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ABSTRACT: A simple and effective one-pot, two-step intramolecular aryl
C−N and C−O bond forming process for the preparation of a wide range of
benzo-fused heterocyclic scaffolds using iron and copper catalysis is
described. Activated aryl rings were subjected to a highly regioselective,
iron(III) triflimide-catalyzed iodination, followed by a copper(I)-catalyzed
intramolecular N- or O-arylation step leading to indolines, dihydrobenzo-
furans, and six-membered analogues. The general applicability and
functional group tolerance of this method were exemplified by the total
synthesis of the neolignan natural product, (+)-obtusafuran. DFT
calculations using Fukui functions were also performed, providing a
molecular orbital rationale for the highly regioselective arene iodination
process.

■ INTRODUCTION

Indoline and dihydrobenzofuran scaffolds are privileged
structures, represented in a wide range of natural products
and pharmaceutically important agents.1 For this reason,
considerable efforts have focused on the discovery of efficient
methods for the preparation of these heterocycles.2 A
commonly used approach for the synthesis of indolines and
dihydrobenzofurans is the Buchwald−Hartwig or Ullmann-
type C−N and C−O bond forming process of prefunctional-
ized, halogenated phenylethylamines and phenylethylalcohols
(Figure 1a).3−6 As well as five-membered rings, this strategy is
highly effective for the preparation of six-membered benzo-
fused heterocyclic systems and has been used for the
preparation of a wide range of natural products such as
(+)-isatisine A,4g corsifuran A,5b and a number of quinoline-
containing alkaloids.3b

An alternative approach for preparing these ring systems has
been developed more recently involving transition-metal-
catalyzed aryl C−H activation and intramolecular cross-
coupling with N−H or O−H bonds.7,8 Pioneering work by
the Yu group showed that triflimide-protected 2-phenylethyl-
amines and Pd(II)/Cu(I) catalysis could be used for the one-
pot preparation of indolines via a tandem C−H bond
iodination−amination sequence.8a The palladium-catalyzed
intramolecular aryl C(sp2)−H amination process was
improved using N-chelating groups and oxidizing agents such
as hypervalent iodonium salts.8−10 Among the range of N-
protected amides used to direct the palladium-catalyzed
functionalization of aryl C−H bonds, the Zhao group
demonstrated the highly effective use of a N,O-bidentate
oxalyl amide (Figure 1b).8g

Although this strategy has also been used to prepare
dihydrobenzofurans from phenylethylalcohols, the oxidizing

conditions can be problematic for substrates bearing primary
and secondary alcohols.11 More recently, Zakarian and co-
workers reported a mechanistically distinct approach for the
preparation of dihydrobenzofurans (Figure 1c).12 A one-pot
intramolecular aryl C−O bond forming process was achieved
by formation of nonsymmetrical diaryliodonium salts by
oxidation of electron-rich 2-phenylethylalcohols, followed by
a copper-catalyzed C−O bond forming process. A key feature
of this method was the room temperature conditions for
copper-catalyzed cyclization.
While these methods provide an attractive entry to these

ring systems, many of the approaches have been specifically
developed for either C−N or C−O bond formation or for the
preparation of a particular ring size. We were interested in
developing a new approach for intramolecular C−N or C−O
bond formation that would avoid a prefunctionalization step,
precious transition metals, strong oxidizing conditions and
could be used for the general preparation of both five- and six-
membered heterocyclic systems. Herein, we describe a one-pot
intramolecular C−N and C−O bond forming process that
utilizes a highly regioselective iron-catalyzed iodination for
initial arene activation, followed by a copper-catalyzed C−N
and C−O cyclization (Figure 1d). As well as providing an
electronic rationale for the high regioselectivity of the iron-
catalyzed halogenation reaction, we show the general
application of this process for the preparation of a wide
range of ring systems and as the key step for the total synthesis
of the natural product, (+)-obtusafuran.
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■ RESULTS AND DISCUSSION
Previously, we have shown that the combination of iron(III)
chloride and the inexpensive ionic liquid [BMIM]NTf2 results
in the formation of iron triflimide, which can be used as a super
Lewis acid catalyst13 to activate N-halosuccinimides for the fast
and efficient regioselective halogenation of aromatic com-
pounds.14 In this current study, this transformation was
investigated for the regioselective iodination of a new class of
substrate, N-protected 2-phenylethylamines (Scheme 1). The

initial aim was to evaluate the 3-methoxy substituent as a
directing group for selective para-iodination and assess if the
resulting activated aryl intermediate could undergo a copper-
(I)-catalyzed N-arylation reaction for the one-pot synthesis of
indolines. Using standard conditions for halogenation with
iron(III) chloride (2.5 mol %) and [BMIM]NTf2 (7.5 mol %),
the iodination of N-benzoyl protected 1a by N-iodosuccini-
mide (NIS) was complete in 5 h at 40 °C.14a,15 Analysis of the
crude reaction mixture by 1H NMR spectroscopy showed the
formation of the para-iodinated regioisomer as the sole
product. The aryl ring of 1a can undergo iodination with
NIS, without the iron(III) triflimide catalyst; however, under
the same conditions, full conversion was only achieved after 22
h giving a 10:1 mixture of para- and ortho-regioisomers. The
regioselective iron(III) triflimide catalyzed activation of 1a was
then performed in combination with a Cu(I)-catalyzed N-
arylation for the one-pot synthesis of indoline 2a. Using copper
iodide (10 mol %) and DMEDA (20 mol %) during the C−N
bond forming step gave N-benzoyl-protected indoline 2a in
79% overall yield. It should be noted that when the synthesis of
2a was done by performing each step separately, the overall
yield (59%) was significantly lower than that for the one-pot
process. With the success of the one-pot synthesis of 2a, a
range of N-protecting groups were explored to evaluate the
most suitable nucleophile for the Cu(I)-catalyzed N-arylation.
While N-Cbz and N-Boc carbamate protected indolines 2c and
2d were prepared in good yields, the most efficient one-pot
processes involved N-acetamide or N-sulfonamide protected
compounds. In particular, one-pot activation and cyclization of
N-tosyl phenylethylamine 1f gave indoline 2f in 93% yield.
Having identified optimized conditions and the most

efficient N-nucleophile, the scope of the one-pot activation
and cyclization process was explored for the preparation of
indolines (Scheme 2). Using a range of N-tosyl ethylamine

Figure 1. Synthesis of indolines and dihydrobenzofuran scaffolds.

Scheme 1. One-Pot Activation and Cyclization of N-
Protected 3-Methoxyphenylethylamines 1a

aIsolated yields are shown.

Scheme 2. One-Pot Activation and Cyclization for the
Synthesis of N-Heterocyclesa

aIsolated yields are shown. bThe one-pot process was performed via
the bromide intermediate using NBS for the activation step.
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substituted anisoles, anilines, and acetanilides gave the
corresponding indolines 2f−2o as single regioisomers, in
43−93% yields.16 As expected, substrates with multiple
activating groups were converted to the indolines in shorter
overall reaction times. Interestingly, phenylethylamine 1o
containing N-acetyl and chlorine substituents failed to undergo
the iron(III)-catalyzed iodination even at 70 °C. Instead,
activation was achieved by bromination using N-bromosucci-
nimide (NBS) at 40 °C. Completion of the one-pot process
gave indoline 2o in 43% yield. Access to other benzannulated
heterocycles was also achieved using the one-pot process.
Iron(III)-catalyzed iodination and copper(I)-catalyzed cycliza-
tion of 3-methoxyphenylacetamide (1p) gave 2-oxindole 2p in
65% yield, while an N-tosyl propylamine substituted anisole led
to the corresponding tetrahydroquinoline 2q in 85% yield.17

The use of palladium-catalyzed C−H activation in the
presence of phenyliodonium diacetate, followed by C−O
cyclization for the synthesis of dihydrobenzofurans, can be
done using tertiary11a or secondary benzylic alcohol
nucleophiles.11b However, the general use of substrates bearing
primary or secondary hydroxy groups for this process are
problematic due to competitive oxidation.12 Mild oxidative
conditions such as those reported by the Zakarian group are
required for general access to dihydrobenzofurans (Figure
1c).12 Following the successful application of the one-pot
iron(III)-catalyzed activation and copper(I)-catalyzed cycliza-
tion for the synthesis of N-heterocycles, we were interested to
discover whether the mild oxidative conditions for this two-
step process could also be applied for the preparation of
dihydrobenzofurans. The transformation was initially attemp-
ted using 3-methoxyphenylethan-2′-ol (3a) for the synthesis of
2,3-dihydro-5-methoxybenzofuran (4a) (Scheme 3). While the
standard iodination conditions could be used, a slightly higher

temperature (150 °C) was required for complete conversion to
the cyclized dihydrobenzofuran. This gave 4a in 65% yield.
The scope of this process was then explored using a range of
substrates with various aryl activating groups and primary,
secondary, or tertiary alcohol nucleophiles (3a−3i). In general,
the one-pot processes were performed under the standard
conditions developed for the N-heterocycles, giving the
corresponding dihydrobenzofurans as single regioisomers in
56−72% yields. It should be noted that while other one-pot
methods have had problems with overoxidation and the
generation of benzofuran byproducts, especially with electron-
rich substrates,11b analogous dihydrobenzofurans produced in
this study (e.g., 4b−4d) were formed cleanly as single
products. The only limitation was found during the synthesis
of natural product corsifuran A (4g).18 Substrate 3g, which
contains two activated aryl rings, gave a mixture of products
during the iodination step, resulting in the isolation of
corsifuran A (4g) in only 29% yield.19 However, using
secondary benzylic alcohols with less electron-rich aryl rings
(e.g., 3h and 3i) allowed selective iodination of the 3-
methoxyphenyl moiety resulting in the synthesis of dihy-
drobenzofurans 4h and 4i in 64% and 63% yields, respectively.
This approach was also effective for the one-pot synthesis of
dihydrobenzopyrans. Application of (3-methoxyphenyl)-
propan-3′-ol (3j) to the one-pot iron(III)-catalyzed activation
and copper(I)-catalyzed cyclization gave dihydrobenzopyran 4j
as the sole product in 57% yield. Similar results were also
obtained for dihydrobenzopyrans 4k and 4l.
To further explore the functional group tolerance of the one-

pot process and illustrate its application for natural product
synthesis, the method was investigated as a key step for the
total synthesis of (+)-obtusafuran (10). The neolignan
(+)-obtusafuran was first isolated from the heartwood of
Dalbergia retusa20 and more recently from several other
Dalbergia species.21−23 As well as possessing antiplasmodial
activity,21 (+)-obtusafuran has been shown to have anti-
carcinogenic activity as a potent inducer of the carcinogen-
detoxifying enzyme, quinone reductase.24 Racemic obtusafuran
has been prepared by a thermal rearrangement of the
neoflavanoid, obtusaquinol,25 while the only asymmetric
synthesis of (+)-obtusafuran was reported by Chen and
Weisel, who used an enantioselective hydrogenation to
produce a chiral alcohol that was then subjected to an SNAr
reaction to form the furan ring.26 Our strategy involved the
synthesis of α-methyl phenyl ketone 7 (Scheme 4) and the
application of this to a Merck-type enantioselective hydro-
genation involving a base-mediated dynamic kinetic resolution
process.27,28 The resulting secondary benzylic alcohol 8 would
then be used in the one-pot iron(III)-catalyzed iodination and
copper(I)-catalyzed cyclization to complete the synthesis of
the dihydrobenzofuran skeleton. Initially, Weinreb amide 6
was prepared in two steps from phenylacetic acid 5, by
coupling with N,O-dimethylhydroxylamine using EDCI and
HOBt, followed by TBDMS protection of the phenol under
standard conditions. Reaction of 6 with phenylmagnesium
bromide and then α-alkylation with LiHMDS and methyl
iodide gave key intermediate 7 in good overall yield. This was
then subjected to the Merck enantioselective hydrogenation
using the commercially available Noyori-type chiral catalyst,
RuCl2[(S)-DM-Segphos][(S)-DAIPEN].27−29 On screening
various conditions and catalyst loadings, the best results were
achieved by hydrogenation at 10 bar of pressure, using 2 mol %
of the Ru(II)-catalyst. This gave secondary alcohol 8 as a single

Scheme 3. One-Pot Activation and Cyclization for the
Synthesis of O-Heterocyclesa

aIsolated yields are shown.
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diastereomer, in 95% enantiomeric excess and 64% yield.30

Our one-pot process was then investigated for the final key
step. Activation of the aryl ring using the iron(III)-catalyzed
iodination required a slightly higher temperature (50 °C) and
longer reaction time (7 h) than the more simple substrates.
Following this step, the standard conditions of the copper(I)-
catalyzed cyclization were then used to complete the one-pot
process, which gave dihydrobenzofuran 9 in 63% yield. Despite
using a substrate with a highly activated aryl ring and a
secondary alcohol, no byproducts from overiodination or
oxidation were observed at either stage of the one-pot process.
Finally, TBAF mediated removal of the silyl protecting group
completed the eight-step synthesis of (+)-obtusafuran (10) in
16% overall yield. The spectroscopic data and optical rotation
of 10 were entirely consistent with literature data.20b,26

Iron(III)-catalyzed activation of the N-protected 2-phenyl-
ethylamines and phenylethan-2′-ols gave the para-iodinated
isomers as the sole product. As no reaction was observed at the
other activated positions, including the most sterically
accessible ortho-position, DFT calculations were used to
explore electronic reasons for this reactivity.31 The reactivities
of different sites toward electrophilic or nucleophilic attack
may be assessed using a computed descriptor such as partial
(atomic) charge. In this study, the Hirshfeld partitioning
scheme was used.32 The Hirshfeld charges calculated for the
(unsubstituted) aromatic carbons of N-mesyl protected 2-
phenylethylamine 1e single out C-5 as the least preferred site
for electrophilic attack, but cannot distinguish which of C-2, C-
4, or C-6 would be the most preferred site (Table 1, entry 1).
A more refined and powerful reactivity descriptor is provided
by the Fukui functions.33,34 The electrophilic Fukui function
f −(r) has more positive values at points in space where it is
energetically favorable to remove electrons (see Supporting
Information for background and derivations); that is, f −(r)
identifies sites favored for electrophilic attack. If the reactivity
is entirely controlled by the frontier orbitals, f −(r) is well
approximated by the density of the HOMO. From Figure 2, it
is evident that the most positive region of f −(r), and hence the
most favorable site for electrophilic attack of 1e, is located
around C-6. More specifically, the pz atomic orbital on C-6
makes the largest contribution to the HOMO. By contracting
the continuous Fukui functions to distinct sites (e.g., atoms),
“condensed” Fukui reactivity indices are obtained; a large

(positive) electrophilicity index f − indicates a favored site for
electrophilic attack. Using frontier-orbital terminology, f − for a
particular atom can be identified with the contribution of that
atom to the HOMO. f − values for the aromatic carbons in 1e
are presented in Table 1 (entries 2 and 3). The quantitative
reactivity analysis using atomic Fukui indices thus clearly
identifies C-6 as the most preferred site for electrophilic attack
in this case, in agreement with experiment. C-2 and C-4 have
significantly diminished, nearly equal reactivity; C-5 is
predicted to be least reactive. Further analysis can be
performed using a “dual descriptor” Δf, which combines the
separate electrophilic and nucleophilic Fukui functions into
one descriptor.35 More positive values of Δf indicate sites for
nucleophilic attack; more negative values indicate sites for
electrophilic attack. As can be seen from Table 1 (entries 4 and
5), the analysis based on Δf values fully confirms the
regioselectivity observed for activation of the substrates in
this study.

■ CONCLUSIONS
In summary, a one-pot, two-step method involving iron(III)-
catalyzed aryl ring activation and copper(I)-catalyzed C−N or
C−O bond forming cyclization has been developed for the
general synthesis of valuable N- and O-heterocyclic scaffolds.

Scheme 4. Total Synthesis of (+)-Obtusafuran (10)a

aIsolated yields are shown.

Table 1. Reactivity Descriptors Computed for the Aromatic
Carbons of Methoxyphenylethylamine 1ea

entry reactivity descriptorsb C-2 C-4 C-5 C-6

1 qH/e −0.065 −0.071 −0.042 −0.065
2 f −(qH) 0.082 0.078 0.065 0.140
3 f −(HOMO) 12 10 8 22
4 Δf(qH) 0.045 0.019 0.068 −0.088
5 Δf(HOMO) 7 4 12 −15

aM06-2X/def2-TZVP/PCM(toluene). bqH is the Hirshfeld charge (in
units of the elementary charge, e). f −(qH) and Δf(qH) are the
condensed electrophilic Fukui function and the condensed “dual
descriptor”, respectively, calculated from Hirshfeld charges.
f −(HOMO) and Δf(HOMO) are the same descriptors but calculated
from Hirshfeld-atomic contributions to the HOMO (expressed in %).
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Following DFT calculations, which showed the molecular
orbital basis for the highly regioselective halogenation step, the
novel, one-pot method was applied to the efficient synthesis of
indolines and dihydrobenzofurans, as well as six-membered
analogues. This one-pot approach does not require prefunc-
tionalization of the substrate as with the traditional Buchwald−
Hartwig and Ullmann-type intramolecular couplings, and
unlike the established palladium-catalyzed dehydrogenative
processes, this method has no issues with overiodination or
oxidation and could be applied to substrates with highly
activated aryl ring systems and with primary and secondary
alcohols. This was exemplified by the use of this one-pot
process as the key step for the total synthesis of the neolignan
natural product, (+)-obtusafuran. We expect this simple and
effective approach to find utilization in the preparation of other
heterocyclic scaffolds and for application in the synthesis of
natural products and medicinal chemistry targets. Investigation
of further applications of the one-pot process is currently
underway.

■ EXPERIMENTAL SECTION
All reagents and starting materials were obtained from commercial
sources and used as received unless otherwise stated. Dry solvents
were purified using a solvent purification system. Brine refers to a
saturated solution of sodium chloride. All reactions were performed in
oven-dried glassware under an atmosphere of argon unless otherwise
stated. Flash column chromatography was carried out using silica gel
(40−63 μm) and neutral aluminum oxide (50−200 μm). Aluminum-
backed plates precoated with silica gel 60 (UV254) were used for thin
layer chromatography and were visualized under ultraviolet light and
by staining with KMnO4 or ninhydrin. 1H NMR spectra were
recorded on an NMR spectrometer at 400 or 500 MHz, and data are
reported as follows: chemical shift in ppm relative to tetramethylsilane
or the solvent as the internal standard (CDCl3, δ 7.26 ppm),
multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m =
multiplet or overlap of nonequivalent resonances, integration).
13C{1H} NMR spectra were recorded on an NMR spectrometer at
101 or 126 MHz, and data are reported as follows: chemical shift in

ppm relative to tetramethylsilane or the solvent as an internal
standard (CDCl3, δ 77.0 ppm), multiplicity with respect to hydrogen
(deduced from DEPT experiments, C, CH, CH2 or CH3). IR spectra
were recorded on an FTIR spectrometer; wavenumbers are indicated
in cm−1. Mass spectra were recorded using electron impact or
electrospray techniques. HRMS spectra were recorded using a dual-
focusing magnetic analyzer mass spectrometer. Melting points are
uncorrected. Optical rotations were determined as solutions
irradiating with the sodium D line (λ = 589 nm) using a polarimeter.
[α]D values are given in units 10−1 deg cm2 g−1. Chiral HPLC
methods were calibrated with the corresponding racemic mixtures.

3-Methoxy-1-[(E)-2′-nitrovinyl]benzene.36 To a solution of m-
anisaldehyde (0.890 mL, 7.30 mmol) in toluene (30 mL) were added
nitromethane (2.00 mL, 37.0 mmol) and ammonium acetate (0.560 g,
7.30 mmol). The resulting solution was heated under reflux for 18 h.
The reaction mixture was washed with water (2 × 30 mL), followed
by brine (2 × 30 mL). Purification by flash column chromatography
(dichloromethane) gave 3-methoxy-1-[(E)-2′-nitrovinyl]benzene
(1.21 g, 97%) as a yellow solid. Mp 91−92 °C (lit.36 89−91 °C);
1H NMR (400 MHz, CDCl3) δ 3.85 (s, 3H), 7.02−7.08 (m, 2H),
7.14 (d, J = 7.6 Hz, 1H), 7.37 (t, J = 7.6 Hz, 1H), 7.57 (d, J = 13.6 Hz,
1H), 7.97 (d, J = 13.6 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 55.4
(CH3), 114.0 (CH), 118.0 (CH), 121.7 (CH), 130.4 (CH), 131.4
(C), 137.4 (CH), 139.0 (CH), 160.2 (C); MS (EI) m/z 179 (M+,
100), 136 (82), 135 (72), 84 (86), 77 (50).

3,4-Dimethoxy-1-[(E)-2′-nitrovinyl]benzene.37 3,4-Dime-
thoxy-1-[(E)-2′-nitrovinyl]benzene was synthesized as described for
3-methoxy-1-[(E)-2′-nitrovinyl]benzene using 3,4-dimethoxy-
benzaldehyde (1.00 g, 6.00 mmol). Purification by flash column
chromatography (dichloromethane) gave 3,4-dimethoxy-1-[(E)-2′-
nitrovinyl]benzene (1.04 g, 83%) as a yellow solid. Mp 134−136 °C
(lit.37 135−137 °C); 1H NMR (400 MHz, CDCl3) δ 3.93 (s, 3H),
3.95 (s, 3H), 6.91 (d, J = 8.3 Hz, 1H), 7.01 (d, J = 1.7 Hz, 1H), 7.18
(dd, J = 8.3, 1.7 Hz, 1H), 7.53 (d, J = 13.6 Hz, 1H), 7.96 (d, J = 13.6
Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 56.0 (CH3), 56.1 (CH3),
110.3 (CH), 111.4 (CH), 122.8 (C), 124.6 (CH), 135.2 (CH), 139.3
(CH), 149.6 (C), 152.9 (C); MS (ESI) m/z 232 (M + Na+, 100).

3,5-Dimethoxy-1-[(E)-2′-nitrovinyl]benzene.38 3,5-Dime-
thoxy-1-[(E)-2′-nitrovinyl]benzene was synthesized as described for
3-methoxy-1-[(E)-2′-nitrovinyl]benzene using 3,5-dimethoxy-
benzaldehyde (0.350 g, 2.10 mmol). The residue was recrystallized
from diethyl ether which gave 3,5-dimethoxy-1-[(E)-2′-nitrovinyl]-
benzene (0.357 g, 81%) as a yellow solid. Mp 81−83 °C (lit.38 78
°C); 1H NMR (400 MHz, CDCl3) δ 3.83 (s, 6H), 6.59 (t, J = 2.2 Hz,
1H), 6.66 (d, J = 2.2 Hz, 2H), 7.54 (d, J = 13.6 Hz, 1H), 7.92 (d, J =
13.6 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 55.5 (CH3), 55.6
(CH3), 102.8 (CH), 104.2 (CH), 107.0 (CH), 107.6 (CH), 133.4
(CH), 139.2 (C), 160.7 (C), 161.3 (C); MS (EI) m/z 209 (M+, 100),
189 (48), 165 (90), 135 (34), 84 (98).

1-[(E)-2′-Nitrovinyl]-3,4,5-trimethoxybenzene.37 1-[(E)-2′-
Nitrovinyl]-3,4,5-trimethoxybenzene was synthesized as described
for 3-methoxy-1-[(E)-2′-nitrovinyl]benzene using 3,4,5-trimethoxy-
benzaldehyde (1.00 g, 6.00 mmol). The residue was recrystallized
from hexane, which gave 1-[(E)-2′-nitrovinyl]-3,4,5-trimethoxy-
benzene (1.14 g, 94%) as a yellow solid. Mp 119−121 °C (lit.37

122−124 °C); 1H NMR (400 MHz, CDCl3) δ 3.91 (s, 6H), 3.92 (s,
3H), 6.76 (s, 2H), 7.52 (d, J = 13.6 Hz, 1H), 7.94 (d, J = 13.6 Hz,
1H); 13C NMR (101 MHz, CDCl3) δ 56.3 (2 × CH3), 61.1 (CH3),
106.5 (2 × CH), 125.3 (C), 136.4 (CH), 139.3 (CH), 141.8 (C),
153.7 (2 × C); MS (ESI) m/z 262 (M + Na+, 100).

3-Methoxy-4-methylbenzaldehyde.39 To a stirred solution of
lithium aluminum hydride (0.425 g, 11.1 mmol) in dry
tetrahydrofuran (20 mL) was added a solution of methyl 3-
methoxy-4-methylbenzoate (1.00 g, 5.55 mmol) in dry tetrahydrofur-
an (10 mL) dropwise at 0 °C. The resulting suspension was warmed
to room temperature and stirred for 4 h after which, the solution was
cooled to 0 °C and diluted with tetrahydrofuran (20 mL). Water (0.5
mL) was added slowly followed by 15% aqueous sodium hydroxide
solution (0.5 mL) and water (1.5 mL). The resulting solution was
warmed to room temperature, and magnesium sulfate (0.50 g) was

Figure 2. Isosurface plots of (A) the HOMO and (B) the
electrophilic Fukui function f −(r) for 1e. The aminoalkyl part is
omitted, as its contribution to either function is negligible. Positive
values are colored in orange, and negative values, in purple. Isosurface
values: 0.006 au for f −(r), 0.1 au for the HOMO.
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added and stirred for 0.5 h. The suspension was filtered, and the
filtrate was concentrated in vacuo to give 3-methoxy-4-methylbenzyl
alcohol (0.767 g, 91%) as a colorless oil which was used without
further purification. To a stirred solution of 3-methoxy-4-methyl-
benzyl alcohol (0.737 g, 4.85 mmol) in chloroform (25 mL) was
added manganese dioxide (4.22 g, 48.5 mmol). The resulting
suspension was stirred at room temperature for 18 h. The crude
reaction mixture was filtered through Celite and concentrated in vacuo
to give 3-methoxy-4-methylbenzaldehyde (0.621 g, 75%) as a white
solid. Mp 34−36 °C (lit.39 39−40 °C); 1H NMR (400 MHz, CDCl3)
δ 2.29 (s, 3H), 3.90 (s, 3H), 7.29 (d, J = 7.5 Hz, 1H), 7.34 (d, J = 1.4
Hz, 1H), 7.36 (dd, J = 7.5, 1.4 Hz, 1H), 9.93 (s, 1H); 13C NMR (101
MHz, CDCl3) δ 16.9 (CH3), 55.5 (CH3), 107.9 (CH), 124.5 (CH),
130.9 (C), 134.9 (CH), 135.9 (C), 158.3 (C), 192.0 (CH); MS (EI)
m/z 150 (M+, 100), 121 (19), 91 (28), 84 (21).
3-Methoxy-4-methyl-1-[(E)-2′-nitrovinyl]benzene. 3-Me-

thoxy-4-methyl-1-[(E)-2′-nitrovinyl]benzene was synthesized as
described for 3-methoxy-1-[(E)-2′-nitrovinyl]benzene using 3-me-
thoxy-4-methylbenzaldehyde (0.624 g, 4.16 mmol). The residue was
recrystallized from hexane which gave 3-methoxy-4-methyl-1-[(E)-2′-
nitrovinyl]benzene (0.585 g, 73%) as a yellow solid. Mp 142−143 °C;
IR (neat) 3119, 2945, 1629, 1602, 1573, 1494, 1414, 1343, 1328,
1248, 1159, 1035, 976, 814 cm−1; 1H NMR (400 MHz, CDCl3) δ
2.26 (s, 3H), 3.87 (s, 3H), 6.92 (s, 1H), 7.06 (d, J = 7.6 Hz, 1H), 7.19
(d, J = 7.6 Hz, 1H), 7.57 (d, J = 13.6 Hz, 1H), 7.97 (d, J = 13.6 Hz,
1H); 13C NMR (101 MHz, CDCl3) δ 16.6 (CH3), 55.4 (CH3), 109.3
(CH), 122.2 (CH), 128.8 (C), 131.4 (CH), 132.4 (C), 136.3 (CH),
139.6 (CH), 158.3 (C); MS (ESI) m/z 216 (M + Na+, 100); HRMS
(ESI) calcd for C10H11NNaO3 (M + Na+) 216.0631, found 216.0626.
3,4-Methylenedioxy-1-[(E)-2′-nitrovinyl]benzene.40 3,4-

Methylenedioxy-1-[(E)-2′-nitrovinyl]benzene was synthesized as
described for 3-methoxy-1-[(E)-2′-nitrovinyl]benzene using piperonal
(1.00 g, 6.00 mmol). The residue was recrystallized from hexane
which gave 3,4-methylenedioxy-1-[(E)-2′-nitrovinyl]benzene (1.03 g,
80%) as a yellow solid. Mp 142−143 °C (lit.40 148 °C); 1H NMR
(400 MHz, CDCl3) δ 6.06 (s, 2H), 6.87 (d, J = 8.0 Hz, 1H), 7.00 (d, J
= 1.8 Hz, 1H), 7.08 (dd, J = 8.0, 1.8 Hz, 1H), 7.47 (d, J = 13.6 Hz,
1H), 7.92 (d, J = 13.6 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ
102.1 (CH2), 107.0 (CH), 109.1 (CH), 124.2 (CH), 126.6 (CH),
135.5 (C), 139.1 (CH), 148.8 (C), 151.4 (C); MS (EI) m/z 193 (M+,
100), 146 (98), 89 (65), 84 (51), 63 (44).
3-Nitro-1-[(E)-2′-nitrovinyl]benzene.41 3-Nitro-1-[(E)-2′-

nitrovinyl]benzene was synthesized as described for 3-methoxy-1-
[(E)-2′-nitrovinyl]benzene using 3-nitrobenzaldehyde (1.00 g, 6.00
mmol). Purification by flash column chromatography (petroleum
ether/ethyl acetate, 9:1) gave 3-nitro-1-[(E)-2′-nitrovinyl]benzene
(0.420 g, 31%) as a yellow solid. Mp 119−121 °C (lit.41 125−126
°C); 1H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 13.7 Hz, 1H), 7.69
(t, J = 8.0 Hz, 1H), 7.88 (dt, J = 8.0, 1.6 Hz, 1H), 8.05 (d, J = 13.7
Hz, 1H), 8.35 (dt, J = 8.0, 1.6 Hz, 1H), 8.43 (t, J = 1.6 Hz, 1H); 13C
NMR (101 MHz, CDCl3) δ 123.5 (CH), 126.2 (CH), 130.6 (CH),
131.9 (C), 134.4 (CH), 136.2 (CH), 139.3 (CH), 148.9 (C); MS
(EI) m/z 194 (M+, 100), 147 (48), 118 (38), 102 (100), 84 (82), 76
(36).
4-Chloro-3-nitro-1-[(E)-2′-nitrovinyl]benzene. 4-Chloro-3-

nitro-1-[(E)-2′-nitrovinyl]benzene was synthesized as described for
3-methoxy-1-[(E)-2′-nitrovinyl]benzene using 4-chloro-3-nitrobenzal-
dehyde (1.00 g, 6.00 mmol). Purification by flash column
chromatography (petroleum ether/ethyl acetate, 7:3) gave 4-chloro-
3-nitro-1-[(E)-2′-nitrovinyl]benzene (0.620 g, 26%) as a yellow solid.
Mp 142−143 °C; IR (neat) 3109, 2945, 2361, 1605, 1540, 1342,
1049, 833 cm−1; 1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 13.7 Hz,
1H), 7.66−7.72 (m, 2H), 7.96 (d, J = 13.7 Hz, 1H), 8.06 (d, J = 1.2
Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 125.6 (CH), 130.1 (C),
130.4 (C), 132.6 (CH), 133.2 (CH), 133.8 (C), 135.1 (CH), 139.4
(CH); MS (EI) m/z 228 (M+, 40), 181 (100), 152 (38), 136 (95),
115 (38), 101 (48), 89 (41), 75 (54); HRMS (EI) calcd for
C8H5

35ClN2O4 (M
+) 227.9938, found 227.9929.

1′-(3-Methoxyphenyl)ethyl-2′-amine.42 To a suspension of
sodium borohydride (0.180 g, 4.80 mmol) in dry tetrahydrofuran (10

mL) was added boron trifluoride diethyl etherate (0.750 mL, 6.00
mmol) dropwise at 0 °C, and the contents were stirred at room
temperature for 0.25 h. A solution of 3-methoxy-1-[(E)-2′-nitrovinyl]-
benzene in tetrahydrofuran (3.0 mL) was added dropwise into the
reaction mixture which was then heated under reflux for 6.5 h. After
cooling to room temperature, the reaction was quenched by the slow
addition of ice water (12 mL). The reaction mixture was acidified
with 1 M aqueous hydrochloric acid (12 mL) and heated to 85 °C for
2 h. The reaction mixture was cooled to room temperature and
washed with dichloromethane (2 × 10 mL), then 1 M aqueous
sodium hydroxide was added until basic (ca. pH 12). The aqueous
layer was extracted with dichloromethane (3 × 20 mL), dried
(MgSO4), and concentrated in vacuo to give 1′-(3-methoxyphenyl)-
ethyl-2′-amine (0.140 g, 92%) as a yellow oil which was used without
further purification. Spectroscopic data were consistent with the
literature.42 1H NMR (400 MHz, CDCl3) δ 1.99 (br s, 2H), 2.72 (t, J
= 6.8 Hz, 2H), 2.96 (t, J = 6.8 Hz, 2H), 3.78 (s, 3H), 6.73−6.80 (m,
3H), 7.21 (t, J = 7.6 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 39.0
(CH2), 43.0 (CH2), 55.2 (CH3), 111.6 (CH), 114.6 (CH), 121.2
(CH), 129.5 (CH), 140.9 (C), 159.8 (C); MS (ESI) m/z 152 (M +
H+, 100).

N-[(3-Methoxyphenyl)ethyl]benzamide (1a).43 1′-(3-
Methoxyphenyl)ethyl-2′-amine (0.050 g, 0.33 mmol) was dissolved
in dry dichloromethane (5 mL), and triethylamine (0.070 mL, 0.50
mmol) was added. The reaction mixture was cooled to 0 °C, and
benzoyl chloride (0.039 mL, 0.33 mmol) was added dropwise. The
reaction mixture was stirred at 0 °C for 0.5 h, warmed to room
temperature, and stirred for 20 h. The reaction mixture was diluted
with dichloromethane (10 mL), washed with 1 M aqueous
hydrochloric acid (10 mL) and then brine (10 mL), dried
(MgSO4), and concentrated in vacuo. Purification by flash column
chromatography (petroleum ether/ethyl acetate, 7:3) gave N-[(3-
methoxyphenyl)ethyl]benzamide (1a) (0.077 g, 91% yield) as a white
solid. Mp 64−66 °C (lit.43 67 °C); 1H NMR (400 MHz, CDCl3) δ
2.91 (t, J = 6.9 Hz, 2H), 3.71 (q, J = 6.9 Hz, 2H), 3.78 (s, 3H), 6.24
(br s, 1H), 6.76−6.84 (m, 3H), 7.20−7.26 (m, 1H), 7.36−7.42 (m,
2H), 7.44−7.50 (m, 1H), 7.67−7.72 (m, 2H); 13C NMR (101 MHz,
CDCl3) δ 35.8 (CH2), 41.1 (CH2), 55.2 (CH3), 112.1 (CH), 114.4
(CH), 121.1 (CH), 126.8 (2 × CH), 128.6 (2 × CH), 129.7 (CH),
131.4 (CH), 134.7 (C), 140.5 (C), 159.9 (C), 167.5 (C); MS (EI)
m/z 255 (M+, 25), 134 (100), 105 (62), 77 (25).

N-[(3-Methoxyphenyl)ethyl]acetamide (1b).44 1′-(3-
Methoxyphenyl)ethyl-2′-amine (0.050 g, 0.33 mmol) was dissolved
in dry dichloromethane (10 mL), and acetic anhydride (0.038 mL,
0.40 mmol) was added while stirring. The reaction mixture was stirred
at room temperature for 20 h. The reaction mixture was diluted with
dichloromethane (15 mL), washed with 1 M aqueous sodium
carbonate (15 mL) and then brine (15 mL), dried (MgSO4), and
concentrated in vacuo to give N-[(3-methoxyphenyl)ethyl]acetamide
(1b) (0.060 g, 94%) as a yellow oil which was used without further
purification. Spectroscopic data were consistent with the literature.44
1H NMR (400 MHz, CDCl3) δ 1.94 (s, 3H), 2.79 (t, J = 6.8 Hz, 2H),
3.51 (q, J = 6.8 Hz, 2H), 3.80 (s, 3H), 5.44 (br s, 1H), 6.72−6.82 (m,
3H), 7.23 (t, J = 7.9 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 23.4
(CH3), 35.7 (CH2), 40.5 (CH2), 50.2 (CH3), 111.9 (CH), 114.5
(CH), 121.1 (CH), 129.7 (CH), 140.5 (C), 159.9 (C), 170.0 (C);
MS (ESI) m/z 216 (M + Na+, 100).

Benzyl N-[(3-Methoxyphenyl)ethyl]carbamate (1c).45 1′-(3-
Methoxyphenyl)ethyl-2′-amine (0.100 g, 0.660 mmol) was dissolved
in dry dichloromethane (10 mL), and triethylamine (0.142 mL, 1.00
mmol) was added while stirring. The reaction mixture was cooled to 0
°C, and benzyl chloroformate (0.114 mL, 0.800 mmol) was added
dropwise. The reaction mixture was stirred at 0 °C for 0.5 h, warmed
to room temperature, and stirred for 5 h. The reaction mixture was
diluted with dichloromethane (15 mL), washed with 1 M aqueous
hydrochloric acid (15 mL) and then brine (15 mL), dried (MgSO4),
and concentrated in vacuo. Purification by flash column chromatog-
raphy (petroleum ether/ethyl acetate, 4:1) gave benzyl N-[(3-
methoxyphenyl)ethyl]carbamate (1c) (0.134 g, 72%) as a colorless
oil. Spectroscopic data were consistent with the literature.45 1H NMR
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(400 MHz, CDCl3) δ 2.79 (t, J = 6.6 Hz, 2H), 3.45 (q, J = 6.6 Hz,
2H), 3.78 (s, 3H), 4.76 (br s, 1H), 5.09 (s, 2H), 6.69−6.81 (m, 3H),
7.21 (t, J = 7.9 Hz, 1H), 7.28−7.38 (m, 5H); 13C NMR (101 MHz,
CDCl3) δ 36.1 (CH2), 42.1 (CH2), 55.2 (CH3), 66.7 (CH2), 111.9
(CH), 114.5 (CH), 121.1 (CH), 128.1 (2 × CH), 128.5 (2 × CH),
128.6 (CH), 129.6 (CH), 136.6 (C), 140.3 (C), 156.3 (C), 159.8
(C); MS (ESI) m/z 308 (M + Na+, 100).
tert-Butyl-N-[(3-methoxyphenyl)ethyl]carbamate (1d).46 1′-

(3-Methoxyphenyl)ethyl-2′-amine (0.200 g, 1.32 mmol) was
dissolved in dry dichloromethane (10 mL), and triethylamine
(0.370 mL, 2.64 mmol) was added with stirring. Di-tert-butyl
dicarbonate (0.870 g, 3.97 mmol) was added, and the resulting
solution was stirred at room temperature for 16 h. The reaction
mixture was concentrated in vacuo, and the residue was purified by
column chromatography (petroleum ether/ethyl acetate, 4:1) to give
tert-butyl-N-[(3-methoxyphenyl)ethyl]carbamate (1d) (0.253 g, 76%)
as a yellow oil. Spectroscopic data were consistent with the
literature.46 1H NMR (400 MHz, CHCl3) δ 1.44 (s, 9H), 2.77 (t, J
= 6.9 Hz, 2H), 3.38 (q, J = 6.9 Hz, 2H), 3.80 (s, 3H), 4.55 (br s, 1H),
6.72−6.89 (m, 3H), 7.22 (t, J = 7.9 Hz, 1H); 13C NMR (101 MHz,
CHCl3) δ 28.4 (3 × CH3), 36.3 (CH2), 41.7 (CH2), 55.2 (CH3), 79.2
(C), 111.8 (CH), 114.5 (CH), 121.1 (CH), 129.6 (CH), 140.6 (C),
155.9 (C), 159.8 (C); MS (EI) m/z 251 (M+, 12), 195 (32), 134
(100), 121 (48), 91 (24).
N-[(3-Methoxyphenyl)ethyl]methanesulfonamide (1e). 1′-

(3-Methoxyphenyl)ethyl-2′-amine (0.198 g, 1.32 mmol) was
dissolved in dry dichloromethane (10 mL), and triethylamine
(0.370 mL, 2.64 mmol) was added with stirring. The reaction
mixture was cooled to 0 °C, and methanesulfonyl chloride (0.120 mL,
1.59 mmol) was added. The reaction mixture was stirred at 0 °C for
0.5 h, warmed to room temperature, and stirred for 4 h. The reaction
mixture was diluted with dichloromethane (15 mL), washed with 1 M
aqueous hydrochloric acid (15 mL), and brine (15 mL), dried
(MgSO4), and concentrated in vacuo. Purification by flash column
chromatography (petroleum ether/ethyl acetate, 1:1) gave N-[(3-
methoxyphenyl)ethyl]methanesulfonamide (1e) (0.184 g, 60%) as a
yellow oil. IR (neat) 3287, 2936, 1586, 1489, 1312, 1258, 1146, 783
cm−1; 1H NMR (500 MHz, CDCl3) δ 2.83−2.88 (m, 5H), 3.41 (q, J
= 6.4 Hz, 2H), 3.81 (s, 3H), 4.24 (br s, 1H), 6.74−6.82 (m, 3H), 7.25
(t, J = 7.9 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 36.5 (CH2), 40.4
(CH3), 44.3 (CH2), 55.2 (CH3), 112.2 (CH), 114.7 (CH), 121.1
(CH), 129.9 (CH), 139.3 (C), 160.0 (C); MS (EI) m/z 229 (M+,
35), 134 (100), 122 (76), 108 (62), 91 (25); HRMS (EI) calcd for
C10H15NO3S (M+) 229.0773, found 229.0780.
N- [ (3-Methoxyphenyl )ethyl ] -4 ′ ′ -methylbenzene-

sulfonamide (1f).47 1′-(3-Methoxyphenyl)ethyl-2′-amine (0.200 g,
1.32 mmol) was dissolved in dry dichloromethane (10 mL) and
triethylamine (0.280 mL, 1.98 mmol) was added with stirring. The
reaction mixture was cooled to 0 °C and p-toluenesulfonyl chloride
(0.302 g, 1.58 mmol) was added. The reaction mixture was stirred at
0 °C for 0.5 h, warmed to room temperature and stirred for 6 h. The
reaction mixture was diluted with dichloromethane (15 mL), washed
with 1 M aqueous hydrochloric acid (15 mL), brine (15 mL), dried
(MgSO4) and concentrated in vacuo. Purification by flash column
chromatography (petroleum ether/ethyl acetate, 4:1) gave N-[(1-
methoxyphenyl)ethyl]-4′′-methylbenzenesulfonamide (1f) (0.327 g,
81%) as a yellow oil. Spectroscopic data were consistent with the
literature.47 1H NMR (400 MHz, CDCl3) δ 2.45 (s, 3H), 2.75 (t, J =
6.9 Hz, 2H), 3.23 (q, J = 6.9 Hz, 2H), 3.79 (s, 3H), 4.54 (br s, 1H),
6.63 (br s, 1H), 6.69 (br d, J = 7.9 Hz, 1H), 6.78 (dd, J = 7.9, 2.5 Hz,
1H), 7.20 (t, J = 7.9 Hz, 1H), 7.31 (d, J = 8.2 Hz, 2H), 7.71 (d, J = 8.2
Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 21.5 (CH3), 35.8 (CH2),
44.1 (CH2), 55.1 (CH3), 112.1 (CH), 114.4 (CH), 121.0 (CH),
127.1 (2 × CH), 129.7 (2 × CH), 129.8 (CH), 136.9 (C), 139.2 (C),
143.4 (C), 159.9 (C); MS (ESI) m/z 328 (M + Na+, 100).
N-[(3,4-Dimethoxyphenyl)ethyl]-4′′-methylbenzene-

sulfonamide (1g).48 To a suspension of sodium borohydride (0.817
g, 21.6 mmol) in dry tetrahydrofuran (50 mL) was added boron
trifluoride diethyl etherate (3.37 mL, 27.3 mmol) dropwise at 0 °C,
and the mixture was stirred at room temperature for 0.25 h. A solution

of 3,4-dimethoxy-1-[(E)-2′-nitrovinyl]benzene (0.950 g, 4.55 mmol)
in tetrahydrofuran (15 mL) was added dropwise into the reaction
mixture which was then heated under reflux for 6.5 h. After cooling to
room temperature, the reaction was quenched by the slow addition of
ice water (30 mL). The reaction mixture was acidified with 1 M
aqueous hydrochloric acid (30 mL) and heated to 85 °C for 2 h. The
reaction mixture was cooled to room temperature and washed with
dichloromethane (2 × 40 mL), and then 1 M aqueous sodium
hydroxide was added until basic (ca. pH 12). The aqueous layer was
extracted with dichloromethane (3 × 40 mL), dried (MgSO4), and
concentrated in vacuo to give 1′-(3,4-dimethoxyphenyl)ethyl-2′-amine
(0.582 g, 71%) as a yellow oil which was used without further
purification. 1′-(3,4-Dimethoxyphenyl)ethyl-2′-amine (0.509 g, 2.81
mmol) was dissolved in dry dichloromethane (20 mL), and
triethylamine (0.588 mL, 4.22 mmol) was added while stirring. The
reaction mixture was cooled to 0 °C, and p-toluenesulfonyl chloride
(0.643 g, 3.37 mmol) was added. The reaction mixture was stirred at
0 °C for 0.5 h, warmed to room temperature, and stirred for 6 h. The
reaction mixture was diluted with dichloromethane (30 mL), washed
with 1 M aqueous hydrochloric acid (30 mL) and brine (30 mL),
dried (MgSO4), and concentrated in vacuo. Purification by flash
column chromatography (petroleum ether/ethyl acetate, 7:3) gave N-
[(3,4-dimethoxyphenyl)ethyl]-4′′-methylbenzenesulfonamide (1g)
(0.716 g, 76%) as a yellow oil. Spectroscopic data were consistent
with the literature.48 1H NMR (400 MHz, CDCl3) δ 2.42 (s, 3H),
2.71 (t, J = 6.8 Hz, 2H), 3.19 (q, J = 6.8 Hz, 2H), 3.81 (s, 3H), 3.86
(s, 3H), 4.31 (t, J = 6.8 Hz, 1H), 6.55 (d, J = 2.0 Hz, 1H), 6.62 (dd, J
= 8.1, 2.0 Hz, 1H), 6.76 (d, J = 8.1 Hz, 1H), 7.28 (d, J = 8.2 Hz, 2H),
7.67 (d, J = 8.2 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 21.5
(CH3), 35.3 (CH2), 44.3 (CH2), 55.8 (CH3), 56.0 (CH3), 111.5
(CH), 111.8 (CH), 120.8 (CH), 127.1 (2 × CH), 129.7 (2 × CH),
130.1 (C), 136.9 (C), 143.4 (C), 148.0 (C), 149.2 (C); MS (EI) m/z
335 (M+, 60), 184 (17), 164 (38), 151 (100), 107 (17), 91 (48).

N-[(3,5-Dimethoxyphenyl)ethyl]-4′′-methylbenzene-
sulfonamide (1h).49 N-[(3,5-Dimethoxyphenyl)ethyl]-4′′-methyl-
benzenesulfonamide (1h) was synthesized as described for N-[(3,4-
dimethoxyphenyl)ethyl]-4′′-methylbenzenesulfonamide (1g) using
3,5-dimethoxy-1-[(E)-2′-nitrovinyl]benzene. Reduction of 3,5-dime-
thoxy-1-[(E)-2′-nitrovinyl]benzene (0.330 g, 1.58 mmol) using
sodium borohydride (0.285 g, 7.51 mmol) and boron trifluoride
diethyl etherate (1.17 mL, 9.48 mmol) gave 1′-(3,5-dimethoxy-
phenyl)ethyl-2′-amine (0.165 g, 58%) which was used without further
purification. The N-protection step was carried out at room
temperature for 18 h. Purification by flash column chromatography
(petroleum ether/ethyl acetate, 4:1) gave N-[(3,5-dimethoxyphenyl)-
ethyl]-4′′-methylbenzenesulfonamide (1h) (0.150 g, 50%) as a
colorless oil. Spectroscopic data were consistent with the literature.49
1H NMR (400 MHz, CDCl3) δ 2.42 (s, 3H), 2.69 (t, J = 6.9 Hz, 2H),
3.19 (q, J = 6.9 Hz, 2H), 3.74 (s, 6H), 4.48 (t, J = 6.9 Hz, 1H), 6.21
(d, J = 2.2 Hz, 2H), 6.31 (t, J = 2.2 Hz, 1H), 7.27 (d, J = 8.2 Hz, 2H),
7.68 (d, J = 8.2 Hz, 2H); 13C NMR (126 MHz, CDCl3) δ 21.5
(CH3), 36.0 (CH2), 44.0 (CH2), 55.3 (2 × CH3), 98.7 (CH), 106.7
(2 × CH), 127.1 (2 × CH), 129.7 (2 × CH), 136.9 (C), 140.0 (C),
143.4 (C), 161.1 (2 × C); MS (ESI) m/z 358 (M + Na+, 100).

4′′-Methyl-N-[(3,4,5-trimethoxyphenyl)ethyl]benzene-
sulfonamide (1i).50 4′′-Methyl-N-[(3,4,5-trimethoxyphenyl)ethyl]-
benzenesulfonamide (1i) was synthesized as described for N-[(3,4-
dimethoxyphenyl)ethyl]-4′′-methylbenzenesulfonamide (1g) using 1-
[(E)-2′-nitrovinyl]-3,4,5-trimethoxybenzene. Reduction of 1-[(E)-2′-
nitrovinyl]-3,4,5-trimethoxybenzene (1.09 g, 4.56 mmol) using
sodium borohydride (0.821 g, 21.7 mmol) and boron trifluoride
diethyl etherate (3.90 mL, 27.4 mmol) gave 1′-(3,4,5-trimethoxy-
phenyl)ethyl-2′-amine (0.748 g, 78%) which was used without further
purification. The N-protection step was carried out at room
temperature for 6 h. Purification by flash column chromatography
(petroleum ether/ethyl acetate, 3:2) gave 4′′-methyl-N-[(3,4,5-
trimethoxyphenyl)ethyl]benzenesulfonamide (1i) (0.903 g, 71%) as
a yellow oil. Spectroscopic data were consistent with the literature.50
1H NMR (400 MHz, CDCl3) δ 2.42 (s, 3H), 2.71 (t, J = 6.8 Hz, 2H),
3.21 (q, J = 6.8 Hz, 2H), 3.80 (s, 6H), 3.81 (s, 3H), 4.48 (t, J = 6.8
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Hz, 1H), 6.28 (s, 2H), 7.28 (d, J = 8.3 Hz, 2H), 7.69 (d, J = 8.3 Hz,
2H); 13C NMR (101 MHz, CDCl3) δ 21.5 (CH3), 36.1 (CH2), 44.2
(CH2), 56.1 (2 × CH3), 60.8 (CH3), 105.7 (2 × CH), 127.1 (2 ×
CH), 129.7 (2 × CH), 133.3 (C), 136.9 (C), 137.0 (C), 143.5 (C),
153.4 (2 × C); MS (ESI) m/z 388 (M + Na+, 100).
N-[(3-Methoxy-4-methylphenyl)ethyl]-4′′-methylbenzene-

sulfonamide (1j). N-[(3-Methoxy-4-methylphenyl)ethyl]-4′′-
methylbenzenesulfonamide (1j) was synthesized as described for N-
[(3,4-dimethoxyphenyl)ethyl]-4′′-methylbenzenesulfonamide (1g)
using 3-methoxy-4-methyl-1-[(E)-2′-nitrovinyl]benzene. Reduction
of 3-methoxy-4-methyl-1-[(E)-2′-nitrovinyl]benzene (0.585 g, 3.03
mmol) using sodium borohydride (0.757 g, 20.5 mmol) and boron
trifluoride diethyl etherate (3.42 mL, 26.5 mmol) gave 1′-(3-methoxy-
4-methylphenyl)ethyl-2′-amine (0.356 g, 71%) which was used
without further purification. The N-protection step was carried out
at room temperature for 24 h. Purification by flash column
chromatography (petroleum ether/ethyl acetate, 4:1) gave N-[(3-
methoxy-4-methylphenyl)ethyl]-4′′-methylbenzenesulfonamide (1j)
(0.278 g, 45%) as a yellow oil. IR (neat) 3264, 2924, 1586, 1512,
1464, 1414, 1323, 1256, 1155, 1094, 814 cm−1; 1H NMR (400 MHz,
CDCl3) δ 2.17 (s, 3H), 2.42 (s, 3H), 2.72 (t, J = 6.8 Hz, 2H), 3.20 (q,
J = 6.8 Hz, 2H), 3.76 (s, 3H), 4.34 (t, J = 6.8 Hz, 1H), 6.51 (d, J = 1.4
Hz, 1H), 6.51 (dd, J = 7.5, 1.4 Hz, 1H), 7.01 (d, J = 7.5 Hz, 1H), 7.27
(d, J = 8.2 Hz, 2H), 7.67 (d, J = 8.2 Hz, 2H); 13C NMR (101 MHz,
CDCl3) δ 15.8 (CH3), 21.5 (CH3), 35.7 (CH2), 44.2 (CH2), 55.2
(CH3), 110.4 (CH), 120.4 (CH), 125.2 (C), 127.1 (2 × CH), 129.7
(2 × CH), 130.8 (CH), 136.3 (C), 137.0 (C), 143.4 (C), 158.0 (C);
MS (ESI) m/z 342 (M + Na+, 100); HRMS (ESI) calcd for
C17H21NNaO3S (M + Na+) 342.1134, found 342.1125.
4′′-Methyl-N-[(3,4-methylenedioxyphenyl)ethyl]benzene-

sulfonamide (1k).51 4′′-Methyl-N-[(3,4-methylenedioxyphenyl)-
ethyl]benzenesulfonamide (1k) was synthesized as described for N-
[(3,4-dimethoxyphenyl)ethyl]-4′′-methylbenzenesulfonamide (1g)
using 3,4-methylenedioxy-1-[(E)-2′-nitrovinyl]benzene. Reduction
of 3,4-methylenedioxy-1-[(E)-2′-nitrovinyl]benzene (1.03 g, 5.32
mmol) using sodium borohydride (0.957 g, 25.3 mmol) and boron
trifluoride diethyl etherate (3.90 mL, 31.9 mmol) gave 1′-(3,4-
methylenedioxyphenyl)ethyl-2′-amine (0.587 g, 66%) which was used
without further purification. The N-protection step was carried out at
room temperature for 6 h. Purification by flash column chromatog-
raphy (petroleum ether/ethyl acetate, 4:1) gave 4′′-methyl-N-[(3,4-
methylenedioxyphenyl)ethyl]benzenesulfonamide (1k) (0.679 g,
76%) as a white solid. Mp 86−88 °C (lit.51 89−90 °C); 1H NMR
(400 MHz, CDCl3) δ 2.43 (s, 3H), 2.67 (t, J = 6.8 Hz, 2H), 3.16 (q, J
= 6.8 Hz, 2H), 4.34 (br s, 1H), 5.92 (s, 2H), 6.49−6.54 (m, 2H), 6.70
(dd, J = 7.1, 1.3 Hz, 1H), 7.29 (d, J = 8.4 Hz, 2H), 7.69 (d, J = 8.4 Hz,
2H); 13C NMR (101 MHz, CDCl3) δ 21.5 (CH3), 35.5 (CH2), 44.3
(CH2), 101.0 (CH2), 108.5 (CH), 109.0 (CH), 121.8 (CH), 127.1 (2
× CH), 129.7 (2 × CH), 131.3 (C), 137.0 (C), 143.5 (C), 146.5 (C),
147.9 (C); MS (ESI) m/z 342 (M + Na+, 100).
4′′-Methyl-N-[(3-nitrophenyl)ethyl]benzenesulfonamide.

4′′-Methyl-N-[(3-nitrophenyl)ethyl]benzenesulfonamide was synthe-
sized as described for N-[(3,4-dimethoxyphenyl)ethyl]-4′′-methyl-
benzenesulfonamide (1g) using 3-nitro-1-[(E)-2′-nitrovinyl]benzene.
Reduction of 3-nitro-1-[(E)-2′-nitrovinyl]benzene (0.281 g, 1.45
mmol) using sodium borohydride (0.363 g, 9.78 mmol) and boron
trifluoride diethyl etherate (1.59 mL, 12.3 mmol) gave 1′-(3-
nitrophenyl)ethyl-2′-amine (0.186 g, 77%) which was used without
further purification. The N-protection step was carried out at room
temperature for 6 h. Purification by flash column chromatography
(petroleum ether/ethyl acetate, 1:1) gave 4′′-methyl-N-[(3-
nitrophenyl)ethyl]benzenesulfonamide (0.142 g, 82%) as a yellow
oil. IR (neat) 3285, 1597, 1526, 1348, 1325, 1155, 1094, 814 cm−1;
1H NMR (400 MHz, CDCl3) δ 2.42 (s, 3H), 2.88 (t, J = 7.0 Hz, 2H),
3.25 (q, J = 7.0 Hz, 2H), 5.03 (br s, 1H), 7.27 (d, J = 7.9 Hz, 2H),
7.42 (t, J = 7.8 Hz, 1H), 7.47 (dt, J = 7.8, 1.5 Hz, 1H), 7.68 (d, J = 7.9
Hz, 2H), 7.90 (t, J = 1.5 Hz, 1H), 8.03 (dt, J = 7.8, 1.5 Hz, 1H); 13C
NMR (101 MHz, CDCl3) δ 21.5 (CH3), 35.5 (CH2), 43.8 (CH2),
121.8 (CH), 123.6 (CH), 127.0 (2 × CH), 129.5 (CH), 129.8 (2 ×
CH), 135.2 (CH), 136.7 (C), 140.0 (C), 143.7 (C), 148.3 (C); MS

(ESI) m/z 343 (M + Na+, 100); HRMS (ESI) calcd for
C15H16N2NaO4S (M + Na+) 343.0723, found 343.0712.

N-[(4-Chloro-3-nitrophenyl)ethyl]-4′′-methylbenzene-
sulfonamide. N-[(4-Chloro-3-nitrophenyl)ethyl]-4′′-methyl-
benzenesulfonamide was synthesized as described for N-[(3,4-
dimethoxyphenyl)ethyl]-4′′-methylbenzenesulfonamide (1g) using
4-chloro-3-nitro-1-[(E)-2′-nitrovinyl]benzene. Reduction of 4-
chloro-3-nitro-1-[(E)-2′-nitrovinyl]benzene (0.255 g, 1.12 mmol)
using sodium borohydride (0.280 g, 7.55 mmol) and boron trifluoride
diethyl etherate (1.23 mL, 9.52 mmol) gave 1′-(4-chloro-3-
nitrophenyl)ethyl-2′-amine (0.174 g, 78%) which was used without
further purification. The N-protection step was carried out at room
temperature for 6 h. Purification by flash column chromatography
(petroleum ether/ethyl acetate, 7:3) gave N-[(4-chloro-3-
nitrophenyl)ethyl]-4′′-methylbenzenesulfonamide (0.238 g, 79%) as
a yellow solid. Mp 84−86 °C; IR (neat) 3271, 2922, 2361, 1532,
1327, 1157, 1088, 810 cm−1; 1H NMR (400 MHz, CDCl3) δ 2.43 (s,
3H), 2.82 (t, J = 6.8 Hz, 2H), 3.22 (q, J = 6.8 Hz, 2H), 5.13 (t, J = 6.8
Hz, 1H), 7.24−7.30 (m, 3H, 6-H), 7.38 (d, J = 8.2 Hz, 1H), 7.55 (d, J
= 2.0 Hz, 1H), 7.65 (d, J = 8.2 Hz, 2H); 13C NMR (101 MHz,
CDCl3) δ 21.6 (CH3), 34.9 (CH2), 43.6 (CH2), 125.2 (C), 125.8
(CH), 127.0 (2 × CH), 129.8 (2 × CH), 131.9 (CH), 133.8 (CH),
136.5 (C), 138.6 (C), 143.9 (C), 147.7 (C); MS (ESI) m/z 377 (M +
Na+, 100); HRMS (ESI) calcd for C15H15

35ClN2NaO4S (M + Na+)
377.0333, found 377.0326.

N-[(3-Aminophenyl)ethyl]-4′′-methylbenzenesulfonamide
(1l). To a stirred solution of 4′′-methyl-N-[(3-nitrophenyl)ethyl]-
benzenesulfonamide (0.142 g, 0.40 mmol) in ethanol (20 mL) was
added tin(II) dichloride dihydrate (0.758 g, 3.36 mmol), and the
resulting solution was heated under reflux for 18 h. After cooling to
room temperature, the reaction mixture was diluted with saturated
aqueous sodium hydrogen carbonate solution (20 mL) and extracted
with dichloromethane (4 × 50 mL). The combined extracts were
washed with brine (2 × 200 mL), dried (MgSO4), and concentrated
in vacuo. Purification by flash column chromatography (petroleum
ether/ethyl acetate, 1:1) gave N-[(3-aminophenyl)ethyl]-4′′-methyl-
benzenesulfonamide (1l) (0.102 g, 79%) as a white solid. Mp 80−82
°C; IR (neat) 3268, 2922, 1601, 1495, 1460, 1319, 1153, 1093, 814
cm−1; 1H NMR (400 MHz, CDCl3) δ 2.42 (s, 3H), 2.66 (t, J = 6.8
Hz, 2H), 3.17 (q, J = 6.8 Hz, 2H), 3.62 (br s, 2H), 4.38 (br s, 1H),
6.39 (t, J = 1.7 Hz, 1H), 6.42−6.48 (m, 1H), 6.53 (dd, J = 7.6, 1.7 Hz,
1H), 7.04 (t, J = 7.6 Hz, 1H), 7.29 (d, J = 7.9 Hz, 2H), 7.69 (d, J = 7.9
Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 21.5 (CH3), 35.7 (CH2),
44.1 (CH2), 113.6 (CH), 115.3 (CH), 118.8 (CH), 127.1 (2 × CH),
129.7 (2 × CH), 129.8 (CH), 137.0 (C), 138.8 (C), 143.4 (C), 146.8
(C); MS (ESI) m/z 313 (M + Na+, 100); HRMS (ESI) calcd for
C15H18N2NaO2S (M + Na+) 313.0981, found 313.0984.

N-[(3-Amino-4-chlorophenyl)ethyl]-4′′-methylbenzene-
sulfonamide (1m). N-[(3-Amino-4-chlorophenyl)ethyl]-4′′-methyl-
benzenesulfonamide (1m) was synthesized as described for N-[(3-
aminophenyl)ethyl]-4′′-methylbenzenesulfonamide (1l) using 4′′-
methyl-N-[(3-nitro-4-chlorophenyl)ethyl]benzenesulfonamide (0.278
g, 0.790 mmol). Purification by flash column chromatography
(petroleum ether/ethyl acetate, 7:3) gave N-[(3-amino-4-
chlorophenyl)ethyl]-4′′-methylbenzenesulfonamide (1m) (0.226 g,
89%) as a colorless oil. IR (neat) 3372, 3279, 2924, 2361, 1620, 1497,
1435, 1319, 1156, 1088, 810 cm−1; 1H NMR (400 MHz, CDCl3) δ
2.41 (s, 3H), 2.62 (t, J = 6.8 Hz, 2H), 3.13 (q, J = 6.8 Hz, 2H), 4.00
(br s, 2H), 4.88 (t, J = 6.8 Hz, 1H), 6.36 (dd, J = 8.1, 2.0 Hz, 1H),
6.49 (d, J = 2.0 Hz, 1H), 7.06 (d, J = 8.1 Hz, 1H), 7.26 (d, J = 8.3 Hz,
2H), 7.67 (d, J = 8.3 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 21.6
(CH3), 35.3 (CH2), 44.0 (CH2), 116.1 (CH), 117.7 (C), 119.2
(CH), 127.1 (2 × CH), 129.6 (CH), 129.7 (2 × CH), 136.8 (C),
137.5 (C), 143.0 (C), 143.5 (C); MS (ESI) m/z 347 (M + Na+, 100);
HRMS (ESI) calcd for C15H17

35ClN2NaO2S (M + Na+) 347.0591,
found 347.0582.

N-[(3-Acetamidophenyl)ethyl]-4′′-methylbenzene-
sulfonamide (1n). Acetic anhydride (0.110 mL, 1.17 mmol) was
added to a stirred solution of N-[(3-aminophenyl)ethyl]-4′′-methyl-
benzenesulfonamide (1l) (0.225 g, 0.780 mmol) in dry dichloro-
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methane (10 mL) and stirred at room temperature for 16 h. The
reaction mixture was washed with saturated sodium carbonate (15
mL) and brine (15 mL). The organic layer was dried (MgSO4) and
concentrated in vacuo. Purification by flash column chromatography
(petroleum ether/ethyl acetate, 3:7) gave N-[(3-acetamidophenyl)-
ethyl]-4′′-methylbenzenesulfonamide (1n) (0.245 g, 95%) as a
colorless oil. IR (neat) 3282, 2921, 1669, 1613, 1595, 1549, 1489,
1440, 1319, 1153, 1094, 814 cm−1; 1H NMR (400 MHz, CDCl3) δ
2.14 (s, 3H), 2.42 (s, 3H), 2.72 (t, J = 6.8 Hz, 2H), 3.18 (q, J = 6.8
Hz, 2H), 4.69 (t, J = 6.8 Hz, 1H), 6.81 (d, J = 7.5 Hz, 1H), 7.20 (t, J =
7.5 Hz, 1H), 7.25−7.30 (m, 3H), 7.39 (d, J = 7.5 Hz, 1H), 7.46 (br s,
1H), 7.69 (d, J = 7.9 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 21.5
(CH3), 24.6 (CH3), 35.8 (CH2), 44.1 (CH2), 118.3 (CH), 120.2
(CH), 124.5 (CH), 127.1 (2 × CH), 129.3 (CH), 129.8 (2 × CH),
136.8 (C), 138.3 (C), 138.8 (C), 143.5 (C), 168.6 (C); MS (ESI) m/
z 355 (M + Na+, 100); HRMS (ESI) calcd for C17H20N2NaO3S (M +
Na+) 355.1087, found 355.1080.
N-[(3-Acetamido-4-chlorophenyl)ethyl]-4′′-methyl-

benzenesulfonamide (1o). N-[(3-Acetamido-4-chlorophenyl)-
ethyl]-4′′-methylbenzenesulfonamide (1o) was synthesized as
described for N-[(3-acetamidophenyl)ethyl]-4′′-methylbenzene-
sulfonamide (1n) using N-[(3-amino-4-chlorophenyl)ethyl]-4′′-
methylbenzenesulfonamide (1m) (0.109 g, 0.340 mmol). Purification
by flash column chromatography (petroleum ether/ethyl acetate, 1:1)
gave N-[(3-acetamido-4-chlorophenyl)ethyl]-4′′-methylbenzene-
sulfonamide (1o) (0.121 g, 99%) as a colorless oil. IR (neat) 3279,
2932, 2361, 1674, 1582, 1528, 1427, 1319, 1157, 1096 cm−1; 1H
NMR (400 MHz, CDCl3) δ 2.22 (s, 3H), 2.42 (s, 3H), 2.72 (t, J = 6.9
Hz, 2H), 3.19 (q, J = 6.9 Hz, 2H), 4.73 (t, J = 6.9 Hz, 1H), 6.78 (dd, J
= 8.2, 1.7 Hz, 1H), 7.23 (d, J = 8.2 Hz, 1H), 7.27 (d, J = 8.2 Hz, 2H),
7.59 (br s, 1H), 7.69 (d, J = 8.2 Hz, 2H), 8.11 (br s, 1H); 13C NMR
(101 MHz, CDCl3) δ 21.5 (CH3), 24.9 (CH3), 35.6 (CH2), 44.0
(CH2), 121.0 (C), 121.8 (CH), 125.1 (CH), 127.1 (2 × CH), 129.0
(CH), 129.7 (2 × CH), 134.6 (C), 136.9 (C), 137.9 (C), 143.4 (C),
168.4 (C); MS (ESI) m/z 389 (M + Na+, 100); HRMS (ESI) calcd
for C17H19

35ClN2NaO3S (M + Na+) 389.0697, found 389.0685.
3-Methoxyphenylacetamide (1p).52 To a stirred solution of 3-

methoxyphenylacetic acid (0.500 g, 3.00 mmol) in dry dichloro-
methane (15 mL) was added thionyl chloride (2.63 mL, 63.0 mmol)
at 0 °C. The reaction mixture was heated under reflux for 2.5 h after
which the solvent was removed in vacuo. The residue was dissolved in
tetrahydrofuran (20 mL), and 25% aqueous ammonium hydroxide (4
mL) was added slowly at 0 °C. The reaction mixture was then stirred
at room temperature for 16 h. The mixture was concentrated in vacuo,
and water (15 mL) was added. The solution was heated for 0.5 h. The
suspension was cooled to 0 °C, and the resulting white powder was
collected by vacuum filtration and washed with ice−water to give 3-
methoxyphenylacetamide (1p) (0.209 g, 42%) as a white solid. Mp
139−141 °C (lit.52 137−139 °C); 1H NMR (400 MHz, CDCl3) δ
3.56 (s, 2H), 3.81 (s, 3H), 5.41 (br s, 1H), 5.52 (br s, 1H), 6.80−6.88
(m, 3H), 7.28 (t, J = 7.8 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ
43.4 (CH2), 55.2 (CH3), 113.0 (CH), 115.0 (CH), 121.6 (CH),
130.1 (CH), 136.3 (C), 160.1 (C), 173.2 (C); MS (ESI) m/z 186 (M
+ Na+, 100).
1′-(3-Methoxyphenyl)acrylonitrile.53 To a solution of m-

anisaldehyde (1.79 mL, 14.7 mmol) in dry dichloromethane (25
mL) was added cyanomethylene triphenylphosphorane (4.88 g, 16.2
mmol), and the resulting mixture was stirred at room temperature for
16 h. After this time, the reaction mixture was concentrated in vacuo
and the residue was purified by flash column chromatography
(petroleum ether/ethyl acetate, 9:1) to give 1′-(3-methoxyphenyl)-
acrylonitrile (3:1 ratio of E to Z isomers) (1.81 g, 79%) as a colorless
oil. Spectroscopic data are reported for the major E isomer.
Spectroscopic data were consistent with the literature.53 1H NMR
(400 MHz, CDCl3) δ 3.84 (s, 3H), 5.87 (t, J = 16.6 Hz, 1H), 6.93−
7.05 (m, 3H), 7.30−7.43 (m, 2H); 13C NMR (101 MHz, CDCl3) δ
55.4 (CH3), 96.7 (CH), 112.5 (CH), 116.9 (CH), 117.1 (C), 120.0
(CH), 130.2 (CH), 134.8 (C), 150.5 (CH), 160.0 (C); MS (EI) m/z
159 (M+, 100), 116 (20), 89 (20).

N-[ (1-Methoxyphenyl)propyl]-4 ′ ′-methylbenzene-
sulfonamide (1q).54 To a solution of 1′-(3-methoxyphenyl)-
acrylonitrile (1.00 mL, 6.29 mmol) in ethanol (25 mL) were added
37% aqueous hydrochloric acid (3 mL) and 10% palladium on
charcoal (0.073 g). The reaction mixture was hydrogenated at 2.5 bar
for 72 h. The reaction mixture was filtered through Celite and
concentrated in vacuo. The crude hydrochloride salt was dissolved in
dichloromethane (25 mL), and triethylamine (0.700 mL, 5.00 mmol)
was added. p-Toluenesulfonyl chloride (0.572 g, 3.00 mmol) was
added at 0 °C, and the resulting solution was stirred at room
temperature for 16 h. The reaction mixture was diluted with
dichloromethane (20 mL) and washed with 1 M aqueous hydro-
chloric acid (30 mL) and brine (30 mL), dried (MgSO4), and
concentrated in vacuo. Purification by flash column chromatography
(petroleum ether/ethyl acetate, 7:3) gave N-[(1-methoxyphenyl)-
propyl]-4′′-methylbenzenesulfonamide (1q) (0.499 g, 63%) as a
colorless oil. Spectroscopic data were consistent with the literature.54
1H NMR (400 MHz, CDCl3) δ 1.70−1.80 (m, 2H), 2.40 (s, 3H),
2.56 (t, J = 7.7 Hz, 2H), 2.94 (q, J = 6.7 Hz, 2H), 3.75 (s, 3H), 5.04
(t, J = 6.7 Hz, 1H), 6.62−6.68 (m, 2H), 6.70 (ddd, J = 8.0, 2.5, 0.8
Hz, 1H), 7.14 (t, J = 8.0 Hz, 1H), 7.28 (d, J = 8.3 Hz, 2H), 7.74 (d, J
= 8.3 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 21.5 (CH3), 31.0
(CH2), 32.8 (CH2), 42.6 (CH2), 55.2 (CH3), 111.5 (CH), 114.1
(CH), 120.8 (CH), 127.1 (2 × CH), 129.4 (CH), 129.8 (2 × CH),
137.0 (C), 142.7 (C), 143.4 (C), 159.7 (C); MS (ESI) m/z 342 (M +
Na+, 100).

1-Benzoyl-5-methoxyindoline (2a). Iron(III) chloride (0.50
mg, 3.0 μmol) was dissolved in 1-butyl-3-methylimidazolium
bis(trifluoromethanesulfonyl)imide (3.0 μL, 10 μmol) and stirred
for 0.5 h at room temperature and then added to a solution of N-
iodosuccinimide (0.031 g, 0.14 mmol) in toluene (1.0 mL). N-[(3-
Methoxyphenyl)ethyl]benzamide (1a) (0.035 g, 0.14 mmol) was then
added, and the mixture was stirred at 40 °C for 5 h. Upon completion
of the iodination step, the reaction mixture was cooled to room
temperature and copper(I) iodide (3.0 mg, 14 μmol), cesium
carbonate (0.088 g, 0.27 mmol), N,N′-dimethylethylenediamine (3.0
μL, 28 μmol), and water (0.5 mL) were added. The reaction mixture
was degassed under argon for 0.1 h and then heated to 130 °C for 24
h. The reaction mixture was then cooled to room temperature, diluted
with ethyl acetate (10 mL), and washed with a 1 M aqueous sodium
thiosulfate solution (10 mL). The aqueous layer was extracted with
ethyl acetate (3 × 10 mL), and the combined organic layers were
washed with brine (10 mL). The organic phase was dried (MgSO4),
filtered, and concentrated in vacuo. Purification by flash column
chromatography (petroleum ether/ethyl acetate, 4:1) gave 1-benzoyl-
5-methoxyindoline (2a) (0.027 g, 79%) as a brown solid. Mp 102−
104 °C; IR (neat) 2922, 1624, 1595, 1487, 1400, 1294, 1140, 1026,
833 cm−1; 1H NMR (500 MHz, DMSO-d6, 100 °C) δ 3.08 (t, J = 8.2
Hz, 2H), 3.76 (s, 3H), 4.00 (t, J = 8.2 Hz, 2H), 6.71 (dd, J = 8.7, 2.4
Hz, 1H), 6.88 (d, J = 2.4 Hz, 1H), 7.46−7.62 (m, 6H); 13C NMR
(126 MHz, DMSO-d6, 100 °C) δ 28.4 (CH2), 50.8 (CH2), 56.1
(CH3), 111.6 (CH), 112.6 (CH), 117.4 (CH), 127.3 (2 × CH),
128.8 (2 × CH) 130.2 (CH), 134.7 (C), 137.0 (C), 137.9 (C), 156.8
(C), 167.9 (C); MS (EI) m/z 253 (M+, 43), 148 (12), 105 (100), 77
(29); HRMS (EI) calcd for C16H15NO2 (M+) 253.1103, found
253.1114.

1-Acetyl-5-methoxyindoline (2b).55 1-Acetyl-5-methoxyindo-
line (2b) was synthesized as described for 1-benzoyl-5-methoxyindo-
line (2a) using N-[(3-methoxyphenyl)ethyl]acetamide (1b) (0.049 g,
0.25 mmol). Purification by flash column chromatography (petroleum
ether/ethyl acetate, 1:1) gave 1-acetyl-5-methoxyindoline (2b) (0.042
g, 87%) as a colorless oil. Spectroscopic data were consistent with the
literature.55 NMR spectra showed a 5:1 mixture of rotamers. Only
signals for the major rotamer are recorded. 1H NMR (400 MHz,
CDCl3) δ 2.20 (s, 3H), 3.17 (t, J = 8.4 Hz, 2H), 3.78 (s, 3H), 4.04 (t,
J = 8.4 Hz, 2H), 6.68−6.76 (m, 2H), 8.12 (d, J = 8.6 Hz, 1H); 13C
NMR (101 MHz, CDCl3) δ 24.0 (CH3), 28.2 (CH2), 48.9 (CH2),
55.6 (CH3), 110.9 (CH), 111.9 (CH), 117.5 (CH), 132.7 (C), 136.7
(C), 156.2 (C), 167.9 (C); MS (EI) m/z 191 (M+, 80), 149 (60), 134
(100).
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1-(Benzyloxycarbonyl)-5-methoxyindoline (2c). 1-(Benzylox-
ycarbonyl)-5-methoxyindoline (2c) was synthesized as described for
1-benzoyl-5-methoxyindoline (2a) using benzyl N-[(3-methoxy-
phenyl)ethyl]carbamate (1c) (0.048 g, 0.17 mmol). Purification by
flash column chromatography (petroleum ether/ethyl acetate, 9:1)
gave 1-(benzyloxycarbonyl)-5-methoxyindoline (2c) (0.030 g, 63%)
as a colorless oil. IR (neat) 2953, 1701, 1493, 1406, 1325, 1263, 1132,
1024, 756 cm−1; 1H NMR (500 MHz, DMSO-d6, 100 °C) δ 3.09 (t, J
= 8.6 Hz, 2H), 3.74 (s, 3H), 4.01 (t, J = 8.6 Hz, 2H), 5.25 (s, 2H),
6.72 (dd, J = 8.7, 2.6 Hz, 1H), 6.84 (d, J = 2.6 Hz, 1H), 7.31−7.45
(m, 5H), 7.56 (d, J = 8.7 Hz, 1H); 13C NMR (126 MHz, DMSO-d6,
100 °C) δ 27.7 (CH2), 48.0 (CH2), 56.2 (CH3), 66.8 (CH2), 112.0
(CH), 112.9 (CH), 115.2 (CH), 128.1 (2 × CH), 128.3 (CH), 128.8
(2 × CH), 133.4 (C), 136.3 (C), 137.3 (C), 152.9 (C), 156.2 (C);
MS (ESI) m/z 306 (M + Na+, 100); HRMS (ESI) calcd for
C17H17NNaO3 (M + Na+) 306.1101, found 306.1095.
1-(tert-Butoxycarbonyl)-5-methoxyindoline (2d).56 1-(tert-

Butoxycarbonyl)-5-methoxyindoline (2d) was synthesized as de-
scribed for 1-benzoyl-5-methoxyindoline (2a) using tert-butyl-N-[(3-
methoxyphenyl)ethyl]carbamate (1d) (0.063 g, 0.25 mmol).
Purification by flash column chromatography (petroleum ether/
diethyl ether, 9:1) gave 1-(tert-butoxycarbonyl)-5-methoxyindoline
(2d) (0.035 g, 56%) as a white solid. Mp 84−86 °C (lit.56 Mp 87−88
°C); 1H NMR (500 MHz, DMSO-d6, 100 °C) δ 1.53 (s, 9H), 3.04 (t,
J = 8.6 Hz, 2H), 3.73 (s, 3H), 3.91 (t, J = 8.6 Hz, 2H), 6.71 (dd, J =
8.7, 2.5 Hz, 1H), 6.81 (d, J = 2.5 Hz, 1H), 7.50 (d, J = 8.7 Hz, 1H);
13C NMR (126 MHz, DMSO-d6, 100 °C) δ 27.5 (CH2), 28.7 (3 ×
CH3), 48.1 (CH2), 56.2 (CH3), 80.4 (C), 111.9 (CH), 112.8 (CH),
115.1 (CH), 133.3 (C), 136.6 (C), 152.3 (C), 155.8 (C); MS (EI)
m/z 249 (M+, 15), 193 (100), 149 (28), 134 (62), 84 (30).
1-(Methanesulfonyl)-5-methoxyindoline (2e). 1-(Methane-

sulfonyl)-5-methoxyindoline (2e) was synthesized as described for
1-benzoyl-5-methoxyindoline (2a) using N-[(3-methoxyphenyl)-
ethyl]methanesulfonamide (1e) (0.057 g, 0.25 mmol). Purification
by flash column chromatography (petroleum ether/ethyl acetate, 1:1)
gave 1-(methanesulfonyl)-5-methoxyindoline (2e) (0.041 g, 73%) as
a colorless oil. IR (neat) 2932, 1489, 1343, 1157, 1030, 818 cm−1; 1H
NMR (400 MHz, CDCl3) δ 2.81 (s, 3H), 3.12 (t, J = 8.5 Hz, 2H),
3.78 (s, 3H), 3.97 (t, J = 8.5 Hz, 2H), 6.72 (dd, J = 8.8, 2.5 Hz, 1H),
6.79 (d, J = 2.5 Hz, 1H), 7.32 (d, J = 8.8 Hz, 1H); 13C NMR (101
MHz, CDCl3) δ 28.4 (CH2), 33.9 (CH3), 50.7 (CH2), 55.7 (CH3),
111.6 (CH), 112.8 (CH), 115.1 (CH), 133.1 (C), 135.4 (C), 156.8
(C); MS (EI) m/z 227 (M+, 45), 148 (100%), 133 (69), 117 (38), 77
(33); HRMS (EI) calcd for C10H13NO3S (M+) 227.0616, found
227.0617.
5-Methoxy-1-(4′-methylbenzenesulfonyl)indoline (2f). 5-

Methoxy-1-(4′-methylbenzenesulfonyl)indoline (2f) was synthesized
as described for 1-benzoyl-5-methoxyindoline (2a) using N-[(3-
methoxyphenyl)ethyl]-4′′-methylbenzenesulfonamide (1f) (0.077 g,
0.25 mmol). Purification by flash column chromatography (petroleum
ether/ethyl acetate, 4:1) gave 5-methoxy-1-(4′-methylbenzene-
sulfonyl)indoline (2f) (0.070 g, 93%) as a yellow oil. IR (neat)
2943, 1597, 1485, 1350, 1163, 1032, 814 cm−1; 1H NMR (400 MHz,
CDCl3) δ 2.39 (s, 3H), 2.77 (t, J = 8.2 Hz, 2H), 3.77 (s, 3H), 3.92 (t,
J = 8.2 Hz, 2H), 6.64 (d, J = 2.5 Hz, 1H), 6.75 (dd, J = 8.8, 2.5 Hz,
1H), 7.22 (d, J = 8.2 Hz, 2H), 7.58 (d, J = 8.8 Hz, 1H), 7.63 (d, J =
8.2 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 21.5 (CH3), 28.3
(CH2), 50.4 (CH2), 55.6 (CH3), 111.0 (CH), 112.6 (CH), 116.7
(CH), 127.4 (2 × CH), 129.6 (2 × CH), 133.9 (C), 134.0 (C), 135.5
(C), 143.9 (C), 156.9 (C); MS (ESI) m/z 326 (M + Na+, 100);
HRMS (ESI) calcd for C16H17NNaO3S (M + Na+) 326.0821, found
326.0810.
5,6-Dimethoxy-1-(4′-methylbenzenesulfonyl)indoline (2g).

5,6-Dimethoxy-1-(4′-methylbenzenesulfonyl)indoline (2g) was syn-
thesized as described for 1-benzoyl-5-methoxyindoline (2a) using N-
[(3,4-dimethoxyphenyl)ethyl]-4′′-methylbenzenesulfonamide (1g)
(0.084 g, 0.25 mmol). The N-arylation step was carried out at 130
°C for 21 h. Purification by flash column chromatography (petroleum
ether/ethyl acetate, 4:1) gave 5,6-dimethoxy-1-(4′-methylbenzene-
sulfonyl)indoline (2g) (0.065 g, 78%) as a white solid. Mp 116−118

°C; IR (neat) 2955, 1597, 1505, 1456, 1348, 1211, 1159, 1089, 814
cm−1; 1H NMR (400 MHz, CDCl3) δ 2.37 (s, 3H), 2.70 (t, J = 8.2
Hz, 2H), 3.80 (s, 3H), 3.90 (t, J = 8.2 Hz, 2H), 3.94 (s, 3H), 6.60 (s,
1H), 7.20 (d, J = 8.7 Hz, 2H), 7.32 (s, 1H), 7.59 (d, J = 8.7 Hz, 2H);
13C NMR (101 MHz, CDCl3) δ 21.5 (CH3), 28.1 (CH2), 50.7
(CH2), 56.3 (CH3), 56.3 (CH3), 101.2 (CH), 108.2 (CH), 123.6
(C), 127.4 (2 × CH), 129.6 (2 × CH), 133.9 (C), 135.4 (C), 143.9
(C), 146.4 (C), 148.7 (C); MS (ESI) m/z 356 (M + Na+, 100);
HRMS (ESI) calcd for C17H19NNaO4S (M + Na+) 356.0927, found
356.0918.

5,7-Dimethoxy-1-(4′-methylbenzenesulfonyl)indoline (2h).
5,7-Dimethoxy-1-(4′-methylbenzenesulfonyl)indoline (2h) was syn-
thesized as described for 1-benzoyl-5-methoxyindoline (2a) using N-
[(3,5-dimethoxyphenyl)ethyl]-4′′-methylbenzenesulfonamide (1h)
(0.082 g, 0.25 mmol). The iodination step was carried out at 40 °C
for 4 h, and the N-arylation step, at 130 °C for 21 h. Purification by
flash column chromatography (dichloromethane/diethyl ether, 19:1)
gave 5,7-dimethoxy-1-(4′-methylbenzenesulfonyl)indoline (2h)
(0.061 g, 75%) as a colorless oil; IR (neat) 2361, 1558, 1350,
1165, 813 cm−1; 1H NMR (400 MHz, CDCl3) δ 2.32 (t, J = 7.4 Hz,
2H), 2.40 (s, 3H), 3.77 (s, 3H), 3.85 (s, 3H), 4.02 (t, J = 7.4 Hz, 2H),
6.25 (d, J = 2.2 Hz, 1H), 6.38 (d, J = 2.2 Hz, 1H), 7.19 (d, J = 8.6 Hz,
2H), 7.54 (d, J = 8.6 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 21.6
(CH3), 29.9 (CH2), 53.1 (CH2), 55.6 (CH3), 56.2 (CH3), 99.1
(CH), 101.7 (CH), 124.5 (C), 127.7 (2 × CH), 129.3 (2 × CH),
135.6 (C), 139.6 (C), 143.6 (C), 152.9 (C), 152.6 (C); MS (ESI) m/
z 356 (M + Na+, 100); HRMS (ESI) calcd for C17H19NNaO4S (M +
Na+) 356.0927, found 356.0917.

1-(4′-Methylbenzenesulfonyl)-5,6,7-trimethoxyindoline
(2i). 1-(4′-Methylbenzenesulfonyl)-5,6,7-trimethoxyindoline (2i) was
synthesized as described for 1-benzoyl-5-methoxyindoline (2a) using
4′-methyl-N-[(3,4,5-trimethoxyphenyl)ethyl]benzenesulfonamide
(1i) (0.092 g, 0.25 mmol). The iodination step was carried out at 40
°C for 4 h, and the N-arylation step, at 130 °C for 22 h. Purification
by flash column chromatography (petroleum ether/ethyl acetate, 7:3)
gave 1-(4′-methylbenzenesulfonyl)-5,6,7-trimethoxyindoline (2i)
(0.068 g, 74%) as a white solid. Mp 126−128 °C; IR (neat) 2940,
1597, 1470, 1418, 1350, 1236, 1163, 1125, 1067, 816 cm−1; 1H NMR
(400 MHz, CDCl3) δ 2.30 (t, J = 7.6 Hz, 2H), 2.40 (s, 3H), 3.80 (s,
3H), 3.87 (s, 3H), 4.00 (s, 3H), 4.02 (t, J = 7.6 Hz, 2H), 6.38 (s, 1H),
7.18 (d, J = 8.3 Hz, 2H), 7.53 (d, J = 8.3 Hz, 2H); 13C NMR (101
MHz, CDCl3) δ 21.6 (CH3), 29.6 (CH2), 53.1 (CH2), 56.3 (CH3),
60.3 (CH3), 61.2 (CH3), 102.9 (CH), 127.6 (C), 127.7 (2 × CH),
129.3 (2 × CH), 132.5 (C), 135.5 (C), 141.5 (C), 143.7 (C), 146.9
(C), 152.4 (C); MS (ESI) m/z 386 (M + Na+, 100); HRMS (ESI)
calcd for C18H21NNaO5S (M + Na+) 386.1033, found 386.1022.

5-Methoxy-6-methyl-1-(4′-methylbenzenesulfonyl)indoline
(2j). 5-Methoxy-6-methyl-1-(4′-methylbenzenesulfonyl)indoline (2j)
was synthesized as described for 1-benzoyl-5-methoxyindoline (2a)
using N-[(3-methoxy-4-methylphenyl)ethyl]-4′′-methylbenzene-
sulfonamide (1j) (0.058 g, 0.18 mmol). Purification by flash column
chromatography (hexane/ethyl acetate, 7:3) gave 5-methoxy-6-
methyl-1-(4′-methylbenzenesulfonyl)indoline (2j) (0.042 g, 74%) as
a colorless oil; IR (neat) 2947, 1597, 1497, 1350, 1157, 1088, 1026,
810 cm−1; 1H NMR (400 MHz, CDCl3) δ 2.23 (s, 3H), 2.36 (s, 3H),
2.71 (t, J = 8.2 Hz, 2H), 3.75 (s, 3H), 3.88 (t, J = 8.2 Hz, 2H), 6.55 (s,
1H), 7.19 (d, J = 8.1 Hz, 2H), 7.46 (s, 1H), 7.59 (d, J = 8.1 Hz, 2H);
13C NMR (101 MHz, CDCl3) δ 16.7 (CH3), 21.5 (CH3), 28.3
(CH2), 50.4 (CH2), 55.6 (CH3), 107.0 (CH), 118.3 (CH), 126.0
(C), 127.4 (2 × CH), 129.6 (2 × CH), 130.6 (C), 134.0 (C), 134.8
(C), 143.8 (C), 155.0 (C); MS (ESI) m/z 340 (M + Na+, 100);
HRMS (ESI) calcd for C17H19NNaO3S (M + Na+) 340.0978, found
340.0970.

1-(4′-Methylbenzenesulfonyl)-(5,6-methylenedioxy)-
indoline (2k). 5,6-Methylenedioxy-1-(4′-methylbenzenesulfonyl)-
indoline (2k) was synthesized as described for 1-benzoyl-5-
methoxyindoline (2a) using 4′′-methyl-N-[(3,4-methylenedioxy-
phenyl)ethyl]benzenesulfonamide (1k) (0.078 g, 0.25 mmol). The
iodination step was carried out at 40 °C for 4 h, and the N-arylation
step, at 130 °C for 21 h. Purification by flash column chromatography
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(petroleum ether/ethyl acetate, 9:1) gave 1-(4′-methylbenzene-
sulfonyl)-(5,6-methylenedioxy)indoline (2k) (0.056 g, 73%) as a
white solid. Mp 139−141 °C; IR (neat) 2955, 1597, 1476, 1454,
1352, 1306, 1163, 1038, 937 cm−1; 1H NMR (400 MHz, CDCl3) δ
2.38 (s, 3H), 2.66 (t, J = 8.2 Hz, 2H), 3.90 (t, J = 8.2 Hz, 2H), 5.94 (s,
2H), 6.51 (s, 1H), 7.22 (d, J = 8.3 Hz, 2H), 7.24 (s, 1H), 7.62 (d, J =
8.3 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 21.5 (CH3), 28.0
(CH2), 50.9 (CH2), 99.0 (CH), 101.4 (CH2), 105.2 (CH), 124.7
(C), 127.4 (2 × CH), 129.6 (2 × CH), 134.0 (C), 136.0 (C), 144.0
(C), 144.6 (C), 147.2 (C); MS (ESI) m/z 340 (M + Na+, 100);
HRMS (ESI) calcd for C16H15NNaO4S (M + Na+) 340.0614, found
340.0603.
5-Amino-1-(4′-methylbenzenesulfonyl)indoline (2l). 5-

Amino-1-(4′-methylbenzenesulfonyl)indoline (2l) was synthesized
as described for 1-benzoyl-5-methoxyindoline (2a) using N-[(3-
aminophenyl)ethyl]-4′′-methylbenzenesulfonamide (1l) (0.080 g,
0.28 mmol). The iodination step was carried out at 40 °C for 4 h,
and the N-arylation step, at 130 °C for 21 h. Purification by flash
column chromatography (hexane/ethyl acetate, 1:1) gave 5-amino-1-
(4′-methylbenzenesulfonyl)indoline (2l) (0.055 g, 70%) as a colorless
oil. IR (neat) 3475, 3365, 1624, 1597, 1488, 1343, 1161, 1091, 814
cm−1; 1H NMR (400 MHz, CDCl3) δ 2.36 (s, 3H), 2.64 (t, J = 8.2
Hz, 2H), 3.53 (br s, 2H), 3.86 (t, J = 8.2 Hz, 2H), 6.41 (d, J = 2.3 Hz,
1H), 6.53 (dd, J = 8.5, 2.3 Hz, 1H), 7.19 (d, J = 8.1 Hz, 2H), 7.45 (d,
J = 8.5 Hz, 1H), 7.58 (d, J = 8.1 Hz, 2H); 13C NMR (101 MHz,
CDCl3) δ 21.5 (CH3), 28.3 (CH2), 50.3 (CH2), 111.9 (CH), 114.3
(CH), 117.3 (CH), 127.4 (2 × CH), 129.5 (2 × CH), 133.9 (C),
134.0 (2 × C), 143.4 (C), 143.7 (C); MS (ESI) m/z 311 (M + Na+,
100); HRMS (ESI) calcd for C15H16N2NaO2S (M + Na+) 311.0825,
found 311.0826.
5-Amino-6-chloro-1-(4′-methylbenzenesulfonyl)indoline

(2m). 5-Amino-6-chloro-1-(4′-methylbenzenesulfonyl)indoline (2m)
was synthesized as described for 1-benzoyl-5-methoxyindoline (2a)
using N-[(3-amino-4-chlorophenyl)ethyl]-4′′-methylbenzene-
sulfonamide (1m) (0.059 g, 0.18 mmol). The iodination step was
carried out at 40 °C for 4 h. Purification by flash column
chromatography (hexane/ethyl acetate, 1:1) gave 5-amino-6-chloro-
1-(4′-methylbenzenesulfonyl)indoline (2m) (0.032 g, 55%) as a
colorless oil. IR (neat) 3472, 3372, 2924, 2361, 1620, 1597, 1481,
1342, 1159, 1088, 810 cm−1; 1H NMR (400 MHz, CDCl3) δ 2.38 (s,
3H), 2.66 (t, J = 8.2 Hz, 2H), 3.71−3.96 (m, 4H), 6.49 (s, 1H), 7.22
(d, J = 8.2 Hz, 2H), 7.58 (s, 1H), 7.61 (d, J = 8.2 Hz, 2H); 13C NMR
(101 MHz, CDCl3) δ 21.5 (CH3), 28.0 (CH2), 50.3 (CH2), 112.1
(CH), 117.0 (CH), 118.1 (C), 127.4 (2 × CH), 129.7 (2 × CH),
132.4 (C), 133.7 (C), 134.2 (C), 139.7 (C), 144.0 (C); MS (ESI) m/
z 345 (M + Na+, 100); HRMS (ESI) calcd for C15H15

35ClN2NaO2S
(M + Na+) 345.0435, found 345.0422.
5-Acetamido-1-(4′-methylbenzenesulfonyl)indoline (2n). 5-

Acetamido-1-(4′-methylbenzenesulfonyl)indoline (2n) was synthe-
sized as described for 1-benzoyl-5-methoxyindoline (2a) using N-[(3-
acetamidophenyl)ethyl]-4′′-methylbenzenesulfonamide (1n) (0.148
g, 0.45 mmol). The iodination step was carried out at 40 °C for 4 h,
and the N-arylation step, at 130 °C for 21 h. Purification by flash
column chromatography (hexane/ethyl acetate, 7:3) gave 5-
acetamido-1-(4′-methylbenzenesulfonyl)indoline (2n) (0.094 g,
64%) as a white solid. Mp 168−170 °C; IR (neat) 3320, 2924,
1675, 1546, 1487, 1351, 1163, 1091, 815 cm−1; 1H NMR (400 MHz,
CDCl3) δ 2.13 (s, 3H), 2.37 (s, 3H), 2.83 (t, J = 8.1 Hz, 2H), 3.89 (t,
J = 8.1 Hz, 2H), 7.05 (dd, J = 8.3, 1.6 Hz, 1H), 7.21 (d, J = 7.7 Hz,
2H), 7.24 (br s, 1H), 7.49 (br s, 1H), 7.54 (d, J = 8.3 Hz, 1H), 7.62
(d, J = 7.7 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 21.5 (CH3),
24.4 (CH3), 28.1 (CH2), 50.2 (CH2), 115.4 (CH), 117.6 (CH),
119.3 (CH), 127.3 (2 × CH), 129.7 (2 × CH), 133.0 (C), 133.7 (C),
134.2 (C), 138.4 (C), 144.2 (C), 168.3 (C); MS (ESI) m/z 353 (M +
Na+, 100); HRMS (ESI) calcd for C17H18N2NaO3S (M + Na+)
353.0930, found 353.0925.
5-Acetamido-6-chloro-1-(4′-methylbenzenesulfonyl)-

indoline (2o). 5-Acetamido-6-chloro-1-(4′-methylbenzenesulfonyl)-
indoline (2o) was synthesized as described for 1-benzoyl-5-methoxy-
indoline (2a) using N-[(3-acetamido-4-chlorophenyl)ethyl]-4′′-

methylbenzenesulfonamide (1o) (0.042 g, 0.11 mmol). The
bromination step was carried out at 40 °C for 4 h, and the N-
arylation step, at 130 °C for 21 h. Purification by flash column
chromatography (hexane/ethyl acetate, 2:3) gave 5-acetamido-6-
chloro-1-(4′-methylbenzenesulfonyl)indoline (2o) (0.017 g, 43%) as
a white solid. Mp 138−140 °C; IR (neat) 3350, 2925, 1653, 1356,
1162 cm−1; 1H NMR (400 MHz, CDCl3) δ 2.21 (s, 3H), 2.39 (s,
3H), 2.85 (t, J = 8.4 Hz, 2H), 3.90 (t, J = 8.4 Hz, 2H), 7.25 (d, J = 8.5
Hz, 2H), 7.49 (s, 1H), 7.65 (d, J = 8.5 Hz, 2H), 7.68 (s, 1H), 8.05 (br
s, 1H); 13C NMR (101 MHz, CDCl3) δ 21.5 (CH3), 24.7 (CH3),
27.9 (CH2), 50.3 (CH2), 115.4 (CH), 118.4 (CH), 121.9 (C), 127.3
(2 × CH), 129.8 (2 × CH), 130.5 (C), 131.6 (C), 133.6 (C), 138.6
(C), 144.4 (C), 168.2 (C); MS (ESI) m/z 387 (M + Na+, 100);
HRMS (ESI) calcd for C17H17

35ClN2NaO3S (M + Na+) 387.0541,
found 387.0527.

5-Methoxyindolin-2-one (2p).57 5-Methoxyindolin-2-one (2p)
was synthesized as described for 1-benzoyl-5-methoxyindoline (2a)
using 3-methoxyphenylacetamide (1p) (0.042 g, 0.25 mmol). The N-
arylation step was carried out at 130 °C for 21 h. Purification by flash
column chromatography (hexane/ethyl acetate, 1:1) gave 5-
methoxyindolin-2-one (2p) (0.027 g, 65%) as a white solid. Mp
128−130 °C (lit.57 132−134 °C); 1H NMR (400 MHz, CDCl3) δ
3.53 (s, 2H), 3.78 (s, 3H), 6.75 (dd, J = 8.5, 2.4 Hz, 1H), 6.79 (d, J =
8.5 Hz, 1H), 6.85 (br s, 1H), 8.53 (br s, 1H); 13C NMR (101 MHz,
CDCl3) δ 36.7 (CH2), 55.8 (CH3), 110.0 (CH), 111.8 (CH), 112.5
(CH), 126.7 (C), 135.9 (C), 155.7 (C), 177.5 (C); MS (ESI) m/z
186 (M + Na+, 100).

6-Methoxy-1-(4 ′-methylbenzenesulfonyl)-1,2,3,4-
tetrahydroquinoline (2q). 6-Methoxy-1-(4′-methylbenzene-
sulfonyl)-2,3,4-tetrahydroquinoline (2q) was synthesized as described
for 1-benzoyl-5-methoxyindoline (2a) using N-[(1-methoxyphenyl)-
propyl]-4′′-methylbenzenesulfonamide (1q) (0.083 g, 0.50 mmol).
Purification by flash column chromatography (hexane/ethyl acetate,
4:1) gave 6-methoxy-1-(4′-methylbenzenesulfonyl)-1,2,3,4-
tetrahydroquinoline (2q) (0.071 g, 85%) as a colorless oil. IR
(neat) 2943 (CH), 1609, 1597 (CC), 1493, 1339, 1162, 1090, 812
cm−1; 1H NMR (400 MHz, CDCl3) δ 1.51−1.59 (m, 2H), 2.33 (t, J =
6.8 Hz, 2H), 2.38 (s, 3H), 3.73−3.77 (m, 2H), 3.78 (s, 3H), 6.52 (d, J
= 2.8 Hz, 1H), 6.75 (dd, J = 9.0, 2.8 Hz, 1H), 7.18 (d, J = 8.3 Hz,
2H), 7.42 (d, J = 8.3 Hz, 2H), 7.70 (d, J = 9.0 Hz, 1H); 13C NMR
(101 MHz, CDCl3) δ 21.3 (CH2), 21.5 (CH3), 26.6 (CH2), 46.4
(CH2), 55.4 (CH3), 112.1 (CH), 113.7 (CH), 127.0 (CH), 127.2 (2
× CH), 129.5 (2 × CH), 129.9 (C), 132.7 (C), 136.7 (C), 143.4 (C),
157.0 (C); MS (ESI) m/z 340 (M + Na+, 100); HRMS (ESI) calcd
for C17H19NNaO3S (M + Na+) 340.0978, found 340.0965.

(3,4-Methylenedioxy)phenethan-2′-ol (3c).58 To a stirred
suspension of lithium aluminum hydride (0.211 g, 5.55 mmol) in
dry tetrahydrofuran (15 mL) was added 3,4-(methylenedioxy)phenyl-
acetic acid (0.500 g, 2.78 mmol) in tetrahydrofuran (5 mL) dropwise
under a constant stream of argon at 0 °C. The suspension was stirred
at room temperature for 5 h, cooled to 0 °C, and quenched with water
(0.20 mL). To this solution was added 15% aqueous sodium
hydroxide (0.20 mL), followed by water (0.60 mL). Magnesium
sulfate was added, and the suspension was stirred for 0.5 h, filtered,
and then concentrated in vacuo. Purification by flash column
chromatography (petroleum ether/ethyl acetate, 1:1) gave (3,4-
methylenedioxy)phenethan-2′-ol (3c) (0.308 g, 67%) as a colorless
oil. Spectroscopic data were consistent with the literature.58 1H NMR
(400 MHz, CDCl3) δ 1.50 (br s, 1H), 2.78 (t, J = 6.6 Hz, 2H), 3.79
(br s, 2H), 5.93 (s, 2H), 6.67 (dd, J = 7.9, 1.6 Hz, 1H), 6.72 (d, J =
1.6 Hz, 1H), 6.75 (d, J = 7.9 Hz, 1H); 13C NMR (101 MHz, CDCl3)
δ 38.9 (CH2), 63.7 (CH2), 100.9 (CH2), 108.3 (CH), 109.3 (CH),
121.9 (CH), 132.2 (C), 146.2 (C), 147.8 (C); MS (EI) m/z 166 (M+,
30), 135 (100).

1′-(Dihydro-3,4-benzodioxinyl)ethan-2′-ol (3d).59 1′-(Dihy-
dro-3,4-benzodioxinyl)ethan-2′-ol (3d) was synthesized as described
for (3,4-methylenedioxy)phenethan-2′-ol (3c) using 1,4-benzo-
dioxane-6-acetic acid (0.469 g, 2.51 mmol). Purification by flash
column chromatography (petroleum ether/ethyl acetate, 1:1) gave 1′-
(dihydro-3,4-benzodioxinyl)ethan-2′-ol (3d) (0.425 g, 94%) as a
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colorless oil. Spectroscopic data were consistent with the literature.59
1H NMR (400 MHz, CDCl3) δ 1.78 (br s, 1H), 2.74 (t, J = 6.5 Hz,
2H), 3.78 (br s, 2H), 4.22 (s, 4H), 6.68 (dd, J = 8.2, 2.0 Hz, 1H), 6.73
(d, J = 2.0 Hz, 1H), 6.79 (d, J = 8.2 Hz, 1H); δC (101 MHz, CDCl3) δ
38.4 (CH2), 63.6 (CH2), 64.3 (CH2), 64.4 (CH2), 117.3 (CH), 117.6
(CH), 121.9 (CH), 131.7 (C), 142.1 (C), 143.4 (C); MS (ESI) m/z
203 (M + Na+, 100).
1′-(3-Aminophenyl)ethan-2′-ol.60 To a stirred solution of 1′-

(3-nitrophenyl)ethan-2′-ol (0.350 g, 2.09 mmol) in ethanol (25 mL)
was added tin(II) dichloride dihydrate (2.40 g, 10.5 mmol), and the
resulting solution was heated under reflux for 18 h. After cooling to
room temperature, the reaction mixture was diluted with saturated
aqueous sodium hydrogen carbonate solution (20 mL) and extracted
with dichloromethane (5 × 50 mL). The combined extracts were
washed with brine (2 × 200 mL), dried (MgSO4), and concentrated
in vacuo. Purification by flash column chromatography (petroleum
ether/ethyl acetate, 3:7) gave 1′-(3-aminophenyl)ethan-2′-ol (0.090
g, 32%) as a colorless oil. Spectroscopic data were consistent with the
literature.60 1H NMR (400 MHz, CDCl3) δ 1.54 (br s, 1H), 2.78 (t, J
= 6.5 Hz, 2H), 3.64 (br s, 2H), 3.83 (t, J = 6.5 Hz, 2H), 6.54−6.58
(m, 2H), 6.60−6.65 (m, 1H), 7.07−7.13 (m, 1H); 13C NMR (101
MHz, CDCl3) δ 39.2 (CH2), 63.6 (CH2), 113.3 (CH), 115.7 (CH),
119.2 (CH), 129.6 (CH), 139.7 (C), 146.6 (C); MS (EI) m/z 137
(M+, 70), 106 (100), 84 (38), 78 (37), 63 (42).
1′-(3-Acetamidophenyl)ethan-2′-ol (3e). Acetic anhydride

(0.085 mL, 0.900 mmol) was added to a stirred solution of 1′-(3-
aminophenyl)ethan-2′-ol (0.082 g, 0.600 mmol) in dichloromethane
(10 mL) and stirred for 24 h at room temperature. The reaction
mixture was washed with aqueous saturated sodium carbonate (15
mL) and brine (15 mL). The organic layer was dried (MgSO4) and
concentrated in vacuo. Recrystallization from diethyl ether gave 1′-(3-
acetamido)phenylethan-2′-ol (3e) (0.042 g, 42%) as a white solid.
Mp 102−104 °C; IR (neat) 3294, 2924, 1667, 1612, 1551, 1489,
1435, 1319, 1041, 787 cm−1; 1H NMR (400 MHz, CDCl3) δ 1.67 (br
s, 1H), 2.16 (s, 3H), 2.84 (t, J = 6.6 Hz, 2H), 3.85 (t, J = 6.6 Hz, 2H),
6.95−7.00 (m, 1H), 7.23−7.45 (m, 4H); 13C NMR (101 MHz,
CDCl3) δ 24.6 (CH3), 39.1 (CH2), 63.5 (CH2), 118.1 (CH), 120.5
(CH), 125.0 (CH), 129.2 (CH), 138.1 (C), 139.6 (C), 168.4 (C);
MS (ESI) m/z 202 (M + Na+, 100); HRMS (ESI) calcd for
C10H13NNaO2 (M + Na+) 202.0838, found 202.0838.
Methyl (3-Methoxyphenyl)acetate.61 To a stirred solution of

3-methoxyphenylacetic acid (2.00 g, 12.0 mmol) in methanol (20
mL) were added a few drops of concentrated sulfuric acid. The
resulting mixture was heated under reflux for 16 h. The methanol was
removed in vacuo, and the residue was diluted with dichloromethane
(50 mL). The solution was washed with water (4 × 50 mL) and brine
(50 mL), dried (MgSO4), and concentrated to give methyl (3-
methoxyphenyl)acetate (2.12 g, 99%) as a colorless oil. Spectroscopic
data were consistent with the literature.61 1H NMR (400 MHz,
CDCl3) δ 3.59 (s, 2H), 3.67 (s, 3H), 3.78 (s, 3H), 6.76−6.88 (m,
3H), 7.21 (t, J = 7.8 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 41.2
(CH2), 52.0 (CH3), 55.2 (CH3), 112.6 (CH), 114.9 (CH), 121.6
(CH), 129.6 (CH), 135.4 (C), 159.8 (C), 171.9 (C); MS (ESI) m/z
203 (M + Na+, 100).
2′,2′-Dimethyl-1′-(3-methoxyphenyl)ethan-2′-ol (3f). Meth-

ylmagnesium bromide (3.0 M in diethyl ether, 2.20 mL, 6.50 mmol)
was added dropwise to a 0 °C solution of methyl (3-methoxy-
phenyl)acetate (0.390 g, 2.17 mmol) in dry tetrahydrofuran (20 mL).
The yellow solution was warmed to room temperature and stirred for
5 h. The reaction mixture was quenched with saturated aqueous
ammonium chloride (30 mL) and diluted with diethyl ether (30 mL).
The layers were separated, and the aqueous layer was extracted with
diethyl ether (3 × 30 mL). The combined ethereal extracts were
washed with brine (30 mL), dried (MgSO4), and concentrated.
Purification by flash column chromatography (petroleum ether/ethyl
acetate, 4:1) gave 2′,2′-dimethyl-1′-(3-methoxyphenyl)ethan-2′-ol
(3f) (0.301 g, 77%) as a colorless oil. IR (neat) 3426, 2969, 1601,
1489, 1261, 1153, 1047 cm−1; 1H NMR (400 MHz, CDCl3) δ 1.23 (s,
6H), 2.74 (s, 2H), 3.79 (s, 3H), 6.75−6.81 (m, 3H), 7.21 (t, J = 7.9
Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 29.2 (2 × CH3), 49.8

(CH2), 55.2 (CH3), 70.7 (C), 111.8 (CH), 116.3 (CH), 122.9 (CH),
129.2 (CH), 139.4 (C), 159.5 (C); MS (ESI) m/z 203 (M + Na+,
100); HRMS (ESI) calcd for C11H16NaO2 (M + Na+) 203.1043,
found 203.1044.

N-Methoxy-1′-(3-methoxyphenyl)-N-methylacetamide.62

To a solution of 3-methoxyphenylacetic acid (1.50 g, 9.03 mmol) in
dichloromethane (50 mL) were added 1-ethyl-3-(3-(dimethylamino)-
propyl)carbodiimide hydrochloride (1.70 g, 9.03 mmol), 1-hydrox-
ybenzotriazole hydrate (1.35 g, 9.94 mmol), N,O-dimethylhydroxyl-
amine hydrochloride (0.88 g, 9.03 mmol) and N,N-diisopropylethyl-
amine (6.3 mL, 36.1 mmol). The mixture was stirred at room
temperature for 24 h. Water (30 mL) and sodium hydrogen carbonate
(30 mL) were added, and the mixture extracted with dichloromethane
(4 × 100 mL). The combined extracts were washed with brine (2 ×
200 mL), dried (MgSO4), and concentrated in vacuo. Purification by
flash column chromatography (petroleum ether/ethyl acetate, 1:1)
gave N-methoxy-1′-(3-methoxyphenyl)-N-methylacetamide (1.40 g,
74%) as a yellow oil. Spectroscopic data were consistent with the
literature.62 1H NMR (400 MHz, CDCl3) δ 3.19 (s, 3H), 3.60 (s,
3H), 3.74 (s, 2H), 3.79 (s, 3H), 6.79 (dd, J = 8.0, 2.6 Hz, 1H), 6.83−
6.92 (m, 2H), 7.23 (t, J = 8.0 Hz, 1H); 13C NMR (101 MHz, CDCl3)
δ 32.2 (CH3), 39.4 (CH2), 55.2 (CH3), 61.3 (CH3), 112.4 (CH),
114.8 (CH), 121.7 (CH), 129.4 (CH), 136.4 (C), 159.7 (C), 172.3
(C); MS (ESI) m/z 232 (M + Na+, 100).

1′-(3-Methoxyphenyl)-2′-(4′′-methoxyphenyl)ethan-2′-
one.5b An oven-dried three-neck flask was flushed with argon and
charged with magnesium turnings (0.070 g, 2.3 mmol), a crystal of
iodine, and dry tetrahydrofuran (12 mL). 4-Bromoanisole (0.29 mL,
2.3 mmol) was added, and the solution was heated under reflux for 1
h. This solution was then transferred via cannula to a solution of N-
methoxy-1′-(3-methoxyphenyl)-N-methylacetamide (0.40 g, 1.9
mmol) in dry tetrahydrofuran (15 mL). The resulting suspension
was stirred at room temperature for 16 h. The reaction mixture was
quenched with saturated ammonium chloride solution (30 mL) and
extracted with ethyl acetate (2 × 30 mL). The combined organic
layers were washed with brine (30 mL), dried (MgSO4), and
concentrated in vacuo. Purification by flash column chromatography
(petroleum ether/ethyl acetate, 4:1) gave 1′-(3-methoxyphenyl)-2′-
(4′′-methoxyphenyl)ethan-2-one (0.19 g, 45%) as a colorless oil.
Spectroscopic data were consistent with the literature.5b 1H NMR
(400 MHz, CDCl3) δ 3.77 (s, 3H), 3.85 (s, 3H), 4.19 (s, 2H), 6.78
(dd, J = 8.0, 2.4 Hz, 1H), 6.80−6.83 (m, 1H), 6.85−6.88 (m, 1H),
6.91 (d, J = 9.0 Hz, 2H), 7.22 (t, J = 8.0 Hz, 1H), 7.99 (d, J = 9.0 Hz,
2H); 13C NMR (101 MHz, CDCl3) δ 45.4 (CH2), 55.2 (CH3), 55.5
(CH3), 112.3 (CH), 113.8 (2 × CH), 115.0 (CH), 121.8 (CH),
129.6 (CH), 131.0 (2 × CH), 136.5 (2 × C), 159.8 (C), 163.5 (C),
196.1 (C); MS (ESI) m/z 279 (M + Na+, 100).

1′-(3-Methoxyphenyl)-2′-phenylethan-2′-one.63 An oven-
dried three-neck flask was flushed with argon and charged with N-
methoxy-1′-(3-methoxyphenyl)-N-methylacetamide (0.349 g, 1.67
mmol) in dry tetrahydrofuran (15 mL). Phenylmagnesium bromide
(1.84 mL, 1.84 mmol; 1.0 M in tetrahydrofuran) was added dropwise
at 0 °C, and the solution was warmed to room temperature and
stirred for 2.5 h. The reaction mixture was quenched with saturated
aqueous ammonium chloride solution (15 mL) and extracted with
diethyl ether (4 × 30 mL), dried (MgSO4), and concentrated in
vacuo. Purification by flash column chromatography (petroleum
ether/ethyl acetate, 19:1) gave 1′-(3-methoxyphenyl)-2′-phenylethan-
2′-one (0.210 g, 56%) as a colorless oil. Spectroscopic data were
consistent with the literature.63 1H NMR (400 MHz, CDCl3) δ 3.78
(s, 3H), 4.25 (s, 2H), 6.78−6.83 (m, 2H), 6.86 (br d, J = 7.6 Hz, 1H),
7.24 (t, J = 7.6 Hz, 1H), 7.45 (t, J = 7.8 Hz, 2H), 7.55 (t, J = 7.8 Hz,
1H), 8.01 (d, J = 7.8 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 45.6
(CH2), 55.2 (CH3), 112.4 (CH), 115.1 (CH), 121.8 (CH), 128.6 (4
× CH), 129.7 (CH), 133.2 (CH), 136.0 (C), 136.6 (C), 159.8 (C),
197.5 (C); MS (ESI) m/z 249 (M + Na+, 100).

2′-(4′′-Chlorophenyl)-1′-(3-methoxyphenyl)ethan-2′-one.
The reaction was carried out as described for 1′-(3-methoxyphenyl)-
2′-phenylethan-2′-one using N-methoxy-1′-(3-methoxyphenyl)-N-
methylacetamide (0.387 g, 1.85 mmol). This gave 2′-(4′′-
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chlorophenyl)-1′-(3-methoxyphenyl)ethan-2′-one (0.339 g, 70%) as a
colorless oil. IR (neat) 2940, 2361, 1682, 1589, 1489, 1265, 1157,
1088, 1049, 772 cm−1; 1H NMR (400 MHz, CDCl3) δ 3.78 (s, 3H),
4.22 (s, 2H), 6.78−6.85 (m, 3H), 7.24 (t, J = 7.6 Hz, 1H), 7.42 (d, J =
8.6 Hz, 2H), 7.94 (d, J = 8.6 Hz, 2H); 13C NMR (101 MHz, CDCl3)
δ 45.6 (CH2), 55.2 (CH3), 112.5 (CH), 115.1 (CH), 121.7 (CH),
129.0 (2 × CH), 129.8 (CH), 130.1 (2 × CH), 134.8 (C), 135.6 (C),
139.6 (C), 159.9 (C), 196.3 (C); MS (ESI) m/z 283 (M + Na+, 100);
HRMS (ESI) calcd for C15H13

35ClNaO2 (M + Na+) 283.0496, found
283.0500.
1′-(3-Methoxyphenyl)-2′-(4′′-methoxyphenyl)ethan-2′-ol

(3g).5b To a stirred solution of 1′-(3-methoxyphenyl)-2′-(4′′-
methoxyphenyl)ethan-2-one (0.530 g, 2.07 mmol) in methanol (15
mL) was added sodium borohydride (0.196 g, 5.17 mmol). The
resulting suspension was stirred at room temperature for 4 h after
which time the reaction was quenched with water (15 mL) and
extracted with dichloromethane (3 × 30 mL). The combined organic
layers were washed with water (2 × 60 mL) and brine (60 mL), dried
(MgSO4), and concentrated in vacuo to give 1′-(3-methoxyphenyl)-
2′-(4′′-methoxyphenyl)ethan-2′-ol (3g) (0.508 g, 95%) as a colorless
oil. Spectroscopic data were consistent with the literature.5b 1H NMR
(400 MHz, CDCl3) δ 1.97 (br s, 1H), 2.94 (dd, J = 13.5, 8.0 Hz, 1H),
2.99 (dd, J = 13.5, 5.6 Hz, 1H), 3.76 (s, 3H), 3.80 (s, 3H), 4.84 (ddd,
J = 8.0, 5.6, 2.7 Hz, 1H), 6.70−6.73 (m, 1H), 6.75−6.80 (m, 2H),
6.87 (d, J = 8.7 Hz, 2H), 7.21 (t, J = 7.9 Hz, 1H), 7.27 (d, J = 8.7 Hz,
2H); 13C NMR (101 MHz, CDCl3) δ 46.1 (CH2), 55.2 (CH3), 55.3
(CH3), 74.9 (CH), 112.1 (CH), 113.8 (2 × CH), 115.1 (CH), 121.9
(CH), 127.2 (2 × CH), 129.5 (CH), 136.0 (C), 139.8 (C), 159.1
(C), 159.7 (C); MS (ESI) m/z 281 (M + Na+, 100).
1′-(3-Methoxyphenyl)-2′-phenylethan-2′-ol (3h).64 The re-

action was carried out as described for 1′-(3-methoxyphenyl)-2′-(4′′-
methoxyphenyl)ethan-2′-ol (3g) using 1′-(3-methoxyphenyl)-2′-
phenylethan-2-one (0.188 g, 0.830 mmol), except that the reaction
was stirred at room temperature for 1 h. This gave 1′-(3-
methoxyphenyl)-2′-phenylethan-2′-ol (3h) (0.169 g, 89%) as a
colorless oil. Spectroscopic data were consistent with the literature.64
1H NMR (400 MHz, CDCl3) δ 1.97 (d, J = 3.0 Hz, 1H), 2.96 (dd, J =
13.7, 8.4 Hz, 1H), 3.03 (dd, J = 13.7, 5.0 Hz, 1H), 3.77 (s, 3H), 4.89
(ddd, J = 8.4, 5.0, 3.0 Hz, 1H), 6.71−6.74 (m, 1H), 6.76−6.83 (m,
2H), 7.22 (t, J = 7.9 Hz, 1H), 7.26−7.40 (m, 5H); 13C NMR (101
MHz, CDCl3) δ 46.2 (CH2), 55.2 (CH3), 75.2 (CH), 112.2 (CH),
115.1 (CH), 121.8 (CH), 125.9 (2 × CH), 127.6 (CH), 128.4 (2 ×
CH), 129.5 (CH), 139.6 (C), 143.8 (C), 159.7 (C); MS (ESI) m/z
251 (M + Na+, 100).
2′-(4′′-Chlorophenyl)-1′-(3-methoxyphenyl)ethan-2′-ol (3i).

The reaction was carried out as described for 1′-(3-methoxyphenyl)-
2′-(4′′-methoxyphenyl)ethan-2′-ol (3g) using 2′-(4′′-chlorophenyl)-
1′-(3-methoxyphenyl)ethan-2′-one (0.243 g, 0.930 mmol). This gave
2′-(4′′-chlorophenyl)-1′-(3-methoxyphenyl)ethan-2′-ol (3i) (0.210 g,
86%) as a colorless oil. IR (neat) 3402, 2940, 2361, 1597, 1489, 1258,
1157, 1088, 1049, 833, 779 cm−1; 1H NMR (400 MHz, CDCl3) δ
1.98 (d, J = 2.9 Hz, 1H), 2.91 (dd, J = 13.7, 8.5 Hz, 1H), 2.99 (dd, J =
13.7, 5.0 Hz, 1H), 3.78 (s, 3H), 4.88 (ddd, J = 8.5, 5.0, 2.9 Hz, 1H),
6.71 (t, J = 2.0 Hz, 1H), 6.74−6.82 (m, 2H), 7.22 (t, J = 8.0 Hz, 1H),
7.27 (d, J = 8.8 Hz, 2H), 7.32 (d, J = 8.8 Hz, 2H); 13C NMR (101
MHz, CDCl3) δ 46.2 (CH2), 55.2 (CH3), 74.5 (CH), 112.2 (CH),
115.1 (CH), 121.8 (CH), 127.3 (2 × CH), 128.5 (2 × CH), 129.6
(CH), 133.2 (C), 139.1 (C), 142.2 (C), 159.8 (C); MS (ESI) m/z
285 (M + Na+, 100); HRMS (ESI) calcd for C15H15

35ClNaO2 (M +
Na+) 285.0653, found 285.0646.
Ethyl (E)-1′-(3-Methoxyphenyl)acrylate.65 A solution of

lithium chloride (0.310 g, 7.30 mmol), triethyl phosphonoacetate
(1.45 mL, 7.30 mmol), and 1,8-diazabicyclo[5,4,0]undec-7-ene (1.09
mL, 7.30 mmol) in dry acetonitrile (30 mL) was stirred for 0.5 h. m-
Anisaldehyde (0.890 mL, 7.30 mmol) was added, and the solution
was stirred at room temperature for 18 h. The reaction mixture was
quenched with brine (30 mL) and concentrated, and the residue was
extracted with diethyl ether (5 × 50 mL). The combined organic
layers were dried (MgSO4) and concentrated. Purification by flash
column chromatography (petroleum ether/ethyl acetate, 9:1) gave

ethyl (E)-1′-(3′-methoxyphenyl)acrylate (1.36 g, 91%) as a colorless
oil. Spectroscopic data were consistent with the literature.65 1H NMR
(400 MHz, CDCl3) δ 1.33 (t, J = 7.2 Hz, 3H), 3.82 (s, 3H), 4.26 (q, J
= 7.2 Hz, 2H), 6.42 (d, J = 15.9 Hz, 1H), 6.91 (ddd, J = 8.1, 2.5, 0.8
Hz, 1H), 7.04 (t, J = 2.5 Hz, 1H), 7.10 (br d, J = 8.1 Hz, 1H), 7.29 (t,
J = 8.1 Hz, 1H), 7.64 (d, J = 15.9 Hz, 1H); 13C NMR (101 MHz,
CDCl3) δ 14.3 (CH3), 55.3 (CH3), 60.5 (CH2), 112.9 (CH), 116.1
(CH), 118.6 (CH), 120.7 (CH), 129.9 (CH), 135.8 (C), 144.5
(CH), 159.9 (C), 166.9 (C); MS (ESI) m/z 207 (M + H+, 100).

Ethyl (E)-1′-(3,4,5-trimethoxyphenyl)acrylate.66 The reaction
was conducted as described for the synthesis of ethyl (E)-1′-(3′-
methoxyphenyl)acrylate using trimethoxybenzaldehyde (1.00 g, 5.10
mmol). The resulting off-white solid was recrystallized from hot
hexane which gave ethyl (E)-1′-(3,4,5-trimethoxyphenyl)acrylate
(0.713 g, 53%) as a white solid. Mp 50−52 °C (lit.66 53−55 °C);
1H NMR (500 MHz, CDCl3) δ 1.34 (t, J = 7.2 Hz, 3H), 3.88 (s, 3H),
3.89 (s, 6H), 4.26 (q, J = 7.2 Hz, 2H), 6.35 (d, J = 15.9 Hz, 1H), 6.76
(s, 2H), 7.60 (d, J = 15.9 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ
14.3 (CH3), 56.1 (2 × CH3), 60.5 (CH2), 61.0 (CH3), 105.2 (2 ×
CH), 117.5 (CH), 130.0 (C), 140.1 (C), 144.5 (CH), 153.4 (2 × C),
166.9 (C); MS (ESI) m/z 289 (M + H+, 100).

1′-(3-Methoxyphenyl)propan-3′-ol (3j).67 To a stirred suspen-
sion of lithium aluminum hydride (0.150 g, 3.94 mmol) in dry
tetrahydrofuran (10 mL) was added ethyl (E)-1′-(3-methoxyphenyl)-
acrylate (0.325 g, 1.58 mmol) in tetrahydrofuran (10 mL) dropwise
under a constant stream of argon at 0 °C. The suspension was stirred
at room temperature for 5 h, then cooled to 0 °C and quenched with
a saturated aqueous solution of potassium sodium tartrate (20 mL),
and stirred overnight. The suspension was extracted with diethyl ether
(5 × 50 mL), and the combined organic extracts were dried (MgSO4)
and concentrated. Purification by flash column chromatography
(petroleum ether/ethyl acetate, 7:3) gave 1′-(3-methoxyphenyl)-
propan-3′-ol (3j) (0.179 g, 69%) as a colorless oil. Spectroscopic data
were consistent with the literature.67 1H NMR (400 MHz, CDCl3) δ
1.85−1.94 (m, 2H), 2.69 (t, J = 7.9 Hz, 2H), 3.68 (t, J = 6.5 Hz, 2H),
3.80 (s, 3H), 6.72−6.77 (m, 2H), 6.78−6.82 (m, 1H), 7.21 (t, J = 7.6
Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 32.1 (CH2), 34.1 (CH2),
55.1 (CH3), 62.3 (CH2), 111.1 (CH), 114.2 (CH), 120.8 (CH),
129.4 (CH), 143.5 (C), 159.7 (C); MS (ESI) m/z 189 (M + Na+,
100).

1′-(3,4,5-Trimethoxyphenyl)propan-3′-ol (3l).68 The reaction
was conducted as described for the synthesis of 1′-(3-methoxy-
phenyl)propan-3′-ol (3j) using ethyl (E)-1′-(3,4,5-trimethoxy-
phenyl)acrylate (0.596 g, 2.24 mmol). The suspension was stirred
at room temperature for 5 h, cooled to 0 °C, and quenched with water
(0.25 mL). To this solution was added 15% aqueous sodium
hydroxide (0.25 mL), followed by water (0.75 mL). Magnesium
sulfate was added, and the suspension was stirred for 0.5 h, filtered,
and concentrated in vacuo. Purification by flash column chromatog-
raphy (ethyl acetate/petroleum ether, 3:2) gave 1′-(3,4,5-trimethoxy-
phenyl)propan-3′-ol (3l) (0.228 g, 45%) as a colorless oil.
Spectroscopic data were consistent with the literature.68 1H NMR
(400 MHz, CDCl3) δ 1.42 (br s, 1H), 1.85−1.95 (m, 2H), 2.63−2.69
(m, 2H), 3.68 (t, J = 6.5 Hz, 2H), 3.83 (s, 3H), 3.85 (s, 6H), 6.42 (s,
2H); 13C NMR (101 MHz, CDCl3) δ 32.6 (CH2), 34.3 (CH2), 56.1
(2 × CH3), 60.9 (CH3), 62.3 (CH2), 105.3 (2 × CH), 136.1 (C),
137.7 (C), 153.2 (2 × C); MS (ESI) m/z 249 (M + Na+, 100).

2,3-Dihydro-5-methoxybenzofuran (4a).12 2,3-Dihydro-5-
methoxybenzofuran (4a) was synthesized as described for 1-
benzoyl-5-methoxyindoline (2a) using 3-methoxyphenylethan-2′-ol
(3a) (0.071 mL, 0.50 mmol). The O-arylation step was carried out at
150 °C for 21 h. Purification by flash column chromatography
(petroleum ether/ethyl acetate, 19:1) gave 2,3-dihydro-5-methoxy-
benzofuran (4a) (0.046 g, 65%) as a colorless oil. Spectroscopic data
were consistent with the literature.12 1H NMR (400 MHz, CDCl3) δ
3.17 (t, J = 8.6 Hz, 2H), 3.75 (s, 3H), 4.53 (t, J = 8.6 Hz, 2H), 6.64
(dd, J = 8.6, 2.6 Hz, 1H), 6.68 (d, J = 8.6 Hz, 1H), 6.78 (d, J = 2.6 Hz,
1H); 13C NMR (101 MHz, CDCl3) δ 30.3 (CH2), 56.1 (CH3), 71.3
(CH2), 109.1 (CH), 111.4 (CH), 112.8 (CH), 128.0 (C), 154.1 (C),
154.2 (C); MS (ESI) m/z 173 (M + Na+, 100).

The Journal of Organic Chemistry Article

DOI: 10.1021/acs.joc.8b02888
J. Org. Chem. 2019, 84, 346−364

358

http://dx.doi.org/10.1021/acs.joc.8b02888


2,3-Dihydro-5,6-dimethoxybenzofuran (4b). 2,3-Dihydro-5,6-
dimethoxybenzofuran (4b) was synthesized as described for 1-
benzoyl-5-methoxyindoline (2a) using 3,4-dimethoxyphenylethan-2′-
ol (3b) (0.091 g, 0.50 mmol). Purification by flash column
chromatography (petroleum ether/ethyl acetate, 9:1) gave 2,3-
dihydro-5,6-dimethoxybenzofuran (4b) (0.065 g, 72%) as a white
solid. Mp 58−60 °C; IR (neat) 2940, 1614, 1502, 1446, 1304, 1208,
1186, 1169, 1095, 1003, 828 cm−1; 1H NMR (400 MHz, CDCl3) δ
3.15 (t, J = 8.7 Hz, 2H), 3.82 (s, 3H), 3.83 (s, 3H), 4.54 (t, J = 8.7 Hz,
2H), 6.45 (s, 1H), 6.78 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 30.0
(CH2), 56.1 (CH3), 57.0 (CH3), 71.7 (CH2), 94.9 (CH), 109.3
(CH), 116.6 (C), 143.2 (C), 149.2 (C), 154.3 (C); MS (ESI) m/z
203 (M + Na+, 100); HRMS (ESI) calcd for C10H12NaO3 (M + Na+)
203.0679, found 203.0679.
2,3-Dihydro-5,6-methylenedioxybenzofuran (4c). 2,3-Dihy-

dro-5,6-methylenedioxybenzofuran (4c) was synthesized as described
for 1-benzoyl-5-methoxyindoline (2a) using (3,4-methylenedioxy)-
phenethan-2′-ol (3c) (0.083 g, 0.50 mmol). Purification by flash
column chromatography (petroleum ether/ethyl acetate, 9:1) gave
2,3-dihydro-5,6-methylenedioxybenzofuran (4c) (0.053 g, 64%) as a
white solid. Mp 54−56 °C; IR (neat) 2893, 2361, 1620, 1474, 1296,
1142, 1034, 941 cm−1; 1H NMR (400 MHz, CDCl3) δ 3.10 (t, J = 8.7
Hz, 2H), 4.54 (t, J = 8.7 Hz, 2H), 5.87 (s, 2H), 6.37 (s, 1H), 6.65 (s,
1H); 13C NMR (101 MHz, CDCl3) δ 30.0 (CH2), 72.0 (CH2), 93.0
(CH), 101.1 (CH2), 105.0 (CH), 117.7 (C), 141.4 (C), 147.1 (C),
154.6 (C); MS (EI) m/z 164 (M+, 100), 133 (18), 84 (48), 78 (20);
HRMS (EI) calcd for C9H8O3 (M

+) 164.0473, found 164.0469.
2,3-Dihydro-5,6-ethylenedioxybenzofuran (4d). 2,3-Dihydro-

5,6-ethylenedioxybenzofuran (4d) was synthesized as described for 1-
benzoyl-5-methoxyindoline (2a) using 1′-(dihydro-3,4-benzo-
dioxinyl)ethan-2′-ol (3d) (0.106 g, 0.590 mmol). The iodination
step was carried out at 40 °C for 4 h. Purification by flash column
chromatography (petroleum ether/ethyl acetate, 9:1) gave 2,3-
dihydro-5,6-ethylenedioxybenzofuran (4d) (0.062 g, 60%) as a
white solid. Mp 64−66 °C; IR (neat) 2992, 1607, 1486, 1327,
1185, 1060, 931 cm−1; 1H NMR (400 MHz, CDCl3) δ 3.10 (t, J = 8.3
Hz, 2H), 4.15−4.23 (m, 4H), 4.50 (t, J = 8.3 Hz, 2H), 6.34 (s, 1H),
6.70 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 29.6 (CH2), 64.1
(CH2), 64.5 (CH2), 71.6 (CH2), 98.4 (CH), 113.2 (CH), 119.2 (C),
137.3 (C), 142.8 (C), 154.3 (C); MS (EI) m/z 178 (M+, 100), 122
(92), 69 (25); HRMS (EI) calcd for C10H10O3 (M

+) 178.0630, found
178.0625.
5-Acetamido-2,3-dihydrobenzofuran (4e).69 5-Acetamido-

2,3-dihydrobenzofuran (4e) was synthesized as described for 1-
benzoyl-5-methoxyindoline (2a) using 1′-(3-acetamidophenyl)ethan-
2′-ol (3e) (0.027 g, 0.15 mmol). The iodination step was carried out
at 40 °C for 4 h. Purification by flash column chromatography
(petroleum ether/ethyl acetate, 1:1) gave 5-acetamido-2,3-dihydro-
benzofuran (4e) (0.014 g, 56%) as a white solid. Mp 94−96 °C (lit.69

93−95 °C); 1H NMR (400 MHz, CDCl3) δ 2.12 (s, 3H), 3.17 (t, J =
8.4 Hz, 2H), 4.54 (t, J = 8.4 Hz, 2H), 6.69 (d, J = 8.5 Hz, 1H), 7.00
(dd, J = 8.5, 2.2 Hz, 1H) 7.44−7.49 (m, 2H); 13C NMR (101 MHz,
CDCl3) δ 24.2 (CH3), 29.9 (CH2), 71.5 (CH2), 109.0 (CH), 118.6
(CH), 120.7 (CH), 127.6 (C), 130.8 (C), 157.0 (C), 168.6 (C); MS
(ESI) m/z 200 (M + Na+, 100).
2,3-Dihydro-2,2-dimethyl-5-methoxybenzofuran (4f).12 2,3-

Dihydro-2,2-dimethyl-5-methoxybenzofuran (4f) was synthesized as
described for 1-benzoyl-5-methoxyindoline (2a) using 2′,2′-dimethyl-
1′-(3-methoxyphenyl)ethan-2′-ol (3f) (0.120 g, 0.670 mmol).
Purification by flash column chromatography (petroleum ether/
diethyl ether, 19:1) gave 2,3-dihydro-2,2-dimethyl-5-methoxy-
benzofuran (4f) (0.082 g, 69%) as a colorless oil. Spectroscopic
data were consistent with the literature.12 1H NMR (400 MHz,
CDCl3) δ 1.45 (s, 6H), 2.98 (s, 2H), 3.74 (s, 3H), 6.60−6.67 (m,
2H), 6.71−6.75 (m, 1H); 13C NMR (101 MHz, CDCl3) δ 28.1 (2 ×
CH3), 43.3 (CH2), 56.0 (CH3), 86.5 (C), 109.3 (CH), 111.6 (CH),
112.8 (CH), 128.1 (C), 153.1 (C), 153.8 (C); MS (ESI) m/z 201 (M
+ Na+, 100).
2,3-Dihydro-2-(4′-methoxyphenyl)-5-methoxybenzofuran

(4g).5b 2,3-Dihydro-2-(4′-methoxyphenyl)-5-methoxybenzofuran

(4g) was synthesized as described for 1-benzoyl-5-methoxyindoline
(2a) using 1′-(3-methoxyphenyl)-2′-(4′′-methoxyphenyl)ethan-2′-ol
(3g) (0.050 g, 0.19 mmol). The O-arylation step was carried out at
130 °C for 18 h. Purification by flash column chromatography
(hexane/dichloromethane, 1:1) gave 2,3-dihydro-2-(4′-methoxy-
phenyl)-5-methoxybenzofuran (4g) (0.013 g, 29%) as a colorless
oil. Spectroscopic data were consistent with the literature.5b 1H NMR
(400 MHz, CDCl3) δ 3.19 (dd, J = 15.7, 8.3 Hz, 1H), 3.55 (dd, J =
15.7, 9.0 Hz, 1H), 3.77 (s, 3H), 3.81 (s, 3H), 5.68 (dd, J = 9.0, 8.3
Hz, 1H), 6.65−6.84 (m, 3H), 6.89 (d, J = 8.7 Hz, 2H), 7.33 (d, J =
8.7 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 38.7 (CH2), 55.3
(CH3), 56.1 (CH3), 84.2 (CH), 109.2 (CH), 111.2 (CH), 113.0
(CH), 114.0 (2 × CH), 127.3 (2 × CH), 127.7 (C), 133.9 (C), 153.7
(C), 154.2 (C), 159.5 (C); MS (ESI) m/z 279 (M + Na+, 100).

2,3-Dihydro-5-methoxy-2-phenylbenzofuran (4h).12 2,3-Di-
hydro-5-methoxy-2-phenylbenzofuran (4h) was synthesized as
described for 1-benzoyl-5-methoxyindoline (2a) using 1′-(3-methoxy-
phenyl)-2′-phenylethan-2′-ol (3h) (0.084 g, 0.37 mmol). The
iodination step was carried out at 40 °C for 4 h, and the O-arylation
step, at 130 °C for 22 h. Purification by flash column chromatography
(petroleum ether/ethyl acetate, 19:1) gave 2,3-dihydro-5-methoxy-2-
phenylbenzofuran (4h) (0.053 g, 64%) as a colorless oil.
Spectroscopic data were consistent with the literature.12 1H NMR
(400 MHz, CDCl3) δ 3.18 (dd, J = 15.7, 8.2 Hz, 1H), 3.59 (dd, J =
15.7, 9.4 Hz, 1H), 3.76 (s, 3H), 5.72 (dd, J = 9.4, 8.2 Hz, 1H), 6.69
(dd, J = 8.7, 2.6 Hz, 1H), 6.74−6.80 (m, 2H), 7.26−7.43 (m, 5H);
13C NMR (101 MHz, CDCl3) δ 38.9 (CH2), 56.1 (CH3), 84.3 (CH),
109.2 (CH), 111.2 (CH), 113.1 (CH), 125.8 (2 × CH), 127.5 (C),
128.0 (CH), 128.7 (2 × CH), 142.1 (C), 153.8 (C), 154.3 (C); MS
(ESI) m/z 249 (M + Na+, 100).

2-(4′-Chlorophenyl)-2,3-dihydro-5-methoxybenzofuran
(4i).70 2-(4′-Chlorophenyl)-2,3-dihydro-5-methoxybenzofuran (4i)
was synthesized as described for 1-benzoyl-5-methoxyindoline (2a)
using 2′-(4′′-chlorophenyl)-1′-(3-methoxyphenyl)ethan-2′-ol (3i)
(0.154 g, 0.590 mmol). The iodination step was carried out at 40
°C for 4 h, and the O-arylation step, at 130 °C for 22 h. Purification
by flash column chromatography (petroleum ether/ethyl acetate,
19:1) gave 2-(4′-chlorophenyl)-2,3-dihydro-5-methoxybenzofuran
(4i) (0.096 g, 63%) as a white solid. Mp 58−60 °C (lit.70 60−61
°C); 1H NMR (400 MHz, CDCl3) δ 3.13 (dd, J = 15.7, 8.0 Hz, 1H),
3.60 (dd, J = 15.7, 9.4 Hz, 1H), 3.76 (s, 3H), 5.70 (dd, J = 9.4, 8.0 Hz,
1H), 6.70 (dd, J = 8.7, 2.6 Hz, 1H), 6.74−6.80 (m, 2H), 7.33 (br s,
4H); δC (101 MHz, CDCl3) δ 38.9 (CH2), 56.0 (CH3), 83.4 (CH),
109.3 (CH), 111.2 (CH), 113.1 (CH), 127.1 (2 × CH), 127.1 (C),
128.8 (2 × CH), 133.7 (C), 140.6 (C), 153.6 (C), 154.4 (C); MS
(ESI) m/z 283 (M + Na+, 100).

2,3-Dihydro-6-methoxy-1-benzopyran (4j).12 2,3-Dihydro-6-
methoxybenzopyran (4j) was synthesized as described for 1-benzoyl-
5-methoxyindoline (2a) using 1′-(3-methoxyphenyl)propan-3′-ol (3j)
(0.083 g, 0.50 mmol). The O-arylation step was carried out at 150 °C
for 24 h. Purification by flash column chromatography (hexane/
dichloromethane, 1:1) gave 2,3-dihydro-6-methoxy-1-benzopyran
(4j) (0.046 g, 57%) as a colorless oil. Spectroscopic data were
consistent with the literature.12 1H NMR (400 MHz, CDCl3) δ 1.94−
2.02 (m, 2H), 2.77 (t, J = 6.5 Hz, 2H), 3.74 (s, 3H), 4.13 (t, J = 5.2
Hz, 2H), 6.58 (d, J = 2.9 Hz, 1H), 6.66 (dd, J = 8.8, 2.9 Hz, 1H), 6.71
(d, J = 8.8 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 22.5 (CH2),
25.2 (CH2), 55.7 (CH3), 66.3 (CH2), 113.3 (CH), 114.4 (CH),
117.2 (CH), 122.7 (C), 149.0 (C), 153.2 (C); MS (EI) m/z 164 (M+,
100), 149 (42), 136 (22), 108 (14), 84 (28), 77 (11).

2,3-Dihydro-6,7-dimethoxy-1-benzopyran (4k).71 2,3-Dihy-
dro-6,7-dimethoxybenzopyran (4k) was synthesized as described for
1-benzoyl-5-methoxyindoline (2a) using 1′-(3,4-dimethoxyphenyl)-
propan-3′-ol (3k) (0.049 g, 0.25 mmol). The O-arylation step was
carried out at 150 °C for 24 h. Purification by flash column
chromatography (hexane/ethyl acetate, 4:1) gave 2,3-dihydro-6,7-
dimethoxy-1-benzopyran (4k) (0.027 g, 56%) as a colorless oil.
Spectroscopic data were consistent with the literature.71 1H NMR
(500 MHz, CDCl3) δ 1.95−2.02 (m, 2H), 2.70 (t, J = 6.6 Hz, 2H),
3.81 (s, 3H), 3.81 (s, 3H), 4.10−4.14 (m, 2H), 6.38 (s, 1H), 6.53 (s,
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1H); 13C NMR (126 MHz, CDCl3) δ 22.6 (CH2), 24.3 (CH2), 55.9
(CH3), 56.5 (CH3), 66.3 (CH2), 100.9 (CH), 112.6 (C), 112.7
(CH), 143.0 (C), 148.3 (C), 148.7 (C); MS (EI) m/z 194 (M+, 100),
179 (86), 149 (25), 123 (15), 57 (25).
2,3-Dihydro-6,7,8-trimethoxy-1-benzopyran (4l). 2,3-Dihy-

dro-6,7-trimethoxy-1-benzopyran (4l) was synthesized as described
for 1-benzoyl-5-methoxyindoline (2a) using 1′-(3,4,5-trimethoxy-
phenyl)propan-3′-ol (3l) (0.057 g, 0.25 mmol). The O-arylation
step was carried out at 150 °C for 22 h. Purification by flash column
chromatography (petroleum ether/ethyl acetate, 4:1) gave 2,3-
dihydro-6,7,8-trimethoxy-1-benzopyran (4l) (0.029 g, 51%) as a
colorless oil. IR (neat) 2932, 1489, 1462, 1420, 1277, 1219, 1126,
1099, 1072, 1011 cm−1; 1H NMR (400 MHz, CDCl3) δ 1.95−2.03
(m, 2H), 2.73 (t, J = 6.5 Hz, 2H), 3.79 (s, 3H), 3.87 (s, 3H), 3.89 (s,
3H), 4.16−4.21 (m, 2H), 6.34 (s, 1H); 13C NMR (101 MHz, CDCl3)
δ 22.4 (CH2), 24.8 (CH2), 56.4 (CH3), 61.1 (CH3), 61.3 (CH3), 66.4
(CH2), 107.5 (CH), 117.1 (C), 141.4 (C), 142.3 (C), 142.6 (C),
146.6 (C); MS (ESI) m/z 247 (M + Na+, 100); HRMS (ESI) calcd
for C12H16NaO4 (M + Na+) 247.0941, found 247.0932.
1′-(3-Hydroxy-4-methoxyphenyl)-N-methoxy-N-methylace-

tamide. The reaction was carried out as described for N-methoxy-1′-
(3-methoxyphenyl)-N-methylacetamide using 3-hydroxy-4-methoxy-
phenylacetic acid (5) (1.00 g, 5.49 mmol), except that the solvent
used was acetonitrile (30 mL). Purification by flash column
chromatography (petroleum ether/ethyl acetate, 3:7) gave 1′-(3-
hydroxy-4-methoxyphenyl)-N-methoxy-N-methylacetamide (0.831 g,
68%) as a white solid. Mp 62−64 °C; IR (neat) 3323, 2939, 1642,
1590, 1511, 1440, 1271, 1131, 1006, 761 cm−1; 1H NMR (400 MHz,
CDCl3) δ 3.18 (s, 3H), 3.61 (s, 3H), 3.67 (s, 2H), 3.85 (s, 3H), 5.85
(s, 1H), 6.73−6.82 (m, 2H), 6.87 (d, J = 1.3 Hz, 1H); 13C NMR (101
MHz, CDCl3) δ 32.3 (CH3), 38.7 (CH2), 56.0 (CH3), 61.3 (CH3),
110.8 (CH and C), 115.7 (CH), 120.7 (CH), 128.1 (C), 145.6 (C),
172.7 (C); MS (ESI) m/z 248 (M + Na+, 100); HRMS (ESI) calcd
for C11H15NNaO4 (M + Na+) 248.0893, found 248.0889.
1′-(3-tert-Butyldimethylsilyloxy-4-methoxyphenyl)-N-me-

thoxy-N-methylacetamide (6). To a solution of 1′-(3-hydroxy-4-
methoxyphenyl)-N-methoxy-N-methylacetamide (1.23 g, 5.46 mmol)
and imidazole (0.740 g, 10.9 mmol) in dry dichloromethane (40 mL)
was added tert-butyldimethylsilyl chloride (0.99 g, 6.56 mmol)
portionwise. 4-Dimethylaminopyridine (0.070 g, 0.55 mmol) was
added, and the resulting suspension was stirred at room temperature
for 16 h. The reaction was quenched with water (30 mL), and the
mixture was extracted with dichloromethane (4 × 50 mL). The
combined organic layers were washed with aqueous sodium hydrogen
carbonate (100 mL) and brine (100 mL), dried (MgSO4), and
concentrated in vacuo. Purification by flash column chromatography
(petroleum ether/ethyl acetate, 4:1) gave 1′-(3-tert-butyldimethyl-
silyloxy-4-methoxyphenyl)-N-methoxy-N-methylacetamide (6) (1.87
g, 100%) as a colorless oil. IR (neat) 2932, 1663, 1512, 1271, 1136,
988, 839 cm−1; 1H NMR (400 MHz, CDCl3) δ 0.15 (s, 6H), 0.99 (s,
9H), 3.18 (s, 3H), 3.58 (s, 3H), 3.65 (s, 2H), 3.78 (s, 3H), 6.78 (d, J
= 8.2 Hz, 1H), 6.80 (d, J = 2.0 Hz, 1H), 6.83 (dd, J = 8.2, 2.0 Hz,
1H); 13C NMR (101 MHz, CDCl3) δ − 4.6 (2 × CH3), 18.4 (C),
25.8 (3 × CH3), 32.8 (CH3), 38.8 (CH2), 55.6 (CH3), 61.3 (CH3),
112.2 (CH), 122.1 (CH), 122.3 (CH), 127.5 (C), 144.9 (C), 149.9
(C), 172.7 (C); MS (ESI) m/z 362 (M + Na+, 100); HRMS (ESI)
calcd for C17H29NNaO4Si (M + Na+) 362.1758, found 362.1745.
1′-(3-tert-Butyldimethylsilyloxy-4-methoxyphenyl)-2′-phe-

nylethan-2′-one. The reaction was carried out as described for 1′-
(3-methoxyphenyl)-2′-phenylethan-2′-one using 1′-(3-tert-butyl-
dimethylsilyloxy-4-methoxyphenyl)-N-methoxy-N-methylacetamide
(6) (1.71 g, 5.03 mmol). Purification by flash column chromatog-
raphy (petroleum ether/ethyl acetate, 4:1) gave 1′-(3-tert-butyl-
dimethylsilyloxy-4-methoxyphenyl)-2′-phenylethan-2′-one (1.32 g,
74%) as a white solid. Mp 60−62 °C; IR (neat) 2930, 1680, 1510,
1271, 1136, 984, 839 cm−1; 1H NMR (400 MHz, CDCl3) δ 0.12 (s,
6H), 0.97 (s, 9H), 3.77 (s, 3H), 4.16 (s, 2H), 6.76 (d, J = 1.4 Hz,
1H), 6.77−6.82 (m, 2H), 7.40−7.46 (m, 2H), 7.50−7.55 (m, 1H),
7.94−8.01 (m, 2H); 13C NMR (101 MHz, CDCl3) δ −4.6 (2 ×
CH3), 18.4 (C), 25.7 (3 × CH3), 45.0 (CH2), 55.5 (CH3), 112.4

(CH), 122.2 (CH), 122.5 (CH), 127.0 (C), 128.6 (2 × CH), 128.7
(2 × CH), 133.0 (CH), 136.7 (C), 145.1 (C), 149.9 (C), 197.9 (C);
MS (ESI) m/z 379 (M + Na+, 100); HRMS (ESI) calcd for
C21H28NaO3Si (M + Na+) 379.1700, found 379.1686.

1′-(3-tert-Butyldimethylsilyloxy-4-methoxyphenyl)-1′-
methyl-2′-phenylethan-2′-one (7). An oven-dried three-neck flask
was flushed with argon and charged with 1′-(3-tert-butyldimethyl-
silyloxy-4-methoxyphenyl)-2′-phenylethan-2′-one (1.32 g, 3.69
mmol) in dry tetrahydrofuran (30 mL). To this solution was added
lithium bis(trimethylsilyl)amide (4.06 mL, 4.06 mmol, 1.0 M in
tetrahydrofuran) dropwise at −78 °C. The reaction mixture was
stirred at −78 °C for 0.5 h before methyl iodide (0.690 mL, 11.1
mmol) was added dropwise. The resulting solution was stirred for 1 h,
at −78 °C, then slowly warmed to 0 °C, and stirred for a further 1 h.
A saturated solution of ammonium chloride (30 mL) was added at 0
°C, and the solution was extracted with diethyl ether (3 × 50 mL).
The combined ethereal extracts were washed with brine (100 mL),
dried (MgSO4), and concentrated in vacuo. Purification by flash
column chromatography (petroleum ether/ethyl acetate, 19:1) gave
1′-(3-tert-butyldimethylsilyloxy-4-methoxyphenyl)-1′-methyl-2′-phe-
nylethan-2′-one (7) (1.19 g, 87%) as a colorless oil. IR (neat) 2930,
1684, 1506, 1275, 1138, 970, 837 cm−1; 1H NMR (400 MHz, CDCl3)
δ 0.09 (s, 6H), 0.96 (s, 9H), 1.48 (d, J = 6.8 Hz, 3H), 3.73 (s, 3H),
4.53 (q, J = 6.8 Hz, 1H), 6.74 (d, J = 8.5 Hz, 1H), 6.75 (d, J = 2.0 Hz,
1H), 6.79 (dd, J = 8.5, 2.0 Hz, 1H), 7.32−7.39 (m, 2H), 7.42−7.48
(m, 1H), 7.89−7.94 (m, 2H); 13C NMR (101 MHz, CDCl3) δ − 4.6
(2 × CH3), 18.5 (C), 19.3 (CH3), 25.7 (3 × CH3), 47.3 (CH), 55.5
(CH3), 112.6 (CH), 120.7 (CH), 120.8 (CH), 128.4 (2 × CH),
128.8 (2 × CH), 132.6 (CH), 134.1 (C), 136.6 (C), 145.3 (C), 149.9
(C), 200.4 (C); MS (ESI) m/z 393 (M + Na+, 100); HRMS (ESI)
calcd for C22H30NaO3Si (M + Na+) 393.1856, found 393.1848.

(1′R,2′R)-1′-(3-tert-Butyldimethylsilyloxy-4-methoxy-
phenyl)-1′-methyl-2′-phenylethan-2′-ol (8). To an oven-dried
conical flask was added potassium tert-butoxide (0.023 g, 0.16 mmol)
and dichloro[(S)-(−)-5,5′-bis[di(3,5-xylyl)phosphino]-4,4′-bi-1,3-
benzodioxole][(2S-(+)-1,1-bis(4-methoxyphenyl)-3-methyl-1,2-
butanediamine]ruthenium(II) (0.025 g, 0.012 mmol). Distilled 2-
propanol (1 mL) was added, and the resulting yellow solution was
stirred at room temperature for 2 h under a constant stream of argon.
1′-(3-tert-Butyldimethylsilyloxy-4-methoxyphenyl)-1′-methyl-2′-phe-
nylethan-2′-one (7) (0.270 g, 0.730 mmol) in 2-propanol (2 mL) was
added to the conical flask containing the catalyst solution and
hydrogenated at 10 bar for 48 h. The reaction mixture was treated
with activated carbon and stirred for 1 h. The mixture was filtered
through Celite and concentrated in vacuo. Purification by flash
column chromatography (hexane/diethyl ether, 7:3) gave (1′R,2′R)-
1′-(3-tert-butyldimethylsilyloxy-4-methoxyphenyl)-1′-methyl-2′-phe-
nylethan-2′-ol (8) (0.192 g, 64%) as a colorless oil. IR (neat) 3454,
2929, 1508, 1275, 1139, 962, 836 cm−1; [α]D

23 +34.4 (c 1.0, CHCl3);
1H NMR (400 MHz, CDCl3) δ 0.15 (s, 6H), 1.00 (s, 9H), 1.03 (d, J
= 7.2 Hz, 3H), 1.90 (d, J = 1.4 Hz, 1H), 2.89 (dq, J = 8.6, 7.2 Hz,
1H), 3.80 (s, 3H), 4.55 (dd, J = 8.6, 1.4 Hz, 1H), 6.73−6.77 (m, 1H),
6.80−6.84 (m, 2H), 7.24−7.36 (m, 5H); 13C NMR (101 MHz,
CDCl3) δ −4.5 (2 × CH3), 18.3 (CH3), 18.5 (C), 25.8 (3 × CH3),
47.5 (CH), 55.6 (CH3), 79.7 (CH), 112.2 (CH), 120.6 (CH), 121.2
(CH), 127.0 (2 × CH), 127.7 (CH), 128.2 (2 × CH), 135.6 (C),
142.5 (C), 145.2 (C), 149.9 (C); MS (ESI) m/z 395 (M + Na+, 100);
HRMS (ESI) calcd for C22H32NaO3Si (M + Na+) 395.2013, found
395.2023. Enantiomeric excess was determined by HPLC analysis,
using a chiralcel AD-H column (hexane/i-propanol 98:2, flow rate 1.0
mL min−1); tminor = 10.65 min, tmajor = 14.55 min, er = 2.5:97.5.

(2R,3R)-5-(tert-Butyldimethylsilyloxy)-2,3-dihydro-6-me-
thoxy-3-methyl-2-phenylbenzofuran (9). (2R,3R)-5-(tert-
Butyldimethylsilyloxy)-2,3-dihydro-6-methoxy-3-methyl-2-phenylben-
zofuran (9) was synthesized as described for 1-benzoyl-5-methox-
yindoline (2a) using (1′R,2′R)-1′-(3-tert-butyldimethylsilyloxy-4-
methoxyphenyl)-1′-methyl-2′-phenylethan-2′-ol (8) (0.060 g, 0.16
mmol). The iodination step was carried out at 50 °C for 7 h.
Purification by flash column chromatography (hexane/dichloro-
methane, 3:2) gave (2R,3R)-5-(tert-butyldimethylsilyloxy)-2,3-dihy-
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dro-6-methoxy-3-methyl-2-phenylbenzofuran (9) (0.038 g, 63%) as a
colorless oil. IR (neat) 2929, 1493, 1449, 1215, 1188, 1169, 904, 837
cm−1; [α]D

20 +23.0 (c 1.0, CHCl3);
1H NMR (400 MHz, CDCl3) δ

0.14 (s, 3H), 0.14 (s, 3H), 1.00 (s, 9H), 1.37 (d, J = 6.7 Hz, 3H), 3.36
(dq, J = 8.9, 6.7 Hz, 1H), 3.77 (s, 3H), 5.11 (d, J = 8.9, 1H), 6.46 (s,
1H), 6.61 (s, 1H), 7.27−7.45 (m, 5H); 13C NMR (101 MHz, CDCl3)
δ −4.7 (CH3), −4.6 (CH3), 18.4 (CH3), 18.5 (C), 25.8 (3 × CH3),
45.6 (CH), 55.7 (CH3), 92.9 (CH), 95.0 (CH), 115.7 (CH), 122.4
(C), 126.1 (2 × CH), 128.1 (CH), 128.6 (2 × CH), 139.0 (C), 141.1
(C), 150.8 (C), 153.6 (C); MS (EI) m/z 370 (M+. 61), 313 (47), 298
(100), 257 (33), 146 (32), 91 (37), 73 (40); HRMS (EI) calcd for
C22H30O3Si (M

+) 370.1964, found 370.1955.
(2R,3R)-2,3-Dihydro-5-hydroxyl-6-methoxy-3-methyl-2-

phenylbenzofuran (10), [(+)-Obtusafuran].26 To a stirred
solution of (2R,3R)-5-(tert-butyldimethylsilyloxy)-2,3-dihydro-6-me-
thoxy-3-methyl-2-phenylbenzofuran (9) (0.038 g, 0.10 mmol) in dry
tetrahydrofuran (10 mL) was added tetrabutylammonium fluoride
solution (0.15 mL, 0.15 mmol; 1.0 M in tetrahydrofuran) at 0 °C.
The resulting solution was stirred at room temperature for 2 h. The
reaction mixture was diluted with diethyl ether (10 mL), washed with
water (2 × 10 mL), dried (MgSO4), and concentrated in vacuo.
Purification by flash column chromatography (hexane/diethyl ether,
7:3) gave (2R,3R)-2,3-dihydro-5-hydroxyl-6-methoxy-3-methyl-2-
phenylbenzofuran (10) (0.023 g, 88%) as a white solid. Mp 108−
110 °C (lit.26 111−113 °C); [α]D

23 +48.2 (c 0.5, MeOH), lit.26

[α]D
25 +50.0 (c 0.33, MeOH); 1H NMR (400 MHz, CDCl3) δ 1.37

(d, J = 6.9 Hz, 3H), 3.38 (dq, J = 8.6, 6.9 Hz, 1H), 3.87 (s, 3H), 5.11
(d, J = 8.6 Hz, 1H), 5.24 (s, 1H), 6.50 (s, 1H), 6.72 (s, 1H), 7.29−
7.44 (m, 5H); 13C NMR (101 MHz, CDCl3) δ 18.4 (CH3), 45.7
(CH), 56.2 (CH3), 92.8 (CH), 94.2 (CH), 109.5 (CH), 122.9 (C),
126.0 (2 × CH), 128.1 (CH), 128.6 (2 × CH), 139.9 (C), 141.0 (C),
146.2 (C), 152.4 (C); MS (EI) m/z 256 (M+, 100), 239 (11), 165
(12), 91 (10).
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