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Abstract. We investigate the topological transition that takes place in spin-ice systems when a polarising
field is applied along a principal axis. In particular, we analyse a two dimensional spin-ice model; we find
that the topological transition is strongly affected by geometrical constraints in the shape of the sample, and
that in the case where the dimension perpendicular to the field is much smaller than the longitudinal one,
i.e. in the quasi-1D spin-ice-ladder limit, it splits into a series of first-order phase transitions characterised
by sharp spikes in the specific heat and susceptibility.

1 Introduction

Spin-ice is a class of magnetic material where rich
behaviour arises from a simple and straightforward origin:
the local enforcement of the ice rules [1–3]. These stipu-
late that for each tetrahedron of the pyrochlore lattice,
two spins should point in, and two should point out along
the local body-centred diagonal axes. This translates, in
a course grained picture, to a vanishing of the divergence
of the spin field at a local level [4]. This local constraint
gives rise to an extensively degenerate ground state, and
to a whole variety of emergent behaviour, notably, artifi-
cial magnetostatics [5], where excitations from the ice-rule
behave as magnetically charged particles. This is not to
say that there is no interesting behaviour even if the ice-
rules are strictly enforced. The ice rule applied to every
tetrahedron means the magnetisation of each (1 0 0) plane
is the same, and hence a topological quantity that can only
be changed by a system-wide move [6]. As pointed out
by Jaubert and coworkers [7,8], this local constraint can
give rise to a topological transition of the Kasteleyn type
[9–11]. The configurations that make up the ice-rule man-
ifold usually have different magnetisations, however, if
a field is applied along [1 0 0], the degeneracy can be
entirely eliminated without violating the ice rule. If the
temperature is low enough that no excitation from the
ice rule manifold is permitted, i.e. no individual spin-
flips, the lowest energy excitation is a string of flipped
spins extending from one side of the system to the other.
These strings of negative magnetisation cost Zeeman
energy, but are entropically favourable. The line in the
field–temperature plane where these excitations become
favourable is the Kasteleyn transition, characterised by
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an asymmetric nature, appearing to be first order on one
side and continuous on the other. This topological tran-
sition between a single and a multiple connected system
has been shown to occur both in three-dimensional [7,12]
and two-dimensional spin-ice [13].

The mechanism by which this transition takes place –
the proliferation of sample-length spanning strings – make
it extremely anisotropic in nature. This type of transi-
tion not only requires special treatment when performing
a finite-size scaling analysis [14] but can also be prone
to fundamental changes in its nature due to geometrical
constraints on the sample shape [15]. The purpose of this
work is to investigate the nature of the Kasteleyn transi-
tion in spin-ice systems under different geometries. We will
show that in the case of thin, semi-infinite samples, ori-
ented along the field direction, the Kasteleyn transition is
replaced by a series of first-order phase transitions charac-
terised by very sharp delta-like spikes in the specific heat.

2 Model and simulation methods

For this work we have chosen the model introduced in ref-
erence [13]. This is a simple two-dimensional ice model
that has the advantage that it has the same Ising quanti-
zation axis for every spin. We consider magnetic moments
on a two-dimensional square lattice such that ~µi = σi~µ,
where σi = ±1 is an Ising variable on lattice site i, and
the moment µ points along one of the principal axes of
the lattice (see inset of Fig. 2). The Hamiltonian is given
by

H =
∑
ij

Jijσiσj − h
∑
i

σi, (1)
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Fig. 1. Logarithm of the density of states g(e,m) as a function
of the energy per site e and the normalized magnetisation,
m/msat calculated using the the Wang–Landau algorithm for
a system size of 8 × 100 unit cells. The projection to the e–m
plane reveals the ground state is composed of a large number
of states with same energy and different magnetisation.

where i and j label the sites of the lattice, and h = ~µ · ~H,

with ~H the externally applied magnetic field. In all cases
considered here, the field is kept purely longitudinal. The
exchange interaction Jij is given by

Jij =



J rj = ri + x̂;
−J rj = ri + ŷ;
−J ri = nx̂ +mŷ (n+m odd)

and rj = ri + x̂ + ŷ;
−J ri = nx̂ +mŷ (n+m even)

and rj = ri − x̂ + ŷ;
0 otherwise,

(2)

As shown in the inset of Figure 2, this is a simple Ising
model on a checkerboard lattice with mixed ferromag-
netic (vertical and diagonal bonds) and antiferromagnetic
(horizontal bonds) interactions of the same magnitude. As
shown in [13], this system has an ice-like ground state with
Lieb’s residual entropy and undergoes a Kasteleyn transi-
tion in the field–temperature plane that is well described
by equating the energy and entropic contributions: Tc =
2h/(kB ln 2). This transition is characterised by a one-
sided drop of the magnetisation, and an asymmetric
lambda-like peak in the susceptibility.

For our simulations we have performed Monte Carlo
simulations using the Metropolis and Wang–Landau [16]
algorithms. In both cases we used a single-spin-flip algo-
rithm on systems of varied geometric configurations
as described later. We used the Wang–Landau algo-
rithm to determine the density of states g. We labeled
the states according to their energy Ei and magneti-
sation Mi. For normalization we used the condition∑
Ei,Mi

g(Ei,Mi) = 2N , where N is the total number of
spins of the system. The modification factor changed from
ln(f0) = 1 to ln(ffinal) = 10−9.

3 Results

In order to investigate the effects of the system shape on
the thermodynamic quantities, we calculate the density
of states g(E,M) for different rectangular lattice sizes of

Fig. 2. Relative magnetisation versus temperature with
h/J = 0.0336 for different lattice sizes and shapes. L′ and L are
the lattice sizes in the directions perpendicular and parallel to
the field, respectively. The upper panel shows a square lattice
and lattices with L′ > L. Both cases show similar behavior:
at low temperatures, the system is completely saturated and
the magnetisation decreases continuously as the strings enter
the system. In the plot it is not possible to resolve the differ-
ence between the different curves with L′ > L. The bottom
panel shows the magnetisation with L′ < L; here the decrease
from saturation happens at a series of well-defined steps. The
inset shows a schematic view of the lattice, with ferromagnetic
bonds represented by solid lines and antiferromagnetic bonds
by dotted lines.

L × L′ by using the Wang–Landau algorithm. Figure 1
shows a typical result for the logarithm g as a function
of the energy per spin, e = E/N and magnetisation per
spin, m = M/N for a rectangular sample of 8× 100 unit
cells. As expected for a frustrated system, the density of
states is asymmetric along the energy axis and symmetric
along m. The projection into the e–m plane shows a tri-
angular shape, with a well-defined magnetisation state at
maximum energy and a wide base at the ground energy
marking the degeneracy of the ice state.

From g(E,M) one can easily calculate the relevant
thermodynamic quantities by using the expression for
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Fig. 3. Specific heat curves calculated for different lattice sizes with h/J = 0.0336. The figure shows the sharp peaks marking
the successive transitions into which the Kasteleyn transition is broken down. Inset: Snapshots for different temperature values,
for a 8 × 100 unit cell system size. Black lines mark the simulation box, which has been repeated to the left and right in order
to make more explicit the periodic boundary conditions. The strings of downward-pointing spins (blue dots) enter the sample
one by one as the temperature increases.

the partition function in the magnetic isothermal–isobaric
ensemble:

Z =
∑
E,M

δ(E,M)e−β(E−Mh) (3)

from which all relevant thermodynamic quantities can be
extracted.

Figure 2 shows the magnetisation calculated from the
Wang–Landau simulations. The upper panel shows the
result for a square-shaped lattice (L × L) together with
lattices of L′ > L, where L′ is the direction perpendicu-
lar to the field. The magnetisation is shown as a function
of temperature at a fixed value of h/J = 0.0336 (which
corresponds to a longitudinal field of 0.05 T in a sys-
tem with µ = 1µB and J = 1 K). At low temperatures
the system is in the singly connected phase, and in the
absence of excitations is fully polarized (M/Msat = 1). As
the temperature is raised, the entropic contribution to the
free energy from a string excitation becomes increasingly
higher till it overcomes the energetic loss and strings of
negative magnetisation spanning the whole sample pierce
the system. This is seen as a sharp continuous decrease
in the magnetisation. Finite size effects are quite mild in
this case; the main effect is a rounding off of the transition,
where instead of a decrease in M with a divergent slope:
the more the departure from saturation is smoother, the
smaller the size of the sample. The lower panel shows the
magnetisation under the same conditions but for samples
with L > L′, that is samples where the length along the
field direction is much longer than in the perpendicular
direction. In this case the scenario is drastically changed

by finite size effects: the continuous decrease of M/Msat

as the temperature is raised above a transition is instead
replaced by a series of sharp steps, which become sharper
the longer the sample is along the field direction. When the
specific heat is calculated (see Fig. 3), it is seen that these
steps in magnetisation correspond to delta-like peaks in
the specific heat that become sharper as the sample size
is increased along the field direction. The Kasteleyn tran-
sition has been split into a series of transitions that, as we
will see later, are first order in nature.

This type of behaviour has been observed to occur in
dimer models [15]. The origin of this change is found in
the entropic contribution of the strings to the system. In
an infinite case, once the entropic condition is favourable
for strings to exist, there is a rush of strings that pierce
through the sample and which increase gradually in num-
ber as the temperature is raised. There are two different
scenarios when one of the directions is limited: if we limit
the direction parallel to the field, L, we make the strings
shorter, but we leave essentially unchanged the way in
which they interact with each other, while if we reduce
the direction perpendicular to the field, L′, we force the
strings to see each other even at extremely low densities.
This interaction reduces the number of possible config-
urations of two strings compared with two independent
strings. If L′ is sufficiently small then the introduction of
each single string is accompanied by an entropic change
which is different in each case; the condition of entropic
gain versus energy loss is then different for each string, and
the temperature is thus split into separate temperatures
for every time a string enters into the sample. The configu-
rations between peaks in the specific heat are shown in the
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Fig. 4. Magnetisation, energy and entropy per spin versus
temperature calculated for h/J = 0.0336 using the subset of
non-defects configurations. t1, t2, t3 and t4 correspond with the
position of the peaks in the specific heat curves, 0.0969, 0.1164,
0.1744 and 0.4961, respectively. In absence of defects, ∆e and
∆m do not change as the strings appear in the lattice, but
∆S is not constant due to the interaction between strings.
The inset shows ∆S as a function of the number of strings
present in the system (red dots) compared with the expression
obtained in equation (4) (black line).

inset determined from a Metropolis simulation. Red indi-
cates up-pointing spins and blue down-pointing spins. The
sample has been repeated to left and right in order to make
explicit the periodic boundary conditions. As seen in the
Metropolis snapshots, the low temperature region, below
the first peak, is a homogeneous fully saturated sample.
As the temperature is raised, a single string spanning the
whole length of the sample enters and is accompanied by
a peak in the specific heat. Further peaks in the specific
heat correspond to further introduction of strings.

This picture can be accounted for in a more quantita-
tive manner. Figure 4 shows the magnetisation, energy

and entropy calculated at a fixed field as a function of
temperatures with the condition that no violations to the
ice-rule occur [17]. The reduced temperatures ti = kTi/J
mark the entrance of i string defects into the system. As
it can be seen in the figure, the entrance of a defect pro-
duces a simultaneous jump in the magnetisation (down),
the energy (up) and the entropy (up). A more careful
inspection shows that while the magnetisation jumps (and
consequently the energy jumps) are of the same magnitude
in all cases (∆M/Msat = 0.25(2),∆E/J = 0.0084(1)), the
entropy jump ∆S/k changes substantially as the number
of defects increases: 0.08707(5), 0.07214(5), 0.048156(5)
and 0.01667(5) (plotted as red dots in the inset). ∆M
and ∆E can be straightforwardly calculated: a string of
negative magnetisation of length L contributes a change in
m = M/N = 2L/LL′ = 2/L′, where N is the total num-
ber of spins. In the case of these simulations, with L′ = 8,
the jump is ∆M = 2/8 = 1/4 which coincides with the
simulations. The change in energy, given that there are
no violations to the ice rule, is simply the Zeeman energy
∆E/J = Mh/J = 2h/JL′ = 0.25×0.0336 = 0.0084 again
in coincidence with what is determined from the figure.
The change in entropy due to the introduction of the first
string is simply ∆S1/k = L ln 2/LL′ = ln(2)/L′ = 0.087,
which coincides well with the first jump. The additional
entropy of subsequent strings is decreased by the interac-
tion with the previously existing strings in the sample.
An exact calculation of the subsequent jumps involves
taking into account the correlation due to closed loops,
in a fashion similar to Lieb’s determination of the zero-
point entropy, but it is possible to obtain a simple estimate
that fits well the entropy of the system if the density of
strings is not high. Each step in the propagation of a string
means flipping one spin of a plaquette from up to down.
In the zero density limit there are always two choices – to
continue vertically or diagonally – but for a system with
P − 1 strings, the probability that one of these two sites of
the plaquette would already have one downward-pointing
spin is p↓ = 1 − (P − 1)/L. The change in entropy ∆SP
after the introduction of an additional string can then be
estimated by weighting the number of choices with the
probability p↓:

∆SP /k = ln

(
2

[
1− P − 1

L

])
. (4)

This simple estimate gives the two limits correctly: for
P/L → 0, one recovers ∆S = ln 2 that fits well the
(∞ ×∞) and (∞ × L′) limits (see e.g. [13]) , and for
P − 1 = L/2, we get the correct value ∆S = 0 since there
is no longer any choice of sites to add additional strings.
The inset of the lowermost panel of Figure 4 shows a com-
parison between the entropy jumps observed (red dots)
and the estimate given by equation (4). As expected, the
estimate works best for a small number of strings.

With the knowledge of ∆E and ∆S, it is straightfor-
ward to calculate the ti at which it is favourable to let a
string into the system:

∆G = ∆E − Ti∆S = 0. (5)
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Fig. 5. Free energy G(M) per spin versus magnetisation for
different temperature values (indicated in terms of the number
of negative strings present in the system). In each panel, the
black curve points were calculated at the temperature of the
transition Ti. The blue (red) curve corresponds to tempera-
tures above (below) Ti. The minimum of the curve indicates in
each case the magnetisation value of the correspondent phase.

Then, from the data in Figure 4,

t1 =
∆E/J

∆S1
=

0.008397(5)

0.08707(5)
= 0.0964(3), (6)

t2 =
∆E/J

∆S2
=

0.008397(5)

0.072141(5)
= 0.1164(27), (7)

t3 =
∆E/J

∆S3
=

0.008397(5)

0.0481564(5)
= 0.174(6), (8)

which are in good agreement with those determined from
the simulations (see Fig. 4). The key of the breakdown of
the original Kasteleyn transition into a succession of first-
order transitions is this straightforwardly linked with the
change in ∆S as a function of the number of strings,

The Wang–Landau method provides us an additional
valuable information that can be used to determine the
nature of the transitions: from the knowledge of g(E,M)
it is possible to calculate the free energy of the system
as a function of the order parameter (in this case, the
magnetisation). Figure 5 shows the Gibbs potential as a
function of the magnetisation, calculated from the config-
urations without defects and for h/J = 0.0336. The three
panels correspond to the transitions at T1, T2 and T3. In
each panel the black curve is calculated at the transition
temperature Ti, and the red and blue curves for T < Ti
and T > Ti, respectively. The magnetisation axes have
been labeled in terms of the magnetisation of the sys-
tem with n strings. In the uppermost panel, the system
progresses as the temperature is lowered from a mini-
mum at 0 (no strings) to a minimum at 1 (one string).
The black line shows that at the transition both minima
are at the same temperature, i.e. it is a first-order phase
transition. The discontinuity in the jump of M as a func-
tion of the temperature has its origin in the fact that due
to the topological constraints, only a discrete number of
magnetisation values are allowed, that is those marked by
points in the curve, the lines are merely guides to the eyes.
This remains true even in the thermodynamic limit of a
semi-infinite sample along the field direction. An identical
description applies to the other two transitions showed in
the panels.

4 Conclusions

We investigated the topological transition that takes place
in spin-ice systems when a polarising field is applied
along a principal axis. In particular, we have analysed
the two dimensional spin-ice model presented in refer-
ence [13] which has the advantage that it has the same
Ising quantization axis for every spin. We found that the
topological Kasteleyn transition is strongly affected by
geometrical constraints in the shape of the sample and
that in the case where the dimension perpendicular to the
field is much smaller than the longitudinal one (L < L′),
the Kasteleyn transition splits into a series of transitions
characterised by sharp spikes in the specific heat and sus-
ceptibility. The limit towards infinite number of particles
with a finite length in one direction (a quasi-1D spin-ice
ladder) gives two completely different scenarios regarding
the type and number of transitions observed in the sys-
tem: a Kasteleyn transition in one case (∞× L′), and a
series of first-order transitions in the other (L×∞). Tak-
ing the thermodynamic limit with both L and L′ going to
infinity also gives rise to different behaviour depending on
the ratio between these two lengths In the case of L > L′

the approach towards the limit shows the usual behaviour
of a continuous transition, while in the case of L < L′ it is
characterised by the presence of a series of individual tran-
sitions with the number of steps that become denser as N
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Page 6 of 6 Eur. Phys. J. B (2018) 91: 307

is increased. We expect that this type of behaviour can be
observed experimentally in the case of artificial spin-ice
systems [18], and particularly in the case of colloidal sys-
tems where bespoke vertex energies can be tuned [19–21].
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