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ABSTRACT

Current security solutions try to keep the adversary out of the computer infrastructure.

However, with zero-day exploits and undetectable intrusions like certain rootkits [4, 48,

67, 68] the assumption that attacks can be blocked does not hold any more.

This work presents the concept of malware tolerance accepting the fact that every

device might be compromised at some point in time. The concept aims to distribute trust

over several devices so that no single device is able to compromise security features by

itself. Simply put, malware tolerance tries to eliminate every single point-of-failure in an

architecture.

I create three malware-tolerant techniques to demonstrate the feasibility of the con-

cept. This thesis introduces a trusted input system which delivers keystrokes securely

from the keyboard to a recipient even if one of its components is compromised. The sec-

ond approach is the design of a self-healing Industrial Control System, a sensor-actuator

network to securely control a physical system. If an adversary manages to compromise

one of the components, the Industrial Control System remains secure and can even re-

cover from attacks. In order to assess the self-healing technique, I evaluate my open-

source proof-of-concept implementation built on top of FreeRTOS. Lastly, this thesis pro-

poses a mesh network architecture aimed at smart-home networks without assuming any

device in the network invulnerable to attacks. It applies isolation mechanisms to other-

wise flat mesh networks and can automatically quarantine compromised devices.

To analyse the security of these approaches, I develop a new model, the multiple

Trusted Computing Bases model. This thesis gives formal security proofs based on this

model with state-of-the-art protocol verifier ProVerif. The proof scripts are open-source.



Malware tolerance proved to be an effective new way of thinking that highlights se-

curity insufficiencies by analysing architectures with regard to single points-of-failure.

These fragile points are the weakest ones of an architecture and should be eliminated or

strengthened early on since their deficiency exposes the rest of the infrastructure.
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CHAPTER 1

INTRODUCTION

During the last decades, we saw new attacks appearing, amongst them are CryptoLockers

and Advanced Persistent Threats (APTs). While the former encrypt a system and ask

for ransom, the latter are stealthy attacks often based on rootkits which quietly spread

over the network and escalate their privileges [128]. These attacks targeted critical infras-

tructures – Industrial Control System (ICS) – like power plants (e.g. Stuxnet [85, 86]),

medical institutions, public transport, and communication services (e.g. Wannacry [64]).

While those incidents received a lot of media attention, there are more examples like

Duqu, Flame, Red October, MiniDuke [140], Gauss, Energetic Bear, Epic Turla [79], the

attack on the Maroochy Water Services [1], and the attack on a German steel mill [23].

Some attacks, like Operation Aurora [47, 21, 113, 127] or Stuxnet, are supposedly sup-

ported by governments.

These attacks demonstrate that security is not equal to systems being invulnerable to

attacks – every system can be potentially compromised. Several projects started to raise

awareness about this matter: The Shodan search engine began to crawl for vulnerable

ICSes (see Fig. A.2 in the Appendix) and Conti et al. [31] analysed the security of an

entire city. They cross-examined electricity supply, water purification, sewage treatment,

natural gas, oil industry, customs and immigration, hospital and health care, and food

industry to gain knowledge on their vulnerability and dependencies. It became evident

that these attacks harm more than only a few home computers.

1



In addition to these issues, there are proof-of-concept rootkit attacks which cannot

(yet) be prevented; those are Debug-Register (DR) rootkits [4], SystemManagement Mode

(SMM) rootkits [48], Advanced Configuration and Power Interface (ACPI) rootkits [67],

and Peripheral Component Interconnect (PCI) rootkits [68]. The current PC architec-

ture cannot defend against these attacks and a solution would likely include partly re-

developing the computer itself. This will doubtfully happen in the near future, leaving all

computers vulnerable to these rootkits.

Previous research focused on mitigating attacks by blocking them with a firewall,

using anti-virus and Intrusion Detection Systems (IDSes) to detect them, and preventing

a few of them with signature, anomaly, or specification-based network intrusion detection

systems. Critical systems were isolated from the corporate network without wired or

wireless connection. This so-called air-gap was a last resort to prevent attacks on high risk

systems. Nevertheless, Stuxnet [85, 86] skipped all mitigation techniques including the air-

gap and demonstrated how they can be circumvented. There is also indication that coffee

machines [8] were used by a CryptoLocker to bridge the air-gap to an industrial plant.

To secure the computer architecture in general, special chips and hardware features

were introduced to provide a root of trust. The first such chip was the Trusted Plat-

form Module (TPM) chip followed by ARM TrustZone and Intel Software Guard Exten-

sions (SGX). Those chips provide hardware enforced security properties to bootstrap a

computer securely from a small starting point. Although they minimise the components

which need to be trusted, they have not been successful due to two drawbacks. They

are not flexible enough because they lock down the architecture too intensively. The

other shortcoming is that they are not invulnerable to attacks. ARM TrustZone was ex-

ploited [116, 15] and the recent meltdown and spectre attack [89] exploited vulnerabilities

in Intel processors. This suggests that the Intel and ARM architecture are complex and,

therefore, one must assume that even hardware features are potentially vulnerable.

While all these mitigation techniques are a viable defence line and should stay in place,

they are not sufficient. This led us to re-thinking how secure systems should be built,

2



considering that no part of them can be assumed trustworthy. Baize et al. [14] already

suggested that security must be “built-in” and compromising one system element should

not compromise the overall security of the system.

The research objective is, thus, to examine if systems can be built without assuming

any component invulnerable to attacks. There should be no single component on which

the security of the entire architecture depends. This work calls the idea malware tolerance.

In practice, this could look like this: Let us consider a malware-tolerant system con-

sisting of e.g. three diverse computers (one with TrustZone, one with SGX, one with a

TPM). Diversity is necessary to prevent multiple devices being compromised with the

same exploit. If one computer is compromised – even if this includes its TPM and all of

its cryptographic keys – the remaining two computers must be able to keep the overall

system secure and running. This includes preventing leakage of data and resources of the

overall architecture, although all part-secrets of the compromised computer are leaked.

This means evidently that data, resources, and keys must be securely distributed over the

three computers. In other words, there must be no single point-of-failure.

Malware tolerance is not limited to three computers, the following chapters also demon-

strate the concept with only one computer and with many computers in a network. This

thesis is aimed at elaborating the concept of malware tolerance regarding its feasibility.

Its goal is not to provide a full implementation.

3



Contributions:

• Architectures should be built keeping in mind that every component will potentially

be compromised. This thesis proposes the concept of malware tolerance (Chapter 3):

All single points-of-failure should be replaced by distributing trust upon several,

independent components or devices. Components that are similar or depend on

each other, i.e. that can be compromised with the same exploit, count as one part.

• I further demonstrate how to apply this concept in three scenarios: trusted in-

put (Chapter 4), Industrial Control Systems (Chapter 5), and mesh networks (Chap-

ter 6).

• To give proof of the security guarantees, the state-of-the-art protocol verifier ProVerif1

was used in each scenario. These ProVerif scripts are available online as open-source

(see Table 1.1).

• I also implemented a basic proof-of-concept operating system for ICS which utilises

FreeRTOS and ARM TrustZone to provide self-healing capabilities. I released it as

open-source (see Table 1.1).

Topic Link

Proofs Smart-Guard https://github.com/mdenzel/smartguard

Proofs malware-tolerant,

self-healing ICS

https://github.com/mdenzel/malware-tolerant_ICS

_proofs

Proofs malware-tolerant

mesh network

https://github.com/mdenzel/malware-tolerant_mes

h_network_proofs

Self-healing RTOS https://github.com/mdenzel/self-healing_FreeRTOS

Table 1.1: Links to ProVerif proof scripts and the proof-of-concept implementation

1http://proverif.inria.fr
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CHAPTER 2

BACKGROUND

This chapter gives a general overview of previous security concepts. The following chapters

also compare this work to corresponding approaches and give more details.

I focus on defence techniques against malicious attacks. There are also techniques

to prevent common faults but they usually fail versus a methodical adversary and are

omitted in this overview.

2.1 Literature Review

The idea to spread information across various devices originated from distributed sys-

tems (e.g. [40]). Initially, this was done to recover from failures through Byzantine fault

tolerance where 2 ∗ f + 1 replicated servers can tolerate failures of a fraction f of the

servers [139]. Redundancy was also applied to tolerate attacks in which case 3 ∗ f + 1

systems were used [6]. However, it is then essential to diversify these replicas [57, 58],

otherwise all replicas could be compromised with the same exploit. To achieve diversity,

software was developed multiple times by different teams, so-called N-version program-

ming [24, 118]. But, there is evidence that N-version programming is not effective against

attacks because teams make related errors [112].

N-variant systems on the other hand diversify systems wilfully e.g. by running on two

different CPUs (x86 and PowerPC) [33], using different stack directions [111], or changing
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the representation of the data [142]. This proved to be more effective against attacks,

since diversity is deliberately built-in.

2.1.1 Intrusion Tolerance for Critical Infrastructures

Simultaneously, Byzantine fault tolerance [6] was developed into intrusion tolerance. Ini-

tially, this was used in IDSes, i.e. systems that identify malicious attacks. Adversaries

attacked these systems first before compromising the actual target because IDSes are an

early warning system. To counter attacks turning off detection systems, IDSes evolved to

intrusion tolerant systems which utilised redundancy and restarted copies in case of fail-

ures [83, 77].

Wang et al. [141] proposed an intrusion tolerant proxy architecture to shield servers

off from malicious requests. The architecture can switch to backup proxies and backup

servers if some of them fail. Audit control suggests the authors considered automatically

reviewing and resetting the architecture and they also mentioned diversity, however, both

topics were not explained in detail.

Verissimo et al. saw intrusion tolerance more from a recovery perspective incorpo-

rating IDSes, secure communication, replication, recovery, and fail-safe behaviour [137].

Verissimo created a model for distributed systems communication [138] by assuming mes-

sages to be only partially synchronised. This model was called the wormhole subsys-

tem. They experimented with proactive recovery – i.e. reinstalling the system every now

and then – but concluded that it is not sufficient [120]. The group developed a proac-

tive and reactive recovery approach [119] where replicas can additionally trigger recovery

of other potentially faulty replicas. They combined all their work to create a recovering,

intrusion-tolerant firewall using a component they called critical utility infrastructure re-

silience (crutial) information switch [16, 121].

Similarly, Platania et al. [107] created an architecture to recover from attacks. They

periodically reinstalled machines via a netboot and diversified replicas with a compiler.

Replication and recovery requires additional machines which is costly and, therefore,
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is more aimed at critical infrastructures and Industrial Control System than consumer

devices.

2.1.2 Industrial Control Systems

Industrial Control Systems (ICSes) are sensor-actuator networks or also cyber-physical

systems, i.e. computers monitoring and controlling processes of the physical world. The

priority of these systems is to ensure safety and reliability of the architecture but recently

also protection against malicious attacks became essential. The term secure control de-

scribes techniques ensuring integrity and availability in the face of attacks [26, 27].

The core components of ICSes are so-called Programmable Logic Controllers (PLCs),

which nowadays are essentially commodity computers with specialised software to satisfy

the requirement for high availability and real-time operation. Due to these requirements,

they cannot run common defensive measures like an anti-virus. Defensive mechanisms

have, thus, to be deployed (less effective) elsewhere in the network. Moreover, PLCs have

a long lifetime (10-20 years) and are not usually patched to avoid downtime and destroying

the devices [122] through updates. A corrupted patch can render a PLC unusable possibly

leading to a shutdown of part of the network which is potentially life-threatening.

Homeland Security [70] as well as the National Institute of Standards and Technology

(NIST) [122] recommend a strategy called defence in depth that tries to deploy defences

at every layer of the network. Figure 2.1 shows an example layout with different network

zones. Firewalls and IDSes isolate these zones from each other resulting in a layered

network with IDS at intersection points. The field site with PLCs, sensors, actuator, and

physical systems is the so-called control loop. This part of the architecture is the actual

cyber-physical system and has hardly any (often no) defensive measures apart from the

firewall in front of it due to availability and real-time constraints. The control loop can be

at a different location than the control centre. The corporate network is entirely separated

to prevent attacks from escalating to the physical system.
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Figure 2.1: Example Industrial Control System architecture reproduced from [70]
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An example for such a control loop would be a temperature control system with

e.g. some water tanks which should neither freeze nor boil. The PLC would read the

temperature from a sensor and adjust the heating/cooling of the water to maintain a

temperature between 0 to 100◦C.

Fielder et al. [52] studied the effectiveness of the defence in depth strategy from a

theoretical perspective turning the scenario into an optimisation problem between attacker

and defender. They analysed how the defence in depth strategy performs compared to

a critical component defence against a methodical attacker. The authors concluded that

defence in depth is more effective against a greedy attacker; critical component defence is

better suited against a methodical adversary. That means for an ICS with valuable PLCs

(i.e. the single point-of-failure), critical component defence should be applied. However,

if there are multiple valuable targets for the adversary, defence in depth is favourable.

Coexisting to Defence in Depth, there is also a Defence in Breadth which is not clearly

defined but is described as the use of multiple instances of a security technology within a

security layer [100].

While ICSes employ sensors usually in a controlled, small area, sensors can also be

spread over a wider area using mesh routing. This is called a Wireless Sensor Network

(WSN).

2.1.3 (Mesh-)Networks: Wireless Ad-Hoc Networks and Wireless
Sensor Networks

Mesh networks are highly interconnected networks where every node has routing capa-

bilities. These networks can have different layouts, e.g. there are hierarchical WSNs and

distributed WSNs [25] (see Fig. 2.2). Hierarchical ones usually rely on a base station to

collect the sensor data from multiple clusters and forward it to the data sink. Each of

the clusters is managed by a cluster head. Distributed WSNs on the other hand have no

fixed structure.

Also, the communication varies depending on the network. There is pair-wise com-
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Figure 2.2: Hierarchical and distributed Wireless Sensor Network: Reproduction of
Camtepe et al. [25]

munication, multicast within clusters, or broadcast communication. If mesh networks

spontaneously change their geographic layout, they are called Wireless Ad-Hoc Networks

(WANETs). The terms can also overlap, so a WSN could also be a WANET or could use

a different routing technique than mesh routing. This work focuses on mesh networks.

Since these networks are only loosely connected and nodes are rather insecure – also

due to their potential physical exposure to attackers – these networks are vulnerable to at-

tacks like blackhole, routing loop, wormhole, node capture, clone and further attacks. In

WSNs the nodes often have limited power resources making deployment of costly crypto-

graphic solutions difficult. Key distribution and revocation becomes a major issue as sys-

tems need to be built keeping in mind that an adversary potentially compromises several

nodes during operation [72, 105]. The key distribution concepts range from probabilistic

over hybrid to deterministic approaches [25]. However, they often rely on pre-shared keys

or a master key.

To recover from attacks, mesh networks, especially WSNs, utilised self-healing tech-

niques which are often induced by the base station.
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2.1.4 Self-healing Techniques

Self-healing approaches are techniques where a system can recover to a good state after

it detected an invalid state. Ghosh et al. [61] classified self-healing approaches into three

fields: (1) maintaining system health, (2) discovery of non-self or system failure, and

(3) system recovery. Redundancy, probing, diversity, and log analysis are used to maintain

system health. Sometimes the systems are also formally modelled. Failures are discovered

according to the utilised maintenance mechanism; this can be by e.g. detecting a missing

component or a missing response. Similarly, recovery takes place corresponding with the

initially used maintenance technique. If there is redundancy, another system could take

over. Otherwise, the faulty component is contained or the software state is recovered.

Self-healing was especially proposed for critical systems like ICSes to achieve intrusion

tolerance (as already mentioned above). Furthermore, self-healing is used in WSNs in

particular.

Di Pietro et al. [41] proposed a proactive self-healing technique for WSNs where the

sink, i.e. the system collecting the data from the nodes, re-initialises nodes with a new

cryptographic key or secret seed. This randomness is also forwarded to a few neighbouring

nodes in order to update key material. The authors later improved the technique with a

moving target defence system [42] by moving and encrypting the data. Symmetric keys

additionally evolve with the help of the sink. While the sink represents a Trusted Third

Party (TTP), this approach demonstrates how self-healing can be combined with other

techniques, in this case moving target defence.

Self-healing was also deployed to recover a single machine instead of a network. Griz-

zard [65] developed a host-based self-healing technique. A virtual machine monitor ob-

serves the system and can recover to a known good state. Abnormal states are detected

with a machine learning algorithm which is based on the control flow graph and can iden-

tify deviations from good states.
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2.1.5 Trusted Execution Environments and Trusted Path

In order to provide a starting point for secure architectures, special software and hardware

features were necessary. They are summarised under the term Trusted Computing (TC).

Trusted Execution Environments (TEEs) and trusted input/output or trusted path

are the building blocks of TC. Vasudevan et al. [134] defined five properties such secure

systems should fulfil: isolated execution, secure storage, remote attestation, secure provi-

sioning, and a trusted path. Rijswijk and Deij [132] suggested adding local attestation to

the user as sixth property to the five properties of Vasudevan et al.

TC is also seen as a countermeasure for APT attacks. Virvilis et al. [140] confirmed this

by analysing five APT attacks – Stuxnet, Duqu, Flame, Red October, and MiniDuke – for

their common criteria and concluded that TC, patching, network segregation, whitelisting

against Command and Control servers, and filtering dynamic content execution can defend

against these attacks.

TEE techniques can be categorised into three sub-areas: hardware-based, software-

based, and integrated hardware. The following section introduces them in this order.

Trusted path is omitted because Chapter 4 evaluates and compares various trusted path

techniques in more detail.

2.1.5.1 Hardware-based Trusted Execution Environments

Probably the most popular hardware-based TEEs are used in online banking. Hardware

tokens with PIN pad e.g. by Vasco [133] or USB based tokens like the Seal One [114] are

commonly used by banks for two factor authentication. These tokens exist with various

configurations and interfaces e.g. as USB sticks for two factor authentication, encryption,

and signing [62]. There are also SD cards to enhance smartphones [63] and general purpose

smart-cards with NFC or Bluetooth [131].

The major difference between the banks is hereby whether these tokens are used to

authenticate the entity (verifying each recipient) or the transaction (verifying each bank

transfer) [30].
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While these techniques are feasible, there are already attacks against two factor au-

thentication with so-called Man-in-the-Browser (MITB) attacks [2]. Trojans like Zeus or

Zeus in the Mobile (ZitMo) [78] compromise online banking and simultaneously hide their

malicious actions from the victim by displaying correct results.

Additionally to commercial hardware solutions, there is research on new secure hard-

ware architectures. One of the first architectures was AEGIS [124], a single-chip processor

architecture which verifies and encrypts off-chip memory and has a secure context man-

ager to manage processes if the operating system is untrusted.

Lee et al. [87] designed a microprocessor architecture to protect sensitive data. For

this, they defined new processor features and an implementation of a trusted path but

relied on two additional buttons and LEDs. The hardware is trusted. Champagne and

Lee [28] then developed Bastion which shields a hypervisor off from software and physical

attacks while achieving better performance than integrated TEEs (like the TPM). The

authors achieved this by adding secure hardware registers for hypervisor hashes and keys,

a memory encryption module, a new type of hypervisor calls on Translation Lookaside

Buffer (TLB) misses, and two hardware cryptographic engines between cache and memory.

Later, Szefer and Lee [126] also created a Virtual Machine (VM) environment, called

HyperWall, to protect guest operating systems from the hypervisor. The technique relies

on modifications to the microprocessor and Memory Management Unit (MMU). While

the hypervisor can manage VMs (i.e. start, pause, stop, change memory assignment), the

hardware protects confidentiality and integrity of the memory of the guest VMs.

Sancus [98, 99] by Noorman et al. is aimed at Internet of Things (IoT) devices and

provides software isolation, remote attestation, secure communication, secure linking, and

confidential software deployment. Their approach relies on key management and memory

access control of two additional units in the CPU. Start of execution is only possible

at certain entry points and text sections are only readable during their execution. The

authors implemented their architecture as zero-software Trusted Computing Base (TCB)

in a Field Programmable Gate Array (FPGA).
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2.1.5.2 Software-based Trusted Execution Environments

For software-based TEEs there are two approaches, either security guarantees are given

by a compiler or by virtualisation.

TEEs through compilers were shaped by the group around Agten, Strackx, Jacobs,

Patrignani, and Piessens. They developed a compiler which protects memory accesses by

fine-grained control of the program counter. It restricts user-level attacks to public method

calls of the programming language [3]. The authors improved their method and produced

Fides [123], a hypervisor approach to defend against kernel-level attacks. They coined

the term fully abstract compilation where compilation preserves the security properties

of the high level language also in the low level language. The goal hereby is to restrict

an attacker injecting assembly code at kernel-level to the legitimate interface. Fides

achieves this through binding access rights to the program counter, only allowing to start

software modules at valid entry points, and cryptographically hashing public sections of

the memory. The authors achieved full object orientation by adding dynamic memory

allocation, exceptions, inheritance, and inner classes [103]. They also gave a formal proof

of fully abstract compilation [104].

The need for TC created virtualisation- and hypervisor based techniques as they were

available early on. Terra [59] manages multiple, isolated VMs with a trusted virtual

machine monitor to achieve TC. Later, AMD and Intel developed hardware support for

virtualisation.

2.1.5.3 Trusted Execution Environments based on Integrated Hardware

Virtualisation was quickly overtaken by approaches based on integrated hardware. There

are three special systems at the moment: the TPM chip, ARM TrustZone, and Intel SGX.

They are introduced here briefly, a more detailed overview is given by Murdoch [96].
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Trusted Platform Module (TPM): The first integrated TEE was the TPM chip,

an additional, secure chip in the computer providing cryptographic functionality and

limited secure storage. Sailer et al. [110] practically demonstrated how to use the TPM to

verify the integrity of executable code starting at the Basic Input/Output System (BIOS).

They implemented an integrity measurement system for Linux using the TPM which can

detect rootkits.

Kauer [81] removed BIOS and bootloaders from the trust chain, so-called Dynamic

Root of Trust for Measurement (DRTM), to minimise the TCB. He implemented the

OSLO architecture on top of AMD Secure Virtual Machine (SVM).

The group around McCune and Perrig very actively researched TEE and the TPM.

Their first approach, Flicker [91], used a minimal secure environment which (1) temporar-

ily suspended the operating system, (2) switched (“flicked”) to the TEE, (3) executed the

security sensitive code, and (4) resumed the operating system. Their implementation was

based on AMD SVM and the TPM.

Together with Parno et al. [102], McCune used Flicker to protect the state of a software

module. They leveraged the Non-Volatile Random Access Memory (NVRAM) of a TPM

to store the state history of the module in order to replay the last changes after a crash.

Due to the performance overhead of Flicker, McCune et al. developed TrustVisor [93],

a special hypervisor based on a DRTM. The architecture relies on software based TPMs

called microTPMs for performance and a hardware TPM to provide security. They demon-

strated an application of TrustVisor with a sandbox that protects host operating system

as well as the guest-application [88].

Vasudevan et al. generalised together with McCune the idea and development of a

secure hypervisor. They proposed DRIVE [135], a methodology for designing hypervi-

sors for integrity verification. Such hypervisors require six properties: (1) modularity and

(2) atomicity of initialisation and interrupt handlers, (3) memory access control protec-

tion, (4) correct initialisation, (5) proper mediation – i.e. memory access protection is

active whenever attacker-controlled programs execute – and (6) safe state updates. The
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authors extended TrustVisor to a proof-of-concept DRIVE hypervisor and verified it with

a software model checker.

ARM TrustZone: TrustZone is a security feature of modern ARM CPUs which

splits the architecture into two “worlds”: the normal, unprivileged, world and the secure

world. While the secure world has access to the entire architecture, the normal world can

be restricted.

Since TrustZone was developed after the TPM chip, Winter [143] attempted to port the

approach of Trusted Computing Group (TCG) (who developed the TPM) to TrustZone.

He used a hypervisor in order to manage multiple isolated trusted engines, as required by

the TCG, with only the two worlds of TrustZone. The main obstacle was that TrustZone

does not require a secure bootloader. While some vendors provide this, it is an additional

feature and is not present on all platforms. However, Winter experimented with the

FriendlyARMMini6410 [144] and analysed its security and the secure bootloader including

one-time writable registers. Together with Fitzek et al. [54], Winter created a monolithic

operating system running in the secure world of TrustZone while a Linux-based operating

system runs in parallel in the normal world. They proposed to use this kind of architecture

to send data securely from the ICS to the manufacturer.

Also the group around Vasudevan (McCune, Perrig) et al. [134] evaluated TrustZone.

As mentioned earlier, they defined five properties TEEs should provide (isolated execution,

secure storage, remote attestation, secure provisioning, and trusted path). They identified

a few inaccuracies in the TrustZone architecture: To provide security, all components of

TrustZone have to be present but most off-the-shelf mobile devices do not include all of

them. In some devices the secure world is turned off completely. Also, manufacturers

and carriers do not consider Direct Memory Access (DMA) attacks leaving this attack

vector open. Lastly, due to the cost of ARM tools, the open-source community did not

get involved in it, preventing wide-spread adoption.

One of the few practical examples for TrustZone is a privacy preserving payment
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framework of Pirker et al. [106]. They combined NFC with TrustZone on smart-phones

based on prepaid credits. Normal world apps would request payment from the anonymous

payment token in the secure world. After the payment protocol, the secure world module

receives a bar-code with a proof of payment from the service provider.

Intel Software Guard Extensions (SGX): Towards the end of this work, the

first Intel SGX-enabled CPUs were released. SGX provides secure remote computation,

i.e. executing software on a system controlled by an untrusted party. Protected software

containers, so-called enclaves, shield software off from operating system and hypervisors.

For this, SGX stores the enclave data in the Enclave Page Cache (EPC). The state is

hashed and protected by encryption when leaving the TEE. I refer the interested reader

to Costan et al. [32], who analysed SGX in depth.

As SGX is fairly new, there are only few research studies. The main source is research

by Intel. They demonstrated isolated execution [94], remote attestation [7], and an ex-

ample application [69] providing one-time passwords, distribution of sensitive documents,

and secure video conferencing.

On the academic side, Brenner et al. [22] ported Apache ZooKeeper, a cloud coor-

dination service, to SGX to protect user-data. They intercepted the message process-

ing pipeline of ZooKeeper and redirected it to an enclave. Additional enclave encryption

helps keeping the data secure. Together with Arnautov et al., a few of the authors con-

tinued to work on SGX and created SCONE [13], a secure Linux container management

for Docker. Containers are protected from the environment by partly moving system calls

into the corresponding enclave. Their implementation also support asynchronous system

calls via a request queue and a response queue. A special operating system thread inside

SCONE processes these system calls and returns the results in the response queue.
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Figure 2.3: ARM mode switches: undef stands for the undefined instruction exception
and dabort stands for a data abort.

2.2 Overview of ARM TrustZone

The following section introduces ARM TrustZone in more detail. I collected this infor-

mation mainly from the official documentation [12, 10, 9] and from my own experiments

with the ARM Cortex-A8 of a FreeScale i.MX53 Quick Start Board. Some information is

taken from Genode operating system [51, 50, 60]. Section 5.2.3 presents a small perfor-

mance analysis I conducted on ARM TrustZone.

As already mentioned, ARM TrustZone is a TEE consisting of two separated environ-

ments: the secure world and the normal world. While the secure world has full access

to the system, the normal world can be restricted in its capabilities. The switch between

the two worlds is handled by the so-called monitor. TrustZone chips usually come with

the TrustZone Interrupt Controller (TZIC) and functionality to manage memory, i.e. a

TrustZone-aware MMU, routines to forbid DMA, and so on. However, the official docu-

mentation does not specify a secure boot mechanism. This, if existent, is delivered by the

particular chip vendor.

ARM TrustZone is internally realised via an additional 33rd bit, the Non-Secure (NS)
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bit, propagated over the system bus. This bit defines in which world (normal world or

secure world) the processor is currently running. Additionally to the world, there are

different modes in which the processor can be. The main modes are user mode (USR),

system mode (SYS), supervisor mode (SVC), and monitor mode (MON). Since worlds and

modes are separated from each other, only certain mode switches are allowed (see Fig. 2.3).

All other mode and world switches have to use a Software Interrupt (SWI) to switch the

mode or a Secure Monitor Call (SMC) to access the monitor and switch world/mode.

In total, there are eight exceptions:

1. Reset (indicates system boot)

2. Fast Interrupt Request (FIQ)

3. Interrupt (IRQ)

4. External Data Abort

5. External Prefetch Abort

6. Undefined Instruction

7. Software Interrupt (SWI)

8. Secure Monitor Call (SMC)

Some of these exceptions can be configured to trap into monitor mode and, thus, the

world in which they are handled can be set [9, 51].

The concept of the interrupts FIQ, IRQ, SWI, and SMC are specific for ARM pro-

cessors. Hereby, SWI and SMC realise mode and world switches while the others are or-

dinary interrupts. FIQs are fast interrupts and have priority over the normal IRQ. Fur-

thermore, FIQs can be configured to trap into the monitor and, thus, the secure world.

The last ARM specific concept are co-processors. In order to access functionality

external to the CPU (e.g. the MMU), there are 16 co-processors. The system control co-

processor CP15 is used to configure TrustZone and it also stores the Secure Configuration

Register (SCR) allowing the secure world in privileged mode to access1 the NS bit. If the
1More information is listed at the ARM documentation [12] under the MRC/MCR instruction (move

ARM register to co-processor and vice versa).
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normal world or user mode tries to access the bit (even read-only access), an undefined

exception happens. That means, the normal world has no means to discover in which

world the processor is running or if the processor is even able to run TrustZone. To the

normal world it always looks like the CPU does not support TrustZone.

An ARM CPU always boots in secure world to enable setting up the stack of all

modes, Block Started by Symbol (BSS) segment, TrustZone monitor, SMCs, FIQs, IRQs,

and TZIC.
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CHAPTER 3

THE MALWARE TOLERANCE CONCEPT

3.1 Research Questions

At the beginning of this research the following questions were raised:

1. Can a malicious system be used securely?

2. In what circumstances, and for what purposes, might it be possible to securely use

a platform which is suspected to have malware?

3. Is it possible to split trust upon multiple components so that none of them alone

can compromise the system? This includes – depending on the underlying system –

protecting the confidentiality of the secret(s) as well as preserving the integrity of

data, resources, and/or environment (e.g. cyber-physical systems).

4. How can the tolerance of a system towards malware be evaluated?

3.2 Definition and Example

The basic idea of malware tolerance is to distribute trust upon several, independent

devices interacting in such a way that the individual device cannot meaningfully tamper

with the data or resources. Thus, the method tolerates devices which are compromised by
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Figure 3.1: Probabilities of two coin flips

malware. No part of the architecture is assumed invulnerable to attacks. An adversary

would have to compromise multiple devices to successfully attack the system. This is

significantly more difficult than manipulating a single device.

Let us start with an example: Suppose we flip a coin but we suspect that the coin was

manipulated and is biased. We cannot find out the exact bias of the coin but the coin

flip should be perfectly fair, i.e. heads should be as likely as tails.

While this first sounds impossible, the solution is simply to throw the coin twice. We

define heads followed by tails as the new heads and tails followed by heads as the new

tails. In all other cases, one starts again.

If the coin is biased and lands with probability 1 − p on heads and with probability

p on tails, then both new cases have the same likelihood to occur. The probability for

heads followed by tails is (1− p) ∗ p = p− p2 and tails followed by heads is p ∗ (1− p) =

p− p2. Independently from p both cases have the same probability. Figure 3.1 shows the

probabilities as a tree diagram.

Essentially in this little experiment, the adversary was controlling the hardware (the

coin) while we wrote the software (the coin flip). Considering that a computer is dealing

with zeros and ones (heads or tails), this research aims to transfer the principle to com-

puters.
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3.3 Classification and Differentiation

The NIST [97] divides security incidence management into four areas: identify, protec-

t/prevent, detect, and respond/recover. Malware tolerance draws ideas from detection by

using IDS techniques, prevention with TC (i.e. TPM, SGX, ARM TrustZone), and recov-

ery by employing so-called self-* approaches, especially self-healing. I would like to ex-

plain differences and common terms between these research fields and malware tolerance.

Early intrusion tolerance as seen in IDS and Intrusion Prevention System (IPS) de-

veloped from fault tolerance and is, thus, focusing on detecting and preventing attacks.

It is, contrary to malware tolerance, not allowing attacks. The early versions of it simply

restarted the IDS on faults. While this helps against ordinary faults, it is certainly not

secure against malware on the IDS itself.

Prevention (e.g. from IPSes) and resilience are terms I would describe with malware

resistance. Instead of being tolerated, malware is defended against or resisted. Malware

tolerance is resilience taken to the maximum and is better described with absorbing po-

tential or recovery potential. This expresses that malware incidences are allowed to hap-

pen but are not necessarily harmful.

The latest re-definition of intrusion tolerance (in contrast to the early intrusion toler-

ance of IDSes) overlaps with malware tolerance substantially. It was notably shaped by

Verissimo and his research group. To accurately compare both techniques I present the

exact definition of Verissimo et al. [137]:

“A new approach has slowly emerged during the past decade, and gained im-
pressive momentum recently: Intrusion Tolerance (IT). That is, the notion of
handling – react, counteract, recover, mask – a wide set of faults encompass-
ing intentional and malicious faults (we may collectively call them intrusions),
which may lead to failure of the system security properties if nothing is done
to counter their effect on the system state. In short, instead of trying to pre-
vent every single intrusion, these are allowed, but tolerated: The system has
the means to trigger mechanisms that prevent the intrusion from generating
a system failure.”

Malware tolerance is closely related to intrusion tolerance and a sub-category thereof.
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Figure 3.2: Classification of malware tolerance: The circles in the diagram indicate sets.
Malware tolerance is a sub-set of intrusion tolerance using ideas of several related topics,
e.g. self-healing, IDSes, and trusted hardware.

It specifies more how to achieve such tolerance – namely by removing every single point-

of-failure where necessary. I propose that recovery mechanisms, if present, should happen

either always or automatically and never manually. The goal is to prevent a single intru-

sion of one component from generating a complete system failure. Malware tolerance is

intrusion tolerance by distributing trust over several components and automatic recovery

if possible. It provides security through replication of the core components and a form of

decision making or voting, thus, avoiding single points-of-failure.

An overview how malware tolerance is aligned to other research areas is displayed in

Fig. 3.2. Malware tolerance is a sub-category of intrusion tolerance and fault tolerance

and uses techniques of self-healing, IDSes, trusted hardware, and distributed computing.

The circles in the figure stand for sets of techniques. For example, an IDS is part of the

detection circle while an IPS belongs to the intersection between detection and prevention,

it first detects threats and then blocks (prevents) them. This stops attacks before they

take effect. Self-healing, on the other hand, recovers from faults or intrusions after these

happened. Therefore, the two circles for self-healing and prevention do not overlap.
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3.4 Models

3.4.1 Attacker Model

The basis of attacker models is usually the Dolev-Yao attacker who is situated on the

network and can intercept, change, and redirect every message sent on this network.

In particular, the adversary can read and manipulate plaintext messages. However, the

Dolev-Yao attacker alone is insufficient for certain types of attacks [101], e.g. node capture

attacks in a WSN.

Malware tolerance operates in a post-compromise scenario where the attacker already

gained access to the secrets of a device. Therefore, the Dolev-Yao attacker by itself is

inadequate for malware tolerance and we extend the model with further capabilities. The

initial goal is to be malware tolerant towards one compromised device, i.e. we assume the

attacker gained a first foothold in the architecture.

1. This work assumes a Dolev-Yao attacker [46] on the network who interacts with

software-side technologies. The attacker has no physical access to the facilities and

cannot change cabling or remotely introduce electrical signals directly into wires

(apart from Assumption 2).

2. Additionally, the attacker can choose one1 device of which he gains full control –

i.e. also access to corresponding cryptographic keys and “software” access to the

physical wires connected to the chosen device. The attacker can manipulate the

hardware of a chosen device once (during production) but has no physical access

afterwards any more. If the chosen device has network access, the attacker can

update software and firmware.

3. We are initially not aware which device the attacker chose.
1This thesis only shows the basic case of an attacker compromising one device. Tolerating attacks on

multiple devices is more challenging but similarly possible.
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3.4.2 General Assumptions

Furthermore, the following assumptions are made:

1. Multiple components only offer additional protection if they are not controlled by

the same party. Thus, I stipulate, that for any malware-tolerant technique the

devices are manufactured by different vendors, so-called heterogeneity. If diversity

of suppliers is not granted, the manufacturer controls the entire architecture and

compromising this one manufacturer would break all security measurements.

2. Every computational device is able to execute cryptography (especially asymmetric

cryptography) and attacks on cryptography and phishing attacks are out of scope.

3. The user or operator of the infrastructure is a trusted entity and is allowed to access

and change secrets, data, and configuration.

The proposed techniques of the consecutive chapters additionally assume the following.

Chapter 4 (trusted input):

5. Keyboard and smart-card are assumed to have no other communication channels

apart from the ones to the computer (e.g. USB). This could be verified by inspecting

the devices. Note that this does not forbid a separate or built-in hardware keylogger.

6. The recipient is trusted since he should see the plaintext data.

Chapter 5 (malware-tolerant Industrial Control System):

5. The 2-out-of-3 circuit is hardware-only and in scope of verification.

6. Furthermore, while this work only speaks of one actuator, no critical infrastructure

would only rely on one such component. In practice, multiple actuators exist.

7. PLCs and sensors work synchronously or are buffered.

Chapter 6 (malware-tolerant mesh network):

5. We assume the network has a high connectivity and it is not partitioned. Low con-

nectivity enables the adversary to compromise a device that is situated at intercon-

nections enabling him to block messages completely. As light-bulbs are normally in

every room of a flat or house, this assumption is justifiable in a smart-home setting

with smart light-bulbs (and further smart devices).
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3.4.3 Multiple Trusted Computing Bases Model

In order to reason about malware-tolerant systems, this research analyses approaches

based on multiple Trusted Computing Bases (TCBs). A TCB is the minimum set of honest

components needed to secure the system. Multiple redundant sets can exist. Devices are

grouped into a TCB, if they can produce the desired result even when all other devices are

compromised. A system is malware-tolerant if there are at least two disjoint TCBs that

provide the same property. If one TCB is compromised, another honest TCB would give

the correct result. Each independent component of the system can be part of multiple

TCBs – i.e. mostly entire devices as e.g. the CPU depends on the computer and is not

an independent component.

In contrast to the classical single TCB model, my model consists of several TCBs with

flexible trust assumptions. If any 1 (of N) TCBs is secure, the system is secure. In other

words, TCBs are OR’ed together. If TCB1 is secure OR TCB2 is secure then the system

is secure. An adversary has to compromise all TCBs to be successful which is significantly

harder than attacking a single TCB.

E.g. if device d1 and d2 are part of TCB1 and device d2 and d3 are part of TCB2,

then the system is secure if (d1 ∧ d2) ∨ (d2 ∧ d3) is secure. As one can see here, d2 is part

of all TCBs and is, thus, the single point-of-failure. The system is not malware-tolerant

because there are no disjoint TCBs (TCB1 and TCB2 overlap).

3.5 Brief Feasibility Study

Since malware tolerance first seems difficult (or even impossible) to achieve, this section

briefly estimates to what extent it is indeed possible.

Intuitively, the upper bound of malicious parts to tolerate is at maximum N − 1 for

N parts in total; one part has to be honest in order to detect or prevent attacks of the

others, report to the user, recover, or serve as root-of-trust. Contrary to other approaches,

malware tolerance does not stipulate which part this has to be and the TCB is flexible.
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The N − 1 border is a rough estimation and unrealistic. It needs to be stated more

precisely. To estimate it more exactly, I make use of two scenarios: voting and multi-

party computation.

In voting, the majority of the voters determine the result. If an adversary controls

more than 50% of the nodes, he is in charge of the outcome. Consequently, no technique

can prevent this kind of attack when allowing nodes to be malicious – which malware

tolerance deliberately allows. Through this (negative) example, we know that malware

tolerance in the general case can only permit < 50% malicious parts.

When a set of entities collectively calculates a function securely over given input values,

one speaks of multi-party computation. A real-world application was shown by Bogetoft et

al. [17] They developed a multi-party protocol for sugar beet farmers in Denmark to agree

on a fair price with the only company to process sugar beets in Denmark. The protocol

hides the submitted prices and protects the farmers from the monopoly of the company.

The upper bound of passive attackers ap such techniques can tolerate is ap < 50% (we

have already seen this above). For active attackers aa, it is aa < 33%, i.e. it is only possible

to prevent attacks generally for less than a third of the architecture being malicious.

To understand the 33% border, the idea behind the proof as given by Damgard [36]

is reproduced here: Let us assume a three party protocol with A, B, and C. All parties

should output a bit b ∈ [0, 1]. A is in possession of b and broadcasts it to B and C. B asks

C for the value. But, an honest B could not decide who is lying if the values of A and C

do not match. Thus, B can only detect an attack but cannot prevent it. The interested

reader is referred to Cramer et al. [34] for more details about multi-party computation

and the proofs. This example is close to our scenario in Chapter 4 where a user (A) has

a message b and types it into a keyboard (B) which forwards it to a smart-card (C).

The formalisation of multi-party computation also matches the empirical result of fault

tolerance (as seen in Chapter 2) where 2 ∗ f + 1 replicated servers can detect failures of

a fraction f (< 50% malicious) of the replicas and tolerate attacks for 3 ∗ f + 1 servers

(< 33% malicious).
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While this is only an estimation, it implies that general purpose malware tolerance

cannot tolerate more than 33% malicious components. Only in certain cases we can

achieve better results than this.

With this knowledge about the theoretical concepts, this thesis demonstrates the prac-

tical application of malware tolerance in three scenarios: trusted input, ICSes, and mesh

networks in particular smart-home networks. Although there are other examples like on-

line banking and electronic voting, I consider the above mentioned scenarios more promis-

ing from a research perspective because common solutions, like two factor authentication

or an anti-virus, are mostly not applicable.

3.6 Methodology

3.6.1 ProVerif Proofs

To prove the security guarantees of the approaches following in the next chapters, this

thesis utilises ProVerif1, a state-of-the-art protocol verifier. I also released the proof scripts

as open-source.

In ProVerif, protocols are represented with messages which are sent over public or

private channels between processes. During a protocol execution user-defined events can

happen. Predicates, so-called queries, can be formulated and ProVerif tries to verify them.

To do so, ProVerif has a built-in attacker which is able to participate on public channels.

Internally, ProVerif represents protocols through Horn clauses enabling formal verification.

Figure 3.3 shows a ProVerif script of a simple protocol where A sends a secret message

m over a public channel ch to B. The queries test if the attacker gets m (confidentiality)

and if messages B received are from A (authentication). Obviously, this protocol is

insecure and ProVerif correctly returns that the attacker can compromise authentication

and confidentiality (see Fig. 3.4).
1http://proverif.inria.fr

29

http://proverif.inria.fr


1 (* public channel *)
free ch: channel.
(* secret message *)
free m: bitstring [private ].

5 (* events *)
event A_sent(bitstring).
event B_received(bitstring).

(* queries *)
10 (* does the attacker get m? *)

query attacker(m).
(* if B received any message x, does that imply that A sent it? *)
query x:bitstring; event (B_received(x)) ==> event (A_sent(x)).

15 (* processes *)
let A =

event A_sent(m);
out(ch, m). (* send m on channel ch *)

let B =
20 in(ch, m: bitstring); (* receive m on channel ch *)

event B_received(m).
(* start *)
process A | B

Figure 3.3: ProVerif example

(...)
RESULT event(B_received(x)) ==> event(A_sent(x)) is false.
(...)
RESULT not attacker(m[]) is false.

Figure 3.4: ProVerif output

3.6.2 Cryptographic Notation

To improve readability, cryptographic algorithms are abbreviated in the following chap-

ters. E(k,m) refers to an authenticated symmetric encryption of message m with key

k, e.g. AES-GCM. D(k, c) is a decryption and mi|...|m0 represents a concatenation.

E(kpub,m) denotes an asymmetric encryption, S(kpriv,m) is a digital signature of m, and

H(k,m) is a Message Authentication Code (MAC). RSA(param, kpub,m) stands for the

common Rivest-Shamir-Adleman Cryptosystem (RSA) cryptosystem. The parameters are

displayed deliberately here, because they are needed in Chapter 4. All cryptographic algo-

rithms are used in their appropriate form, i.e. with initialisation vector, nonce, padding,

etc. but this is omitted for brevity. Chapter 6 introduces the Intrusion Resilient Signa-
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ture (IRS) scheme which is abbreviated with IRS(kpriv,m). Figure 3.1 shows an overview

of the utilised notation.

Furthermore, the protocols are presented as message sequence charts. If a device has

some secret keys, they are displayed over the device at the top of the diagram.

Abbreviation Meaning

E(k,m) Authenticated symmetric encryption of message m with key k

D(k, c) Decryption and verification of ciphertext c with key k

mi|...|m0 Concatenation of message m0 to mi

E(kpub,m) Asymmetric encryption of message m with public key kpub

D(kpriv, c) Asymmetric decryption of ciphertext c with private key kpriv

S(kpriv,m) Digital signature of m with private key kpriv

H(k,m) Keyed hash of m with key k

RSA(param, kpub,m) RSA encryption with parameters param of message m with pub-
lic key kpub

IRS(kpriv,m) IRS signature of message m with private key kpriv

Table 3.1: Cryptographic notation
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CHAPTER 4

USER INPUT: SMART-GUARD

The first step of this thesis is to protect the user input. A security system (e.g. an Intel

SGX enclave) can only trust inputs if it can distinguish malware input from user input.

In the literature, this field is known as trusted input. It is defined as the problem

of securing user input from device end-point (e.g. a keyboard) to program end-point.

Trusted output specifies the stream in the other direction (program to device). Both terms

are also subsumed by the expression trusted path or trusted I/O and belong to the wider

domain of trusted execution [69, 145].

Trusted input techniques are already utilised to harden the infrastructure in fields

such as online banking and electronic voting but are also applicable to Virtual Private

Networks (VPNs) or commands to a server (e.g. via SSH) or to an ICS. Authentication of

the exact origin of the input is essential in all of these scenarios as the following thoughts

demonstrate:

• Recent online banking trojans (ZitMo [78]) spread from PCs to smart-phones to

compromise two-factor authentication. Afterwards they impersonate the banking

customer.

• Malicious or bogus commands to ICSes can damage these systems (see e.g. Stuxnet [85,

146]) and potentially lead to catastrophes especially since ICSes are used in the en-

ergy, transport, and health sector.
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• Keyloggers are able to intercept login credentials and hijack connections [140].

• After compromising an administrator account in a company network, an adversary

can pretend to be the administrator and gain widespread access to assets and re-

sources [73].

• Forged, i.e. wrongly authenticated, votes in electronic voting compromise the entire

voting system [49].

To improve on these scenarios the input source needs to be exactly identified, i.e. we have

to be able to distinguish between authorised users and a potentially compromised PC.

Current approaches [29, 53, 90, 92, 145, 108] (detailed explanation in Section 4.4) for

trusted path usually omit hardware attacks which means firmware attacks, keyloggers

and similar are still effective. Moreover, they make strong and inflexible assumptions

about which parts of the system are trustworthy. For critical resources like a power plant

or electronic votes, we need stronger security guarantees and cannot purely rely on the

trustworthiness of a single component.

Contributions:

• This chapter introduces Smart-Guard, a technique to secure input even if malware

controls some parts of the system in real time. Smart-Guard distributes trust over

several components of the system, and guarantees integrity and authentication when

one out of three components is controlled by the attacker (see Section 4.1). It can

also ensure confidentiality under certain conditions. No single component is required

to be invulnerable to attack; an attack on one component can be resisted if other

components are trustworthy. This means Smart-Guard does not rely on a single

trusted computing base, but allows flexibility about the trust assumptions.

• A formal proof1 of the security claims for Smart-Guard is provided using the state-

of-the-art protocol verification tool ProVerif (Section 4.3.1 gives details).
1https://github.com/mdenzel/smartguard
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4.1 Overview of Smart-Guard

Smart-Guard is a trusted input system consisting of a computer, a smart-card, and an

encryption-capable keyboard1, i.e. a keyboard with built-in encryption module which

encrypts typed data. Keyboard and smart-card (smart-card reader) are both connected

to the computer via USB or similar.

One could argue that an encryption-capable keyboard could simply encrypt or sign

keystrokes by itself, but this would only shift the trust from the operating system driver

to the keyboard. Malware tolerance aims to achieve stronger assurances and, thus, trust

is distributed upon multiple devices in order to tolerate localised attacks. An adversary

would have to compromise more than one device to be successful. In particular, Smart-

Guard can resist (confidentiality and integrity) an infected computer, provided keyboard

and smart-card are not compromised.

4.1.1 Basic Procedure of Smart-Guard

Consider a scenario where an authorised user wants to send a message or a command to

a recipient from his or her commodity computer. The recipient could be the user’s bank,

an election server, or the flow control system of an oil pipeline.

The user types the characters of the message into the encryption-capable keyboard

which sends them signed and encrypted to the smart-card to prevent the computer from

tampering with the data. The smart-card verifies the keystrokes by displaying them via

any form of confidentiality preserving output, like e.g. ARM TrustZone with a TrustZone-

aware screen or an encrypted message to a phone. When typing is finished, the user

confirms the displayed input by entering a short string.

Smart-card and keyboard each produce one partial signature of the message. Those

partial signatures can only be combined into a valid signature if the two devices agree on

the same input. The combined cryptographic signature is verified by the recipient.
1e.g. https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/nRFre
ady-Desktop-2-Reference-Design
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4.1.2 Objective

The primary goal of Smart-Guard is to protect integrity and authentication of the user-

given keystrokes. The recipient of the keystrokes should be able to verify the origin of the

input. The system must at least guarantee these security properties if one of the three

participating devices (user PC, smart-card, keyboard) is malicious. Smart-Guard also

provides confidentiality under stricter conditions but focuses on authenticating the input.

4.2 Smart-Guard Protocol

The protocol consists of three phases:

1. An input phase which distributes user input to the devices. This step runs for every

input character.

2. A transition phase marking the end of input.

3. A signature and encryption phase which only takes place once per message and can

also run in the background.

The protocol phases are now introduced one by one. They are displayed in Fig. 4.1 and 4.2.

4.2.1 Setup

The encryption-capable keyboard and the smart-card share (1) a symmetric key kks which

pairs the two devices. They could be directly connected by inserting the smart-card into

a slot in the keyboard to establish kks. Both also receive (2) a partial key (respective k1

and k2) of a mediated RSA (mRSA) [19, 20] algorithm.

mRSA is an asymmetric cryptosystem and splits the private key into two shares kpriv =

k1+k2. This way, signatures can be created out of two partial signatures ps1 and ps2 (see

Eq. 4.1). Note that the plaintext m has to be appropriately padded (details in [19, 20]).

signature = ps1 ∗ ps2 = mk1 ∗mk2 = mk1+k2 = mkpriv . (4.1)
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User Keyboard
kks

Computer Smart-card
kks

Recipient
krecpriv

mi

buffer m = m|mi

ci = E(kks,mi)

ci

mi = D(kks, ci)

buffer m = m|mimi
1

phase 1
loop i

end input

new nonce n;
challenge ch =

= H(n,m)
ch

1
ch

cch = E(kks, ch)
cch

ch′ = D(kks, cch)

verify ch = ch′

phase 2

msc The Smart-Guard Protocol: Part 1 – public keys: krecpub, kpub

Figure 4.1: The Smart-Guard protocol – part 1: The user types in keystrokes mi which
are distributed to the encryption-capable keyboard and the smart-card. An end-input
event (e.g. a mouse click) indicates that the user wants to proceed. The user verifies
the keystrokes being displayed via secure output (label 1), by typing a challenge into the
keyboard. Afterwards phase 3 (see Fig. 4.2) is run.

4.2.2 Phase 1

Phase 1 (see upper half of Fig. 4.1) distributes the input characters to keyboard and smart-

card. Every character the user types into the keyboard is encrypted with the previously

setup stream cipher (e.g. AES-GCM) and sent to the PC. The PC forwards them to

the smart-card which decrypts them. Smart-card and keyboard buffer the characters for

later signing. At this stage, only the keyboard verified the input. To allow the user to

confirm the typed keystrokes, the smart-card displays them via confidential output to
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hide them from the computer. Confidential output can be provided, for example, by an

ARM TrustZone enabled device or by sending them encrypted to a phone. Even if the

secrecy of the output is compromised, the integrity of the input is unaffected (assuming

no further colluding attacks).

4.2.3 Phase 2

After the user indicates that he wants to end the input (e.g. by a mouse click), phase 2 is

run (see lower part of Fig. 4.1). The smart-card creates a fresh nonce, hashes the input

with it, and displays the result via confidential output to the user who then types this

verification string – estimately 4-8 characters – into the keyboard. The keyboard can only

forward these characters via the PC to the smart-card as they appear random. This way

the smart-card can independently verify that the user agrees with the keystrokes. A hash

with a nonce has two advantages: (1) it cannot be forged by keyboard or PC and (2) it

is clear to which input string it corresponds.

4.2.4 Phase 3

After keyboard and smart-card both received (phase 1) and verified (phase 2) the keystrokes,

they can generate a shared signature (phase 3). This protocol is displayed in Fig. 4.2.

To create the shared signature, keyboard and smart-card must first establish a new

key (k′ in Fig. 4.2), that is verifiably fresh, in order to encrypt the message m with

e.g. AES-GCM. Phase 3 generates this key k′ with a Diffie-Hellman key exchange on the

encrypted channel of pre-shared key kks. Since keyboard and smart-card contribute to

Diffie-Hellman, both know that the resulting key is fresh.

Afterwards, the keyboard encrypts user input m with k′ and encrypts (RSA) the key k′

with the public key of the recipient krec
pub – similar to common e-mail encryption schemes.

The keyboard also creates a partial mRSA signature ps1. To enable the smart-card to

verify the encryption (see also Section 4.2.5), the encryption parameters pr are encrypted
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User Keyboard
kks, k1

Computer Smart-card
kks, k2

Recipient
krecpriv

2
Diffie-Hellman key exchange via kks

fresh k′ fresh k′

DH

c = E(k′,m = mi|...|m0)

r1 = RSA(pr, krecpub, k
′)

cpr = E(kks, pr)

Encryption

ps1 = S(k1, (r1, c))

mRSA

c, r1, cpr, ps1

3

m′ = D(k′, c)

verify m′ = m

pr = D(kks, cpr)

r2 = RSA(pr, krecpub, k
′)

verify r1 = r2

Encryption

ps2 = S(k2, (r1, c))

4

s = ps1 ∗ ps2 (mRSA)
verify s with kpub

mRSA

phase 3

s

verify s with kpub r1, c, s

verify s with kpub
k′ = D(krecpriv, r1)

m = D(k′, c)

msc The Smart-Guard Protocol: Part 2 – public keys: krecpub, kpub

Figure 4.2: The Smart-Guard protocol – part 2: After phase 2 (see Fig. 4.1) the keyboard
and the smart-card are supplied with a verified copy of the user input. Encryption-capable
keyboard and smart-card now generate a fresh, shared key k′. The keyboard encrypts
the input with k′ and adds a partial mRSA [19, 20] signature, which is completed by the
smart-card if it agrees.
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and sent together with ciphertext and partial signature ps1 to the smart-card.

The smart-card decrypts the ciphertext and verifies that it is indeed the message m. It

then decrypts the encryption parameters pr and recalculates the RSA encryption. If the

RSA ciphertext of the keyboard matches the recalculated RSA ciphertext of the smart-

card, the smart-card accepts message and ciphertext. The structure is completed with

the second part of the mRSA signature ps2 by the smart-card. Before sending the entire

ciphertext with signature s to the recipient, the smart-card verifies the complete signa-

ture s to test if ps1 was correct. The computer can also optionally verify the signature.

The three phases are the logical steps to create a shared, signed ciphertext. Phase 1

distributes the input to the participating devices which sign and encrypt the input in

phase 3. The second phase seems unnecessary at first but prevents the keyboard from

appending characters to the message.

4.2.5 Important Details

It is worth mentioning some important details in the protocol which are essential to

achieve the security guarantees. These details are labelled 1 – 4 in Fig. 4.1 and 4.2.

1. For confidentiality, the characters should be displayed with a technique for confi-

dential output. Integrity protection, and with it trusted output, is not needed. If

any device changes the output, the user will quickly realise that the characters on

the screen do not match to the typed ones. Also, the displayed hash will be wrong

and the smart-card will not sign the input. It will be impossible for the user to type

the message. However, if the output is not confidential, neither is the message. The

message is still integrity protected but not secret.

2. The Diffie-Hellman key exchange is executed via the encrypted and authenticated

channel of kks (e.g. AES-GCM) to prevent Man-in-the-Middle (MITM) attacks.

This key exchange generates a fresh key k′ of which keyboard and smart-card both

know that it is indeed fresh.
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3. The smart-card recalculates the RSA encryption of k′ to prevent the keyboard from

adding additional keys. A malicious keyboard could e.g. send r1 = RSA(kattack
pub ,

k′). This cannot be distinguished from the original r1 = RSA(krec
pub, k

′) without

recomputing it. To repeat and verify this calculation, it is necessary to send the

random parameters cpr (encrypted) to the smart-card.

4. The smart-card creates the signature and immediately verifies it afterwards. This

reveals malicious behaviour of the keyboard.

4.3 Security Analysis

Smart-Guard is a malware-tolerant input architecture and consists of three devices. As

defined in Section 3.4.3, multiple TCBs must exist. They are displayed for Smart-Guard

in Table 4.1. To e.g. compromise integrity, an attacker has to gain control over two TCBs.

For integrity, the PC is not part of any of them meaning that its security (including the

security of the output) is irrelevant.

Integrity: Confidentiality:

TCB1 = { smart-card } TCB1 = { PC, smart-card }

TCB2 = { keyboard } TCB2 = { smart-card, keyboard }

TCB3 = { PC, keyboard }

Table 4.1: Trusted Computing Bases

The TCB model for integrity can be interpreted as shown in Eq. 4.2. Both, keyboard

on its own or smart-card on its own provide integrity. Only one of them has to be honest.

keyboard secure⇒ integrity .

smart-card secure⇒ integrity .

(4.2)

The confidentiality side of Table 4.1 is equal to Eq. 4.3. Assuming a confidentiality

preserving technique for output, the attacker needs to control three TCBs to compromise
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confidentiality. This corresponds to two of three devices as every device is part of two

TCBs.

PC secure ∧ smart-card secure⇒ confidentiality .

smart-card secure ∧ keyboard secure⇒ confidentiality .

PC secure ∧ keyboard secure⇒ confidentiality .

(4.3)

4.3.1 Proofs

In contrast to classical ProVerif proofs, it was necessary to employ two attackers for

Smart-Guard: One is controlling some of the three devices (PC, keyboard, smart-card),

while the other one passively waits for messages. This chapter refers to them as the

offline and online attacker respectively. This characteristic simulates the fact that smart-

card or keyboard cannot communicate to the network without the PC (see assumptions

in Section 3.4.1). As a result, the compromised devices (i.e. the offline attacker) have

to trick the PC to communicate to the second attacker – assuming the PC is honest. A

malicious PC is modelled by making all communication channels of it public in ProVerif.

Due to the proofs for the protocol becoming fairly long, they are split accordingly to

Fig. 4.1 and 4.2 into two parts. The ProVerif scripts and all required files are available

online1.

4.3.1.1 Proofs for Phase 1 and 2

The results of phase 1 and 2 are the pre-conditions of phase 3. Three properties have to

be tested:

• Does the keyboard have the correct input? (message integrity keyboard)

• Does the smart-card have the correct input? (message integrity smart-card)
1https://github.com/mdenzel/smartguard
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• Does the protocol protect the input from an online attacker? (confidentiality)

• To verify confidentiality, another property called “strong confidentiality” was intro-

duced. It tests if the offline attacker gets the input (makes four properties to test).

Either the keyboard or the smart-card have to know the correct message in order to

proceed to phase 2. Integrity is, therefore, the union of message integrity at the keyboard

and message integrity at the smart-card. The four properties are shown as ProVerif queries

in Fig. 4.3.

1 (* integrity *)

query m:char;

event (sc_pass(m)) ==> event (user_pass(m)).

query m:char;

5 event (kb_pass(m)) ==> event (user_begin(m)).

(* confidentiality *)

query mess(ch_att , new m).

(* strong confidentiality *)

10 query attacker(new m).

Figure 4.3: ProVerif queries phase 1 and 2: The code excerpt defines four queries:
Query 1: If the smart-card accepts the message m (event sc_pass), the user must have
accepted it on the screen output (event user_pass).
Query 2: If the keyboard accepts the message m (event kb_pass), the user must have
created that message (event user_begin).
Query 3: The offline attacker does not get the message m.
Query 4: The online attacker does not receive message m.

4.3.1.2 Proofs for Phase 3

Phase 3 assumes the results of phase 2. This should be that the keyboard or the smart-

card have a user-verified copy of the message. The message m might be compromised by

the offline attacker but was not sent to the online attacker. The protocol will create a

joint ciphertext and signature. The proofs verify that the signature at the recipient side
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is indeed correct and that the online attacker cannot retrieve the plaintext of the message

m (see Fig. 4.4).

1 (* integrity *)

query m:char;

event (rec_end(m)) ==>

event (kb_begin(m)) ||

5 event (sc_begin(m)).

(* confidentiality *)

query mess(ch_att , new m).

Figure 4.4: ProVerif queries phase 3: The queries are:
Query 1: If recipient accepts message m (event rec_end), it came from the keyboard
(event kb_begin) or from the smart-card (event sc_begin).
Query 2: The online attacker does not receive the message m. (or: the offline attacker
cannot communicate m via channel ch_att)

4.3.1.3 Combined Results

The results of the ProVerif queries are shown in Table 4.2. Important for this part is

that either smart-card or keyboard have a valid message (integrity column) and that the

attacker on the internet did not receive the message (confidentiality column).

No Compromised Devices Confidentiality Integrity End reached

1 None 3 3 3

2 Keyboard 3 3 3

3 Smart-card 3 3 3

4 PC 3 3 3

5 PC, Smart-card 3 3

6 PC, Keyboard 3 3

7 Smart-card, Keyboard (3) 3

8 All 3

Table 4.2: ProVerif results: Brackets indicate that a property does not hold in phase 3 of
the protocol.
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everything untrusted

keyboardkeyboard
trustedtrusted

smart-cardsmart-card
trustedtrusted

computercomputer
trustedtrusted

(a) Integrity

everything untrusted

keyboardkeyboard
trustedtrusted

smart-cardsmart-card
trustedtrusted

computercomputer
trustedtrusted

(b) Confidentiality

Figure 4.5: Trust model for Smart-Guard: The “keyboard trusted” circle represents the
cases in which the keyboard is trusted, and similarly for the other two circles. Thus, the
very centre of the diagram means that all devices are trusted.

Grey area: protocol satisfies integrity (Fig. 4.5a) or confidentiality (Fig. 4.5b).
Dotted area: protocol defends against hardware keyloggers.

The results are summarised in Fig. 4.5a and 4.5b. Each circle in the Venn diagram

represents that a device is trusted while the complement stands for the device being

compromised. The grey area marks cases satisfying the particular property labelled below

the figure. Smart-Guard guarantees integrity for either a trustworthy keyboard or a

trustworthy smart-card (Fig. 4.5a) and confidentiality for one malicious device out of

three devices (see also Fig. 4.5b).

It was also tested if Smart-Guard defends against hardware keyloggers. A hardware

keylogger corresponds to the channels between PC and the other two devices (usually USB

channels) being public. ProVerif verified these queries and, thus, Smart-Guard defends

against hardware keyloggers in some cases (see dotted area in Fig. 4.5a and 4.5b).
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4.3.2 Performance Estimation

To estimate performance I use the crypto benchmark of Petr Svenda et al. [35, 125]

and assume a Softlock SLCOS InfineonSLE78 smart-card. The measurements of the

benchmark are shown in Table 4.3.

Function Average time

Random Number Generation (RNG) (256B) 32.12 ms

SHA2-256 hash (256B) 36.56 ms

AES256 encrypt (256B) 2.46 ms

RSA1024 CRT decrypt 56.27 ms

RSA1024 CRT encrypt 5.43 ms

RSA1024 CRT SHA PKCS1 PSS sign 124.01 ms

RSA1024 CRT SHA PKCS1 PSS verify 81.69 ms

DH (ALG_EC_SVDP_DH/ALG_EC_SVDP_DH_KDF) 85 ms

Table 4.3: Cryptographic operations benchmark of Softlock SLCOS InfineonSLE78 smart-
card according to [35, 125]

Phase 1: In the first phase, we only distribute the characters to the devices, for this,

a random number generation, an AES encryption, and an AES decryption are necessary:

RNG+AES256+AES256 = 32.12 ms+2.46 ms+2.46 ms = 37.04 ms. This is equivalent

to an average typing speed of 60 s/37.04 ms ∗ 256 bytes ∼ 415000 characters per minute.

Phase 2: The main bottleneck for the short string is the delay imposed by the user.

Thus, the cryptographic performance is negligible: RNG+SHA256+RNG+AES256+

AES256 = 32.12 ms+ 36.56 ms+ 32.12 ms+ 2.46 ms+ 2.46 ms = 105.72 ms ∼ 0.1 s.

Phase 3: To generate the resulting ciphertext, the protocol executes (in order):

a Diffie-Hellman key exchange, an AES encryption with random number generation, a
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RSA encryption (for the key) including random number generation, an AES encryption

of the initialisation vector with random number generation, a RSA signature, an AES

decryption, an AES decryption of the initialisation vector, a RSA encryption with the

same random number as before, a RSA signature, and a RSA verification.

The calculation is show in Eq. 4.4, assuming a message of 256 bytes and Chinese

Remainder Theorem (CRT) for RSA with key length 1024 bytes.

DH + RNG + AES256 + RNG + RSA(enc) + RNG + AES256 +
85 ms + 32.12 ms + 2.46 ms + 32.12 ms + 5.43 ms + 32.12 ms + 2.46 ms +

RSA(sign)+ AES256 + AES256 + RSA(enc) + RSA(sign) + RSA(verify)
124.01 ms + 2.46 ms + 2.46 ms + 5.43 ms + 124.01 ms + 81.69 ms = 531.77 ms

(4.4)

These numbers are a rough estimate and have to be considered carefully. However,

they indicate that performance is not a major concern.

4.4 Related Work and Comparison

Table 4.4 gives an overview of the existent techniques for trusted path and compares them

based on the information the papers provided.

Comparison:

1. BitE – McCune et al. [90]: Bump in the Ether (BitE) combines a PC, an encryption-

capable keyboard, and a mobile phone to achieve a trusted path. User input is sent

from the keyboard to the trusted phone which forwards the keystrokes (encrypted)

to the operating system. There, they are distributed to the correct applications.

The trusted phone also serves as trusted output.

The technique only prevents user-space malware with phone, PC, kernel, and key-

board being trusted entities. However, it is also the oldest approach of the presented

ones.
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Technique Trusted
input

Trusted
output

Confi-
den-
tiality

In-
tegrity

Soft-
ware

attacks

Hard-
ware

attacks

Trusted
Computing Base

BitE [90] 3 ∼1 3 3 ∼2

keyboard, phone,
PC, operating

system

Bumpy [92] 3 ∼1 3 3 3
keyboard,

Flicker, TPM

UTP [53] 3 3 3

keyboard,
Flicker, TPM,
hypervisor

DriverGuard [29] 3 3 3 3 ∼3 I/O devices, PC,
hypervisor

KeyScrambler [108] 3 3 3 ∼2 keyboard, PC,
operating system

Zhou et al. [145] 3 3 3 3 3
hypervisor, hand-
held device, TPM

TrustZone [11] 3 3 3 3 ∼4

secure world,
monitor,

bootloader,
TrustZone, I/O

devices

Smart-Guard 3 ∼5 3 3 3 3
multiple/flexible
(see Section 3.4.3)

1 limited by phone 2 only user-space malware blocked 3 attacks of drivers possible
4 secure world/monitor attacks possible 5 relies on other trusted output techniques

Table 4.4: Comparison of trusted path techniques: Similar techniques are grouped to-
gether (dashed line). Ticks indicate the referred property is secure while a tilde means
that it has drawbacks.
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2. Bumpy – McCune et al. [92]: The authors used a computer with Flicker [91] in

combination with a special keyboard to deliver passwords securely to a recipient (e.g.

webserver). A phone serves again as output to indicate the receiving application

and the webserver. The technique consists of two stages: collecting the keystrokes

and encrypting or hashing them in order to send them to the recipient.

Flicker, a minimal secure environment with hardware support of a TPM, removed

the kernel from the TCB. The result is secure also against kernel-space attacks (in

contrast to BitE).

3. UTP – Filyanov et al. [53]: The authors worked together with McCune to realise

trusted input with Flicker. Their approach, Uni-directional Trusted Path (UTP), is

aimed at confirmations for banking transactions. UTP switches temporarily away

from the operating system to Flicker which securely displays a confirmation dialog

and signs the user’s input. The result is sent to the bank where it is verified.

The approach is not a full trusted path since it is normally inactive and only gives

the receiver security guarantees.

4. DriverGuard – Cheng et al. [29]: In contrast to other techniques, DriverGuard aims

to achieve a trusted path in software and shields I/O drivers with a hypervisor. So-

called privileged code blocks have access rights to I/O resources while accesses of

the guest operating system are denied.

A problem of the solutions is that privileged code blocks (Drivers) have access to

any I/O port. Compromising any driver, thus, compromises all trusted paths. Since

DriverGuard solely relies on software, there is no hardware root-of-trust.

5. KeyScrambler – QFX Software [108, 80]: The commercial tool KeyScrambler in-

tercepts keystrokes at the keyboard driver, encrypts them during processing of the

operating system, and decrypts them in the actual application. The difference to

DriverGuard is that KeyScrambler only handles input but manages without a hy-

pervisor. It partly defends against user-space keyloggers.
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6. Zhou et al. [145]: The authors of TrustVisor [93] created a user-verifiable trusted

path. The approach uses TrustVisor to shield drivers at a lower level than Driver-

Guard protecting I/O ports, device memory access, device configuration space, and

interrupts. Additionally, the authors enabled the user to verify the system with a

custom hand-held device with a red/green indicator LED and a TPM. The hand-

held device requests attestation from the TPM about the honesty of the platform.

The technique defends against software attacks while maintaining usability during

run-time.

7. TrustZone [11]: TrustZone is a TEE of ARM CPUs. The system is split into

two zones, normal and secure world, with different privileges managed by the so-

called monitor. Combined with TrustZone-aware components (like a TrustZone-

aware touchscreen) it can provide Trusted I/O if the entire TrustZone architecture

is trusted.

8. Smart-Guard : The technique of this thesis defends against software, hardware, and

even attacks of the own devices. The TCB model differs from previous research in

the fact that there are flexible trust assumptions: Trust is distributed over multiple

TCBs of several devices. If one of the devices is compromised, the others will prevent

attacks automatically (Section 3.4.3). The limiting factor is that Smart-Guard relies

on other techniques for trusted output.

Problems of Trusted Output: To recapitulate, trusted output is the problem of

delivering data securely, i.e. confidential and integrity protected, from a trusted environ-

ment to the user or rather a display.

All presented trusted output techniques either rely on a phone or a hypervisor to se-

cure the output. I suspect this cannot be improved without output devices supporting

cryptography; e.g. computer screens and graphic cards need to encrypt or decrypt. Oth-

erwise, the device endpoint for output is not secure and can only be assumed uncompro-

49



mised. The two (part-)solutions all presented papers rely on are hence (1) to shield the

graphic pipeline with a hypervisor, shifting the trust to the hypervisor, or (2) addition-

ally displaying the output via e.g. a phone.

The aim of malware tolerance for trusted output is to display data securely without a

single point-of-failure. But, the output device (the screen) itself is a single point-of-failure

without guarantees about confidentiality because general purpose screens are incapable

of cryptography. Integrity can be provided by displaying the output on two devices (e.g.

computer screen and a phone) and relying on the user to compare them. But, this is

inconvenient and unfeasible for general purpose scenarios.

Since Smart-Guard requires confidential output, this can so far only be provided via

any other non-malware-tolerant technique for trusted output. It is less secure than a po-

tential malware-tolerant output but this is doubtfully achievable without display hard-

ware evolving. Nevertheless, Smart-Guard provides integrity fully malware-tolerant and

independent of the confidentiality of the output.

4.5 Summary

This chapter presented Smart-Guard, the first malware-tolerant protocol to protect user

input from malware and hardware attacks. It is especially useful to authenticate user

input. Smart-Guard consists of three devices – a PC, a keyboard, and a smart-card –

and guarantees security properties even in the context of attacks of one of the underlying

devices. The protocol is designed to be secure under several sets of trust assumptions,

providing flexibility and avoiding a single point of failure making it malware-tolerant.

To provide evidence of the claims, the protocol was formally verified with ProVerif and

analysed its security properties.

This first practical chapter demonstrates how several devices can interact in a way

that prevents any individual device from compromising the resources – malware tolerance.
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CHAPTER 5

SENSOR/ACTUATOR NETWORKS: SELF-
HEALING INDUSTRIAL CONTROL SYSTEM

Having seen how to securely send strings like commands to a recipient, we will now look

at the execution thereof in a specialised scenario: Industrial Control Systems (ICSes).

To recapitulate, ICSes are sensor-actuator networks controlling physical systems. They

consist of PLCs, which are computers with specialised software to provide high availabil-

ity and real-time operation. Unpatched PLCs with long lifetimes and historic protocols

without even basic authentication (like the Modbus protocol [55]) create an insecure en-

vironment. As soon as adversaries gain network access, they are in charge of the archi-

tecture. Governmental organisations [70, 122] recommend the defence in depth strategy

by trying to deploy defences at every layer of the network.

Malware tolerance goes one step further and aims to distribute trust over several

independent components in a way that an individual component infected with malware

cannot break the security policy. Simply put, every single point-of-failure at critical

intersections should be removed throughout the entire ICS architecture. The secondary

goal of this chapter is to enable the architecture to automatically repair ordinary and

malicious faults (self-healing). With this approach, it is also possible to recover from

corrupted or incomplete patches.
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Contributions:

• This chapter presents the architecture of a malware-tolerant ICS that has no single

point-of-failure at critical intersections and can self-heal failed or (maliciously) mis-

behaving PLCs.

• It also gives formal proofs of the network architecture with state-of-the-art protocol

verifier ProVerif. The proofs can be found online1.

• To achieve the architecture, I develop a self-healing mechanism which detects in-

correct behaviour by verifying invariants, and recovers to a good state. I adjusted

FreeRTOS2 to include this mechanism and released the implementation as open-

source3.

5.1 Proposed Architecture

The approach is an extension to already existent firewalls, network zones, IDSes etc. and

changes the control loop at the field site. Figure 5.1 displays the infrastructure with the

changes being highlighted in red. The concept adds hardware in form of reset-circuits;

data by images and policies; and software in form of a self-healing Real-Time Operating

System (RTOS) and the netboot firmware of the reset-chip. Additionally, the architecture

leverages existent redundancy of PLCs and a 2-out-of-3 (2oo3) circuit which are already

in place in some ICS facilities.

Basis of the malware-tolerant architecture are three diverse PLCs combined with

trusted computing. The 2-out-of-3 hardware circuit combines the results of the PLCs and

forwards them to the actuator. That means none of the PLCs has to be invulnerable to

attacks or failures, it is enough if two of the three work. The PLCs must differ in their
1https://github.com/mdenzel/malware-tolerant_ICS_proofs
2www.freertos.org
3https://github.com/mdenzel/self-healing_FreeRTOS
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Figure 5.1: Proposed Industrial Control System architecture

soft- as well as hardware which is achieved with a special kind of N-variant system and

diverse hardware (details in Section 5.3.2).

I also added self-healing functionality to recover failed and compromised PLCs with

(1) a RTOS based on ARM TrustZone that can reset user level tasks and (2) a network

protocol and reset-circuits to defend against attacks on system level and on the TEE.

5.1.1 Self-healing Real-Time Operating System

To demonstrate the RTOS, I created a proof-of-concept implementation based on the

FreeRTOS operating system which I ported to ARM TrustZone to protect critical func-

tionality like scheduling and interrupts.

Figure 5.2 shows the control flow of my TrustZone-aware RTOS. Periodically, the

TZIC generates a timer interrupt (1.) which is set up as an FIQ trapping into monitor

mode (2.). The monitor saves the context and jumps to the interrupt handler (3.) for

timer interrupts calling the FreeRTOS scheduler (4.). After scheduler (5.) and interrupt
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Figure 5.2: TrustZone-aware Real-Time Operating System

handler (6.) return, the next task is determined. At this point, the monitor invokes a

detection routine (7.).

To reveal faults or malicious behaviour of certain tasks, the detection routine checks

various system variables and external values (e.g. sensor values) against invariants which

are stored in form of a policy, cryptographically signed, on at least two servers. These

invariants are implicitly given by the set-points the operator of the system placed. For

the water tank example, the operator could e.g. set the temperature t to 0 to 100◦C,

forbid heating for t > 50◦C, and forbid cooling for t < 50◦C. If the temperature is below

or above this range and the task does not enable the actuator, the task is faulty.

The result of the detection routine is returned to the monitor (8.) which then (9.) ei-

ther runs the task or dispatches a restoration routine if the task was misbehaving. The

restoration routine only runs during the time-slice of the misbehaving task ensuring avail-

ability of the rest of the system including other tasks and operating system functionality.

The restoration terminates the task and loads an image of the original task from a pro-

tected memory region inside the secure world. Lastly, the task is added to the scheduler

again. The critical steps are run inside the TrustZone secure world to protect them from

manipulation.
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To avoid unnecessary resets due to false positives, I created a specification-based de-

tection technique that verifies the status of invariants. Specification-based techniques

(e.g. signatures and finite state machines) have a lower rate of false alarms than non-

specification-based ones (e.g. anomaly detection) but might miss some attacks [115]. If

the presented online self-healing mechanism fails, the network level self-healing approach

(see following paragraph) restores the particular PLC at the cost of a restart.

5.1.2 Reset-Circuits and Network Protocol

The basic idea of the reset-circuits is to reboot the PLCs and load a digitally signed and

verified image from the network. The proposed circuits consist of a network boot chip

(e.g. iPXE1) and a logical circuit to control resets (Fig. 5.3). To restrict resets to a certain

interval, a low frequency clock signal was AND ’ed. Optionally, the inputs to the circuit

(label 1. in Fig. 5.3) can be replaced with flipflops to enable synchronising the PLCs.

Circuits for PLC2 and PLC3 can be similarly derived.

Since network-based detection indicates that system level self-healing (taking place

beforehand) failed, I intentionally clear the state to recover from the attack. The state

can either be re-initialised by discovery or by requesting it from the other PLCs. In

the temperature management example, discovering the temperature and adjusting the

actuator is straightforward. For more complex scenarios, the reset PLC would request

the state from the other two PLCs and compare it.

The message sequence chart of the malware-tolerant, self-healing network protocol is

presented in Fig. 5.4: Every PLC reads the current sensor value s (for simplicity only

one sensor was drawn but multiple sensors are possible) and computes the adjustment ai

of the actuator. This is sent to the 2-out-of-3 circuit which forwards the end result a to

the actuator. Parallel, each reset-circuit receives the three response values of the PLCs

and checks if the corresponding PLC needs resetting (r ?
= 1). A reset flashes a PLC with

netboot image from the network. Figure 5.4 displays a reset of PLC1 as an example.

1www.ipxe.org

55

www.ipxe.org


Figure 5.3: Reset-circuit for PLC1

Sensor PLC1 PLC2 PLC3

2-out-of-3
circuit Actuator Reset1 Reset2 Reset3

s s s
adjustment a1

a2
a3

a =(a1 && a2) ||
(a1 && a3) ||
(a2 && a3) a

malware tolerance

a1, a2, a3 a1, a2, a3 a1, a2, a3

r = (!a1 && a2 && a3)

|| (a1 && !a2 && !a3)

reset: r ?
= 1reset

test PLC2

test PLC3

PLCnew
1 ok

ok

self-healing

loop

msc Self-healing Network Protocol for misbehaving PLC1

netboot image

Figure 5.4: Malware-tolerant, self-healing protocol
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5.2 Security Analysis and Results

5.2.1 ProVerif Proofs

To give proof of the security features of the illustrated architecture, ProVerif was utilised

to test the network protocol. Figure 5.4 shows the modelled protocol for various configu-

rations (see Table 5.2) granting the attacker control over different sets of devices.

The TCB model (see Section 3.4.3) of the proposed ICS is shown in Expression 5.1. Ri

stands for the reset-circuit of PLC number i. Since Ri controls PLCi, one has to consider

(Ri, PLCi) pairs as they are the smallest subset of independent components. The system

is malware tolerant, because no (Ri, PLCi) pair is part of all TCBs.

TCB1 = {(R1, PLC1), (R2, PLC2)} .

TCB2 = {(R1, PLC1), (R3, PLC3)} .

TCB3 = {(R2, PLC2), (R3, PLC3)} .

(5.1)

The architecture was formally verified by testing five properties of the protocol (Fig. 5.4)

with ProVerif (results shown in Table 5.2):

1./2. 1st/2nd iteration: As ProVerif cannot verify loops, two iterations of the protocol were

modelled. These two iterations are sufficient, since computations are independent

from each other and resets only affect the next loop iteration. For each iteration,

the proof scripts test if the actuator received the correct value.

3./4. Self-healing: The self-healing column in Table 5.2 consists of two proofs; the absence

of type I errors and the absence of type II errors.

• Type I error (false positive): Regarding the protocol, a false positive is the

case where the hardware circuits reset an honest PLC. In ProVerif this has to

be expressed as: For all reset events of PLCi, PLCi misbehaved.

At first, this seems not to prove that if PLCi misbehaved, a reset happens but

in combination with the type II error and knowing that reset is a binary event

(it can either happen or not happen), the property is proven.
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• Type II error (false negative): False negative refers to the case where a misbe-

having PLC is not reset (missed attack). In ProVerif: For all not_reset events

of PLCi, PLCi behaved correctly.

Again, it seems that if PLCi is honest, no reset happens is not proven. This

is applicable, similar to before, by the absence of type I errors.

Figure 5.1 displays the proofs of the absence of Type I and Type II errors as four

squares diagram.

5. End reached: The property tests if the protocol runs through. This is commonly

done in ProVerif by detecting the deliberate leak of a secret value at the end of the

protocol.

PLC misbehaving PLC honest

reset (proved with ProVerif) false positive

no reset false negative (proved with ProVerif)

Table 5.1: Type I and type II errors: To prove the absence of type I and type II errors
in ProVerif, the scripts prove that: (3.) if a reset happened, the PLC always misbehaved
and (4.) if no reset happened, the PLC was always honest.

The proofs (Table 5.2) verify that the physical system, i.e. the actuator, is supplied

with correct values for the cases where the adversary controls one device (cases 2–4 and 6–

8) or one (PLCi, Reseti)-pair (cases 9–11). Self-healing works for one compromised PLC

but functional reset-circuits (cases 2–4). Also, everything works if there is no attack

(case 1). More hypothetical cases are tested as sanity checks, e.g. the case where the

attacker can physically change the 2-out-of-3 circuit (case 5) which is a validation of the

assumption. The proof fails as expected since one hands the asset to the attacker from

the very beginning. Case 24 is a special sanity check where the adversary has control over

literally everything. Both cases (case 5 and 24) fail as predicted.
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No Compromised Devices

1st

Iteration
2nd

Iteration
Self-

healing
End

reached
(1.) (2.) (3.) (4.) (5.)

1 None 3 3 3 3 3
2 PLC1 3 3 3 3 3
3 PLC2 3 3 3 3 3
4 PLC3 3 3 3 3 3
5 2oo3 3
6 R1 3 3 3
7 R2 3 3 3
8 R3 3 3 3
9 PLC1, R1 3 3 3
10 PLC2, R2 3 3 3
11 PLC3, R3 3 3 3
12 PLC1, R2 3 3
13 PLC1, PLC2 3
14 PLC1, 2oo3 3
15 2oo3, R1 3
16 R1, R2 3 3
17 PLC1−3 3
18 PLC1−2, 2oo3 3
19 PLC1, 2oo3, R1 3
20 2oo3, R1−2 3
21 PLC1, R1−2 3 3
22 PLC1, R2−3 3 3
23 R1−3 3 3
24 All 3

Table 5.2: ProVerif results

5.2.2 Evaluation of Self-healing FreeRTOS

Since I am not aware of any Common Vulnerability and Exposures (CVE) for FreeRTOS,

I could not test any real-world attacks against my extended FreeRTOS operating system

(a broader analysis of attacks follows in Section 5.3.1).

To test the system level self-healing capability of the proof-of-concept implementation,

I introduced a buffer overflow in the Input/Output (I/O) driver using the vulnerable C-

function strcpy (see Fig. 5.5). I exploited this vulnerability by overflowing the buffer

and overwriting the settings in the simulated PLC. I chose this attack as it is the most

common vulnerability in C and is similar to a range of attacks, e.g. format string attacks

and return-oriented-programming.
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1 typedef struct temperature{

char info [16]; //to introduce a buffer overflow

int max;

int min;

5 } temperature;

void set_config_temperature(char* str){

#ifdef BUFFEROVERFLOW

strcpy(temp_config.info , str); // buffer overflow (on purpose)

10 #else

strncpy(temp_config.info , str , 15);

#endif

}

Figure 5.5: Example bufferoverflow as introduced into the I/O driver

The simplified detection routine checks that the settings are within an accepted range

and otherwise triggers restoration. Task and temperature driver are reset to their original

if the maximum temperature is changed to values outside the range.

Figure 5.6 shows an example run of the attack. After the operating system boots (i.e.

when scheduler and timer interrupt are set up), three tasks are started. Task1 toggles

an LED to indicate that the system is alive. Task2 is logging the temperature which is

simulated by reading it from a random function in the driver. The temperature is initially

set to be between 0 and 100. Task3 is managing the user input via the COM port. In the

example, I sent the user command (green in Fig. 5.6) to update the configuration name

including a buffer overflow attack. The last, non-printable character of the input string

is the binary value of 150. As we can see in the next rows, the temperature is now set to

[0; 150]. Upon the next task switch, the self-healing routine runs and verifies the invariant

temperaturemax <= 100. Since the invariant is false, the responsible task (task3) is reset

including its driver. This can be seen by the repetition of “task3 start” and the getc error

indicating that the driver ignored a character. The status command after the attack shows
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Figure 5.6: Simulated attack on the self-healing operating system: User input was high-
lighted in green.
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that the configuration was already recovered with temperature borders being [0; 100].

Due to self-healing routine always running in between two tasks and the user input task

sleeping directly after getting input, an attacker does not succeed with this attack. The

adversary would have to attack the input function of task3 directly to prevent the sleep.

My source code can be found online1. However, I emphasise that it is a proof-of-concept

implementation and is not entirely secure. Firstly, I omitted common security features

like the MMU to speed up development. Secondly, FreeRTOS made some insecure design

decisions by running all tasks at kernel privilege level and by only performing memory

management in the idle thread risking Denial of Service (DoS) attacks.

5.2.3 Performance Analysis of TrustZone

I conducted a performance analysis of the TrustZone world switch on a FreeScale i.MX53

Quick Start Board with 1 GB DDR3 SDRAM running a 1 GHz ARM Cortex-A8. For

this, the time of 1531 task switches was measured on a system running four tasks and

FreeRTOS. The measurements start from the timer interrupt until restoring the context

of the next task. To measure the time accurately, the program read the CCNT-register

which stores the cycle count. The overhead of the timing function calls was 0.9 µs, allowing

an accuracy of microseconds. This experiment was executed twice, once with and once

without TrustZone. The average overhead of a TrustZone task switch was 29 µs. Figure 5.7

presents the overhead as box-and-whisker diagram and as absolute values.

A TrustZone task switch in comparison to a non-TrustZone one is equal to 3.6 malloc

system calls (average time for malloc on the system: 8 µs) overhead; in other words

memory management overhead is comparable to TrustZone.
1https://github.com/mdenzel/self-healing_FreeRTOS

62

https://github.com/mdenzel/self-healing_FreeRTOS


(a) Box-and-Whisker Diagram

Value Without
TrustZone With TrustZone

Maximum (97± 1)µs (126± 1)µs
75%-Quantile (54± 1)µs (84± 1)µs
Mean (16± 1)µs (45± 1)µs
25%-Quantile (14± 1)µs (42± 1)µs
Minimum (11± 1)µs (39± 1)µs

(b) Data Values of the Box-and-Whisker Diagram

Figure 5.7: Performance analysis of time for task switches
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5.2.4 Security Analysis of TrustZone

Even though all modern ARM CPUs come with TrustZone, a lot of vendors disable it

by switching to the normal world immediately at boot. I had to order two different

development boards because there are not many boards with enabled TrustZone and

the first ordered board disabled TrustZone. Vasudevan et al. [134] confirmed this and

criticised that locked down boards prevented the open-source community from developing

applications and, thus, prevent a more widespread usage of TrustZone.

Also, TrustZone is only a framework to enable security platforms, it does not provide

a fully secure design or implementation. The ARM specification leaves secure storage,

secure boot and fuse registers, remote attestation, and trusted path to the chip vendors

(confirmed by [134, 51]). Furthermore, TZIC and a TrustZone-aware MMU are not neces-

sarily present and DMA can, if not disabled or controlled through the secure world, com-

promise security. Feske et al. [51] concluded that using TrustZone does not imply security.

It is difficult to produce platform independent code since the ARM specification is too

open leading to various chip configurations with varying security. While this also enables

vendors to update security, cost-effective production prevents re-developing many security

features.

I welcome the idea of TrustZone as a security enhancement, but digital rights man-

agement introduced a few concepts hindering security, e.g. TrustZone is entirely hidden

from the normal world appearing as if the CPU does not support TrustZone. Accessing

the NS bit even results in a non-intuitive CPU exception jeopardising system stability for

Digital Rights Management.

Lastly, mobile phone vendors hardly update their software leading to weaker systems.

TrustZone, and its security, depend on updated software and firmware. Bugs can quickly

escalate into exploits like the TrustZone exploit of Shen [116] or Google Project Zero [15].

ARM could vastly enhance security by specifying the gaps in the documentation: nec-

essary hardware parts, secure storage, secure boot and fuse registers, remote attestation,

trusted path, and update framework.
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5.3 Discussion

5.3.1 Attacks

This section examines how the architecture behaves against different attack classes.

• Attacks changing invariants: Let us assume an adversary compromises a PLC but

changes some invariants – e.g. he overflows a buffer and inserts a new task but the

policy states that there are only N tasks. The system level self-healing immediately

resets the tasks, removing the malicious task. This type of defence was demonstrated

in a simple version by the buffer overflow above (Section 5.2.2).

• Stealthy attacks (APTs, backdoors, rootkits, trojans etc.): Suppose an attacker

manages to deploy a stealthy rootkit on a PLC without being detected. He can

now manipulate the PLC as he likes, but the other two PLCs continue to function

correctly. If the rogue PLC affects outputs, its reset-circuit will notice and reinstall

the PLC, thus removing the rootkit. If the rootkit resides in the normal world, it

will be removed even earlier by the system level self-healing.

• Firmware/hardware attacks: Suppose the attacker deploys a firmware or hardware

rootkit in a PLC or in a reset-circuit, then software-based self-healing becomes

impossible. However, if the other two PLCs remain operational, then manipulations

of outputs are still detected and outvoted by those other two PLCs (through the 2-

out-of-3 circuit).

• Attacks on network protocol flaws (e.g. Modbus): Since all PLCs presumably have

to support the same protocols, exploits targeting the protocol itself (in contrast to

its implementation) are not prevented. To defend against these attacks, one has to

modify the protocol standard which is beyond the scope.

• Attacks on the policy/administrator account: The system relies on the information

in the (cryptographically signed) policy. If the account is compromised, the ad-
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versary can change the policy freely. To prevent this, trusted input techniques as

in [145] or Chapter 4 should be utilised.

• Attacks on the netboot image and signing key: All netboot images must be crypto-

graphically signed to enable the reset-circuits to verify the image. To avoid attacks,

the images are stored at two different locations in the network (see Fig. 5.1) and it

is recommended to split the signing key of the images into multiple shares with e.g.

mRSA. If, despite these measurements, the adversary gains control over images or

signing key, all PLCs are compromised.

• DoS: Since the attacker was deliberately granted full control over some devices, he

already has the ability to turn these devices off, but this work aims at not enabling

further DoS attacks.

5.3.2 Diversity of Programmable Logic Controllers

It is crucial for the illustrated architecture that PLCs are diverse in their software as

well as hardware. To achieve this, I suggest using different reset-chips and different CPU

architectures, e.g. ARM TrustZone, Intel SGX, and a PowerPC with a TPM chip. Since

the architectures are different, an adversary has to craft different exploits, however, he

can still use the same exploit idea to attack the software of all PLCs.

N-version programming was shown to be ineffective against malicious attacks [24, 112]

as people make correlated mistakes. Hence, I suggest to use a form of artificial N-variant

systems where N systems are crafted such that they are distinct by design [142]. Cox et

al. [33] used address space partitioning and instruction set tagging to create different pro-

grams that cannot be compromised with the same exploit. Salamat et al. [111] proposed

to invert the stack and demonstrated this by a special compiler. Another compiler [84]

splits stack into data and control structures.

By utilising N-variant system techniques, we can artificially create distinct software,

that cannot be compromised with the same exploit idea – e.g. a RTOS with the stack
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growing downwards, one with the stack growing upwards, and one with separate data and

control stack cannot all be exploited with the same stack-based attack. If each netboot

image is additionally diverse from the last one, similar to Sousa et al. [121], an attacker

would need to learn the properties of the new image to compromise it. That means it is

considerably harder for an attacker to compromise two PLCs at the same time.

5.3.3 Implications

The practical implications of the proposed architecture for the real world are that an

attacker would have to find twice the amount of vulnerabilities for an ICS since he has to

compromise two different devices (e.g. an ARMTrustZone and an Intel SGX PLC). Hence,

the illustrated system would double the cost for the attacker but not for the defender.

Considering that many companies already have redundant PLCs, the hardware cost for

the company would roughly stay the same. Diverse software versions can be created

similar to the artificial N-variant systems. As the special compilers used to generate

these variants [33, 111] demonstrate, software can be automatically diversified except for

architecture dependent code. In the proof-of-concept implementation based on FreeRTOS,

7.8% is platform specific code (780 lines Assembly; 9956 lines C-code)1.

Another advantage is that network-based self-healing prevents destroying PLCs through

software updates. If a PLC is partially flashed with an image and crashes, it would au-

tomatically reboot, triggering the netboot chip to reinstall the image. Thus, patching of

the PLCs can now be done conveniently by central image servers with signed images.

5.3.4 Security of Real-Time Operating Systems

RTOSes are time-bound operating system ensuring consistency of the execution. It is

crucial that these systems minimise delays and have a high throughput. They come with

either soft or hard real-time constraints. While soft real-time operating systems usually
1measured with the CLOC Linux tool
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meet a deadline, hard real-time operating systems must be deterministic [82].

Unfortunately, security solutions like ARM TrustZone or the TPM did not pick up this

requirement and have varying execution times. However, I argue that also these ICSes

should be secured on the device itself otherwise defence mechanisms can be skipped as

e.g. Stuxnet demonstrated.

Although most security solutions like an anti-virus or IDS impose an intolerable delay

on RTOSes, there are other techniques which can be constructed to behave determinis-

tically. The proposed detection mechanism based on invariants has a fixed runtime and

also a state-less firewall is deterministic. This shows that some security solutions are ap-

plicable or could be developed.

5.3.4.1 Operating System Architectures for Trusted Execution Environments

To evaluate operating system kernels objectively, this section briefly introduces the four

general operating system architectures existing nowadays:

1. Monolithic Kernels: Windows, Mac OS, and Linux are all monoliths. They incorpo-

rate a large amount of features and drivers into one kernel. These operating systems

are convenient from a user perspective but they perform slower than specialised op-

erating systems. An example of a monolithic RTOS is VxWorks. However, with

their large TCB, monoliths are difficult to secure and expose a wide attack surface.

2. Microkernel: The most popular operating system architecture for RTOSes are mi-

crokernels. These operating systems are small and only provide memory manage-

ment, scheduling, and inter process communication. Examples for microkernels are

FreeRTOS1, QNX2, and Genode [60, 50].

Due to their small size, microkernels can be better secured than monoliths and are

even in the scope of verification (e.g. the seL4 microkernel3).
1www.freertos.org
2www.qnx.com
3https://www.sel4.systems/
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3. Exokernel/Virtualising kernel: Exokernels focus exclusively on multiplexing and pro-

tecting the hardware. Since applications have to provide all necessary features, user-

space libraries are regularly used for this purpose. A special type of exokernel is a

virtualising kernel which allows multiple operating systems to run on the same ma-

chine. The Exokernel1 and Nemesis2 are two exokernel operating systems. Although

it is labelled as microkernel, I classify Qubes [109] as exokernel or more specifically

as virtualising kernel, because it uses a hypervisor to run multiple operating systems.

With isolation being a central feature of virtualisation, these kernels already offer one

security guarantee by design. But a problem for RTOS is the reduced performance.

4. Library operating system/Unikernel: The fourth operating systems concept are li-

brary operating systems where functionalities are provided via libraries instead of

providing a full kernel. Programs are compiled together with the libraries into a so-

called unikernel – a program that can run on the hardware. E.g. MirageOS3 is a

library operating system.

While MirageOS demonstrates that also unikernels are suitable for isolation, hard-

ware features like MMU have to be initialised securely. MirageOS realises this

through a hypervisor which belongs to the domain of virtualising kernels.

All in all, microkernels and exokernels seem to be more suitable for secure operating

systems. Therefore, I chose a microkernel as basis for my proof-of-concept implementation.

5.3.4.2 Analysis of FreeRTOS

Even though microkernels seemed promising at the beginning, I found a couple of weak-

nesses in FreeRTOS. It is a microkernel with flat privileges and without memory protec-

tion sacrificing security for extra performance. However, I doubt this trade is beneficial

for safety or security. During the development of the self-healing operating system, I e.g.
1https://pdos.csail.mit.edu/archive/exo/
2https://www.cl.cam.ac.uk/research/srg/netos/projects/archive/nemesis/
3https://mirage.io/
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realised that the idle thread of FreeRTOS is freeing memory. That means if any thread

hangs, the idle thread starves and memory will no longer be freed. This leads to a system

crash at some point – especially considering embedded systems with limited resources –

and subverts availability and safety. This permits an adversary to execute simple DoS

attacks. Additionally, forgoing basic security features like privilege hierarchy, MMU, Ad-

dress Space Layout Randomisation, etc. weakens all devices running FreeRTOS.

Apparently, these are not only concepts of FreeRTOS but RTOSes in general since also

VxWorks runs programs as kernel tasks on the highest privilege level without standard

memory protection (see Zhu et al. [146]).

The presented performance measurements (Section 5.2.3) indicate that memory man-

agement overhead is comparable to TrustZone. Thus, I recommend to built at least de-

terministic security features into RTOSes, particularly in face of attacks like Stuxnet.

5.4 Related Work and Comparison

5.4.1 N-version System Solutions

Wang et al. [141] proposed an N-version system for distributed services using redundancy

and diversity. Their architecture consists of four stages: (1) a cluster of proxies accepts

client requests and forwards them to (2) the servers handling the request. The reply

is sent to the so-called (3) acceptance monitors which verify the replies. If there are

conflicts, the replies are forwarded to (4) the ballot monitors. A voting system is applied

to determine which reply is sent back to the client. The proxy servers are synchronised

using Javaspaces and a reconfiguration stub is included to manage systems. However,

the architecture is not fully intrusion-tolerant since software (Javaspaces) and hardware

are not diverse. With diversity of the devices, this technique could develop into a fully

intrusion-tolerant approach.

Totel et al. [129] proposed a similar system. They replaced the acceptance monitors

70



with an IDS and diversified the servers. Their architecture can tolerate one intrusion on

the servers. Since they only used one proxy and IDS, the architecture is still not entirely

intrusion-tolerant. Proxy and IDS are single points-of-failure.

5.4.2 Self-healing Systems

The field of self-healing is less well-established, especially considering security. Ghosh et

al. [61] gave a detailed overview of existing techniques. The closest ones to the technique

of this chapter are Finite State Automaton (FSA) approaches [130, 71] which model the

systems as an FSA and rejuvenate it when invalid states are reached.

Tu [130] suggested a new hardware component, embryonic arrays, consisting of several

chips working together. If one chip (cell) fails, another one can take over. The model

is biologically inspired by the human immune system and uses a FSA to model states,

tolerance conditions, and the generation of tolerance conditions. With this, the chip array

should detect failed cells and self-heal automatically. However, the paper did not specify

details how a whole system shall be translated into a FSA.

More practically, Hong et al. [71] suggested that the FSA state of a computer can

be modelled by the free memory. The authors sample data from sensors (i.e. free mem-

ory) and rejuvenated the system based on the memory status. If a certain threshold was

reached, the service was restarted. After continuous violations, a system restart was car-

ried out. Hong et al. demonstrated their approach with a proof-of-concept implementa-

tion which they tested by inserting artificial memory leaks into an Apache web server.

The self-healing technique of this thesis based on invariants is more efficient than FSA

as it does not actively keep track of the state. Since invariants can be declared as regular

expressions and every FSA is translatable into a regular expression [95], the technique is

as representative as FSA.
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5.4.3 Intrusion Tolerance

Two systems are similar to the proposed architecture of this chapter:

• Bessani et al. [16] use proactive-reactive rejuvenation to restore intrusion-tolerant

Crutial Information Switches (a firewall device) throughout the network. The sys-

tem consists of several such switches which are (1) reinstalled proactively every few

time-frames and (2) recovered reactively if faults or intrusions are detected. It is an

example of a hybrid distributed system [138].

While their system targets the firewall in front of critical devices like PLCs, the

approach of this research is aimed at PLCs directly. Additionally, the wormhole

devices of Bessani et al. storing the cryptographic key are single points-of-failure.

The authors assumed that the wormhole subsystem cannot be corrupted.

• Platania et al. [107] proposed a rejuvenation architecture similar to the one of this

chapter. Instead of self-healing upon detected misbehaviour, they proactively reju-

venate PLCs periodically – each on its own to ensure availability of the whole system.

While the rejuvenation device is separated by air-gap from the rest of the network,

it is still a single point-of-failure which could be exploited with e.g. compromised

USB sticks.

Periodic system resets can defend against attacks before visible effects occur – inde-

pendently of any detection algorithm – however, they impose an overhead on the system

even though the system is mostly in a valid state. In contrast to Bessani et al. and Plata-

nia et al., the approach of this work removes single points-of-failure and keeps the system

running as long as possible through system level reactive measurements making it more

applicable to scenarios where availability is a major concern.

The differences are design decisions slightly shifting the target of the approach. Bessani

et al. concentrated on firewalls and Platania et al. focused on robust ICSes whereas

malware tolerance strengthens high availability ICSes.
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5.5 Summary

This chapter presented a malware-tolerant Industrial Control System architecture with-

out single points-of-failure at critical intersection points. To achieve this, it relies on di-

verse, redundant PLCs and a 2-out-of-3 circuit. The infrastructure can push an attacker

out of any single PLC using its offline self-healing abilities on the network level. By also

employing online self-healing at system level, high availability is maintained during basic

failures or simple attacks. ProVerif was utilised to prove the claims and the self-healing

capabilities were implemented as proof-of-concept on top of FreeRTOS and ARM Trust-

Zone. Proofs as well as RTOS implementation are open-source.

In this chapter, we have seen how malware tolerance can be applied in a specialised

scenario, ICSes, where redundancy is already in place. In contrast to Chapter 4 which only

considered one computer, this chapter demonstrated how to strengthen a small network.
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CHAPTER 6

MALWARE-TOLERANT MESH NETWORKS

From the specialised network of an ICS, we proceed with networks in general. This chapter

presents a malware-tolerant mesh network and also analyses this approach in regard to

other types of networks (Section 6.3.2).

Recently, smart-homes and IoT devices gain popularity through e.g. Google’s Nest2,

Samsung SmartThings3, Philips Hue4, and Amazon Echo5. These smart-homes increas-

ingly employ mesh routing, a technique where every device can forward messages. Google

WiFi6 routers already form mesh networks for performance reasons and to support non-

uniformly shaped network areas (like a long stretched, narrow flat).

Mesh networks were originally used in isolated settings, e.g. by rescue teams in remote

areas, and thus the focus was on reliability and safety. Nowadays, these networks are

more and more applied in consumer scenarios like smart-home networks, wireless ad-

hoc networks, vehicular ad-hoc networks, and wireless sensor networks. However, with

features and time-to-market influencing the strategy of the IoT industry, devices often

lack security features. Various forms of attacks like black hole attacks, DoS, routing table

overflows, and impersonation exist [72]. As mesh networks are usually flat, compromised

devices immediately supply an adversary with access to the entire network. This is in
2https://nest.com/uk/about/
3http://www.samsung.com/uk/smartthings/
4http://www2.meethue.com/
5https://www.amazon.co.uk/Amazon-SK705DI-Echo-Black/dp/B01GAGVIE4
6https://madeby.google.com/wifi/
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particular of concern when taking node capture attacks into account, where the adversary

hijacks a device in wide area networks (e.g. a network of weather stations).

While previous research already proposed self-healing techniques for mesh networks [41,

18], these approaches rely on a single point-of-failure – usually a trusted base station –

which could be attacked by an adversary to still successfully compromise the architecture.

The aim of malware tolerance is to ensure that most of the network still operates

securely when parts of it are entirely controlled by an adversary and for the attack to be

contained and limited from spreading further. There shall be no ultimate authority with

access to everything – malware tolerance.

Contributions:

1. I present the design of a malware-tolerant mesh network that isolates devices into

groups. Groups are able to communicate with each other via a special bridge group

which can enforce security properties and filtering like a firewall. The network also

applies automatic containment based on voting to identify and quarantine threats,

and is in this regard self-managing.

2. To prove the network architecture, the protocol verifier ProVerif is utilised similarly

to previous chapters. The proofs can be found online1.

6.1 Overview

Let us consider a smart-home setting with smart light bulbs, smart fridge, smart door

locks, entertainment zone, tablets, phones, laptops, etc. (see Fig. 6.2a). The WiFi of the

gateway (the router) does not reach all devices (e.g. due to the long stretched layout of

the house and interference) and a flat mesh network similar to Google WiFi is used: All

devices route packets. While the laptops and PCs in the network employ a firewall and an

anti-virus, light bulbs, fridge, and so on lack these defences and are easier to compromise.

Thus, an attacker might get access to a light bulb and start infecting the network.
1https://github.com/mdenzel/malware-tolerant_mesh_network_proofs
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To protect the other devices from attacks (e.g. the data on the laptop), I suggest to

(1) isolate different device types. I propose to set up a group for the light bulbs, one for

the entertainment devices, one for the work devices, etc. This already limits the adversary

to the group of the compromised device.

If an old light bulb is compromised and starts attacking the newer ones, (2) the attack

should be automatically contained when this behaviour is detected. All devices should be

incorporated in the detection. This is achieved by voting against dishonest devices.

Lastly, there should also be (3) no single point-of-failure (malware tolerance) because

this would only shift the target. E.g. if we used the PC to set up the entire network, the

adversary would only have to compromise the PC to succeed. Figure 6.1 displays a sketch

of a network architecture with isolation and automatic containment.

6.1.1 Proposed Architecture

The proposed network architecture consists of two virtual types of devices: non-privileged

devices and privileged “bridge” devices. Non-privileged devices are clustered into groups

with every group having one symmetric group key – like a standalone WiFi network. All

messages are encrypted (as it is also common nowadays in WiFi networks) and devices

can only communicate with devices in their group. To enable groups to talk to each other,

a small amount of devices of each group (≥ 2) is promoted to bridge devices.

These bridges have two tasks:

• First, they enable communication between the device groups. A bridge device of one

group and a bridge device of another group can re-encrypt and forward messages

between those two groups. Filtering, similar to a firewall, works in a distributed

fashion, namely at bridges.

• Second, bridges certify keys of non-privileged devices. For this, bridges are divided

into two subgroups: bridge group A and B, each of which has an asymmetric key.

A key of a non-privileged device is valid, if it was certified by both bridge groups A

and B (i.e. by at least two different bridge devices).
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(a) Attacks of a compromised light bulb:
the light bulb in red tries to attack the
surrounding devices (other light bulbs
and the tablet). While it can reach the
other light bulbs, the tablet is in another

group and access is prevented.

(b) Vote to exclude: The attacked
devices (also the tablet if it detected the
attack) inform all bridge devices about
the attack and vote to exclude the

compromised light bulb.

(c) Isolation in separate group: The
bridge devices react to the attack and

isolate the particular light bulb in a new,
separate group. Afterwards the malicious
light bulb can only make requests to the

bridge devices (if one allows this).

Figure 6.1: Sketch of a network architecture with isolation: Devices are clustered into
separate groups which are isolated from each other through a centralised group consisting
of several “Bridge” devices. Communication between the groups and management of
the network is handled by these bridges. The diagram was inspired by drawings of the
microkernel operating system Genode [60] (the original pictures are in Appendix A.1).
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Through this, a virtual overlay over the geographical layout of the network was created.

An example is shown in Fig. 6.2 where the network is divided into three groups: light bulbs

(circles), kitchen devices (triangles), and entertainment devices (squares). Non-privileged

group devices are black shapes while bridge devices are white with their subgroup (A or B)

written inside the shape. Connections are shown as black lines and as blue dotted circle

for the router. Not every device is connected to any other one because walls and electronic

currents limit connectivity. E.g. the router cannot directly reach the HiFi stereo system.

Fig. 6.2 (b) displays the virtual layout of this network with cryptographic keys.

In order to react to attacks, the proposed architecture should be dynamic. Any device

can vote to promote another device in its group to a bridge device and can vote to exclude

any device in any group from the network. I do not restrict how to detect malicious

behaviour; honest devices could e.g. notice ongoing DoS attacks or a malicious device

which is dropping packages. An IDS, anti-virus, or honeypot could identify malware

delivered from a certain source. In these cases the honest device would vote to exclude

that particular dishonest device.

If there are a certain number of votes against a device (minimum two to avoid attacks),

the distrusted device is isolated by placing it into a separate new group and revoking its

permission to join any other group (see Fig. 6.1). If the isolated device was a bridge,

it is also removed from the bridges (the keys evolve) and a new bridge is elected. To

forbid quarantined devices to promote themselves, at least two group votes are needed to

promote a device and devices are only allowed to vote to promote in their group (note that

vote to exclude is possible against every device). Thus, a dynamic network architecture

was realised by applying a moving target defence.

A potential adversary compromising one device in the network is, therefore, limited

to the group of the device. He would have to compromise multiple bridge devices at the

same time, also those of other groups which the attacker cannot access (yet). Additionally,

bridge devices only expose a reduced interface.
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(a) Geographic network layout showing actual data links

(b) Virtual network layout showing the links in each of the groups and the
cryptographic keys. Additional to the displayed keys, each device has its own

asymmetric key pair (identity key).

Figure 6.2: Example mesh network: The diagrams show the same mesh network in its
geographic and virtual network layout.
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The outlined network architecture focuses on access control, similar to a WiFi network

where the router controls which devices can join the network and who can communicate

with whom. The cryptography applied in the approach is mainly to create and supply

the architecture, not to secure the requests themselves as this is already implemented by

application protocols such as HTTPS. However, the architecture provides every device

with an asymmetric key pair which could be used to set up a symmetric key via a Diffie-

Hellman Key Exchange, if the application protocol does not already supply this.

The initial malware tolerance definition only states that resources are protected. For

networks, the definition needs to be adjusted to incorporate more details about networks:

Malware tolerance (for networks) distributes trust over several independent
components in a way that an individual component infected with malware can-
not gain access (spreading), deny access, or control access (MITM) of devices
on the network it did not control before. No part of the network is assumed
invulnerable to attacks.

To achieve this self-managing, malware-tolerant network architecture, six operations are

necessary. At the beginning, the network has to be bootstrapped (1. Setup). Non-

privileged devices can sign up and join a group (2. Get ticket / Join group), send messages

to another group (3. Send), and vote to exclude malicious devices from the group (4.

Vote to exclude / Leave group). Inside a group symmetric encryption is used to send

messages and, hence, another protocol is not required. For bridges we have to define two

operations, they can be promoted (5. Vote to promote / Bridge join) or excluded from

the bridge group (6. Vote to exclude / Bridge leave).

The next sections introduce the underlying cryptography as well as the six operations.

6.1.2 Cryptography

The architecture utilises four different types of keys as already shown in Fig. 6.2 (b):

1. Each device has its own asymmetric key pair – the identity key (e.g. [kpub
fridge, k

priv
fridge]).
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2. Each device is part of one group and has this particular group key (e.g. the light

bulb key k◦).

3. Bridge devices are additionally part of the bridge group with the symmetric bridge

key kBridge.

4. All bridge devices of one group have exactly one of two private keys, kA or kB. E.g.

both bridge devices of the kitchen group (Fig. 6.2 (b)) have key kA, but not key kB.

The combination of kA and kB is used to certify the identity key of each device. For

this, the Intrusion Resilient Signature (IRS) scheme of Itkis et al. [75, 74] is used.

A second similar cryptosystem, Intrusion Resilient Encryption (IRE), was proposed

by Dodis et al. [44, 45]

The basis of IRS (and IRE) is a static public key and an evolving private key. In IRS,

messages can be verified with the public key and the time period in which the signature

was created. The private key material consists of the evolving private key and an evolving

base secret that is kept separate at a different device. To evolve the private key, a

contribution of the base secret is necessary (see Fig. 6.3). There are two ways to modify

the private key, called update and refresh by Itkis et al. An update changes to the next

time period while a refresh only changes the private secrets and leaves public key and

time period unaffected. If an attacker compromised the secret key, he can read messages

of the corresponding time period but does not get further keys. The attacker would have

to compromise both the base and the secret key, at the same time in order to succeed.

For further reading, the interested reader is referred to the original papers [75, 74, 44, 45]

and a summary by Franklin [56].

The presented architecture uses two bridge IRS keys (kA and kB) who both run an

IRS scheme with the base secret being managed by the corresponding other bridges. Only

certificates signed with both keys are considered trustworthy.

IRS is limited to N = 2t time periods with t being the bit length of the time variable.

That means for a 32-bit time variable, we would have N = 232 or roughly 4 billion
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Figure 6.3: Intrusion Resilient Signatures: The scheme relies on an evolving secret key ski
and a secret si at the sender as well as a base secret bi at the base. Firstly, the base secret
b evolves and a share bx of the base secret is sent to the sender. Secondly, the sender’s
secret s evolves and s and bx form the new secret key ski+1. With the evolved secret key
ski+1, the sender can now sign the message M . The recipient verifies the signature with
the non-evolving public key pk and the time period t. Details in [75, 74, 44, 45, 56].
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time periods. Assuming the network is used 100 years this corresponds to roughly 1

time period every second. Updating the secrets likely takes longer than this, limiting

even DoS attacks. At the point where this might run out, a re-setup of the architecture

is recommended. If a DoS manages to exhaust all these time periods regardless of the

aforementioned restriction, human intervention is necessary.

This chapter abbreviates the Intrusion Resilient Signature scheme with IRS(kpriv,m).

Also, time refers to the time-periods of IRS.

6.1.3 Setup

Initially, the user selects four devices A1, A2, B1, and B2 to become bridges, each gener-

ating an asymmetric identity key-pair. Either the user sets these devices up with all the

other public keys (a simple option to establish these channels would be QR codes or a

USB stick), or the devices send the keys to each other. The second option assumes that

the network is trustworthy at the beginning or the user verifies the fingerprints of the keys.

Afterwards, A1 and B1 generate kpriv
A stored at A1 and baseA stored at B1 of IRS (see

distributed key generation of Itkis et al. [75]). Similarly, A2 and B2 generate kpriv
B at B2

and baseB at A2. A1 and A2 share their secrets with each other, i.e. kpriv
A and baseB, and

similarly do B1 and B2. This establishes the initially needed keys. Two bridge IRS keys

can support any number n ≥ 2 of non-privileged groups. For additional security, three

bridge IRS groups (A, B, and C) could be similarly set up. However, I suggest two bridge

groups for performance and usability reasons.

6.1.4 GET TICKET / JOIN Protocol

Firstly, we have to define how devices can join the network. A base of four bridge devices

was already set up, thus we can rely on them.

If the user wants to connect a new device d (e.g. a smart light bulb) to group g, he

logs in at two devices d1 and d2 (e.g. phone and PC) both different from d. Then, the
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Group g
kg

Device d
kpubd , kprivd

User via d1

kprivd1 , kprivd2
Bridge group A
kprivA , baseB

Bridge group B
kprivB , baseA

g, S(kprivd1 , g), ticketd1

pwA1 = H(kprivA ,
d1, g, time)

pwB1 = H(kprivB ,
d1, g, time)

E(kpubd1 , IRS(kprivA , d1, pwA1))

E(kpubd1 , IRS(kprivB , d1, pwB1))

pw1 =
pwA1|pwB1

User via d2

g, S(kprivd2 , g), ticketd2

pwA2 = H(kprivA ,
d2, g, time)

pwB2 = H(kprivB ,
d2, g, time)

E(kpubd2 , IRS(kprivA , d2, pwA2))

E(kpubd2 , IRS(kprivB , d2, pwB2))

pw2 =
pwA2|pwB2

USER AUTH.

User types
g, pw1|pw2 into d

pwA = pwA1|pwA2

pwB = pwB1|pwB2

E(pwA, g, k
pub
d , S(kprivd , pwA, g, k

pub
d ))

E(pwB, g, k
pub
d , S(kprivd , pwB, g, k

pub
d ))

E(pwA, k
pub
A , ticketA = ppubd , time, g, IRS(kprivA , kpubd , time, g))

E(pwB, k
pub
B , ticketB = ppubd , time, g, IRS(kprivB , kpubd , time, g))

GET TICKET

IRS refresh parametersticketA | ticketB

Group Key
Agreement: k′g

IRS refresh parameters

IRS refresh IRS refresh

JOIN IRS

msc GETTICKET / JOIN – public: time

Figure 6.4: GET TICKET / JOIN protocol: The user logs in with two devices d1 and d2 to
get a password for device d. With this password, d can request a ticket and join group g.
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user would request a new one-time password via d1 and d2 to sign up the new device d to

group g. Half of the password is displayed on d1 and the other half on d2.

The total password consists of four shares (pwA1, pwA2, pwB1, pwB2). Two of the shares

identify to one bridge group, e.g. half-password pwA = pwA1|pwA2 is needed to authenti-

cate to group A (similar for B). Each bridge IRS group generates the shares by hashing

kpriv
A or kpriv

B , the requesting device (d1 or d2), g, and the time. This way, any bridge de-

vice in the particular bridge IRS group can re-calculate the shares.

To avoid attacks of d1 or d2, the half-passwords are sent interleaved, e.g. d1 would

receive pw1 = pwA1|pwB1 and d2 receives pw2 = pwA2|pwB2. As a result,

• only the user has the full password;

• no device in the entire network has the full password (not even the bridges);

• only A and B have the half-password needed for authentication; and

• d1 has shares of the password which, alone, are worthless (similar d2). Thus, neither

d1 nor d2 can sign up.

The two devices d1 and d2 each show their shares to the user who then has the full

password. The user concatenates all shares (displayed to the user as two parts) and types

the full password into d. With this combined one-time password the new device d can

identify itself to both bridge IRS groups and receives a certificate for its public key kpub
d . I

named this certificate a ticket. Tickets include the time-period(s) in which they are valid

as well as the group to which d belongs (here: g). This ticket must be signed by both IRS

keys, i.e. by two different bridges, to be valid.

With the ticket, the device d can authenticate to group g and take part in a Group

Key Agreement to establish a shared symmetric key with the group. Applicable are e.g.

Group Diffie-Hellman, Tree-Based Group Diffie-Hellman, Burmester-Desmedt Group Key

Agreement Protocol, and Skinny Tree Key Agreement Protocol. Centralised Key Distri-

bution relies on a trusted central system and can therefore not be used [5]. I suggest us-
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ing the system of Burmester-Desmedt as it is stateless but the other Group Key Agree-

ment protocols are also possible.

The full GET TICKET / JOIN protocol is also shown in Fig. 6.4. It signs before

encrypting because d has to prove that its key kpub
d is connected to pwA or pwB, and that

d is in possession of kpriv
d . Since the one-time password identifies the receiver as well,

attacks are prevented through a naming repair [37].

6.1.5 SEND Protocol

Group device d2

k2

Bridge group B

kBridge, k2

Bridge group A

kBridge, k4
Group device d4

k4

E(k2, c) E(kBridge, c) E(k4, c)

msc SEND

Figure 6.5: SEND protocol

Each group device can communicate via the group key with devices in its group.

However, there might be exceptional cases where two devices have to communicate over

two groups, e.g. the user wants to check cooking recipes on a tablet (entertainment group)

for the content of the fridge (kitchen group).

Sending messages to another group requires bridges to re-encrypt the packet from one

group key (k2) to another group key (k4). The sending device d2 (e.g. the tablet) would

send the packet to a bridge of group 2 which re-encrypts the message with the bridge key

kBridge and sends it to a bridge of group 4. The second bridge re-encrypts the message

from kBridge to k4 and sends it to the recipient (e.g. the fridge). Figure 6.5 displays this

as a message sequence chart.

This re-encryption realises filtered communication between the groups. To set up a

more efficient connection after the initial SEND protocol, an application protocol (e.g.

HTTPS) could provide a session key. Alternatively, such a tunnel could be set up via the
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certified identity keys of the two devices, i.e. running an authenticated Diffie-Hellman

Key Exchange via SEND.

6.1.6 VOTE TO EXCLUDE / LEAVE Protocol

Group g

kpubd , kprivgi , ticketgi, kg

Device d
kg

Bridge group A

kprivA

Bridge group B

kprivB

ticketgi, S(k
priv
gi , exclude(kpubd ), time)

excludeA = IRS(kprivA , exclude(kpubd ), time)

excludeB = IRS(kprivB , exclude(kpubd ), time)

VOTE: i = 1, 2

IRS refresh parameters

Group Key
Agreement: k′g

IRS refresh parameters

IRS refresh IRS refresh

LEAVE IRS

msc VOTE TO EXCLUDE d / LEAVE – public: time

Figure 6.6: VOTE TO EXCLUDE / LEAVE protocol

If devices are misbehaving, bridges must be able to isolate these devices. To force

misbehaving devices out of a group, the group key is re-established – so-called leave event

in Group Key Agreement protocols.

Misbehaving devices can be identified by any other device which then casts a vote to

quarantine the misbehaving device(s) to all bridges. If a certain threshold of votes is re-

ceived (Fig. 6.6 indicates this by i votes), the misbehaving device is forced to leave the

group and the user is informed about the attack. Devices without group are quarantined

and cannot communicate with any other device. This way, malware cannot spread fur-

ther and is automatically contained. Optionally, one could allow quarantined devices to

communicate with bridge devices in order to access the internet.
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6.1.7 VOTE TO PROMOTE / BRIDGE JOIN Protocol

Group g

kprivgi

Device d
kprivd

Bridge group A

kprivA , baseB
Bridge group B

kprivB , baseA

ticketgi, S(k
priv
gi , promote(ticketd), time)

promoteA = IRS(kprivA , promote(kpubd ), time)

promoteB = IRS(kprivB , promote(kpubd ), time)

PROMOTE: i = 1, 2

promoteA | promoteB

IRS update parameters

IRS update parameters

IRS update
(new kprivA )

IRS update
(new kprivB )

E(kpubd , kprivA , time2, baseB)

Group Key Agreement: k′Bridge

IRS(kprivA , time2) | IRS(kprivB , time2)

BRIDGE JOIN

msc VOTE TO PROMOTE / BRIDGE JOIN – public: kpubd , time

Figure 6.7: VOTE TO PROMOTE / BRIDGE JOIN protocol

When a group is introduced or updated, new bridge devices are necessary. The group

members directly elect these devices which are picked depending on their resources and

trustworthiness. This work proposes that every device sends a signed message with a

device for promotion but this can be replaced by any other voting algorithm tolerating

malicious nodes. This promote message is signed with the private key of the voter and

sent to both bridge IRS groups. Bridge devices can verify the signature and record the

vote. Devices lacking the capabilities (e.g. battery) to become a bridge, can opt-out by

adding this to their vote. Self-election is possible but at least two votes are necessary to

elect a bridge. At the end of the election, both bridge groups issue a promotion ticket and

send it to the promoted device to verify that it agrees to being elected. Promotion tickets
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must expire in the next time period to avoid devices joining twice. The bridge group

which the new device should join (A or B, not both), must be fixed and reproducible. I

suggest to use a hash like H(kpub
d , time, kBridge).

Promoted devices can join the bridge group similar to the JOIN operation. The new

device d sends the promotion ticket to the bridge group and participates in a Group Key

Agreement to get the bridge key kBridge. The difference to JOIN is that bridge devices also

share the asymmetric key and base secret of IRS in order to certify other keys in the GET

TICKET protocol. This key material needs to be updated and shared with the new bridge

device; i.e. to join bridge group A, d gets kpriv
A and baseB (see Fig. 6.7). Optionally, this

message could be signed with the key of the device sharing the secrets kpriv
A1 and include

kpub
d as naming repair (see also [37]). This detects attacks of bridge device A1.

6.1.8 VOTE TO EXCLUDE / BRIDGE LEAVE Protocol

Group g Device d
kprivA , kBridge

Bridge group A

kprivA , kBridge

Bridge group B

kprivB , kBridge

as before (see Fig. 6.6)

VOTE

IRS update parameters

IRS update parameters

IRS update
(new kpriv

′

A )
IRS update
(new kpriv

′

B )

Group Key Agreement: k′BridgeIRS(kprivA , time2) | IRS(kprivB , time2)

BRIDGE LEAVE

msc VOTE TO EXCLUDE d / BRIDGE LEAVE – public: time

Figure 6.8: VOTE TO EXCLUDE / BRIDGE LEAVE protocol

Analogous to VOTE TO EXCLUDE / LEAVE, devices can also vote against a bridge

device. Whereas the vote phase works exactly as before (see Fig. 6.6), BRIDGE LEAVE
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requires that bridge secrets (for bridge group A: kpriv
A and baseB) and bridge group key

kBridge are also updated. Additionally, a new bridge needs to be promoted. Fig. 6.8 shows

the details of BRIDGE LEAVE. Depending on the used Group Key Agreement, it might

be more efficient to run a Group Key Agreement leave protocol first and use the renewed

bridge group key to run IRS update.

6.2 Security Analysis

As in previous chapters, the mesh architecture is evaluated using ProVerif and the proof

scripts are available online1. Each proof one by one assumes every combination of devices

compromised and analyses four properties:

1. if the main purpose of the protocol is guaranteed,

2. if a second group cannot interfere with the protocol,

3. if at least one bridge IRS key is secure,

4. if the proof script ran through.

Property 3 and 4 are the same for all proofs. They are introduced first and the other

properties are explained below for each protocol.

Property 3: Since there are two IRS bridge groups, it is sufficient when one of them

stays secure. With bridge devices changing from time to time, the compromised bridge

group can recover from the attack. This is impossible if both IRS groups are compromised

at the same time. Thus, the proofs test for each protocol if the confidentiality of at least

one of the secret bridge keys is guaranteed.

Property 4: ProVerif does not indicate whether a proof script ran entirely through or

aborted early. To test that the proof finished, it is common to leak an artificial secret at
1https://github.com/mdenzel/malware-tolerant_mesh_network_proofs
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the end of the protocol. If the attacker is in possession of this secret, one knows that the

proof script reached the end of the protocol. This was tested as Property 4.

The protocol specific queries are as follows:

GET TICKET / JOIN proves that (1) authentication via the user and the two devices

is correct, and that (2) only the right group can be joined with a ticket. Table 6.1 shows

the results of the proofs with d1 and d2 being the two devices. Important are cases 1 to 6

where the attacker controls up to one device. The protocol is even much stronger than

this requirement and only fails if either both bridge IRS groups A and B, or d1 and d2

are compromised.

No
Compromised

Devices
Authentica-

tion
Group 2
join

kA/kB
secure

End
reached

1 None 3 3 3 3
2 d 3 3 3 3
3 d1 3 3 3 3
4 d2 3 3 3 3
5 A 3 3 3 3
6 B 3 3 3 3
7 d,A 3 3 3 3
8 d,B 3 3 3 3
9 d, d1 3 3 3 3
10 d1, A 3 3 3 3
11 d1, B 3 3 3 3
12 d1, d2 3 3
13 A,B 3
14 d, d1, A 3 3 3 3
15 d, d2, A 3 3 3 3
16 d,A,B 3
17 d, d1, d2 3 3
18 d1, d2, A 3 3
19 d1, A,B 3
20 All 3

Table 6.1: ProVerif results: GET TICKET / JOIN

For VOTE TO EXCLUDE / LEAVE, the proofs verify that (1) a minimum of two

votes is needed and that (2) the exclusion only takes place in the correct group. This is

true for all cases apart from the ones where both bridge IRS groups are compromised (see

Table 6.2).
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No
Compromised

Devices
Vote

Group 2

leave

kA/kB

secure

End

reached

1 None 3 3 3 3

2 d 3 3 3 3

3 A 3 3 3 3

4 B 3 3 3 3

5 d,A 3 3 3 3

6 d,B 3 3 3 3

7 A,B 3

8 All 3

Table 6.2: ProVerif results: VOTE TO EXCLUDE / LEAVE

The SEND protocol is trivial and therefore no proof was formulated in ProVerif. If

device d2 only accepts messages signed with k2 and device d4 is not in possession of the

key, isolation is achieved.

VOTE TO PROMOTE / BRIDGE JOIN proves that (1) one honest device voted for

d and at least two promote messages were received. All devices are allowed to vote, i.e.

also potentially malicious devices cast votes. However, there must be at least one honest

device agreeing in order to prove the absence of attacks. Furthermore, the second property

tests if (2) devices of another group cannot promote devices of the original group. The

protocol only holds for the basic requirement (one compromised device) as displayed in

Table 6.3. The reason is that a compromised A can always leak its secrets to d (case 5)

and also a compromised d correctly receives the secrets of A at the end of the protocol.

It can then leak them to compromised B (case 6). However, malware tolerance is still

guaranteed because the protocol holds for one compromised device (case 1 to 4).
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No
Compromised

Devices
Promote

Group 2

vote

kA/kB

secure

End

reached

1 None 3 3 3 3

2 d 3 3 3 3

3 A 3 3 3 3

4 B 3 3 3 3

5 d,A 3 3 3

6 d,B 3 3

7 A,B 3

8 All 3

Table 6.3: ProVerif results: VOTE TO PROMOTE / BRIDGE JOIN

Since Group Key Agreement and IRS cryptography scheme are already proven by the

original papers, VOTE TO EXCLUDE / BRIDGE LEAVE is equivalent to VOTE TO

EXCLUDE / LEAVE and, therefore, does not need additional proofs.

All in all, the mesh architecture is secure for at least one compromised device. As

expected, none of the protocols holds if both bridge IRS groups are compromised.

6.3 Discussion

The security analysis proves that the architecture is tolerant against attacks (malware-

tolerant) and can even recover from infected bridge devices. Devices are isolated in their

groups and can only communicate to another group if bridge devices allow this – similar

to a firewall. This also enables the architecture to proxy vulnerable or outdated devices

by simply moving them into an empty group. Services to the network of the isolated

device can be made available or turned off per connection.

In order to control the whole network, an attacker would have to compromise the two

bridge IRS groups A and B in the same time-period. That means for n groups, a maximum

of n compromised devices can be tolerated (one in each group) and n/2 of them can be
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bridge devices (if they are in the same IRS group). If the threshold for elections is greater

than two, even more compromised (non-privileged) devices can be tolerated. Also, votes

could be encrypted for additional security as an adversary at a central location – if such

a central location exists in the network layout – could block unwanted votes.

The presented mesh network does not automatically defend against stealthy attacks,

however, an adversary is restricted to his own group. A compromised bridge device would

give access to two groups (one group and the bridge group) but cannot interfere with other

groups. I estimate that the system will converge to a trusted state in the long run, because

as soon as any attack becomes visible the device will be automatically isolated. The

infrastructure becomes a moving target for the adversary which is harder to compromise.

By incorporating the user into the GET TICKET protocol, clone attacks are pre-

vented. Isolating the internet gateway hardens the architecture against exfiltration but

this also imposes an overhead on internet traffic.

DoS attacks targeting the cryptographic routines are unavoidable but they are easily

identified, resulting in the misbehaving device being quickly removed from the network.

6.3.1 Performance and Adoption

A major concern for all types of network is performance. The suggested inter-group com-

munication requires three symmetric encryptions until the session key is set up. Hence,

devices communicating a lot with each other should be organised in the same group,

such that connections between the groups is an exception. With the expensive operations

JOIN and LEAVE occurring seldomly – during setup, failures, and attacks – the perfor-

mance is approximately similar to symmetric key encryption. Adding devices to multi-

ple groups would improve performance, but bypasses the bridge devices and undermines

the distributed firewall. Non-privileged devices only need public key cryptography during

setup and for voting. However, resource-constrained devices could rely on other devices

to a limited degree. Bridges utilise public key cryptography (the IRS scheme) to add or

remove devices but only one bridge of each IRS group needs to answer requests. Hence,

94



these operations can be distributed.

Another concern is that one bridge device of group A and B has to stay online.

Since fridge, smartphone, router, smart-meters, and smart thermostats are already online

around-the-clock, this is less of an issue when smart devices are widespread.

Lastly, also old devices which do not support the protocol could be assigned to a

(possibly static) group. GET TICKET could be adjusted to support legacy devices if

A and B share their one-time passwords. To the legacy device, the group g appears as

a network name and the full password is only a long password. Old devices can also

communicate with the rest of the network without supporting the protocol because the

SEND operation is transparent to the sender and receiver. While these old devices do not

gain all the benefits, they can rely on other devices to verify and run the network.

6.3.2 Other Networks

After having seen how to modify mesh networks to be malware-tolerant, this section

briefly evaluates other infrastructures.

6.3.2.1 By Topology

• Bus: Since broadcasts are cheap in bus networks and there are no single points-of-

failure, the proposed isolation overlay would be more efficient. Bridge devices could

be at any point in the network and only one of them has to answer since all others

can identify the reply.

• Star: Star networks have a single point-of-failure in the middle which is a concern for

security and reliability. Removing devices would partition the network, forcing the

network to still rely on them to forward traffic. Replicating the centre in a wireless

network would solve this issue. However, the resulting network is a hybrid network.

• Daisy chain (linear, ring): In linear networks every device is a single point-of-failure,

thus these networks should be avoided from a security perspective. Ring networks
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always provide two paths from a device to another. Here, the introduced mesh

architecture provides the additional benefit of hiding intra-group traffic from the

other groups. Outvoting a device does not partition the network immediately, but

one still needs to rely on it later to forward traffic.

• Hybrid: For hybrid networks, it depends on the specific layout if the malware-

tolerant approach is useful. As those networks are similar to mesh networks, it is

likely applicable.

6.3.2.2 By Network Types

• Home networks: These networks are usually star networks with the before men-

tioned points. But, newer developments like Google WiFi and smart-homes indi-

cate that these network move to different topologies – especially mesh networks –

for better connection.

• Business networks: Companies who split their networks into (hardware-based) zones

have isolation already in place and, thus, do not need additional protection. Flat

company networks on the other hand benefit from the introduced virtual network

isolation mechanism.

• Embedded networks: Networks like the CAN bus are a bus network and are hence

suited for the architecture.

• Internet: Even though creating a model of the infrastructure of the internet is

difficult, it is a hybrid network. Despite this, the presented mesh architecture does

not fit since some countries have a much higher number of devices than others. As

a result, choosing bridge devices would be biased and would not work efficiently.

Groups of people could also collude to vote against devices, enabling DoS. The

assumption that the attacker only controls a small amount of devices is therefore

false.
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• Overlays: Virtual overlays like peer-to-peer networks are possible in combination

with the proposed protocols but impose an additional overhead. Inside of the groups,

some overlays might make sense but I doubt this would be practical.

I estimate that the mesh architecture is beneficial for interconnected, flat networks. It

also improves networks where the virtual layout does not match the geographic one.

The architecture does not work for less connected networks with a lot of single points-

of-failure. Subdivided networks, where virtual and geographic setup are equal, should

employ isolation in hardware.

6.3.3 Improvements

Future work should focus on two areas. Firstly, the more expensive cryptography routines

for GET TICKET, BRIDGE JOIN, and BRIDGE LEAVE could be improved. I imagine

a combination of IRS and mRSA [19, 20]. In mRSA the private key is split into two

additive shares, which could be split between bridge group A and B removing the need for

two public keys. But, a new cryptographic scheme was beyond the scope of this research.

Secondly, the usability of the GET TICKET procedure needs improvements. Instead

of having a two device authentication method employing two different devices, we could

allow GET TICKET from one device (e.g. a smartphone) and store or re-compute old

one-time passwords. If a password is used twice, either the setup device (the smartphone)

or the new device (e.g. the new smart light bulb) misbehaved. At the moment, this would

require to store all one-time passwords.

6.4 Related Work and Comparison

In the literature, mesh networks are usually analysed in their applied forms, i.e. Wireless

Sensor Networks, Wireless Ad-Hoc Networks, Mobile Ad-Hoc Networks, and Vehicular

Ad-Hoc Networks.
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Diop et al. [43] deployed isolation to WSNs by utilising secret sharing and a network-

wide symmetric key. The base station uses secret sharing to set up keys for clusters. Each

head of a cluster derives the keys for the sensor nodes. Through this key infrastructure,

sensor data is delivered via the cluster heads to the base station and isolation is achieved

between the clusters. Diop et al. assume a trusted base station with an IDS, unlimited

resources, and table of all nodes in the network. The base station is a single point-of-

failure and the architecture is, thus, not malware-tolerant.

With SASHA, Bokareva et al. [18] propose a self-healing technique for sensor networks

that is inspired by the immune system. The objectives of this work are automatic fault

recognition, adaptive network monitoring, and a coordinated response. To detect faults,

the network has a definition of itself in the form of a neural network. Base station, Thymus

system, and Lymph system are single points-of-failure making the architecture vulnerable

to targeted attacks.

Posh [41] is a proactive self-healing mechanism for WSNs. The sink periodically re-

initialises sensor nodes with a new key and a secret seed. The nodes then also share some

randomness with their neighbours to make it more difficult for the adversary to derive keys

if nodes are compromised. Since the sink is in possession of all secrets, it can recompute the

keys and read the data. However, the sink is a trusted entity and a single point-of-failure.

The authors [42] later improved their architecture with a moving target defence sys-

tem. Data is moved either once or continuously, and then re-encrypted with one of three

cryptographic schemes: symmetric encryption, symmetric encryption with key evolution,

and asymmetric encryption. This way an adversary cannot easily delete data as the lo-

cation of the data is unknown. But in this architecture, the sink is assumed trustworthy

which is not malware-tolerant.

On the side of intrusion-tolerant [137] architectures, Sousa et al. [121] designed a dis-

tributed replication system built on top of critical utility infrastructural resilience infor-

mation switches, a firewall device which they previously developed. The approach uses

proactive and reactive recovery to self-heal failed replicas. The devices are rejuvenated

98



periodically and upon detection of malicious or faulty behaviour. To agree on firewall

decisions, the replicas communicate through a synchronous, trusted channel between the

replicas called wormhole. If a majority of replicas approve a network message, it is signed

with a key unknown to the replicas inside the wormhole subsystem. Local machines be-

hind the firewall can verify the signature to identify trusted packages. The approach of

Sousa et al. is similar to the one of this chapter but they deploy protection mechanisms in

front of the network, instead of distributing the firewall over the network enforced through

cryptography as we do. However, their technique applies self-healing while our malware-

tolerant mesh architecture only automatically quarantines devices. Self-healing would be

optionally possible since it is orthogonal to the infrastructure but there is likely no gen-

eral purpose solution to securely rejuvenate consumer devices of different manufacturers.

In the research field of networks, there are also Software Defined Networks (SDNs)

which are virtual overlays that can be used to guarantee security properties. However,

usually the programming interface of SDN components is a single point-of-failure making

the network vulnerable to targeted attacks. Shin et al. [117] created a robust and secure

network operating system called Rosemary. It separates the SDN controller software from

the network applications. Despite improving the resiliency of the network, it can only

defend against certain malicious attacks and only isolates kernel from applications.

The Splendid Isolation approach of Gutz et al. [66] splits the SDN into network slices.

To isolate slices from each other, they developed a special compiler mapping the formu-

lated properties to Virtual Local Area Network (VLAN) tags. Additionally, the authors

created a verification tool which checks the isolation properties using logic formulas.

Lastly, Jafarian et al. [76] used SDNs for moving target defence. They proactively

changed the IP address of devices to defend against network scanners and worms. Each

device gets a real IP and a virtual one. While the real IP stays the same, the virtual

IP is transparently updated by SDN controllers. As a result, network scanners cannot

reach hosts by IP reliably and worms cannot cooperatively scan the network to find new

targets. In contrast to Jafarian et al. who alter IP addresses, I “move” the cryptographic
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key (i.e. the bridge keys) physically between devices. If an adversary manages to access

real IP addresses of Jafarian et al., he could still scan effectively.

All three SDN approaches are vulnerable to targeted attacks on the programming

interface of controllers and on network program or network operating system.

6.5 Summary

All in all, the presented architecture can provide isolation for flat, interconnected networks

and networks where geographic and virtual layout differ. It enables them to automatically

contain compromised devices while distributing trust over the entire architecture, i.e.

malware tolerance.

This chapter demonstrated that the concept of malware tolerance is also suitable

for consumer scenarios and general purpose networks. The principle is arguably more

universally applicable than the initially examined scenarios of trusted input and ICSes.
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CHAPTER 7

DISCUSSION OF THE MALWARE TOLERANCE
CONCEPT

In the last chapters, I illustrated three techniques which give security guarantees even if

an adversary controls some of the utilised devices. One or more of the devices can be

compromised without bringing down the entire system.

Smart-guard demonstrated how to deliver input securely to a trusted receiver which

can also be an enclave in a computer architecture like Intel SGX. The trusted input

system is secure for up to two compromised devices of the total three devices. Its main

advantage over existent techniques is that it also defends against hardware attacks but it

only provides trusted input and no output.

The presented malware-tolerant ICS architecture remains operational if one of three

PLCs is compromised. Additional security is provided by the hardware-based self-healing

mechanism which can recover one compromised PLC at the cost of a restart. To comple-

ment this, I developed a software self-healing algorithm built on top of ARM TrustZone

to overcome user-level attacks without a restart. While this approach provides strong se-

curity properties and can recover devices which broke through updates, it comes at the

potential cost of additional hardware (if not already existent).

Lastly, we saw how an entire network, in this case a mesh network, can tolerate attacks

by using a dynamic moving-target approach. Devices were clustered into groups and each

group elected its representatives (bridges) for inter-group communication. Misbehaving
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devices can be quarantined upon detection. The network tolerates up to one compromised

device per group and half of them can also be privileged bridge devices. The cryptographic

implementation imposes an overhead but no additional hardware is necessary.

7.1 Evaluation of Malware Tolerance

Research Questions Revisited: The aim of this research was to show the possibil-

ity to build systems malware-tolerant, i.e. in a way that no single component can tamper

with the resources. Three scenarios demonstrated malware tolerance with each of them

allowing (at least) one device being compromised. Even if the adversary has full control

over this one device, the rest of the architecture continues to work securely. In several

cases, this was also possible for more compromised devices.

Essential to achieve malware tolerance by distribution are independent components.

In multi device scenarios like networks this is already the case. Single points-of-failure

are a limiting factor, if they cannot be replaced by multiple components.

To evaluate architectures towards their potential to tolerate malware, I developed the

multiple TCB model. The model is compatible with protocol verifiers like ProVerif and

enables semi-automatic proofs for malware-tolerant architectures.

I do not have the capabilities to produce a full working product at the university

and, hence, only provided a proof-of-concept implementation and ProVerif proof scripts.

However, this work shows that systems can indeed be designed in a way without a single

component or device being able to successfully tamper with the resources. This was

achieved by distributing trust over multiple devices and proved the hypothesis possible.

During the research on malware tolerance, it became evident that in some scenarios it

is even possible to automatically contain and recover compromised devices. It is sometimes

called self-healing. Although this thesis did not formulate any research questions regarding

the field of self-healing, it is the logical next step to malware tolerance.
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Comparison to Previous Research: The findings of this research support the

upper bound of multi-party computation [36] where in general 33% of the total architec-

ture can be malicious. The presented trusted input system and the malware-tolerant ICS,

both, are secure for one of three or 33% of the devices being malicious. The mesh net-

work could in a special case (groups of only 2 devices) reach up to 50%, but three to ten

devices per group are more accurate, corresponding to 10-33%.

It was unexpected that in certain cases the 33% boundary can be exceeded. However,

these were special cases and the general rule of a maximum of 33% malicious devices still

applies. The practical results of this work, thus, support the theoretical model as well as

the practical evaluations of distributed systems [139, 6] (f malicious replicas of 3f + 1)

and intrusion tolerance [136, 121] (f malicious replicas of 3f + 1 or 2f + k + 1 with k

systems recovering).

Multiple Trusted Computing Bases Model: Modelling architectures on basis

of multiple additive TCBs proved to be an effective representation. It can be mapped to

formal proof systems, like Horn clauses, without effort and made it possible to represent

the approaches in ProVerif.

As first step, I informally analysed the TCBs of the techniques and expressed them with

the model. It was unexpected that evaluating single points-of-failure would accurately

identify vulnerabilities. When the architectures were later translated to ProVerif proofs,

the protocols passed formal verification without major adjustments and showed that the

representation through TCBs is a suitable estimation.

7.2 Limitations and Future Work

While it is the primary advantage of malware and intrusion tolerance to overcome attacks,

it is similarly the main limitation. The upper bound of malicious devices which can

potentially be tolerated only exceeds 33% in special cases.
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Another restricting factor is performance and cost. While it is known that cryptogra-

phy lowers performance, many vendors are not willing to pay for additional devices. How-

ever, only high risk infrastructures need this level of security justifying the costs. In other

scenarios a virtualised malware-tolerant architecture might be applicable. With crypto-

graphic co-processors becoming more widespread, the impact on performance is feasible

and expected to decrease further.

Future work should improve performance and cost of redundancy for malware toler-

ance. E.g. the redundancy of having two cryptographic IRS keys for the malware-tolerant

mesh network (Chapter 6) could be replaced by developing a cryptographic scheme sim-

ilar to mRSA with evolving keys. Employed in the proposed mesh network architecture,

this would combine two keys while maintaining the same security level. However, a new

cryptographic scheme (including its proof) was beyond this work.

Furthermore, I would like to explore virtualised malware tolerance. Especially in

consumer scenarios, redundancy in hardware might not be necessary. Software techniques

could make malware tolerance more feasible for vendors.

All in all, the principle of malware (and intrusion) tolerance as well as self-healing

can vastly improve security when building systems. We should abandon the idea of

invulnerable components in security and incorporate security into the design.

Analysing approaches from a (no) single point-of-failure perspective reveals weak

points which can then be removed before production. I recommend applying this way of

thinking even if malware tolerance is not used.
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CHAPTER 8

CONCLUSION

The aim of this work was to examine if we can build systems tolerant to malware by

distributing trust over several independent components. That means one (or sometimes

more) components can be compromised without bringing down the system. This thesis

calls this new concept malware tolerance. The goal of a malware-tolerant architecture is

to remove all single points-of-failure where necessary.

The idea was demonstrated through three techniques: a trusted input system, an ICS,

and a mesh network architecture. All presented techniques are secure even if the adversary

controls one device and in certain cases even more. This is also confirmed through the

research of Verissimo et al. on intrusion tolerance [137, 138, 16, 121].

Multi-party computation established that in general 66% of an architecture has to be

trustworthy to tolerate malicious attacks. This is the main limitation of malware- and

intrusion-tolerance.

It could be shown and proven that removing single points-of-failure at vulnerable

intersection points improves security. The security could even be expressed in numbers:

The adversary has to compromise twice as many systems as before to still succeed.

For general security related work I, therefore, recommend to actively identify single

points-of-failure in an architecture and consider distributing their assets securely among

several devices – malware tolerance. The illustrated concept highlights security deficits

and enables better system design.
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APPENDIX A

PICTURES

A.1 Genode Microkernel

Figure A.1: Sketch of the Genode operating system [60] showing the microkernel archi-
tecture.
Source: https://genode.org/documentation/general-overview/index
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A.2 Shodan Industrial Control System Scan

Figure A.2: Shodan ICS scan website: https://ics-radar.shodan.io/
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