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Abstract  

The increasing inflow of index traders into commodity futures markets has been linked to 

anomalies in futures curves. At the same time, these investors have been welcomed as liquidity 

providers. In this paper, I reconcile the apparent dissent. Using factor decomposition, I show (a) 

that index and hedging positions have offsetting effects on futures curves, and (b) index positions 

are associated with upward sloping, peaked futures curves, and occasionally wave-like shapes 

linked to roll effects. These findings suggest that index traders are liquidity providers but can 

become too much of a good thing if exceeding hedgers’ demand for a counterparty. 
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1. Introduction 

Commodity markets have become increasingly popular among investors since the early 

2000s, when deregulation of U.S. commodity futures markets opened new opportunities for 

institutional investors and fund managers alike. As a result, the number of commodity contracts 

traded at derivative markets quadrupled within less than a decade. A vivid debate arose around the 

possible implications of this “financialization” of commodity futures markets for price discovery 

and risk management. Financialization in this context is understood as the increasing presence of 

non-traditional investors in commodity derivative markets using novel trading strategies and 

instruments such as commodity indices.  

Critiques of this development link the growing presence of index traders in commodity 

futures markets to increases in price levels, volatilities, and comovements, as well as market 

anomalies such as non-convergence and inflated calendar spreads (e.g., Masters, 2008; U.S. Senate 

Subcommittee, 2009). Others welcome the presence of index traders as they provide liquidity and 

ease hedging pressure (e.g., Sanders et al., 2010). Recent studies have formalized some of the 

suggested effects of index trading on price discovery (e.g., Brunetti and Reiffen, 2014; Hamilton 

and Wu, 2014; Basak and Pavlova, 2016). However, the empirical literature remains divided over 

both the presence and the strength of this financialization effect. See Fattouh et al. (2013), Irwin 

(2013), and Cheng and Xiong (2014) for literature reviews.   

Most researchers have attempted to identify an excess in price levels, volatilities, and 

comovements beyond what is explained by market fundamentals. Identifying the extent to which 

a price series moves against fundamentals is empirically challenging as fundamental variables are 

often latent and price data noisy. In this paper, I contribute to the debate, while focusing on 

commodity markets’ term structure. I argue that an analysis of price differentials such as market 
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basis or calendar spreads will more clearly identify financialization effects. Since pairs of price 

series are driven by the same commodity-specific fundamentals, the difference in level and 

variability can be attributed to factors that are specific to the commodity contract, including 

different compositions of traders.  

Similar considerations have motivated other researchers to investigate calendar spreads and 

market basis in the context of the financialization debate (e.g. Irwin et al., 2011; Mou, 2011; 

Brunetti and Reiffen, 2014; Van Huellen, 2018). In contrast to previous studies that rely on 

calendar spreads for an analysis of the market term structure (e.g., Irwin et al., 2011; Brunetti and 

Reiffen, 2014), I recognize that calendar spreads are unable to capture non-linear shapes of futures 

curves such as bumps or waves, which have been theoretically linked to index investment. To 

alleviate this shortcoming, I propose a factor decomposition method developed by Nelson and 

Siegel (1987) and extended by Diebold and Li (2006) to capture the often non-linear shapes of the 

commodity futures curve. 

Based on the two-period equilibrium pricing model proposed by Brunetti and Reiffen (2014), 

I derive hypotheses that are testable with the above-mentioned factor decomposition methods. In 

particular, I hypothesize that hedging and index positions have inverse and offsetting effects on 

the shape of the futures curve and refer to these effects as hedging pressure and index pressure. 

Hedging pressure exists if hedgers’ short positions exceed index traders’ long positions so that 

other speculators are required as liquidity providers and vice versa. While index pressure is 

associated with upward sloping (normal) and peaked futures curves, hedging pressure is associated 

with downward-sloping (inverted) and U-shaped futures curves. Further, index pressure is 

associated with occasionally wave-like shapes linked to roll-effects.  
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These hypotheses are tested for three soft commodity markets: cocoa, coffee, and cotton. All 

three commodities are traded at the Commodity Market Exchange (CME) with relatively long 

observed future curves, trading up to 10 or more contracts spanning 24 months simultaneously. 

These markets have been studied less in the context of the financialization debate as they have 

seen less investment by index and other non-traditional traders compared to grains, energy, and 

metals. However, the moderate presence of index traders provides for evaluating index pressure 

alongside hedging pressure effects. This analysis would be impossible in grain markets where 

index positions have consistently outweighed hedging positions since the early 2000s. Further, 

their relatively long futures curve and the availability of storage data provides for robust empirical 

analysis.  

Findings support the hypotheses posed above, whereby the strength of index pressure effects 

varies with the weight of index traders in the respective markets. In light of these findings, I argue 

that, while index traders ease hedging pressure by acting as liquidity providers, index positions, if 

exceeding hedgers’ demand for a counterparty, cause the futures curve to become uninformative 

or even a misleading indicator of underlying demand and supply conditions. I therefore reject 

Sanders et al.’s (2010) verdict and conclude that index traders can indeed become “too much of a 

good thing.”    

The remainder of the paper is structured as following. In Section 2, I discuss the theories of 

intertemporal pricing and the hypothesized factors that drive the shape of the futures curve. In 

Section 3, I present a method for extracting factors that parsimoniously capture the dynamics of 

the futures curve. In Section 4, I outline the statistical methods and data used in the empirical 

analysis. The results are presented in Section 5 and I conclude in Section 6.  
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2. Commodity term structure models 

Futures curve models are commonly based on intertemporal pricing theories, such as theories 

of storage and theories of risk premium. Theories of storage or convenience yield are derived from 

a simple no-arbitrage condition between spot and futures prices, as summarized in equation (1):  

𝐹𝑡
𝑇 = 𝑆𝑡𝑒

(𝑟𝑡+𝑤𝑡−𝑦𝑡)𝜏,       (1) 

where 𝐹𝑡
𝑇 is the futures price at time t with maturity date T, 𝑆𝑡 is the spot price at t, 𝑟𝑡 and 𝑤𝑡 are 

continuously compounded risk-free interest rate and storage costs, respectively, over time 𝜏 = 𝑇 −

𝑡, and 𝑦𝑡 is the convenience yield. The latter is a utility-based reward that accrues to the holder of 

inventories. At maturity, 𝜏 → 0 so that 𝐹𝑇
𝑇 = 𝑆𝑇 and the market basis 𝐵𝑡 ≡ 𝑆𝑡 − 𝐹𝑡

𝑇 is zero, 

implying convergence. A complementary pricing theory is the risk premium or hedging pressure 

approach, according to which the futures price is a biased predictor of the expected spot price so 

that: 

𝐹𝑡
𝑇 = 𝐸𝑡[𝑆𝑇]𝑒

−𝜌𝑡𝜏,       (2) 

with 𝜌𝑡 being the risk premium. The bias arises due to an insurance premium demanded by 

speculators who provide a risk management service to hedgers.  

Hypothetically, there is a futures price 𝐹𝑡
𝑇𝑖 for each maturity date 𝑇𝑖 with 𝑇𝑖 = 𝑡 + 𝑖, 𝑖 ∈ ℕ. 

The combination of all futures price series with maturity dates 𝑇𝑖 is referred to as the term structure, 

while a set of prices at time 𝑡 is referred to as the futures curve (Borovkova, 2010). However, the 

futures curve cannot be observed fully as the set of simultaneously traded contracts is finite. If the 

futures curve is linear, the curve could be approximated by the spot rate plus the gradient estimated 
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as the difference between two consecutive futures contracts. Taking the logs of equations (1) and 

(2), the gradient is approximated by:  

𝑓𝑡
𝑇𝑗
−𝑓𝑡

𝑇𝑖

𝜏𝑖𝑗
= 𝑟𝑡 + 𝑤𝑡 − 𝑦𝑡       (3a) 

𝑓𝑡
𝑇𝑗
−𝑓𝑡

𝑇𝑖

𝜏𝑖𝑗
=

1

𝜏𝑖𝑗
𝐸𝑡[∆𝑠𝜏𝑖𝑗] − 𝜌𝑡,      (3b) 

where 𝜏𝑖𝑗 = 𝑇𝑗 − 𝑇𝑖, with 𝑖 < 𝑗. In other words, the gradient is the calendar spread (𝑠𝜏,𝑡) adjusted 

for differences in maturity dates. However, the imposition of linearity is too restrictive, as the 

convenience yield and risk premium might not evolve linearly over the futures curve. Indeed, non-

liner shapes such as peaked slopes have been identified as common features (Litterman and 

Scheinkman, 1991). The calendar spread hence falls short of adequately capturing the dynamics 

of the futures curve.  

While carry costs (𝑟𝑡 + 𝑤𝑡) are observed, the convenience yield, price expectations, and risk 

premia in equation (3) are latent constructs. The convenience yield is commonly conceptualized 

as an inverse and non-linear function of inventory (Pindyck, 2001; Bozic und Fortenbery, 2011; 

Pirrong, 2011). The risk premium found more varied and potentially complementary 

interpretations in the literature; see Lautier (2005) for an overview. Broadly, two sets of theories 

have emerged: (1) theories of asset-pricing, which assign a risk premium to (systematic) risk 

(Kaldor, 1939; Dusak, 1973) and (2) theories of hedging pressure, which incorporate market 

imperfections into multi-period pricing models (Bessembinder, 1992; Chang, 1985; Hirshleifer, 

1988, 1990).  
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Hedging pressure theories have recently been complemented by a literature identifying a 

potentially offsetting price pressure effect by institutional investors who invest in broad-based 

commodity indices for portfolio diversification (e.g., Brunetti and Reiffen, 2014; Hamilton and 

Wu, 2014; Basak and Pavlova, 2016). These authors show that the risk premium, under the 

assumption of market frictions, is driven by both hedging and index pressure. As for hedging 

pressure models in general, the assumption of market frictions such as transaction costs ensures a 

finite elasticity of supply of speculative funds and hence demand-driven price effects. Brunetti and 

Reiffen (2014) derive a two-period equilibrium pricing model in which hedgers and speculators 

maximize their utility over consecutive trading cycles. Two implications follow immediately from 

their model; see Appendix A1 for a technical summary.  

 Implication 1: Hedging and index pressure are offsetting forces so that hedging pressure is 

defined as short hedging positions net of index positions and index pressure is defined as 

long index positions net of hedging positions.  

 Implication 2: The shape of the futures curve depends on the relative weight of index and 

hedging pressure in individual contracts. 

Brunetti and Reiffen (2014) formulate and test their model with respect to the spread between 

two consecutively traded contracts but not the futures curve. By use of non-publicly available data, 

they show graphically that index positions are mostly located in the medium-term maturities. 

Extending these insights to the futures curve, index pressure is likely to cause non-linearity due to 

peaks in the contracts they are most active in. Index traders should hence contribute to a positive 

slope overall with an inverted U-shape, peaking at medium-term maturities. Hedging positions 
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should have the reverse effect. A method that unveils the latent futures curve to formally test these 

hypotheses is outlined below.1  

3. Factor decomposition  

Principal component analysis (PCA) has been used as a data reduction technique to 

decompose the variation of future curves, foremost yield curves (e.g., Barber and Copper, 2012). 

However, PCA decomposition suffers from weight inconstancy and, resulting from its non-

parametric nature, interpretability of the extracted components is difficult as no structure is 

imposed that could be linked to theory. Factor decomposition methods, such as suggested by 

Nelson and Siegel (1987), adjust for this shortcoming by presupposing structure.  

The Nelson and Siegel (1987) decomposition rests on a set of differential equations that 

capture the dynamic components of the yield curve and thereby generate the typical shapes of the 

curve at any point in time. Diebold and Li (2006) show that by altering the original decomposition, 

the three extracted factors can be interpreted as level, slope, and curvature in a similar manner as 

suggested by Litterman and Scheinman (1991), who were the first to assign meaning to yield curve 

components extracted by PCA.  

The model by Diebold and Li (2006) takes the following form with level, slope, and 

curvature {𝐿, 𝑆, 𝐶} jointly describing the futures curve:  

𝑓𝑡(𝜏) = 𝛽𝑡,𝐿𝐿 + 𝛽𝑡,𝑆𝑆(𝜏) + 𝛽𝑡,𝐶𝐶(𝜏) + 𝜗𝑡(𝜏),     (4) 

where 𝑓𝑡(𝜏) is the price of the commodity futures at time 𝑡 with time to maturity 𝜏. The factor 

scores 𝛽𝑡,𝑗, 𝑗 ∈ {𝐿, 𝑆, 𝐶} can be extracted by first calculating the factor loadings for the slope 

                                                 
1 Brunetti and Reiffen (2014) partly compensate for the shortcoming that spreads cannot capture non-linearities 

by use of non-publicly available data that provides information about the specific contracts in which traders are active.  
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𝑆(𝜏) = (1 − 𝑒−𝜆𝜏/𝜆𝜏), the curvature 𝐶(𝜏) = 𝑆(𝜏) − 𝑒−𝜆𝜏, and the level 𝐿 = 1 for all 𝜏, for each 

contract’s maturity at each point in time and second using ordinary least squares (OLS) to estimate 

𝛽𝑡,𝑗 at each 𝑡. It is easy to see that 𝑓𝑡(∞) = 𝛽𝑡,𝐿, 𝑓𝑡(∞) − 𝑓𝑡(0) = 𝛽𝑡,𝑆 and max𝐶(𝜏) = 𝜆. 

Therefore, the level factor has been termed the long run factor, while the slope factor is interpreted 

as the short run factor. The curvature is the medium run factor with 𝜆 governing at which month 

𝐶(𝜏) has a global maximum (see Figure 1). 

[Figure 1 about here] 

Following Karstanje et al. (2017), I add a trigometric function. The addition is motivated by 

suspected seasonality in the data and the observation of a fourth wave-shaped component in the 

PCA decomposition for coffee, cocoa, and cotton (see Appendix Figure A1). The additional factor 

takes the following form: 𝑊(𝜏) = sin(𝜋𝜆𝜏).2 The functional form is simpler than in Karstanje et 

al. (2017) and offers a very good fit for the futures curves analyzed:  

𝑓𝑡(𝜏) = 𝛽𝑡,𝐿𝐿 + 𝛽𝑡,𝑆𝑆(𝜏) + 𝛽𝑡,𝐶𝐶(𝜏) + 𝛽𝑡,𝑊𝑊(𝜏) + 𝜗𝑡(𝜏).    (5)  

While the shapes of the loadings are determined ex ante, the rate of decay 𝜆 can be flexible. 

Hansen and Lunde (2013) find that allowing the decay factor to change over time does not improve 

model fit, while Baruník and Malinská (2016) find that a time-varying decay factor results in 

forecasting deterioration. Hence, I fix the decay factor, whereby the value of 𝜆 is found by grid 

search so that the best fit is reached. I further follow Karstanje et al. (2017) in re-centring3 the 

loadings of the components for a clearer separation of the variation. The transformation is 

                                                 
2 Inspired by Gilbert et al. (2017), I experimented with the addition of a phase parameter 𝜔 in 𝑊(𝜏) = sin((𝜆𝜏 +
𝜔)𝜋) that shifts with the trading months, as seasonal patterns should depend on the months of year and not duration 

to maturity 𝜏. However, the addition did not improve overall fit.  
3 Re-centring is achieved by 𝑆′(𝜏) = 𝑆(𝜏) − 𝑆(1), 𝐶′(𝜏) = 𝐶(𝜏) − 𝐶(1) and 𝑊′(𝜏) = 𝑊(𝜏) −𝑊(1). 
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motivated by the observation that the slope and the curvature factor can become almost 

indistinguishable if the futures curve is relatively flat.  

Given the predetermined shapes of the factors, the obtained loadings are interpretable. The 

level reflects the overall price trend common across simultaneously traded contracts, while the 

slope indicates whether the market is normal or inverted. A positive factor value indicates a 

downward-sloping futures curve, i.e., the contracts with longer maturities trade at a discount 

(inverted), and a negative value indicates an upward sloping futures curve, i.e., contracts with 

shorter maturity trade at a discount (normal). A positive value for the curvature coefficient 

indicates a convex curve while a negative indicates a concave curve. A positive value for the wave 

component signals an N-shaped futures curve and a negative value signals an inverted N-shaped 

curve. 

Recalling the conclusions reached in Section 2, the following testable relations are expected: 

hypotheses H(1) to H(3): 

H(1): Index pressure to be associated with:  

a. A normal market, i.e., an upward sloping futures curve.  

b. A concave futures curve, i.e., a peaked curve. 

c. Potential wave shapes due to roll-effects. 

H(2): Hedging pressure to be associated with:  

a, An inverted market, i.e., a downward sloping futures curve.   

b. A convex futures curve, i.e., a U-shaped futures curve. 

H(3): Inventory to be associated with 

a. An inverted market through the convenience yield.  

b. Wave shapes, capturing seasonal cycles.   
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These hypotheses resonate with findings presented in the empirical literature. Etienne and 

Mattos (2016) apply the Nelson-Siegel factor decomposition to empirically test theories of storage 

and convenience yield and find support for (H3a). Karstanje et al. (2017) test the excessive 

comovement hypothesis, also linked to financialization, on the extracted factors. Heidorn et al. 

(2015), like this study, link the extracted factors to trader positions in the oil market and find that 

index positions influence the slope and curvature factors but not the level in support of (H1a-b). 

Their finding aligns with the previously made argument that price levels are predominantly driven 

by demand and supply fundamentals as well as noise.  

4. Method and data 

The empirical analysis is conducted in three stages: (1) hypothesis testing based on a simple 

spread analysis ignoring non-linearity; (2) factor decomposition; and (3) hypothesis testing based 

on factor decomposition. I chose an unrestricted error correction model (ECM) specification for 

stages (i) and (iii). The model choice is motivated by the observation that extracted slope and 

curvature factors are trended. Unrestricted ECMs are robust in the presence of dominant trends 

and are flexible as they incorporate both levels and differences, thereby incorporating potential 

long run relations, as follows:  

∆𝑦𝑡 = 𝛼0 + 𝛼(𝐿)∆𝑦𝑡−1 + Ω(𝐿)∆𝑍𝑡 + 𝜙[𝑦 − 𝛾′𝑍]𝑡−1 + 𝑢𝑡 .  (6) 

𝑍𝑡 = [𝑟𝑡, 𝜓𝑡, 𝜓𝑡
2, 𝜌𝐻,𝑡, 𝜌𝐼,𝑡]′ is the set of explanatory variables informed by the two theoretical 

strands outlined in equation (3), where storage costs and convenience yield are modeled as non-

linear functions of inventory 𝜓𝑡. Following, implication 1 derived from the model proposed by 

Brunetti and Reiffen (2014), the risk premium is modeled as a function of hedging pressure 𝜌𝐻,𝑡 

and index pressure 𝜌𝐼,𝑡. Ω is a coefficient matrix and 𝛾′ is the cointegrating vector, which can be 
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recovered if 𝜙 is significant. The set of dependent variables is given by 𝑦𝑡 = {𝑠𝑡, 𝛽𝑗,𝑡}, with 𝑗 =

{𝑆, 𝐶,𝑊} from equations (3) and (5). I do not consider the level factor in the analysis for the 

previously mentioned reason and the derived hypotheses H(1) to H(3) are formulated with respect 

to extracted slope, curvature, and wave factors only. The appropriate lag length of equation (6) is 

found by general-to-specific modeling (Campos et al., 2005). 4   

As elaborated in Section 2, hedging and index pressure are offsetting forces. Index traders 

are liquidity providers if hedging pressure prevails and are liquidity consumers otherwise. Hence, 

I create indicators that capture this net effect. The Commodity Futures Trading Commission 

(CFTC) provides a breakdown of each Tuesday’s open interest by different trader types for U.S. 

futures exchanges in three weekly flagship reports. Among these reports, the Commodity Index 

Trader Supplement (CIT), despite its shortcomings,5 was found to reflect index positions most 

accurately and, therefore, is chosen for this study (Irwin and Sanders, 2012). The CIT reports 

provide open interest (𝑂𝐼) disaggregated by long and short positions and trader type including non-

commercial traders, commercial traders (𝑐𝑜𝑚), index traders (𝑖𝑛𝑑), and small non-reporting 

traders.  

I define hedging pressure as the commercial net long positions (short hedging positions after 

internal netting) that are not covered by index net long positions (long positions after internal 

netting) as a share of total open interest and vice versa for index pressure.6 In other words, the 

                                                 
4 The GETS package provided by OxMetrics has been used starting from a general unrestricted model with 12 lags.  
5 See CFTC (2006), Sanders et al. (2010), and Irwin and Sanders (2011) for a discussion.  
6 This definition assumes that commercial hedgers are predominantly short and index traders predominantly long in 

the market. While this assumption holds over the period analysed here, it is possible that net-long commercial positions 

turn positive. In these rare instances, the index pressure indicator would capture some long hedging positions as well. 

As it is unlikely that positive net-long hedging positions prevail or are particularly large, I still refer to 𝜌𝐼,𝑡 as index 

pressure.  
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indicators provide a measure of the excess in long or short positions after internally netting index 

and commercial hedger positions as a percentage of open interest:  

𝜌𝐻,𝑡 = {

|𝑐𝑜𝑚𝑛𝑙+𝑖𝑛𝑑𝑛𝑙|

𝑂𝐼𝑡𝑜𝑡𝑎𝑙
𝑖𝑓𝑐𝑜𝑚𝑛𝑙 + 𝑖𝑛𝑑𝑛𝑙 < 0

0𝑖𝑓𝑐𝑜𝑚𝑛𝑙 + 𝑖𝑛𝑑𝑛𝑙 ≥ 0
   (7a) 

𝜌𝐼,𝑡 = {

|𝑐𝑜𝑚𝑛𝑙+𝑖𝑛𝑑𝑛𝑙|

𝑂𝐼𝑡𝑜𝑡𝑎𝑙
𝑖𝑓𝑐𝑜𝑚𝑛𝑙 + 𝑖𝑛𝑑𝑛𝑙 > 0

0𝑖𝑓𝑐𝑜𝑚𝑛𝑙 + 𝑖𝑛𝑑𝑛𝑙 ≤ 0.
   (7b) 

Index pressure is most pronounced in the coffee market and almost absent in the cotton 

market where short hedging positions outweigh long index positions most of the time (Figure 2). 

The average index pressure effect is hence expected to be negligible for cotton but significant for 

coffee.  

[Figure 2 about here] 

CIT data are available weekly from 2006, while inventory data are only available in monthly 

frequency. Hence, equation (6) is estimated using monthly data from January 2006:M1 to 

2017:M6. The first twelve months 2006:M1-2006:M12 are used to evaluate appropriate lag 

structure. Price data for the different futures contracts and the “risk-free” interest rate, 

approximated by the 3-month Libor rate, are obtained from Thomson Reuters Datastream. Only 

the first 8 simultaneously traded contracts are used for the factor construction in equation (5) due 

to concerns over low liquidity in the more deferred contracts. Inventory data for the cocoa and 

coffee commodities are obtained from the CME Registry. Data for the cotton inventory are from 

the U.S. Department of Agriculture (USDA).  
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5. Results 

For the first stage of the analysis, I use the calendar spread between the contracts with the 

7th and 2nd nearest maturity dates (7-2 spread) to estimate equation (6). Prices are in logarithms 

following equation (3). At maturity of the nearest to maturity contract, the series are rolled over. 

Cocoa, coffee, and cotton contracts are traded for 5 maturity months: March, May, July, September 

(October for cotton), and December. The 7-2 spread is hence the difference between two contracts 

maturing in the same calendar months, which should minimize seasonality. The 6-1 spread was 

not considered to avoid volatility close to maturity. Other spreads were experimented with, but the 

results did not change, which is unsurprising given their similarity (see Appendix Figure A2). 

Estimation results are reported in Table 1. 

[Table 1 about here] 

Both index and hedging pressure coefficients are highly significant across markets, except 

for index pressure in cotton. As expected following H(1a) and H(2a), index pressure is associated 

with an increase in the spread while hedging pressure is associated with a decrease in the spread, 

and index pressure is smallest for cotton and largest for coffee. For instance, a 1% increase in index 

pressure is estimated to result in a 0.25% increase in the coffee 7-2 spread. The effect is slightly 

larger for hedging pressure. Only for cocoa is a significant long run relation found, where a 1% 

increase in index pressure results in a 0.93% increase in the cocoa 7-2 spread in the long run. With 

a speed of adjustment coefficient of 0.23, the spread adjusts to 50% of the full effect in roughly 3 

months, which is a 0.23% increase in the cocoa spread in the first months, a slightly smaller effect 

than found for coffee. Results also support the convenience yield hypothesis with inventory being 

significant for all markets in line with H(3a). The signs of the coefficients are not easily 

interpretable because of their polynomial nature. 
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As mentioned above, calendar spreads are unable to capture non-linear shapes of futures 

curves. This recognition motivates the suggested factor decomposition. Figure 3 depicts the 

extracted factor scores from equation (5) with the corresponding autocorrelation functions. The 

slope factors exhibit the slowest dynamics with the most inertia, while the wave factors exhibit the 

fastest dynamics with seasonal patterns following harvest cycles; annual for coffee and cocoa and 

bi-annual for cotton due to the more geographically disperse production.  

[Figure 3 about here] 

On average, the factor decomposition of equation (5) captures 90% to 99% of total variation 

(Appendix Table A1). The wave factor only marginally contributes to the average R-squares of 

equation (5) but remarkably improves the fit of the futures curves in instances of multiple extrema, 

which is a problem identified by Diebold and Li (2006) for their decomposition. The maximum 

for the curvature factor, coinciding with the turning point of the wave factor, lies between the 7th 

and the 9th month, which is the end of the first third of the observed futures curve.  

In the final stage of the analysis, I use the extracted factors to estimate equation (6). Results 

are reported in Table 2. As in the spread analysis, results support both the index and hedging 

pressure hypothesis. Index pressure is associated with an upward-sloping futures curve, while 

hedging pressure has the offsetting effect, in line with H(1a) and H(2a). The average index pressure 

effect is strongest for coffee and weakest (and again insignificant) for cotton. For coffee, index 

pressure is also associated with a concave futures curve, while hedging pressure is strongly 

associated with a convex futures curve for all three soft commodities as predicted by H(1b) and 

H(2b). Further, index pressure is associated with N-shaped futures curves for coffee and cocoa, 

explained by roll effects, with the price of the maturing contract declining with the exit of index 

traders and the price of the deferred medium-term contract increasing with the entry of index 



16 

 

traders, in line with H(1c). This observation corroborates Mou’s (2011) finding of predictable and 

exploitable roll effects.   

[Table 2 about here] 

Table 2 also provides evidence for the convenience yield hypothesis for cocoa and cotton, 

including a non-linear relation between convenience yield and level of storage. Inventory variables 

are leading the slope factor in line with H(3a). A strong effect of levels of inventory is also found 

for the wave factor for all three commodity markets, supporting the argument that the wave 

component captures, at least partially, seasonal variations as suggested by H(3b). While the size 

of coefficient estimates is not directly interpretable due to the way the extracted factors are 

constructed, they are comparable across markets regarding the relative strength of the effect. 

Overall, the index pressure effects are strongest for the coffee and cocoa term structure, while 

hedging pressure has the strongest effect on the cotton term structure. Inventory is least important 

for the coffee term structure, suggesting that the market has a larger share of speculative noise 

compared to the other two markets.  

In most instances, index and hedging pressure variables enter with contemporaneous terms. 

This is expected given the immediate pass-through of changes in trader positions to changes in 

prices. However, this implies that coefficient estimates presented in Table 2 potentially suffer from 

endogeneity bias. Gilbert and Pfuderer (2014) suggest an instrumental variable (IV) treatment for 

CIT positions with VIX based on S&P 500 and Dow Jones Commodity Index total returns as 

instruments. To test for the robustness of the results in Table 2, I replicate their IV estimation. 

Results are summarized in the Appendix Table A2, with only the instrumentalized index and 

hedging pressure coefficients reported for brevity. As in Gilbert and Pfuderer (2014) instruments 

are valid and index pressure coefficients are significantly larger (in absolute terms) than reported 
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in Table 2. Hedging pressure coefficients are unchanged or insignificant. As hedging positions are 

unlikely to be correlated with the suggested financial instruments, I extend the original set of 

instruments by lagged inventory variables with hedging pressure coefficients being now closer to 

results in Table 2. Overall, the findings reported in Table 2 are confirmed and index pressure 

effects obtained by OLS tend to have a slight downward bias if any at all.  

6. Conclusion 

Based on the two-period equilibrium pricing model proposed by Brunetti and Reiffen (2014), 

I hypothesize that hedging and index positions have inverse and offsetting effects on the shape of 

commodity futures curves. I refer to these effects as hedging pressure and index pressure. 

By use of factor decomposition, I show that index traders act as liquidity providers for the 

three soft commodity markets analyzed and hence have a dampening effect on hedging pressure, 

thereby reducing hedging costs as predicted by Brunetti and Reiffen (2014) and others. However, 

when index long positions exceed short hedging demand, index traders’ positions do not only 

offset hedging pressure effects but cause an upward-sloping and peaked futures curve with 

occasional wave-like shapes linked to roll effects. These effects are clearly identified through 

factor decomposition.  

While these index pressure effects appear moderate for cotton, the cocoa and coffee term 

structures are more strongly affected, with potentially adverse consequences for the 

informativeness of futures curves. I thus argue that index traders’ positions can turn into “too much 

of a good thing.” While index traders are welcomed liquidity providers, their presence distorts 

price discover mechanisms if they become liquidity consumers rather than providers. This is a 

relevant concern not only for the soft commodity markets analyzed, but other commodity markets 
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that have seen an even larger inflow of index investment over the last decade, such as grains, 

energy, and metals.     
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Appendix 

A1. Technical summary of the two-period model by Brunetti and Reiffen (2014) 

I assume that hedgers and speculators invest in futures contracts that mature in periods one and 

two respectively. Their utility functions only differ in cash market positions, or inventory (𝜓), that 

are realised by hedgers after the last trading cycle. Index traders’ positions (𝐼) are assumed 

exogeneous. The utility function of hedgers and speculators is given by: 

𝑈[𝑊0 + 𝑋1
2∆𝐹1

2 + 𝑋2
2∆𝐹2

2 + 𝑋1
1∆𝐹1

1 + 𝐹2
2𝜓𝑘],    (A1) 

with 𝑊0 being initial wealth, 𝑋𝑡
𝑇 being the trader’s position at time 𝑡 = {0,1,2} in the futures 

contract that matures at time 𝑇 = {1,2} and ∆𝐹𝑡
𝑇 = 𝐹𝑡

𝑇 − 𝐹𝑡−1
𝑇  being the respective price changes 

of the futures contracts. 𝜓𝑘 = {0, 𝜓} for speculators and hedgers respectively. Each trader 

maximises utility with respect to total wealth consumed in𝑡 = 2, 𝑊2.  

A standard exponential utility function is assumed for traders and speculators alike with normally 

distributed price changes, so that traders’ utility functions depend solely on the mean and variance-

covariance of price changes: 

𝑈(𝑊) = 𝐴 − e(−𝛼𝑊2)      (A2) 

Market clearing conditions in both futures contracts 𝑇 = {1,2} with index trader positions are 

specified as: 

𝑋1
1(𝑁𝐻 + 𝑁𝑠) = −𝛾𝐼1       (A3) 

𝑋1
2(𝑁𝐻 + 𝑁𝑠) = 𝑁𝐻𝜓 − (1 − 𝛾)𝐼1,     (A4)  

where 𝑁𝐻 , 𝑁𝑠 is the number of hedgers and speculators respectively. 𝐼1 is total index positions at 

𝑡 = 0 invested in both the near-by and deferred maturity contract and 𝛾 is the percentage share 
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invested in the nearby contract 𝑇 = 1. 𝑋1,𝐻
1 = 𝑋1,𝑆

1  following from (A1) as 𝜓𝑘 becomes binding 

only in the deferred futures contract and therefore 𝑋1,𝐻
2 + 𝜓 = 𝑋1,𝑆

2 .   

When solving for 𝐹0
1 and 𝐹0

2 by use of backward induction, the spread between the two consecutive 

futures contracts can be derived as 𝑆0 ≡ 𝐹0
2 − 𝐹0

1, in line with (3b) with 𝜏𝑖𝑗 = 1, 𝑡 = 0 and 𝑇 =

{2,1}, with risk premium: 

𝜌𝑜 =
𝛼

𝑁𝐻+𝑁𝑠
[𝐼1[(𝜎1

12 − (𝜎1
1)2)(𝛾) + ((𝜎1

2)2 − 𝜎1
12)(1 − 𝛾)] + 𝐼2𝑅[𝜎12

2 + 𝜎12
12 − (𝜎1

2)2 − 𝜎1
12] +

𝜓[((𝜎1
2)2 − 𝜎1

12)(𝑁𝑆) − (𝜎12
2 + 𝜎12

12)(𝑁𝐻𝑅) − ((𝜎1
2)2 + 𝜎1

12)(𝑁𝑆𝑅)]],    (A5) 

where 𝑅 ≡ [𝑁𝑆
1/(𝑁𝐻

1 + 𝑁𝑆
1)]/[𝑁𝑆

0/(𝑁𝐻
0 + 𝑁𝑆

0)]. It is easy to see that if 𝜓 = 0 and 𝐼 = 0, the spread 

is an unbiased estimator of future price changes, i.e., 𝑆0 = 𝐸0[∆𝑆𝜏12] with 𝜌0 = 0. Further, without 

hedging demand, that is 𝜓 = 0, hedgers and speculators are identical (as in contract one) and the 

risk premium would only persist in the presence of index traders. From the definition of the risk 

premium in (A5), the following implications can be derived.  

 

Implication 1: Hedging and index pressure are offsetting forces so that hedging pressure is 

defined as short hedging positions net of index positions and index pressure is defined as long 

index positions net of hedging positions.  

As evident from the market clearing conditions specified in (A3) and (A4), both hedgers and 

speculators act as counterparty for index traders in (A3) and the demand for counterparty positions 

in (A4) depends on net-hedging demand, net of index trader positions. For example, if 𝑁𝐻𝜓 =

(1 − 𝛾)𝐼1 or 𝑁𝑆𝜓 = −(1 − 𝛾)𝐼1 and 𝛾 = 0 so that 𝑁𝐻𝜓 = 𝐼1 and 𝑁𝑆𝜓 = −𝐼1, which implies no 
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hedging or index pressure in the 𝑇 = 1 contract and exactly offsetting positions by hedgers and 

index traders in the 𝑇 = 2 contract: 

𝜌𝑜 =
𝛼

𝑁𝐻 + 𝑁𝑠
[(𝜎12

2 + 𝜎12
12)(𝐼2 − 𝐼1)𝑅 − ((𝜎2

1)2 + 𝜎1
12)(𝐼2 − 𝐼1)𝑅] 

=
𝛼∆𝐼1𝑅

𝑁𝐻+𝑁𝑠
[𝜎12

2 + 𝜎12
12 − (𝜎2

1)2 − 𝜎1
12]               (A6) 

Therefore, if no new index traders enter at 𝑡 = 1 into the 𝑇 = 2 contract so that 𝐼2 = 𝐼1, the risk 

premium is zero as hedging and index pressure cancel out.  

 

Implication 2: The shape of the futures curve depends on the relative weight of index and hedging 

pressure in individual contracts.  

This implication is evident from the comparative static analysis of (A5): 

𝜕𝑆0

𝜕𝛾
=

𝛼𝐼1

𝑁𝑠+𝑁𝐻
[2𝜎1

12 − (𝜎1
1)2 − (𝜎1

2)2]      (A7) 

𝜕𝑆0

𝜕𝐼1
=

𝛼

𝑁𝑠+𝑁𝐻
[(2𝛾 − 1)𝜎1

12 − 𝛾(𝜎1
1)2 + (1 − 𝛾)(𝜎1

2)2].   (A8) 

For instance, if 𝛾 ↓, that is index traders roll from contract 𝑇 = 1 to 𝑇 = 2, the spread increases. 

If 𝐼 ↑ and 𝛾 = 1, that is all index traders are in contract 𝑇 = 1, the spread decreases, and if 𝐼 ↑ and 

𝛾 = 0, that is all index traders are in contract 𝑇 = 2, the spread increases.  
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Figure A1. First four principal components 

Note: Contracts have been logged and standardized. Monthly data 2006:M1-2017:M7. 
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Figure A2. Cocoa, coffee, and cotton calendar spreads 

Note: The 7-2 spread is constructed as the 7th nearest to maturity contract less the 2nd nearest to 

maturity contract, both in logarithms. At maturity of the nearest to maturity contract, series are 

rolled over.      
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Table A1. Value of 𝜆 and average R2 for equation (5) 

 𝜏 𝜆 R2 

Cocoa 8 0.2242 0.9673 

Coffee 9 0.1993 0.9943 

Cotton 7 0.2562 0.9170 

Note: Values for 𝜏 and 𝜆 with max 𝐶(𝜏) = 𝜆. R2 is the average over 2006:M1-2017:M7. 
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Table A2. Instrumental variable estimation of equation (6) with 𝑦𝑡 = 𝛽𝑗,𝑡, 𝑗 = {𝑆, 𝐶,𝑊} 

 Slope Curvature Wave  Sargan (S) and  

Wu-Hausman (H) test  𝜌𝐼,𝑡 𝜌𝐻,𝑡 𝜌𝐼,𝑡 𝜌𝐻,𝑡 𝜌𝐼,𝑡 𝜌𝐻,𝑡  

 (𝐿)𝜔𝜌𝐼
 (𝐿)𝜔𝜌𝐻

 (𝐿)𝜔𝜌𝐼
 (𝐿)𝜔𝜌𝐻

 (𝐿)𝜔𝜌𝐼
 (𝐿)𝜔𝜌𝐻

  Slope Curv. Wave 

Indicator Set 1 

Cocoa -1.3199* 0.0391 0.3543 -0.0030 0.0108 0.0164* S 19.2 15.8 23.5 

 (0.538)  (0.296)  (1.076)  (0.592)  (0.038)  (0.008)  H 57.7** 66.8** 80.2** 

Coffee -1.5713** 0.7719* -1.9327* 0.4462 0.0600 -0.0068 S 32.6 32.2 33.6 

 (0.453)  (0.298)  (0.865)  (0.546)  (0.033)  (0.020)  H 59.2** 23.9** 69.3** 

Cotton 0.3630 0.9949* -2.6612 0.2720 -0.0276  -0.0388  S 24.8 18.7 - 

 (0.933)  (0.406)  (2.135)  (0.923)  (0.062) [3] (0.027) [1] H 22.5** 14.6** - 

Indicator Set 2 

Cocoa -1.0311** 0.3805 -0.4664 0.9530* 0.0213 0.0168*  S 42.1 42.6 56.2* 

 (0.390)  (0.196)  (0.830)  (0.457)  (0.032)  (0.008) [1] H 69.6** 70.2** 80.7** 

Coffee -1.1040** 0.6270* -1.7770** 0.4779 0.0662** -0.0103 S 56.7 55.1 49.5 

 (0.356)  (0.252)  (0.645)  (0.459)  (0.024)  (0.017)  H 56.3** 27.8** 74.3** 

Cotton 0.6509 1.0505** 0.2176 1.4721 -0.0276  -0.0388  S 46.9 62.9 - 

 (0.748)  (0.341)  (1.633)  (0.759)  (0.062) [3] (0.027) [1] H 25.2** 16.5** - 

Note: Coefficients of remaining variables are not reported here as they are not significantly different from Table 2. Estimation 2007:M1-

2017:M7 – to allow enough room for appropriate lag selection. Standard errors in parentheses. Lag length selected in brackets. Variables that 

enter as lag are not instrumentalized. * significant at the 5% level; ** significant at the 1% level. (S) Sargan test for over-identification and (H) 

Wu-Hausman test of no endogeneity. Indicator Set 1: {(𝐿)∆𝐷𝐽𝑡−1, (𝐿)∆𝑉𝐼𝑋𝑡−1,(𝐿)𝐷𝑡−1}. Indicator Set 2: 

{(𝐿)𝐷𝐽𝑡−1, (𝐿)𝑉𝐼𝑋𝑡−1,(𝐿)𝐷𝑡−1, (𝐿)∆𝜓𝑡−1, (𝐿)∆𝜓𝑡−1
2 }. DJ is the Dow-Jones Commodity Index (total returns), VIX is the volatility index based 

on S&P500, D is a hedging pressure dummy taking on {1,0}.  
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Tables 

Table 1. Estimation of equation (6) with 𝑦𝑡 = 𝑠𝑡 

 Constant 𝑦𝑡  𝜓𝑡  𝜓𝑡
2  𝑟𝑡   𝜌𝐼,𝑡  𝜌𝐻,𝑡  

Short-run 

 𝛼0  (𝐿)𝛼  (𝐿)𝜔𝜓  (𝐿)𝜔𝜓2  (𝐿)𝜔𝑟  (𝐿)𝜔𝜌𝐼
  (𝐿)𝜔𝜌𝐻

  

Cocoaa 0.0013 -0.2011* 0.1952** -0.0653**  0.1982  0.1547* -0.1931*** 

 (0.002)  (0.114)    [1] (0.084)    [3] (0.031)   [3] (0.129)   [2] (0.087)  (0.040)  

Coffee 0.0003 -0.2779 ***  0.1306** -0.0384 0.0851  0.2466*** -0.2719*** 

 (0.001)  (0.080)    [1] (0.075)  (0.050)  (0.149)  (0.087)  (0.053)  

Cotton -0.0008 0.1143  0.1171**  -0.0370***  -0.3216 0.0688 -0.4591*** 

 (0.004)  (0.087)    [1] (0.050)    [3] (0.014)    [3] (0.517)  (0.252)  (0.120)  

Long-run 

  𝜙  𝛾𝜓  𝛾𝜓2  𝛾𝑟  𝛾𝜌𝐼  𝛾𝜌𝐻  

Cocoaa  -0.2339*** - - 0.1209*** 0.9278*** - 

  (0.061)   [12.01]b [11.55]b  

Note: Model estimated for 2007:M1-2017:M7 to allow enough room for appropriate lag selection. Standard errors in parentheses. Lag length 

selected in brackets. * Significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level. aRobust standard errors. b 

Long-run coefficients are recovered as the ratio between 𝛾 and the absolute value of �̂�. Wald test statistic of insignificance of the long run 

coefficient following a chi square distribution under the null in brackets.  
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Table 2. Estimation of equation (6) with 𝑦𝑡 = 𝛽𝑗,𝑡, 𝑗 = {𝑆, 𝐶,𝑊} 

 Constant 𝑦𝑡  𝜓𝑡  𝜓𝑡
2  𝑟𝑡   𝜌𝐼,𝑡  𝜌𝐻,𝑡  

Slope Factor 

S
R

 

 𝛼0  (𝐿)𝛼  (𝐿)𝜔𝜓  (𝐿)𝜔𝜓2  (𝐿)𝜔𝑟  (𝐿)𝜔𝜌𝐼
  (𝐿)𝜔𝜌𝐻

  

Cocoa  0.0005 -0.3538***  -0.5571*** 0.2016***  0.2227 -0.6369** 0.4882*** 

 (0.003)  (0.073)    [1] (0.178)    [4] (0.070)    [4] (0.214)  (0.251)  (0.101)  

Coffee -0.0014 -0.3455***  0.1664  -0.2792**  -0.2643 -0.7956*** 0.9842*** 

 (0.004)  (0.069)    [1] (0.213)    [1] (0.143)    [1] (0.429)  (0.248)  (0.156)  

Cotton 0.0050 0.1535* -0.2874**  0.0915***  2.5195**  -0.2124 0.8740*** 

 (0.009)  (0.087)    [1] (0.106)    [3] (0.030)    [3] (1.126)    [2] (0.535)  (0.257)  

L
R

 

  𝜙  𝛾𝜓  𝛾𝜓2  𝛾𝑟  𝛾𝜌𝐼  𝛾𝜌𝐻  

Cocoa  -0.1631*** - - - -2.6495*** - 

  (0.048)    [7.868]b  

Curvature Factor 

S
R

 

 𝛼0  (𝐿)𝛼  (𝐿)𝜔𝜓  (𝐿)𝜔𝜓2  (𝐿)𝜔𝑟  (𝐿)𝜔𝜌𝐼  (𝐿)𝜔𝜌𝐻  

Cocoa  -0.0283** -0.2622*** 0.6779* -0.2546* -1.1816** -0.1109 0.4031* 

 (0.011)  (0.085)    [1] (0.376)  (0.147)  (0.463)  (0.528)  (0.229)  

Coffee -0.0028 -0.3408***  -0.5034 0.1380 -0.6459 -1.1329** 1.0907*** 

 (0.007)  (0.081)    [1] (0.396)  (0.266)  (0.790)  (0.455)  (0.282)  

Cottona 0.0033 - 0.6716** -0.1427** 2.1523**  -0.5860 1.2125*** 

 (0.021)    (0.254)  (0.074)  (2.606)    [1] (1.247)  (0.600)  

L
R

 

  𝜙  𝛾𝜓  𝛾𝜓2  𝛾𝑟  𝛾𝜌𝐼  𝛾𝜌𝐻  

Cocoa  -0.3997***  - - -0.6658*** - 1.1624*** 

  (0.089)   [18.22]b  [11.96]b 

Wave Factor 

S
R

 

 𝛼0  (𝐿)𝛼  (𝐿)𝜔𝜓  (𝐿)𝜔𝜓2  (𝐿)𝜔𝑟  (𝐿)𝜔𝜌𝐼  (𝐿)𝜔𝜌𝐻  

Cocoaa 0.0003 - 0.0383**  -0.0140**  -0.0450  0.0460* 0.0177**  

 (0.000)    (0.015)    [1] (0.006)    [1] (0.018)    [3] (0.020)  (0.008) [1] 

Coffeea 0.0017 -0.2965**  0.0208**  -0.0157***  0.0199 0.0387** -0.0242** 

 (0.001)  (0.082)    [1] (0.009)    [2] (0.006)    [3] (0.035)  (0.019)  (0.011)  

Cottona 0.0003 - 0.0318**  -0.0089**  0.1540***  -0.0276  -0.0388*  

 (0.001)    (0.012)    [4] (0.003)    [4] (0.123)  [3] (0.062)    [3] (0.027) [1] 
L

R
 

  𝜙  𝛾𝜓  𝛾𝜓2  𝛾𝑟  𝛾𝜌𝐼  𝛾𝜌𝐻  

Cocoaa  -0.6812*** - - 0.0075*** 0.0495*** - 

  (0.079)   [6.662]b [8.735]b  

Coffeea  -0.2998*** -0.0306** 0.0198*** - 0.1185** - 

  (0.078) [6.333]b [7.190]b  [5.438]b  

Note: Model estimated for 2007:M1-2017:M7 to allow enough room for appropriate lag selection. Standard errors in parentheses. Lag length 

selected in brackets. * significant at the 1% level; ** significant at the 5% level; *** significant at the 1% level. a Robust standard errors. b 

Long-run coefficients are recovered as the ratio between 𝛾 and the absolute value of �̂�. Wald test statistic of insignificance of the long run 

coefficient following a Chi Square distribution under the Null in brackets.  SR: short-run; LR: long-run. 
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Figures 

 

Figure 1. Nelson-Siegel factor loadings for 𝐿, 𝑆, 𝐶,𝑊 in equation (5) 

Note: λ is fixed at 0.2242, so that the curvature factor has its maximum at the 8th month, where 

the wave factor has its turning point. 
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Figure 2. Index 𝜌𝐼,𝑡 and hedging 𝜌𝐻,𝑡 pressure from equation (7) 
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(A) Slope 𝛽𝑡,𝑆, curvature 𝛽𝑡,𝐶, and wave 𝛽𝑡,𝑊 factor scores  
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(B) Autocorrelation functions of the slope 𝛽𝑡,𝑆, curvature 𝛽𝑡,𝐶, and wave 𝛽𝑡,𝑊 factor scores 

Figure 3. Factor scores and autocorrelation function from equation (5) 

 

 

 

 

 


