
Lattice-based Scheduling for Multi-FPGA Systems
Teng Yu∗, Bo Feng‡, Mark Stillwell†, Liucheng Guo†, Yuchun Ma‡, John Thomson∗
∗University of St Andrews, UK †Imperial College London, UK ‡Tsinghua University, China

Corresponding Email: j.thomson@st-andrews.ac.uk

Abstract—Accelerators are becoming increasingly prevalent
in distributed computation. FPGAs have been shown to be
fast and power efficient for particular tasks, yet scheduling
on FPGA-based multi-accelerator systems is challenging when
workloads vary significantly in granularity in terms of task size
and/or number of computational units required. We present a
novel approach for dynamically scheduling tasks on networked
multi-FPGA systems which maintains high performance, even in
the presence of irregular tasks. Our topological ranking-based
scheduling allows realistic irregular workloads to be processed
while maintaining a significantly higher level of performance than
existing schedulers.

Index Terms—runtime scheduling, lattice representation,
multi-FPGA

I. INTRODUCTION

FPGA-based accelerators have been shown to perform ex-
ceptionally well in terms of parallel performance and energy
efficiency, yet the generality of this approach is a signifi-
cant issue in a distributed multi-accelerator environments. A
key challenge for these platforms is to maintain high levels
of performance on diverse workloads where task size and
computational elements requirements vary dynamically. In
this paper we present a topological ranking-based scheduling
approach which significantly outperforms both the existing
scheduler Orchestrator used in the Maxeler DataFlow En-
gine cluster [1], but also other scheduling approaches [2],
[3] targeted at other systems problems. The use of multiple
accelerators in distributed computation is becoming increas-
ingly important both in industry and research communities [4],
[5]. Dynamically scheduling irregular workloads in a FPGA-
based multi-accelerator system is a complex task. To find
an adequate solution, we need to find a way to efficiently
schedule multiple irregular tasks and assign corresponding
resources to hardware accelerators during runtime. This can
be difficult to achieve in practice for a number of reasons:
(1) Multiple tasks should be executed quickly and simul-
taneously to achieve a short total execution time and high
throughput; (2) tasks can be instantiated on different system
configurations with differing numbers of accelerators, so an
ideal configuration can not be easily determined a priori;
(3) tasks require different topologies between hardware ac-
celerators based on what communication is needed during
runtime. Motivating Example: Consider the abstract case as
shown in Fig. 1 – a cluster containing two FPGA-based multi-
accelerator devices, each of which has eight interconnected
accelerators in a state where some accelerators are busy. Three
new tasks are dynamically sent to the system with different
resource requirements and connectivity constraints. Using a

Fig. 1. Abstract case of multi-task runtime scheduling on multi-FPGA systems

First-In-First-Out (FIFO) approach, the first two tasks will
be assigned to the first device as there is vacancy, but the
third task cannot be allocated to any device as it requires six
interconnected accelerators. This means the scheduling will
stall until new resources are released by the completion of
previous tasks. It is clear that current load-balancing based
heuristics [2], which would allocate Tasks 1 and 2 to different
accelerator clusters, also fail to perform in this scenario.
Similarly, Maximum-execution-time based heuristics [3] do not
necessarily help here if Task 3 does not have the longest
execution time although it asks for more resources – a common
occurrence. This challenge leads to the main motivation of the
work presented in this paper: to give a generalised method
to design high-performance runtime scheduling methods in
multi-FPGA systems targeting irregular tasks with arbitrary
capacity representations. Different tasks can ask for different
size and topology of accelerators: large workloads may need
more accelerators to satisfy timing requirements, and tasks that
are capable of exploiting multiple accelerators and specific
topologies should have potential access to such resources.

This work proposes a dynamic scheduling system which ef-
ficiently schedules irregular workloads using a novel heuristic-
based runtime resource allocation methodology. It uses a
representation which is general enough to be used across
different types of accelerator system, and is capable of repre-
senting the required resource and connectivity requirements for
workloads. Leveraging this representation, we build a ranking-
based scheduler.

II. BACKGROUND AND RELATED WORK

First-In-First-Out (FIFO) based strategies are most com-
monly used in current multi-accelerator systems to schedule
tasks for both research and industry, such as PALMOS [6] for
GPU-based systems and AMC [7], PPMC [8] for FPGA-based
systems, and commercial Maxeler Orchestrator [1] customized
for Xilinx FPGA-based devices in Maxeler Technologies. The
initial order of tasks is used as a basic heuristic to guide
the scheduler which avoid making any comparison to achieve
quick decisions. All of these works show the FIFO approach

works well in homogeneous cases where tasks are simple and
similar. We use FIFO as one baseline in our evaluation. More
sophisticated approaches have been proposed, such as the Het-
erogeneous Earliest Finish Time (HEFT) algorithm targeting
on heterogeneous processors [3] and MFIT algorithm targeting
on multi-FPGA systems [2]. HEFT shows satisfactory perfor-
mance in both quality and cost of schedules in DAG-based
task scheduling. However, it does not consider the irregularity
of tasks. If there is no data dependency between incoming
tasks, which means the communication cost is zero, the HEFT
algorithm will always assign the highest priority to the task
that has the minimum execution time. The MFIT algorithm
targets performance in multi-FPGA systems. It always selects
the resources with lowest task stack when they have similar
suitable level by considering the minimum completion times,
time variances and number of allocated tasks. However, the
MFIT algorithm is a pure task placement algorithm which
solely considers hardware occupancy and architecture, and
does not account for the content or properties of each task.

III. RANKING IRREGULAR TASKS

Building on our previous work [9], we provide a generalized
procedure for developing a heuristic-based runtime scheduler
that can handle resources with arbitrary capacity and allocation
representations. The primary goal is to efficiently construct
heuristics for irregular multi-dimensional tasks to guide the
allocation strategy. An efficient way to construct rankings on
modular lattice topologies is by the height function [10] which
counts interim nodes from the bottom to the current node.
Consistency is satisfied if the ranking on lattice can label each
node to represent a consistent distance between that node and
the bottom whilst preserving their initial order. The consistence
means for any node in the lattice, the length of every path
from that node to the bottom will be the same. The difficulty
appears when we consider the non-modular lattice structure
for general multi-FPGA systems with arbitrary topology: if
there is a node which has different interim nodes from itself
to bottom by following different paths, then it cannot be ranked
by the height. We provide a concrete example of this scenario
as shown on the left in Fig. 2: Consider the node e - its height
value equal to either 3 or 2 based on the different paths from
the bottom node a.

To solve this problem we consider a reverse Birkhoff’s
representation [11] on the initial non-modular lattice topology
for tasks model on general cluster. A pseudo-code description
of this process is shown in Algorithm 1. Recall the example
shown in Fig. 2, the resulting modular lattice is presented in
the right hand side where each node in here has a consist
height value. It shows our ranking is easy computable, that the
processing can be finished within polynomial time O(n2) by
only traversing the initial matrix of orders between tasks. We
can assign the ranking value for each task right after generating
the corresponding downset. Finally, the height function on
downset lattice is consistent as ranking on height function is
order-preserving for the initial relationship between tasks.

Fig. 2. Lattice representation

Algorithm 1 Birkhoff’s representation on Initial task model
and ranking

1: INPUT: (Set of tasks with initial orders)
2: N = number of tasks
3: for i = 1 to N do
4: taskDownseti = {}
5: for i = 1 to N do
6: for j = 1 to N do
7: if taskOrdersj ≤ taskOrdersi then
8: taskDownseti = taskDownseti + {taskj}
9: taskRanki = getSize.taskDownseti

IV. SCHEDULING ALGORITHM

Problem Formulation and Abbreviations To consider the
underlining problem: we have a certain amount of hardware
accelerator resources which can be formulated as a set of
A : Acc1...AccM ; To handle a multi-workload scenario S :
W1...WN , where each workload Wk contains different number
of tasks Tk : task1...taskN ′ . The outputs of our algorithm
are scheduling solutions derived at runtime which can be
formulated as mappings P(S) : {Tk} 7→ A. Each workload
has a completion time: wTimek(P) = max. taskT imei(P)
Where taskT imei is the completion time of taski. Based on
the different mappings P , the multi-FPGA system will have
different total workloads completion time WCT which can
be formulated as a higher level function of the mapping P:
WCT (P) = max. wTimek(P) The subject of the algorithm
is to give good solutions P to achieve high system perfor-
mance represented by reducing WCT . We use N to denote
the number of workloads in a multi-workload scenario, N ′ to
denote the number of tasks in a workload and M to denote the
number of accelerators. Acc is to denote accelerator. For each
task and accelerator, we give it an state (taskState/AccState)
which represents whether it has been allocated to run (1) or
not (0). Tasks also have a round number (taskRound) which
means in which round they are allocated. We use a N’*M
matrix (taskSol) to record the solutions of scheduling for each
workload, where taskSoli,j = 1 means we schedule taski
to run on accelerator Accj . Ranking-based Scheduling The
pseudo code of our ranking-based scheduling algorithm is
shown in Algorithm 2. To implement the scheduling process,
the first step is how to achieve the fit mechanism based on
rankings from tasks. Our fit mechanism is a variant of the

Algorithm 2 Ranking-based Scheduling Algorithm on multi-
FPGA Systems

1: while N > 0 do
2: j = 1
3: for i = arg max.taskRanki to arg min.taskRanki

do
4: if taskStatei==0 then
5: for d = 0 to M do
6: if taskRoundi ≥ AccT imed then
7: AccStated=0
8: count = 0
9: while count ≤ taskDimi do

10: if AccStatej = 0 then
11: taskSoli,j = 1; AccStatej = 1;
12: AccT imej += taskT imei; count += 1
13: j += 1
14: if j ≥ M then
15: j → the first empty Acc in next device
16: taskStatei = 1; N = N - 1
17: j → the first empty Acc in previous device

well-known First-Fit-Decreasing (FFD) approach guided by
our ranking. As demonstrated by [12], FFD is efficient for
resource assignment and we design our fit mechanism based
on it. To achieve runtime scheduling, we involve a Round
mechanism. Another issue is the theoretical upper bound of
the performance. A simple theoretical upper-bound here is:
WCTupper ≥ max.{

∑
wTimek
M ,max.{wTimek}}

V. SOFTWARE ARCHITECTURE AND EXPERIMENTAL
SETUP

The runtime scheduling system is responsible for the order
of execution and the mapping of tasks to FPGAs. Tasks are
all malleable, meaning they can be instantiated on any number
of compute units in parallel, and any number of tasks may be
scheduled concurrently. At runtime, tasks are first ranked by
the ranking generator equipped with algorithm Algorithm 1.
This decision is based on both the static information about
the ideal allocation provided from the analysis, and runtime
information about the current resource availability, provided
by the resource monitor. Finally, the scheduler allocates tasks
to FPGAs by algorithm Algorithm 2 - the round mechanism
is triggered periodically based on empirical time slicing.

Hardware Setup Our approach was tested on a testbed with
FPGA-based multi-accelerator systems, the MPC-X device
produced by Maxeler Technologies [1]. It is comprised of
eight DataFlow Engines (DFE) in which each of the DFEs
is physically interconnected via a ring topology. All DFEs
are same specialized computation resources, each employing
a Xilinx Virtex-6 FPGA to support reconfigurable designs
and 48GB (or more) RAM for bulk storage. With this setup,
applications running on CPU-based machines dispatch com-
putationally intensive tasks to single or multiple DFEs across
an Infiniband network. Each DFE cannot be separated to
multiple applications simultaneously which means each DFE

can only be scheduled to single task in our runtime scheduler.
Workloads Descriptions Reverse Time Migration (RTM) is a
practical method commonly used in the Oil and Gas industry
to model the bottom of salt bodies in earth’s subsurface.
Function 11 (F11) is a well-known benchmark [13] to test the
performance of Genetic algorithm (GA). A detailed parallel
GA kernel design on FPGA can refer to [14]. Experimental
Strategy We run our scheduling architecture and compare the
performance with a FIFO approach and our implementation
of HEFT and MFIT on both multiple RTM workloads and
the parallel-GA benchmark, F11. We evaluate our approach
based on three kinds of multi-workload scenarios: Single-task
workloads: Each workload is made up of a single run of the
benchmark, which consists of a number of parallel elements
of varying irregularity; Multi-task workloads: Each workload
is made up of a random number of runs of the benchmark
between 2 and 20, operating on different data. Each run
consists a number of parallel elements of varying irregularity;
High irregularity workloads: Further, we evaluate a multi-task
scenario where the tasks considered are highly irregular in size.
Experimental Metrics Workload Completion Time (WCT) is
the performance metric applied for each multi-workload sce-
nario in our experiment. WCT is the makespan of the system -
As for RTM workloads, it represents the workloads completion
time for all tasks in all workloads submitted; As for F11 bench-
mark, it represents the final time when all optimal solutions
are found for different domain of input sizes. Percentage of
Upper-Bound shows the percentage between the solution of
our tested approaches and the theoretical performance upper-
bound which is formulated in above section. The irregularity
of tasks presented the difference of suitable configurations
- the number of accelerators and their topology needed. It
is hard to define the underlining irregularity from attributes
of data directly as it depends on the workloads composition
and kernels which is used to execute it. Instead, we give an
empirical metric of irregularity in workloads to demonstrate
our results. Irg(W) to denote the irregularity level of each
workload Wk as follows: Irg(Wk) =

∑N ′

i=1(
taskT imei∑
taskT imei

) ∗
(taskT imei−taskT ime

taskTime
)2 Where

∑
taskT imei denotes the total

execution time of tasks in workload Wk whilst taskT ime
means the average execution time of tasks.

VI. RESULTS

Results for Multi-task Cases The experimental results of
RTM workloads and GA F11 benchmark on different workload
scenarios through different irregularity levels are shown in the
Figure 3. The Ranking approach consistently outperforms
all other approaches in multi-task scenarios across levels of
irregularity. For RTM workloads, Ranking maintains 99.7%
to 99.8% of upper-bound of performance across levels of irreg-
ularity. This represents a significant improvement of between
5% and 7% over the commercially implemented FIFO scheme.
Our implementation of the HEFT approach for this task
performs fairly well here, but only reaches 97.5% to 98% of
the maximum possible performance. MFIT performs similarly

Fig. 3. Experimental results on different workload scenarios

Fig. 4. Experimental results on high irregularity scenarios

to FIFO. For F11 workloads, with normalized irregularity
around 0.3, Ranking already reaches more than 95% of the
upper bound, while both FIFO and MFIT are around 92% and
HEFT 87%. As irregularity increases to 0.55, the Ranking
approach obtains 98% and does not decrease. Both FIFO and
MFIT reach a maximum of 93.5%, while in this case, HEFT
only obtains between 86% and 88% of the upper bound.
Over both scenarios, the Ranking approach provides the
best performance. Results for varying workload numbers in
High Irregularity Scenarios Figure 4 shows the results where
only highly irregular workloads are considered, and where the
number of workloads simultaneously present for computation
is varied. In general, scheduling becomes easier as the number
of workloads increases as there are more tasks of varying size
which allow holes in the schedule to be more easily filled.
This intuition is borne out across all considered approaches.
Ranking generally performs better than all other approaches
across both RTM and F11 workloads. For RTM workloads,
at a low number of workloads, HEFT performs a little better
than ranking. For example, when the number of workload is
around 30, HEFT can reach around 93% whilst Ranking
only get around 85%. This is due to the HEFT algorithm
preferring longer running tasks running on a small number of
accelerators, rather than ranking, which prefers shorter running
tasks running on a larger number of accelerators. The overhead
of changing tasks more quickly in low workload size scenarios
leads to lower performance with the ranking approach. Even
in this case, Ranking is still outperforms MFIT and FIFO,
both of which obtain about 76% of the available performance.
Ranking consistently outperforms HEFT as the number of
workloads increases past 50,quickly achieves 99% or available

performance. For F11 workloads, Ranking outperforms all
other three approaches across all numbers of workload. The
results vary from 91% to more than 98% of the upper bound
of performance. MFIT and FIFO achieve around 93% when
the number of workloads is greater than 60. HEFT fluctuates
around 90% across differing numbers of workload.

VII. CONCLUSION

We show our ranking based dynamic scheduler is able
to outperform the FIFO scheduler used in the Maxeler Or-
chestrator [1] and the the most relevant research schedulers,
HEFT and MFIT in multi-task scenarios. The approach was
tested on both RTM and parallel GA benchmark workloads.
The performance gains between our approach against other
approaches are more significant for high irregularity and multi-
task scenarios on both workloads. In scenarios where most
workloads contain similar sizes of task, our approach main-
tains the same or better performance. In these simpler cases,
the existing approaches are already perform well. We present a
novel dynamic scheduling approach for multi-FPGA systems,
based on a partial order representation of tasks and a ranking
methodology. We show how our dynamic scheduling approach,
which models and ranks irregular workloads, outperforms
existing approaches in multi-task scenarios, while retaining the
same performance in single-task scenarios. This work shows
the prevalence of FIFO schedulers in industrial and research
accelerator systems is not without cause – FIFO performs well
in a mostly homogeneous single-task environment. However,
in the presence of irregular tasks and FPGA-based multi-
accelerator resources, a better method is required to retain high
levels of performance.

REFERENCES

[1] Maxeler, https://www.maxeler.com, 2016.
[2] C. Jing et al., “Energy-efficient scheduling on multi-fpga reconfigurable

systems,” Microprocessors and Microsystems, vol. 37, no. 6, pp. 590–
600, 2013.

[3] H. Topcuoglu et al., “Performance-effective and low-complexity task
scheduling for heterogeneous computing,” IEEE TPDS, vol. 13, no. 3,
pp. 260–274, 2002.

[4] HARNESS, “The harness platform: A hardware- and network-enhanced
software system for cloud computing,” tech. rep., Nov. 2015.

[5] CloudLightning, “Cloudlightning position paper,” 2016.
[6] C. Margiolas and M. F. O’Boyle, “Palmos: A transparent, multi-tasking

acceleration layer for parallel heterogeneous systems,” in ICS, pp. 307–
318, ACM, 2015.

[7] T. Hussain et al., “Amc: Advanced multi-accelerator controller,” Parallel
Computing, vol. 41, pp. 14–30, 2015.

[8] T. Hussain et al., “Ppmc: Hardware scheduling and memory manage-
ment support for multi accelerators,” in FPL, pp. 571–574, IEEE, 2012.

[9] T. Yu et al., “Relation-oriented resource allocation for multi-accelerator
systems,” in ASAP, pp. 243–244, IEEE, 2016.

[10] M. P. Schellekens, “The correspondence between partial metrics and
semivaluations,” TCS, vol. 315, no. 1, pp. 135–149, 2004.

[11] G. Birkhoff, Lattice theory, vol. 25. American Mathematical Soc., 1940.
[12] R. Panigrahy et al., “Heuristics for vector bin packing,” research.

microsoft. com, 2011.
[13] D. A. Coley, An introduction to genetic algorithms for scientists and

engineers. World scientific, 1999.
[14] L. Guo et al., “Parallel genetic algorithms on multiple fpgas,” ACM

SIGARCH Computer Architecture News, vol. 43, no. 4, pp. 86–93, 2016.

