
 
 
 
 

 

Ritter, B., Binnie, S. A., Stuart, F. M. , Wennrich, V. and Dunai, T. J. 

(2018) Evidence for multiple Plio-Pleistocene lake episodes in the 

hyperarid Atacama Desert. Quaternary Geochronology, 44, pp. 1-12. 

(doi:10.1016/j.quageo.2017.11.002) 

 

This is the author’s final accepted version. 
 

There may be differences between this version and the published version. 

You are advised to consult the publisher’s version if you wish to cite from 

it. 

 

 

 
 
http://eprints.gla.ac.uk/176062/ 
     

 
 
 
 
 

 
Deposited on:  19 December 2018 

 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://dx.doi.org/10.1016/j.quageo.2017.11.002
http://eprints.gla.ac.uk/176062/
http://eprints.gla.ac.uk/176062/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


Evidence for multiple Plio-Pleistocene lake episodes in the hyperarid 1 

Atacama Desert 2 

 3 

Benedikt Rittera*, Steven A. Binniea Finlay M. Stuartb, Volker Wennricha, Tibor 4 

J. Dunaia 5 

a Institute of Geology & Mineralogy, Zuelpicher Strasse 49b, 50674 Cologne - Germany 6 

University of Cologne, Germany 7 

b Isotope Geosciences Unit, Scottish Universities Environmental Research Centre, East 8 

Kilbride G75 0QF, UK 9 

Corresponding Author: 10 

Benedikt Ritter – benedikt.ritter@uni-koeln.de 11 

Suelzburgstrasse 122, D-50937 Cologne Germany 12 

Keywords: cosmogenic nuclide exposure dating, Atacama Desert, lake shorelines 13 

 14 

 15 

 16 

 17 

 18 

 19 

mailto:benedikt.ritter@uni-koeln.de


Abstract:   20 

Cosmogenic nuclide exposure dating of ancient shoreline terraces of the Quillagua-Llamara 21 

Soledad Lake in the central Atacama Desert of northern Chile provides new insights in the 22 

paleohydrology of the driest desert on Earth. The lake developed in a paleo-endorheic drainage 23 

system in the Central Depression prior to draining into the Pacific due to incision of the Río Loa 24 

canyon. The durations of lake stages were sufficiently long to form wave-erosion induced 25 

shoreline terraces on the wind-exposed slopes of former islands. Successively younger shoreline 26 

levels are preserved over an elevation range of 250 m due to progressive uplift of the islands 27 

coeval with the lake stages. Cosmogenic 10Be- and 21Ne-derived exposure ages of the shorelines 28 

reveals that the hyperarid conditions in the Rio Loa catchment were interspersed by several 29 

pluvial stages during the Pliocene and Pleistocene, which generated a large and persistent lake in 30 

the Quillagua-Llamara basin. The exposure ages of the final lake stage provide the maximum age 31 

for the incision of the Río Loa canyon (274±74 ka) and the subsequent breaching of the Coastal 32 

Cordillera. 33 
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1. Introduction 42 

The Atacama Desert of northern Chile is one of the driest places on Earth; the extreme hyperarid 43 

core (Coastal Cordillera, Central Depression; Fig. 1) receives less than 10 mm/yr of precipitation 44 

(Houston and Hartley, 2003). While the main factors controlling hyper-aridity in the Atacama 45 

Desert are established, the onset and permanence of hyper-aridity remain a matter of debate (e.g., 46 

Sillitoe and McKee, 1996; 1999; Hartley and Chong, 2002; Rech et al., 2003; Dunai et al., 2005; 47 

Nishiizumi et al., 2005; Latorre et al., 2006; Rech et al., 2006; Kober et al., 2007; Nester et al., 2007; 48 

Evenstar et al., 2009; Placzek et al., 2010; Gayo et al., 2012; Sáez et al., 2012; Jordan et al., 2014; 49 

Evenstar et al., 2017). The nearly stable position of the South American continent over the last 50 

150 million years (Hartley et al., 2005) and the establishment of the Peru-Chile Current system at 51 

around 50 Ma (Cristini et al., 2012) support the notion that predominantly arid conditions 52 

persisted since the early Miocene (Dunai et al., 2005), and potentially even earlier (Hartley et al., 53 

2005). Secular variations of the global climate system during the Cenozoic (Zachos et al., 2001) 54 

led to punctuations of the prevailing hyper-arid climate in the Atacama Desert by wetter (though 55 

still arid) periods (e.g., Betancourt et al., 2000; Dunai et al., 2005; Nester et al., 2007; 2009; Rech 56 

et al., 2010; Sáez et al., 2012; Jordan et al., 2014; Evenstar et al., 2017). These pluvial phases are 57 

evident from Miocene-Pliocene lacustrine and fluvial sediments in the Central Depression (e.g. 58 

Gaupp et al., 1999; Sáez et al., 2012; Kirk-Lawlor et al., 2013).  59 

Here we present new insights into the timing of relatively wet periods in the Central Depression 60 

based on exposure dating of former shoreline terraces of the Quillagua-Llamara-Soledad lake. 61 

These terraces are preserved by uplift of topographic highs in the Quillagua-Llamara basin (QLB). 62 

New cosmogenic 10Be and 21Ne data constrain the timing of the most recent lacustrine phases, and 63 

the eventual draining of the Quillagua-Llamara-Soledad Lake by the incision of the Río Loa canyon. 64 



 65 

Fig. 1: Geographic setting of Quillagua-Llamara basin in the Central Depression (DEM based on 66 

ASTER GDEM data). Orange indicates outcrops of the Soledad Formation (Brüggen, 1950; 2012; 67 

Quezada et al., 2013). Blue indicates outcrops of the Quillagua Formation (Sáez et al., 2012). (1) 68 

Cerro Soledad, (2) Lomas de Sal, (3) Westernmost extension of former lake, overflow of Río Loa, 69 

(4) Montón de Gloria Pass (831m), (5) white area indicates Salar Grande, (6) dashed white line 70 

denotes the Calama basin. Translucent blue area indicates potential lake extension. (Colour – Size: 71 

one-and-a-half-page width 140mm) 72 

 73 



2. Background 74 

2.1 Regional Geology  75 

The central Atacama Desert is located in the fore-arc region of the Central Andes in northern Chile 76 

(Fig. 1). The area includes three morphotectonic units; the Coastal Cordillera, Central Depression, 77 

and Precordillera. The latter is bordered by the Western Cordillera, forming an active volcanic arc 78 

(Fig. 1). The study area is located in the southern Central Depression, bound to the west by the 79 

Coastal Cordillera and to the east by the Precordillera. The Central Depression is a N-S elongated 80 

topographic basin that contains the Pampa de Tamarugal (PDT) and includes the QLB in the south 81 

(Fig. 1 translucent blue area). The Coastal Cordillera acts as a topographic barrier, prohibiting any 82 

appreciable sediment transport from the Precordillera to the Pacific Ocean. This has enabled the 83 

exceptional preservation of many tectonic deformation features that are caused by the coupling 84 

between the subducting oceanic Nazca plate and the South American plate in the Coastal 85 

Cordillera. E-W tectonic deformation commenced at least 6 million years ago, with fault slip rates 86 

that are typically less than 0.5 mm/year (Allmendinger and Gonzalez, 2010).  87 

The incision of the Río Loa canyon transformed the QLB from an endorheic into an exorheic basin, 88 

while parts of the northern PDT, north of Quebrada Guatacondo, remained endorheic. Based on 89 

the age of the Soledad Formation this could have occurred during the late Pleistocene (Sáez et al., 90 

2012) or early Pliocene (Quezada et al., 2013). Relict deposits of the former lacustrine and 91 

evaporitic facies and/or corresponding diagenetic equivalents of the Quillagua-Llamara-Soledad 92 

Lake (QLSL) are regionally widespread in the southern PDT (Fig. 1). These may reflect pluvial 93 

periods in the last 10 million years (Sáez et al., 2012). Although the sediment sequences have been 94 

dated several times, some ages are contradictory and allow alternative environmental 95 

reconstructions (Sáez et al., 1999; Sáez et al., 2012; Quezada et al., 2013; Jordan et al., 2014).  96 

The Central Depression is a forearc basin (Jordan et al., 2014; Evenstar et al., 2017), bound to the 97 

west by normal faults in the Coastal Cordillera. The basement of the Central Depression consists 98 

of Palaeozoic and Mesozoic rocks, which are locally uplifted above the present-day valley floor.  In 99 



the study area, the depression is filled by up to 1000 m of Eocene to Pliocene alluvial and 100 

lacustrine sediments, interbedded with volcanoclastic deposits (Jensen et al., 1995; Sáez et al., 101 

1999; Hartley and Evenstar, 2010; Jordan et al., 2010; Jordan et al., 2014). Alluvial fan deposits 102 

are derived almost exclusively from the Precordillera to the east (Carrizo et al., 2008; Nester, 103 

2008; Jordan et al., 2014). The Tertiary PDT basin was formed by the combination of N-S and NW-104 

SE orientated fault system activity, predominantly of currently supratenuous faults (Sáez et al., 105 

1999).  Neogene reverse faulting on the Precordillera fault zone has been confirmed for the 106 

northern PDT (Victor et al., 2004; Nester, 2008), as well for the southern part (Nester, 2008; 107 

Nester and Jordan, 2012). Studies indicate that fault systems in the Coastal Cordillera were 108 

reactivated during the past 6 Ma and their effects extend into the Central Depression 109 

(Allmendinger et al., 2005).  110 

North to South trending elongated hills on Mesozoic basement in the PDT (Cerro Soledad Fig. 1, 3, 111 

Cerro Challacollo, and Cerro Longacho, see Nester (2008)) protrude up to 300 m above the plain. 112 

Carrizo et al. (2008) identified low angle reverse faults near the Salar de Bellavista to be 113 

responsible for the uplift of topographic highs after 18-19 Ma (see Fig. 16a in Carrizo et al., 2008). 114 

Evidence for young deformation within the basin can be found at Lomas de Sal (Fig. 1) where, a 115 

~100 m thick Plio-Pleistocene sequence has been uplifted by reverse faulting (Nester, 2008). 116 

Geomorphological evidence for tectonic deformation in the vicinity includes folded diatomites at 117 

the base of Cerro Mogote (Sáez et al., 1999; for location see Fig. 3).  118 

The detailed kinematics of the inferred uplift and deformation around Cerro Soledad, Cerro 119 

Mogote and Cerros de Hilaricos is poorly known. Recent mapping by SERNAGEOMIN (Quezada et 120 

al., 2012) provide a large scale framework for the structural geology, but the resolution of this 121 

mapping is not fine enough to resolve the tectonic kinematics around those exceptional highs 122 

within the Central Depression. Statements about the precise occurrence of faults and their 123 

appearance in conjunction with folds remain approximations and require more detailed studies.  124 



 125 

Fig. 2: Google Earth Satellite 3D Model (based on Image Landsat / Copernicus – Data SIO, NOAA, 126 

U.S. Navy, NGA, GEBCO) with a twofold altitude exaggeration. The pale shaded area displays 127 

potential lake extension based on outcrops. White arrows indicate major water inflow pathways, 128 

blue arrows mark overflow paths toward the (1) Salar Grande (present altitude 831m±10m) and 129 

(2) Río Loa (present altitude 830±10m). The latter was the outflow during the breach of the 130 

endorheic drainage system of the Quillagua basin. (Colour – Size: Full Page width 190mm) 131 

2.2 Local Hydrology – Precipitation Pathways 132 

The catchment of the QLB/Río Loa (32,820 km² from Houston, 2006c; Jordan et al., 2015a) derives 133 

the majority of its water from the Western Cordillera to the East. It drains into the QLB via 134 

groundwater flow and surface flow in the perennial Río Loa (Fig. 1, 2). Runoff and groundwater 135 

flow was higher during pluvial periods in  the Plio-Pleistocene (Houston, 2006b).  136 

Due to the temperature inversion above the cold Peru-Chile Current, westerly precipitation in the 137 

Atacama Desert originating from the Pacific Ocean is sparse. However, during infrequent rain 138 

events, surface drainage can occur due to precipitation coming from the Pacific as north migrating 139 



low pressure systems are diverted (e.g. Bozkurt et al., 2016). Such sporadic westerly precipitation 140 

events include the flood of March 2015 in northern Chile, which brought significant precipitation, 141 

though this decreased with increasing altitude and was limited to south of Quillagua (Bozkurt et 142 

al., 2016; Wilcox et al., 2016). Such events are connected to the establishment of El Niño conditions 143 

favouring either cut-off north-migrating low-pressure cells from the Southern Westerlies (Vuille 144 

and Ammann, 1997), or destabilization and reduction of the temperature inversion at the Chilean 145 

coast (McKay et al., 2003). Climate models predict regional warming of the subtropical southeast 146 

Pacific during ‘El Niño’ conditions that effectively increase precipitation and moisture along the 147 

west coast of South America, and on the arid western slopes of the Andes due to the reduction of 148 

thermal subsidence and anticyclonic flow (Garreaud et al., 2010). Torrential rain during the ‘El 149 

Niño’ of 1997-98, for example, created the second largest lake in Peru in the Sechura Desert 150 

(Woodman, 1998). Earlier, long-lasting lake stages in the QLB are evidenced by lacustrine 151 

deposits of the Quillagua Formation, which suggest permanent ‘El Niño-like’ conditions persisted 152 

during the Pliocene (Sáez et al., 2012). Similar ‘El Niño-like’ conditions in the Atacama were also 153 

postulated for several wet periods during the Pleistocene (Ortlieb et al., 1996; Contreras et al., 154 

2010; Wang et al., 2015). The main and more regular source of moisture is Atlantic air masses, 155 

despite depletion by orogenic rainfall at the eastern flanks of the Andes and in parts of the 156 

Altiplano. These easterly rains, which are enhanced during typical ‘La Niña’ conditions, are usually 157 

characterized by cooler atmospheric temperatures, easterly wind anomalies, and above average 158 

precipitation in the sub- to tropical western South America (Aceituno, 1988; Vuille, 1999; Vuille 159 

et al., 2000). The amplitude of ‘La Niña’ conditions in South America is governed by the strength 160 

and position of the Bolivian High (Vuille et al., 2000). A southward displacement and 161 

intensification of the Bolivian High hampers upper tropospheric westerly wind flow as well as 162 

strengthening easterlies and the corresponding moisture flux from the Amazon basin. These air 163 

masses spill over the Central Andes and reach the upper Western Andean flank (Vuille and Keimig, 164 

2004) causing precipitation that decreases rapidly with elevation (Houston and Hartley, 2003). 165 

For instance, the source region of the Río Loa at around 4000 m receives about 100 mm rain per 166 

year, whereas the Río Loa valley in the Central Depression, at about 1000 m elevation (e.g. at 167 



Quillagua Fig. 1, 2), has annual rainfall of less than 1 mm (Houston and Hartley, 2003). As aridity 168 

is controlled by large-scale atmospheric circulation patterns, the current orographic precipitation 169 

gradient pattern has most-likely persisted over the longer-term, despite the overall amounts of 170 

precipitation having varied (Jordan et al., 2014). 171 

Presently the flow rates of the perennial Río Loa are 0.6 m³/s (post 1976). In 1918 prior to the 172 

significant water extraction the discharge was 3.6 m³/s (both measured at the outflow into the 173 

Pacific; Salazar, 2003). Due to the high annual evaporation rates (i.e. > 3500 mm/a at 1000 m 174 

elevation; Houston, 2006a) even the higher discharge rate could not sustain an expansive lake in 175 

the central valley. For example, the outcrops of the Soledad Formation indicated a minimum lake 176 

extension of ~2,570 km3 requiring more than the recent perennial inflow of the Rìo Loa (1.14*108 177 

m3/a) to sustain a lake by high evaporation rate of 9.01*1013 m3/a. 178 

2.3 Lacustrine sediments of QLB 179 

The sedimentary sequence of the QLB consists of alluvial strata, interbedded with lacustrine 180 

sequences and volcanoclastic deposits  (Sáez et al., 1999, 2012). Fluvial sedimentation 181 

predominantly occurred to the south of Quillagua and was presumably controlled by the sediment 182 

input of the Proto-Río Loa, whereas lacustrine sedimentation was concentrated in the central 183 

basin around Cerro Mogote, Cerro Soledad, and Quillagua (Sáez et al., 2012) (Fig. 1, 2, 3a).  184 

The first Miocene sediment units are gypsum-anhydrite cemented siliciclastic deposits of the 185 

Hilaricos Fm. These are overlain by diatomites, marls, silty limestones, gravelly sandstones, and 186 

occasional volcanoclastic deposits of the Quillagua Fm (Sáez et al., 1999). The final lacustrine 187 

episode of the QLSL is represented by the Soledad Fm, consisting of halite-gypsum evaporitic 188 

sediments with minor siliciclastics (Chong et al., 1999; Pueyo et al., 2001; Sáez et al., 2012, Fig. 1). 189 

Massive (>10 m thickness) open water evaporites with large, dm-scale, bottom nucleated chevron 190 

gypsum crystals, occur as erosive remnants along the eastern section of the southern margin of 191 

the Rio Loa canyon (this study, supplementary data).   192 



The near-continuity of surficial deposits and the geochemical signature of the Soledad Fm 193 

evaporites (Br-content and S-isotopes , Pueyo et al., 2001), support the notion of a temporary 194 

connection between the QLB and the Salar Grande basin (Fig. 1, 2, Chong et al., 1999; Sáez et al., 195 

1999). This connection via the Montón de Gloria Pass (current elevation 830 m, Chong et al., 1999) 196 

is thought to have been disrupted by fault reactivation in the Coastal Cordillera (Allmendinger et 197 

al., 2005). 198 

Outcrops of the Soledad Fm remnants (Quezada et al., 2012; Quezada et al., 2013) indicate a 199 

minimum lake surface area of ~2,570 km² (Fig. 1, 6, this study). Spilling points at the Montón de 200 

Gloria pass towards the Salar Grande (current elevation 831±10m, Chong et al., 1999; Pueyo et al., 201 

2001) and at the Río Loa (mean current elevation 830±10m, top of outcropping sediments, orange 202 

surface in Fig. 1, westernmost reconstructed lake extension, Sáez et al., 1999), indicate the lake 203 

level could not exceed 830 ± 10 m (Fig. 1, 2, 6). A higher lake level would have drained the basin, 204 

presumably initiating the incision of the Río Loa.  The elevation of present day outcrops of Soledad 205 

Formation rocks may exceed the present day elevation of the spilling points (up to 220 m, Fig. 3) 206 

due to differential tectonic uplift since deposition. 207 

Although different approaches have been used to date the Soledad Fm, its chronology is still under 208 

debate (Sáez et al., 2012; Quezada et al., 2013). Ar/Ar ages of tephra layers in the halite sequence 209 

of the Lomas del Sal were used to constrain the deposition age of the lower Soledad formation to 210 

between 0.21 ± 0.06 Ma and 0.098 ± 0.042 Ma (Sáez et al., 2012). However, four ash layers, 211 

intercalated with anhydrite-sand successions of the Soledad Fm, exposed at Cerro Soledad, Salar 212 

Sur Viejo and at Cerro Cachango, yield Ar/Ar ages between 3.16 ± 0.07 Ma and 3.73 ± 0.02Ma 213 

Quezada et al. (2013). These contradictory ages mean that there is a considerable uncertainty in 214 

both the spatial assignment of sediments to the Soledad formation and its deposition age. 215 

2.4 Shoreline terraces  216 

The conspicuous linear features at Cerro Soledad were first suggested by Brüggen (1950) to 217 

represent abandoned shorelines (Fig. 3) of a lake, which was around 80 m deep. Subsequent 218 



studies suggested that the lake was deeper (200 m, Hollingworth, 1964). Stoertz and Ericksen 219 

(1974) and Naranjo and Paskoff (1982) noted that the former shorelines are not level, reflecting 220 

differential tectonic uplift across the region. In an alternative hypothesis, Rieu (1975) interpreted 221 

these linear features as a result of uplift and tectonic displacement in a horst-graben structure, 222 

without invoking the presence of a lake. Naranjo and Paskoff (1982) identified four distinct 223 

shoreline levels at Cerro Soledad, spanning more than 200 m vertical distance, and reported 224 

abundant well-rounded pebbles on all levels. They assigned the rounding of these pebbles to wave 225 

action of the paleo-lake ‘gran lago salado de Soledad (sensu Brüggen, 1950)’. These shorelines are 226 

mostly cut into halite (Naranjo and Paskoff, 1982) but also into underlying bedrock (this work; 227 

see also Fig. 3). The occurrence of pebbles is laterally limited to bedrock outcrops and pebbles are 228 

of the same lithology as the underlying bedrock (this study). Presently all but the lowest 229 

shorelines are above the current elevation of topographic spilling points of the paleo-lake (Fig. 2), 230 

indicating significant differential tectonic movement since the creation of the shorelines.  231 

The hypothesis that an ephemeral lake was responsible for the creation of the linear features on 232 

the Cerro Soledad and neighbouring topographic highs, as proposed by Brüggen (1950), 233 

Hollingworth (1964) and  Naranjo and Paskoff (1982), is supported by the following observations: 234 

(1) the linear features nearly completely encircle Cerro Soledad, on near horizontal levels 235 

(supplementary data, Fig. 3); (2) they are preserved in soft sedimentary rocks as well as in 236 

bedrock notches, which occur at exactly the same elevation (supplementary data, Fig. 3); (3) 237 

rounded pebbles occur localized at the bedrock notches and bedrock outcrops, and are absent 238 

elsewhere; (4) the pebbles are of the same lithology as the local bedrock, pebbles of allochthonous 239 

lithology are absent; (5) western, wind-exposed, flanks of the hills have wider platforms, as would 240 

be expected if wind fetch is important for their creation; (6) the Soledad formation is dominated 241 

by salar/lake deposits (Sáez et al., 1999; 2012; Quezada et al., 2013) and (7) bottom nucleated 242 

evaporites (supplement, Fig.2) record ephemeral open water conditions until the final stages of 243 

the deposition of the Soledad formation. 244 



Alternative explanations for the platforms in sedimentary rocks, such as differential erosion due 245 

to variable degree and type of cementation and an absence of a lake, do not explain the repeated 246 

coincidence between the elevation of platforms in sedimentary rocks and bedrock notches and 247 

the near-horizontal nature of these linear features.  However, it is possible that the creation or 248 

preservation of platform levels in sedimentary rocks is linked to enhanced cementation rather 249 

than wave action, since near-shore groundwater levels during lake stages would be identical to 250 

the corresponding lake levels. Explaining the occurrence of rounded pebbles by fluvial transport 251 

from elsewhere would be in conflict with the observation that allochthonous lithologies are absent 252 

and that pebble occurrences are limited to rare local bedrock outcrops. 253 

The terraces along the (north-)western flanks of the Cerro Soledad are most easily recognized, 254 

both from satellite imagery (Fig. 3) and in the field. They are traceable throughout the hills 255 

protruding from the floor of the PDT (Fig. 3). Shorelines at the eastern, wind-averted flanks are 256 

less developed or absent. Shoreline formation due to wave-erosion was likely enhanced by the 257 

long wind fetch and a sufficiently deep water body upwind, as was available during lake-high 258 

stands of the QLSL (prevailing westerly winds had > 15 km fetch; see also Fig. 6). Wave action in 259 

lakes can erode shorelines that are tens of metres wide into bedrock within a few hundred years 260 

(Oviatt et al., 1992; Garcin et al., 2012; Lifton et al., 2015). While we do not know the strength of 261 

the paleo-winds and the kinetics of the shore erosion, we note that the setting of the ancient 262 

islands in the QLSL is conducive for shoreline formation. The pronounced aridity of the Atacama 263 

Desert, and the uplift of the shorelines above possible future lake-levels after their formation, 264 

aided their long-term preservation.  265 



 266 



Fig. 3: (A-C) High resolution Pansharpened Multi-Spectral Image (Pléiades-1B) of the study area. 267 

Yellow dots indicate sampled shoreline terraces, orange square indicates dated tephra deposit 268 

(Quezada et al., 2013). White dashed lines highlight topographic profiles (D). Dashed red lines 269 

indicate potential concealed faults. (B) Northern island. (C) Southern island. (D) Topographic 270 

profiles based on a high resolution DEM (Pléiades-1B resolution ~60cm) of shorelines features. 271 

Corresponding and sampled shoreline terraces are marked, including potential shorelines 272 

terraces derived by DEM analysis. (Colour – Size: Full Page width 190mm) 273 

Sampling locations  274 

The bedrock of the paleo-islands, i.e. Jurassic marine sediments and volcanic rocks, at the northern 275 

island (Fig. 3A and 3B) joined by Cretaceous granodioritic rocks, is almost completely covered by 276 

evaporites of the Soledad Formation. Bedrock outcrops are limited to the tops of the paleo-islands 277 

(above ~1000 m elevation) and to spurs. Planar platforms are preserved in evaporitic cemented 278 

siliciclastic sediments and the bedrock spurs (Fig. 3A, D). Wave-cut platforms cut into the 279 

evaporites, however, are largely devoid of pebbles (and other rock clasts), whereas the wave-cut 280 

shorelines on bedrock have locally abundant pebbles. The variable abundance of pebbles suggests 281 

that they are locally derived, which is supported by the matching lithologies of pebbles and 282 

exposed bedrock.  283 

We sampled small platforms on, or near spurs (LL13-001; SL-14-01; SL14-3; SL14-4; Fig. 3 A-C), 284 

below bedrock cliffs (LL13-001; SL-14-01; SL14-3), and on a planiform area near the summit of 285 

the northern island (SL14-05; Fig. 3 A-C). SL15-12 samples were retrieved from a wide platform 286 

at the western flank of the northern island. While it was cut into evaporitic-cemented siliciclastics, 287 

it harboured bedrock clasts and some pebbles. The bedrock fragments give this platform a 288 

different appearance in the field and on aerial photography (grey shades in Fig. 3; as compared to 289 

beige colours of the other evaporite platforms). 290 

The height of the cliffs behind the bedrock platforms allows for a maximum of few meters of 291 

vertical erosion into the spurs (3-10 m), the amount of vertical erosion of rocks supplying the 292 



pebbles on surfaces without a backing cliff is not constrained. Incomplete shielding/pre-exposure 293 

can therefore be expected (Dunai, 2010). Since the shoreline deposits are thin (<50 cm thickness, 294 

mostly <10 cm), depth profile sampling would not constrain pre-exposure of the sediments 295 

(Dunai, 2010). 296 

Site SL14-04 on the spur had no bedrock cliff. It was a shallow depression (ca. 10 cm lower than 297 

surrounding bedrock; ca. 10 m2 area) that had abundant, perfectly rounded pebbles, and only a 298 

few fragmented clasts. This pebble deposit exhibits a weak patterning due to pelo- or 299 

haloturbation (cryoturbation can be ruled out due to the prevailing climatic conditions). 300 

Generally, post-depositional shielding of samples from cosmic rays due to intermittent burial, or 301 

more likely in this case by exhumation of the samples originally deposited beneath a sedimentary 302 

cover, cannot be excluded. The nature of the shoreline deposits renders it difficult ascertain if they 303 

have eroded significantly since their deposition. The lack of extensive talus aprons downslope of 304 

the shorelines, however, indicates that the shoreline deposits are predominantly well preserved.  305 

At all sites our target materials were pebbles and bedrock clasts. The lithologies most amenable 306 

for exposure dating (e.g. vein quartz and quartz-rich lithologies), tend to be less rounded than 307 

quartz-poor/quartz-free lithologies; therefore, several clasts (n≥6) were sampled (only if 308 

rounded pebbles were present at the same level). On finding localized concentrations of quartz 309 

fragments, which may indicate kernsprung (splitting of pebbles), only one fragment per cluster 310 

was sampled in order to avoid sampling multiple fragments of the same clast. In total we sampled 311 

six sites, five on the northern island and one on the southern one (Fig. 3). The preserved rounding 312 

of pebbles, and preserved angularity of clasts, allow for a few mm of erosion of the pebble surfaces 313 

at most.  314 

3. Analytical methods 315 

To determine single clast exposure ages we analysed quartz for 10Be, 26Al, and 21Ne. The quartz 316 

was prepared as AMS (Accelerator Mass Spectrometry) targets following either the standard 317 



approach or the single-step column approach outlined in Binnie et al. (2015). The targets were 318 

measured for 10Be at CologneAMS (Dewald et al., 2013), normalized to the standards of Nishiizumi 319 

et al. (2007). Neon isotope analyses were performed at SUERC following the procedures outlined 320 

in Codilean et al. (2008) using the CREU quartz (Vermeesch et al., 2015) as internal standard. 321 

Specific sample preparation and analysis details are in the supplementary data. 322 

Exposure ages are derived from the CRONUS-Earth calculator version 2.0 (Marrero et al., 2016), 323 

using the scaling factors of Lifton et al. (2015). Topographic shielding factors for each sample site 324 

were measured in the field. We assumed a density of 2.65 g/cm3, a zero erosion rate for the 325 

pebbles and employed the 07KNSTD flag in the CRONUS-Earth calculator. Mean ages of 326 

populations of clasts from one site were calculated after the removal of outliers, using Chauvenet’s 327 

Criterion (Taylor, 1997). Note, all age uncertainties reported are one standard deviation. Specific 328 

details on the age calculation are in the supplementary data, including a geomagnetic database 329 

sensitivity test using CREp (Martin et al., 2017). Analytical results and ages are provided in 330 

Table  1. 331 

4. Results 332 

The mean 10Be exposure ages obtained for the shoreline deposits (Table 1; Fig. 4) span a wide 333 

range: from ~275 ka at the lowest shoreline level (Level 1) to ~3 Ma for the deposits on the top 334 

of the Cerro Soledad (Top). Several individual clasts have significantly older exposure ages than 335 

the majority at a given site. Most probability density plots of exposure ages of the individual 336 

locations (Fig. 4) have a positive skewness, with a tail towards higher ages. All outliers identified 337 

by Chauvenet’s Criterion (Taylor, 1997) are older ages. All 26Al ages of individual clasts (n=5; 338 

supplementary data) are concordant with the corresponding 10Be ages. The combined 26Al and 339 

10Be data are consistent with a simple, single stage exposure history (see Supplementary data). In 340 

one instance, site SL14-04, the scatter of the limited data did not permit the determination of a 341 

meaningful average age (the limited number of measurements is due to the scarcity of quartz-342 

bearing clasts at that site). Individual 21Ne exposure ages of clasts are either significantly higher 343 



than the corresponding 10Be ages of a specific site (shorelines SL14-01; SL14-03, SL14-04) or are 344 

concordant (e.g. SL14-05; top of Cerro Soledad).  345 

In general, the cosmogenic nuclide data confound the expectation of significant pre-exposure for 346 

some clasts in each population, which is based on the limited mass removed for the creation of the 347 

shorelines.  The first line of evidence for pre-exposure is the positive skewedness of 10Be age-348 

populations (Applegate et al., 2010); the second is the significantly higher 21Ne-ages obtained in 349 

many samples (SL14-01, SL14-03, SL14-04), except for the highest shoreline (SL14-05). 21Ne is 350 

stable, thus long-term production in partially shielded positions in the bedrock can add a higher 351 

pre-exposure signal than is possible for 10Be, particularly if the duration of pre-exposure is 352 

protracted. In principle, the youngest age obtained would provide the most likely age, if periods 353 

of burial or exhumation have not occurred (Applegate et al., 2010). It appears that the process 354 

leading to the planation of the Top of Cerro Soledad removed sufficient material to obliterate a 355 

pre-exposure signal. Since we cannot exclude some exhumation (see previous section), the best 356 

estimations for the timing of shoreline formation are the arithmetic mean 10Be ages, rather than 357 

the youngest ages obtained.  358 

On top of Cerro Soledad (SL14-05, 1051 m) the mean 10Be age is 2.92 ± 0.24 Ma (n=3). The 359 

corresponding 21Ne age is indistinguishable from this (3.05 ± 0.12 Ma). All 10Be and 21Ne ages of 360 

individual clasts are concordant; indicating a continuous exposure for the clasts at the sampling 361 

location and negligible post-depositional exhumation. One clast at this sampling location has a 362 

significantly older age (4.5 ± 0.6 Ma 10Be and 4.8 ± 0.2 Ma 21Ne) and was not included in the mean 363 

(see Methods section).  On shoreline level 5 (SL14-04, 1022 m) 10Be ages vary between 260 ka and 364 

4.5 Ma, while 21Ne ages range from 1.9 Ma to 21.6 Ma. The 10Be and 21Ne ages of individual clasts 365 

are not concordant, with the 21Ne ages being 3 to 4 times higher than the corresponding 10Be ages. 366 

The highest 21Ne exposure age (21.6±0.7 Ma) is amongst the oldest reported for the Atacama 367 

Desert (Dunai et al., 2005; Carrizo et al., 2008; Evenstar et al., 2009; Evenstar et al., 2017). Since a 368 

much longer exposure is unlikely, this indicates that the exhumation of the material that sourced 369 

the pebble was shallow. The high age dispersion is probably due to pre-exposure, combined with 370 



pelo-/haloturbation inferred for this site (see section on sample locations), and prevents the 371 

calculation of a meaningful age for this site. The mean 10Be age from shoreline level 4 (SL14-03, 372 

890 m) is 1.27 ± 0.47 Ma (n=5, all clasts). The mean 21Ne age is significantly older at 1.85 ± 0.12 373 

Ma (n=2). In one instance from this level, the 10Be and 21Ne ages of an individual clast agree. 374 

Shoreline level 3 (LL13-001, 829 m) gives a mean 10Be age of 540 ± 160 ka (n=5; one outlier). Due 375 

to the generally small size of pebbles on this level no material for 21Ne measurements could be 376 

spared. On shoreline level 2 (SL14-01, 818 m) the mean 10Be age is measured as 392 ± 37 ka (n=5; 377 

one outlier). All 21Ne ages of individual clasts are approximately twice the corresponding 10Be 378 

ages. The lowest elevation site, shoreline level 1 (SL15-12, 796 m), produces a mean 10Be age of 379 

274 ± 74 ka (n=5; one outlier). As with shoreline level 3, the paucity of quartz is such that no 380 

material for 21Ne measurements was available.  381 

The mean 10Be ages of shoreline levels shows a strong positive relationship with present day 382 

elevation (Fig. 5), suggesting constant uplift. If shoreline levels were created at similar recurring 383 

relative lake levels (relative to the paleo-island), the average tectonic uplift rate of the emergent 384 

paleo-island is 94± 10 m/Ma (2σ). The present day elevations of the paleo-spillways are ~ 830 m 385 

elevation and the Coastal Cordillera is uplifting relative to the Central Depression. Assuming 386 

abandonment of the lowest preserved shoreline (level 5, 796m) because the spilling level at the 387 

Río Loa canyon was breached (Fig. 2), the uplift rate of the Coastal Cordillera relative to this 388 

shoreline is 160± 80 m/Ma. Utilizing the elevation-shoreline relationship (Fig. 5), we tentatively 389 

assign an age of 2.5–2.8 Ma for the highest shoreline-level (SL04-4, 1022 m). 390 



 391 

Fig. 4: Cumulative probability density plots of single clasts 10Be (grey shading) and 21Ne (blue 392 

shading). Exposure ages for 10Be are plotted as diamonds and 21Ne as crosses underneath the 393 

probability density plots. Error bars in this case are the 1 s.d. ‘internal’ age uncertainties (i.e. 394 

analytical uncertainty only). Above the shaded probability envelopes are the relevant arithmetic 395 

mean ages of shoreline terraces and hilltop deposits with one standard deviation error bars (see 396 

supplementary data). (Colour – Size: Full Page width 190mm) 397 



 398 

 399 

Fig. 5: Elevation versus mean 10Be exposure ages for the five sample locations. Stippled lines 400 

represent the 95% confidence interval of the linear regression. Note the uncertainty on the slope 401 

(estimated uplift rate) is here ± 2σ. (No-Colour – Size: Small column size 90mm) 402 

5. Discussion 403 

The results indicate that at least five ephemeral lake phases occurred in the southern Central 404 

Depression between the late Pliocene (3.2-2.7 Ma, Top of Cerro Soledad) until the mid-Pleistocene 405 

(350-200 ka). These phases lasted sufficiently long to cut shorelines into bedrock and pre-406 

existing/coeval evaporites of the Soledad Formation. We take the lack of intermediate shorelines 407 

between the highest (1022 m; tentative age 2.5–2.8 Ma) and the next youngest (890 m; 1.27 ± 0.47 408 

Ma) as indication that no lake existed for a significant period of time between 2.65 ± 0.15 Ma and 409 

1.27 ± 0.47 Ma. While elevation differences clearly separate the four youngest shorelines 410 

(1.27 ± 0.47 Ma at 890 m; 540 ± 160 ka at 829 m; 392 ± 37 ka at 818 m; 274 ± 74 ka at 796 m), the 411 

age resolution is insufficient to separate these lake phases. It is clear from the existence of paleo 412 

shorelines, however, that between 1.27 ± 0.47 Ma and 274 ± 74 ka at least four distinct lake 413 

phases occurred. The age of the youngest and lowest shoreline (274 ± 74 ka) records the onset of 414 

the incision of the present day Río Loa Canyon (Fig. 6); the incision transformed the Río Loa 415 

catchment into an exoreic catchment and marks the cessation of lacustrine sedimentation in the 416 

QLB. This interpretation for the onset of incision is based on the assumption that shoreline 417 



terraces are only created during stable lake levels, which have to be of a sufficiently long duration 418 

to allow enough wind-induced wave erosion. Moreover, based on the susceptibility of basin 419 

sediments to erosion, we assume that the initial onset of incision happened fast as the sediments 420 

were removed and decelerated once resistant bedrock was encountered. Prior to the incision, the 421 

existence or absence of paleo-lakes mirrored the hydrological balance in the Río Loa catchment.  422 

In the endoreic phase, i.e. prior to 274 ± 74 ka, the water balance in the lower Río Loa catchment 423 

was likely to have been governed by precipitation sources in the Precordillera (above ~2500 m; 424 

Houston and Hartley, 2003; Jordan et al., 2014) while evaporation (Houston, 2006a) and 425 

groundwater discharge towards the coast (e.g. towards the Salar Grande; Chong et al., 1999; 426 

Jordan et al., 2015a) provided the sinks. To balance present levels of evaporation (Houston, 427 

2006a), the supply of water from Río Loa channel flow and groundwater must have been about 428 

thirty times the modern discharge of the Río Loa at the coast (3.6 m3/s; Salazar, 2003), in order to 429 

form a lake of the dimension inferred for the QLSL (Fig. 6).  430 

Assuming that evaporation in the Central Depression and groundwater discharge potential are 431 

less variable than changes in precipitation, the paleo lake levels mostly represent changes in 432 

precipitation in the catchment, i.e. they indicate wetter climatic conditions in the source areas of 433 

the Precordillera.  We therefore conclude that between 2.65 ± 0.15 Ma and 1.27 ± 0.47 Ma the 434 

source area in the Precordillera was predominantly (hyper-)arid. After 1.27 ± 0.47 Ma the climate 435 

in the source region had brief wetter interludes that were none-the-less long enough to erode 436 

shorelines. Due to the current orders of magnitude difference in precipitation between the Central 437 

Depression and the Precordillera (Houston and Hartley, 2003; Jordan et al., 2014) changes in the 438 

paleo-lake reflect the paleoclimate of the distant source (Precordillera) more strongly than the 439 

local (Central Depression) paleoclimate (Jordan et al., 2014). It is likely that the Central 440 

Depression (< 1500 m) remained (hyper-)arid throughout the wetter phases indicated for the 441 

Precordillera (Gayo et al., 2012; Jordan et al., 2014).  442 

Two recent studies (Jordan et al., 2014; Wang et al., 2015) provide constraints on Plio-Pleistocene 443 

changes in climate within the Río Loa catchment. A soil profile in the Central Depression in the 444 



southernmost portion of the Río Loa catchment allowed Wang et al. (2015) to conclude that 445 

climatic conditions were wetter than present between 3.2 and 2.5 Ma, and between 1.3–0.6 Ma. 446 

Investigating soils and sediments of alluvial fan systems on the precordilleran foreslope, due east 447 

of our study area, Jordan et al. (2014) infer wetter conditions for the periods between 4 and 3.6, 448 

as well as between 2.6 and 2.2 Ma, but hyperarid conditions between 2.2 and 1 Ma. For the time 449 

since ~1 Ma the authors infer hyperarid conditions with century to millennial scale fluctuations 450 

to an arid climate in the alluvial fans source areas (Jordan et al., 2014). Our findings agree with 451 

previous evidence for the cessation of a ‘pluvial’ phase at ~3 Ma and a later phase of pluvial 452 

conditions around 1Ma in the Central Depression (Hartley, 2003; Placzek et al., 2010; Evenstar et 453 

al., 2017). These brief, centennial to millennial interludes of wetter climate in the last 1 Ma (Jordan 454 

et al., 2014) are sufficiently long to cut shorelines (Oviatt et al., 1992; Garcin et al., 2012; Lifton et 455 

al., 2015). South of the Río Loa catchment, Jungers et al. (2013) suggested that enhanced erosion 456 

and deposition between 250 and 400 ka are indicative of wetter conditions. We note that, despite 457 

the considerable uncertainties of the ages and the different nature of the proxies, the inferred 458 

pluvial periods (Jungers et al., 2013; Jordan et al., 2014; Wang et al., 2015) agree favourably with 459 

our shoreline ages. The age-constraints from these studies (this study, Jungers et al., 2013; Jordan 460 

et al., 2014; Wang et al., 2015), however, are not sufficiently precise to be able to associate them 461 

to particular stadials/interstadials.   462 

The Plio-Pleistocene sediments of the QLSL provide important paleoclimatological information 463 

(Chong et al., 1999; Sáez et al., 1999; Pueyo et al., 2001; Sáez et al., 2012; Quezada et al., 2013). 464 

The currently available chronological constraints (Sáez et al., 2012; Quezada et al., 2013; Jordan 465 

et al., 2014, this study) are, however, contradictory. On Cerro Soledad (Fig. 1,3), the Soledad 466 

evaporites directly overlay the intrusive substrate, lacking older Cenozoic sediments (Pueyo et al., 467 

2001). They cover the entire Cerro Soledad, bar the highest ridges (Pueyo et al., 2001; this study). 468 

Interbedded volcanic ash layers in these evaporites yield Ar/Ar ages of 3.16 ± 0.07 Ma and 469 

3.73 ± 0.02Ma (Quezada et al., 2013), indicating the temporal hiatus between the deposition of the 470 

Soledad formation and the preceding Quillagua formation (termination ~4.5 Ma, Sáez et al., 2012) 471 



was less than 750 ka, if indeed there was a hiatus.  Near the eastern fringe of the QLSL, the Lomas 472 

del Sal (Fig. 1,6) is a tectonically uplifted block of the Soledad formation, with massive displacive 473 

halite ~90 m thick topped with ~10 m of gypsum cover (Pueyo et al., 2001). The halite is devoid 474 

of fluvioclastic sediments (Pueyo et al., 2001), whereas the gypsum cover contains interfingering 475 

alluvium (Jordan et al., 2014). Volcanic ashes found in a canyon near the bottom of the massive 476 

halite yield Ar/Ar ages between 0.21 ± 0.07 Ma and 0.098 ± 0.042Ma (Sáez et al., 2012); 477 

consequently, Sáez et al. (2012) place the Soledad Formation in its entirety into the mid to late 478 

Pleistocene. Based on the sedimentary horizons underlying the geomorphic surfaces, Jordan et al. 479 

(2014) assigned a Pliocene age (i.e. >2.6 Ma) for the evaporites at the top of the Lomas del Sal (Fig. 480 

4 in Jordan et al., 2014). The latter clearly contradicts the findings of Sáez et al. (2012),  however, 481 

it is in agreement with the ages of Quezada et al. (2013). While we cannot resolve the reasons for 482 

these contradictory results here, we note that our findings are rather in line with those of Jordan 483 

et al. (2014) and Quezada et al. (2013), since we present evidence for lake phases that eroded 484 

Soledad evaporites since the late Pliocene. 485 

The endohereic drainage system of the QLB (Sáez et al., 1999), had three main lake phases 486 

(Hilaricos Fm, Quillagua Fm, Soledad Fm, Sáez et al. (1999)). The evolution of an endohereic 487 

drainage system in the QLB was initiated by differential uplift of the Coastal Cordillera in relation 488 

to the Central Depression. At the same time, localized subsidence of the Central Depression 489 

created further accommodation space (Jordan et al., 2015b; Cosentino and Jordan, 2017). The 490 

inferred spilling point of the last lake phase is located at a transpressional topographic high 491 

associated with the strike slip fault of the AFS. Lake deposits (diatomites and open water 492 

evaporites; supplementary data) are found exclusively to the east of this high point (Fig. 1). The 493 

topographic high is made up from older, presumably early Miocene, coarse-grained fluvioclastic 494 

sediments (age-equivalents of the Azapa and/or El Diablo formation; Evenstar et al., 2017). These 495 

sediments are unconsolidated, thus prone to fast fluvial erosion once spilling occurred. The first 496 

phase of canyon down cutting and drainage of the lake was, therefore, probably very fast.  Once 497 

the drainage hit bedrock, currently 150-200 m above the present valley floor, incision might have 498 



been slower. We cannot exclude that spilling of the lake occurred via headward erosion of 499 

drainage from groundwater sapping (Hoke et al., 2004; May et al., 2005), since ground water 500 

conductivity is high in unconsolidated coarse grained sediments. From the preservation of open 501 

water evaporites at the same elevation (±10m relative) as the inferred spilling point 502 

(supplementary data) we infer that the lake spilled, though sapping by shallow groundwater 503 

might have accelerated the process. The change from an endohereic to an exohereic drainage 504 

system terminated the existence of lakes in the QLB, triggering subsequent incision and 505 

widespread denudation of its lacustrine deposits. 506 

 507 



Fig. 6: Google Earth image with modelled lake extension (ASTER GDEM 30m resolution) of a 508 

flooding level (dark blue) of 830 m.a.s.l. (Rivertools 3.0). Reconstruction only for the Quillagua-509 

Llamara basin. Light blue indicates reconstructed estimated maximum paleo- lake extension 510 

based on outcrops and modelled lake extensions (Rivertools 3.0). (1) Río Loa potential overflow 511 

divide towards the Pacific, (2) Montón de Gloria pass, overflow divide towards Salar Grande, (3) 512 

Cerro Soledad with isolated topographic heights, (4) Lomas de Sal, (5) Salar Grande, and (6) 513 

Quillagua. (B). Maximum elevation indicates local tectonic uplift of a splay fault from the AFS 514 

responsible for potential tectonic ponding. Minimum elevation indicates recent Río Loa course. 515 

(C) 3D Image (ASTER GDEM data) displays the tectonic splay fault from the Atacama Fault System. 516 

(Colour – Size: Full Page width 190mm) 517 

6. Conclusion 518 

The exposure age dating undertaken here better constrains the timing of pluvial periods in the 519 

Atacama Desert and the age for deposition of the Soledad Formation throughout the late Pliocene 520 

and Pleistocene. Shoreline formation and rounded pebbles on isolated topographic highs indicate 521 

tectonic activity throughout the Pleistocene and their uplift at rates of 94 m/Ma. Our results place 522 

the timing of the deposition of the Soledad Fm in the late Pliocene and Pleistocene under a wetter 523 

climate than today. Exposure ages of the youngest shoreline (274 ± 74 ka) constrain the timing 524 

for the incision of the modern Río Loa through the Coastal Cordillera and the transformation of 525 

the Río Loa catchment from an endohereic to exohereic system. Despite the Central Depression of 526 

the Atacama Desert remaining hyperarid through the Quaternary, climate changes external to the 527 

region can still have significant environmental impacts. 528 
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7. Appendices: Supplementary Material 538 



  Elevation cosm. 21Ne cosm. 10Be 10Be Age 10Be int. 10Be Total 21Ne  Age 21Ne int. 21Ne Total  

Shoreline Level 1 [m.a.s.l.] [ 107atoms/g] [ 106 atoms/g] [kyr]  Uncert.[kyr]  Uncert. [kyr] [kyr]  Uncert.[kyr] Uncert. [kyr] 

SL 15-012 a 796 ---------- 3.42 ± 0.14 827 41 86       
SL 15-012 b 796 ---------- 1.12 ± 0.06 231 15 28       
SL 15-012 c 796 ---------- 0.82 ± 0.04 170 11 19       
SL 15-012 d 796 ---------- 1.66 ± 0.07 358 20 45       
SL 15-012 e 796 ---------- 1.21 ± 0.05 254 11 27       
SL 15-012 f 796 ---------- 1.71 ± 0.06 375 17 44       
Mean SL15-12     1.65 ± 0.07 360 253 260       
Mean Subpop. SL15-12 (b-f)     1.30 ± 0.34 274 74 77       

Shoreline Level 2                   
SL 14-01 a 818 1.98 ± 0.18 1.94 ± 0.07 430 21 52 946 76 128 
SL 14-01 b 818   2.03 ± 0.20   1.82 ± 0.07 403 17 39 974 85 144 
SL 14-01 c 818 1.55 ± 0.18 1.63 ± 0.06 355 19 43 782 56 82 
SL 14-01 d 818 2.18 ± 0.13 2.00 ± 0.08 453 21 49 1038 65 146 
SL 14-01 e 818 1.87 ± 0.16 1.64 ± 0.06 359 17 44 913 59 106 
SL14-01 f 818 ---------- 2.41 ± 0.84 564 23 56 928 64 105 
Mean SL14-01     1.91 ± 0.07 417 74 84 953 72 128 
Mean Subpop. SL14-01 (a-e)     1.80 ± 0.07 392 37 52       

Shoreline Level 3                   
LL13-001 a 829 ---------- 3.89 ± 0.13 934 33 83       
LL13-001 b 829 ---------- 2.33 ± 0.08 525 17 48       
LL13-001 c 829 ---------- 1.68 ± 0.06 358 18 44       
LL13-001 d 829 ---------- 2.41 ± 0.08 542 19 49       
LL13-001 e 829 ---------- 2.54 ± 0.11 575 29 65       
LL13-001 f 829 ---------- 2.86 ± 0.09 676 24 77       
Mean Subpop. LL13-001 (b, c, d,e,f)     2.53 ± 0.09 540 160 160       

Shoreline Level 4                   
SL14-03 a 890 4.02 ± 0.30 4.77 ± 0.17 1230 50 110 1840 150 270 
SL14-03 b 890 4.07 ± 0.18 6.02 ± 0.21 1700 110 260 1870 80 270 
SL14-03 c 890 ---------- 6.53 ± 0.23 1960 100 250       
SL14-03 d 890 ---------- 4.02 ± 0.15 1000 50 100       
SL14-03 f 890 ---------- 2.76 ± 0.15 658 50 100       
SL14-03 g 890 ---------- 5.32 ± 0.20 1380 100 170       
Mean SL14-03     4.90 ± 1.26 1270 470 490 1850 120 280 

Shoreline Level 5                   
SL14-04 a 1022 5.50 ± 0.27 ----------       2280 120 320 
SL14-04 b 1022 43.13 ± 1.40 10.40 ± 0.35 4500 620 1500 21600   700 
SL14-04 c 1022 4.61 ± 0.21 1.36 ± 0.06 263 10 27 1920 90 230 
SL14-04 g 1022 ---------- 5.93 ± 0.23 1400 80 180       
SL14-04 h 1022 ---------- 8.29 ± 0.28 2520 180 460       

Top Cerro Soledad                   
SL14-05 a 1051 6.99 ± 0.32 8.99 ± 0.30 2880 230 590 2880 140 390 
SL14-05 b 1051 11.57 ± 0.43 10.50 ± 0.35 4500 610 1500 4830 180 640 
SL14-05 c 1051 7.03 ± 0.28 8.71 ± 0.29 2680 200 520 2900 120 390 
SL14-05 e 1051 8.10 ± 0.28 9.47 ± 0.31 3340 300 780 3380 120 450 
Mean SL14-05     9.42 ± 0.31 3220 610 910 3490 140 470 
Mean Subpop. SL14-05 (a,c,e)     9.06 ± 0.31 2930 240 610 3050 130 410 

539 



Table 1. Cosmogenic isotope data for quartz clasts. Further information concerning site specific 540 

data, triple isotope plots and scaled production rates are given in the supplementary information 541 

section.  542 
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