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Summary 

Stable isotope mixing models (SIMMs) are an important tool used to study species’ trophic 

ecology. These models are dependent on, and sensitive to, the choice of trophic discrimination 

factors (TDF) representing the offset in stable isotope delta values between a consumer and 

their food source when they are at equilibrium. Ideally, controlled feeding trials should be 

conducted to determine the appropriate TDF for each consumer, tissue type, food source, and 

isotope combination used in a study. In reality however, this is often not feasible nor practical. 

In the absence of species-specific information, many researchers either default to an average 

TDF value for the major taxonomic group of their consumer, or they choose the nearest 

phylogenetic neighbour for which a TDF is available. Here, we present the SIDER package for 

R, which uses a phylogenetic regression model based on a compiled dataset to impute (estimate) 

a TDF of a consumer. We apply information on the tissue type and feeding ecology of the 

consumer, all of which are known to affect TDFs, using Bayesian inference. Presently, our 

approach can estimate TDFs for two commonly used isotopes (nitrogen and carbon), for species 

of mammals and birds with or without previous TDF information. The estimated posterior 

probability provides both a mean and variance, reflecting the uncertainty of the estimate, and 

can be subsequently used in the current suite of SIMM software. SIDER allows users to place a 

greater degree of confidence on their choice of TDF and its associated uncertainty, thereby 

leading to more robust predictions about trophic relationships in cases where study-specific data 

from feeding trials is unavailable. The underlying database can be updated readily to 

incorporate more stable isotope tracers, replicates and taxonomic groups to further increase the 

confidence in dietary estimates from stable isotope mixing models, as this information becomes 

available. 

 

Keywords: SIDER, Trophic Discrimination Factors, Comparative analysis, Stable isotope 

analysis 
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background 

Stable isotopes act as a set of naturally occurring tracers that are altered by the ecological 
processes of feeding and assimilation such that information on trophic interactions can be 
inferred through analysis of their relative patterns. One frequent application of inferring 
trophic interactions using stable isotopes is the reconstruction of consumer diet. This is 
achieved by parsing the observed isotopic mixture of the consumer into the constituent parts 
of its food sources using stable isotope mixing models (SIMMs). Since the advent of Bayesian 
SIMMs, there has been a substantial increase in the use of this technique (Phillips et al. 2014). 
However, these models require caution with regards to using appropriate data and 
parameterisation. In addition to knowing the isotopic values of the consumer and its putative 
sources, it is essential that information on the trophic discrimination factor (TDF) is provided. 
Essentially, this additive factor represents the difference between the isotopic value of a 
specific tissue in the consumer compared with the isotopic value of its food, assuming that the 
consumer tissue is at equilibrium with the food. To quote the originator of this theory: “you 
are what you eat, plus a few permill” (DeNiro and Epstein 1976). 
 

These isotopic changes between a consumer and its food sources are known to vary 
predictably with a number of factors. Some of the main drivers relate to the route isotopes 
take from ingested biomass to consumers’ tissue. For example, both the nature of the food 
source an isotope is derived from and the tissue type it is eventually assimilated into, are 
strong determinants of TDF values (Caut et al. 2009, McCutchan et al. 2003). Other factors that 
TDF values may vary with include the physiological condition of the consumer (Pecquerie et al. 
2010) and other factors with less clear mechanisms such as the consumers’ habitat (Caut et al. 
2009). In any case, it is clear there is considerable variation among species (Caut et al. 2009). 
 

The most appropriate method to acquiring TDF estimates is through controlled feeding trials 
on the consumer in question (Martínez del Rio et al. 2009). Ideally, these experiments should 
use the same food sources they encounter in the wild as some sources can be assimilated 
through different metabolic pathways, leading to food source-specific TDF values (Caut et al. 
2009). For a variety of reasons, often logistical, this information is not always available, and so 
researchers often turn to a phylogenetically similar species for which a TDF is available as the 
next best option. Failing that, researchers will default to a broad approximation derived from 
averaging TDFs across all species from the major taxonomic grouping to which the consumer 
belongs: for example, using the oft cited +3.5 per mill for nitrogen or +1.3 per mill for carbon 
(DeNiro and Epstein 1978, DeNiro and Epstein 1981, Post 2002). 
 

Since mixing models include TDFs as additive offsets, the solutions they generate are 
inherently dependent on their values. For example, the choice of TDF and the inclusion of 
uncertainty attributed to this value can affect both the estimates of dietary proportions and 
the confidence attributed to these proportions (Inger et al. 2010, Inger et al. 2006). Although 
the main conclusions of SIMMs are often robust to changes in TDF values, such as when 
sources are widely separated isotopically, the potential sensitivity of SIMMs to TDF choice has 
been previously highlighted by several authors (Bond and Diamond 2011, Brett et al. 2016, 
Caut et al. 2009). In some respects, the importance of this problem has been over-stated by 
focussing too much on the effects of this uncertainty on point estimate summary statistics for 
the central tendency of the output of the SIMMS. If one follows best practice for applying 
SIMMs and reports the full posterior distribution, the manifestation of sensitivity to TDFs more 
often results in overlapping estimates of proportional diet (Phillips et al. 2014). Hence, the 
ability to incorporate not only more appropriate estimates of the mean TDF, but also the 
associated variance, is a natural progression within the Bayesian framework of the current 
SIMMs.  
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Here we provide an R package that combines these somewhat ad hoc approaches under the 
umbrella of a statistically rigorous phylogenetic regression model fitted to a collated database 
of TDF values for bird and mammal species. We show how this model can impute (predict or 
estimate) TDFs for a consumer based on the desired tissue type, their basic ecology and their 
position in the phylogenetic tree. While previous attempts have been made to estimate TDF 
values (Caut et al. 2009), these methods are only capable of providing mean TDF values for a 
given tissue, environment or diet restricted to a predetermined taxon or group. Instead, the 
inclusion of phylogenetic information as a random term, along with terms for tissue type, 
repeated measures on the same species and fixed terms for other potential influences 
including diet and environment type (Caut et al. 2009), means that SIDER uses all the 
information in the data, weighted accordingly by the estimated correlation structures. This 
allows SIDER to provide an estimate specific to the species of interest, rather than a generic 
one for the entire taxon. The regression model is fitted using Bayesian Inference and returns a 
posterior distribution describing the estimated TDF values that, in turn, can be used to 
calculate the mean value and the uncertainty associated with it (typically variance or standard 
deviation). As such, these distributions are also compatible with all the major Bayesian stable 
isotope mixing models including MixSIAR (Stock and Semmens 2013); IsotopeR (Ferguson 
and Hopkins 2016); SIAR (Parnell et al. 2010); and MixSIR (Moore and Semmens 2008). This 
approach allows researchers to estimate TDFs for species that are either present or absent 
from the database and to report, with rigour, both the mean and uncertainty of this estimate. 
The nature of SIDER also allows for flexibility in the predictors included within the regression 
model, the isotopes used and the taxa in the phylogenetic tree. This flexibility will allow SIDER 
to be updated easily as further data and greater understanding of isotopic routing becomes 
available. 
 

methods and features 

The process for generating predicted TDFs via imputation in SIDER is straightforward. A 
collated database of 409 observed TDFs spanning a range of birds and mammals, tissue types, 
and variables describing their ecology is provided. A list of values for each of the known 
explanatory variables associated with the focal species for which we wish to estimate a TDF is 
appended to the provided dataset, with the phylogenetic tree updated to include the new 
species where required; i.e. if it is not in the tree then the tree needs to be re-built and relative 
phylogenetic distances recalculated. The corresponding entries for the focal species’ TDF 
values, which are to be imputed, are encoded as missing values (specifically as NAs) since they 
are unknown. The phylogenetic regression model is then fitted using the package MCMCglmm 

(Hadfield 2010). This package fits generalised linear mixed models using Markov chain Monte 
Carlo techniques, with blank NA values in the response variable imputed inherently as part of 
the MCMC process. The phylogenetic mixed model in MCMCglmm includes phylogeny as a 
random-effect variance structure defined by a distance matrix calculated using the provided 
phylogenies. This allows for the model to account for the variance associated with the 
hierarchical structure of phylogenetic relatedness when imputing TDF values. This model 
produces a simulated posterior distribution for the imputed TDF value which represents an 
estimate with error of the focal species’ TDF. SIDER also includes functionality to incorporate 
the uncertainty associated with building phylogenetic trees by using the mulTree package to 
re-run the analysis across a subsample of a Bayesian distribution of trees (Guillerme and Healy 
2014); see methods described in Healy 2015 and Healy et al. 2014. A small distribution of trees 
are provided in SIDER, which were built using the 10k mammal tree (Bininda-Emonds et al. 
2007), and the Jetz et al. (2012) bird trees. 
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The Underlying Data 

The data comprise 409 observations of ∆15N and ∆13C TDFs derived from controlled feeding 
trials on 26 bird and 27 mammal species. Explanatory variables that can be included in creating 
the predictive model are detailed in Table 1. Species taxonomic names follow those used in the 
Bininda-Emonds et al. (2007) and Jetz et al. (2012) phylogenies. Habitat was defined as either 
marine or terrestrial based on typical foraging habitat. Sampled tissues were reduced into 
categories that reflected the metabolic pathway and expected turnover of the tissue. For 
example, fur and whiskers were all defined under the heading of hair. As diet can affect TDF 
values, through the specific metabolic pathways a source takes in becoming incorporated into 
a consumer’s tissues (Greer et al. 2015), we defined a consumers diet type as either herbivory, 
carnivory, omnivory or as a pellet-based diets. Pellet diets were included separately as 
controlled experiments using pellets often include supplements atypical to the consumer’s 
diet. Our inclusion criterial followed Caut et al. (2009), with ∆15N and ∆13C values only included 
in the dataset if the experiment reported isotopic measurement of both consumers and 
sources, involved full control of diet, was reported as reaching equilibrium and was conducted 
on at least four individuals. 

 

The Phylogenetic Regression Model 

A generalized linear model of the TDF is fitted using the data that is described in Table 1 and 
bundled with the package. The response variable is set as being either one of Δ13C or Δ15N with 
explanatory variables of habitat and diet type set as fixed effects. Phylogeny, tissue type and 
within-species variation (to account for multiple observations reported in some species) are all 
set as random effects. The model is fitted using the animal model in the MCMCglmm package 
with typical priors set based on the MCMCglmm course notes (Hadfield 2010). Model 
diagnostics including chain convergence using the Rubin-Gelman diagnostic (Gelman and 
Rubin 1992) and effective sample size are also automatically tested and displayed for each 
model run to allow the user to easily assess reliability of the estimated values over large 
numbers of model runs. 
 

Imputation of an Unknown Observation 

In order for MCMCglmm to perform imputation, an unknown TDF must be included in the data 
passed to the fitting algorithm. To do this, the user specifies a new observation for a given 
species along with the desired tissue type and corresponding information on the habitat, diet 
type and taxonomic class of the species. Either one of Δ13C or Δ15N are entered as “NA” for 
this observation, which prompts MCMCglmm to impute the missing value automatically during 
model fitting. The species may be one present in the provided dataset, or it may be a new 
species, but it must be recognised as present in the phylogeny. In the case of the default 
scenario, this must match an entry in one of the two phylogenies provided with SIDER: either 
the distribution of mammal trees (Kuhn et al. 2011) or the Jetz et al. (2012) bird trees. The 
function recipeSider checks the user-provided species against the underlying phylogeny to 
make sure it is present in the full phylogeny and prompts the user to import a different 
phylogeny if the species is not present in either phylogeny. The function prepareSider then 
adds this checked observation to the dataset provided and described in Table 1; prunes the 
phylogeny to include only the species needed to create the corresponding distance matrix; and 
adds this observation to the dataset described in Table 1. The cleaned data object from 
prepareSider is then passed to the imputeSider function, which calls MCMCglmm to run 
the models. The imputeSider function then provides the user with the posterior distribution 
of the focal TDF estimate and also provides the user with standard diagnostics of MCMC chain 
convergence and the effective sample size for each model parameter. 
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model validation  

To validate our model, we conducted a series of leave-one-out analyses, where single 
experimental observations are removed from the dataset and re-estimated using SIDER. This 
allows TDF estimates to be compared to experimentally observed values. We conducted leave-
one-out analyses both for single observations and separately for entire species. In the case of 
the single observation leave-one-out analyses a single TDF experimental estimate is removed 
from the dataset and then re-estimated using SIDER in turn. In the case of the species 
removal analysis, each observation is re-estimated with all experimental observations for that 
species removed from the dataset. This second analysis hence replicated estimation of a TDF 
value for a species not present in the dataset.  
 
These analyses generated a series of posterior distributions relating to each TDF imputation 
(i.e. each row in the dataset) for ∆13C and ∆15N isotopes in both mammals and birds. For each 
of these sets of posteriors we calculated the signed distance of the observed TDF value to each 
sampled value in its corresponding SIDER posterior to produce a second series of 
distributions. We then calculate the mode of each of these distributions and plotted them as a 
density plot as shown in Figure 1a. Across each of the analyses, SIDER was not found to be 
biased in terms of over- or under-estimating TDF values. In the single observation removal 
analysis, the modal difference between the SIDER estimations and the experimental values 
was -0.05 (2.5% CI = -1.95, 97.5% = 1.91) for ∆13C and 0.01 (2.5% CI = -1.38, 97.5% CI = 1.42) for 
∆15N in birds; and 0.28 (2.5% CI = -2.56, 97.5% CI = 2.38) for ∆13C and 0.09 (2.5% CI = -1.90, 
97.5% CI = 1.87) for ∆15N in mammals (Figure 1a). In the species removal analysis, the modal 
difference between the SIDER estimations and the experimental values was 0.04 (2.5% CI = -
1.96, 97.5% CI = 2.32) for ∆13C and 0.18 (2.5% CI = -1.76, 97.5% CI = 2.10) for ∆15N in birds; and 
0.01 (2.5% CI = -4.04, 97.5% CI = 3.64) for ∆13C and 0.43 (2.5% CI = -3.81, 97.5% CI = 3.29) for 
∆15N in mammals (Figure 1a).  
 
To report the absolute distance SIDER estimates are expected to be from observed values we 
calculated the root mean squared error between each observed value to the sampled values in 
its corresponding SIDER posterior. As above we calculated the mode of each of these 
distributions and plotted them in Figure 1b. The mode of the root mean squared error was 
found, as expected, to be lower in the single observation removal analysis in comparison to 
the species removal analysis (Figure 1b). The individual removal analysis for ∆15N in birds was 
the lowest at 0.95 (2.5% CI = 0.33, 97.5% CI = 3.12) followed by 1.00 (2.5% CI = 0.69, 97.5% CI = 
2.57) for ∆13C. The modal root mean squared error was found to be higher in mammals with 
1.29 (2.5% CI = 0.69, 97.5% CI = 3.59) for ∆13C and 1.03 (2.5% CI = 0.70, 97.5% CI = 2.87) for 
∆15N (Figure 1.b). This was also seen in the species removal analysis with birds found to have 
1.45 (2.5% CI = 1.09, 97.5% CI = 2.57) for ∆13C and 1.44 (2.5% CI = 1.06, 97.5% CI = 2.64) for 
∆15N, while mammals modal root mean squared error was found to be 2.03 (2.5% CI = 1.48, 
97.5% CI = 3.83) for ∆13C and 1.60 (2.5% CI = 1.10, 97.5% CI = 2.92) for ∆15N in (Figure 1.b). 
 

A Worked Example 

After loading the SIDER package (https://github.com/healyke/SIDER), we can explore the TDF 
database, outlined in Table 1, using the scrumpSider function.” The scrumpSider function 
can search for particular species or can be used to import the entire dataset, which will be 
required in order to impute TDF values.  
 

SIDER_data <- scrumpSider(iso.data = "all") 
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The SIDER package also contains a distribution of Mammalian and Aves phylogenies as 
outlined above which we can also be upload using scrumpSider.  
 

SIDER_trees <- scrumpSider(tree = "all") 
 
We next define an unknown observation for imputation using recipeSider. This function 
checks that our unobserved data point matches all explanatory variables and is present in the 
phylogeny. In this case, a grey wolf Canis lupus hair sample (which is a terrestrial mammal with 
a carnivorous diet). 
 

new_data_test <- recipeSider(species = "Canis_lupus", 
 habitat = "terrestrial",  
 taxonomic.class = "mammalia", 
 tissue = "hair",  
 diet.type = "carnivore",  
 tree = SIDER_trees) 
 

We then add this observation which is to be estimated via imputation during model fitting by 
defining which of the two isotopes we wish to impute (either carbon or nitrogen in the 
current formulation) combining it with the main dataset using prepareSider 
 

tdf_data_n <- prepareSider(data.estimate = new_data_test, 
data.isotope = SIDER_data, 
tree = SIDER_trees,  
isotope = "nitrogen") 
 

 The default formulae for the fixed and random parts of the glmm is set within SIDER as 
formula_n <- delta15N ~ diet.type + habitat 
random_terms <- ~ animal + sp.col + tissue 
 

The user can directly specify the fixed and random terms, however, any changes will also 
require re-specifying various parameters associated with running a Bayesian model. These 
include the prior probability distributions associated with the model parameters and the 
parameters associated with the length and sampling of the mcmc chains. SIDER defaults to 
use non-informative priors and two chains with 1,200,000 iterations, a burn-in of 200,000, and 
sampling thinning of 500 (see vignette). These defaults have been optimised on a basic model 
that runs on the full SIDER dataset with no species to be imputed so that all chains converge 
and have effective sample sizes (ESS) above 1000. The inclusion of a new species to impute 
may require increased iterations based on whether the chains converge and the ESS is above 
1000. In the case of the wolf nitrogen TDF imputation we will use the SIDER defaults, which we 
do not need to specify in the imputeSider function. This model takes approximately seven 
minutes to run using an intel i5 with 16 GB of RAM.  
 

TDF_est_n <-imputeSider(mulTree.data = tdf_data_n,  
formula = formula_n,  
output = "test_n_run") 
 

The posterior estimates can then be accessed in TDF_est.c$tdf_global and summarized 
to yield Bayesian credible intervals using the package hdrcde. For most users though, the 
mean and standard deviation or variance of the estimated TDF obtained with the summary 
function, is of primary use for secondary analysis in a mixing model such as MixSIAR, SIAR or 
MixSIR. 
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Credible_intervals <- hdrcde::hdr(TDF_est_n $tdf_global, prob = 
c(50, 95, 99)) 

summary(TDF_est_n$tdf_global) 
 

Which returns estimates of a TDF for our wolf (Canis lupus) blood tissue with a mean of 3.3 
and standard deviation of 1.4. 
 

Incorporating a sider tdf into a mixing model analysis 

To demonstrate the full workflow of using a SIDER TDF estimate into a SIMM we used a subset 
of the wolf analysis from Darimont et al. (2009) which is one of the SIDER-to-MixSIAR-pipeline 
package vignettes. Using this data, we calculated the proportion of deer (Odocoileus 
hemionus) in the diet of a mainland wolf pack for the following cases;  
 

(1) Using a fox (Vulpes vulpes) TDF value with no added uncertainty (Roth and Hobson 

2000). We choose this case as a representative of the closest available species with a 

TDF measured using a controlled feeding experiment and as per the original analysis in 

Darimont et al. (2009);  

(2) Using a recent TDF value estimated for wolves (Canis lupus) and its associated 

uncertainty (Derbridge et al. 2015). This TDF value was not included in our dataset as it 

does not conform to our data criteria. 

(3) Using a SIDER estimate with associated uncertainty.  

We found that the SIDER TDF value produced a similar estimate of the proportion of deer 
compared to using the latest wolf TDF (Figure 2; Derbridge et al. 2015). In contrast, the fox TDF 
estimated a slightly higher proportion of deer in the wolves’ diet (Figure 2). The proportions 
estimated using the fox TDF also showed a higher degree of confidence in comparison to 
either of the other analyses (See vignette for full description). This example demonstrates that 
in the absence of a species specific TDF with realistic associated uncertainty the resulting 
estimates of dietary proportions from mixing models may be over confident. However, while 
SIDER can appropriately incorporate the current uncertainty in TDF values based on current 
knowledge, experimental measures of TDF values, particularly those tailored for a particular 
system, will remain the gold standard (Martínez del Rio et al. 2009). In particular, the use of 
TDFs measured from controlled feeding trials tailored to a specific system will remain as the 
best approach to reduce TDF related uncertainty in the outputs of SIMMs. However, as 
SIDER’s ability to estimate TDF values depends on the range of species with available 
experimentally controlled measures, feeding trials conducted on new species will not only help 
reduce uncertainty in SIMMs for those species but also for other species though the use of 
SIDER. 
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FIGURE LEGENDS 

Figure 1: Density histograms of (a) the modal difference and (b) the root mean square error 

between estimated values using Bayesian imputation and observed values from 

experimentally controlled dietary studies. The figures in the dark grey boxes on the left give 

distributions for the individual replacements analysis with the figures in the light grey box on 

the right giving the distributions for estimates calculated for the species replacements analysis. 

Each of the outlined boxes give the distributions for Aves ∆13C and ∆15N on the top rows and 

Mammalia ∆13C and ∆15N on the bottom row orange bars represent 50%, blue bars 95% and 

red bars 99% credibility intervals. 
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Figure 2: Violin plot of the estimated proportions of Deer (Odocoileus hemionus) in the diet of 

wolves (Canis lupus) using three models with alternative TDF estimates: fox TDF values (Vulpes 

vulpes) from Roth and Hobson 2000, wolf TDF values from Derbridge et al. 2015 and TDF 

values estimated using SIDER. Horizontal lines show the median at the middle, and then the 

interquartile range and 95% credible intervals (CI). 
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TABLE LEGEND 

Table 1: Summary of the dataset used to fit the predictive SIDER model. There are a total of 

409 TDF estimates over 53 species in the dataset, comprised of 9 variables. 

Variable name Values Notes 

species A binomial species name 
that matches the taxonomy 
of the corresponding 
phylogenies. 
 

53 unique species in the 
present dataset. 

habitat terrestrial / marine 
 

As defined by typical 
foraging environment 

taxonomic.class mammalia / aves 
 

 

sample tissue liver / blood / kidney / 
muscle / hair / milk / feather 
/ claws / collagen 
 

Hair and milk are specific to 
mammals, while feather and 
claws are specific to birds. 

diet.type herbivore / carnivore / 
omnivore / pellet 

This is a description of the 
controlled diet they were fed 
in the experiments. Pellets 
refer to laboratory food 
pellets. 
 

source.iso.13C A numeric value This is the isotopic δ of the 
food source. Not currently 
used in the predictive 
modelling and present in the 
dataset for future use. 
 

source.iso.15N A numeric value This is the isotopic δ of the 
food source. Not currently 
used in the predictive 
modelling and present in the 
dataset for future use. 
 

delta13C A numeric value The known trophic 
discrimination factor for 
δ13C. with 211 observations 
for 49 species. 
 

delta15N A numeric value The known trophic 
discrimination factor for δ15N 
with 198 observations for 49 
species. 

   
citation A character string The published source of the 

isotopic data  

 


