝑀
⁡ ∑ 𝑥(𝑖 + 𝑗)

𝑀
2

𝑗=−
𝑀
2

 

(1) 
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Figure 6.7: Effect of smoothing using moving average filter. Figure a demonstrates the effect of each 

application of the smoothing filter. The original signal is shown is black, the first pass of the filter is in 

blue, the second green and the third red. Figure b shows a targeted signal that has had the moving average 

filter applied three times. The red line is the original signal, and the black is the smoothed signal. 

 

The zero crossing points are then found for the smoothed first derivative signal, a zero-

crossing point corresponds to the top of a peak. The slope around the zero-crossing point 

is then checked to see if it is higher than a pre-defined slope threshold. This is as ideally 

an LC-MS peak should be sharp and not elongated (Zhang et al, 2009). 

If the value of the original signal at the corresponding zero-crossing point in the derivative 

signal is greater than the calculated noise threshold, a pre-defined number of points 

around the top point of each peak (defined by the peakGroup argument) are used to fit a 

polynomial. The polynomial coefficients are then used to calculate the peak width and 

area. For each signal, just the most intense peak is selected. For each peak, the height, 

width, chromatographic retention time, and area is stored. 

 

a b 
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6.2.2.2. Untargeted Analysis 

For untargeted analysis, a global measurement of all molecules within a sample is taken. 

Thus, analysing the mzML file to detect peaks is a far greater challenge as there are 

potentially thousands of features to analyse as opposed to typically tens of features in a 

targeted analysis.  

XCMS (Smith et al, 2006; Tautenhahn et al, 2008), part of the Bioconductor R package 

(Gentleman et al, 2004) is a software package for untargeted LC-MS feature detection 

and is one of the most widely used data processing tool for untargeted metabolomics 

(Benton et al, 2010; Kurczy et al, 2015). The MUSCLE platform can be configured to 

run any of the feature detection algorithms in XCMS by modifying a .bat file. The output 

of the XCMS feature detection algorithms is a .csv file with each row representing an LC-

MS feature. The columns store information about each feature such as retention time, 

peak intensity and signal to noise ratio. The .csv file is parsed by MUSCLE with the 

information contained within being used to calculate the objective measures. 

6.2.3. Objective Measures 

The objective measures are also handled in a modular manner and can be configured 

based on the study and the type of analysis being conducted. The aim of each objective 

measure is to provide a measurement of quality of the output of the current LC-MS run. 

Each objective measure is either set to be maximised or minimised. For maximise 

objectives, a higher value represents a better quality output, whereas for minimise 

objectives, the inverse is true.  

As the data processing procedures used for targeted and untargeted analysis (Section 

6.2.2) give different outputs, different objective measurements need to be used depending 
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on whether a targeted or untargeted LC-MS method optimisation is being performed. 

Targeted objective measurements are set or calculated based on a list of peaks that is 

generated using the procedure outlined in section 6.2.2.1, whereas untargeted objective 

measurements are set or calculated based on the XCMS output that is parsed by MUSCLE 

(Section 6.2.2.2). Table 6.2 lists several objective measures for both targeted and 

untargeted analyses. Also listed is a semi-targeted objective, which is explained in section 

6.3.2. An explanation of the objective functions and how they are used in each particular 

study is provided in section 6.2.3. 

Table 6.2 Example objective measures. Objectives differ for each analysis type as they are calculated 

based on different objects. Each objective is set to be either maximised or minimised. 

Analysis Type Objective Type Description 

Targeted Maximise Total peak count 

Targeted Minimise Run time 

Targeted Maximise Total peak area 

Targeted Maximise Average peak intensity 

Untargeted Maximise Total feature count 

Untargeted Maximise Total peak area 

Untargeted Maximise Average peak area 

Untargeted Maximise Average signal to noise 

Untargeted Maximise Chromatographic separation 

Semi-Targeted Maximise Number of pre-defined m/z 

values present in feature set 

6.2.4. Closed-Loop Optimisation 

Closed-loop evolutionary optimisation is a probabilistic search heuristic, whereby 

potential solutions are evaluated by conducting physical experiments (Knowles, 2009), 

which in the case of MUSCLE corresponds to LC-MS analyses. Each solution represents 

a set of control parameters for the LC-MS instrument and is generated using a MOEA. 

To evaluate each solution, a fitness value is calculated for each of the objective measures, 

with each one measuring some aspect of the quality of the LC-MS spectra obtained using 
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the GA selected instrument settings. Because the objectives are in conflict, a multi-

objective GA must be used, which can efficiently find a set of Pareto optimal solutions. 

Typically, GAs evaluate tens of thousands of solutions in silico during an optimisation 

process, with many optimisation experiments required to achieve a highly optimised 

search method. Because of the time and cost involved in evaluating each solution in an 

LC-MS study, conducting large numbers of optimisation experiments is not feasible. 

Therefore, in this instance, as is the case with many closed-loop optimisation approaches, 

a GA is required that can perform well when limited to just a few tens or hundreds of 

evaluations. 

The principles of exploration and exploitation are the foundations of heuristic search. 

Exploration means visiting new and unexplored regions of the search space, whereas 

exploitation means visiting regions within the search space around previously visited 

points (Črepinšek et al, 2013). In any heuristic search, it is important to balance the 

exploration and exploitation of the search space, and this especially pertinent when 

conducting closed-loop optimisation due to the limited number of evaluations. When 

selecting an appropriate algorithm for this closed-loop problem it is important therefore 

to consider how the balance of exploration and exploitation can be manipulated to achieve 

the best result. The PESA-II (Corne et al, 2001), ParEgo (Knowles, 2006) and NSGA-II 

(Deb et al, 2002) MOEAs have all been applied to closed-loop optimisations (O'Hagan et 

al, 2005; O'Hagan et al, 2007; Small et al, 2011). The mechanisms of the PESA-II 

algorithm (Section 6.2.4.1) allow the balance of exploration and exploitation to be 

manipulated, and is therefore selected as the MOEA for use in MUSCLE. The open 

source implementation of the algorithm, along with the general MOEA framework 

provided by the jMetal library (Durillo & Nebro, 2011) is modified for use in MUSCLE.  
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6.2.4.1. PESA-II 

The PESA-II algorithm (Corne et al, 2001) operates like a standard EA in the manner that 

two populations are maintained, an internal and an external population. The internal 

population is of fixed size and at each generation it stores new solutions generated from 

the external population. The external population (also known as and herby referred to as 

the archive set), only contains the non-dominated solutions that have so far been 

discovered from the heuristic search. A solution is deemed to be non-dominated if none 

of the values for the objective measures can be improved without the degradation of any 

of the other objective values (Kirlik & Sayın, 2014). For each generation of the algorithm, 

new solutions to be evaluated are generated by selecting solutions from the archive, which 

then have crossover and mutation operators applied and subsequently form the internal 

population.  

PESA-II implements a bin-based selection procedure to increase diversity. The non-

dominated solutions in the archive are kept in bins based on their fitness values so that 

solutions with similar fitness values are grouped together. Selection is then carried out 

uniformly across these bins as opposed to selecting uniformly across the whole of the 

archive. This has the effect of favouring isolated solutions in the objective space. 

Selecting parent solutions from the archive of non-dominated solutions results in greater 

exploitation of previously visited points.  
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Figure 6.8: PESA-II algorithm with Latin-Hypercube sampling. 

 

To initialise the archive, Latin Hypercube Sampling (LHS) (McKay et al, 2000) is used 

to generate the solutions for the first n runs, where n is defined for each optimisation in 

the optimisation configuration (Figure 6.3). The aim of LHS is to distribute the decision 

variable values evenly across the search space by using overlapping permutations of the 

possible values for the decision variables. LHS is used as an exploratory step before the 

PESA-II begins, with the hope of finding areas that contain local maxima that can then 

be exploited using the archive and bin-based selection. The number of solutions to be 

generated using LHS is optional and is typically between ten and twenty-five percent of 

the total solutions to be evaluated. Once the LHS evaluations are complete, the archive 

set is initialised by adding the solutions to it. If a solution is dominated by a solution that 

Sample search space using Latin Hypercube 

Sampling 

Add non-dominated solutions to archive 

Select parent solutions from archive using bin-
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is already in the archive set, it is not added. If a solution is non-dominated, it is added to 

the archive set. If adding a new non-dominated solution results in an existing solution in 

the archive set becoming dominated, the newly dominated solution(s) are removed from 

the archive set.  

Subsequent values for the decision variables are generated using the PESA-II algorithm. 

An internal population is generated for each generation by selecting parent solutions from 

the archive set using the bin-based selection policy. As selection occurs on the non-

dominated solutions in the archive set only, the parent solutions have high values for the 

objective functions. This means that areas of the search space that have shown to contain 

local maxima are exploited. The drawback of this method is that it increases the likelihood 

of getting stuck in the areas containing local optima, thus missing out on finding more 

global optima due to over exploitation and lack of exploration of the search space. To 

increase exploration of the search space, crossover and mutation operators are applied to 

the parent solutions to generate the new solutions to be evaluated.  

The solutions are encoded for the GA using a binary representation, with a solution being 

represented by a single binary string containing a smaller substring for each parameter. 

To get a control parameter value the relevant binary substring is converted to a decimal 

number. Representing the solution using a binary string allows for efficient application 

of genetic operators. The crossover operator mimics breeding and takes two solutions 

(parent 1 and 2 which are represented as binary strings) of length 𝑦 and picks a random 

point 𝑥 such that 𝑥 < 𝑦. The two binary strings are then cut at that point and a child 

solution is generated by taking the digits from before 𝑥 from parent 1 and combining it 

with the digits after point 𝑥 from parent 2, thus creating a new solution that is a 

combination of its two parent solutions. The mutation operator mimics genetic mutation 
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by choosing a random binary digit and flipping it, so if the digit is a 1, it is flipped to 

become a 0 and vice-versa. 

6.2.4.2. PESA-II with Feature Selection 

An extension to the PESA-II algorithm, PESA-II with Feature Selection (PESA-II-FS) is 

also proposed that uses feature selection to focus the heuristic search on decision variables 

that are deemed to be more influential to the overall fitness of the solutions. The intuition 

behind PESA-II-FS is that convergence of a heuristic search can be improved by 

focussing on the decision variables which have the strongest effect on the objective 

measures.  

Feature selection is a procedure whereby a function for predicting the classification of a 

sample set is built using a training set (James et al, 2013). The principal behind feature 

selection is that several data features can be irrelevant or redundant to an observed 

classification and can therefore be removed from predictive models without the loss of 

too much information (Guyon & Elisseeff, 2003). In the context of LC-MS method 

development, feature selection can be used to identify instrument parameters that have 

relatively insignificant effects on the objective measures that determine the quality of 

each LC-MS run. Feature (or attribute) selection can be applied to select a subset of 

decision variables that have the greatest influence on the objective measures. The selected 

decision variables can then be the focus of the MOEA. As more evaluations are 

performed, the feature selection procedure can be re-run, thus re-selecting the subset of 

decision variables to focus the optimisation on.  

Figure 6.9 describes the general procedure of the PESA-II-FS. The first step is the same 

as the modified PESA-II algorithm described in section 6.2.4.1. LHS is used to sample 
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the search space for the first 𝑛 runs. The non-dominated solutions are then added to an 

archive. Feature selection is then performed to partition the decision variables. Variables 

that are deemed to be most influential to the objective measures are marked as selected 

variables, the others are marked as non-selected variables.  

For each new evaluation, the values for the selected variables are generated using the 

PESA-II algorithm whereas the non-selected values have their values taken from a Latin 

Hypercube generated using only the values contained within the solutions in the archive 

set. This means that the data used for the next round of feature selection will contain 

differing values for all decision variables, but for the non-optimised decision variables, 

only values that have previously given favourable output (i.e. values that resulted in 

inclusion in the archive set) are used. If any of the solutions evaluated are non-dominated, 

they are added to the archive set using the same rules as PESA-II, i.e. the archive only 

contains non-dominated solutions. 

The feature selection and decision variable partitioning is re-run after a predetermined 

number of evaluations, known as the round size. When the number of evaluations is equal 

to the round size, the decision variables are repartitioned into selected and non-selected 

variables once again. Figure 6.10 visualises how decision variables that are deemed to be 

influential on the objective measures may change after each round. 
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Figure 6.9: PESA-II-FS algorithm 

 

For the MUSCLE implementation of PESA-II-FS, the WEKA java library (Hall et al, 

2009; Smith & Frank, 2016) is used to perform feature selection. The wrapper subset 
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evaluation method (Kohavi & John, 1997) is used. This is an iterative technique which 

first selects features for classification, builds a multiple linear regression (MLR) model 

using the selected features and then assess the prediction capability of the model. 

Different combinations of features are tested, and the prediction rate of the model 

recorded. Due to the typically low number of data points involved with a closed-loop 

optimisation, an exhaustive search is used to find the set of features that have the best 

prediction rate, determined by the accuracy of the MLR model.  

MLR is used to model the relationship between the exploratory variables and the response 

variable. In this case, the exploratory variables are the values used so far for the LC and 

MS parameters and the response variable is combined objective value outlined below. 

Once an MLR model has been built, the information can be used to create a prediction on 

the level of effect they each have on the outcome variable. The wrapper evaluation 

method selects the model that has the best cross-validated prediction accuracy, and the 

selected features used for the best-performing model (in this case LC and MS parameters) 

are selected for further optimisation using PESA-II (Figure 6.10).  

Before feature selection is carried out, the values for the objective functions are 

normalised between 0 and 1 and then multiplied by a weighting factor. These values are 

then combined to form a single value for the objective functions. This sum of normalised 

and weighted objective measures is then used as the classification class value for the 

feature selection. The weights can be adjusted so that particular objective measures can 

have a lesser or greater impact on the assessment of the influence that the decision 

variables have on the combined objective measurements. 
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Figure 6.10: PESA-II with Feature Selection decision variable partitioning. After the initial LHS and after 

each round, feature selection selects variables that are deemed to have the most influence on the objective 

measures. 

 

6.3. Results 

MUSCLE closed-loop optimisations of LC-MS methods have been carried out for several 

different studies across a range of instruments and sample types (Table 6.3). Here the 

results of a targeted (section 6.3.1), semi-targeted (section 0) and an untargeted (section 

6.3.3) closed-loop LC-MS method optimisation are presented. For each optimisation, a 

description is included that includes the aim of the optimisation, the optimisation 

parameters, the LC-MS variables and the objective measures. For each optimisation, the 

instrument parameters to be optimised are defined by giving a min max and step value. 
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Table 6.3: MUSCLE closed-loop LC-MS method optimisations. 

Analysis Type Description Sample Type Publication 

Targeted Detection of 6 steroids – 2 

methods 

Chemical standards (Bradbury et 

al, 2015) 

Targeted Vitamin D analysis Chemical standards (Jenkinson et 

al, 2017) 

Untargeted HILIC method – 2 methods Human urine (Dunn et al, in 

preparation) 

Targeted Detection of 22 steroids Chemical standards (Taylor et al, 

2015) 

Targeted Oestrogen analysis Chemical standards (Gilligan et al, 

2014) 

Targeted Amino acids analysis Chemical standards N/A 

Semi-

Targeted 

Daphnia metabolomics Whole organism Section 6.3.1 

 

6.3.1. Targeted 

Detailed descriptions of targeted MUSCLE optimisations are presented in two papers, 

which are summarised below: 

BRADBURY J, GENTA-JOUVE G, ALLWOOD JW, DUNN WB, GOODACRE R, KNOWLES JD, 

HE S, VIANT MR (2015) MUSCLE: AUTOMATED MULTI-OBJECTIVE EVOLUTIONARY 

OPTIMIZATION OF TARGETED LC-MS/MS ANALYSIS. BIOINFORMATICS 31: 975-977 

 

This paper (Appendix C) introduces the MUSCLE software package, including the 

concepts and implementations of visual scripting and closed-loop evolutionary 

optimisation. MUSCLE is demonstrated by optimising LC-MS/MS methods for the 

targeted analysis of a laboratory-prepared mixture of six difficult to chromatographically 

separate steroids (Figure 6.11) using two different manufacturers LC-MS/MS instruments 

and their associated software.  

For both optimisations, the peak detection procedure outlined in section 6.2.2.1 is used. 

The objective measures for the optimisation are; maximise the number of separated peaks, 

maximise the total peak area and minimise run time. Run time is here defined as the 
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elution time of the last detected peak. Both optimisations included 200 injections and took 

approximately 48 hours. In both instances, the chromatograms in the final archive set are 

inspected manually and assessed by an analyst who then selected a preferred method. The 

preferred methods were then compared to methods that had previously been optimised by 

an experienced analytical chemist. 

 

Figure 6.11: Selected steroids for LC-MS/MS optimisation. 

 

In the first study, a Thermo Scientific UHPLC Ultimate 3000 coupled TSQ Vantage is 

used. The optimised method provided a faster (34.5%) and more sensitive (10%) analysis 

when compared to the manually optimised method. For the second study, a Waters 

ACQUITY UPLC Xevo TQ LC-MS/MS system is used. Again, the MUSCLE optimised 

method provided a faster (18.5%) and more sensitive (104%) analysis when compared to 

the manually optimised method. For more detailed information about the optimisation 

and instrument parameters, see Appendix C. 
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JENKINSON C, BRADBURY J, TAYLOR A, ADAMS JS, HE S, VIANT MR, HEWISON M (2017) 

AUTOMATED DEVELOPMENT OF AN LC-MS/MS METHOD FOR MEASURING MULTIPLE 

VITAMIN D METABOLITES USING MUSCLE SOFTWARE. ANALYTICAL METHODS 9: 2723-

2731 

 

In this paper (Appendix D), MUSCLE is used to optimise an LC-MS/MS method for the 

measurement of multiple vitamin D metabolites. The aim of this optimisation was to 

reduce the run time of a previously manually optimised method, to increase instrument 

throughput. The optimisation was performed on a Waters ACQUITY UPLC Xevo TQ 

LC-MS/MS system. A 200 injection optimisation was performed, taking approximately 

30 hours.  

The user-selected optimal run reduced the run time from 8.2 to 6.2 minutes, a 24% 

improvement, with the MUSCLE optimised method not compromising separation of any 

of the compounds with equal m/z. Furthermore, during analysis of the output files, an 

additional three minute method for the accurate quantification of the compound 25OHD3 

was highlighted (Jenkinson et al, 2016). This additional method separated 25OHD3 from 

3-epi-25OHD3, which has the same molecular weight.  

Figure 6.12 shows the LC gradients and Figure 6.13 shows the chromatograms for the 

manually and MUSCLE optimised methods.  
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Figure 6.12: Overlaid LC gradients showing the manually optimised method (green line), the MUSCLE 

optimised method (purple line) and the additional 24OHD3 quantification method (black line). 
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Figure 6.13: Chromatograms for the manually optimised method, the MUSCLE optimised method and 

the additional 25OHD3 quantification method. 

For more detailed information about the optimisation and instrument parameters, and 

method validation see Appendix D. 

6.3.2. Semi-targeted 

Chapter 5 presents a set of computationally generated hypotheses that predict how the D. 

magna metabolome is effected by two environmental perturbations using a draft GWMR 

built using the METRONOME pipeline (Chapter 4). These predictions are previously 

unknown, so a metabolomics study is designed to validate these predictions (Chapter 7), 
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in which LC-MS is used as the analytical platform. The aim of this optimisation is develop 

a non-targeted method for use in this study. 

The predictions from chapter 5 include a number of compounds that are predicted to be 

effected. The LC-MS method used for the study would ideally be able to separate as many 

of these compounds as possible. In order to achieve this, a list possible m/z values are 

calculated based on the predicted compounds and their possible adducts. The method is 

optimised to detect as many of these m/z values as possible. This kind of optimisation is 

termed semi-targeted, as it is looking for a targeted set of peaks within an untargeted 

analysis. 

System Information 

Separations are performed using a Thermo Scientific Ultimate 3000 ultra-high 

performance liquid chromatograph with a Thermo Hypersil Gold aQ column (130Å, 

1.9µm, 1 mm X 100 mm, 3µm guard cartridge). Mobile phase A is comprised of 0.1% 

formic acid in water. Mobile phase B is comprised of 0.1% formic acid in methanol. All 

solvents used are Fisher Optima LC-MS grade. The flow rate is set to 0.08 mL/min and 

the column temperature is set at 40 degrees Celsius. 

Mass spectral detection is performed with a Thermo Scientific Q Exactive tuned to 70,000 

mass resolution. Data is collected in profile mode in positive ESI mode with a mass range 

of 100-1,000 Daltons with a scan time of 0.2 seconds. 

Each injection consists of 2 μl sample and each run lasts 28 minutes. 

Instrument Parameters 

The instrument parameters that are optimised are shown in Table 6.4. The total number 

of combinations of these parameters is⁡1.167⁡ × 109.  
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Table 6.4: Optimisation parameters and the minimum, maximum and step sizes used for the closed-loop 

optimisation. 

Parameter Type Min Value Max Value Step Size 

t1 (start of second step) LC 6.0 10.5 0.5 

t2 (end of second step) LC 11.5 15.5 0.5 

%1 (initial conditions) LC 40 80 2 

c1 (1
st step curve) LC 1 9 1 

c2 (2
nd step curve) LC 1 9 1 

Spray voltage MS 3.0 4.0 0.1 

Auxiliary gas flow rate MS 10 20 1 

Sheath gas flow rate MS 24 40 2 

S-lens RF MS 40 100 10 

 

Figure 6.14 is a visualisation of the LC gradient optimisation parameters.  

The method is required have a maximum time of 30 minutes. This particular method also 

requires an equilibration time of 10 minutes. This means that the gradient must return to 

the starting conditions at the 20 minute mark, a hold time of 4.5 minutes at 100% B is 

also included meaning that the gradient ramp must be complete at 15.5 minutes. A two-

step gradient is chosen, with the start point of the second step being optimised by the 

parameters t1 and %1. t1 defines the time that the second step starts, and %1 defines the 

mobile phase composition at the start of the second step. The time at which the gradient 

reaches 100% B and starts the hold is optimised with the t2 variable. If an optimised 
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method uses a value for t2 that is less than 15.5, the method can be shortened. The curve 

of each step is optimised using the c1 and c2 parameters. 

 
Figure 6.14: Visualisation of the LC gradient optimisation. The parameters t1, t2, %1, c1 and c2 are 

optimised during the optimisation. Table 6.4 shows the possible values that can be entered for the 

parameters. 

 

Algorithm Configuration 

The standard closed-loop PESA-II algorithm described in section 6.2.4.1 is used. The 

maximum number of injections is set to 250, with 50 initial LHS injections. The crossover 

rate is set to 0.7 and the mutation rate is set to 0.2. The objective measures used are; 

maximise the number of features, maximise the separation and maximise the number of 

m/z values in the XCMS output from a predetermined hit-list.  

The number of features is maximised as a good method for this study would include as 

many features as possible. Only peaks with a signal to noise value of above the XCMS 

signal to noise threshold of 60 will be present in the XCMS output. This means that only 

peaks with good intensity values will be counted. 
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Chromatographic separation is important as a poorly separated method can suffer from 

ion suppression, where co-eluting compounds interact to supress or enhance or MS signal 

response resulting in inaccurate measurement (Furey et al, 2013). To calculate separation, 

the following procedure is used: 

1. Cluster all detected peaks based on their retention times using the DBScan 

clustering algorithm (Ester et al, 1996). 

2. Calculate a distance matrix for all peaks within each cluster. 

3. Calculate the average distance for each clusters distance matrix. 

4. Separation objective is calculated by the sum of the average distances divided by 

the total number of clusters. 

The intuition behind using this method for measuring separation is that in an untargeted 

analysis, peaks with similar chemical structures will elute from the LC column at similar 

times. Therefore, clusters of chemically similar compounds will naturally occur and by 

basing the value on separation on these naturally occurring clusters, methods which have 

greater intra-cluster separation will be favoured. DBScan is used as the clustering 

algorithm as it does not require the number of clusters to be pre-defined. 

The third objective is the semi-targeted objective measure. As this method is to be used 

for in a study that is looking for a pre-defined list of compounds in an untargeted 

spectrum, an ideal method would be able to detect as many of these peaks as possible. 

Performing accurate peak annotation during an optimisation is not feasible, so instead the 

semi-targeted objective measure calculates the percentage of m/z values are detected in 

the XCMS output based on a predefined list. For this study, there are 178 predicted 
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compounds. This resulted in 252 possible m/z values that are inside the 100-1,000 Dalton 

mass range used for the MS. 

Data Processing 

As this is an untargeted analysis, XCMS (Smith et al, 2006; Tautenhahn et al, 2008) is 

used for feature detection. Table 6.5 contains the XCMS parameters used during the 

optimisation. These parameters are taken from a database of instrument specific 

recommended parameters at the XCMS online web site (Institute, 2017). The signal to 

noise threshold parameter (snthresh) is set to a higher value than is recommend (60 

instead of 10) to decrease the time taken for each run to be analysed during the 

optimisation. 

Table 6.5: XCMS parameters used during optimisation. 

Parameter Value 

method centWave 

ppm 5 

peakwidth 5, 20 

snthresh 60 

prefilter 3, 100 

mzdiff 0.01 

 

Optimisation Results 

Table 6.6 shows the final archive set of the optimisation. Figure 6.15 visualises the 

archive, with an axis for each objective measure. All of the corresponding chromatograms 

from the archive set are inspected manually and assessed by an analyst and the three most 

preferred chromatograms are selected for further inspection. These runs are highlighted 

in Table 6.6 and Figure 6.15, with the chromatograms shown in B-D sub figures. 
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Table 6.6: Final archive for the optimisation. Each row in the table is a non-dominated solution contained 

in the final archive set. Three manually selected methods are highlighted in red. 

Run # # Peaks 

Objective 

Separation 

Objective 

% Target 

Peaks 

113 17435 2409.2 16 

114 13637 1135.9 17 

121 18947 4870.4 14 

139 15228 1374.7 16 

148 19630 17352.8 18 

151 19506 9082.1 19 

153 17552 2764.1 14 

154 18742 2954.0 19 

169 16071 1772.2 18 

170 13652 718.9 15 

173 15917 1459.3 21 

183 (Figure 6.15 B) 17732 5574.7 26 

185 17809 4658.2 23 

189 18210 4878.1 21 

194 16839 4501.2 20 

197 16474 1984.7 20 

199 19279 17207.3 24 

206 16554 3615.8 22 

207 (Figure 6.15 C) 19118 21748.5 25 

215 15113 1237.6 21 

219 15550 2861.6 22 

227 19544 10985.0 22 

237 (Figure 6.15 D) 19105 5599.6 25 

247 14714 1970.0 22 

 

After manual inspection, run 237 is chosen as the preferred method as it has a good value 

for the semi-targeted objective, and a high number of detected features. Although run 183 

has a better value for separation (albeit with fewer detected features), upon inspection, it 

is deemed that the overall features across the entire run is more preferable. The last three 

minutes of the run in particular has many more detected features than the other selected 

runs.  
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Figure 6.15: Optimisation Results PESA-II. The lines in A are for visualisation purposes only. 
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Method Validation 

The preferred method is run ten times to validate the method and to check its stability. 

For the validation, the XCMS processing is carried out with the same parameter values 

as during the closed-loop optimisation (Table 6.5Table 6.12) except for the signal to noise 

threshold (snthresh) which is set to 10 (the recommended value). Table 6.7 shows the 

mean, standard deviation and relative standard deviation for the three objectives, for the 

preferred method across the ten replicates. To access the performance of the optimisation 

the optimised method is compared with a previously developed manually optimised 

method, with the same statistics calculated across 10 replicates.  

Table 6.7: Validation run statistics. The mean, standard deviation and relative standard deviation of each 

of the objective measures is calculated for the selected optimised method as well as for a previously 

developed manually optimised method. 

Run  # Peaks Separation % Target 

Peaks 

 

Manual 

Mean 31149.05 14752.25 52.15 

Standard Deviation 1394.21 5031.78 4.59 

Relative Standard Deviation 4.48 34.11 8.80 

 

237 

Mean 44867.76 85847.24 64.12 

Standard Deviation 1830.65 25877.06 3.81 

Relative Standard Deviation 4.08 30.14 5.94 

 

Table 6.8 shows the improvements achieved in each of the three objectives from the 

manually optimised method. 

Table 6.8: The percentage improvements in the objective measures for the selected optimised method 

compared to the previously developed manually optimised method. The values are calculated based on 

the mean values for the objective measurements across 10 replicates. 

Objective Run 237 

# Peaks 44.04% 

Separation 481.93% 

Semi-Targetd 22.95% 
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Method Parameters 

Table 6.9 shows the values for the instrument parameters used in the final optimised 

method. 

Table 6.9: Parameter values for the selected optimised method. 

Parameter Type Run 237 

t1 (start of second step) LC 6.5 

t2 (end of second step) LC 15 

%1 (initial conditions) LC 58 

c1 (1
st step curve) LC 2 

c2 (2
nd step curve) LC 1 

Spray voltage MS 3.1 

Auxiliary gas flow rate MS 13 

Sheath gas flow rate MS 36 

S-lens RF MS 90 

 

6.3.3. Untargeted 

The aim of this optimisation is to develop an untargeted UPLC-MS assay for HILIC 

negative ion analysis of urine. The method must have an injection-to-injection time of 

approximately 15 minutes and must be robust enough to allow large-scale studies to be 

performed. 

The optimisation is carried out twice, once using the standard PESA-II algorithm 

described in section 6.2.4.1, and once with the PESA-II with feature selection algorithm 

described in section 6.2.4.2. 

System Information 

Separations are performed using a Waters Acquity liquid chromatograph with a Waters 

ACQUITY UPLC BEH Amide Column (130Å, 1.7 µm, 2.1 mm X 150 mm). Mobile 

phase A is comprised of 5 mMol ammonium acetate in 95% acetonitrile and 5 % water. 

Mobile phase B is comprised of 5 mMol ammonium acetate in 50% acetonitrile and 50% 
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water. All solvents used are Fisher Optima LC-MS grade. The flow rate is set to 0.6 

mL/min and the column temperature is set at 40 degrees celcius. 

Mass spectral detection is performed using a Waters Xevo G2 tuned to 35000 mass 

resolution using leucine enkephalin (554 peak) resolution. Data is collected in centroid 

mode in negative ESI mode with a mass range of 50-700 Daltons with a scan time of 0.1 

seconds. 

Each injection consists of 2 μl sample and each run lasts 15 minutes. 

Instrument Parameters 

The instrument parameters that are optimised are shown in Table 6.10. The total number 

of combinations of these parameters is⁡6.04⁡ × 108. The same parameters are used for 

both optimisations. 

Table 6.10: Optimisation parameters and the minimum, maximum and step sizes used for the PESA-II 

and PESA-II-FS closed-loop optimisations. 

Parameter Type Min Value Max Value Step Size 

t1 (start of second step) LC 2.5 5.0 0.25 

%1 (initial conditions) LC 1 5 1 

%2 (step condition) LC 10 30 2 

%3 (final condition) LC 40 66 2 

c1 (1
st step curve) LC 2 10 1 

c2 (2
nd step curve) LC 2 10 1 

Spray voltage MS 1.5 3.0 0.1 

Desolvation Gas Flow MS 600 1100 50 

Desolvation Temperature MS 300 500 50 

 

Figure 6.16 is a visualisation of the LC gradient optimisation parameters. The method is 

required to be 15 minutes in total as this is a standard length for an untargeted method as 

a 15 minute method allows for a 96 well plate to be processed in 24 hours. This particular 

method also requires an equilibration time of 7.5 minutes. This means that the gradient 
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must return to the starting conditions at the 7.5 minute mark, a hold time of 0.5 minutes 

is also included meaning that the gradient ramp must be complete at 7 minutes. A two-

step gradient is chosen, with the start point of the second step being optimised by the 

parameters t1 and %2. t1 defines the time that the second step starts, whereas %2 defines 

the mobile phase composition at the start of the second step. The initial and final mobile 

phase composition is also optimised using the %1 and %2 parameters respectively. The 

curve of each step is optimised using the c1 and c2 parameters. 

 
Figure 6.16: Visualisation of the LC gradient optimisation. The parameters t1, %1, %2, %3, c1 and c2 are 

optimised during the optimisation. Table 6.10 shows the possible values that can be entered for the 

parameters. 

 

Algorithm Configuration 

For both optimisations, the same algorithm configuration is used. The maximum number 

of injections is set to 250, with 50 initial LHS injections. The crossover rate is set to 0.7 

and the mutation rate is set to 0.2. The objective measures used are; maximise the number 
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of features, maximise the separation of features and maximise the mean signal to noise 

threshold of the detected features.  

The number of features is maximised as a good method for this study would include as 

many features as possible. Only peaks with a signal to noise value of above the XCMS 

signal to noise threshold of 60 will be present in the XCMS output. This means that only 

peaks with good intensity values will be counted. 

Chromatographic separation is important as a poorly separated method can suffer from 

ion suppression, where co-eluting compounds interact to supress or enhance or MS signal 

response resulting in inaccurate measurement (Furey et al, 2013). To calculate separation, 

first a distance matrix is constructed for all detected features, with the values in the 

distance matrix corresponding to retention time differences between features. The 

separation value is then set as the average value in the distance matrix. Chromatograms 

with good separation are expected to have a greater average distance between features. 

This objective conflicts with the total number of detected features, if more features are 

present in the chromatogram, there is less available space in the retention time axis for 

the features to inhabit. 

The average signal to noise is optimised as it is a sound metric for feature quality. This 

objective is also in conflict with the total number of features. If a method results in more 

features being detected, there is a high chance that the extra features have signal to noise 

thresholds that are just above the signal to noise threshold, therefore dragging the average 

down. 
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PESA-II with Feature Selection configuration 

The only additional parameter that needs to be set for the PESA-II with Feature Selection 

algorithm is round size. Round size determines how often the feature selection and 

subsequent variable partitioning (see Figure 6.9) is performed, with the first round 

beginning after the initial LHS phase. For this optimisation, a round size of 20 is selected. 

Table 6.11 shows the run numbers associated with each round for this optimisation. 

Table 6.11: PESA-II with Feature Selection rounds. 

Run Number Round 

1 – 50 LHS Sampling 

51 – 70 Round 1 

71 – 90 Round 2 

91 – 110 Round 3 

111 – 130 Round 4 

131 – 150 Round 5 

151 – 170 Round 6 

171 – 190 Round 7 

191 – 210 Round 8 

211 – 230 Round 9 

231 - 250 Round 10 

Data Processing 

As this is an untargeted analysis, XCMS (Smith et al, 2006; Tautenhahn et al, 2008) is 

used for feature detection. Table 6.12 contains the XCMS parameters used during the 

optimisation. These parameters are taken from a database of instrument specific 

recommended parameters at the XCMS online web site (Institute, 2017). The signal to 

noise threshold parameter (snthresh) is set to a higher value than is recommend (60 

instead of 10) to decrease the time taken for each run to be analysed during the 

optimisation. 
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Table 6.12: XCMS parameters used during optimisation. 

Parameter Value 

method centWave 

ppm 15 

peakwidth 2, 25 

snthresh 60 

prefilter 3, 100 

mzCenterFun wMean 

mzdiff 0.01 

 

Optimisation Results – Standard PESA-II 

Table 6.13 shows the final archive set of the PESA-II optimisation. Figure 2A visualises 

the archive, with an axis for each objective measure. All of the corresponding 

chromatograms from the archive set are inspected manually and assessed by an analyst 

and the three most preferred chromatograms are selected for further inspection. These 

runs are highlighted in Table 6.13 and Figure 6.17, with the chromatograms shown in B-

D sub figures. 

Table 6.13: Final archive for the PESA-II optimisation. Each row in the table is a non-dominated solution 

contained in the final archive set. Three manually selected methods are highlighted in red. 

Run # # Peaks 

Objective 

Separation 

Objective 

S/N 

Objective 

142 1053 7.89E-04 784.3 

155 1054 7.92E-04 598.2 

165 1325 4.89E-04 584.9 

169 924 0.001 523.2 

173 (Figure 6.17 B) 1224 6.05E-04 671.3 

176 1296 5.25E-04 650.9 

194 (Figure 6.17 C) 1022 8.25E-04 657.7 

195 909 0.00101 646.6 

202 846 0.00108 620.3 

206 882 0.00122 600.9 

211 792 0.00128 456.2 

212 820 0.00124 685.8 

213 (Figure 6.17 D) 886 0.00122 525.9 

223 444 0.00341 609.5 

225 522 0.00306 633.7 

231 724 0.00173 705.2 

232 538 0.00286 1127.3 

233 674 0.00173 629.3 
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Figure 6.17: Optimisation Results PESA-II. The lines in A are for visualisation purposes only. 
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Method Validation – Standard PESA-II 

Each of the three preferred runs is run ten times to validate the method and to check its 

stability. For the validation, the XCMS processing is carried out with the same parameter 

values as during the closed-loop optimisation (Table 6.12). Table 6.14 shows the mean, 

standard deviation and relative standard deviation for the three objectives, for each of the 

preferred runs across the ten replicates. To access the performance of the optimisation the 

optimised method is compared with a previously developed manually optimised method, 

with the same statistics calculated across 10 replicates.  

Table 6.14: Validation run statistics. The mean, standard deviation and relative standard deviation of each 

of the objective measures is calculated for the three selected optimised methods as well as for a 

previously developed manually optimised method. 

Run  # Peaks Separation S/N 

 

Manual 

Mean 1903.7 0.00027 1863.41 

Standard Deviation 81.36366 2.46E-05 326.0159 

Relative Standard Deviation 4.2742 8.99901 17.4957 

 

173 

Mean 1945.6 0.00029 1963.52 

Standard Deviation 44.50518 1.22E-05 614.3667 

Relative Standard Deviation 2.28748 4.26709 31.289 

 

194 

Mean 2004.78 0.00027 2883.86 

Standard Deviation 61.21637 1.84E-05 1604.251 

Relative Standard Deviation 3.05352 6.85055 55.6285 

 

213 

Mean 2016.71 0.00029 3860.03 

Standard Deviation 61.83234 2.84E-05 2048.498 

Relative Standard Deviation 3.06599 9.68148 53.0694 

  

Table 6.15 shows the improvements achieved in each of the three objectives for the three 

preferred methods optimised using the modified PESA-II algorithm when compared to 

the manually optimised method. 
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Table 6.15: The percentage improvements in the objective measures for the three selected optimised 

methods compared to the previously developed manually optimised method. The values are calculated 

based on the mean values for the objective measurements across 10 replicates. 

Objective Run 173 Run 194 Run 213 

# Peaks 2.21% 5.32% 5.94% 

Separation 7.41% 0% 7.41% 

S/N 5.37% 54.76% 107.15% 

 

Method Parameters - Standard PESA-II 

Table 6.16 shows the values for the instrument parameters used in the three preferred 

optimised methods. 

Table 6.16: Parameter values for the three selected optimised methods. 

Parameter Type Run 173 Run 194 Run 213 

t1 (start of second step) LC 4.25 4.0 3.0 

%1 (initial conditions) LC 2 5 4 

%2 (step condition) LC 18 22 22 

%3 (final condition) LC 54 58 44 

c1 (1
st step curve) LC 4 7 3 

c2 (2
nd step curve) LC 6 9 8 

Spray voltage MS 2.3 2.4 3.0 

Desolvation Gas Flow MS 1050 750 600 

Desolvation Temperature MS 450 500 500 
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Optimisation Results - PESA-II with Feature Selection 

Table 6.17 shows the final archive set of the PESA-II-FS optimisation. Figure 3A 

visualises the archive, with an axis for each objective measure. All of the corresponding 

chromatograms from the archive set are inspected manually and assessed by an analyst 

and the three most preferred chromatograms are selected for further inspection. These 

runs are highlighted in Table 6.17 and Figure 6.18 with the chromatograms shown in B-

D sub-plots. 

Table 6.17: Final archive for the PESA-II-FS optimisation. Each row in the table is a non-dominated 

solution contained in the final archive set. Three manually selected methods are highlighted in red. 

Run # # Peaks 

Objective 

Separation 

Objective 

S/N 

Objective 

159 749 0.00156 714.6 

169 (Figure 6.18 B) 906 0.001063 464.4 

174 979 0.000983 745.8 

175 (Figure 6.18 C) 880 0.001131 638.7 

181 651 0.001862 564.5 

188 898 0.001092 585.5 

189 703 0.001741 554.6 

208 813 0.001265 622.2 

210 678 0.001759 807.8 

220 783 0.001377 778 

226 871 0.001155 538.1 

233 684 0.001772 593.7 

236 804 0.001305 787.5 

239 (Figure 6.18 D) 728 0.001733 662.1 

245 743 0.001433 917.8 

249 613 0.001977 1003.9 
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Figure 6.18: Optimisation Results PESA-II-FS. The lines in A are for visualisation purposes only. 

B 

C 

D 

A 

B 

C 

D 

 S
ep

ar
at

io
n
 o

b
je

ct
iv

e
 



162 

 

Table 6.18 shows which LC-MS parameters are deemed to be the most influential to the 

overall fitness of the solutions for each round of the closed-loop optimisation (see Table 

6.11). A blue cell means that a LC-MS parameter is considered to have a significant 

influence for a given round, whereas a red cell means that the given parameter is not 

significant. As the round number increases, there are more data points (evaluated LC-MS 

runs) to be used for feature selection. Therefore, the accuracy of the feature selection 

should increase after each round. 

Table 6.18: Visualisation of feature selected parameters for each optimisation round. Blue cells show 

which LC-MS parameters are selected for optimisation with PESA-II. Red cells show the LC-MS 

parameters that are not selected and whose values are selected based on a Latin Hypercube constructed 

from parameter values taken from the archive set (see section 6.2.4.2). 

Parameter Round Number 

 1 2 3 4 5 6 7 8 9 10 

t1 (start of second step)           

%1 (initial conditions)           

%2 (step condition)           

%3 (final condition)           

c1 (1
st step curve)           

c2 (2
nd step curve)           

Spray voltage           

Desolvation Gas Flow           

Desolvation Temperature           

 

Table 6.18 shows that throughout the optimisation, the LC parameters t1, %1 and %2 (see 

Figure 6.16) had a significant influence on the overall fitness of solutions. These 

parameters play a big role in defining the characteristics of the LC gradient and are 

expected to have a large influence on the total number of peaks observed as well as their 

chromatographic separation (Pitt, 2009). The %3 parameter was deemed to have a 

significant effect in six of the 10 rounds, the gradient curve parameter c1 is significant for 

all but the third and fourth rounds, while the c2 parameter was deemed less significant as 

more data points for MLR became available. 
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The impact of the LC parameters that control the latter part of the LC gradient, %3 and c2 

are the LC parameters that are deemed to be less influential most often. Their impact 

potentially varies depending on the values that have been selected for the variables 

controlling the first part of the LC gradient. This can perhaps explain why their influence 

is not consistently deemed significant. 

The influence of the MS parameters desolvation gas flow and desolvation temperature 

were consistent throughout the optimisation. The gas flow was deemed insignificant 

throughout the optimisation, and the temperature was significant in rounds two to ten. 

The insignificance of the gas flow parameter could be explained because the possible 

values selected are with in fairly narrow window (see Table 6.10), and also that the impact 

of the value of this parameter on a run is coupled to the value used for the flow rate 

(Banerjee & Mazumdar, 2012), which is kept constant throughout the optimisation. The 

spray voltage MS parameter was the most variable parameter, deemed significant in five 

of ten rounds. 

Method Validation - PESA-II with Feature Selection 

Each of the three preferred runs is run ten times to validate the method and to check its 

stability. For the validation, the XCMS processing is carried out with the same parameter 

values as during the closed-loop optimisation (Table 6.12). Table 6.19 shows the mean, 

standard deviation and relative standard deviation for the three objectives, for each of the 

preferred runs across the ten replicates. To access the performance of the optimisation the 

optimised method is compared with a previously developed manually optimised method, 

with the same statistics calculated across 10 replicates.  
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Table 6.19: Validation run statistics. The mean, standard deviation and relative standard deviation of each 

of the objective measures is calculated for the three selected optimised methods as well as for a 

previously developed manually optimised method. 

Run  # Peaks Separation S/N 

 

Manual 

Mean 1903.7 0.00027 1863.41 

Standard Deviation 81.36366 2.46E-05 326.0159 

Relative Standard Deviation 4.2742 8.99901 17.4957 

 

169 

Mean 2041.75 0.00027 1705.95 

Standard Deviation 84.55028 2.63E-05 369.0105 

Relative Standard Deviation 4.14107 9.91819 21.6308 

 

175 

Mean 2134.2 0.00024 2938.19 

Standard Deviation 89.20986 2.43E-05 921.1826 

Relative Standard Deviation 4.18001 10.1599 31.352 

 

239 

Mean 2305.8 0.0003 3321.04 

Standard Deviation 51.80905 4.43E-05 1080.9 

Relative Standard Deviation 2.2469 14.7597 32.547 

 

Table 6.20 shows the improvements achieved in each of the three objectives for the three 

preferred methods optimised using the modified PESA-II-FS algorithm when compared 

to the manually optimised method. 

Table 6.20: The percentage improvements in the objective measures for the three selected optimised 

methods compared to the previously developed manually optimised method. The values are calculated 

based on the mean values for the objective measurements across 10 replicates. 

Objective Run 169 Run 175 Run 239 

# Peaks 7.26% 12.11% 21.13% 

Separation 0% -11.11% 11.11% 

S/N -8.45% 57.68% 62.82% 

 

Method Parameters - PESA-II with Feature Selection 

Table 6.21 shows the values for the instrument parameters used in the three preferred 

optimised methods. 
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Table 6.21: Parameter values for the three selected optimised methods. 

Parameter Type Run 169 Run 175 Run 239 

t1 (start of second step) LC 3.5 4.25 3.5 

%1 (initial conditions) LC 1 2 1 

%2 (step condition) LC 26 24 26 

%3 (final condition) LC 42 46 44 

c1 (1
st step curve) LC 5 10 10 

c2 (2
nd step curve) LC 5 3 6 

Spray voltage MS 1.5 2.5 2.3 

Desolvation Gas Flow MS 600 700 950 

Desolvation Temperature MS 500 500 500 
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6.4. Discussion & Conclusion 

The flexible modular MUSCLE software platform for automated closed-loop 

optimisation of LC-MS method development is presented. MUSCLE can be used to 

optimise targeted and untargeted analyses across a number of LC-MS analytical 

platforms. Visual scripting is used to change instrument parameter values (section 6.2.1), 

which allows MUSCLE to be used on any analytical platform with no modification to the 

source code. Users simply generate visual scripts which are then used as part of a wider 

user defined optimisation architecture (Figure 6.3). 

The modular design allows for data processing and objective measures to be adjusted for 

each optimisation. Currently, the data processing module can be configured to use the in-

built targeted peak detection function (Section 6.2.2.1) or to use XCMS to detect peaks 

in untargeted spectra. The modular design also allows for different evolutionary 

algorithms to be used for the optimisation. A modified PESA-II algorithm (section 

6.2.4.1) and the PESA-II-FS algorithm (section 6.2.4.2) are presented. The PESA-II-FS 

algorithm iteratively uses feature selection to build a predictive model that assesses which 

instrument parameters are having the greatest effect on the quality of the LC-MS output. 

These parameters then become the focus of the optimisation, increasing the exploitative 

nature of the search. Both algorithms are specifically designed for use in closed-loop 

optimisations, where typically the number of solution evaluations are severely limited 

due to the expenses and time needed to conduct each physical, real-world evaluation.  

MUSCLE has been used for several applications (Table 6.3) and is here demonstrated 

through its use in studies to optimise targeted (section 6.3.1), untargeted (section 6.3.3) 

and semi-targeted (section 6.3.2) analyses. Each optimisation is performed on a different 

analytical platform and is optimised using different optimisation criteria. In all cases 
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MUSCLE optimised methods provided improvements from manually optimised methods 

(Table 6.8, Table 6.15 & Table 6.20). 

The untargeted optimisation of a HILIC method using urine samples (section 6.3.3) 

compared the modified PESA-II and the PESA-II-FS algorithms. The objective measure 

improvements of the closed-loop optimised methods compared to a manually optimised 

method is shown in Table 6.22. The best PESA-II-FS algorithm (PESA-II-FS run 239) 

achieves a far higher grater of peaks, whilst at the same time achieving a better separation 

than any of the PESA-II optimised methods. It also achieves a decent average signal to 

noise ratio that is better than the second best PESA-II optimised value (PESA-II run 194), 

but not as good as the first (PESA-II run 213). An explanation for this could be that as 

higher number of peaks that are detected in PESA-II-FS run 239 are a result of MS 

instrument parameters that increase the sensitivity of the method. This will have the effect 

of increasing the number of peaks that just cross the signal to noise boundary defined in 

the XCMS parameters. The big increase in detected peaks will also influence the 

separation objective value, as can be seen in the PESA-II-FS run 175 objective measure, 

where an increase of peaks is observed, but with a lower value of separation. 

Table 6.22: Improvements in objective functions for the three selected methods for optimisations using 

the PESA-II and PESA-II-FS algorithms. The percentage improvements are based on a comparison with 

the same manually optimised method. 

Algorithm PESA-II PESA-II-FS 

Objective Run 173 Run 194 Run 213 Run 169 Run 175 Run 239 

# Peaks 2.21% 5.32% 5.94% 7.26% 12.11% 21.13% 

Separation 7.41% 0% 7.41% 0% -11.11% 11.11% 

S/N 5.37% 54.76% 107.15% -8.45% 57.68% 62.82% 

 

The PESA-II-FS algorithm performed better than the original PESA-II MUSCLE 

algorithm, especially in terms of method sensitivity but further testing is required. The 
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PESA-II and the PESA-II-FS algorithms share the first two steps (Figure 6.8 & Figure 

6.9), both have an archive set initialised with non-dominated solutions obtained using 

Latin Hypercube Sampling. The initialisation on the Latin Hypercube is stochastic in 

nature, and this case, each optimisation used a different Latin Hypercube. In future 

studies, the same Latin Hypercube can be used for both optimisations to give a fairer 

comparison between the two algorithms. 

In conclusion, MUSCLE is used to develop LC-MS methods in a fully automated way 

using a closed-loop optimisation approach that increased analytical sensitivity and/or 

shortened the analysis times for a number of different analyses across a range of different 

analytical platforms and analysis types. This closed-loop approach has the potential to 

benefit many scientific fields that make use of LC-MS including metabolomics, 

proteomics and pharmacology. 

MUSCLE is used to optimise an untargeted LC-MS method for measuring the Daphnia 

metabolome. The fully automated closed-loop optimisation is carried out in a semi-

targeted way, with the aim of being able to measure as many of the metabolites that are 

predicted to be effected in the computational toxicology study detailed in this thesis. The 

optimised method can detect 64% of m/z values that are associated with the predicted 

metabolites identified using the active module identification approach detailed in Chapter 

5. The optimised method will be used for the collection of all metabolomics data obtained 

in study outlined in the next chapter. 
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7. Validation of Computationally Generated Hypotheses Using 

Metabolomics Study 

Previously, computationally generated hypotheses which predict the unknown effects on 

the D. magna metabolome when exposed to two environmentally relevant stressors are 

generated (Chapter 5) using a draft D. magna GWMR (Chapter 4) and two 

transcriptomics datasets taken from the STRESSFLEA project (Orsini et al, 2016). As the 

predicted metabolic effects are previously unknown, and this is an untested computational 

toxicology methodology for assessing the metabolic impact of environmental 

perturbations (Figure 2.1), a metabolomics toxicology study is conducted to assess the 

validity of the computationally generated predictions. 

 
Figure 7.1: The typical metabolomics mass spectrometry based workflow. Adapted from (de Souza et al, 

2017) 
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The procedure for doing this follows the typical metabolomics mass spectrometry based 

workflow (Figure 7.1). First samples are prepared based on an experimental design 

(section 7.1), which is followed by data acquisition (section 7.1.4). Acquired data is then 

processed to generate a data matrix (section 7.2) which is subsequently used for statistical 

analysis (section 7.3). This analysis identifies features of interest which are then annotated 

before being interpreted biologically (section 7.4). 

7.1. Sample preparation 

The computationally generated hypotheses in Chapter 5 are created using a draft D. 

magna GWMR (Chapter 4) and two transcriptomics datasets taken from the 

STRESSFLEA project (Orsini et al, 2016). These datasets measured the transcriptional 

responses of D. magna when exposed to environmentally relevant, sub-lethal, doses of 

the insecticide Carbaryl (8 µg/L) and Lead (278 µg/L). These doses are chosen as they 

reflect realistic human-induced pollution in inland waters. An experiment that exposes 

the same D. magna sub-species to the same dosages of Carbaryl and Lead as the 

transcriptomics study (Orsini et al, 2016) is designed. These exposures were observed to 

induce significant transcriptional response (Orsini et al, 2018). 

7.1.1. Experimental design 

D. magna has a parthenogenetic life cycle that allows the rearing of populations of 

genetically identical individuals (clones) from a single genotype. For this study a 

genotype collected from a system of ephemeral rock pools (Xinb3, South west Finland 

59.833183, 23.260387) is used, which is the same genotype used in the transcriptomics 

experiments as well as the generation of a reference genome (NCBI accession number: 

LRGB00000000), which was used to generate the draft GWMR (Chapter 4). 
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The D. magna exposures experiments from the STRESSFLEA transcriptomics study are 

repeated for the purpose of making metabolomics measurements. These measurements 

will allow for the computationally generated hypotheses to be tested. Measurements are 

made at different time points: 4h, 8h, 12, and 24h, with first time point coinciding with 

the previous exposures to detect changes in transcriptional response to environmental 

perturbations. The reason for collecting samples at these time points is there is an 

expected and unknown temporal delay in metabolic response compared to transcriptional 

response. The aim of sampling through time at regular intervals is to ensure that metabolic 

changes following exposure to Carbaryl and Lead are captured.  

For each time point a control (no stress imposed) is run in parallel to the environmental 

perturbations. Each treatment, including controls, is performed on eight biological 

replicates. Each biological replicate is made up of 15 D. magna individuals taken from 

individual aquaria where the exposures are performed (Figure 7.2). For each replicate 

metabolomics measurements are made using LC-MS (section 7.1.4).  

 
Figure 7.2: Biological replicates. For each replicate, a separate aquarium containing 15 individuals is 

used. 

 

 

x8 



172 

 

7.1.2. D. magna exposure details 

Prior to the exposures, clonal populations of the genotype are synchronized in common 

garden conditions – controlled climate chambers with a fixed long day photoperiod (16h 

light/8h dark) at 20°C for at least two generations to reduce interference from maternal 

effect. Filtrated borehole water was used as growth medium and for exposure to the 

environmental perturbations. The animals were fed daily 0.8mg C/L of Chlorella.  

The first generation is cultured at a density of 10 individuals/L, and increased to 50 

individuals/L in large aquaria in the second generation to enable the harvesting of enough 

animals for the environmental perturbation exposures. The second clutch of the second 

generation are used for exposures to environmental perturbations. Batches of five-day old 

female juveniles randomly chosen from the offspring of the second generation of the 

synchronized animals at a density of 15 juveniles/L are exposed to the two environmental 

treatments for different lengths of time: 4h, 8h, 12, and 24h. The animal density for the 

exposures is determined from prior literature studies on Daphnia exposures (Jansen et al, 

2011) and the previous study on transcriptional responses to these same stressors (Orsini 

et al, 2016).  

All material is flash frozen in liquid nitrogen after collection and stored at -80C in 

separate Precellys tubes per sample to quench metabolism prior to metabolite extraction. 

7.1.3. Metabolite extraction 

Each sample is taken up in 20µl of an equal mix of MeOH and water and then vortexed. 

Samples ae then spun at 15,000 rpm for 10 min at 4°C in a Biofuge rotor. 12µl is then 

pipetted into Thermo AB-0800 96-well plates in a controlled randomised order. 
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7.1.4. Data acquisition 

All experimental measurement is performed using untargeted UHPLC-MS. Separations 

are performed using a Dionex Ultimate 3000 liquid chromatograph with a Thermo 

Hypersil Gold aQ, 100 x 1 mm column, with a 1.9 µm particle diatemer, and a a 10 x 1 

mm, 3 µm guard cartridge.  

Mass spectral detection is performed using a Q Exactive Orbitrap (Thermo Scientific) 

mass spectrometer equipped with a H-ESI II source, operated at 70,000 mass resolution 

(FWHM: 200m/z) in the positive ionisation mode. Data is collected in profile mode with 

a mass range of 100-1000 m/z. For each run, a 2µl injection is used. 

The MUSCLE software (Chapter 6) package for automated closed loop LC-MS method 

optimisation (Bradbury et al, 2015) is used to develop the LC-MS method. In this 

instance, a semi-targeted optimisation approach is used. The LC-MS method optimisation 

is outlined in Section 6.3.2, which includes details the LC-MS parameters and the mobile 

and stationary phase compositions used. 

7.2. Data processing 

Several tools and workflows exist for processing and analysing untargeted LC-MS 

metabolomics data (Davidson et al, 2016; Giacomoni et al, 2015; Goecks et al, 2010; 

Institute, 2017; Smith et al, 2006; Tautenhahn et al, 2008; Xia et al, 2015). (Di Guida et 

al, 2016) present an investigation of the use of several approaches and provides a 

recommended workflow for analysing untargeted UHPLC-MS data sets. The workflow 

is applied here to process the experimental data (Figure 7.3). 
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Figure 7.3: Data processing workflow. 

7.2.1. File conversion 

Each LC-MS run results in an output file whose format is dependent on the manufacturer 

of the instrument being used. These files are collectively known as .RAW files. The 

mzML file format (Martens et al, 2011) is an open source format for a number of different 

MS outputs including LC-MS. The XCMS feature detection software package (Smith et 

al, 2006; Tautenhahn et al, 2008) requires LC-MS files in the .mzML format. The .raw 

files for each LC-MS run are converted to the mzML format using the msConvert 
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application, which is part of the ProteoWizard toolkit (Chambers et al, 2012). In total 130 

.RAW files across 14 groups (Table 7.1) are converted to .mzML files. 

Table 7.1: Sample class mapping. There are 8 samples for each time point exposure combination. 30 QC 

samples and 4 blank samples are also injected. 

CLASS # SAMPLES 

QC 30 

Blank 4 

Control 4h 8 

Control 8h 8 

Control 12h 8 

Control 24h 8 

Carbaryl 4h 8 

Carbaryl 8h 8 

Carbaryl 12h 8 

Carbaryl 24h 8 

Pb 4h 8 

Pb 8h 8 

Pb 12h 8 

Pb 24h 8 

 

7.2.2. XCMS feature detection 

XCMS (Smith et al, 2006; Tautenhahn et al, 2008), part of the Bioconductor R package 

(Gentleman et al, 2004) is a software package for untargeted LC-MS feature detection 

and is one of the most widely used data processing tool for untargeted metabolomics 

(Benton et al, 2010; Kurczy et al, 2015). XCMS analyses the mzML files for peaks. The 

peaks detected in each file are then grouped across all the samples to produce a single 

peak table. LC-MS instruments are prone to drift over a period of time. This can result in 

the same peak in different samples being detected at different retention times in different 

samples. XCMS provides a retention time correction algorithm to correct for instrument 

drift. 

The XCMS feature detection pipeline is carried out using a high-performance server-

based Galaxy instance (Figure 7.4). Galaxy is a leading open source workflow platform 
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originally designed for next generation sequencing data analysis (Afgan et al, 2016). In 

recent years there has been a large community effort to introduce metabolomics tools into 

the Galaxy environment (Giacomoni et al, 2015; Goecks et al, 2010; Weber et al, 2017).  

The galaxy instance used in this case has been set up for metabolomics data processing 

and has many useful tools set up for use within it. XCMS Peak picking is performed using 

the centwave algorithm (Tautenhahn et al, 2008) using the parameters in Table 7.2. The 

values for the parameters are optimised taken from an optimisation (Nash et al, in 

preparation) using the IPO tool for automated optimisation of XCMS parameters 

(Libiseller et al, 2015). 

Table 7.2: Centwave XCMS parameters used for data processing. 

PARAMETER VALUE 

ppm 11 

PeakWidth 3, 30 

snthresh 10 

prefilter 3, 100 

mzdiff 0.001 

 

The output after the XCMS workflow is a .csv file containing the peak table. The peak 

table contains peak intensities, with rows representing peaks, and columns representing 

samples. The resulting peak table contains 24,185 features across 130 samples. 

 
Figure 7.4: Galaxy XCMS workflow. .mzML files for each LC-MS run are used for feature detection 

using the xcms.xSet function. The features from each file are then grouped using the xcms.group 

function. The xcms.retcor function performs retention time correction, which accounts for instrument drift 

over the course of the whole analytical run. The xcms.group function must be called again after the 

retention time correction. 
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7.2.3. Metabolite annotation 

Metabolite annotation is the process of assigning chemical formulas and thus chemical 

identities to MS spectra (section 1.6.4). Several software packages exist for automated 

annotation of metabolites in LC-MS data sets. In this instance the MI-Pack software 

(Weber & Viant, 2010) is used for metabolite annotation, and provides annotations 

matched to the KEGG Compound database (Kanehisa et al, 2014). 

The MI-Pack software uses a mass-based annotation process to annotate metabolites 

using full scan MS spectrum. It assigns molecular formula to MS peaks and subsequently 

searches chemical databases using these derived formulas within a predefined ppm error. 

This has the potential to introduce false positive annotations, as many compounds can 

share the same molecular formula, and changes in the ppm tolerance used (in this case 

2ppm was used) can introduce more candidate annotations (Lai et al, 2018). Ideally, once 

MS peaks have been identified to be of interest using statistical tests, MS/MS 

fragmentation spectra data should be collected to further increase confidence in the 

metabolite annotations (Dunn et al, 2013). 

For the purpose of this study, MI-Pack is used to annotate the entire peak matrix, and the 

particular compounds of interest that are predicted to be effected are searched for in the 

list of Mi-Pack annotations. Of the 24,185 peaks, 6,450 (30%) have candidate KEGG 

Compound annotations. 

7.2.4. Data filtering and missing value imputation 

Blank subtraction and QC filtering is applied to the peak table. Blank subtraction involves 

subtracting the mean of any signals detected in the injected blank samples (see Table 7.1). 

Blank samples just contain the solvents used in the LC-MS method and the sample 
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preparation, so any signal that is measured when just the blank samples are analysed 

should not be included in the analysis and should be removed from the peak table.  

QC samples are pooled from all other sample classes and are therefore chemically 

identical. QCs are used to assess the stability of the instrument over the course of the 

analysis. Any feature that has a relative standard deviation (RSD) value of greater than 

25% in the QC samples are removed from the peak table as it is not a stably measured 

feature. 

Missing value imputation is also performed on the peak table. The XCMS parameters will 

remove features that have excessively high missing values across the peak table based on 

the minfrac parameter, but some features will still have missing values for some of the 

samples. Missing value imputation looks at each class individually and finds features that 

do not have any value for at least one sample. Missing values can occur in peak tables 

because the metabolite is not detected for a sample, or the metabolite has a concentration 

lower than the detection limit (either the instruments detection limit or a limit set by the 

snthresh parameter in XCMS).  

The k-nearest neighbour (KNN) missing value imputation method (Steuer et al, 2007; 

Troyanskaya et al, 2001) is recommended for use with UHPLC-MS data sets (Di Guida 

et al, 2016) and is used for this study. KNN imputation replaces missing values by taking 

the average of the 10 nearest non-missing values for the given feature within the same 

sample class. Euclidean distance is used as the measure of nearness. The KNN missing 

value imputation has the advantage of providing each missing value with a unique 

number, therefore maintaining some of the natural variance that is expected in a UHPLC-

MS dataset (Di Guida et al, 2016). 
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7.2.5. Normalisation 

The peak table undergoes normalisation and scaling before statistical analysis. Different 

approaches are applied depending on whether multivariate or univariate analyses are 

being performed. The recommendations from the extensive investigation carried out in 

(Di Guida et al, 2016) are followed (see Table 7.3). 

Table 7.3: Summary of normalisation, missing value imputation and transformation/scaling techniques 

applied to the dataset for each statistical analysis. 

 Normalisation Missing value 

imputation 

Data 

transformation 

Data scaling 

PCA PQN KNN Generalised 

logarithm 

None 

PLS-DA PQN KNN Generalised 

logarithm 

None 

Univariate PQN None None None 

 

7.3. Statistical analysis 

Several established statistical methodologies and workflows exist for interrogating 

untargeted metabolomics data sets. In a toxicology study, the goal of the statistical 

analysis is to assess if there are statistically significant differences in metabolomics 

responses between control and treatment experimental classes. If these differences are 

established, the features or peaks that contribute to these significant differences can be 

extracted. These features can be used to form a biological interpretation which in this 

context, can be used to validate the computationally generated hypotheses outlined in 

Chapter 5. 

Multivariate and univariate statistical analysis is performed for each exposure separately 

and used to identify features that contribute to observed changes between treatment and 

control groups. The identified features are then used to make biological interpretations 
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and to assess the validity of the computationally generated hypotheses for each exposure 

separately in section 7.4. 

7.3.1. Carbaryl treatment 

7.3.1.1. Multivariate statistics 

Principal Component Analysis (PCA) is performed on the Control and Carbaryl 

experimental classes. Plots of the pairwise comparisons of the first three principal 

components are generated (Figure 7.5, see Appendix E) These plots visualise the 

underlying multivariate variance between the experimental classes. Ideally samples from 

the same experimental classes should be tightly clustered on the plots, with inter-class 

separations between control and treatment sample groups.  

No substantial inter-class separation is observed when looking at all 8 groups with no 

single principal component (PC) revealing substantial differences in the underlying 

variance between experimental classes. The Control 24h and Carbaryl 24h groups are the 

most grouped classes on the plots, with all other six classes displaying a wide spread 

across the plot. 
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Figure 7.5: PC1 vs PC2 PCA plot of all Carbaryl and Control groups. 

2 class PCA summary plots are subsequently generated that compare the Control classes 

with the Carbaryl treatment classes at each time point (see Appendix E). The 24h time 

point plot is the only plot where some separation between the classes is observed. Figure 

7.6 shows the PC1 vs PC2 plot of the 24h time point. There is some multivariate variance 

between the Control and Carbaryl exposure 24h time point experimental classes. 
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Figure 7.6: PC1 vs PC2 plot of Control 24h and Carbaryl 24h. 

 

Partial Least Squares – Discriminant Analysis (PLS-DA) is performed on the Control and 

Carbaryl 24h classes to see if they can be separated. PLS-DA is a supervised classification 

technique that uses labelled data, whereas PCA is an unsupervised clustering technique 

that uses no prior knowledge. PLS-DA enhances the separation between groups of 

observations by rotating PCA components such that a maximum separation among these 

classes is obtained (Shaffer, 2002). The first and second PLS-DA components are plotted 

in Figure 7.7, and show that the PLS-DA model successfully separated the classes.  
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Figure 7.7: PLS-DA plot of the Control and Carbaryl 24h time point experimental classes. 

 

PLS-DA models require validation and assessment to make sure that they aren’t over-

trained or over fitted. 10-fold cross validation is performed on the PLS-DA model to 

validate the classification model. This results in two important measures for quantitively 

assessing the performance of the model, R2 and Q2.  

R2 is a correlation index and is a quantitative measure between 0 and 1 that indicates how 

well the PLS-DA model can mathematically reproduce the data in the data set. Q2 is also 
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a measure between 0 and 1 that measures to the quality of prediction and can be used as 

an indicator of whether the PLS-DA model is overfitted. A well fit PLS-DA model will 

have a R2 value of 0.7 or 0.8, and a Q2 value of greater 0.5 is acceptable, with a value of 

0.9 deemed outstanding (Szymanska et al, 2012).  

Figure 7.8 and Table 7.4 show the performance metrics for the 10-fold cross validation 

of the Control and Carbaryl 24h experimental classes PLS-DA model. The metrics are 

calculated for increasing number of components used in the model. 2 model components 

give the best R2 and Q2 values (0.85 & 0.57) 

 
Figure 7.8: 10-fold cross validation of the PLS-DA model for the Control and Carbaryl 24h time point 

experimental classes. 

Table 7.4: 10-fold cross validation performance metrics  

Measure 1 comps 2 comps 3 comps 4 comps 5 comps 

Accuracy 0.73333 0.8 0.66667 0.73333 0.73333 

R2 0.6193 0.84964 0.98809 0.99956 0.99995 

Q2 0.35854 0.56595 0.49492 0.51533 0.51389 
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Permutation testing is also performed on the PLS-DA model. Permutation testing gives a 

level of significance to the PLS-DA model in the form a p-value. The test creates several 

random PLS-DA models and checks their accuracy at classifying the samples into correct 

groups. The tests assume that there is no difference between the two randomly formed 

groups, with the sample labels being randomly permuted before a new classification 

model is produced. For each permuted model, the R2 and Q2 values are calculated and the 

number of times that the randomly generated models outperform the previously 

constructed model are recorded (Szymanska et al, 2012). 2,000 permutations are 

performed on the PLS-DA model, and the resulting p-value is 0.114. This value is higher 

than the ideal value of < 0.05. 

A Variable Importance Projection (VIP) score can be calculated for each feature in the 

PLS-DA model. The VIP value measures how much each feature contributes to the 

separation in the PLS-DA model, it is calculated as a weighted sum of square of the PLS 

loadings for each component of the PLS-DA model. Figure 7.9 plots the VIP scores for 

the features that have the highest 25 values for the first component of the PLS-DA model. 

Variables with VIP scores of greater than 1 are considered to have substantial influence 

on the separation observed in the PLS-DA model. Since the separation on the PLS-DA 

plot (Figure 7.7) is achieved through a combination of the first and second components, 

features that have a VIP score of greater than 1 for both the first and second components 

are selected for biological interpretation (section 7.4.1). This amounts to a total of 480 

features. 
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Figure 7.9: VIP scores plot of the 25 features that have the greatest VIP scores for the first component of 

the PLS-DA model. 

 

7.3.1.2. Univariate statistics 

For each time point, three analyses are performed to identify peaks that contribute to any 

differences between the control and treatment groups at that time point. A student’s t-test 

with Benjamini-Hochberg false discovery rate (FDR) correction is applied to assess the 

significance of peak intensity changes between groups. Fold change analysis is used to 

identify peaks that have substantially different intensities between the control and 

treatment groups. A volcano plot is also generated which combines the t-test and fold 

change analysis to identify peaks that are both significantly different between groups and 

have a significant fold change. The t-test requires peaks to have an adjusted p-value less 

than 0.05 to be significant. Peaks with fold change values that are at least ±2.0 are selected 

during fold change analysis. The volcano plots highlight peaks that have both an adjusted 
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p-value of at least 0.1 and a fold change of at least ±2.0. Table 7.5 contains the number 

of significant or substantial peaks selected from each analysis.  

Figure 7.10 is the t-test plot, Figure 7.11 is the fold change plot and Figure 7.12 is the 

volcano plot for the 24hr time point. Figures for the 4h, 8h and 12h time points are found 

in Appendix E. 

Table 7.5: Number of significant peaks selected from the t-test, the number of peaks with a substantial 

fold change and the number of significant peaks identified from volcano plots for the Control and 

Carbaryl groups at each time point. 

Time 

Point 

T-Test: q-value 

< 0.05 

Fold Change > ± 

2.0 

Volcano: q-value < 0.1 

& Fold change > ±2.0 

4h 0 199 2 

8h 0 681 0 

12h 0 416 0 

24h 633 1,298 643 

 

 
Figure 7.10: T-test plot for the Control vs Carbaryl 24h time point sample groups. -Log10(p) values are 

shown on the y-axis. Points are coloured pink if the FDR corrected p-value is less than 0.05. 663 peaks 

have an FDR corrected p-value of less than 0.05 



188 

 

 
Figure 7.11: Fold change plot for the Control vs Carbaryl 24h time point sample groups. Log2 fold 

change values are shown. Points are coloured pink if the raw fold change value is at least ± 2.0, of which 

there are 1,298 peaks. 

 
Figure 7.12: Volcano plot for the Control vs Carbaryl 24h time point. The x-axis shows log2 fold change 

values, the y-axis shows -log10 FDR corrected p-values. Points are coloured pink if the FDR corrected p-

value is less than 0.1 and the raw fold change value is at least ± 2.0, of which there are 643 peaks. 

 

All time points have peaks with substantial fold changes, however these do not consider 

any statistical significance and thus have no associated p-values. The t-tests and volcano 

plots do assign statistical significance, and for these tests, just the 24h time point yields 
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significant peaks, 633 from the t-tests and 643 from the volcano plot. The 24h time point 

also has by far the most peaks with fold changes > ±2.0. The only exception to this is that 

2 peaks are identified in the volcano plot for the 4h time point. 

7.3.2. Lead treatment 

7.3.2.1. Multivariate statistics 

Principal Component Analysis (PCA) is performed on the Control and Lead experimental 

classes. Plots of the pairwise comparisons of the first three principal components are 

generated (Figure 7.13, Appendix E). These plots visualise the underlying multivariate 

variance between the experimental classes. Ideally samples from the same experimental 

classes should be tightly clustered on the plots, with inter-class separations between 

control and treatment sample groups.  

No substantial inter-class separation is observed when looking at all 8 groups with no 

single principal component (PC) revealing substantial differences in the underlying 

variance between experimental classes. The Control 24h and Lead 24h groups are the 

most grouped classes on the plots, with all other six classes displaying a wide spread 

across the plot. 
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Figure 7.13: PC1 Vs PV2 plot of all Lead and Control groups. 

 

2 class PCA summary plots are subsequently generated that compare the Control with the 

Lead treatment at each time point. PCA plots can be found in Appendix E. No substantial 

separation is observed between treatment and control groups at any of the time points. 

PLS-DA is performed for the control and lead treatment classes at each time point to see 

if the classes can be separated. None of the PLD-DA models had acceptable R2 or Q2 

values. 
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7.3.2.2. Univariate statistics 

For each time point, three analyses are performed to identify peaks that contribute to any 

differences between the control and treatment groups at that time point. A student’s t-test 

with Benjamini-Hochberg false discovery rate (FDR) correction is applied to assess the 

significance of peak intensity changes between groups. Fold change analysis is used to 

identify peaks that have substantially different intensities between the control and 

treatment groups. A volcano plot is also generated which combines the t-test and fold 

change analysis to identify peaks that are significantly different between groups and have 

a significant fold change. The t-test requires peaks to have an adjusted p-value less than 

0.05 to be significant. Peaks with fold change values that are at least ±2.0 are selected 

during fold change analysis. The volcano plots highlight peaks that have both an adjusted 

p-value of at least 0.1 and a fold change of at least ±2.0. Table 7.6 contains the number 

of significant or substantial peaks selected from each analysis.  

Figure 7.14 is the t-test plot, Figure 7.15 is the fold change plot and Figure 7.16 is the 

volcano plot for the 8hr time point. Figures for the 4h, 12h and 24h time points are found 

in Appendix E. 

Table 7.6: Number of significant peaks selected from the t-test, the number of peaks with a substantial 

fold change and the number of significant peaks identified using volcano analysis for the Control and 

Lead groups at each time point. 

Time 

Point 

T-Test: q-value 

< 0.05 

Fold Change > ± 

2.0 

Volcano: q-value < 0.1 

& Fold change > ±2.0 

4h 0 448 0 

8h 0 806 0 

12h 0 336 0 

24h 0 446 0 

 

All time points have peaks with substantial fold changes, however these do not consider 

any statistical significance and thus have no associated p-values. The t-tests and volcano 
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plots do assign statistical significance, and for these tests, none of the time points yield 

significant peaks.  

 
Figure 7.14: T-test plot for the Control vs Lead 8h time point sample groups. -Log10(p) values are shown 

on the y-axis. Points are coloured pink if the FDR corrected p-value is less than 0.05. 0 peaks have an 

FDR corrected p-value of less than 0.05 

 
Figure 7.15: Fold change plot for the Control vs Lead 8h time point sample groups. Log2 fold change 

values are shown. Points are coloured pink if the raw fold change value is at least ± 2.0, of which there 

are 806 peaks. 
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Figure 7.16: Volcano plot for the Control vs Lead 8h time point. The x-axis shows log2 fold change 

values, the y-axis shows -log10 FDR corrected p-values. Points are coloured pink if the FDR corrected p-

value is less than 0.1 and the raw fold change value is at least ± 2.0, of which there are 0 peaks. 

 

7.4. Interpretation 

7.4.1. Carbaryl treatment 

The volcano plot (see Appendix E) and PLS-DA (Figure 7.7) revealed significantly 

changing peaks between the Control and Carbaryl treated samples at the 24h time point. 

A total of 643 peaks were obtained from the volcano plot, and 480 from the PLS-DA. 192 

peaks are common between the two statistical analyses ( 

Figure 7.17). These 192 peaks have been identified as significant, or discriminatory 

between the experimental classes using different statistical methods that each have their 

own assumptions about the data. Therefore, these 192 peaks can be considered less likely 

to be false positives. 
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Figure 7.17: Venn diagram showing the overlap between the features obtained from the volcano plot and 

PLS-DA analysis for the Carbaryl 24h exposure group. 

 

Each of the three groups of peaks are checked against the MI-Pack metabolite annotations 

mapping them to entries in the KEGG Compound database (section 7.2.3). The 

hypotheses outlined in Chapter 5 provide predictions of the metabolic effect of the 

Carbaryl treatment on three levels; KEGG modules, KEGG pathways and areas of 

metabolism. The same analyses used to form these predictions are repeated for each of 

three groups of peaks identified during the statistical analysis to assess the accuracy of 

the predictions. KEGG Mapper (Kanehisa, 2013) is used to identify KEGG modules, 

KEGG pathways and areas of metabolism that contain the statistically identified and 

KEGG annotated compounds. The KEGG annotated peaks are passed to the KEGG 

mapper software to find which peaks are mapped to KEGG modules and KEGG pathways 

(Table 7.7).  

414 (64%) of the 643 peaks obtained from the volcano plot, 457 (95%) of the 480 peaks 

identified using PLS-DA and 183 (84%) of the 192 peaks common between the two 

analyses have MI-Pack KEGG annotations. 
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Table 7.7: The number of peaks from the statistical analysis of the Carbaryl 24h dataset that have KEGG 

annotations and are mapped to KEGG pathways and modules. 

 # Peaks # Annotations # in KEGG 

Module 

# in KEGG 

Pathway 

Volcano plot 643 414 9 108 

PLS-DA 480 457 12 99 

Common 192 183 3 48 

 

7.4.1.1. KEGG modules 

For each set of annotated KEGG compounds (Volcano, PLS-DA and the common 

compounds between them), KEGG Mapper (Kanehisa, 2013) is used to identify KEGG 

modules that contain the annotated compounds using the same approach that was used to 

generate the predictions (section 5.3.2). The KEGG modules identified from each set are 

labelled as observed. A total of 18 KEGG modules were predicted to be effected by the 

Carbaryl exposure (section 5.3.2.1), and these are labelled as predicted. The overlap 

between the predicted and observed KEGG modules is calculated. Table 7.8 records how 

many KEGG modules are common between the predicted and observed and shows the 

precision, recall and F-measure of the computationally generated predictions. 

For the volcano compounds, 9 (2%) of the 414 annotated peaks are present in 7 KEGG 

modules, none of which are in common with the 18 predicted KEGG modules. 

For the PLS-DA compounds, 12 (3%) of the 457 annotated peaks are present in 7 KEGG 

modules, with 1 KEGG module being both predicted and observed. This results in; a 

precision value of 5.56%, a recall value of 14.29% and a F-measure of 8%. 

For the compounds that are both in the volcano set and the PLS-DA set, 3 (2%) of the 

183 annotated peaks are present in 4 KEGG modules, none of which are in common with 

the 18 predicted KEGG modules. 
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Table 7.8: Precision, recall and F-Measure for the assessment of the computationally generated 

predictions for the Carbaryl exposures in terms of KEGG modules. 

KEGG Modules Volcano PLS-DA Common 

Predicted 18 18 18 

Observed 7 7 4 

Overlap 0 1 0 

Precision 0% 5.56% 0% 

Recall 0% 14.29% 0% 

F-Measure N/A 8.00% N/A 

 

7.4.1.2. KEGG pathways 

For each set of annotated KEGG compounds (Volcano, PLS-DA and the common 

compounds between them), KEGG Mapper (Kanehisa, 2013) is used to identify KEGG 

pathways that contain the annotated compounds using the same approach that was used 

to generate the predictions (section 5.3.2). The KEGG pathways identified from each set 

are labelled as observed. A total of 15 KEGG pathways were predicted to be effected by 

the Carbaryl exposure (section 5.3.2.1), and these are labelled as predicted. The overlap 

between the predicted and observed KEGG pathways is calculated. Table 7.9 records how 

many KEGG pathways are common between the predicted and observed and shows the 

precision, recall and F-measure of the computationally generated predictions. 

For the volcano compounds, 108 (26%) of the 414 annotated peaks are present in 32 

KEGG pathways, with 8 KEGG pathways being both predicted and observed. This results 

in; a precision value of 53.33%, a recall value of 25% and a F-Measure of 34.04%. 

For the PLS-DA compounds, 99 (22%) of the 457 annotated peaks are present in 32 

KEGG pathways, with 9 KEGG pathways being both predicted and observed. This results 

in; a precision value of 60%, a recall value of 28.13% and a F-Measure of 38.3 %. 
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For the compounds that are both in the volcano set and the PLS-DA set, 48 (26%) of the 

183 annotated peaks are present in 16 KEGG pathways, with 4 KEGG pathways being 

both predicted and observed. This results in; a precision value of 26.67%, a recall value 

of 25% and an F-Measure of 25.81%. 

Table 7.9: Precision, recall and F-Measure for the assessment of the computationally generated 

predictions for the Carbaryl exposures in terms of KEGG pathways. 

KEGG Pathways Volcano PLS-DA Common 

Predicted 15 15 15 

Observed 32 32 16 

Overlap 8 9 4 

Precision 53.33% 60.00% 26.67% 

Recall 25.00% 28.13% 25.00% 

F-Measure 34.04% 38.30% 25.81% 

 

A hypergeometric distribution is calculated to assess the likelihood of observing an 

overlap between the predicted and observed KEGG pathways under a null model for the 

Volcano, PLS-Da and Common compounds.  The values are calculated based on the 526 

KEGG pathways present in the KEGG database. The probability mass values are 3.518e-

7, 1.34562e-8 and 6.0847e-4 respectively, showing that getting these results randomly is 

unlikely. 

7.4.1.3. Areas of metabolism 

Each of the areas of metabolism to which the observed KEGG pathways belong are 

compared with the areas of metabolism that were derived from the predicted KEGG 

pathways in section 5.3.2.1. A total of 6 areas of metabolism are predicted to be effected 

by the Carbaryl exposure. The overlap between the predicted and observed areas of 

metabolism is calculated. Table 7.10 records how many areas of metabolism are common 
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between the predicted and observed and shows the precision, recall and F-measure of the 

computationally generated predictions. 

For the volcano compounds, 8 areas are observed. There is an overlap of 5 between the 6 

areas predicted and the 8 areas observed. This results in; a precision value of 83.33%, 

recall value of 62.5% and an F-measure of 71.43%. 

For the PLS-DA compounds, 8 areas are observed. There is an overlap of 5 between the 

6 areas predicted and the 8 areas observed. This results in; a precision value of 83.33%, 

a recall value of 62.5% and an F-Measure of 71.43 %. 

For the compounds that are both in the volcano set and the PLS-DA set, 6 areas are 

observed. There is an overlap of 4 between the 6 areas predicted and the 6 areas observed. 

This results in; a precision value of 66.67%, a recall value of 66.67% and a F-Measure of 

66.67%. 

Table 7.10: Precision, recall and F-Measure for the assessment of the computationally generated 

predictions for the Carbaryl exposures in terms of Areas of Metabolism 

Areas of metabolism Volcano PLS-DA Common 

Predicted 6 6 6 

Observed 8 8 6 

Overlap 5 5 4 

Precision 83.33% 83.33$ 66.67% 

Recall 62.50% 62.50% 66.67% 

F-Measure 71.43% 71.43% 66.67% 

 

A hypergeometric distribution is calculated to assess the likelihood of observing an 

overlap between the predicted and observed KEGG areas of metabolism under a null 

model for the Volcano, PLS-Da and Common compounds.  The values are calculated 

based on the 12 KEGG areas of metabolism present in the KEGG database. The 

probability mass values are 0.16317, 0.16317 and 0.183566 respectively. These values 
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are higher than ideal, but this is a very low granularity way of looking at effects on a 

metabolic system so should not be considered to be a highly accurate way of assessing 

the computationally generated hypotheses. 

7.4.2. Lead treatment 

The statistical analysis of the Lead exposure datasets (section 7.3.2) did not reveal any 

significantly changing peaks between treatment and control experimental classes. 

Therefore, no assessment of the accuracy of the computationally generated hypothesis 

(section 5.3.2.2) can be performed. 

7.5. Discussion  

This chapter has presented a metabolomics study carried out with the purpose of assessing 

the validity of the computationally generated predictions that predict how the metabolome 

of D. magna is effected by exposure to two environmental stressors, Carbaryl and Lead 

(Chapter 5). The experimental design mimicked the experiment that generated the 

transcriptomics datasets (Orsini et al, 2016) that are used as part of the computational 

hypothesis generation. These experiments recorded data at the 4h time point, and for the 

metabolomics study this time point as well as three other later time points (8h, 12h and 

24h) are used with the purpose of catching the expected temporal delay in the metabolome 

response. 

HPLC-MS was used to make the metabolomics measurements, and the typical 

metabolomics mass spectrometry based workflow (Figure 7.1) was followed. Section 7.1 

details the sample preparation and data acquisition, and section 7.2 details the data 

processing. Statistical analysis was carried out on the resultant peak table to identify peaks 

that are significantly different between treatment and control groups, with sample classes 
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partitioned so that for each statistical analysis, one treatment is compared to the control 

group for each time point separately. 

PCA analysis failed to reveal substantial intra-class clustering or inter-class separation 

for all but one of the compared experimental classes, the Carbaryl 24h and the Control 

24h groups. The same is true of the PLS-DA analysis, with only the model built using 

Carbaryl 24h vs Control 24h groups having an acceptable performance. Univariate 

analyses told the same story, failing to uncover any significant differences between 

groups apart from the Carbaryl 24h and Control 24h groups.  

To investigate this further, the RSDs of features across sample groups is calculated. First 

the RSDs of features in the QC samples in inspected using the raw peak intensities, Figure 

7.18 summarises them in a box plot. The mean RSD is 11.28% which shows that there is 

a small and acceptable amount of analytical variation in the study. 

 
Figure 7.18: Box plot summarising the RSDs of features in the QC samples. 

 

The RSDs of each feature is then calculated across each experimental class. This 

calculation is performed on the peak matrix that has been processed for univariate 
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statistics (see Table 7.3). Figure 7.19 shows box plots summarising the distribution of 

these RSD values.  

 
Figure 7.19: Box plots summarising the RSDs of all features across all experimental classes. 

 

The median RSD values are high for all experimental classes, with the lowest values being 

44.13% for the Control 24h class and 44.65% for the Carbaryl 24h class. It is interesting 

to note that these are the two classes whose comparison yielded some statistical 

significance. The high variability in the experimental classes, particularly the Carbaryl 

and Lead exposure classes explains why the statistical tests failed to find significant 

differences between classes, with no assessment possible for the Lead predictions. This 

suggests issues in the sample preparation stage. 
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Table 7.11: Median RSDs for all features for each experimental class 

Group Median 

Control 4h 48.35 

Control 8h 48.36 

Control 12h 63.41 

Control 24h 44.13 

Carbaryl 4h 81.95 

Carbaryl 8h 73.79 

Carbaryl 12h 76.28 

Carbaryl 24h 44.65 

Lead 4h 66.67 

Lead 8h 69.76 

Lead 12h 81.33 

Lead 24h 68.06 

 

For the Carbaryl and Control 24h groups’ comparison, the statistically significant peaks 

identified using a volcano plot and PLS-DA were used to assess the quality of the 

computationally generated predictions. The peaks were first checked to see if they have 

MI-Pack metabolite annotations. For the 739 unique peaks identified from the volcano 

plot and PLS-DA model, there are 677 MI-Pack KEGG annotations.  

These 677 KEGG compounds are passed to the KEGG Mapper software to find which 

KEGG modules and KEGG pathways that they participate in. This mirrors the same 

approach that is used to formulate the predictions using the active modules approach for 

the computational generation of hypotheses in Chapter 5. The KEGG modules and 

pathways that contain the 677 KEGG compounds are identified and compared with the 

predicted KEGG modules and pathways. Only around 2-3% of the KEGG annotations 

can be linked to KEGG modules, and around 25% can be linked to KEGG pathways.  

Table 7.8 summarises the assessment of the KEGG module predictions. With such low 

representation of the KEGG annotations in the KEGG modules, it is almost meaningless 

to use KEGG modules to assess the quality of the computationally generated predictions, 

therefore assessment of the predicted KEGG modules is not possible. 
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Table 7.9 summarises the assessment of the KEGG pathway predictions by comparing 

the KEGG pathways that are predicted to be effected and the KEGG pathways that 

contain compounds that are mapped to peaks that contribute to the statistically significant 

differences between the Carbaryl and Control 24h classes. Comparing the predicted 

KEGG pathways with the KEGG pathways linked to peaks identified using the volcano 

plot and the PLS-DA model results in precision values of 53.33% and 60.00%, recall 

values of 25% and 28.13% and F-Measures of 34.04% and 38.30% respectively. 

The computationally generated predictions are also extended to areas of metabolism (see 

Figure 5.4). Each KEGG pathway belongs to a more general area of metabolism. The 

areas of metabolism that contain the predicted KEGG pathways are recorded as part of 

the computationally generated hypotheses (section 5.3.2) and are compared with the areas 

of metabolism that the KEGG pathways observed to be effected. Table 7.10 summarises 

the comparison. The areas of metabolism linked to the peaks identified using the volcano 

plot and the PLS-DA model both achieve precision values of 83.33%, recall values of 

62.5% and F-Measures of 71.43%. 

Overall, it is difficult to fully assess the performance of the computationally generated 

hypotheses. The measured features obtained from the metabolomics study has very high 

variance for all experimental classes, and only one of the possible eight inter-group 

comparisons yielded any statistically significant differences. The only possible inter-

group comparison was for a 24hr time point. The intention of collecting metabolomics 

data at multiple time points was to track statistically significant changes in metabolic 

response across these time points, which was unfortunately not possible. As the 

transcriptomics data that generated the data used to form the hypotheses was taken at a 
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4hr time point, caution must be exercised when using only the 24hr time-point 

metabolomics data to assess the hypotheses. 

A possible reason for the lack of significant metabolic responses across the various group 

comparisons is that the exposures did not induce strong enough metabolic responses. The 

doses of the Lead and Carbaryl exposures were based on the transcriptomics study (Orsini 

et al, 2016) which generated the data used to score the GWMR (Section 5.3), and were 

deemed severe enough to drive significant transcriptional response. (Orsini et al, 2018). 

The doses were sub-lethal as they aimed to reflect realistic human-induced pollution in 

inland waters, and this may have resulted in too weak of a metabolic response to be picked 

up in an untargeted study. A statistical power analysis could be performed to estimate the 

required sample size to detect a smaller effect size (Blaise et al, 2016) caused by such 

sub-lethal does. 

The fact that only around 25% of the peaks with metabolite annotations can be linked to 

KEGG pathways also affects the ability to assess the performance thoroughly. The 

statistical analysis of two experimental classes with the lowest feature variance, Control 

and Carbaryl 24h, did allow for some assessment to be made in terms of predicted KEGG 

pathways and areas of metabolism and yielded some positive results. For the pathways, 

good precision was observed, albeit with lower recall values. For areas of metabolism 

precision and recall values were good, but this is a very low granularity way of looking 

at effects on a metabolic system. A more stable dataset in which the features have lower 

experimental class variation would allow for more robust statistical analysis, which is 

needed to make a fair assessment of the computationally generated hypotheses. 
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8. Discussion 

The ultimate aim of the research presented in this thesis (see Chapter 2), is to develop, 

apply and validate a mechanism for using a computational environmental toxicology 

approach to make in-silico predictions of unknown metabolic response of a complex 

organism of interest to environmental stressors using transcriptomics data. Realising this 

would allow for toxicology measurements of gene expression to be used to reveal 

downstream effects on metabolism in a completely in-silico way. This hypotheses 

generation step is of benefit to untargeted metabolomics studies as it adds an element of 

hypotheses testing to the holistic approach of measuring every metabolite possible using 

untargeted metabolomics. 

The approach used in this thesis differs to some of the traditional ones in that it aims to 

predict unknown organism response to environmental stressors, with a focus on 

organisms whose genome sequences are newly sequenced and therefore do not have 

accurate and curated GWMRs. Other studies have looked at using flux balance analysis 

with highly curated GWMRs to model known organism responses (Brandes et al, 2012; 

Colijn et al, 2009; Dreyfuss et al, 2013; Garcia Sanchez et al, 2012; Heavner et al, 2013; 

van Berlo et al, 2011). Other studies have largely been focussed on predicting cellular 

growth (Dreyfuss et al, 2013; Feist et al, 2009; Garcia Sanchez et al, 2012; Huang & 

Fraenkel, 2009; Lee et al, 2012), the production of a specific biologically important 

metabolite (Varma et al, 1993) or for the analysis of genomics and transcriptomics data 

(Li et al, 2010; Mols et al, 2007).  

The organism of interest used to test this approach is Daphnia, an emerging model species 

in evaluating ecological impact of environmental change, and one that is increasingly 
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used as the organism of interest for environmental omics studies (section 1.8). The sub-

species D. magna is used in this research due to the availability of a reference genome, 

and environmental toxicology transcriptomics resources (Orsini et al, 2016; Orsini et al, 

2012). 

In order to achieve the goal of this research, a workflow is developed that provides a 

mechanism for computational hypothesis generation of the metabolic effects of 

environmental insults using genome-wide metabolic reconstruction (GWMR) to model 

the metabolome of an organism and to generate computational hypotheses by 

incorporating transcriptomics data and using a network optimisation technique called 

active modules (Figure 2.1). GWMR is an in-silico modelling technique that aims to 

represent the metabolic capabilities of an organism at a genomic scale by representing a 

metabolome as a network of connected nodes. GWMRs provide a platform for analysis, 

visualisation and contextualisation of omics datasets. The potential for the use of 

GWMRs in environmental metabolomics based computational toxicology has been 

highlighted (Kesari, 2017) but to date little has been published in this area (Blais et al, 

2017; Kotera & Goto, 2016; Topfer et al, 2015). 

The workflow is applied to predict the effects of two environmental stressors on the 

metabolome of D. magna. The two stressors used, Carbaryl and Lead are relevant as they 

are human-induced because of human-driven pollution caused by agriculture and 

industry. The computationally generated hypotheses make predictions of the metabolic 

response of D. magna to the two stressors that is previously unknown. To assess the 

accuracy of these predictions and therefore assess the effectiveness of the proposed 

workflow, a metabolomics study is performed. 
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8.1. METRONOME platform 

The first step in achieving the overall research goal was to generate a GWMR of D. 

magna. Draft GWMRs can be built in an automated way, and several tools are available 

for doing this. These tools have limitations when being used to construct draft GWMRs 

of organisms with newly sequenced genomes as they either require annotated genome 

sequences in very specific formats or require the organism’s genome sequence to be 

present pathway databases such as KEGG. For D. magna, these resources are unavailable 

so to facilitate the construction of a draft GWMR of D. magna the METRONOME 

platform is developed (Chapter 3). 

The METRONOME platform is flexible and lightweight and only requires a genome 

sequence to construct a draft GWMR. METRONOME makes use of an orthology 

matching algorithm to assign enzymes to the input sequence. A data mining module then 

uses these enzymes to extract enzymatic reactions and the associated metabolites to form 

a network. METRONOMEs flexible architecture allows for multiple databases / data 

sources to be used by the data mining module. A network merging module makes use of 

the reaction and metabolite reconciliation resource MetaNetX (Moretti et al, 2016) to 

merge reactions and metabolites obtained from different sources into a single coherent 

network. The ability to use multiple sources is a key advantage of the METRONOME 

platform, and sets it apart from other tools. To date, a sub-module for extracting metabolic 

reactions from KEGG based on enzyme numbers is implemented along with a sub-

module for extracting reactions from an SBML (Systems Biology Mark-up Language). 

The SBML extraction module in this case is used to extract metabolic reactions from the 

MetaCyc (Caspi et al, 2014) resource which can be exported as an SBML file. 
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The performance of METRONOME is evaluated by generating draft GWMRs of two 

model organisms with highly curated GWMRs, E. coli and S. cerevisiae. The 

METRONOME generated GWMRs are then compared to draft GWMRs built using two 

other automated tools; Pathologic and Model SEED. The comparisons look at how well 

the draft GWMRs cover the reactions and metabolites contained within well curated 

GWMRs/database information about the species. METRONOME clearly outperformed 

Model SEED, and when compared to Pathologic, METRONOME GWMRs recovered a 

higher proportion of the curated set of reactions but were slightly less precise (section 

3.3). 

The Pathologic tool makes use of a rule-based pathway inference mechanism when 

constructing draft GWMR (Karp et al, 2011). This mechanism adds or removes reactions 

from the generated model if metabolic pathways are nearly complete or mostly 

incomplete. This offers an explanation as to why Pathologic networks are more precise 

than METRONOME networks. Network inference could be introduced into the 

METRONOME approach however when it comes to generating hypotheses using the 

network (Chapter 5), reaction nodes are scored based on gene expression data. This is 

possible because each reaction in the METRONOME draft GWMR can be tracked back 

to one or many genes from the input genome sequence (Figure 1.4). If a pathway inference 

technique is applied, some reactions will be added to the network based on the presence 

of other reactions in a pathway meaning that no genes will be directly associated with 

them. This presents a challenge when scoring the network prior to active module 

identification. 

A key advantage of METRONOME is that the only thing that is required to generate a 

draft GWMR is an unannotated genome sequence. The enzyme assignment module of the 
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METRONOME platform essentially performs a genome annotation. Currently the 

OrthoMCL (Li et al, 2003) algorithm is configured for use with METRONOME. 

Alternative genome annotation approaches are available (Claudel-Renard et al, 2003; 

Curtis et al, 2013; Devoid et al, 2013; Li et al, 2003; Romero et al, 2005; Waterhouse et 

al, 2013; Zhao et al, 2013), and incorporating more of these has the potential to improve 

the accuracy of the METRONOME draft GWMRs. This can be achieved with relative 

ease thanks to METRONOME’s modular design. 

The METRONOME platform does not include subcellular compartmentalisation or the 

addition of transport reactions. Eukaryotic cells are made up of several membrane bound 

compartments, each containing different collections of metabolic enzymes. The various 

compartments are connected metabolically by transport reactions. A result of this is that 

certain metabolic processes are only possible within certain membrane bound cellular 

compartments (Klitgord & Segre, 2010). Compartmentalisation of reactions within 

GWMRs, and the addition of associated transport reactions helps to improve model 

accuracy and the predictive performance of flux balance analysis (Bekaert, 2012). The 

addition of compartments and transport reactions forms part of the manual curation stage 

outlined in the highly detailed protocol for GWMRs (Thiele & Palsson, 2010). The 

METRONOME platform would benefit from the addition of compartmentalisation, 

however the AMBIENT algorithm (Bryant et al, 2013b) used to generate the 

computational hypotheses in this thesis does not take into account the 

compartmentalisation of metabolic reactions. 

8.2. Draft GWMR of D. magna  

Once the effectiveness of METRONOME platform is evaluated, it is used to build a draft 

GWMR of D. magna (Chapter 4). There is no reported GWMR of D. magna so to assess 
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the reconstruction, the contents of the network are investigated by looking at the coverage 

of the KEGG reference pathway, three core KEGG pathways and thirteen KEGG 

pathways that have been highlighted in D. magna toxicology studies (section 4.3). 

Coverage of the core and highlighted KEGG pathways is satisfactory so the D. magna 

draft GWMR is considered acceptable. The generation of a first draft GWMR of D. 

magna has not been previously reported and now the process of manually curating the 

network based on experimental evidence can begin.  

8.3. Computational hypothesis generation 

The AMBIENT algorithm (Bryant et al, 2013b), an extension to the active modules 

approach (Ideker et al, 2002), uses a search heuristic to identify sub-networks, or ‘hot-

spots’, within a metabolic reconstruction that are significantly affected based on a 

toxicogenomic transcriptomics dataset. These ‘hot-spots’ reveal areas within the 

metabolic network that are predicted to be significantly affected by the condition tested 

in the gene expression data. Chapter 5 details the use of AMBIENT to identify sub-

modules within the D. magna using a transcriptomics dataset that measures the gene 

expression response to two environmental stressors, Carbaryl and Lead.  

The reactions and metabolites contained within the identified sub-modules are passed to 

the KEGG mapper software to identify KEGG modules, KEGG pathways and areas of 

metabolism (see Figure 5.4) that form predictions of how the D. magna metabolome is 

effected at different granularities. These predictions are termed computationally 

generated hypotheses. This approach of identifying network ‘hot-spots’ is previously 

used for discovering underlying mechanisms of known responses (Bryant et al, 2013b; 

Wang et al, 2013; Wang et al, 2014) which do not require validation. Here the approach 

is being used in a hypothesis generation context, which can be used to inform untargeted 
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metabolomics studies and avoid the common criticism of fishing for interesting features 

within a dataset (Ning & Lo, 2010). 

8.4. Closed-loop optimisation of LC-MS analysis 

LC-MS is a principal analytical technique for metabolomics and is the analytical platform 

used in the study conducted to assess the performance of the computationally generated 

predictions (Chapter 7). Developing LC-MS methods is challenging, and can be 

formulated as a multi-objective heuristic search problem. Closed loop optimisations are 

where solutions are evaluated by conducting physical real-world experiments. Typically, 

these evaluations are costly and time consuming so algorithms that make efficient use of 

evaluations are required. The MUSCLE platform for closed-loop automated evolutionary 

multi-objective optimisation of LC-MS analysis (Chapter 6) is developed and used to 

develop a HPLC-MS method for use in the metabolomics study. 

Two optimisation algorithms are implemented in MUSCLE. A modified version of the 

PESA-II algorithm that uses Latin Hypercube sampling to initially sample the search 

space is used. A new algorithm, PESA-II-FS, which extends the modified PESA-II to use 

feature selection is also introduced. PESA-II-FS iteratively uses feature selection to 

identify the decision variables that have the greatest effect on the multi-objective 

optimisation. The selected decision variables become the focus of the optimisation, whist 

the unselected variables have their values set based on values that have previously 

resulted in good solutions (section 6.2.4.2). This effectively reduces the search space and 

helps convergence of the algorithm. This is important as for closed-loop optimisations 

like this, as evaluations are extremely costly in terms of both time and cost. 
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A comparison of the PESA-II and PESA-II-FS algorithms is presented in section 6.3.1. 

The optimisation using the PESA-II-FS algorithm performed better than the original 

PESA-II MUSCLE algorithm, especially in terms of method sensitivity but further testing 

is required. The PESA-II and the PESA-II-FS algorithms share the first two steps (Figure 

6.8 & Figure 6.9), both have an archive set initialised with non-dominated solutions 

obtained using Latin Hypercube Sampling. The initialisation on the Latin Hypercube is 

stochastic in nature, and this case, each optimisation used a different Latin Hypercube. In 

future studies, the same Latin Hypercube can be used for both optimisations to give a 

fairer comparison between the two algorithms. 

MUSCLE is demonstrated by the automated development of several LC-MS method 

optimisations across a range of analytical systems for both targeted and untargeted 

analysis. MUSCLE optimisations always resulted in improved LC-MS methods with 

increased analytical sensitivity and/or shorter analysis times for a number of different 

analyses across a range of different analytical platforms and analysis types. This closed-

loop approach has the potential to benefit many scientific fields that make use of LC-MS 

including metabolomics, proteomics and pharmacology. 

8.5. Prediction validation 

To assess the computationally generated predictions (Chapter 5) a metabolomics study is 

performed. The experimental design mimics the design of the study that produced the 

transcriptomics datasets used in the prediction process. Extra time points are included to 

account for the expected temporal delay between gene expression and metabolic changes. 

The experiment involved D. magna clones being exposed to environmentally relevant 

concentrations of Carbaryl and Lead in controlled laboratory conditions (section 7.1). 
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PCA, PLS-DA and volcano plots are used to identify statistically different peaks between 

treatment-control group pairs at each time point (section 7.3). The statistical analyses 

failed to identify significant difference between all but one of the group comparisons. 

This result is highly unexpected. To investigate, for each experimental group, the Relative 

Standard Deviation (RSD) values for each feature is calculated, Figure 7.19 shows 

boxplots of the distribution of these RSD values. Median RSD values are very high, with 

the average value across groups being 64%. This high amount of variation seen in the 

dataset offers an explanation as to why the statistical analyses did not identify significant 

differences. 

Statistically significant differences between the Carbaryl and Control 24h groups were 

observed using a volcano plot and PLS-DA model. The features that contributed to the 

statistical differences are matched to MI-Pack (Weber & Viant, 2010) KEGG annotations 

and these KEGG annotations are used to identify KEGG modules, pathways and areas of 

metabolism that can be used to assess the accuracy of the predictions using an approach 

mirrors the approach used during the computational hypotheses generation stage (section 

5.3.2). The identified KEGG modules, pathways and areas of metabolism are then 

compared to the Carbaryl predictions at the three levels of granularity (Figure 5.4).  

Assigning annotated peaks to KEGG modules was problematic. Only 2-3% of annotated 

peaks could be mapped to KEGG modules. Assessing the predictions at this level is 

therefore meaningless. Comparing predictions to observations at the KEGG pathway 

level was more successful. Comparing the predicted KEGG pathways with the KEGG 

pathways linked to the peaks identified using the volcano plot and the PLS-DA model 

results in precision values of 53.33% and 60.00%, recall values of 25% and 28.13% and 

F-Measures of 34.04% and 38.30% respectively. 
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Comparing predictions at the areas of metabolism level is also successful. Comparing the 

predicted areas of metabolism with the areas of metabolism linked to the peaks identified 

using the volcano plot and the PLS-DA model both results in precision values of 83.33%, 

recall values of 62.5% and F-Measures of 71.43%. 

Despite the challenges faced in processing the dataset, some positive results are obtained 

for the predictions of the Carbaryl treatment. At the KEGG pathway level, the predictions 

had good precision values but with poorer recall values and at the areas of metabolism 

level both precision and recall values are good. The areas of metabolism level is extremely 

broad however, so good precision and recall at this level does not necessarily indicate 

high quality predictions. 

It is difficult to make a clear assessment of the quality of the predictions. High variance 

in the metabolomics dataset meant that only one of the eight possible comparisons is 

possible. This resulted in only a single statistically relevant comparison being made for 

one of the two treatments at one of the four time points. The high amount of variation did 

not allow for any assessment of the predictions for the Lead treatment at all. There is a 

clear need to test the computational hypotheses generation methodology using a different 

dataset as only the predicted metabolic effect of the Carbaryl treatment can be assessed. 

A targeted metabolomics approach may be more suitable for assessment of prediction 

accuracy. 

8.6. Concluding remarks and future work 

The aim of this research was to develop a framework for using GWMRs in an 

environmental computational toxicology setting to form computationally generated 

hypotheses of the metabolic effects of environmental insults. Using GMWRs in a 
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predictive way like this has potential benefits to untargeted metabolomics studies as it 

allows for an element of hypothesis testing to be introduced alongside the hypothesis-

generating nature of untargeted metabolomics studies. Using such a computational 

approach can help in the design of untargeted metabolomics studies and go towards 

answering a major criticism of untargeted metabolomics, that it is often seen as fishing 

for hypotheses (Ning & Lo, 2010). 

A workflow is introduced that allows for organisms with newly sequenced genomes to 

be used in this predictive way. Several computational tools and approaches are introduced 

to achieve this. D. magna is an important new model species in environmental research 

that has seen a lot of attention in environmental omics and toxicology studies. Here, the 

first reported GWMR of D. magna is introduced and used in a predictive way to predict 

unknown effects on its metabolome to two environmental stressors relevant to human-

driven pollution. A metabolomics study is conducted to assess the computational 

predictions. Due to difficulties in the reproducibility of the dataset, it is difficult to fully 

assess the accuracy of the predictions. Despite this, some positive results are obtained, 

further experiments are needed however.  

A major assumption of the approach used when generating the computational hypotheses 

using AMBIENT is that metabolite concentration levels are directly correlated to the 

transcript levels of the associated enzyme encoding genes. Without measuring the level 

of enzyme expression this cannot be known for sure. If an enzyme is more active, it 

suggests that the reactions associated with it are more active, meaning that the metabolic 

flux through said reaction would be expected to be affected. This does not necessarily 

mean that the abundance of the metabolites associated with these reactions should be 

present in higher or lower concentrations as the metabolites are interlinked within the 
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entire metabolic network through a series of reactions that both consume and produce 

them (Zelezniak et al, 2014).  

The metabolites that are included in AMBIENT modules are selected based on their 

degree, or connectivity within the network. As a result, it could be hypothesised that their 

concentrations would be affected in some way by the conditions being tested in the 

transcriptomics data that produced the AMBIENT modules. A targeted metabolomics 

study could be carried out to focus specifically on the metabolites that are contained 

within the modules to investigate how their concentrations change over the time points in 

the study. This would mitigate the issues with metabolite annotation of untargeted 

metabolomics data and therefore also aid the statistical analysis. There is a danger in 

taking this approach however as there could be areas of the metabolome that are 

significantly changing under the conditions being tested that would not be picked up. 

Fluxomics allows for the measurement of reaction rates within an organism (Winter & 

Kromer, 2013) and could be utilised in this context. A fluxomics study would shift the 

focus from the metabolites to the reactions contained within the AMBIENT active 

modules. As it is the reactions nodes in the GWMR that have experimental data directly 

linked to them this would be beneficial. A requirement for a fluxomics study however is 

that the metabolic reconstruction being used is of high accuracy and is well curated. This 

limits the applicability for this approach to be used with newly sequenced organisms such 

as D. magna where the required detailed biological knowledge is not necessarily 

available. 

The fact that a draft GWMR of D. magna is used to generate the computational 

hypotheses likely to have caused uncertainties due to the lack of manual curation of the 

model. If the draft GWMR were to undergo the full manual curation steps outlined in 
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(Thiele & Palsson, 2010) there would be more confidence in the predicted metabolic 

responses. The approach to computationally predict unknown organism response to 

environmental stressors could be validated using an organism that has a highly curated 

GWMR such as Human (Swainston et al, 2016), Yeast (Heavner & Price, 2015) or Mouse 

(Sigurdsson et al, 2010).  
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9. Appendix A – AMBIENT active modules 

Below, the active modules generated using the AMBIENT algorithm (see section 5.3 and 

Table 5.2) are visualised with the metabolites contained within each of them listed in 

tables that show the name, formula, KEGG ID and MetaCyc ID of each metabolite. 

Carbaryl treatment Module 1 
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NAME FORMULA KEGG ID METACYC ID 

1,4-dihydroxy-2-

naphthoate 

C11H7O4 C03657 DIHYDROXYNAPHTH

OATE 

2-demethylmenaquinol-6 C40H56O2 n/a CPD-12116 

2-demethylmenaquinol-8 C50H72O2 n/a CPD-12115, CPD0-2129 

2-Demethylmenaquinone C15H14O2(C5H8)n C05818 n/a 

4-hydroxy-3-all-trans-

decaprenylbenzoate 

C57H85O3 n/a CPD-9864 

4-hydroxy-3-all-trans-

heptaprenylbenzoate 

C42H61O3 n/a CPD-9852 

4-hydroxy-3-all-trans-

hexaprenylbenzoate 

C37H53O3 C13425 3-HEXAPRENYL-4-

HYDROXYBENZOATE 

4-hydroxy-3-all-trans-

octaprenylbenzoate 

C47H69O3 C05809 3-OCTAPRENYL-4-

HYDROXYBENZOATE 

4-hydroxy-3-

polyprenylbenzoic acid 

(C5H8)nC7H6O3 n/a 4-Hydroxy-3-

polyprenylbenzoates 

4-hydroxybenzoate C7H5O3 C00156 4-hydroxybenzoate 

all-trans-decaprenyl 

diphosphate 

C50H81O7P2 C17432 CPD-9610 

all-trans-dodecaprenyl 

diphosphate 

C60H97O7P2 n/a CPD-9650 

all-trans-tridecaprenyl 

diphosphate 

C65H105O7P2 n/a CPD-9972 

all-trans-undecaprenyl 

diphosphate 

C55H89O7P2 n/a CPD-9649 

an all-trans-polyisoprenyl 

diphosphate 

n/a n/a TRANS-

POLYISOPRENYL-PP 

an isoprenoid diphosphate n/a n/a Polyisoprenyl-

Diphosphates 

menaquinol-6 C41H58O2 n/a CPD-12124 

menaquinol-8 C51H74O2 n/a REDUCED-

MENAQUINONE 

Menaquinone C16H16O2(C5H8)n C00828 n/a 
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Carbaryl treatment Module 2 

 
 

NAME FORMULA KEGG ID METACYC ID 

3-acetamidopropanal C5H9NO2 C18170 CPD-10687 

3-aminopropanal C3H8NO C05665 CPD-6082 

N(1),n(12)-diacetylspermine C14H32N4O2 C03413 CPD-11268 

N(1)-acetylspermine C12H31N4O C02567 N1-ACETYLSPERMINE 

Norspermidine C6H20N3 C03375 NORSPERMIDINE 

Norspermine C9H28N4 n/a CPD-10689 

 

Carbaryl treatment Module 3 

 
 

NAME FORMULA KEGG ID METACYC ID 

Bilirubin C33H34N4O6 C00486 BILIRUBIN 

Bilirubin-

bisglucuronoside 

C45H50N4O18 C05787 BILIRUBIN-

BISGLUCURONOSIDE 

Biliverdin C33H32N4O6 C00500 BILIVERDINE 

Fe(2+) Fe C14818 FE+2 

Carbon monoxide(1+) CHO C00237, 

D09706, D03398 

CARBON-MONOXIDE 
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Carbaryl treatment Module 4 

 
 

NAME FORMULA KEGG ID METACYC ID 

1-methylnicotinamide C7H9N2O C02918 CPD-396 

n-methyl-6-pyridone-3-carboxamide C7H8N2O2 C05842 n/a 

n-methyl-4-pyridone-3-carboxamide C7H8N2O2 C05843 n/a 

Carbaryl treatment Module 5 

 

 
 

NAME FORMULA KEGG ID METACYC ID 

2,5-dihydroxybenzaldehyde C7H6O3 C05585 CPD-16722 

2,5-dihydroxybenzoate C7H5O4 C00628 CPD-633 

Carbaryl treatment Module 6 

 
 

NAME FORMULA KEGG ID METACYC ID 

2-cis-(+)-abscisate C15H19O4 C06082, C11060 CPD-693, CPD-

7731 

(+)-abscisic aldehyde C15H20O3 C13455 CPD-14385, 

CPD-692 
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Carbaryl treatment Module 7 

 

NAME FORMULA KEGG ID METACYC ID 

Alpha-maltotriose C18H32O16 C01835 MALTOTRIOSE 

Linear maltodextrin (C12H20O10)n C01935, C00718, 

D02329, G10495 

n/a 

Beta-d-galactosyl-(1->4)-

beta-d-glucosyl-(11)-n-

acylsphing-4-enine 

C31H56NO13R C01290, G00092 Lactosyl-Ceramides 

N-acetyl-beta-d-

galactosaminyl-(1->4)-

beta-d-galactosyl-(1->4)-

beta-d-glucosyl-(11')-n-

acylsphing-4-enine 

C39H69N2O18R C06135, G00123 n/a 

Beta-d-galactose C6H12O6 C00962 GALACTOSE 

A glycogen C204H342O171 C00182 Glycogens 

Oligoglycosylglucose (C12H20O10)n C03018, C00369, 

C00721, D00084, 

D06507, G10545 

CPD-8556 
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Xxxg xyloglucan 

oligosaccharide 

C39H66O33 n/a CPD-13375 

Melibiose C12H22O11 C05402, G01275 MELIBIOSE 

Alpha,alpha-trehalose C12H22O11 C01083, G00293 TREHALOSE 

Cis-beta-d-glucosyl-2-

hydroxycinnamate 

C15H17O8 C05839 CPD-7417 

Stachyose C24H42O21 C01613, G00278 CPD-170 

Cellobiose C12H22O11 C00185, G00289, 

C06422 

CELLOBIOSE, 

CPD-15975 

Amylose C14H26O11 n/a 1-4-alpha-D-Glucan 

N-acetyl-beta-d-

galactosaminyl-(1->4)-

[alpha-n-

acetylneuraminosyl-(2-

>3)]-beta-d-galactosyl-(1-

>4)-beta-d-glucosyl-(11)-

n-acylsphing-4-enine 

C50H85N3O26R C04884, G00109 CPD-1100 

Galabiose C12H22O11 C00760, D00093, 

G10481 

CELLULOSE 

A debranched alpha-limit 

dextrin 

C60H102O51 C02492, G10532 CPD0-1027 

Alpha-d-glucose 6-

phosphate 

C6H11O9P C00668 ALPHA-GLC-6-P 

Isomaltose C12H22O11 C00252, G01318 Isomaltose 

Lactose C12H22O11 C00243, D00046, 

G10504 

CPD-15972 

Beta-d-glucosyl-(11)-n-

acylsphing-4-enine 

C25H46NO8R C01190, G10238 n/a 

D-glucose C6H12O6 C00031, D00009 Glucopyranose 

1d-myo-inositol 3-

phosphate 

C6H11O9P C04006 1-L-MYO-

INOSITOL-1-P 

Beta-d-glucose 6-

phosphate 

C6H11O9P C01172 GLC-6-P 

Starch n/a n/a Starch 

Glucose C6H12O6 n/a Glucose 

Alpha-maltohexaose C36H62O31 C01936, G00755 MALTOHEXAOSE 

Sucrose C12H22O11 C00089, D00025, 

G00370 

SUCROSE 

D-glucopyranose 6-

phosphate 

C6H11O9P C00092 D-glucopyranose-6-

phosphate 

Alpha-maltopentaose C30H52O26 C06218, G00546 CPD-13237, 

MALTOPENTAOSE 

An alpha-limit dextrin C156H262O131 n/a CPD0-971 

Alpha-d-galactose C6H12O6 C00984, D04291 ALPHA-D-

GALACTOSE 

N-acetyl-d-galactosamine C8H15NO6 C01132 N-acetyl-D-

galactosamine 
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Carbaryl treatment Module 8 

 

NAME FORMULA KEGG ID METACYC ID 

4-aminopiperidine-1-

carboxylic acid 

C6H12N2O2 C16837 n/a 

1,4'-bipiperidine-1'-

carboxylic acid 

C11H20N2O2 C16836 n/a 

beta-d-glucuronate C6H9O7 C08350 CPD-12521 

3-dehydro-l-gulonate C6H9O7 C00618 3-KETO-L-GULONATE 

luteolin 7-o-beta-d-

glucosiduronate 

C21H16O12 C03515 LUTEOLIN-7-O-BETA-D-

GLUCURONIDE 

d-glucuronate C6H9O7 C00191 D-Glucopyranuronate 

luteolin C15H9O6 C01514 5734-

TETRAHYDROXYFLAVONE 

sn-38 C22H20N2O5 C11173 n/a 

l-gulonate C6H11O7 C00800 CPD-16836, L-GULONATE 

kegg:g13040 n/a G13040 n/a 

kegg:g00526 n/a G00526 n/a 

luteolin 7-o-[(beta-d-

glucosiduronate)-(1->2)-

(beta-d-glucosiduronate)] 

4'-o-beta-d-glucosiduronate 

C33H30O24 C04900 LUTEOLIN-7-O-BETA-D-

GLUCURONOSYL-1-2 
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Carbaryl treatment Module 9 

 

NAME FORMULA KEGG ID METACYC ID 

Metanephrine C10H16NO3 C05588 CPD-11877 

Methylamine CH6N C00218 A-METHYLATED-

AMINE, 

METHYLAMINE 

Dimethylamine C2H8N C00543 DIMETHYLAMINE 

Citalopram aldehyde C18H14FNO2 C16612 n/a 

Didemethylcitalopram C18H18FN2O C16609 n/a 

N(omega),n(omega)-

dimethyl-l-arginine 

C8H19N4O2 C03626 CPD-596 

R-adrenaline C9H14NO3 C00788, D00095, 

D05688 

L-EPINEPHRINE 

Carbaryl treatment Module 10 
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NAME FORMULA KEGG ID METACYC ID 

Lactose 6-phosphate C12H21O14P C05396, G10517 CPD-15973 

Alpha-lactose 6'-phosphate C12H21O14P n/a LACTOSE-6P 

Alpha-d-galactose 6-

phosphate 

C6H11O9P n/a CPD-1241 

A D-

GALACTOPYRANOSE 

6-PHOSPHATE 

C6H11O9P C01113 D-

galactopyranose-

6-phosphate 

A 6-PHOSPHO-BETA-D-

GALACTOSIDE 

C6H10O9PR C03847 6-Phospho-b-D-

galactosides 

Carbaryl treatment Module 11 

 

NAME FORMULA KEGG ID METACYC ID 

Phytol C20H40O C01389 PHYTOL 

Chlorophyll b C55H70MgN4O6 C05307 CHLOROPHYLL-B 

Chlorophyllide a(1-) C35H33MgN4O5 C02139 CHLOROPHYLLIDE-

A 

Pheophytin b C55H72N4O6 n/a CPD-8178 

A chlorophyllide . n/a Chlorophyllides 

A chlorophyll . C01793 Chlorophylls 

Pheophorbide a C35H35N4O5 C18021 CPD-7061 
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Carbaryl treatment Module 12 

 

NAME FORMULA KEGG ID METACYC ID 

3alpha,7alpha,12alpha,24-

tetrahydroxy-5beta-cholestanoyl-coa 

C48H76N7O21P3S C05450 n/a 

(24r,25r)-3alpha,7alpha,12alpha,24-

tetrahydroxy-5beta-cholestan-26-oyl-

coa 

C48H76N7O21P3S C15614 CPD-7275 

(24e)-3alpha,7alpha,12alpha-

trihydroxy-5beta-cholest-24-en-26-

oyl-coa 

C48H74N7O20P3S C05460 CPD-7243 

(25r)-3alpha,7alpha,12alpha-

trihydroxy-5beta-cholestan-26-oyl-

coa 

C48H76N7O20P3S C15613 CPD-71 

(25s)-3alpha,7alpha,12alpha-

trihydroxy-5beta-cholestan-26-oyl-

coa 

C48H76N7O20P3S C17343 CPD-10505 

Carbaryl treatment Module 13 
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NAME FORMULA KEGG ID METACYC ID 

3beta,7alpha-dihydroxy-5-

cholestenoate 

C27H43O4 C17335 n/a 

7alpha-hydroxy-3-oxo-4-

cholestenoate 

C27H41O4 C17337 n/a 

(25r)-cholest-5-en-

3beta,7alpha,26-triol 

C27H46O3 C06341 7-ALPHA27-

DIHYDROXYCHOLESTEROL 

7alpha,26-dihydroxycholest-

4-en-3-one 

C27H44O3 C17336 n/a 

 

Carbaryl treatment Module 14 

 

NAME FORMULA KEGG ID METACYC ID 

7alpha-hydroxycholest-4-en-3-one C27H44O2 C05455 CPD-1087 

7alpha-hydroxycholesterol C27H46O2 C03594 CPD-266 
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Lead treatment Module 1 
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NAME FORMULA KEGG ID METACYC ID 

4-hydroxy-2-nonenal-

glutathione conjugate 

C19H32N3O8S n/a CPD-14704 

4-hydroxy-2-nonenal-[cys-

gly] conjugate 

C14H26N2O5S n/a CPD-14705 

leukotriene d4 C25H39N2O6S C05951 CPD66-21 

ubiquinone C14H18O4(C5H8)n C00399 n/a 

l-cysteinylglycine C5H10N2O3S C01419 CYS-GLY 

benzo[a]pyrene-7,8-diol C20H14O2 C14852 n/a 

mandelonitrile C8H7NO C00561 CPD-12702 

methylselenol CH4Se C05703 n/a 

n(5)-alkyl-l-glutamine 

residue 

C5H7N2O2R C03636 Protein-N5-

alkylglutamines 

n(2)-acetyl-l-ornithine C7H14N2O3 C00437 N-ALPHA-

ACETYLORNI

THINE 

an s-substituted l-cysteine C3H6NO2SR C02882, 

C05726 

S-Substituted-L-

Cysteines 

glutathione C10H16N3O6S C00051, 

D00014 

GLUTATHION

E 

aflatoxin b1 exo-8,9-epoxide C17H12O7 C19586 n/a 

5-l-glutamyl amino acid C7H10N2O5R C03363 5-L-

GLUTAMYL-

AMINO-ACID 

15h-11,12-eeta C20H31O4 C14781 n/a 

r-s-alanylglycine C5H9N2O3SR C05729 n/a 

chloride Cl C00698, 

C01327, 

D02057 

CL-, HCL 

bromobenzene-2,3-oxide C6H5BrO C14840 n/a 

se-methyl-l-selenocysteine C4H9NO2Se C05689 CPD-12024 

trichloroacetaldehyde C2HCl3O C14866 n/a 

5-oxo-l-proline C5H6NO3 C01879 5-

OXOPROLINE 

l-gamma-glutamyl-l-cysteine C8H13N2O5S C00669 L-GAMMA-

GLUTAMYLC

YSTEINE 

an l-amino acid C2H4NO2R C00151 L-Amino-Acids 

hydrogen cyanide CHN C00177, 

C01326 

CPD-13584, 

HCN 

l-ornithine C5H13N2O2 C00077, 

D08302, 

C01602 

L-ORNITHINE 

11h-14,15-eeta C20H31O4 C14813 n/a 

urea CH4N2O C00086, 

D00023, 

D01749, 

D10496 

UREA 

methylglyoxal C3H4O2 C00546 CPD-10807, 

METHYL-

GLYOXAL 

cyanohydrin C2HNOR2 C05712 n/a 
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5-oxoprolyl-peptide C7H9N2O4R(C2H2NOR)n C02805 5-

OXOPROLYL-

PEPTIDE 

a l-gamma-glutamyl-l-amino 

acid 

C7H10N2O5R C03740 5-L-

GLUTAMYL-

L-AMINO-

ACID 

a nitrile CNR C00726 Nitriles 

l-glutaminyl-peptide C7H12N3O4R(C2H2NOR)

n 

C02986 Protein-L-

glutamine 

(5s,6e,8z,11z,14z)-5-

hydroperoxyicosa-6,8,11,14-

tetraenoate 

C20H31O4 C05356 6E8Z11Z14Z-

5S-5-

HYDROPERO

XYCOSA-6 

bromobenzene-3,4-oxide C6H5BrO C14839 n/a 

1-nitronaphthalene-7,8-oxide C10H7NO3 C14802 n/a 

a reduced electron-transfer 

flavoprotein 

n/a C04570 ETF-Reduced 

r-s-glutathione C10H16N3O6SR C02320 S-Substituted-

Glutathione 

(5z,8z,11z,13e,15s)-15-

hydroperoxyicosa-5,8,11,13-

tetraenoate 

C20H31O4 C05966 5Z8Z11Z13E-

15S-15-

HYDROPERO

XYICOS 

aldophosphamide C7H15Cl2N2O3P C07645 n/a 

trichloroethene C2HCl3 C06790 TRICHLOROE

THENE 

1-nitronaphthalene-5,6-oxide C10H7NO3 C14800 n/a 

s-

(hydroxymethyl)glutathione 

C11H18N3O7S C14180 S-

HYDROXYME

THYLGLUTAT

HIONE 

(r)-lactate C3H5O3 C00256 D-LACTATE 

a ketone COR2 C01450 LONG-CHAIN-

KETONE 

(gamma-l-glutamyl) n-

terminal alpha-amino-acid 

residue 

C7H10N2O4R C03193 5-L-

GLUTAMYL-

PEPTIDE 

ferricytochrome c C42H44FeN8O8S2R4 C00125 n/a 
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Lead treatment Module 2 

 

NAME FORMULA KEGG ID METACYC ID 

Phytol C20H40O C01389 PHYTOL 

Chlorophyll a C55H72MgN4O5 C05306 CHLOROPHYLL-A 

Chlorophyll b C55H70MgN4O6 C05307 CHLOROPHYLL-B 

Chlorophyllide a(1-) C35H33MgN4O5 C02139 CHLOROPHYLLIDE-

A 

Pheophorbide b C35H33N4O6 n/a CPD-7062 

Pheophytin a C55H74N4O5 C05797 CPD-10334, CPD-

8155 

A chlorophyllide . n/a Chlorophyllides 

Chlorophyllide b C35H31MgN4O6 C16541 CPD-7014 

A chlorophyll . C01793 Chlorophylls 

Pheophytin b C55H72N4O6 n/a CPD-8178 

Pheophorbide a C35H35N4O5 C18021 CPD-7061 
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Lead treatment Module 3 

 

NAME FORMULA KEGG ID METACYC ID 

A 1,2-diacyl-sn-

glycero-3-phospho-

(1d-myo-inositol-

3,4,5-trisphosphate) 

C11H13O22P4R2 C05981 PHOSPHATIDYLINOSITOL-

345-TRIPHOSPHATE 

Phosphatidylinositol 

phosphate 

C11H18O16P2R2 C01277, 

C04021 

n/a 

1,2-diacyl-sn-glycero-

3-phospho-(1d-myo-

inositol-3,4-

bisphosphate) 

C11H14O19P3R2 C11554 1-PHOSPHATIDYL-1D-MYO-

INOSITOL-34-BISPH 
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Lead treatment Module 4 

 

NAME FORMULA KEGG ID METACYC ID 

A [protein]-o-d-mannosyl-

(l-serine/l-threonine) 

C10H16N2O8R2 C02863 O-D-

MANNOSYL-

PROTEIN 

O-beta-d-xylosyl-[core 

protein] 

C9H14N2O7R2 C02399, G00154 Core-Protein-L-

Ser-Xyl 

Dolichyl phosphate d-

mannose 

C26H47O9P(C5H8)n C03862, G10617 n/a 

A [protein]-(l-serine/l-

threonine) 

n/a n/a Protein-L-serine-

or-L-threonine 

Protein serine C4H6N2O3R2 C02189, C06395 Protein-L-serines 

A dolichyl beta-d-

mannosyl phosphate 

C86H142O9P n/a CPD-171 
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Lead treatment Module 5 

 

NAME FORMULA KEGG ID METACYC ID 

dTMP C10H13N2O8P C00364 TMP 

A 7,8-dihydrofolate n/a n/a DIHYDROFOLATE-GLU-N 

dUMP C9H11N2O8P C00365 DUMP 

 

Lead treatment Module 6 

 

NAME FORMULA KEGG ID METACYC ID 

Angiotensin I C62H89N17O14 C00873 CPD-13004 

A cleaved angiotensinogen n/a n/a Cleaved-Angiotensinogen 

Angiotensinogen n/a C02246 Angiotensinogens 
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10. Appendix B – KEGG pathway analysis 

The figures below show KEGG pathways that are predicted to be affected by the Carbaryl 

treatment (see section 5.3.2.1). Reactions and metabolites are coloured pink if they are 

present in the D. magna draft GWMR and green if they are in an identified AMBIENT 

active module for the Carbaryl STRESSFLEA dataset 

Glycolysis / gluconeogenesis  

 



266 

 

Pentose phosphate pathway 
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Pentose and glucuronate interconversions  
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Ascorbate and aldarate metabolism 
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Ubiquinone and other terpenoid-quinone biosynthesis 
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Primary bile acid biosynthesis 
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Starch and sucrose metabolism 
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N-Glycan biosynthesis 
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Amino sugar and nucleotide sugar metabolism 
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Glycosaminoglycan degradation 

 

Inositol phosphate metabolism 
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Sphingolipid metabolism 
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Glycosphingolipid biosynthesis – Globo and isoglobo series 
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Methane metabolism 
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Carbon metabolism 
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The figures below show KEGG pathways that are predicted to be affected by the Lead 

treatment (see section 5.3.2.2). Reactions and metabolites are coloured pink if they are 

present in the D. magna draft GWMR and green if they are in an identified AMBIENT 

active module for the Lead STRESSFLEA dataset 

Ubiquinone and other terpenoid-quinone biosynthesis 
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Arginine biosynthesis 

 
 

Arginine and proline metabolism 
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Glutathione metabolism 
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Glycosaminoglycan biosynthesis – Chondroitin sulfate / dermatan sulfate  
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Inositol phosphate metabolism 
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2-Oxocarboxylic acid metabolism 
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Biosynthesis of amino acids 
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13. Appendix E – Statistical plots 
 

13.1. Carbaryl treatment PCA plots 

 
PC2 vs PC3 PCA scores plot of all Carbaryl and Control groups. 
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PC1 vs PC3 PCA scores plot of all Carbaryl and Control groups. 
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PCA plots of Control 4h and Carbaryl 4h groups. The red points are the Control 4h group and the green 

points are the Carbaryl 4h group. 
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PCA plots of Control 8h and Carbaryl 8h groups. The red points are the Control 8h group and the green 

points are the Carbaryl 8h group. 
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PCA plots of Control 12h and Carbaryl 12h groups. The red points are the Control 12h group and the 

green points are the Carbaryl 12h group. 
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PCA plots of Control 24h and Carbaryl 24h groups. The red points are the Control 24h group and the 

green points are the Carbaryl 24h group. 
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13.2. Carbaryl treatment univariate plots 

13.2.1.  Four-hour time point 

 
T-test plot for the Control vs Carbaryl 4h time point sample groups. -Log10(p) values are shown on the y-

axis. Points are coloured pink if the FDR corrected p-value is less than 0.05. 0 peaks have an FDR 

corrected p-value of less than 0.05 

 
Fold change plot for the Control vs Carbaryl 4h time point sample groups. Log2 fold change values are 

shown. Points are coloured pink if the raw fold change value is at least ± 2.0, of which there are 199 

peaks. 
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Volcano plot for the Control vs Carbaryl 4h time point. The x-axis shows log2 fold change values, the y-

axis shows -log10 FDR corrected p-values. Points are coloured pink if the FDR corrected p-value is less 

than 0.1 and the raw fold change value is at least ± 2.0, of which there are 2 peaks. 
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13.2.2. Eight-hour time point 

 
T-test plot for the Control vs Carbaryl 8h time point sample groups. -Log10(p) values are shown on the y-

axis. Points are coloured pink if the FDR corrected p-value is less than 0.05. 0 peaks have an FDR 

corrected p-value of less than 0.05 

 
Fold change plot for the Control vs Carbaryl 8h time point sample groups. Log2 fold change values are 

shown. Points are coloured pink if the raw fold change value is at least ± 2.0, of which there are 681 

peaks. 
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Volcano plot for the Control vs Carbaryl 8h time point. The x-axis shows log2 fold change values, the y-

axis shows -log10 FDR corrected p-values. Points are coloured pink if the FDR corrected p-value is less 

than 0.1 and the raw fold change value is at least ± 2.0, of which there are 0 peaks. 
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13.2.3.  Twelve-hour time point 

 
T-test plot for the Control vs Carbaryl 12h time point sample groups. -Log10(p) values are shown on the 

y-axis. Points are coloured pink if the FDR corrected p-value is less than 0.05. 0 peaks have an FDR 

corrected p-value of less than 0.05 

 
Fold change plot for the Control vs Carbaryl 12h time point sample groups. Log2 fold change values are 

shown. Points are coloured pink if the raw fold change value is at least ± 2.0, of which there are 416 

peaks. 
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Volcano plot for the Control vs Carbaryl 12h time point. The x-axis shows log2 fold change values, the y-

axis shows -log10 FDR corrected p-values. Points are coloured pink if the FDR corrected p-value is less 

than 0.1 and the raw fold change value is at least ± 2.0, of which there are 0 peaks. 

 

  



311 

 

13.3. Lead treatment PCA plots 

 
PC2 vs PC3 PCA scores plot of all Lead and Control groups. 
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PC1 vs PC3 PCA scores plot of all Lead and Control groups. 
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PCA plots of Control 4h and Lead 4h groups. The red points are the Control 4h group and the green 

points are the Lead 4h group. 
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PCA plots of Control 8h and Lead 8h groups. The red points are the Control 8h group and the green 

points are the Lead 8h group. 
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PCA plots of Control 12h and Lead 12h groups. The red points are the Control 12h group and the green 

points are the Lead 12h group. 
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PCA plots of Control 24h and Lead 24h groups. The red points are the Control 24h group and the green 

points are the Lead 24h group. 
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13.4. Lead treatment univariate plots 

13.4.1.  Four-hour time point 

 

 
T-test plot for the Control vs Lead 4h time point sample groups. -Log10(p) values are shown on the y-

axis. Points are coloured pink if the FDR corrected p-value is less than 0.05. 0 peaks have an FDR 

corrected p-value of less than 0.05 



318 

 

 
Fold change plot for the Control vs Lead 4h time point sample groups. Log2 fold change values are 

shown. Points are coloured pink if the raw fold change value is at least ± 2.0, of which there are 448 

peaks. 

 
Volcano plot for the Control vs Lead 4h time point. The x-axis shows log2 fold change values, the y-axis 

shows -log10 FDR corrected p-values. Points are coloured pink if the FDR corrected p-value is less than 

0.1 and the raw fold change value is at least ± 2.0, of which there are 0 peaks. 
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13.4.2. Twelve-hour time point 

 
T-test plot for the Control vs Lead 12h time point sample groups. -Log10(p) values are shown on the y-

axis. Points are coloured pink if the FDR corrected p-value is less than 0.05. 0 peaks have an FDR 

corrected p-value of less than 0.05 

 
Fold change plot for the Control vs Lead 12h time point sample groups. Log2 fold change values are 

shown. Points are coloured pink if the raw fold change value is at least ± 2.0, of which there are 336 

peaks. 
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Volcano plot for the Control vs Lead 12h time point. The x-axis shows log2 fold change values, the y-

axis shows -log10 FDR corrected p-values. Points are coloured pink if the FDR corrected p-value is less 

than 0.1 and the raw fold change value is at least ± 2.0, of which there are 0 peaks. 
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13.4.3. Twenty Four-hour time point 

 
T-test plot for the Control vs Lead 24h time point sample groups. -Log10(p) values are shown on the y-

axis. Points are coloured pink if the FDR corrected p-value is less than 0.05. 0 peaks have an FDR 

corrected p-value of less than 0.05 

 
Fold change plot for the Control vs Lead 24h time point sample groups. Log2 fold change values are 

shown. Points are coloured pink if the raw fold change value is at least ± 2.0, of which there are 446 

peaks. 
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Volcano plot for the Control vs Lead 24h time point. The x-axis shows log2 fold change values, the y-

axis shows -log10 FDR corrected p-values. Points are coloured pink if the FDR corrected p-value is less 

than 0.1 and the raw fold change value is at least ± 2.0, of which there are 0 peaks. 

 

 




