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Abstract

This thesis covers open quantum systems and information transfer in the face of

dissipation and disorder through numerical simulation.

In Chapter (3| we present work on an open quantum system comprising a two-
level system, single bosonic mode and dissipative environment; we have included
the bosonic mode in the exact system treatment. This model allows us to gain an un-
derstanding of an environment’s role in small energy transfer systems. We observe
how the two-level system-mode coupling strength and the spectral density form char-
acterising the environment interplay, affecting the system’s coherent behaviour. We
find strong coupling and a spectral density resonantly peaked on the two-level sys-

tem oscillation frequency enhances the system’s coherent oscillatory dynamics.

Chapter [ focusses on a physically motivated study of chain and ladder spin
geometries and their use for entanglement transfer between qubits. We consider a
nitrogen vacancy centre qubit implementation with nitrogen impurity spin-channels
and demonstrate how matrix product operator techniques can be used in simulations
of this physical system. We investigate coupling parameters and environmental decay
rates with respect to transfer efficiency effects. Then, in turn, we simulate the effects
of missing channel spins and disorder in the spin-spin coupling. We conclude by

highlighting where our considered channel geometries outperform each other.

The work in Chapter [5|is an investigation into the feasibility of routing entangle-
ment between distant qubits in 2D spin networks. We no longer consider a physical
implementation, but keep in mind the effects of dissipative environments on entan-
glement transfer systems. Starting with a single sending qubit-ancilla and multiple
addressable receivers, we show it is possible to target a specific receiver and estab-
lish transferred entanglement between it and the sender’s ancilla through eigenstate
tunnelling techniques. We proceed to show that eigenstate tunnelling-mediated en-
tanglement transfer can be achieved simultaneously from two senders across one spin

network.
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Introductions and the way forward

z HE universe, as a whole, is a closed system and every sub-system within it is
¢ therefore an open system. In general, systems are ‘things’; ecosystems, cars,
computers, atoms. Closed systems are contained, so only the system’s parts dictate
its behaviour whereas an open system has some interaction with external entities.
To fully describe the behaviour of an open system the external environment must be
considered. Definitions of closed and open systems do vary slightly with the scale of
the physics being studied, for instance classically closed means no forces are exerted
from outside and matter and energy are conserved. Thermodynamically a closed
system permits energy flow but no matter, when both matter and energy exchanges
are absent it would be an isolated system (similar to a closed classical mechanical
system). And in standard quantum mechanics an isolated thermodynamic system is
usually termed a closed system; one governed by the Schrodinger equation where no
information (meaning energy or matter) can enter or leave the system (see Fig. [L.1).
Conversely then, generally an open quantum system (OQS) is free to exchange infor-

mation and energy with its environment.

It is not uncommon to approximate an OQS or its surrounding environment
through various mathematical techniques and physical assumptions [1, 2], but as
physics progresses and we wish to harness the great powers of quantum mechan-
ics our understanding must evolve and so must our models. As quantum devices
come more heavily into the focus of the scientific and industrial communities we are
reminded that there is still a large amount for us to learn about OQSs; a great jigsaw

still decades from completion. It is as pieces of this jigsaw we wish this thesis and
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Open system

Closed system
approximation

FIGURE 1.1: Schematic illustrations of closed and open quantum sys-
tems. A closed system (left) where only the circular blue ‘system’
is considered and the environment is either functionally or approxi-
mately uncoupled; information (such as energy or particles) is con-
served within the system. The open system (right) is now in contact
with its environment and in general information can flow between
them. As such, information in the blue system is now not conserved.

the work within to serve. We concern ourself with investigations of a few different
aspects of the OQS jigsaw; extending methods, considering novel system realisations

and subverting expectations with regards to intuitive concepts.

1.1 Thesis overview

g| AIRLY traditionally this thesis is split into chapters covering the work carried
out over the period of study and comprising extra material to support it. We
have already introduced the highest level motivation and intent for the work in this
chapter. We shall continue to outline and explore the thesis here, introducing in more

detail the concepts associated with OQSs and what we intend to do.

1.1.1 Open quantum systems theory

In Chapter 2] we extend the concepts introduced here with the mathematical for-
malisms and techniques required for their study and description. Specifically the

requirement for density matrices which generalise the description of a state beyond
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state vectors due to the latter’s inability to describe OQSs. The environment itself,
although often vastly complex and numerically intractable must be handled in some
way and this will be discussed. We will detail a master equation formalism for mod-
elling an OQS in contact with an environment and the matrix product operator ap-
proach to solving a master equation. Finally we cover a measure of entanglement

which we employ in later chapters to quantify system performance.

1.1.2 Maintenance of coherent dynamics in a dissipative environment

Chapter 3|is our first chapter of original work (forming the basis for Publication 1)
and concerns the interplay between a system and its environment when part of that
environment is being considered as a component of the system. This is a novel exam-
ple of extending current methods to reduce the level of approximation used to treat
environments and the precise formulation of the model could be thought of as a toy
for photosynthetic systems. Making use of a symmetry-exploiting transformation,
a ‘microscopic” (as opposed to phenomenological) master equation is derived and a
computational solution of it described in order to describe the system exactly. We
show that exact treatment of this included environmental component leads to inter-
esting behaviour, in that by tuning its coupling within the system one can change the
coherent properties of the system. An analytic interpretation of this effect is presented

and its relation to the description of the environment is explored.

1.1.3 Entanglement transfer spin channel geometries

Shifting focus, Chapter [ features work (covered in Publication 2) contributing to the
understanding of nitrogen vacancy centre (NV) based quantum computing imple-
mentations, as well as pushing the boundaries of simulations of such systems. It is
clear, from the multitude of processes, algorithms and devices that rely on it, that
entanglement is vital to quantum engineering and here we study a physically moti-
vated realisation of its distribution between spatially separated qubits. The idea of
using spin chains as a channel between qubits has been seen to be effective in the

past, but here we extend this to ladders of spins and compare the behaviours of the
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two kinds of channel in the face of an imperfect hypothetical manufacturing process.
Part of our results will be obtained using a matrix product operator approach, em-
ploying it beyond the usual application to theoretical models and performing it in
such a way as to extend what sized systems can be studied. We find that there is,
once again, an interplay between the environment and system affecting coherent dy-
namics. Further, when the manufacturing imperfections are considered it is possible
for a ladder to outperform a chain in terms of entanglement distribution, but perhaps
not to the degree that was expected when one considers the extra couplings present

in a ladder geometry.

1.1.4 Entanglement routing

Born of the considerations of the preceding chapter, Chapter 5/ asks: if we can dis-
tribute entanglement between pairs can we send it in an addressable way and, if
so, can multiple transmission processes coexist? Relaxing the physical restrictions
slightly and considering this more as a question answered with a physically inspired
toy model, we consider 2D grids of spins (a superset of the ladder and chain geome-
tries considered previously) with sender and receiver qubits coupled to them. In con-
sideration of what is possible we return to an idea investigated in earlier work asso-
ciated with quantum state transfer, namely eigenmode transport, showing that with
this it is indeed theoretically possible to route entanglement from a sender. Using
this process we can distinguishably route entanglement, initially between the sender
and an ancilla, such that at some time later only a desired receiver (one of multiple
coupled to the spin network) is entangled with the ancilla. Then, extending this, we
incorporate a second sender-ancilla pair and show that concurrent routing events can

be realised with similar distinguishability.

1.2 Open Quantum Systems

AVING seen what will be included in this thesis let us go back and look at why
Q|| we are interested in doing this work. It would be fair to say that the theoretical

difficulties faced with an OQS approach to modelling are akin to those faced in many
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body physics, in the sense that we currently cannot hope to deal with all of the states
of a system and its surrounding environment exactly. As an aside, throughout this
thesis the terms ‘environment’, ‘bath” and ‘surroundings” will be used more or less
interchangeably to describe the same thing. With an OQS the stance is often adopted
that, as we are not interested in the state of the environment, it is assumed to be of
a simplified form that is easier to manage and can approximate averaged behaviours
or weakly coupled parameter limits. But there are cases when the environment has
been shown to be important, such as with the revelation of the quantum coherent

processes in photosynthetic systems [3-5], which we will now discuss.

1.2.1 Photosynthesis

Despite being at the forefront of a lot of experimental [6H9] and theoretical [10H19]
inquiry we have still only part knowledge as to the sources of the coherence and how
precisely it enhances the transport efficiency of the photosynthetic process [20-22].
Some of the big open questions in the field include how to best model complicated bi-
ological structures accurately, whether ex-vivo experiments displaying coherence un-
der coherent light sources can shed light on in-situ operation [23-25] and whether the

coherence observed is electronic, vibrational or some mixture [26-H28].

It might not be immediately obvious what the role of a physicist studying pho-
tosynthesis is, so let us provide an introduction to the process. Photosynthesis is the
most common instance of converting energy on the planet [29] and is vital in support-
ing nearly all non-bacterial life on the planet [30]. Whilst the molecular description of
the structures that mediate the many steps in this complicated process differ between
organisms, the overall procedure follows the same description [30] and a schematic
diagram can be seen in Fig. Light harvesting complexes (LHCs) absorb pho-
tons, creating electronic excitations (excitons), which then migrate towards a reaction
centre where the charge separated state is harnessed to perform chemical reactions.
These two structures, the LHC and the reaction centre, are the primary constituents
of a photosynthetic unit. LHCs are collections of chromophores, or pigments, that ab-

sorb light (i.e. have an electronic structure amenable to photoexcitation) and typically
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a reaction centre is comprised of two closely spaced chromophores.

Photton

FIGURE 1.2: A schematic impression of a photosynthetic unit com-

prised of chromophores (collectively forming the light harvesting com-

plex), the reaction centre (where the chemical process is initiated) and
a surrounding protein environment.

There are a range of chromophores (like chlorophylls or carotenoids) with differ-
ent properties; generally each is responsive to a different part of the electromagnetic
spectrum and can also serve to protect the organism by absorbing light that would
otherwise be damaging to the plant [31]. In many instances chromophores are sur-
rounded by a protein basket, referred to together as a pigment-protein complex, and
since changes to the protein’s conformation also affect the chromophore the spectral
properties of the latter can be tuned [32]. A chlorosome is another pigment structure
that has been observed in LHCs, these are large collections of chromophores bound

together without protein baskets [33]].

Whilst much is known about the biological and chemical structure and operation
of the different photosynthetic units, there is still more to learn about the physics of
energy transfer through the unit. The chemical make up of a photosynthetic unit for
a particular organism is a good basis for understanding the physical dynamics of the
system, however the information is sometimes too much to deal with; a full molecular
description of an LHC is certainly beyond a fully quantum mechanical simulation for
instance. Fig.[1.3]illustrates some of the different information that can be obtained and
represented using a particular LHC (the Fenna-Matthews-Olsen (FMO) complex) as

an example [34].
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Ribbon View Site Basis Excitonic Basis Atomic View

FIGURE 1.3: Four representations of the Fenna-Matthews-Olsen LHC.
The ribbon view shows a biological representation of the protein rib-
bons surrounding the green chromophores. The site basis identifies
the individual chromophores which, in the case of this organism, are
chlorin rings. The excitonic basis is a physical representation of the
density clouds (represented as different colours) of the single excita-
tion associated with each chromophore. Finally the atomic view shows
how densely packed this LHC is and just how many constituent atoms
there are to consider. Figure obtained from Ref. [34].

As previously mentioned, it is known that the exciton travels through the chro-
mophores to reach the reaction centre, but the precise mechanism by which this occurs
is unknown. The energy dynamics can be probed using spectroscopic techniques and
commonly used now in photosynthetic studies is 2D electronic spectroscopy. This
uses four-wave-mixing and elicits third order correlations in the form of an emitted
signal field resulting from the laser-sample interaction [35]. This technique repre-
sents a step forward in our probing technologies as one of its big advantages is that
the spectrum obtained is in terms of amplitudes (as opposed to intensities) so the sys-
tem’s quantum phase is directly accessible; this means that quantum coherence can

be observed.

Traditionally the belief was that biological systems were too ‘warm and wet’
to depend on anything other than classical descriptions because quantum states are
fragile things; clearly the results for photosynthesis say otherwise. So we have said
that coherence can be measured, how those measurements are achieved and given an
overview of the system in which this is all taking place, but let us give a physical inter-
pretation for how electronic coherence might emerge (or remain in the face of an ac-
tive environment) in a system like this. A two parameter discussion can successfully
explain the two limiting cases of the dynamics which are illustrated in Fig. The

two parameters can either be energies or time scales (one being related to the inverse
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of the other). Starting with energies we shall consider the inter-chromophore elec-
tronic coupling strength and the bath-chromophore interaction strength. When bath-
chromophore beats electronic coupling, chromophore localised electronic states make
the most logical basis states, with a perturbative treatment of inter-chromophore exci-
tonic coupling; this approach is called Forster theory [36]. This limit can be thought of
as a hopping limit, where the electron exists on one site at a time, and hops between
chromophores. In the opposing limit, when the electronic coupling is greater than
bath-chromophore interactions, a localised electron is not a convenient state descrip-
tion as it may delocalise across chromophores; now the bath-chromophore couplings
are treated perturbatively to produce a quantum master equation, such as in Redfield

theory [37].

Hopping Exciton

o X
: $~‘? &

Strong bath-chromophore coupling  Strong inter-site electronic coupling
Fast chromophore reorganisation Fast electron transition times

Delocalised Exciton

b)

FIGURE 1.4: Illustrations of electronic behaviour in the a) hopping and
b) delocalised regimes of chromophoric energy transfer.

A consideration in terms of time scale parameters reinforces this picture; the time
scales are the electron transition (between chromophores) and nuclear reorganisation
times. The presence of an excited electron on a chromophore presents it with an en-
ergetic change that the molecular structure wants to act to minimise; the time it takes
to do this is the nuclear reorganisation time. If the reorganisation is fast (by compar-
ison) then any transfer happens after the rapid structural change has decohered the
state of the electron and behaviour can be described as similar to a classical random
walk; here we are again in the hopping regime. An active surrounding protein envi-
ronment would, if strongly coupled, cause similar electronic decoherence, hence the
equivalent regime. Correspondingly if the electronic transfers are rapid, occurring
before the bath or reorganisation has had time to decohere its state, then a delocalised

electron description would be suitable; one way to increase transfer speeds would
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be to have strong inter-chromophoric couplings so again we see an understandable

equivalence.

Whilst there are systems that these limiting coupling and/or time scale regimes
can describe there are also a large number of cases where the parameters fall into in-
termediate or competing regimes. Theoretical consideration here is hampered due to
the inapplicability of common perturbative or ‘weak coupling” approaches because
of the lack of vanishingly small parameters. In order to investigate the regime where
chromophoric coupling is of the same scale as chromophore-protein coupling it is
worth noting that whilst precise models of whole LHCs can elucidate in situ perfor-
mance they tend to be computationally expensive and may produce a lot of informa-
tion. As we are still at a stage of understanding where the mechanisms themselves
are still in question, it can be physically instructive to proceed with studies of smaller
systems or more manageable toy models. In doing so approximations are made that
reduce the possibility of quantitative comparisons with real systems, however the
qualitative, physical conclusions drawn from such work can help move forward our
understanding of basic governing principles. Chapter 3| contains work that has been
motivated by such thinking, taking a system that whilst not quantitatively represen-
tative does capture the essence of several physical systems where there is a complex

interplay between system and environment.

1.2.2 Quantum state transfer

The system-environment interplay is also of interest in the fields of quantum comput-
ing and devices, where quantum coherence is often an invaluable resource; decoher-
ence has been widely studied but is still a topic where there is more to be done [38-
43]. It is beyond the scope of this body of work to introduce the entire quantum
fields of computing, devices and cryptography so we shall focus on one pertinent
practice: quantum state transfer (QST) along spin-1/2 chains. This might seem like
a unusual shift, but inherently any device designed to implement such a process can
be described as an OQS, with the originating and destination qubits as well as the

chain itself existing in contact with some environment. For instance, a solid state
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implementation will exist inside (or possibly on top of) a crystalline environment,
constantly experiencing phononic vibrations similar to the protein baths of our previ-
ous example. We can also still use many of the already established OQS methods and

techniques then to investigate this novel application of quantum mechanics.

The use of spin-1/2 chains as QST channels is a well covered subject [44-H46]]
and has been extended to dual- [47] and multi-rail [48] 49] spin chains. The intent
is simple, take an arbitrary quantum state |¢)) = a|1) + b|]) defined on one sending
qubit and transfer it to a second receiving qubit whilst maintaining high fidelity. It is
this last point, maintenance of high fidelities, that motivates study as this is clearly an
area where understanding how a system interacts with its environment can pave the

way for new device constructions and scientific advancements.

In Fig.|1.5we present the basic structure required for such a QST process. There
are a number of ways QST can be implemented along a chain such as this, including
modulating spin energies and controlling couplings between them [50-H55]. The way
we consider here is a minimal control approach, in so far as the chain is dark and
control of the process is governed only by the state qubits themselves. As we have
presented it in Fig. the system is uniform in spin placements (spacings) but in

general the idea of dark spin wiring that we will introduce does not need this to be

Chain
Qubit w0 Spil’l Qubit
- o™ -
Mu“. ‘
Spin: 0 1 2 N-1 N N

FIGURE 1.5: Illustration of a spin-1/2 chain quantum state transfer sys-
tem. The sender qubit is initialised in an arbitrary state which, as the
system evolves, is transferred to the receiving qubit.

If one considers a system where the couplings of the state qubits to the chain
are weak, compared to the intra-chain couplings, then the process of an excitation
moving onto the chain can be treated perturbatively. Being in this weak coupling

regime means that the qubits can effectively excite a single eigenstate of the chain if
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the Zeeman splitting of the qubits match it; this is represented in Fig. With pertur-
bative state qubit-chain interactions one is able to solve the eigen-system of the iso-
lated chain and obtain its eigenvalues. We can restrict ourselves to considering only
the single excitation states of the chain as transport eigenmodes as the sender qubit
can only introduce one excitation; this assumes the chain is initially all spin down.
Theoretically this operating mode can transport the state with very high fidelity as
interference due to phase effects of differing transfer speeds through different eigen-

states of the chain are minimised.

Single excitation
channel eigenvalues

FIGURE 1.6: A schematic of the eigenmode tunnelling mechanism of
spin channel wiring. Provided the qubit-chain coupling is weak com-
pared to the intra-chain coupling then transfer via only one mode oc-
curs which is free from interference effects and thus is of high fidelity.

1.2.3 Nitrogen vacancy centres

Theory of this minimal control technique, for transferring a quantum state, naturally
requires implementation in order to progress and in 2011 a proposal was made to
use the popular, diamond-based, nitrogen vacancy centre (NV) qubits wired by ni-
trogen impurities placed between them [56]. As displayed in Fig. an NV is a
substitutional nitrogen atom in diamond neighbouring a crystal vacancy and a ni-
trogen impurity lacks this neighbouring vacancy. NV centre implementations are

one of the current front-runners in the quantum computer race due to their long
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(room temperature) electron and nuclear spin decoherence times [58| 59]. They are
also amenable to precise measurement and manipulation [60] which has led to an
experimentally realisable set of universal quantum operations [61,62]. And their flu-
orescence properties make them experimentally convenient ways of interfacing be-

tween optics and solid state schemes.

FIGURE 1.7: a) A diamond unit cell with one missing carbon atom

and one nitrogen atom substitution forming an NV. b) A single sub-

stitutional nitrogen atom in a diamond unit cell which is known as a
nitrogen impurity.

An NV has a (ground) multi-level electronic structure as depicted in Fig.
clearly not a neat two level system, however we can control it as if it were, isolating
two levels [61) 63]. The system can be initialised in ||) through optical pumping to
excited levels and non-radiative decay via the singlet state [64]. A magnetic field
can split the degenerate my = =+1 levels [60] and we can define the m; = 0 and
ms = 1 as ||) and |T) respectively giving us a well defined two level basis. Finally

with microwave pulses the coherent control of |]) and |1) can be implemented [65].

1.2.4 Entanglement distribution

A full OQS consideration of an NV implementation of the dark spin QST process re-
quires inclusion of the decay rates inherent to the crystal which introduces a phonon
environment. Unfortunately the work of Ping et al. showed realistic spin and phase
decay time scales prove prohibitive for high fidelity QST using this method [63]. It

was also shown here that this implementation could be suitable for entanglement
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FIGURE 1.8: The simplified electronic structure of an NV with the rel-

evant computational basis levels labelled. Application of a magnetic

field causes splitting of the degenerate triplet levels. Optical pumping

achieves an initialised down state and through microwave control the
up state can be populated coherently.

distribution where perfect fidelity transfer is not necessarily required. Whilst many
quantum frontier implementations are still a little way off, one constant theme ap-
pears to be entanglement; in realisations of quantum computing [66, 167], cryptogra-
phy [68,169] and metrology [70,71] there is clearly a need for the creation of entangled

states.

Spatially separate parties will likely require access to created entangled states
so distribution methods are also important. A major problem with distribution via
direct transmission will likely be the noisy transfer environment, however there are
ways to circumvent this drawback. For instance, it has been shown theoretically that
two distant systems can be entangled via a separable ancilla [72} 73] and experimen-
tally realised with photons [74] and Gaussian beams [75, [76]. Another possibility is
counterfactual entanglement which is created with no physical interaction [77, [78].
The method of entanglement distillation [79-81] is also promising: a large ensemble
of weakly entangled pairs are distributed and through local operations and classical

communication are refined into a small ensemble of highly entangled pairs.

In Chapters E] and 5| we consider this concept of distributing entanglement, en-

visioning the subsequent use of a distillation protocol. To this end we do not require
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perfect fidelity and we therefore choose, in Chapter [} to extend the understanding
of distribution mechanisms by comparing two geometries of spin wire implemented
with NVs and impurities. The work in Chapter [5 takes the distribution idea further.
We consider more complex geometries, handling large rectangular lattices of spins,
to study the more complex process of routing entanglement. While there is not a
hard and fast definition of what this means, our interpretation follows the idea that
it should be possible to distribute information between multiple receivers in an ad-

dressable manner [82]].



15

Open quantum systems theory

7| ONTAINED within this chapter, will be an introduction to the methods and tech-
niques of open quantum systems (OQSs), specifically for obtaining time de-
pendent dynamics. We will first highlight the tool used for description of the systems
themselves, density matrices, then move onto to how we formulate a description of
a system’s evolution using quantum master equations. Finally we shall cover one
method for solving a quantum master equation using matrix product operator tech-
niques and include details on the measure of entanglement we employ in later chap-

ters which becomes our assessment of system performance.

By way of an introduction, consider the difference between pure and mixed
states. When a system is in a pure state writing a state vector, or a superposition
thereof, is one way of describing it. For example, |¥) = . C; i) is a superposition
of the basis states {|7)}, these and their superposition are pure states; we have com-
plete information about the phase of the basis states. Suppose that we did not have
all of this information, but instead we are presented with an ensemble of these sys-
tems after undergoing a measurement. Now we have a statistical mixture of the state

outcomes that can no longer be represented as a state vector; this is a mixed state.

If we lack a state vector description we require something else to describe our
system and that is what a density matrix achieves; density matrices are completely
positive, Hermitian and have trace unity [83]. Sometimes called a density operator
and traditionally given the symbol p, a density matrix allows us to describe a quan-

tum state in complete generality, regardless of it being pure or mixed. The purity
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(or conversely mixedness) of a state is a continuous property measured as Tr (p?). A
purity of 1 is perfectly pure and a maximally mixed state of dimension d has purity

1/d.

We can freely write a density matrix as
p=>_pjlty) (Wl 2.1)
J

where we describe a quantum system made up of a statistical mixture of states, |¢;),
each weighted by a probability p;. This description encompasses both pure and
mixed states. Returning to our previous expression of a pure state we have only
one element in the summation over j, our superposition |¥). As our superposition
is the state with certainty this implies p; = 1 and therefore perfect purity. We could
of course expand the superposition in its basis bringing two (one for the ket and one
for the bra) summations over the basis: p = |U) (¥| — 3., C;Cy |i) (i'|. When i = ¢
we get the diagonal elements of p with the probabilities of the basis states, and for all
i # i’ we obtain the off diagonal ‘coherence’ elements of p which contain information
about the phase relation between the states in this basis. Any density matrix can be
written in a diagonal basis and whilst this would necessarily change the coherences
visibly present between basis states it would not change the purity of the density

matrix.

Alternatively let us imagine an experiment in which someone is provided with
an ensemble of spin-1/2 particles prepared in the basis {|1), |{)}. Although the dis-
tributor of the spins knows the superposition state coefficients (|¢)) = a|1) + 5 |{)) the
recipients do not and as such, following measurements in the preparation basis, they
find themselves in a mixed state with only statistical information available. The re-
cipient can use a description like Eq. with ¢; € {1, 1} and the corresponding p;’s
as the results of their measurements; i.e. given repeated experiments the probability
of what the spin orientation would be. They would have only diagonal elements of
p in this basis which means their degree of understanding of the system does not in-
clude coherence information and is mixed to some degree. Measurements performed

in a complimentary basis could help the recipient learn more about the coherence
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properties of their states.

If we write a state vector representation for the system and environment of an
OQS, initialised in some coherent way then, should we be able to proceed with a
theoretical treatment of this full representation, we would see pure state evolution
(assuming the environment is decoupled from the universe). It is commonly the case
that it is impossible to fully formulate the complexities of an environment and we

must partially trace it out so as to treat only the system

ps = Trg (p). (2.2)

In effect this introduces mixedness into the system description based on how the en-
vironment acts on average; the resulting system density matrix pg is said to be ‘re-
duced’. This mixing can be thought of as the environment performing some mea-
surement on the state to which an observer is unaware of the result. One can also say

that mixedness implies the environment and system have become entangled.

2.1 Dynamical density matrices

RESENTED then with an OQS that can no longer in general be described using a
=2

state vector, we have to move beyond the Schrodinger equation to an equation
of motion for density matrices; such an equation is called a quantum master equation.
In the remainder of this chapter we shall endeavour to stick to the convention of
using ‘OQS’ to refer to the system we are interested in and the environment it is
openly interacting with; technically, combined as this, our OQS is closed. When we
use ‘system’ that will be the system part of the OQS. For a full OQS density matrix
the equivalent to the Schrodinger equation <|¢j(t)> = —iH ]wj)) is

p(t) ZZPJ |5) (sl + pj [5) by = ij(—i)ff [3) (5] + pyi |y) (s H

:_4ﬁm@}:qw% (2.3)
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where we have chosen the convention & = 1 as we do throughout this thesis. This is
the Liouville-von Neumann equation [1] and is the most general example of a quan-
tum master equation. The H in Eq. is a Hamiltonian for the entire OQS, system
and environment, and we have defined £ which is the Liouville superoperator; a su-
peroperator acts on operators to produce operators. The integrated solution of this

equation, for the evolution of this density matrix then is

p(t) = e p(0), (2.4)

in analogy to the time evolution of a state vector, |¢)(t)) = exp (—ifl t) |4(0)). This
clearly is not always a simple equation to write an explicit form of or indeed employ
for calculation of p(t) due to the complexity of the full OQS Hilbert space and its

operators.

Thus far we have considered a Schrodinger picture, where any time dependence
resides with state vectors (which extends to the density matrix as well). Let us re-
formulate in the interaction picture, where time dependence is shared between states
and operators, to progress towards a more tractable form of Eq. (2.3). We start by ac-
knowledging the Schrodinger picture OQS Hamiltonian can be split into H = Hy+Hy,
with the first part generally containing isolated system and environment terms (i.e.
their energies) and the second describing interactions between the system and its en-
vironment. The form of this splitting can vary a lot depending on the system studied,
or which techniques are going to be (or have been) applied. Conversion of the den-
sity matrix and interaction Hamiltonian to the interaction picture, using the unitary

Uo = exp (—iflot), follows as

P (t) =Udp(t) U (2.5)
a ) =08 1,0, (2.6)

with the (I) superscript indicating the interaction picture and noting that p()(t = 0)

coincides with the Schrodinger picture p(t = 0).
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Differentiating Eq. we obtain an interaction picture version of Eq. (2.3)) [84]

pU () =i HoUl p(t) Uy — iU p(t) HoUo + Ul p() U

— [HI(I) (t), p© (t)} . (2.7)

This can also be written in an integral form
t
P00 =0 =i [ [ (6). 0] . 258)

What we have presented so far enables us, broadly speaking, to find the dynam-
ics for a composite (system-environment) OQS density matrix. Should we have an
OQS that has a simple or convenient analytical form we could use a Liouville-von
Neumann equation to obtain an expression for the composite density matrix. Follow-
ing from this we can calculate the reduced pg(t) for the system (which is typically
what we are interested in). But an environment is a tricky thing to deal with on ac-
count of its large Hilbert space, so relying on a dynamical description where this is
required explicitly and completely (as it is in our descriptions so far) can often create
an intractable problem. To tackle this issue we will now approach a derivation of a
particular example of an approximate master equation, allowing us to obtain reduced
dynamics for pg(t), without requiring analytic computation of the entire combined

system-environment problem.

2.1.1 Born-Markov master equation

The Born-Markov master equation is a widely used and recognised time local for-
mulation that allows one, by inclusion of the two eponymous assumptions, to de-
scribe the reduced dynamics of a system. Its derivation can be found in a number of
places [1}, 183} 184] and what follows treads this familiar ground, describing the approx-
imations made and introducing the formulation. For clarity, the general Hamiltonian

splitting we performed earlier can be thought of as being comprised of Hy = Hs+ Hp,
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that is system and environment parts acting only on those respective areas and the Hy

describing the interaction between them.

We start from the interaction picture Liouville-von Neumann equation and its
integral form in Egs. (2.7) and (2.8), noticing that we can substitute the latter into the

former

$00 = =i [0 000~ [ [A06).000)] a5

Y0.000)] - [ [A00. 1060064 @)

I
|
.
—
>
o~

Now we carry out a partial trace over the environment to provide us with the reduced

system dynamics

w00 =~ [ o ([0, [0 6).07)]]) as, @10

0

where we have assumed Trg ([ﬁl(l) (), p® (0)]) = 0 without loss of generality.

To proceed, we introduce the Born approximation which will allow us to express
both sides of Eq. in terms of the reduced density matrix; a desirable goal as
it lifts the requirement for complete knowledge of the environmental state. It does
this by acknowledging a weak coupling approximation between the system and the
environment such that the system has a negligible influence on the dynamics of the
environment and as such it remains unchanged from its initial state pr(t) = pp(0) =
pE. If we assume, due to this weak coupling, initially we had a separable state, then
we can write for all times that p(t) ~ ps(t) ® pg (Which holds in both the Schrodinger
and interaction pictures). Due to this approximation Born-Markov master equations
are sometimes also referred to as weak coupling master equations. Employing the

Born approximation allows us to write Eq. (2.10) as

0=~ [ o ([0 [0 00 oo e

a slightly simpler problem now as we require the reduced system density matrix and
the initial state of the environment as opposed to previously needing the full OQS

density matrix.



Chapter 2. Open quantum systems theory 21

Unfortunately Eq. (2.11) is still not time local, it requires information about the
history of the reduced density matrix. The Markov approximation helps us with this,
stating that the system dynamics at any given instant in time do not have any memory

of what happened before, allowing us to make the change pg) (s) — pg) (t):

W00 = [ s ([0 [0, 0 0 ] ]) s 212)

this form is known as the Redfield equation. This assertion of memoryless dynamics
is valid given the physical interpretation that any correlations present in the environ-
ment decay over a time scale T, which is much shorter than the dynamical time scale
of the system, tg. There is a second simplification T < Tg can imply: the lower limit
of the integrand can be extended down to —oo due to the fact that we have rapidly
vanishing correlations which imply the integrand will vanish for s > . Applying

this and the substitution s = t — s’ we reach
pD(t) = - /0 Trp ([ﬁf” (1), [ﬁf” (t—s), o) @ pE} D ds'.  (2.13)

The Born-Markov master equation we have now in Eq. is still very general,
but is time local and can generate the reduced system dynamics given an interaction
Hamiltonian and the initial environmental and reduced system density matrices. The
application of the Markov approximation essentially amounts to a coarse graining of
time: we look not at the fast g but proceed considering dynamics on the scale of
Tg. In our application of the Born approximation, although we assumed a weakly
coupled, negligibly affected environment that does not mean there are no excitations
in it, but when we couple this with the Markov assumption of rapidly decaying bath

correlations we see that these excitations are coarse grained out.

2.1.2 Lindblad master equation

The Lindblad form for a master equation is again well covered [1} 183, 84] and is the
most general master equation formulation that ensures the complete positivity of the

reduced density matrix; a necessary condition if we wish to interpret its diagonal
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entries as probabilities. In Chapter 3| we give a derivation, starting from Eq.
and using the Hamiltonian and system defined for a particular OQS, to express a
Lindblad master equation. Here we proceed to elucidate in broader strokes how we
can reach the Lindblad form by highlighting the key extra assumption that goes into

its formulation, the secular approximation.

First consider one term in the double commutator of Eq. (2.13)

2=HYOHEY - ) pP () ® pr
— #0010 (o)) f,o(~iFin(t=5) _ (if1st) o ~iflst) g o(iFst) o (~ist)

— e(iﬁot)ﬁle(—iﬁot)e(if{o(t—s/))ﬁle(—if{o(t—s/)) i e(if{st)pse(—iﬁst) ® OB, (2.14)

where we have shown explicitly the conversion to the interaction picture and ex-
panded Hy = Hgs + Hg around the separated density matrices. Now suppose we can
decompose the interaction Hamiltonian into operators that correspond to the system

and environment subspaces such that
Hy =) Su(e)® Ey, (2.15)
e

where we implicitly require that the S are projected in the eigenbasis of Hg, with
the e dependence due to a difference of eigenbasis projector eigenvalues, and noting
. N T N

HI(I) = < HI(I)) . We can then split the exponentiated H’s as we did for the density

matrix above and convert these sub-operators to the interaction picture in Eq. (2.14)

1A A T . N A .
==Y S @ (BP) (1) e U8, @ BN (- ) (1) @ pr, (216)

pvee’

where the action of the picture changing unitary exponentials on the system operators

is to select eigenvalues of the system projectors.



Chapter 2. Open quantum systems theory 23

Proceeding to separate = into system and environment terms as

1

o= E =g ® Zg,

uvee
=5 = /IS (S (1),
= _ ies’ [ (D) f (1) /
=E = € ( m ) (t)EV (t - S )IOE’ (217)

we group terms containing the integration variable into the environment component
allowing us to perform the integration and the trace only on this component; the
partial trace over the environment acting on environmental operators effectively re-
produces the trace. The complex exponential in Zg will give oscillating contributions
in the summand which can be rapid if |¢' — €| is large. The secular approximation can
be used here and assumes that all contributions for which € # ¢ are rapid and only
terms containing ¢ = ¢ are included in the summand as they will have meaningful

impact considering the coarse grained time scale t5 of the Markov approximation.

Expanding the double commutator in Eq. (2.13), applying a decomposition as in
Eq. (2.17) and enforcing the secular approximation are what is required to derive a
Lindblad form from a Born-Markov master equation. We now present then a general

Lindblad master equation in the Schrodinger picture:

ps(t) = —i [FI'S, ps(t)} +Y T (25“yps(t)5l - {

5%

Saes}).  @19)

The first term describes the unitary dynamics of the reduced system, directly equiva-
lent to Eq. ; if there was no environment or it was decoupled we would only have
this term. The second term is called the dissipator and it contains the environmental
interaction aspect of the dynamics. The .S operators are the system operators acting
to change the state of the system density matrix incoherently with a rate determined
by 7. This rate is the result of the integration and partial trace in Eq.(2.13) on =g
as mentioned earlier when describing Eq. (2.17). The unitary dynamics term can no
longer in general be interpreted as consisting of the bare system Hamiltonian, hence
the prime. The rate integrals are principal value integrals, with the (typically small)

principal value parts contributing Lamb shifts to the bare system Hamiltonian in the
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first term. This Lindblad form can be simplified further by diagonalising with re-
spect to the summand operators (i, v — ), with the new dissipator operators being

known explicitly as Lindblad operators.

Lindblad-form master equations need not be obtained following the microscopic
procedure described in this chapter of first deriving a Born-Markov equation and con-
tinuing to Lindblad form. A phenomenological approach can be taken whereby the
form is achieved based on intuition of how the system being dealt with will operate.
A microscopic approach is taken in Chapter 5| whereas a phenomenological approach

is taken in Chapters 4 and

2.2 Characterising environments

7 )a NCLUSION of the environment in a master equation generally follows a differ-
éﬁl@ ent procedure if one is using a phenomenological method as opposed to a
microscopic derivation. Suppose we have two interacting two level qubits (spins) in
a crystalline environment, an OQS for which we wish to define a Lindblad-form mas-
ter equation. We imagine also that there has been experimental studies of equivalent
systems in the past to determine the quantum properties of the qubits. A common
piece of information obtained in such instances is coherence times of qubits. Typi-
cally there are two coherence times that are of interest: the state relaxation time (77)
and the phase coherence time (73). State refers to, for example, the ability to ensure a
spin initialised up remains so and often dissipation of this type is said to cause spin-
flip errors. Phase refers to the coherence between qubits due to relative phase, with
any ‘phase-flip” errors due to interactions between the many surrounding phase com-

ponents of the environment. Both of these time scales indicate how long the relative

piece of quantum information remains coherent and in some sense ‘quantum’.
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2.21 Phenomenology

If we wish to use a diagonal Lindblad master equation defined phenomenologically
for this system it is possible to define our dissipator such that the decay rate is exper-
imentally informed by a physical property of the system being considered. This pro-
cess can be done considering the summation range in a diagonal version of Eq.
to consist of simply a sum over qubits. Then, to impose the dissipation induced error
we are choosing to consider, each qubit has one associated operator, tensor producted
with the relative identity matrix to match dimensions. This way of conceptualising
the dissipation assumes the bath is uncorrelated between spins, but of course this can
be extended to considering multiple types of error or environmental actions including

correlations.

Spin-flip errors can be modelled using 6% and 6% operators where 6% = 6+ +6~
is the Pauli spin matrix composed of raising and lowering operators. One can think
of 6~ and 67 as operators giving and taking from the bath respectively; e.g. the 6~
flips an up spin down corresponding to an energy increase for the bath. In general
the rates of these two operations can be different, but 6 dissipation could be used
with a decay rate of 1/7} as an approximate spin-flip dissipation. Phase-flip errors
can be modelled with a decay rate of 1/T% using 6% operators which induce a relative
phase change between the levels of a spin. Obviously this same thought experiment

discussion can be had with regards to qudits and their relevant operators.

The nitrogen vacancy centres introduced in Chapter [1| are a good example of
a system that can be (and is) modelled using this sort of approach; something we
ourselves do in Chapter i} Although we start with one, we chose not to include a
dissipative environment for the entirety of Chapter |5 This decision was partly due
to the fact that we do not consider a specific physical implementation. Also, because
the processes we model here are similar to those in Chapter [} we can make informed
observations without the presence of dissipation as we know from Chapter {4{it will

act to reduce the effectiveness of the processes but not destroy it.
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2.2.2 Derivation

In order to derive a Lindblad-form master equation, for the example OQS of two cou-
pled spins in a crystalline environment that we introduced at the start of this section,
one requires a description of the environment in terms of operators to build the Zg
of Eq. (2.17). It is quite common to describe a bath as a series of phonon modes, us-
ing a harmonic oscillator description, where each mode couples to the system with
a certain energy. Phononic environments can be thought of as delocalised because
typically the phonon wave function can have a large spatial extent; it is this type of
bath we consider repeatedly in this thesis. The crystalline environment in our current
section example lends itself well to phononic description, as do the protein baths we
discussed in Chapter [1| that play such an important role in photosynthetic systems.
Our derivation in Chapter 3|is also given for a system where we assume a phononic
environment form. Another type of bath descriptor used (but not considered here) is
a spin bath which might be suitable when the environment is dominated by charged
impurities and at low temperatures; such baths usually coincide with local impurity

descriptions such as electronic charge fluctuations.

To generate a Lindblad master equation we recall from Egs. and that
one must perform a partial trace and time integration over Zg. We shall demonstrate
now how to perform these operations and what considerations are borne having cho-
sen to use a bosonic harmonic environment picture. This will be done using a simple
example and leaving explanation of some of the finer points for our derivation in
Chapter 3| In this picture the environment is described by a series of harmonic oscil-
lators with the k-th mode having frequency wy, creation and annihilation operators
&L and ax and system coupling strength hy. Consider now one component of =g, in

Eq. (2.17) and the trace and time integration of it
oo ’ . ’
/ &'’ Trg {hieMks aLaka} ds’, (2.19)
0

. T ) .
where we have used the environment operators (Efp) (t) = hke’wktd;r( and £ (t —
s) = hie (=5, . The exponential in each of these operators originates from their

conversion in to the interaction picture.



Chapter 2. Open quantum systems theory 27

For one mode we might know hy, but when dealing with a sum to infinity of
all modes in the bath this becomes a daunting prospect. The first step in a process
of handling an extended environment, such as we have here, is to define the spectral

density (SD)

X(@) =) hid(w — wi; (2.20)
k

this completely encapsulates the interaction behaviour of the environment in terms
of the system interaction energies hy. This discrete expression for the SD allows us to

define an identity

> = > 2 W — W w w
/0 3 (@)(w)dw = /O D e — ot
= zk: hi /OOO H(w)d(w — wy)dw

— Z R p(wi)- (2.21)
k

Equation (2.21)) allows conversion of an arbitrary discrete function of bath modes to
a continuous description in terms of an SD, suppressing the explicit dependence on

system interaction energy.

As is shown in the Chapter[3|derivation, terms of the form in Eq. can benefit
from the use of this identity in working towards a Lindblad master equation. Now,
rather than having to deal with discrete modes, a continuous form of the SD can be
specified which captures behaviour of the environment; further details of these forms
are presented in Chapter[8] What one finds, when the derivation is completed, is that
the decay rate of a particular system process defined by a transition between system
eigenstates, is dependent upon the SD sampled at the frequency of the transition.
Therefore choosing between different forms of continuous SD affects the frequency

dependence of the decay rate.

The continuous form of an SD can be a simple curve, it could contain multiple
sharp features and it can contain combinations of both of these structures. The ex-
amples in Fig. 2.1 were presented in Ref. [85] and show these different styles of SD
well; they were chosen to represent realistic behaviour of a particular light harvest-

ing complex. The two SDs (Jom(w) and Jqum(w)) are actually low and high frequency
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components of the overall SD in the model. Clearly Jeym(w) (inset) is the low fre-
quency component, exhibiting a smooth profile, whereas Jqu(w) in the main panel
is the high frequency component which exhibits a much more structured nature. The
position and strength of the structured peaks in the SD are informed from spectro-
scopic experiments on the light harvesting complex, that is to say that the particular
vibrational mode frequencies of the complex that are susceptible to excitation inform
one as to where a strong SD effect is required. The equation of the smooth low fre-
quency term was chosen as it reproduced previously observed behaviour. The dis-
crete, vertical lines on the figure are excitonic transition frequencies that the model

used predicts.
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FIGURE 2.1: A two part SD intended to model a particular light har-

vesting complex with (inset) smooth low frequency and (main) struc-

tured high frequency components. The vertical lines in both frames are

excitonic transition energies obtained in the particular model for this
complex. Figure obtained from Ref. [85].

With a description now that encapsulates the entire bath conveniently, namely
X, we might like a measure of the strength or effectiveness of the bath in terms of its

ability to interact with a system. The reorganisation energy is calculated as

w

Ao [ X, (2.22)
/

and defines just such a quantity [86]: the energy associated with the displacement of

each mode of the bath in response to the dynamics of the system, with a high value
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implying more effective dissipation. In the language of our photosynthesis example
in Chapter (I, A would be a measure of the energy available in the protein bath which
is used to deform chromophores for instance. Comparisons between different SD
forms should fix X so that even if the SDs are different the total interaction energy
of the active bath is the same. This consideration is taken in Chapter [3| where we do

indeed compare the effects of different SDs on system dynamics.

2.2.3 Markovianity and methods

Finally in this section on descriptions of environments there remains a word to be
said about descriptive nomenclature and other methods of solution. Earlier we made
the Markov approximation which can be described as enforcing an environment that
has no memory of its interaction with the system; we say this makes the environment
Markovian. Even earlier, when we had our comprehensive Liouville-von Neumann
equations, our environment-system interaction was defined explicitly and should we
have an OQS we can treat analytically in this form our environment would have a full
dynamical description; here there would be a memory of information or energy that

had flowed into it, this is a non-Markovian environment.

There exists a whole range of OQS techniques along a non-Markovianity spec-
trum where clearly the ideal solution would balance recollection of the information
flow between system and environment behaviour with accuracy and ease of calcula-
tion of predictions. We have already introduced master equations [1] but, beyond the
weak-coupling approach we have spent considerable time on, there are treatments
that introduce some degree of non-Markovianity such as using polaron approxima-
tions [87, 188]]. Moving past master equations there are also quasi-adiabatic path inte-
grals [89, 90], quantum Monte Carlo techniques [91} 92], hierarchy equations of mo-
tion [93], multilayer [94] and multiconfiguration time-dependent Hartree theory [95],
time dependent numerical [96] and density matrix [97] renormalisation group ap-
proaches, time dependent variational matrix product states [98] and Dirac-Frenkel
methods [99, [100]. This is by no means an exhaustive list and some of these tech-

niques can be combined and are constantly being refined or extended to treat more
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systems more generally or more efficiently (in terms of computation time or ease). We
will be using master equations but introducing some non-Markovianity in Chapter
by grouping a single harmonic oscillator in with our qubit system. To improve our
investigation in Chapter ] we will combine a master equation with a matrix prod-
uct operator solution technique which, while not affecting the Markovianity of our
bath, does allow us to extend the dimensionality of the system we can simulate for

the realistic nitrogen vacancy based system we consider.

2.3 Matrix product operator formalism

=1 HIS section will introduce the method of matrix product states, and by exten-

"

g @ sion matrix product operators. These are decompositional techniques that can
make quantum simulations of (quasi-)1D systems possible on classical computers
where traditionally the Hilbert space dimension precludes it. In our context they
were first put forward by Vidal in 2003 [101] but had previously been introduced as
the ground state of the 1D quantum anti-ferromagnetic Affleck-Kennedy-Lieb-Tasaki
(AKLT) model in the late 1980s [102H104] and discussed as an extension to density
matrix renormalisation group (DMRG) in the 1990s [105]. We shall shortly describe
the decomposition process and subsequently how we evolve such a decomposition

in time using the time-evolving block decimation scheme.

2.3.1 The Schmidt and singular value decompositions

Before we can formulate a matrix product state (MPS) we need to be aware of a par-
ticularly helpful decomposition one can perform on a bipartite system. The Schmidt
decomposition takes any pure bipartite state (where bipartite can mean two parts of

different dimension),

(U)o =_ Caplaa) bp), (2.23)
a,b

and expresses it in a diagonal co-basis

(@) 45 = Celea)lcn), (2.24)
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where |cy4) is an orthonormal basis for part A, |cg) is an orthonormal basis for part B
and the coefficients C are real and non-negative with >__C? = 1 [106]. The |c;) bases

are known as Schmidt bases and the C, as Schmidt coefficients.

A proof of this decomposition can be shown with the singular value decomposi-
tion (SVD). The SVD can be used to transform any complex matrix, into a product of

three matrices, one diagonal sandwiched between two unitaries [107]:
M =USVT. (2.25)

The dimensionality of the process is shown in Fig.[2.2] The elements of the diagonal S,

known as the singular values, are non-negative and are arranged in decreasing size.

=

FIGURE 2.2: A diagrammatic representation of the singular value de-

composition in Eq. (2.25). Coloured outlines indicate the shared di-

mensions of the matrices. The pink diagonal line in S denotes the sin-
gular values with all off-diagonal elements necessarily equal to zero.

Performing an SVD on the bipartite state coefficients in Eq. (2.23) we can obtain

1) o5 = Caplaa) bp) ZU eSecVly laa) bs) . (2.26)
a,b

If we allow the unitaries U and VT to define new bases for the parts A and B
lca) =Y Uaclaa) lcg) = Z iy 1) (2.27)
we can see we have obtained the Schmidt decomposition;
0) 4 p = ZS lca) leB) (2.28)

where S, ; = C..



Chapter 2. Open quantum systems theory 32

One of the nice features of an SVD is that the singular values are ordered, mean-
ing it is easy to locate the smallest ones and it can be shown that a good approximation
to the original matrix can be obtained if the smallest of these values are omitted. This
trick is used in image compression but it is also useful to us as the scaling of compu-
tational resources required for increasing state space sizes is an endemic problem in
quantum mechanics. If we look at the form of Eq. we can see that truncating S
would reduce the number of states we need to keep track of, effectively reducing the
complexity of the original C, ; we started with. We will make use of this property in

our MPS formulation next.

2.3.2 A matrix product state

With our examples of the SVD and Schmidt decomposition we have already started
to show the procedure for obtaining an MPS [101], 106, [108-110] and shown why we
might want to. Let us start now with a 1D array of IV two level systems (TLSs) and a

pure expression of its state in a basis we desire for our computation:

1) = Coymayvoony 1,72, ) (2.29)

{ni}
Computationally it is the oN complex coefficients Cy,, p,....ny (Which form an N-th or-
der tensor) we would store and manipulate to perform computations and this clearly
scales exponentially with system size. Matrix product formalism seeks to reduce this

through an expression of 2V — 1 lower order tensors.

To proceed we reshape the system to present as bipartite

|\I]> = Z Cnl,m |n17 ’fTL> s (230)

ni,m

where m contains all 7 > 1 making our coefficient tensor 2nd order to match our

bipartite state. We can perform a Schmidt decomposition on this getting

) = > TR A I, duy). (2.31)

ni,vi
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where T is the unitary matrix responsible for converting to |n;) from its Schmidt
basis and we represent the singular values as the vector )\l[,l}, bracketed numerical su-
perscripts are labels. The right part of the partition remains in its Schmidt basis. The

index v is known now as the bond dimension, limiting this would reduce the dimen-

sionality of the problem leading to a more efficient (albeit approximate) solution.

We can now look at the compounded Schmidt state, splitting the second TLS
from it (in our preferred basis), leaving behind the remaining right state in a different

basis,

[Pu) = Z [n2) ‘9V1,n2> : (2.32)

n2
We can then Schmidt decompose as before and convert the second TLS to our pre-

ferred basis

60,y = > TE2A o) [4),) (2.33)

na,rv2
which we can substitute back in

v1— vive
ni,n2,vi,V2

This process repeats until the entire array has been processed and we obtain

= Y rhmARrEeall X TN N AN =UDININ )y iy g,

V1T viv2 UN—-1 " VN-1
{nitAvs}

(2.35)

As we said earlier, the Cy,, n,.... ny in Eq. (2.29) is what a computation would use

-----

and now we see

gy = 3 THPAIDRI2 320 oo PN AN [Ny (2.36)

{vi}
is the MPS formulation with the interpretation that T'l?) is a unitary converting the
Schmidt basis of TLS i to our preferred basis and AlYl are both the Schmidt coefficients
between sites i and i + 1 and the singular values between I'l!l and T'l'+1]. If the sum
runs over all of each of the v; then the MPS and explicit N-th rank tensor forms are

equivalent. The scaling of an exact Cy,, n,,...ny for large systems is computationally
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infeasible, but if we now truncate the bond dimension v; at the J-th entry we can
obtain an approximate representation of our state that no longer has scaling 2% but

instead about (2J% + J)N.

2.3.3 Expressing density matrices

Of course, as we wish to apply matrix product formalism to master equations we
need a description of density matrices rather than state vectors. Direct substitution

would give us

/
p= E Dnl,ng,...,nN,n’l,...,ns\, |n1a na, ...,TLN> <n1,7’L2, '--7nN‘
{nih {0}

_ 3 (rEijEj...) (r[j{]”u[jﬂ...) N1,y ny) (0, | (2.37)

{nad v Hng b v}
This picture of the density matrix is a bit of an unwieldy expression, but there are
ways of simplifying it using a purification method [108, [111] or an operator basis

expansion [106} 112]. We will introduce our use of the latter shortly.
The density matrix of a TLS can be described completely using the Pauli spin

matrices as a basis

, A+D B-iC
p=> pio' =As' + Bo* + C5" + D6” = . (2.38)
i B+i1C A-D

This basis can be thought of as a vector and we can portray this as [p) = >, p; |od).

Writing an expression for our 1D array of IV TLSs in a Pauli basis vector form
p) = Zpsl"”"" |o®ta®2...o°N) (2.39)
{si}

there is a clear similarity with Eq. (2.29) where now we have a vector of Pauli matrices

on TLS s; where before we had states labelled n;.
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We can proceed along the SVD based procedure to decompose our density matrix

N Z F[yll]s1 /\l[lll]r[2]sz)\[y22] < % Fl[/ll\fviﬂ/sjév:f ANV—HUp[Vsw (2.40)

1%Z0%) VN—-1  VN-1
{wi}

where the number of coefficients is increased by the power of two due to the move
from state vector to density matrix. This is now in a matrix product operator (MPO)
form. The bond dimension truncation trick can still be used to great effect allowing us
to reduce system complexity to enhance numerical simulation. The degree to which
we can truncate our system and produce accurate solutions depends on the extent or
amount of entanglement with more extensive entanglement requiring a larger bond

dimension.

2.3.4 The Suzuki-Trotter expansion

Before we get on to exactly what ‘numerical simulation” implies for an MPO we
should introduce a helpful mathematical operation. In dealing with time evolving

unitary operators we often come across exponentiated operators of the form
elA+B)t (2.41)

where the matrices A and B are typically some Hamiltonian components and do not
necessarily commute. Mathematical application of this operator necessitates diago-
nalisation of the exponent and this can be difficult so we wish to split the exponent

into smaller chunks to simplify its application.

The Suzuki-Trotter expansion is a way of approximating the exponent that does

provide us with simplified exponents. There is a first order variant [113]
eATBIt — oAteBt L O(12), (2.42)

which can be simply extended to higher orders [114]. We use here the second order

variant

eAHB) — exp (f) exp(Bt) exp <ét> +O(t%). (2.43)
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If we were to discretise the arbitrary time ¢ into 7" smaller steps then we could

write [[115]

o (52 = o () () () 0 3)

and clearly see the expansion is exact in the limit 7" — oo.

2.3.5 Time-evolving block decimation

We can now present the time-evolving block decimation scheme (TEBD). In general
the TEBD is a prescription for applying time evolution operations to a 1D matrix
product decomposed state (where state could be an MPS vector as Eq [116] or
an MPO density matrix as Eq [112]). Moving forward we shall describe the
process in terms of MPOs undergoing dissipative evolution via a Lindblad master

equation of diagonal form,

ps(t) = =i [Hps(0)] + 3T (2Lups (L], — { L Lups()}) . (245)
u

As shown earlier, Eq. formally has the solution pgs(t) = exp [Lt] ps(0) where

L is the superoperator comprising the terms on the right hand side which act on the
reduced density matrix from the left and right. Our MPO form for pg is however
vectorised so we require an expression for £ where the operators act only from the
left. This is further complicated by the fact that we have not performed the simplest
vectorisation (transplanting column by column [117]) but rather expanded in a basis.
We need a conversion such that for any 6p = >, 045 |i) (j| or po = >, i) (j] 05 in
operator form we have a suitable superoperator form O’ |p/) = 3", ; 0i;1p;) where we
have written the vectorised basis |p’) of the form in Eq. (2.39). In the subsequent dis-
cussion we shall stick with a Pauli matrix based description, but the method extends
to three level systems using the Gell-Mann basis [118] and our method in Chapter

relies on an extension to four level systems [119].

Taking a step back, changing the basis of a traditional matrix operator 6, to some

orthonormal vector basis {|i)} can be done simply with 6;; = (i[6|5). The process of
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converting to a superoperator in a vectorised Hermitian matrix basis {5} follows the
similar procedure O;; = Tr [67667]. Let us illustrate this for the operation 6p using

5%,6Y, 67} and with the basis expression |p) = 3. p; |6%). Firstly

the Pauli basis {6/, &
if we define 6p = o/ = |p/) = O|p) = 3, ¢; |5") as the action of the operator (mixing
representations some what) and recall the Pauli basis property Tr [6°67] = 26;;, we

see
1 - 1 o
3 Tr [&1pl] =3 Tr Z qio'o? | = Z qj0ij = G- (2.46)
j J

Making an explicit substitution for the operation now
o 1
Gi== Tr ij Tr { zogﬂ} = ijoij, (2.47)
j

we can appreciate the value g; as an element in the resulting vectorised density matrix
calculated as a sum of each old element multiplied by the corresponding element from

the row in superoperator 0.

This method then leads to four conversions

op =0y = Tr [6'667] (2.48)
p6 — (04)7 (2.49)
o'p — (0i)" (2.50)
po" — (0i)* . (2.51)

For example take 6 = %, if we calculate all of the 16 elements EX =Tr [6'6%67] (as

7 and j each contain the four Pauli basis members)

010 0
R 100 0
X = (2.52)
00 0 —i
004 0

If we perform 2¥ |p) we obtain the same result as 5 p.
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Now we have the ability to construct our Liouvillian from Eq. (2.45) in a linear

superoperator form
c=—i(f-a7)+ 31, (2huly - Lk, - (Lf1,)"). (2.53)

where all operators are now their superoperator versions. Our formal solution could
now be implemented as |ps(t)) = exp [Lt] |ps(0)) but we need to understand how to

apply the time evolution operator to our MPO density matrix.

A first step would be to see that computationally it makes more sense to write
lps(t + dt)) = exp [Lt] |ps(t)) when we want to see dynamics. This highlights that we
only have to define T’ = exp [£t] initially, however this operator is still only defined
as a large matrix and application of it could be difficult. To proceed we impose that
our 1D array system interacts only via nearest neighbour interactions so our Liouvil-
lian consists of terms acting on an individual TLS and between neighbouring sites.
With this in mind we obtain a splitting of £ = £¥ + £ with superscripts denoting
even and odd neighbour-bonds if we think of £ = )", £;, a sum over site-pairs; this
is sketched in Fig. Going a step further we can see £* = Y, LF for k € {E,0}
where generally [LF, £§] # 0 but [£F, £V] = 0.

L

00000090

Pair:l 2 3 4 5 6 7
a’lallea 2la a
o || || | ] |

FIGURE 2.3: An illustration of how the Liouvillian components con-

tain the even and odd pair-bonded neighbours in a 1D TLS array. An

exponentiated time evolution with this composite Liouvillian can then
be Trotter-Suzuki exapanded to aid computation.
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So employing a Trotter-Suzuki expansion on our time evolution operator with

our odd-even Liouvillians we get

R o) o
T = exp <£25t> exp (EE(St) exp <£26t>

O O
= H exp <£i 5t> exp (Ef&t) exp <£k26t> . (2.54)

L 2
ijk

where we have made use of the previously mentioned intra-component commuta-
tion. Computationally the operation of each group of odd or even exponentials in

Eq. (2.54) can be done in parallel allowing much improved computation time.

The exponentials in Eq. as described are, based on our discussion of £ so
far, matrices which operate on a vector (understood to be in the Pauli basis). Tech-
nically though our vector is described in an MPS form and as such our operator T
needs to be in an appropriate form for operation. Each matrix T}¥ = exp [LE6t] and
Tio = exp [Lioét /2] acting on a pair of TLS sites can undergo an SVD to be brought
into an MPO form which can act on our |p(t)) via tensor contraction. The TEBD
proceeds with the application of the components of T followed by a refresh of the
MPO decomposition of the state and this is repeated successively until some final
time [112} [116]. Any errors due to the truncation of the bond dimension and size of

the Trotter-Suzuki step are minimised through convergence testing.

2.4 Simulations

7Z NOWING now how a simulation can be carried out, allowing us to evolve a
reduced system density matrix in time we must ask the question what do we
want to infer from such dynamics? Shortly we will mention the two measures we use
to make conclusions about our dynamical simulations, but first a note on what goes

in to a simulation.

All density matrix dynamics in this thesis have been obtained numerically using
computer code developed in Fortran or Python, with some parallelisation in place

where it would enhance computation time. Numerical solution of master equations
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requires discretised time solutions and the degree of discretisation (the size of time
steps) must be ensured to be small enough that the observed behaviours do not ap-
preciably depend on it. Such convergence can only be obtained through repeated
simulations at smaller time steps to find the most efficient value that balances simu-
lation accuracy and efficiency. Further, in Chapter [3|we truncate a bosonic mode and
convergence must also be found such that we can be satisfied that including more
bosonic levels would not have an effect on the dynamics. Finally, as we mentioned a
moment ago, bond dimension of our MPO formulation is also a parameter that must
be refined through convergence of the dynamics. The values at which these param-
eters result in converged dynamics have an interdependence and also a dependence
on the parameter regime of the system; traditionally strongly coupled or rapidly fluc-

tuating systems require smaller time steps for instance.

24.1 Probability

In order to converge a simulation one must be producing a “‘measurement’ value to
characterise the dynamics. An obvious value that can be obtained from a density ma-
trix is the probability of a particular state. Having an awareness of the basis being
simulated allows us to extract a diagonal value from a p and infer what the probabil-
ity of occupation of a basis state would be. Probability is the measurement used in
Chapter 3| to provide us insight into the oscillatory state dynamics between the two

sites in a dimer.

2.4.2 Entanglement of formation

In Chapters ] and 5| we wish to assess the degree to which entanglement with an
ancilla has been transferred from a nearby sender to a distant receiver and for this
we need a suitable measure of entanglement. There exist numerous bipartite entan-
glement measures [120, 121] including distillable entanglement, entanglement cost,
entanglement of formation and the relative entropy of entanglement. We chose the
entanglement of formation [122] for our measure as it is a simple to calculate entangle-

ment monotone in the range 0 (for a perfectly disentangled state) to 1 (for a maximally
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entangled Bell state). Given a bipartite system of two spin-1/2 particles described by

p, the entanglement of formation between the spins is calculated using

E(p)=h (1 = 12_ CW) ) (2.55)

where

h(6) = 0log, 0 — (1 — 0)logy(1 — 6) (2.56)

is the binary entropy function and C(p) = max(0,A\; — Ay — A3 — A4) is the concur-
rence. This is calculated using the descending-ordered eigenvalues of \/pp where
p = (0¥ ®0c¥)p* (0¥ ®aY). The entanglement of formation can be interpreted as the
number of Bell states required to produce the given state, hence the bounding cases

of 0 and 1; no two particle state can be more entangled than a Bell pair.

2.4.3 Unit conversion

These measures of probability and entanglement are somewhat abstract and a refer-
ence point can often be helpful, whether this is the time scale of the dynamics or the
strength of coupling in a system. As a final point in this theory section we present a
review of how the use of frequency units for energy is obtained, as it is used through-

out this thesis (and in some associated literature).

We start with the formula for photon energy E = hf = hc/\ with everything in
SI units and where the symbols have their traditional meanings. If we want to now

describe energy in meV and have a wavelength in cm ™! then the equation becomes

he

1

The unit of cm™" is another common energy unit and using Eq. (2.57) we can say that

ImeV=e/10°ch cm !~ 8 cm~! or 1ecm~!= 105ch/e meV~ 0.12 meV.

If we take the dispersion relation for EM waves in a vacuum w = ck = 27¢/\ and

again choose wavelength in cm ™! and angular frequency in THz we get

w 2me
©1010)°

(2.58)
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This gives 1 THza5.3cm ™! or 1cm~!~0.19 THz. Combining our conversions gives

1 THz= 10'°h/27e meV~ 0.66 meV and 1 meV= 27e/10'°h THz~ 1.52 THz.
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Maintenance of coherent dynamics in a dissipative

environment

=1 HIS chapter will be concerned with an investigation into the coherent dynamics

AN

b of a particular toy model interacting with a Markovian environment and how
the structure of that environment plays an important role. Since there is still a great
deal we can learn about open quantum systems (OQSs) we can still gain insight by
considering simple models. We will include a non-Markovian element in our model
by incorporating some of the environment within the OQS allowing us to consider
systems where part of the environment couples strongly. Our system comprises a two
site system, or dimer, in which we are principally interested, and a single oscillatory
mode (SM). The environment considered is bosonic, Markovian and weakly coupled

to the OQS.

Examples of real physical problems this maps to include photosynthetic com-
plexes [85], which we introduced in Sec. and superconducting qubits coupled to
both microwave [123] and nanomechanical [124] resonators (see Fig. for some im-
ages of experimental set-ups). To reiterate, our model would be suitable for describ-
ing a two site chromophore strongly interacting with one protein mode and weakly
interacting with the wider protein environment. The idea of a superconducting qubit
experiment in which it is strongly coupled to a single mode of an adjacent resonator
is also a good fit to this model where the other resonator modes are weakly coupled

and form the bath.

Studies concerning coupled, structured environments, where a particular feature
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| {60 um

FIGURE 3.1: a-c) From Ref. showing (a) their cavity QED circuit

with (c) superconducting qubit in the centre. b) Capacitive coupling

between resonator and input-output feed line. d) A quantum mechan-
ical resonator taken from and presented in Ref. [124].

has been represented as a SM, have previously been carried out [125H129], and the
complexity of systems with such descriptions has been reduced through symmetry
exploitations [130] [13T]. Our chosen system configuration is, however, not repre-
sented by these works; in them the SM and bath are either not distinguished or are
coupled directly (which is not our intention). For example in Ref. [126], a system,
consisting of a symmetric dimer coupled to a bosonic environment, is reformulated
as a symmetric dimer coupled to a single bosonic mode which in turn couples to a
bosonic environment. The results obtained in their study of this dissipative system
are restricted to low temperatures due to the truncation imposed in their treatment
of the single mode. The use of low temperature truncations is common and was also
used in Refs. [130] and [131]; herein a symmetric dimer is coupled to multiple oscilla-

tor modes but their analytic approach requires them to be truncated to two levels.

One study that did use a SM demonstrated that the coherence of the dynamics
in an asymmetric, excitonic dimer was enhanced by it; here (unlike in our approach)
each site of the dimer was coupled to its own Markovian bath [132]. In contrast to
our work, a polaron transform was employed to approximate the non-Markovian
aspects of their model. Finally we find examples of dimer models with asymmetric
site energies used to investigate the vibrational protein networks of photosynthetic

systems and their coherent or non-classical electronic properties [13,133]]
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3.1 The model

JIE chose to investigate the system of a symmetric dimer coupled to a bosonic

« ﬁ SM and a dissipative bosonic environment. The levels of the SM will not be
truncated in a way which can preclude validity in high temperature regimes and its
frequency will be off-resonant with the transition frequency of the dimer. A weak cou-
pling master equation will be derived and used to investigate the effects of different

forms of the environmental spectral density (SD) on the coherent system dynamics.

@%%% §§§

&w
\/\f\)
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FIGURE 3.2: A schematic diagram of the model given in Eq. (3:1). The

symmetric dimer is composed of two identical sites with a dipole-

dipole interaction between them (green). This is linearly coupled to

a Markovian bosonic environment of oscillators (red). One bosonic

mode of the environment (blue) is assumed to be much more strongly

coupled to the dimer than the others, and is therefore considered as
part of the system that must be treated exactly.

Our dimer is made up of two sites, defined as ‘0" and “1’; they are identical and
both have an electronic ground state, |G), and a state |E) which corresponds to a
single excitation, an exciton. The Hamiltonian describing this, the SM and the envi-

ronment can be expressed as
Hya = Hp + Hsm + Hp-sm + Hg + Hp_B 3.1)

and is shown schematically in Fig. The dimer term describing its electronic fea-

tures is

Hp =€ (|Eo) (Eo| + |E1) (Er]) = J(|EoG1) (GoEr| + Hec), 3.2)
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where each site has excitation energy ¢ and a dipole-dipole interaction energy of J.

The vibrational SM is included through the terms

Hgy =Qa'a, (3.3)

Hp—su = = (90| Eo) (Eol + g1 |Ex) (Bn]) (af +a) (3.4)

where the SM frequency is {2, has annihilation and creation operators a and af and the
coupling strength to each site of the dimer is go = —g1 = g¢. Finally, the environment

is incorporated with the terms

Hg = wqblibg, (3.5)
q
Hp-p ==Y (hqo [ Fo) (Eol + hqt |B1) (E1]) (B +bq) (3.6)
q

which describe harmonic modes with wave vector q, frequencies wq, annihilation and
creation operators Bq and Bg and dimer site coupling strengths hqo = —hq,1 = hq. In

the site basis, the bath and SM couplings to the dimer are linear in displacement.

Three subspaces span the Hamiltonian of Eq. and their basis vectors are
{|Go,G1)}, {|Ev, E1)} and {|Ey, G1) , |Go, E1)}. These subspaces are uncoupled from
each other and therefore restricting ourselves to the last, the single excitation sub-
space, is perfectly reasonable if we wish to study the dynamics of population trans-
fer. A definition which suitably simplifies proceedings has |0) = |Ep,G1) and |1) =
|Go, E1).

We can now consider our Hamiltonian in this reduced two dimensional sub-

space:

Hp = —JX — Zg(al +a) — 2> hq(bl + bg) + Qi+ Y _ waiiq. (3.7)

a a
The Hamiltonian Hy comprises a single two level system (TLS) description of the
dimer, where the levels correspond to the presence of an excitation on either of the
original dimer sites. Included now are the Pauli operators in the site-basis Z =

10 (0] — |1) (1] and X = |0) (1| + |1) (0] and the SM and g-th bath mode number
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operators 7 = a'a and g = Bi,iaq. The form of Eq. is a modified spin-boson
model Hamiltonian. Despite only being exactly solvable in certain special circum-
stances, the spin-boson model has been widely investigated and employed to aid in
studies of OQS properties [44), [134-138]. The model is typically comprised of a two
level ‘spin” interacting with a bath of harmonic bosons; our modification is the inclu-
sion of the SM, which we group with the TLS into our ‘system” which will receive an

exact treatment.

3.1.1 The Fulton-Gouterman transformation

If we focus on the TLS-SM system and disregard the environment for the moment,

Eq (8.7) can be written as
H=—JX — Zg(a' +a) + Qn, (3.8)

which is diagonalisable in the TLS subspace using the Fulton-Gouterman transfor-
mation (FGT). Posited in 1961 [139] as a subspace diagonalisation tool for vibronic-
electronic problems (such as molecular dimers) where the electronic element had a
two level structure, it was later extended to IV level electronic systems [140] and re-
fined to display an exponential form [141]. The transform is unitary and the form

used here is [142],143]

1

V=1

10) (O] = [1) (0] + P(10) 1] + 1) {1]) |, (3.9)

although others do exist in the literature [130, 144]. The parity operator, P = (—1)",

operates in the SM subspace and obeys the anti-commutation relations

{P,a} ={P,a’} =0. (3.10)

The action of the FGT is to separate states of like excitation parity into two un-

coupled Hamiltonians. If we transform Eq. (3.8) into the superposition basis, |+) =
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% (|0> + \1>), (still describing the SM in Fock states) and display the matrix form,
+0) [=0)  [+1)  |=1)
(+0[ ( =T 0O 0 —g
(<o o J —g 0
H= (11| 0 —-g -J+Q o0 - |, (3.11)
(=1 —g 0 0 J+Q

we can see a pattern between which states are coupled. The system states where the
excitations present are of even (|4-0), |—-1),...) orodd (|—0), |[+1), ...) parity only link

with same-parity states, allowing us to isolate

+0) =1 - =0)  [+D)
o~ g cof 0
EJF: (—1] —qg J+Q - | Efz (+1] —qg —-J+Q - | (3.12)

If we apply the transform to our Eq. (3.8) Hamiltonian we obtain

. H H-
H:UHUT:E 0) 01+ 5 1) (1l (3.13)

with

H* = Qi —g(a' +a) T JP. (3.14)

The parity conserving subspace Hamiltonians are the same as those in matrix form
earlier, hence the FGT is equivalent to a basis rotation and a rearranging of states.
It should also be noted that H* are both tridiagonal in matrix form which affords
efficient numerical diagonalisation. The eigenstates of the transformed Hamiltonian
H are

) = %[ﬂ: 0) + P 1)] |62). (3.15)

where we have made a site basis expansion. So for clarity then the Schrédinger equa-

tions here are H* |¢ff> = E,;t |¢f) and H Wﬁ = El:ct Wﬁ
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3.1.2 Add the bath

Moving to a superposition basis representation of the TLS, {|£)}, Eq. (3.8) is now
Hg = —Jé&, — 6.9(al + a) + Qi (3.16)

where the ‘S’ subscript is being used to indicate the TLS-SM ‘system’. The basis
rotation means our new Pauli spin matrices are 6, = [+)(+| — |-)(—| and 6, =
|[+)(—| + |—){+]|. So bringing the bath back, our full Hamiltonian including system,

bath and interaction parts is

Hp = Hs+ Y _wqiiq+ 60 Y hq(bl +bq). (3.17)
q q

from which we can derive a Markovian master equation that assumes the oscillator

environment only couples weakly to the TLS-SM system.

3.2 Derived master equation

S was introduced in detail in Chapter [2, a master equation can be used to de-
(3 || scribe the dynamics of an OQS, with a general Born-Markov, interaction pic-
ture form of

oo

= —/ds Trp [Hl(t), [Hi(t - s), ps(t) ® pBH. (3.18)
0

dps(t)
dt

The reduced system density matrix, ps(t), has its dynamics described with respect
to the stationary thermal bath density matrix, pg and the interaction Hamiltonian in
the interaction picture, Hy(t). We will now proceed with a derivation specific to the
way our model has been formulated above, exploiting the form of our Hg eigenstates

following the FGT.
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3.2.1 The interaction picture

Through a unitary operator method the interaction picture version of the interaction
is found with

HI(t) _ ez(Hs—i-HB)tHIe—z(Hs—O—HB)t’ (3.19)

where Hy = 6,3, hq (bl + bq) and Hp = >qWallq from Eq. (.17) and Hs is as
Eq. (3.16). The form of Hj is separable in its bath and system components and as
[Hs, Hg] = 0 we can write a separated version of Eq. (3.19)

H(t) = e5'6 07T @ e 01y ™ hg (bl + bg)e ™5, (3.20)

q
It is at this stage we wish to make use of {[¢/f)}, the FGT eigenstates of Hs. Using
them as a basis in which to express 5, means the exponential terms encasing it in
Eq. (3.20) will now compute as eigenvalues, thus simplifying the derivation; these

eigenvalues can be solved numerically.

3.2.2 Changing bases

Our derivation proceeds by realising that ¢, is defined in the superposition basis
whilst our Hs eigenstates in Eq. are in a joint site-Fock basis and that we must
unify these expressions. Let us define the superposition basis TLS lowering and rais-
ing operators 6_ = |—) (+| and 6, = |+) (—| such that 6, = 64 + 6_. Since the

eigenstates span both the TLS and SM we actually require

Gin =061 @1="|+n)(-n]|, (3.21)

Gn=6_®1=>|-n)(+n|. (3.22)
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To aid us with the change of basis of 6, we wish next to write a superposition basis

expansion of the eigenstates

0 =3[P 1) [9) — (PF1) 1] 16) (3.23)

6p) =Y CiIn). (3.24)

n

The C’,;tn = (n|¢>j) coefficients in the Fock expansion of the SM subspace eigenstates
are calculated numerically. Looking at the definitions above we can observe that the

superposition basis states are associated with Fock states of differing parity as

W)=Y CiblEn)+ Y C [Fn); (3.25)

evenn oddn

it is clear here that (/;|4{}) = 0 because of the orthogonality of the superposition and

Fock states.

Knowing expressions for the eigenstates in the superposition basis means we can
now approach our conversion of 6_ and 6. We find the relevant matrix elements of

the operators by overlap calculations with the eigenstates:

WEIGnltE) = (WEI6_nlvE) =0 (3.26)

(Wiflonltf) = > CHCOE, (3.27)

(W@F16nlttis) = Y CFCiie (3.28)
oddn

Notice the subscript reversal of the first C* within each pairing compared to the
Eq. definition; this is intended to signify complex conjugation, C2, = (C,fn)*

Combining our expressions we find the form of our operators

rin=3{ T CRCLWAWE+ ¥ CRCE DR 629)

k,k’ “evenn oddn

Summing the two ladder operators together to build &, reduces the complexity

of Eq. (3.29) slightly as odd and even n components are combined to leave a single
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contiguous summation over n;

Gan =Y {O:kck/n 10;5) (| + CrrCity 1007) <w;|}- (3.30)

k.k'n
3.2.3 Moving to the interaction picture

We can finally convert the system dependent part of H; in Eq. (3.20) to the interaction

picture,

Sl Gye T = 3 {%%e“kk't ) (W4 e Cilpe ™ [} i I}- (3.31)
k,kE'n

We have swapped the k and %’ indices in the second term to facilitate the definition
of a constant,

Ay = EfF — B, (3.32)

the difference between the contributing eigenvalues.

Two identities

R (3.33)

epfemm — plea (3.34)

are required to change the bath dependent part of Eq. (3.20) into the interaction pic-
ture. Using these we have all that we need to fully convert to an interaction represen-

tation,

Hl(t) _ Z eiAkk/tBT(t)gl:-, + e—iAkk/tBT(t)é];k + eiAkk/tB(t)é;_k, + e_iAkk/tB(t)CAk;k.
k,k!
(3.35)
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We have defined some new operators here; the B(t) and Bi(t) are bath annihilation

and creation operators in the interaction picture,

B(t) =) hqbge ™", (3.36)
q

Bi(t) =) " hable™at, (3.37)
q
and the f ’s switch between Fulton-Gouterman eigenstates,

G =D ChCron 00) (Wi (3.38)

Con =2 Coe O 1) (| (339)

3.24 Generation of the master equation

Now we can proceed to evaluate the double commutator in Eq. which re-
quires combining the various operators we have discussed up until now; noting that
¢ ,jk/fﬁ/ = CA,; ké;l = 0 helps to reduce the number of terms. Due to the separable nature
of the formulae presented, the partial trace over the double commutator boils down
to a trace over the bath operators in each additive term in the expanded commutators.
This again allows for a further reduction of terms as (B(t)B(')) = (B'(t)Bt(t")) = 0,
where the use of angular brackets denotes the trace over a thermal density matrix
(the assumed state of the environmental bath). A multi-mode thermal density matrix

takes the form

pp = N[ e Per, (3.40)
P
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with the normalisation constant

N_l :Z <n0,n1...| He—ﬁwp/ﬁp/ |TZO,’I’L1...>
{n} '

= Z <n0,n1...| e Pwonog—furin |n0, n1>
{n}

— Z (ng| e P00 | ng) (ng| e P11 )
{n}

— E e—ﬂwp/ np/

p’ L]

N=]]1—e (3.41)
p/

This could also be written as N = [[, N; where N; =1 — e Pwi,

Now let us take a look at the non-zero bath correlation functions (B (¢) B(')) and

(B(t)B'(t")). We shall explicitly evaluate here the first of these:

(BYOBE)) =N (no,m1...| Y hgble™a hgbgre " T e7#»™ |ng, ny...)

{n} q,9’ b
=N Z <n0’ nl‘ Z hzﬁqeiwq(tft/) H efﬁwpﬁp ‘77/0; n1>
{n} q P
=N Z <"I’L0, nl‘ h%floeiwo(tiﬂ) H e*ﬁtdpflp
{n} b
+ h%’ﬁleiwl(tft’) Hefﬂwpﬁp 4o ‘TLO, n1>
P

=N Z [<n07 ny...| h%ﬁoeiw“(t_t/) He_ﬁwpﬁp |no, mi...)
{n} P

+ (no, 7”L1| h%ﬁleiwl(t_tl) He—ﬁwpﬁp |’I’L0, n1> + ...

p
=11~ [h%ﬁoem“—“ [e Per
i {n} P
+ hinge =) T e Perite 4 ] : (3.42)

1

In the last line of Eq. (3.42) each instance of the product over p has all of its elements
cancel with the elements in the normalisation product (see the penultimate line in

Eq. (3.41)), except when p equals the index of the term the product is a part of. This
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leads to

eiwp (t—t")

(BY&B()) = Z Nph? oiwp (t—t') Z npefwrne — Z hgm (3.43)
14 p 14

The last step in the process of solving the partial trace involves the SD, as defined
in Chapter
X(@) =3 hl* 6(w = wa), (3.44)
a

which uses the bath coupling factors, hq, to describe the action of the bath and allows

the identity (see Eq. (2.21))
[ dwx@ie) = 3 Hio(w). (3.45)
k

This is exactly what we see in Eq. (3.43), so finally

: /
. ezw(t—t )

B OB = [ doxt) -

(3.46)

The evaluation of the second bath correlation function features aa' = 741 as opposed
to the a'a = 7 we have just seen. This does not alter the derivation too much and leads
us to

. . e—iw(t—t’)
From the Eq. (3.18) double commutator and the definition in Eq. (3.35), taking into

account all permutations of ¢, ¢ — s, daggered and non-daggered bath operators there

are four non-zero combinations required from the formulae in Egs. (3.46) and (3.47).
By employing the identity

o0

/ds 0708 — 75(a — b) +
0

P
i(a—b)

(3.48)

(where we neglect the second, principle value, term which would lead to only small
Lamb shifts) the integrals over s, in Eq. (3.18), and w, introduced by the bath correla-

tion functions, can now be performed. Let us look at one of the four terms produced
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when expanding the double commutator present in Eq. (3.18):

(- 9p0) = Y [BHOB( - 9) + BOB - )|

kK p,p’

|:ei(Akk’_App) o pplSCkkz’Cp sl )+e—z‘(Akk,—App,)te—mpp,sét];kqﬂps(t)}, (3.49)

We can see here exponentiated s features associated with each of the system operator
terms, but when we include the further s exponentials in the explicit form of the bath

traces (Egs. (3.46) and (3.47)) we get something of the form in Eq. Accounting

for the differing signs between the terms in the system part and the two flavours of
bath trace present we have four combinations to evaluate; considering the whole of
the double commutator we have eight combinations in total. Again, to proceed we
shall explicitly show here one example of how to evaluate these terms with the others

being similarly computable:

[e.e] o0 [e.e]

ei(wj:App/)s

[astBtp et = [as [ aor m

0 0 0
00

:/dwx(w)eﬁw _plp

= T = D(F Ay, (3.50)

We have defined I' (and also shortly I') to simplify future equations; it describes the
thermal decay rate of the associated transition denoted by A. The three remaining

terms are:

> > % /S ﬂ-X(j:A /)
[ s (B - 9Bt = Do)

= T(EAyy) (3.51)

T ; X (E£Ay
[ as BB et - NE) v, 6
[

ds (B(t — s)BI(t))eXhos = 22T P27 — T/(FA,,,). (3.53)
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We are now in a position to write out the first form of the differential equation

we have been working towards from Eq. (3.18):

dps(t) WA —A A A
dt b [(F (App'))e( e )tC,:;C,Cp,pps(t)
7p7p

+ (F )+ T/ (= Ay ))e*i(Akk’*Aw')té,;kép;,ps(t)
+ (F (=Apw) +T (Akk/))ei(AW7A””')tps(t)51;2/gp
(D) + T (=) )™ r =N s (1), G
- (F(_App’) + F/(App’)> (ei(Akk/—FA"p/)t@_k/PS(t)é;;,/ +e T =Ly Ck/kps éz;;/)
— (T + T (= Ay ) (€7 O A s () + =Gl s ()G, )
- <F(Akk') + F'(—Akk')) <ei(A’“’“’+APP’)t€:;§g/ps(t)é,;/ + e/ o =R ICE ps()C )
- (F(_Akk’) +FI(Akk’)) (e_i(Akk'+App')t§;§kps( )C o W =hpp)l o oot ]

(3.54)

In order to simplify Eq. we employ the secular approximation which as-
sumes that if the oscillatory exponential factors have a non-zero frequency (i.e. Ay —
Apy # 0 # Ay + Apy) then they correspond to a rapid oscillation compared to the
time scale over which we have assumed pg changes. These terms are neglected. To
ensure Ay — A,y = 0 we can insert 0y, 403 o into the summation. Now Ay + Ay —
2Aj which in general is non-zero so these terms are neglected also (the special case
of 2Ay;, = 0 would similarly mean I'(£A;) = 0 and thus would not contribute to the
dynamics). This vast simplification is our implementation of the secular approxima-
tion (mentioned in Chapter . Eq. can now be written in Lindblad form giving

us

dps

— Z |:< Akk/ + T (Akk/)> (2§];kps(t)é]j}€/ - 5}22/6];k108(t) - é];ké];z/pS(t))

kK

+ (P(Akk’) + P/(—Akk/)) (2§;;prs(t)é/§k — ConChps(t) — éﬁffﬁkps(t))} . (3.55)
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3.2.5 Characterising the environment

Clearly the behaviour of our derived Eq. depends on the transition rates gov-
erned by I and I which we defined in Egs. (3.50)-(3.53). They are results of the bath
correlations and as such depend on the form of x, the SD. We defined this earlier as
a discrete function but, as we implied in Chapter 2} in calculations the SD typically
takes a physically motivated form in the continuum limit. Before we introduce the
forms of x we used, we will just touch on a subtlety of the definitions and derivations
presented so far. Since all bosonic modes have a finite, positive frequency, w, the SD
is unphysical for w < 0. Therefore it is typical, in a derivation such as this, to neglect
terms in which the SD has a negative input. In this instance, however, we cannot say
in general if any of the Ay (the difference between the k-th even parity and £’-th odd
parity eigenvalues) are always negative, so we must continue to include calculation

of them and programme our numerical solution to neglect them if negative.

The first continuous SD we use is

Xin (@) = Apw™e @/ “me, (3.56)
where m controls whether we have an Ohmic form (m = 1) or a super-Ohmic form
(m > 1) [87]. We include a Gaussian cutoff which ensures x — 0 for w >> wy, , the cut-
off frequency, meaning high frequency modes do not contribute to the environmental

dynamics. The second continuous SD form we employ is

ALwW2
w—wr,c)?+ W?’

XL(w) = ( (3.57)

a Lorentzian-like description. The half width at half maximum is W and the cutoff
frequency is wr, .. The normalisation factors A,,, and Ay, scale each SD and are related
to the reorganisation energy, A\. As defined in Chapter 2, A\ quantifies the change in
energy of the bath in response to the TLS dynamics. Although Eq. is modified
with an extra factor of w in order to ensure normalisability for A\, we shall refer to it
simply as a Lorentzian for conciseness. Lorentzian forms can be useful for describing

structured spectral densities such as the high frequency example in Fig.
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FIGURE 3.3: A comparative plot of the five SDs considered here, with

A = 0.05 THz and w, = 10 THz. The Ohmic SD is given by m = 1,

while m = 3,5, 7 represent increasingly peaked super-Ohmic SDs. The
Lorentzian SD has width W = 1.5 THz.

Fixing A helps to make fair comparisons of the effects of different forms of the SD,

but we should also consider fixing the peak location of each form. The frequency at

which the peak occurs, wy, is found through differentiation of Egs. (3.56) and (3.57).

If we formulate a SD to depend on a cutoff frequency determined by a fixed peak

frequency we can be confident of comparable SD forms. In Fig. 3.3l we can see ex-

amples of the m = 1, 3, 5, 7 and Lorentzian SDs for fixed A and w,. The tendency

for a more peaked SD to have a narrower widths means an enhanced bath interac-

tion at that frequency but decreasing effectiveness for other frequencies. An Ohmic

SD is a good description of the environment in surface-surface tunnelling problems

and at low temperatures, whereas super-Ohmic SDs are a often used for bulk phonon

environments [[134} [145].

3.3 Computational implementation

EFORE we move onto our results sections let us have a brief review of some of

the computational aspects of the solution. Python was used to program our

numerical solution with the ‘Quantum Toolbox in Python” library (QuTiP) providing
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a routine for handling the actual solution of Eq. [146]. Python was chosen as
it is currently a programming language seeing increased usage and provides well
maintained libraries and extensions making it a logical choice for reliable code in
that respect. It can handle parallelised implementations and in my experience is not
severely slower than a more traditional scientific language such as Fortran. QuTiP
provides convenient structures for handling quantum entities such as operators and
kets, however I found that some of the more intensive linear algebra associated with
the basis changes and generation of the Lindblad operators was faster with Python’s

standard libraries.

What follows is a brief synopsis of the main points of the code. The initial pg is
defined in the site-Fock basis with a truncation of the Fock levels of the SM. Next the
sub-space Hamiltonians, H*, are defined and diagonalised, producing the eigenval-
ues E* and the eigenvectors |¢>f) The eigenvectors are then used to construct W,f),
following Eq. and to calculate the C£ constants, via the overlap operation. In
turn, those constants are used to generate a list of Lindblad operators complete with
decay rates (each (k, k') element from the summation in Eq. provides two list
entries). The final set-up task is to convert the site-Fock initial pg into the FGT basis

(this is the same basis in which the Lindblad operators act).

In terms of the number of lines of code the solution step is dwarfed by set up
and analysis, however during run time it is here that most processing time is spent.
The QuTiP master equation dynamics routine requires the system Hamiltonian (fI s),
initial ps, Lindblad operators and the time over which to solve for. In the FGT basis
Hg is a diagonal matrix consisting of the list of £ eigenvalues followed by the £~
values. The solver produces a pg, in the FGT basis, for each requested time step; this

is the processor intensive step.

The analysis phase entails converting the solution density matrices back into the
site-Fock basis and partially tracing out the SM to obtain the TLS dynamics. The dy-
namics are saved in text files so that a plotting tool can then interpret them. Also
stored is an error check of sorts: the elements in the right- and bottom-most column
and row respectively in each quadrant of each site-Fock pg are summed together. This

number helps provide some insight into whether the truncation of the Fock space has



Chapter 3. Maintenance of coherent dynamics in a dissipative environment 61

occurred at a suitably high enough level; if it has not then there will be significant
population of these elements. This is only an indication however, as I discovered nu-
merical errors build up in the bottom left and top right of each quadrant. Whilst these
regions are not pertinent to the partially traced dynamics they certainly affect the er-
ror summation. A further error check of the truncation level is obtained by printing
a visualisation of the initial and final site-Fock density matrices. The dynamics them-
selves have also been converged with truncation point and with all of this in mind we

can refer to our treatment of this TLS-SM system as exact.

3.4 Results

GINLESS otherwise stated, simulations are carried out with 2 = 100 THz, T =

300K, J = 5THz, A = 0.05 THz and w, = 2J. So our SM frequency, ),
is far off-resonant from the TLS transition frequency of 2.J, whereas the peak of all
SDs will be on resonance with it. These parameters have been chosen as they display
the interesting off-resonant SM effects quite clearly. The initial state of the TLS is
with the exciton localised on site 1. We wish initially for our SM to be in a thermal
state and there are two straightforward ways of initialising this: 1) thermalising the
SM before ‘activating’ its interaction with the TLS or 2) thermalising the SM whilst
the two subsystems are interacting. The first method can be suitably described by
a thermalised distribution of Fock states of the SM. The second leads to a thermal
distribution with respect to the appropriately displaced oscillator states of the SM
with respect to the initial state of the TLS [147]; this will be discussed in more detail
in subsection If the first case was employed then, as the simulation begins,
the SM is not in a ‘relaxed’ state with reference to the TLS state and this will cause
transient dynamics as the SM responds. We choose to focus on the second case so as

to minimise this noise in our dynamics.

3.4.1 Preliminary result

An instructive first simulation to discuss is the behaviour of the TLS when coupled to

the SM but with no bath (i.e. A = 0 THz), as in Fig. The curves in Fig.[3.4(a) show
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the population of site 1 for four values of g. With the SM decoupled (g = 0) the pattern
is a simple sinusoid of frequency f = 2J/27 THz. The interaction of the SM (g # 0)
introduces two distinct effects: 1) a renormalisation of the oscillation frequency and
2) an extra oscillatory envelope. As g increases, these effects become more prominent;
they are also dependent on the ratio J/2 and the initial conditions. By selecting the
displaced oscillator SM initial condition we obtain the displayed simple sinusoidal
dynamics. If we had chosen to thermalise the mode in the non-displaced basis, which
corresponds to a coherent state in the displaced oscillator basis, we would see a third
effect as g increases with the dynamics containing many competing oscillation fre-

quencies superposing presenting as noisier dynamics.
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FIGURE 3.4: a) A comparison of the population dynamics for varied

SM coupling strength with no bath present and b) longer dynamics of

one coupling strength. In a) oscillation frequency renormalisation is

clear for g = 10 THz and an envelope can be seen for g = 25 THz and
in b) for the long time g = 10 THz dynamics.

The cause of the distinct dynamical effects can be inferred from the simple plot
of the eigenenergies in Fig. In general the spectrum is a ladder of states with each
‘rung’ consisting of a split doublet. The g = 0 spectrum consists of equally spaced lev-
els according to the SM frequency, 2, and doublets split .J either side (in the regime
that ) is large compared to J). As g increases, the first noticeable change is a narrow-

ing of the doublet gap, this corresponds to a smaller frequency of oscillation hence
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the visible increases in period in Fig. When the SM is coupled to the TLS there
is mixing between the two systems; oscillations between the doublet states at each
level in the ladder may evolve with differing phases, hence the oscillatory envelopes
in Fig.3.4}
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FIGURE 3.5: Truncated energy spectrum of the TLS-SM system for in-
creasing g. Levels crossings are clearly exhibited.

3.4.2 An Ohmic environment

The renormalisation of the oscillation frequency (or effective TLS ‘rung’ splitting) is
the key to the findings to be presented here. However we can start with the result
that might naively be expected when a room temperature thermal bath is coupled to
the system. Initially characterised with an Ohmic SD, the effect of the bath on the
TLS, with no SM coupling (g = 0), is to damp the oscillations to a thermal equilib-
rium. As can be seen in Fig. this characteristic remains when introducing the SM
(g9 > 0). What can also be observed is that, more than simply remaining, there is ac-
tually an enhanced damping effect brought about by a strongly coupled SM. This is
likely due to the mixing of different transitions induced by strong-g providing an in-
creased number of decay pathways. The frequency renormalisation is also visible as a
subtle curvature in the peak trajectories. One could argue that the effect of increased

damping saturates towards the upper limit of the g range explored. This observation
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hints at a more interesting behaviour: that a strongly coupled SM can provide some

degree of decoherence-robustness.

Site 1 Population

FIGURE 3.6: A 3D plot of the site 1 population dynamics a function of g

when coupled to an environment described by an Ohmic (m = 1) SD. A

frequency renormalisation an enhanced damping effect are observable
for strong-g.

3.4.3 Super-Ohmic environments

Let us proceed to display the dynamics of SDs with m = 3,5 and 7 to further explore
this effect. The qualitative difference between the dynamics in Fig.[3.6|and Fig.|3.7|is
clear: as the SM coupling strength is increased the oscillations are enhanced instead of
damped. The behaviour is most easily appreciated when looking in the second half of
the simulated time in Fig.[3.7lwhere the weak-g plateaus are replaced with population

oscillations for strong-g. A more peaked SD exhibits these oscillations more strongly.

3.4.4 Analysis

This subsection describes analytic work performed by Elinor K. Irish in understand-
ing these behaviours and was included in our publication of this work (Publication

1); what follows is my interpretation of it.
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Site 1 Population

Site 1 Population

Site 1 Population

FIGURE 3.7: Site 1 population dynamics as a function of g when cou-

pled to super-Ohmic SDs with a) m = 3, b) m = 5and c) m = 7.

A clear enhancement is seen for strong-g which becomes more pro-
nounced with more peaked SDs.

As seen in Fig.[3.4]the dynamics of the TLS without SM or bath couplings display
sinusoidal population oscillations between the sites. In the subsequent figures it can
be seen that inclusion of the bath (for ¢ = 0) causes these oscillations to be damped.
Looking at Figs. B.6|and .7 though we can definitely see that the SM g > 0 compli-
cates this behaviour. If we consider the TLS-SM system without a bath, as we did at
the start of this results section, we can make use of the approximate displaced oscilla-
tor basis of Irish ef al [147]; this is the initial state we are employing. Provided, as we
have here, J < 2 then a valid approximation for the system is two harmonic oscilla-
tor potentials, one associated with each of the TLS sites. The displaced oscillator basis
gets its name from the fact that, in position space, the potential wells are displaced as

the SM and TLS interact.

In this picture the system eigenstates can be represented by

1

TE) = —=(|0) ® |no) £ [1) ® |n1)), (3.58)

Sl

2
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where the TLS sites are denoted by |i) and the Fock state of each displaced oscilla-
tor is given by |n;). With respect to the original, undisplaced Fock basis of the SM
Ino) = exp[—(g/Q)(a" 4+ a)] |n) and |n1) = exp[(g/Q)(a' + a)]|n). The approximate

eigenenergies of these displaced states,

2

4 2
Ein=9 <n - &) L e 200 (é) , (3.59)

form the same doublet-ladder structure as in Fig.

If a system is initialised on one TLS site and in a corresponding Fock state of
that displaced oscillator and behaves following this approximating theory it should
be clear that it will exhibit sinusoidal oscillations between sites of a frequency deter-

mined by the doublet splitting
AE, = 2Je 2" /%L, (4¢%/02). (3.60)

We can see first hand now from Eq. that an increased g leads to a frequency
renormalisation so the frequency reduction for strong-¢g in Figs. and can be
explained with this approximate analytic approach; also this g dependence is respon-
sible for the oscillations along the g-axis. Further, since the doublet splitting depends
on n, an initial state with multiple Fock states will feature dynamics with multiple
different frequencies in the TLS population oscillations. In considering 7' = 300 K
we find our thermal SM of @ = 100 THz in n = 0 with a probability of ~ 92% and
n = 1 with a probability of ~ 7%; all other states are occupied with a probability
smaller than 1%. This implies that the dynamics shown in Figs. and should
feature strongly only two oscillation frequencies; we can see these as a function of g
in Fig.[3.8(a). There is clearly a renormalisation effect here: both frequencies decrease

for increasing g, with the n = 1 doublet reducing more rapidly.

The enhanced coherence effects in Fig. can also be understood in terms of
the frequency renormalisation caused by the SM. These simulations were carried out
with a default TLS oscillation frequency w = 2J = 10 THz which is resonant with the
peak of the SDs used. Therefore the system is expected to experience a strong decay

effect from the coupled bath and this is indeed observed with all SDs for weak-g and
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FIGURE 3.8: (a) Energy splittings in the adiabatic approximation as
a function of g, for the doublets corresponding to the n = 0 (black)
and n = 1 (blue) states of the displaced SM. Vertical lines indicate the
values of g used in (b) below. (b) Comparison of the doublet splittings
with the various SDs, showing the frequencies at which the SDs are
sampled for various values of g. The vertical lines indicate the n = 0
and n = 1 splittings for the values of g that have been marked in (a)
with the same line style. In each case the higher frequency corresponds
to n = 0 and the lower to n = 1. As g increases, both frequencies
decrease but they also move further apart.

the whole range of g for the Ohmic case. However, we see the effectiveness of the bath
reduce as we increase g for the super-Ohmic cases because the frequency is adjusted
off resonance with the SDs. This tendency is presented in Fig.[3.§(b) where the SDs
are plotted, overlayed with the frequencies at which the two doublet splittings that
govern the oscillations sample them (taken from Fig.[3.8(a)). We can see here plainly
that as the n = 0 mode is slower to change its frequency it is always more strongly

damped than the n = 1 mode.

3.4.5 Long time behaviour

One thing that is not easy to see in the plots in Fig. [3.7|is the apparent asymmetry
that is introduced to the population oscillations for strong-g. This is due to that dom-
inant underdamped n = 1 mode which introduces a long-time envelope which does
eventually decay to the thermal equilibrium population, but over a time-scale much
greater than the ps dynamics shown so far. An example of ns dynamics is shown
in Fig.[3.9/for an m = 3 super-Ohmic SD. As a general review of the situation let it

be noted here that even at strong-g the ohmic SD decays the n = 1 mode. This is
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clearly not the case for the m = 3 super-Ohmic SD in Fig. it shows no signs of
decay even after 5 ns. The steady state value of 0.5 was obtained numerically and
is to be expected for a symmetric dimer undergoing dissipative evolution. Although
not obvious, this envelope feature is present in Fig. as an apparent population
equilibrium greater than 0.5 at t 2 6 ps. The time period shown in Fig.3.7(a) is essen-
tially a transient-dynamics regime which can just be discerned in Fig. During this
transient period any other higher excited level of the TLS-SM spectrum gets damped
away by the SD to leave the single, slowly oscillating, n = 1 feature. In terms of our
analytic explanation, at g = 50 THz the n = 1 doublet is almost degenerate and this

means a small frequency (long period) and low SD damping which can all be seen in

Fig. B8}

— m=3
— - Steady State Value

Site 1 Population
f=3
(=}
T
|
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FIGURE 3.9: An example of long time dynamics for strongly coupled

TLS-SM system, g = 50THz, displaying ns coherent dynamics in an

m = 3 super-Ohmic environment due to the weakly damped n = 1
mode.

3.4.6 A resonant Lorentzian environment

Our analytic understanding allows us to make certain predictions for what we expect
from the dynamics when the much more peaked Lorentzian SD is used. It can be
seen in Figs. 3.6 and 3.7] that increasing m causes enhanced population damping in
the weak-g regime which is due to the SD peak amplitude increasing. The Lorentzian

SD shown in Fig. is clearly far more peaked than the other curves represented
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alongside it. This means we would expect the strongest damping of weak-g oscilla-
tions witnessed thus far as our Lorentzian peak is still resonant with our bare TLS
oscillation frequency. The dynamics in the presence of a Lorentzian environment are
shown in Fig. and we can clearly see this prediction is correct. The second thing
we expect to see is a larger enhanced coherence region in the strong-g regime since
the narrower Lorentzian SD will damp the shifted n = 0,1 modes less (as predicted
in Fig. 3.8(b)). It is immediately obvious in Fig. that this is indeed the case with

the transient dynamics lasting right up to the 10 ps window simulated.

FIGURE 3.10: A 3D plot of the site 1 population dynamics as a function
of g when coupled to a Lorentzian SD with W = 1.5 THz.

The nature of our Lorentzian can be modified my altering the width parameter,
W, to make a more or less peaked SD or possibly a number of them could be com-
bined to represent a more structured environment. However, a much smaller width
would cause the Born-Markov approximation employed in our derivation to become
of questionable validity; it relies on bath time scales being less than system time scales.
In this case the system time scale can be approximated by 1s = 2J/27 ~ 0.6 ps and
the bath time scale is Tg = 1/2W =~ 0.3 ps. We see here that we are justified in utilis-
ing the Born-Markov approximation with a Lorentzian SD and since the m =1, 3,5,7
SDs are all broader (leading to a smaller bath time scale still) then it is justified for

these as well.
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3.4.7 A sub-resonant Lorentzian environment

Our description of the system’s reaction to increasing SM coupling strength has an in-
teresting prediction for the dynamics if wy, is no longer on resonance with the TLS but
is instead below it. Now when g increases and reduces the TLS oscillation frequencies
they will no longer be brought away from strong damping but will be moved towards
it, and as we can see in Fig. this does indeed occur. The shifted Lorentzian in
Fig. [3.8(b) is being used as the environment description here, with its w, = 5 THz
(a fact which, in order to maintain A = 0.05 THz normalisation, means its form is
modified). With the bare TLS oscillation frequency still 2J = 10 THz we can see the
initially strong oscillations become damped away as g increases due to the n = 0

mode component being brought closer to resonance with the SD.

Site 1 Population
m 1.00

[ -050

FIGURE 3.11: Site 1 population dynamics of the TLS where the bath SD
is given by a Lorentzian with peak frequency w, = 5 THz. In this case
increasing g pushes the oscillation frequencies of the system toward the
peak of the SD rather than away from it, resulting in greater damping.

3.5 Concluding remarks

JIE have shown that, despite what one may naively expect, the coherent pop-

4 4| ulation oscillations between sites of a symmetric TLS can be protected from

dissipative environmental decay by strong coupling to a bosonic SM. Interestingly
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we have shown this to be possible for a SM that is far from resonant with the TLS
and when it is all occurring at room temperature. The effect differs in its strength de-
pending on the form of the SD used to characterise the environment, primarily their
peakedness, which determines the strength of the initial decay and what frequency-
change region must be traversed to avoid this. It is fair to note that not all of the
SDs used exhibit this behaviour, specifically, the Ohmic SD is simply too broad to
see any benefit from the oscillation frequency renormalisation caused by the TLS-SM

coupling.

It is hoped that our work motivates the continued use and refinement of non-
Markovian methods in OQS research towards simple, elegant descriptions of these
very complex examples of quantum mechanical systems. If an open TLS is charac-
terised by a SD like the forms displayed here, we hope we have shown that caution
should be taken, when constructing such physical systems. Particularly strongly cou-
pled vibrational modes that could cause oscillatory population dynamics to decay
faster, or persist for longer, than desired should be taken account of. It should also
be obvious that, conversely, such modes could be used as tools to faster equilibrate a
system or enhance oscillatory dynamics. Customisation of SD forms with a process of
reservoir engineering has been demonstrated [148] and one can imagine this forming
a basis for future quantum device manufacturing, alongside our SM results, allowing

designs of particular SD structures in order to elicit desired behaviours from a system.

Future work along this avenue will need to incorporate generalisations to allow
considerations of non-symmetric and multiple modes. But despite the amount of
work that can still be done, the findings in this chapter provide a tantalising look at
the possibilities for novel quantum effects in complex open quantum systems and

provide insight into their usefulness.
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Entanglement transfer spin channel geometries

e N Chapter [1| we introduced the notions of nitrogen vacancy centres (NVs) as
Q(ﬁl qubits and the possibility of quantum state transfer (QST) through spin chains.
We explained that realistic levels of environmental noise in NV implementations of
QST processes would make the required fidelities impossible. However, these im-
plementations have been considered for entanglement distribution schemes instead,
where imperfect transfer can be dealt with using distillation techniques. Our focus
in this chapter will be an investigation into two spin-channel geometries in an NV-
diamond based implementation of an entanglement transfer scheme. Comparisons

between the two geometries introduced will be motivated by manufacturing imper-

fections and how they affect the ability of the spin channel to distribute entanglement.

As we said in Chapter [1} entanglement is a vital resource and common theme
throughout all quantum frontiers, so progressing our understanding of how to dis-
tribute it is of vital import. There has been consideration of entanglement distribution
along spin chains [149-151] which has, for example, been extended to consider dual-
rail configurations [152}[153]. Ladders of spin-1/2 particles have rarely been looked at
in either QST or entanglement distribution contexts [154], possibly due to the fact that
more spins for a given length of channel will result in higher decoherence across it.
However, one might expect the extra connections between spins in a ladder to make
it more robust to design imperfections. Considerations of physical implementations
and the limits placed upon theoretical processes by physical constraints have been
started, for instance with NV based systems [63]. Modelling of the behaviours of spin

channel systems can help design efficient implementations, but the size of dissipative
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systems we can simulate is often limited by the rapid computational scaling problem

many quantum simulations suffer.

Fabrication of nitrogenic diamond spin-wire structures can be achieved through
nitrogen ion implantation followed by an annealing stage to convert some of the
nitrogen impurities to NVs [155| [156]. The conversion process is not perfectly effi-
cient and the remaining impurities can be used as the spin channel [157]. Chemical
vapour deposition can also be used to incorporate NVs in-situ during the growth
process [158,[159]. Learning how the resulting system copes with missing impurities
or a distribution of couplings due to position variation is clearly necessary to ensure

devices operate as expected.

41 Our model

) UILDING on the work of Ping et al. with nitrogen impurity spin chains [63]
4)1 which showed the implementation to be a viable entanglement distribution
scheme, we will contrast the performance of spin chains and spin ladders with respect
to faulty manufacturing processes. A schematic representation of the spin channel
types we consider, chains and ladders, is shown in Fig. A chain is a 1D struc-
ture, where as a ladder has two chains alongside each other that have adjacent spins
coupled; we use ‘channel’ to refer collectively to chains and ladders. Whilst the fig-
ure shows our final, uniform coupling, model we shall start by introducing the fully

generalised version.

An overview Hamiltonian of our system can be written,
Hg = Hxv + He + Hnv-c, 4.1)

comprising NV, channel and interaction terms respectively. The NVs are denoted as

sites i = 0, N + 1 in Fig. 4.T|and their Hamiltonian takes the form

(U§+Uzzv+1) s (4:.2)

| ™

Hyv =
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Nitrogen Impurity Chain

e Nitrogen Impurity Ladder

FIGURE 4.1: A schematic diagram of N-site nitrogen impurity chain

and ladder channels connecting left and right NVs with the indicated

couplings. An ancilla spin is initially entangled with the left NV.

Intra-channel couplings are of strength x and the NV-channel coupling

strength is g. The index for the ladder spins (and operators) has both a
site label ¢ € {1... N} and a top or bottom label as indicated.

where we have assumed an experimental method as described in Chapter [1|is being
carried out to address two of the three electronic ground state levels as |1) and ||)
leading to a Pauli matrix description of the Zeeman splitting, ¢, with ¢,. The nitro-
gen impurities forming the channel are present here as spin-1/2 electrons and their

horizontal and vertical Hamiltonian components (H c=Hy+ Hv) are

N-1

HH = Z Z Ki,j (O-Z_jo-;—i-l,j + H.C.) s (43)
i=1 je{B,T}
N

Hy = Z Q; (O’Z_BO'ZT + H.c.) , (4.4)
i=1

where i and j are the horizontal and vertical coordinates of the channel; i is a nu-
merical index and j is B or T to the denote bottom and top sections of a channel. The
intra-channel spin flip interactions are acted by the raising and lowering operators o=

and occur with coupling strengths of x and « in the horizontal and vertical directions

respectively. Finally the NV-channel interaction Hamiltonian,

Hyv.e = Z 90, (U(—)Fal_,j + H.C.) +9N+1,j (a]'{}_‘_la&j + H.C.) ) (4.5)
JE{B.T}

has a coupling strength between the NVs and the impurity channel of g which in

general can be different at each end (and rail) of the channel, hence the subscripts.
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All couplings are dipole-dipole in nature. These fully general Hamiltonian terms
explicitly describe a ladder of N sites; to treat a chain we can simply omit Hy and

truncate the summations over j in Hyyv_c and Hy.

4.1.1 Our method

The ancilla present in the system does not interact with any other part of it and is
present to enable us to initialise the Bell state V™) = % (It — [41)) with the left-
most NV. All channel spins and the right-most NV are initialised ||). We then evolve
the system through time and calculate the entanglement of formation, £, between the
right-most NV and the ancilla to ascertain the degree to which the channel facilitates
entanglement distribution [122]. As was introduced in Chapter |2 the entanglement
of formation is a measure of the number of Bell pairs required for creation of a given
state. Our goal is to assess which channel allows a maximal E under considerations of

missing or randomly placed spins as would occur when manufacturing such a device.

To predict the behaviour of a physical implementation of this model we need to
include the system’s interaction with its environment. To do this we chose to employ
a phenomenological Markovian master equation [63],

N
dp(t) = —i[Hs, p|] + v (Dlog] + DloR4]) p + ¢ Z Z Dloi;lp, (4.6)

di i=1 je{B,T}

as opposed to the form derived using a microscopic system-bath Hamiltonian in the
previous chapter. The form in Eq. is the same as defined in Chapter 2 for a Lind-
blad master equation with D[X|p = XpXT — {XTX, p} dissipator terms; in this case
we choose o”-type noise which will be justified in the next subsection. The Lindblad
operators are present to describe dissipation acting on both NVs and all channel spins
with associated decay rates, v; the ancilla in our model does not undergo dissipation.
The density matrix, p, in Eq. is the density matrix of the full NV-ancilla-channel
system and Hg is our Hamiltonian from Eq. (4.1).
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4.1.2 Implementation

The process through which our model can be implemented in experiment is well doc-
umented [60, 161} 63, [160]. In this subsection we give a brief overview for a chain of
impurities although it readily generalises to 2D [61]. If we consider a z-aligned mag-
netic field, B, where this direction is given by the axis of symmetry of the NV we can

write Hamiltonians describing an NV or N defect in diamond

Hxy =D (S2>2 + B (,uBgCSZ — ,ungnfz> + AnvI- S, 4.7)

N ~

Hy =B (139.5* = jimgnl*) + 8- Ay -1, (4.8)

These are in terms of electronic, S, and nuclear, I, spin operators. For a nitrogen
defect these spin operators interact via the hyperfine coupling tensor Ay whereas for
the NV they interact via the constant Ayny; interaction with the B field is along the
z axis. The zero-field splitting of the NV is given by D, g and p,, are the Bohr and

nuclear magnetons and the electron and nuclear g-factors are g. and gj,.

Making the restrictions we explained in Chapter [I| to describe the NV in an
{It), |4)} basis we can approximate Eq. (4.7) as

7 1 ~z P2z
Hny = 5 (wNVU + AnvI®o ) s (4.9)

where we have defined wny = D+ppge B as the electronic Zeeman energy acting with
a Pauli spin operator 6*. We have one hyperfine term, but the spin flip component of
this has been neglected, along with a nuclear Zeeman splitting, because A, p1,,g, B <

wny. Similarly the spin-1/2 nitrogen impurity of Eq. can be approximated,

~ 1 N
Hy~ 3 (wN&Z n A{LIZ&Z) , (4.10)

this time defining wx = ppge B and picking out the parallel hyperfine component.
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The dipolar coupling between neighbouring electron spins of each flavour is

7 Y 1 Az Az
HNV,N = JNV,NUNVUN + Z ((QwNV + AN\/) oNny T (QWN + A&) O’N> , (411)

7 Az Az 1 Az Az
HN,N = t]N’NO'NlO'N2 + Z ((2&]]\] + Ay\h) O'Nl + <2QJN + Ay\IZ) O'N2> y (412)

having assumed a linear chain along the z-axis which is a constraint that easily gener-
alises to a 2D structure. We now acknowledge the relative orientations of the I = 1/2
nuclear spin with the inclusion of the & hyperfine terms. Nitrogen impurities are
not uniformly oriented in general and can take on one of four, tetrahedral symmetry-
restricted, orientations. We have also defined the dipole coupling strength generally

as

gt

= 3
8777“/3’&

Js,8

)

: (4.13)

where 73 g is the distance between spins § and 8’ and in which we have neglected
that J should be negative as the global phase introduced by this is irrelevant. The

system is subsequently driven globally with resonant fields,

N
ﬁﬁelds = | Z Qnvay cos [(wNv + 1421\1\/) t} + ZQN&ZC cos [(wN + A;”) t] ,
i=0,N+1 i=1
(4.14)
at all possible frequencies for the impurities, determined by nuclear orientation and
hyperfine coupling. Our implementation Hamiltonian is now H = H NV,N + I:TN,N +
flﬁelds. Constants are chosen to ensure |Jy n| < Ony, Iy € w £ %. The driving term
enables us to enter a rotating frame of H and perform a rotating wave approximation
which eliminates the frequency, hyperfine and time dependent terms. We can then
also rotate the basis such that (z, y, z) — (2, —y, «) and finally the system Hamiltonian

described in this implementation becomes

H= Y Jxvxoi6,+ Y. Jnoi6,, +He, (4.15)

i=0,N+1 i=0,N+1
with spin flip operators 6+ = 6% £i6Y /2. The couplings J5 5 in general vary with the
index of their associated summation; a labelling index is explicitly omitted although

its position within the sum is intended to imply it. Tuning of the driving magnitude
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{xv allows control of the coupling Jxv N.

The basis rotation (x,y,2) — (2, —y,z) means modelling of physical spin-flip
(phase-flip) noise, characterised by a 77 (1%) coherence lifetime, requires 6* (6*) Lind-
blad operators. It has been shown, for these spin channel entanglement distribution
systems, that T processes are the more destructive type of noise [63] and so it is on
these we focus; hence our definition in Eq {#.6). The 6* Lindblad operators we use
lead to spin flips in the computation basis, but correspond to 7> phase flip processes

on the physical spins.

4.2 Computational solution

| ESPITE using a spin conserving Hamiltonian and introducing only one spin in
l our initial condition in order to study the full dissipative dynamics we are re-
quired to include the full Hilbert space as D[o*] causes transitions beyond a single
excitation subspace. This necessitates two computational methods: 1) direct solution
of the differential equation in Eq. [146] and 2) a matrix product operator (MPO)
formulation [108,110]. For N < 5 a powerful desktop machine can satisfy the mem-
ory requirements of the direct solution, integrating the full-matrix differential equa-
tion system. Again, as with the previous chapter, QuTiP is employed, making use of

its specifically designed structures for handling quantum objects and operations.

For N > 5 an MPO based high performance cluster implementation enables more
efficient solution but which for N' < 5 is slower than direct solution. In Chapter 2] we
detailed the definition and evolution of MPOs in terms of spin-1/2 chains, in this
work an extension was required in order to deal with our spin-1/2 ladders. The Pauli
levels for one spin, 1 and |, generalise to 11, 1}, }1 and || for two spins on one site
which is represented in Fig. Our state, including the NV centres and ancilla, is
described by

p= Z Dn07.“nN+1nO Q.. ONMNF1- (416)
{n:}
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The complete basis describing each two spin site {n;} contains fifteen matrices:

01 00 0 — 0 0 1 0 0 0
1 0 00 i 0 0 0 0 -1 0 0
ny = , N2 = , N3 = )
0 00O 0 0 0 O 0 0 0 O
0 00O 0 0 0 O 0 0 0 o0
0 010 00 — O 00 0 O
0 0 00 00 0 O 00 10
ng = , N5 = , g = ;
1 0 00 1 0 0 O 01 0 0
0 00O 00 0 O 00 0O
00 0 O 0 0 0 1 0 0 0 —
0 0 — O 00 0 O 0 0 0 O
ny = ;Mg = , Ny = ; (4.17)
0+ 0 O 0 0 0O 0 00 O
00 0 O 1 0 0O i 00 O
0 00O 0 00 O 00 0O
0 0 0 1 0 0 0 — 00 0O
nio = y 11 = , 12 = 5
0 00O 0 00 O 00 0 1
01 0O 0 2 0 O 00 1 0
00 0 O 1 0 0 O 1 0 0 O
00 0 O 1 {0 1 0 O 1 10 1 0 O
niz = 7n14 - = 9 niys = — 9
00 0 —2 V3 00 -2 0 V6 0 01 0
00 ¢ O 00 0 O 0 00 -3

plus the identity matrix. This matrix basis is a generalisation from the Pauli matrices
(three matrices plus the identity) for a one spin system to a two spin, four level, sys-
tem [119]. They allow for a complete description of such a four level system in the
same way that the Pauli matrices form a complete basis for a two level system and the
Gell-Mann matrices can completely describe a three level system [118]]. This is repre-
sented schematically in Fig.[4.2(a) for an N = 3 example case where the colours have
the same meaning as they did in Fig. The final NV centre is paired with a dummy,

non-interacting spin in order for basis-size consistency. The diagram in Fig. 4.2(b) is
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a visualisation of the same ladder, now a chain of four level systems as per our ba-
sis description. As MPO solutions for the ladder are the computational upper limit
we use the same description in Eq. for a chain, but we use the relevant reduced

Hamiltonian and effectively treat each site as a chain spin and an uncoupled dummy

spin.
Site 0 Site 1 Site 2 Site 3 Site 4
) ) )
a)
~— ~—— ~——

mjco

oo

FIGURE 4.2: Schematic representations of an NV = 3 system for solution
with an MPO method in terms of four level sites. a) Colour labelling is
the same as in Fig. ancilla green, NVs yellow, nitrogen impurities
purple. The white spin represents a computational dummy spin re-
quired to describe the final NV as a four level site. b) Considering the
effective sites as containing a single four level spin with energy lev-
els and transition rates determined by the two level spin definitions.
¢) The MPO formulation of the system shown, as can be described by

Eq. (&15)
The MPO methodology that has been explained previously in Chapter 2| can be
applied directly to our problem. For instance, the on-site Hy and Hyy components
could be thought of as describing transitions between levels rather than a hopping
between spins and the inter-site Hy and Hnv_c can be thought of as interactions

between a pair of four level spins. We still can decompose our state into
Dugyomgsy = 3 DI \OP W A1) o NIy AINHIp{ v (4.18)

{vk}

(shown diagrammatically in Fig. ) and we can still evolve this in time with the

time evolving block decimation (TEBD) method. The code used for this work was
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built on and modified from already tested TEBD MPO code [161} [162]. It required
adaptation to incorporate our four level site master equation and our required flex-
ibility to define a non-uniform array of sites to consider the possibility of a missing

spin.

4.3 Results

JIE have so far presented a theoretical Hamiltonian we will study and a physi-

g 4| cally implemented Hamiltonian but we have not quite unified these two de-
scriptions yet. We will initially employ a uniform coupling model which allows us to
define go; = gn+1; = 9 = 9 = InvN and o = K;j; = K = JyN. Now we can go
from a statement about physical spin separations and J to a numerical value of the
parameters g and «. This results section starts with a look at what effect the ratio and
value of these parameters has on transferred entanglement followed by a discussion
of the interplay between decay rate and spin separation. Those starting points allow
us to find what parameter values are physically appropriate and will provide good
entanglement transfer in our nitrogen spin channel systems. We then move to consid-
ering two types of manufacturing induced imperfections in these channels and how

they affect their entanglement transfer capability.

4.3.1 Spin coupling and NV splitting

In Fig. [4.3we show what effect different values of the NV energy splitting, ¢, have on
the maximum entanglement of formation, Fj.y, transferred for various values of the
ratio g/k. The system from which the results in this figure were obtained isan N = 3
ladder (like that shown in Fig. where the NVs are isolated from the environment,
v = 0, and the ladder spins are subjected to a decay rate of y¢ = 0.01 kHz. These
rates are not motivated by experiment, rather they allow the demonstration of the
results in Fig. realistic rates are larger and would serve to reduce Ejr.x. The
eigenvalues depicted are those of the N = 3 ladder and it is clear for low values of g/«
that these provide the best route for entanglement transfer. However it is also clear

that as the ratio increases the magnitude of the transferred entanglement improves
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and the dependence of Ejax on € becomes much less well defined until by g/x ~ 1
there is very little dependence left. The jagged, noisy nature of the curves is partly

due to the coarse graining of the simulations in terms of both time and ¢.
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FIGURE 4.3: Entanglement of formation maxima obtained from sim-
ulations sweeping ¢ at various values of g/k; for an N = 3 ladder
with no NV environmental decay and y¢ = 0.01 kHz. The tendency
for a weak coupling ratio to enhance eigenmode transfer is clear, with
eigenvalues included as dashed lines. There is a near performance in-
dependence with respect to ¢ for a strong coupling ratio.

As we said in Chapter 1, dark spin chain QST schemes benefit from weak cou-
pling between NVs and the spin chain as stronger coupling leads to interference ef-
fects from multiple eigenmode transmission reducing the fidelity of transfer. A QST
plot for similar circumstances as Fig. (with maximum fidelity as its measure of
success) would show poor results for large g/x as competing eigenmode pathways
interfered. This means for entanglement transfer our optimal values of ¢, g and « are
different compared to if we were trying to optimise QST. We are free of the need for
high fidelity transfer as we are already performing dissipative transfer which will re-
quire subsequent distillation. Therefore a large coupling ratio is beneficial as it results
in a higher transfer speed. We choose g/x = 1 and at this value, due to the nature of
the dependence between ¢ and Ejyj.x we arbitrarily choose to set ¢ = 0. We also now
fix the NV decay rate as ywv = 1/7> = 0.1 kHz [58]]; channel decay rate is to be

studied further in the next subsection.
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4.3.2 Channel length

The actual values of g and « depend on spin separation and so, if we fixed total chan-
nel length, varying the number of spins present would change them. In Fig 4.4 we
present E dynamics illustrating the effect of varying N for one value of the channel
decay (a restriction which will be lifted in the next subsection); the number of spins
in a channel increases from right to left. The NV separation is fixed at 40 nm which
we believe to be physically reasonable [163, 164] in terms of the placement accuracy
and optical resolution limits. We chose to stop at N = 12 due to physical limitations
of consistently placing impurities with » < 3 nm. Also at this point we already have
27 spins (a Hilbert space with dimensionality greater than 10%) and we are approach-
ing computational limits; solutions with more spins in a channel require smaller time

steps and increased MPO bond dimension to achieve convergence.
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FIGURE 4.4: Dynamics of the entanglement of formation, E, for in-

creasing number of spins in the channel N (right to left) in (a) chains

and (b) ladders between NVs spaced 40 nm apart, and channel decay
rate y¢ = 2 kHz.

A fixed NV separation means an increasing impurity density which in turn im-
plies g and x must also increase and in Fig. a) and (b) it is clear this increases
the speed of entanglement distribution. Further, for this value of y¢ = 2 kHz, the

long transfer time for few-spin channels is clearly seen to negate the benefits of fewer
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spins undergoing decay, whereas the many-spin channels are more robust exhibit-
ing increased entanglement transferral. The ladders in Fig. [4.4(b) do experience more
decay pathways due to having twice as many spins for any given /N and therefore
have a smaller magnitude of E compared to the chains in Fig.[4.4(a). There is a speed
advantage of using ladders though when comparing site number; a given coupling
strength (as this is varying with number of spins) elicits faster entanglement transfer

through a ladder than a chain.

4.3.3 Channel decay rate

The behaviours in Fig. are however not global, they depend quite strongly on
7c and in an interesting way. In Fig. we extract the maxima for the chain and
ladder £ dynamics for a range of v¢, with strongest decay at the top, and highlight
the IV-site channel that performs the best at each strength. There is a clear interplay
between spin number and decay rate with a transition present whereby increasing
noise changes the optimal N; this is due to competition between the spin-number

dependent total decay rate and the transfer rate.
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FIGURE 4.5: The maximum F, for (a) chains and (b) ladders, with dif-

ferent y¢ values (increasing from top to bottom) as a function of N

between 40 nm spaced NVs. The circles denote the N that maximizes
EMax'

A large decay rate means that the few-spin channels, which have slower transfer

rates (as shown in Fig. [f.4), are subject to decay for longer before the transfer can
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complete thus reducing its fidelity. Conversely, smaller 7 leads to few-spin channels
being superior as their slow transfer is not as adversely affected as the many-spin
channels undergoing small but numerous decay processes. The difference between
what constitutes a many- or few-spin channel and weak or strong decay for the two
channel types is seen between the two panels in Fig. as the different pattern of

maximal N's for the y¢ simulated; again we see the weaker E for ladder systems.

For subsequent results we choose the experimentally motivated value of v¢ =
2 kHz [165] 166] which allows us to demonstrate interesting results. We have also
shown in Figs.[4.4land [£.5/that at this decay rate the couplings associated with N = 12
provide an optimal distribution of entanglement considering a much smaller spin
separation begins to go beyond physical placement limits. With this in mind we relax
our restriction of fixed NV separation and instead fix the spin separation at the N = 12
value of r = 40/13 nm and hence g = £ ~ 0.9 MHz from Eq. {#.13). However the
tasks we report in the coming sections would be impossible to simulate with N = 12

channels; we do use the NV = 12 coupling parameters but with shorter channels.

4.3.4 Missing spins

We now consider the idea that a manufactured channel may have spins missing as a
result of the processes for placing the nitrogen impurities. To do this we imagine a
process has associated with it a probability P per spin that said spin will be missing. It
is immediately obvious one spin missing from a nearest neighbour interacting chain
constitutes a catastrophic break, rendering distribution impossible. As one can see
from the selection of configurations present in Fig. this is not generally the case

for a ladder.

In Fig. 4.6|we clearly have revivals where before, in Fig. we see none. Actu-
ally there were revivals in the results in Fig.[4.4]but the curves were truncated past the
first peak to enable clear comparisons. The discarded parts of Fig.[4.4|contained no re-
vival peaks that rivalled the initial peak whereas we can see in Fig. |4.6|that the N = 3,
4 and 6 configurations actually have their maxima occur as a revival. The strong re-

vivals are in part due to the configurations themselves; the NV coupling into and out
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FIGURE 4.6: Dynamics of E for various impurity ladder configurations
with some spins absent. The simulated configurations are schemati-
cally illustrated above with crosses to denote missing spins.

of the channel is presumably now not as symmetric as it was with perfect channels
due to the nature of the channel’s eigenstates, hence there are competing oscillatory
transport processes which lead to complex dynamics. The coupling strength-decay
rate regime we are in also plays a part in causing revivals; complex dynamics can oc-
cur before the decay processes have destroyed the entangled state. For fixed coupling
strength, as we have here now, the transfer time of longer channels increases and this
is seen in the behaviours of the first peak position in Fig. While this is in contrast
to what we observed earlier it is understandable now that we are not increasing the
coupling strength with the number of spins in a channel, which is what was driving

the speed increase in Fig.

It should be clear though that looking at a handful of isolated configurations does
not a conclusion make, we need to assess the behaviour of a given channel length
based on all of the possible configurations. To do this we must calculate the average

maximum entanglement of formation

(Esax)(P) =Y P™ (1 = P)M "™ Eytac, (4.19)

C

which includes a sum over all configurations, c, of their maximum FE, taking into
account a weighting based on the number of missing spins, m.. This is a function of
the probability per spin, P, of an absence which we introduced earlier and M is the
total number of possible spins (so N or 2N depending on channel geometry). For any

given channel length we can reduce the number of configurations we have to calculate
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by taking advantage of symmetry and the presence of catastrophic breaks. Obviously
if we can diagnose a catastrophic break in a configuration we can automatically have
it contribute an E\ax = 0; to this end for any chain we only need calculate the perfect
case. For ladders, keeping track of any configuration that is symmetric about the
length axis means we can attribute the result of that previously simulated symmetry

partner to the calculation of Eq. (4.19).

A graph showing the results of Eq. for channels N = 3 to 6 can be seen
in Fig [4.7(a) where we can see the intuitive result that a higher P causes a reduction
in (Enzax). What is immediately noticeable is the more severe gradient which occurs
for the chain geometry at low probabilities showing that indeed chains are affected
strongly by the chance of spins being missing. It appears that ladders are more robust
to increasing P, but we do still have the feature that ladders are more strongly affected
by environmental noise meaning their low-P (Ejax) are reduced compared with the

chains.

To help ascertain which channel geometry performs best for a given length and P
Fig[4.7(b) shows the ladder:chain ratio of (Fyrax)(P). On this figure we have marked
the value of 1 which corresponds to equal performance and above which is a region
where P enables ladders to outperform chains of the same length. There is clearly a
regime then in which it would be sensible to construct ladders if your manufacturing
process was suitably poor at guaranteeing spin presence. It is also fair to state that this
regime occurs at a fairly high P which is a surprising result as one might reasonably
expect the multiple transfer routes through a ladder to allow for better resilience.
Different coupling strength regimes were investigated for an improvement here and
although stronger couplings do show increased environmental decay robustness for
the ladder, the chain similarly exhibits less decay so the P cross over does not show

much improvement.

It would obviously be interesting to carry on to larger N but we are somewhat
restricted by the computational resources required to simulate the increasing number
of configurations that are present, even after considering symmetries and catastrophic
breaks. The trend in Fig 4.7|appears to show (apart from the very short N = 3 case)

larger N ladders outperforming their chain counterparts earlier; a promising result,
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but there clearly will come a point at which the channel is too long to distribute a
finite amount of entanglement. The IV = 3 ladder appears to benefit from some short
channel effect, but the required NV separation to achieve the same coupling used here
is approximately 12 nm which is not far enough to ensure the NVs are well resolved

qubits.

Although the large P requirement for superior ladders means low (Ejax) When
comparing like-N's, if we look more generally at Fig[4.7(a) we can see an N = 6 chain
is outperformed by an NV = 4 ladder at relatively low-P. This has an interesting
implication: rather than manufacturing an N = 6 chain, an 8 spin, N = 4 ladder

device would give more reliable entanglement generation for these modest P values.
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As we saw earlier, for a given coupling strength ladders facilitated faster transfer, this
observation reinforces the argument for choosing an N = 4 ladder over an N = 6
chain. We must of course be careful with such a comparison for as it currently stands
the spatial distance between the IV = 4 ladder-connected qubits is less than the N = 6

chain-connected case (as we have fixed impurity separation).

4.3.5 Placement disorder

One other way that a channel can deviate from perfection is variation in the impurity
position. We investigate this effect by introducing random couplings about our ideal
ko = k(r = 40/13 nm) following a log-normal distribution [167]. The log-normal dis-
tribution was chosen as it has a long tail for £ > xg and goes to zero at Kk = 0 which
describes the variation in coupling associated with an uncertainty in a spin’s place-
ment. In Fig. 4.8 we sketch the form of the log-norm distribution for three example

standard deviations, 0. A o = 0 case would correspond to a discrete line at x = k.

{\ — Small ¢

= Medium ¢
Large o

A — e
Ko K

FIGURE 4.8: A sketch showing three instances of a log-normal distri-
bution for differing standard deviation, o. The frequency axis refers to
the frequency with which a value of x would be generated.

Frequency

In Fig.[4.9(a) the converged arithmetic mean of £ maxima from the sampled cou-
pling dynamics, F\ax, is shown for increasing o of the log-normal distribution. Chan-
nel lengths of 3 and 4 are used as bigger channels, although requiring fewer disorder
samples, do take longer to simulate per sample and thus present a computational re-

striction. A broader distribution of couplings can be seen, in Fig.[£.9(a), to lead to a
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reduction in Eyp.x and this correlation is repeated across both lengths and geometries.
This type of manufacturing error however does not show a region where a chain is
outperformed by a ladder of the same length. There is an interesting outcome though
which is presented in Fig. b) where we plot the deviation of Eyp.x from its ‘best
case’” uniform coupling value. Here we see the response to a broadening distribution
is remarkably similar for both geometries of a given length and the longer, N = 4

channels seem more robust.

O_EMax,O'

EMax,O'
o o
W \®)

’ Chain, N=3 — Ladder, N=3 --- Chain, N=4 - Ladder, N=4

FIGURE 4.9: a) Disorder averaged Eax o for randomly assigned intra-
channel coupling strengths generated using a log-normal distribution
of standard deviation ¢ in units of the ideal coupling x¢. The standard
error of the mean was used to calculate the error bars. b) The difference
between the ideal o = 0 case and its disordered equivalent. Each point
was averaged over k disorder realisations where & = 12000 for the
N = 3 chain, £ = 10000 for the N = 4 chain, ¥ = 4000 for the N = 3
ladder and & = 600 for the NV = 4 ladder.

44 Concluding remarks

due to them having inherently more transfer routes. Indeed, we have shown regimes
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and scenarios in which ladders can outperform chains. In considerations of missing
spins and imperfect placement we can see ladders might be as, or even more robust
than chains to increasing error rates, but often the reduced fidelity associated with
more decay pathways often makes ladder geometries appear to perform worse than
their chain counterparts. However, given a sufficiently high missing spin rate, lad-
ders do become the better candidate. It would be very interesting to combine studies
of missing spin rates and positioning accuracy. This sort of study is especially com-
pelling since longer channels seem more robust against coupling variation and there
was the observation of ladders outperforming longer chains when spins are (possi-
bly) absent. Unfortunately the current computation limitations make any study into
combining these effects impossible; vast resources would be required to consider all
configurations of missing spins and sample each of them hundreds or thousands of

times to converge distributed coupling dynamics.

We have however already pushed computational limits with this work; our MPO
implementation of a four level site has allowed solution of much larger Hilbert spaces
than is possible with direct solution. An interesting next step would be to consider
beyond nearest neighbour only interactions. Whilst this should make both kinds
of channel more robust against defects it would also allow chains to function when
catastrophic breaks are present, possibly causing them to improve in the strong im-
perfection limit. One could also consider how correlated noise or the introduction
of non-Markovian effects of the environment might affect these sort of spin channel
entanglement transfer systems. As ladders have more spins for any given N the de-
phasing processes have more of an effect on them than chains and the concept of the
environment resupplying a channel with information rather than simply destroying

it is an interesting one.

It is clear from this work that ladders and chains both exhibit interesting be-
haviours and have their own strengths and weakness when used in an NV-impurity
entanglement distribution scheme. We have also shown that the interplay between

dephasing and channel length doesn’t necessarily make a higher decay rate a bad
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thing. There are clear choices that can be made based on the interplay between envi-
ronmental decay, manufacturing efficacy and channel parameters when implement-

ing these entanglement distribution architectures.
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Entanglement routing

7z FTER thinking about nitrogen vacancy entanglement distribution implementa-
&2 | tions in the last chapter we will now look at an extension of the distribution
concept but without direct consideration of an implementation scheme. In this chap-
ter we present our exploration of the idea of routing entanglement. First it is impor-
tant to be clear about the terminology of quantum routing. Much like classical in-
formation routing which allows the Internet to function, quantum routing in general
describes the process of directing information along different channels. It is however
a reasonably new concept and as such has not had a formal definition accepted en
masse. Currently there are two main schools of thought when it comes to what is

meant by a quantum router.

The first can be thought of as a full quantum conversion of the classical routing
procedure. In classical routing an input piece of information enters the routing device
and is output to a desired destination based upon the instructions from some control
signal. Lemr et al. considered quantum routing in terms of a single photon, linear
optics implementation with two output channels [168]. They argue that a router can

only be fully quantum if it satisfies five criteria:
1. The control signal (as well as the input) must be a quantum entity.
2. The input state must be unchanged by the routing process upon output.

3. However, the output state must exist in a superposition of the possible output

channels.
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4. The router must not rely on postselection of the output and if the process is
probabilistic in nature, measurement via the control state should be employed

to judge success.

5. For resource efficiency there should be a need for only one control qubit per

routing operation.
There are schemes that exist which satisfy all criteria in this list [169-171].

The other idea about what quantum routing is focusses on the distribution of
a particular quantum state to one of multiple locations, i.e. no superposition across
all output locations. The most common instances of this interpretation are in single
photon routing [172H174] or abstract theoretical network models [175H177]. There are
also some spin network proposals [82, [178] which consider chains or rings exploiting
eigenmode tunnelling [179, 180] (which we introduced in Chapter and pulses,
buffering or other coupling manipulation to control state propagation [178,[179,[181].
Our proposal is to use a rectangular spin network for entanglement routing where,
beyond initial positioning controls, all that is required for destination selection is a
modification of the sending spin’s energy splitting. We will show here that, with
this minimal control scheme, routing of a single entanglement state is possible as is

routing multiple states simultaneously.

5.1 Spin network router

- HE problem we wish to investigate in general is illustrated in Fig. a 2D
@ Cartesian network of spin-1/2 sites form the functional basis of our routing
device and we couple to this network a sender (or senders) and multiple receivers at
positions to be specified later. The sender is initially entangled with an ancilla that
(like in the last chapter) is decoupled from the dynamical evolution of the system and
allows us to judge the success of routing. We choose for the network coordinates (1,1)

to describe the bottom left site and (/V,,/N,) the top right site.

We impose uniform nearest neighbour couplings within the network and assume

the same form for the external sender and receiver spins coupling to the network. This
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FIGURE 5.1: A representation of the model we are considering where
a network of Ny, = N, x N, spin-1/2 spins allows transport of entan-
glement from a sender to one of multiple receivers.

allows us to write the Hamiltonian
H = Hx + Hg + Hg, (5.1)

where the first term describes the network and last two describe the sender(s) and
receivers and their interaction with the network. The network Hamiltonian is given
by
Hy = HZ (a;:o*; + H.c.) , (5.2)
n,j

with the n subscript selecting each site and the j summation covering that site’s near-
est neighbours within the network. The interaction strength is given by « and we
have neglected any spin splitting terms. We present the sender term for a general

number of spins (however will restrict our investigation to one or two senders):

Hg = QZ (0fo, +He)+ ZEEO‘SZ, (5.3)

where s is an index labelling the sender and the n, subscript references the network
coordinate to which the sender couples. Here we do include a spin splitting term
with energy 5 and this will be the only thing we need to vary in a defined system
to achieve routing. To be clear, by a defined system (or system definition) we mean a

fixed network size, sender-receiver placements, coupling strengths and receiver spin
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splittings. Finally the receivers are described by the similar Hamiltonian
Hr =g Z (o0, +Hc)+ Zsf‘orz; (5.4)

the e} would remain fixed for a defined system and n, denotes the coordinates in the

network to which each receiver couples.

We define a Lindblad form master equation to obtain dynamics for all spins

dp(t ,
zy = —i[H,p] +7 ) DLdp, (5.5)
d
where having d € {n, s, } gives us the dissipator D[L4]p = LdpLIl — %{LLLd, p} acting
on all but the ancilla with the same phenomenological decay rate v, with L = o~ or
o? giving spin decay and dephasing noise respectively. As with the last chapter, we

need to use a measure of entanglement to study how well it is distributed across the

network and we use F, the entanglement of formation [122] introduced in Sec.

There are several factors that might affect routing ability that we wish to inves-
tigate. One family of factors are the values or ratios of system parameters which
will determine whether the correct receiver was routed to. We will also look at two
different methods of exploiting the eigenspectrum of the network. We have already
mentioned in Sec.[I.2.2]the ability to tunnel through specific eigenstates in a spectrum
if coupling into the system is weak compared to the internal couplings (see Fig. [1.6).
The intent with this coupling ratio is to ensure that the rate of tunnelling into (from)
levels other than the intended is small meaning minimal phase interference in the
transferred state. In our case we will want to ensure addressability of receivers so
using eigenspectrum tunnelling seems a promising avenue. Practically, using this
method requires resonantly tuning the sender and the target receiver to the selected

eigenstate energy to take advantage of the low interference tunnelling process.

There is another possible effect we could exploit when trying to influence which
receiver is targeted; we present this diagrammatically in Fig. We propose tak-

ing advantage of the contrasting population amplitude profiles (PAPs) of network
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eigenstates to enhance the distinguishability of routing. If we imagine two eigen-
states with similar energies then the eigenspectrum tunnelling method may not be
perfectly interference-free as the tunnelling rate into the nearby levels will be higher
in general. However, the receivers could be positioned to couple to regions of low
population amplitude in the opposing eigenstate and high in the target eigenstate.
This theoretically could reduce the tunnelling rate and hopefully provide some inter-
ference protection as it will reduce the overlap with the undesired eigenstate while
maintaining a high overlap with the target pathway.
High
Population
amplitude

Eigenstate 1

Low

Eigenstate 2

FIGURE 5.2: A conceptual example of how one might exploit regions
of contrasting population amplitude between eigenstates of a network
for enhanced routing effectiveness.

Our Hamiltonian and L = ¢4

conserves spin number; in order to investigate
routing over large networks efficiently we restrict our single (double) sender studies
to the single (double) excitation subspace of H. The single excitation subspace can be
represented in a basis of states {|¢y)} with |¢;) depicting the state with the k-th site
spin up and all other sites down; so k € {[1, Ny, Ss, R;, Aq} where S, R and A are
the senders, receivers and ancillae. This basis would have N, + (25max) + "max States

where spax and rmax are the total number of senders and receivers and the factor of

two accounts for the ancilla associated with each sender. The case of L = o~ requires
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the inclusion of a ground state when studying single sender routing, i.e. |¢o). This is

because o~ dissipation corresponds to a down spin flip process only.

The double excitation subspace extends this basis notion to {|¢x)} containing
states with the k-th and k'-th sites spin up and the remaining sites down. The extra
excitation means the basis span is slightly more complicated to present. We start with
the number of states comprising only excitations in the network: N, (Ng, — 1) /2.
Then to this we need to add the number of states with only one excitation on the net-
work: Ngy (28max + Tmax). We next include the possibility of two excitations present
only the ancillae, or only on the senders, or only on the receivers which contributes
Smax (Smax — 1) + max ("max — 1) /2 states to the basis span. Finally there are the num-
ber of states due to excitations being present on combinations of ancillae, senders and

receivers: s2

fax T 28maxTmax. In total then the basis span is

Ngy — 1 Tmax
% + Smax (28max + 2Nay + 27max — 1) + “; (Tmax + 2Ngy — 1) . (5.6)

For a double excitation solution and L = ¢~ a ground state and the single excitation

subspace would need to be included, but we do not consider such a situation here.

Our method for obtaining dynamics is a numerical Python solution employing
methods from the ‘Quantum Toolbox in Python” (QuTiP) library [146] following a
procedure we shall now overview. Firstly we find the single excitation eigenspec-
trum of the network in order to allow us to choose which eigenstates and network
coordinates we are going to use for our routing process. This allows us to then set
the values of the €5 and the e® that are resonant with these targeted routing eigen-
states. Next we define the full network-ancilla-sender-receiver system and evolve the
system until some maximum time, then resetting and repeating for a given number
of 5. Each evolution we initialise the ancilla and sender in a Bell |¥'~) state with all
other spins down. Proceeding in this way we can obtain E dynamics for different
routing process (different 5 in a defined system) and compare the behaviours. Un-
like in the last chapter where we performed scans over the configuration sets, with
the type of system definitions we have here it would be impractical to scan all sender

and receiver coupling coordinates across all eigenstates. Our assessment has been
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restricted to a subset of system definitions and from these we present demonstrative

cases.

5.2 Single sender routing

ET us start a discussion of what is possible in the routing of a single entangled

pair with an introductory example. Consider a 3x2 network, which we re-
ferred to in the last chapter as a ladder: we can obtain its single excitation subspace
eigenstates as shown in Fig. The eigenstates are obtained from diagonalisation
of the single excitation subspace of Hy in Eq. which is clearly governed by k.
In this figure we have x = 900 kHz which is one intra-channel coupling strength
used in Chapter 4. The layout of the each eigenstate is designed to inform about the

coefficient of the single excitation basis states {|¢x) }.

-2172.77922 -900.0000 -372.7922

372.7922 900.0000 2172.7922

FIGURE 5.3: The 6 single excitation eigenvalues (in kHz) and eigen-

states (numbered from 0) for an N, = 3, N, = 2 network. The circle

size represents the single excitation basis state coefficient magnitude
and the colour its phase: red=-positive, blue=-negative.

The diameter of circles in Fig. and subsequent eigenstate figures are nor-
malised to the largest coefficient in an eigensystem to allow visual comparison be-
tween eigenstates in an eigensystem. For clarity, the set of eigenstates for a system
{l1j)} can be written |1;) = ", Cji |¢x) where {|¢y)} is the single excitation basis of
the network; mathematically it is of course possible for the C};, to be complex but for

our systems Cj;, € R. This leads to the diameters d;;, = |C}i/Cnax| where Cyay is
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obtained from the whole {|¢;)}. The phase of C' determines the colour of a circle in

an eigenstate figure: red is positive, blue is negative.

This eigenspectrum features levels that are well spaced and choosing external
spin coupling g = /10 allows us to demonstrate eigenspectrum tunnelling. We can
select the £900 kHz eigenstates and define a system where ' = 900 kHz and £ =
—900 kHz with the network coupling coordinates (3,1) and (3,2). To complete the
definition of the system we choose to couple our sender to network position (1,1).

Choosing % = +900 kHz we display solutions for v = 0 and v = 2 kHz with L = o7

in Fig. .4}
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FIGURE 5.4: Entanglement of formation dynamics showing distin-

guishable routing processes in an N, = 3, N, = 2 network tun-

nelling through the +900kHz eigenstates with e} = 900 kHz and

e} = —900 kHz. a) and b) have v = 0, ¢) and d) have v = 2kHz.
a) and c) have % = 900 kHz, b) and d) have £5 = —900 kHz
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All four frames in Fig. [5.4 display good examples of distinguishable routing oc-

S = ¢R) has significant E. The dissipationless

curring; only the desired receiver (e
examples in a) and b) show oscillatory beating and near perfect transfer whereas the
presence of the bath in ¢) and d) damps away the dynamics leading to sub-perfect
transfer of entanglement. The interesting difference between left and right panels is
not due to the phase difference in the eigenstates and connection locations of the re-
ceivers, but the difference in ‘distance’” from sender to receiver. This can be shown
running simulations (not shown here) with both receivers connected to network lo-
cation (3,1) or (3,2): the dynamics for both receivers are the same despite being con-
nected to network locations which exhibit a different phase coefficient for the two
eigenstates. Incidentally this check exposes another property: having the receivers
connected to the same spin does not appreciably increase ‘bleeding’ onto the incor-

rect receiver. The zero-lines in Fig.|5.4/show that there is no appreciable bleeding here

either.

5.2.1 Eigenstate population amplitude exploitation

We need to move beyond the example of the NV, = 3, N, = 2 network used so far
in order to explore the possibility of taking advantage of eigenstates with interesting
PAPs. We argued initially that this exploit would be good for dealing with closely
spaced levels where the eigenstate tunnelling method used so far may not be interfer-
ence free. With this in mind consider the two eigenstates with contiguous eigenvalues
shown in Fig. with a separation of ~ 16.5 kHz generated for an N, = 11, N, =7
network where we are now using x = 200 kHz. The highlighted 9th and 10th columns
are perfect examples of where a PAP could be exploited with only one column having
non-zero amplitude in each eigenstate; these columns are where the receivers can be
coupled. The central row provides consistently high amplitudes and so along here is
where we should couple. The fact that the central row sites in column 1 in both eigen-
states have significant amplitude similar in size to the sender and receiver coupling

locations makes it an ideal column for the sender coupling coordinate.
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FIGURE 5.5: Two of seventy-seven single excitation eigenstates of an

N, = 11, N, = 7 network with x = 200 kHz. The 10th and 9th

columns provide locations to couple receivers that correspond to re-

gions of contrasting probability amplitude. The central row contains

high amplitude coordinates in convenient locations for sender and re-
ceivers.

So, choosing the sender coupling coordinate (1,4) and the receiver coupling coor-
dinates (10,4) and (9,4) we can generate the dynamics in Fig.[5.6| where again g = /10
but this time with v = 0.1 kHz dephasing. There was no physical motivation for
changing the values of v, «; this set was found to produce results comparable and
consistent with the different parameters that were trialled numerically in the early
stages of the investigation. The lower value of g (because « is lower) means that tun-
nelling into and out of the network is at a slower rate which has the effect of causing
slower transfer compared with Fig. If we compare the two frames in Fig.[5.6| we
can see similar (but not identical) amplitude and transfer speeds for the two rout-
ing process. For any route independent subsequent actions one would presumably
ideally want perfect symmetry between routing process which we do not have here.
However it is also reasonable to propose differences between routed outcomes can
be handled by some post-processing step. It is also possible that a subsequent action

would not require routed entanglement levels to be identical.

The amount of bleeding into the incorrect receiver in Fig.|5.6/is definitely greater
than in Fig. A comprehensive explanation for this is hard to find due to the dif-
ferences between system definitions, but the fact that the energy levels being used
are much closer together is definitely an important factor. Logically we want to min-

imise bleeding between receivers to ensure routing processes result in distinguishable
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FIGURE 5.6: Routing dynamics utilising a receiver coupling configu-

ration that takes advantage of the PAP to minimise coupling to the

undesirable eigenstate. The network used has IV, = 11, N, = 7 with

couplings g = /10 = 20 kHz and dephasing with v = 0.1 kHz.

transfer, although it is possible again post-routing process could be controlled exter-
nally based on user expectation rather than global manipulation. We argued that our
PAP exploitation would protect against bleeding between closely spaced eigenstates
more effectively than relying on tunnelling. This is not a straightforward compari-
son to make as we must use a different site(s) to couple receivers to test each exploit

method or use different energy levels which are similarly spaced but allow fixed re-

ceiver coupling coordinates.

In Fig. we present results for the same eigenstates as our PAP results but
with both receivers coupled to (11,4). The bleeding levels are very similar, which
is somewhat unexpected. Further, transfer rates stay roughly the same but we can
immediately see the lower energy routed amplitude is reduced here compared to the
PAP exploited result. This is a positive result for using PAP exploitation, but it isn’t

conclusive proof it is always better.

The value of the the sender and receiver coupling to the network, which has
so far been g = x/10, is a factor that influences the amount of undesired eigenstate
tunnelling; the larger g is, the higher the tunnelling rate into eigenstates around the
targeted level. Let us see if there is a clear value of g which allows the PAP exploitation

to provide a significant benefit in this IV, = 11, N, = 7 network compared to simple
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FIGURE 5.7: Routing dynamics contrasting those in Fig. relying

on eigenstate tunnelling alone with both receivers coupled to (11,4).

We see similar bleeding levels and slightly reduced maximum transfer
peak with the lower energy eigenstate.

tunnelling. In Fig. 5.8 we show results of a scan over g as a fraction of « for the PAP
and tunnelling setups used in Figs. and we produce dynamics for each €5 and
g/k, taking the maximum FE on the desired receiver and, at the same time, the value
of E from the incorrect receiver. This is in order to assess the transferred and bleeding

entanglement as the sender and receiver coupling increases.

In the top panels of Fig.[5.8| we can see the scan results for the maximum entan-
glement transferred to the desired receiver (receiver 1 in the left case and receiver 2
in the right case) and the bleeding to the undesired receiver (vice versa) for a PAP
setup (black and red) and a basic tunnelling setup (green and blue). There is a region
around g/x = 0.1 where the PAP scheme receivers outperform the simple tunnelling
scheme, albeit only slightly. The bottom panels are to aid in analysis of the compari-
son between the PAP and tunnelling schemes by plotting the difference between the
performance of each receiver under the schemes; i.e. a positive difference indicates
the PAP value of E is larger for that particular receiver at that value of g/x. On the left,
purple is the desirable receiver difference whereas on the right it is cyan. Both panels
display the region around g/x = 0.1 where the PAP provides a higher transfer, follow-

ing this there is a small cross-over where the undesirable receiver difference becomes
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FIGURE 5.8: Top: Results from a scan over g showing maximum desir-

able transferred entanglement and the corresponding value of the un-

desirable bleeding for PAP and tunnelling implementations. Bottom:

Difference between the PAP and tunnelling results for desired transfer

and the transfer bleeding. From both plots there is an indication that
the PAP scheme performs slightly better.

positive and the desirable negative. This implies that the bleeding in the PAP case be-
comes larger than the tunnelling case at the same point as the desirable transfer in the
tunnelling case beats the PAP case. Increasing the g/« ratio further then undoes this
change and looking at the top panels again, exploiting the PAP appears to generally
lead to less bleeding and more desirable transfer compared with a simple tunnelling
approach which clearly tends to an equal amount of desirable and undesirable F.
Ideally though the high transfer, low bleeding region around g/x = 0.1 provides the
optimal choice as the desirable-to-undesirable F ratio is much more favourable than

at higher g/ values.

The PAP method was suggested for eigenstates close together, but let us look
at a situation where the spacing is much greater to see what might be inferred about
routing operations. In the top of Fig.[5.9|we can see two distant eigenstates in the N, =
11, Ny = 7network we have been using throughout this section. We indicate on those

diagrams the sender coordinate (2,2) as well as the coordinates for the two receivers
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in the PAP case, (8,6) and (6,6), and the location of both senders in the tunnelling-
alone case (10,6). Below the eigenstates in Fig. [5.9| we can see the routing dynamics
for both cases and immediately it is obvious that with distant eigenstates there is
virtually no bleeding in either exploitation method. It is also apparent that tunnelling-
alone consistently transfers better through the second eigenstate and at its optimal
g/k ~ 0.2 it is also the better performer in the first eigenstate, although in general

here the two cases perform similarly.
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FIGURE 5.9: Top: Eigenstate diagrams depicting two distant states that

can be used for routing processes in the x = 200 kHz N, = 11, N, =7

network we have been discussing. Indications of the coupling coor-

dinates for the sender, PAP receivers and tunnelling-alone receivers.

Bottom: Routing dynamics for the two exploitation schemes using the

above eigenstates. Due to the distant nature of the states bleeding is
effectively prohibited.

We looked at many of these sorts of outputs for different sized networks, cou-
pling coordinates and energy levels for the differences between the results obtained
from a PAP scheme and a simple eigenstate tunnelling scheme. The PAP scheme can
be shown to allow higher amplitude and more distinguishable transfer in some cases

(as we can see in the figures within this section). Clearly though the reduction in
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bleeding provided by using distant eigenstates makes those particularly appealing.
We believe that the ‘best” choice of coupling coordinates relies very strongly on the
system definition and as such no global statement can be made on which scheme
should be used. Given time and a particular system definition one may be able to
find a particularly effective PAP scheme set-up but, for an initial impression of what

is possible, the use of simple tunnelling through distant eigenstates proves effective.

We have found that it is important to match the magnitude of the site probability
that the sender and receiver couple to if efficient transfer is to be achieved; a difference
leads to competing oscillations in the E dynamics as tunnelling in to and out of the
network is occurring at different rates. Another consideration is the effect of €5 and £
deviating from their target eigenstates. Recalling Fig. 4.3|and our reasoning for using
g/k = 1in the last chapter, we can infer that a deviation from the target eigenstate at

the low coupling ratios used in this chapter will results in reduced transfer.

5.3 Two-sender routing

JINE obvious and interesting extension of this work is to imagine we now have

two senders that wish to route through a network to particular receivers. We
now need to modify our computational solution to handle the double excitation sub-
space of the system. During the design of this modified program we chose to no
longer consider dissipation. As we do not have a physical implementation specifi-
cally in mind to lend quantitative decay information and based on the observations
of the last section and chapter, we adopted the view that we could still obtain mean-
ingful results without an environment (i.e. v = 0). A dissipative environment acts to
reduce the effectiveness of entanglement transfer as can be seen in Fig. so this is

what we must bear in mind when considering results here.

The other thing to consider when shifting to routing two entanglement pairs is

how the dynamics proceed. In the last section we followed a process like

|6s) = |=,) = |9R,) (5.7)
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using the single excitation subspace notation we introduced in Sec. where [1).,,)

R

is a network eigenstate Hy [t.,) = &, |1, ). It is implicit above that €5 = e} = ¢,,. In
the two-sender case there are a few process that we could think of, remembering that
the form of our Hamiltonian restricts us to single spin flip process. Three eigenstate

tunnelling examples are

0ss8,) = [Vensy) = [Ven) = [Yeur,) = [ORR,.) S (5.8)
0s.5,) = [Vens,) = [Wene,,) = |e,R,) = |OR,R,,) (5.9)
’¢Ssss/> - |¢sn83/> - ‘¢RTSS/> - |11Z)Rr€n/> - |¢RT‘RT/>’ (510)

where we consider using a double excitation eigenstate |V, ), a superposition of dou-
ble excitation eigenstates which can be thought of as representing two single excita-
tion states |t ,), or simply two single excitation processes. Of course it is possible to
change the ordering of sender (receiver) transfers and as we are dealing with a quan-
tum system it is possible for these process channels to occur in superposition. Our
study of two-sender routing will mostly focus on understanding implementation in

terms of these processes.

5.3.1 Two site toy model and parabolic coupling

The first step we made towards two-sender routing was to think about a toy model
test case, an exact solution for a two spin network to be precise. An exact computa-
tional solution for a two spin network is simple and quick to code using the QuTiP
library and can be used to assess if two-sender routing can work, further it can be
used as a comparison for the subsequent, more general, double excitation code. A two
spin-1/2 network defined by our Hamiltonian in Eq. has 4 eigenstates which are
depicted graphically in Fig. along with a schematic of the system. We have writ-
ten sender and receiver couplings generally rather than the uniform coupling scheme
used thus far (gs, = gs, = gr, = 9gr, = g) because shortly we shall investigate an

alternative.

Initially though let us consider our tunnelling approach with uniform g for our

first attempt at sending two entanglement pairs simultaneously with this two spin toy
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FIGURE 5.10: Left: Our toy model schematic for two-sender routing

on a 2-network where we have highlighted the possibility to have non-

uniform sender and receiver couplings. Right: The eigenspectrum for

the network assuming (as we defined initially in Eq. (5.2)) that there is
no on-site energy splitting.
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network. If we set up the eigenstate tunnelling such that the energy splitting of the
first sender and receiver is resonant with the superposition state |+) = % (|0)y + |1))
and the second are resonant with the |-) = % (|0) — |1)) state we can think of the
process as going ‘straight through’ the network as we have drawn it in Fig. The
eigenenergy of the superposition states |+) is £+ and in this model if both senders
have given their excitation to the network it will be in the |11). In the left frame of
Fig. we display entanglement of formation dynamics for such a set up. The en-
tanglement created between the first ancilla and receiver is identical to that created
between the second ancilla and receiver, hence the use of circles at points along the
obscured lines; there is also effectively no bleeding of entanglement between the un-
desired pairs. However, the right panel shows what happens when we swap the
energy splittings of the senders. This does have the desired effect of having the first
sender targeting the second receiver and vice versa however the magnitude and os-
cillatory components present are vastly different compared to the ‘straight through’

set-up; we do still maintain simultaneous transfer rates and avoid bleeding though.

It is possible there is some blocking effect with such a small network that is
inhibiting the routing process when we desire two pieces of information to travel
through each other, which is the case here when the bottom (top) sender is targeting
the top (bottom) receiver. In the next section we look at larger networks in an effort

to (quite literally) get around this issue, however in the remainder of this section we
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FIGURE 5.11: Entanglement of formation dynamics from our toy two

spin network with uniform sender and receiver couplings. Left: The

first (second) sender targets the first (second) receiver via the ¢ = &

(¢ = —k) eigenstate. Right: The energy splittings of the sender spins is
now swapped to have them route to the different receivers.

will consider different sender and receiver coupling parameters. The parabolic cou-
pling scheme was used by Christandl et al. to illicit perfect quantum state transfer
along a (dissipationless) 1D chain [50] and gets its name from the profile of the cou-
plings between spins. The n and n + 1 spins in an N-spin chain have a coupling
#in o< \/n (N —n). Given an initially populated first spin state, the effect on the dy-
namics of this profile is to sequentially (although not maximally) populate the spins
in the chain until at some time later the state recombines, maximally, on the final spin.
Recognising that our process in Eq. resembles dynamics along a chain, with each
stage taking the place of a spin, we can engineer a Hamiltonian that incorporates

parabolic coupling between intermediate steps to illicit perfect transfer.

In our toy model, the way of encoding parabolic coupling into our decidedly
un-chainlike system is by picking the relevant values of gs, and gr, (as defined in
Fig. such that they couple correctly to the network eigenvalues to ensure the
right ordering of the process. Until we find a suitable parabolic chain we will use
state expectation values and spin population as measures of state transfer using an
initial state where both senders are up and everything else is down. This can give us

insight into how effectively our parabolic system is preforming, but does not tell us
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about arbitrary initial states. Our desired double excitation states in this toy system

approximating a parabolic chain are
155) Y4 149y 5 41y 5 1Ry Y4 |RRY, (.11)

where above the arrows we have written the required coupling between states.

In Eq. we propose tunnelling through the |+) eigenstate of the network,
the |11) state corresponds to both network spins excited and the S and R components
refer to senders and receivers with ordering in a ket denoting whether it is first or sec-
ond. In Fig.[5.12lwe display results for transfer through our toy system. The left panel
is the expectation value of each constituent in our process in Eq. along with the
sum of these values. Clearly this sum is not always 1 meaning there are other states
participating in the transfer process; this means we do not get perfect recombination
into |RR). Although, as we can see in the right panel, the two receivers do receive
their full excitation just not at the same time, something a parabolic coupling scheme

should be capable of ensuring.

The issue here is that the eigenspectrum presented in Fig. and our exploita-
tion of it are highly symmetric, meaning terms other than those in our Eq. (5.11) pro-
cess participate and there are directionality problems. To combat this and obtain what

Z, 7

the parabolic coupling scheme promises we can insert an extra c“c“ coupling term

to our network Hamiltonian making this new toy version
H{ =k (of0y +o70F) + Jofod (5.12)

which now resembles a Heisenberg Hamiltonian. This extra term lifts some of the
symmetry of the eigenspectrum which now has the form in Fig. for J > K. We

can further aid in avoiding symmetry if we modify the process to
158) 2 14+5) L 1) L5 |-y Y |RR), (5.13)

where we now make use of the negative superposition state to exit from the network.

Ensuring our sender and receiver energies are set to target the corresponding
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FIGURE 5.12: Left: Expectation values (and sum of) for the states in

our parabolic coupling state transfer process through our toy system.

There is definite participation from other states meaning the state does

not perfectly recombine at the end of the effective chain. Right: Prob-

ability of excitation for the senders and receivers where clearly the full

excitation does transfer through albeit not peaking simultaneously as
desired from this scheme.
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FIGURE 5.13: The new eigenspectrum for the two spin toy network
when adding a 0% 5% term to the network Hamiltonian. This is for the
case J > k.

eigenstates described in Eq. (5.13) ensures that undesired process are off-resonant

with any eigenspectrum transitions and are excluded from the dynamics. So with

these modifications and with setting J = 500 kHz, we can obtain the successful

parabolic transfer displayed in Fig. The sum line is fixed at 1 showing that

we have indeed isolated the process states and we can see the state recombines max-

imally at 2.25 ms. The probability plot complements this with the information that at

this time both receivers are maximally excited.

There is however a problem, for when we move to entanglement routing via
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FIGURE 5.14: Left: Expectation values (and sum of) for our process
and toy system now with the 0% network term. The state success-
fully recombines and we have no participation from states out-with
the intended process. Right: Receiver excitation probability maximises
simultaneously showing the initial state to have transferred.

this set up we are unable to transfer any entanglement despite seeing the states se-
quentially populate as one expects. Rather then a plot of £ = 0, we illustrate this
in Fig. by showing the dynamics for an initial sender 1 state v/0.8|1) + /0.2 [})
and initial sender 2 state v/0.65|1) + 1/0.35||) and all other spins are down. We see
the summation of the process expectation values remains fixed showing us we have a
working parabolic process with recombination on the final state, but as we can see in
the right panel with the probabilities, its not the state we wish. The initial state allows
for single excitation initial state components beyond |SS), as would the Bell |¥™)
state we would use to demonstrate entanglement routing. The dynamics of these ex-
tra states are not accounted for in the parabolic control scheme and so their evolution
is part of the reason why the state (and hence entanglement) transfer is not as we de-
sire. Another part is the phase changing action of the 020 term we added to enable

us to encode a parabolic chain.
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FIGURE 5.15: Left: Expectation values of the parabolic chain states

for the dynamics of a coherent initial state where sender one is 80%

excited, sender two is 65% excited and all remaining spins are spin

down. Right: The failures of the parabolic scheme encoding for this

system are made apparent with this probability plot showing the initial
state to be incorrectly transported upon recombination.

5.3.2 Uniform coupling network routing

As we saw in Fig. routing two entanglement pairs is possible in a two site net-
work with uniform sender and receiver coupling, but changing the targeted receivers
greatly affected the outcome. In the last section we tried to get around this using
parabolic coupling and we found that did not provide an appropriate solution. Here
we shall return to our original Hamiltonian and idea of uniform sender and receiver
couplings with g = /10 = 20 kHz. We will now be using a computational solution in
the double excitation subspace allowing us to produce dynamics for larger networks

than a full-space solution would allow.

From our two site toy results it seemed that there was some sort of blocking issue
when the process required transfer to cross over in a confined network. One possible
solution, if we are restricted to a 1D network (chain), is to change the sender and
receiver placements such that the senders are at one end of the chain and the receivers
are at the other such that the transfer happens down the chain. Each process should

now be symmetric and switching targets should produce the same transfer. As we
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can see in Fig. this is indeed the behaviour observed for both a 2-length chain
(top) and an 11-length chain (bottom) with the legend denoting for which receiver
and ancilla E is reported. The left and right sides of the figure present the results
with the different sender-receiver targeting: on the left eg, = er, = 200 kHz, on the
right eg, = er, = 200 kHz with the other pair in each circumstance resonant with the
—200kHz eigenstate. We see no bleeding and perfect symmetry between processes

and targets.

Whilst this new result that spin chains are capable of multiple entanglement rout-
ing is a nice compliment to the results of last chapter it would be interesting to explore
other geometries as our computational method now allows it. We would like to reit-
erate though that the great number of possible network, sender, receiver, eigenstate
and parameter configurations is impossible to scan entirely and this work should be
treated as a sampling of some of the possibilities. With that in mind let us take a look
atan N, = 4, N, = 3 network. We will use the two eigenstates shown in Fig.
To be clear, we are aware that the interpretation of using two single excitation eigen-
states to transport both double and single excitation components of some arbitrary
initial state is a simplification. A rigorous definition of the transport of these two
components is a very difficult problem and, as we hope one can see from our results,

our interpretation does produce useful routing processes.

In Fig. we present routing dynamics for two different sender and receiver
coupling coordinates. The left frames have sender 1 targeting receiver 1 using the
positive eigenvalue and the right frames have sender 1 targeting receiver 2 also with
the positive eigenvalue; the other pairs in each situation use the negative eigenvalue.
In the top frames the first sender and receiver are coupled to the bottom row at the
left and right extremes of the network with the second sender and receiver doing the
same but on the top row. The bottom frames have the senders placed along the bottom
row at the left and right extremes with the receivers at the top. We can see we again
have simultaneous transfer and no bleeding for a given set-up because the ‘distance’
through the network in each frame is the same. However we see that the increase in
‘distance” between senders and receivers when cross-pairs target each other (in the

right frames) results in lower amplitude transfer. What is interesting is the fact that
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FIGURE 5.16: Dynamics showing the successful routing of two entan-
glement pairs down a chain-network of length top) 2 and bottom) 11.
Both lengths have the eigenstates ¢ = 4200. Left: We have the first
sender and receiver using the positive channel with the second using
the negative. Right: The first sender and second receiver use the posi-
tive channel with the remaining pair using the negative channel.
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FIGURE 5.17: Two single excitation eigenstates for a N, = 4, N, = 3
network.
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the right frames are different to each other despite the ‘distance” across the network
between target pairs being the same. It is possible that the phase differences in the
network and the different sender/receiver locations is the reason for this as the loca-

tion the excitation begins to enter the network is changed; future work could explore

this possibility.
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FIGURE 5.18: Routing dynamics using the eigenstates in Fig. from

a N, =4, N, = 3 network. Top: The senders are coupled at the bottom

left and top left corners of the network with receivers at the bottom

and top right; x-axis transfer. Bottom: The senders are coupled to the

bottom left and right with receivers at the top left and right; y-axis

transfer. The target receivers are left) along the network edge and right)
across the network.

We put “distance’ in inverted commas as it is a difficult concept to define in this
quantum transport process. We are not populating each site in turn like some classi-

cal hopping process, we are tunnelling through an eigenstate. Our usage is meant to
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encapsulate the number of spins involved in an eigenstate, and the length of a clas-
sical path between a sender and receiver. In our chains of Fig. the senders can
swap targets and still have to travel the same ‘distance’. Although, going from 2 to 11
sites we can see the increased ‘distance’ leads to a longer transfer time. For the config-
urations in Fig. changing the target receivers does change the classical hopping

distance although we don’t see any dramatic changes in transfer time.

It is possible to configure a same-‘distance’ set-up in the IV, = 4, N, = 3 network.
The results displayed in Fig. come from having the senders at the bottom left and
top right and both receivers connected to the mid-row at the far end of the x-axis.

This triangular set-up now clearly performs equally well no matter which receiver is

targeted.
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FIGURE 5.19: Results showing a symmetric routing process ina N, =

4, N, = 3 network using the eigenstates in Fig. The senders are at

the top and bottom of the left side of the network with both receivers
coupled to the middle site at the far right end of the network.

There is one final thing we found using this N, = 4, N, = 3 network in a tri-
angular configuration that we would like to show. We added a third receiver to the
coupling location targeting a different eigenstate with probability amplitude at that
site: ¢ = —159.2359 kHz. The effect this has can be seen in Fig. where the left
panel shows the senders targeting the old eigenstates and the right shows the second
sender tuned to the new eigenstate. Interestingly, the left panel here differs slightly
from the left panel of Fig. with only subtly more bleeding present here; the other
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curves (such as R2A1) are not shown here to avoid clutter, but were as low as in pre-
vious plots. It seems as though the presence of this new sender, despite only having
a small amount of bleed from the system (entangling it with the sister-ancilla of the
closer —406.4496 kHz-targeting sender), does change the dynamics and affects the en-

tanglement transferred. However we note that routing is clearly still possible.
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FIGURE 5.20: Results adding a third receiver to the set-up in Fig.

again to the right of the network at the middle site. It is resonant with

a different eigenvalue and we show it (left) not targeted and (right) tar-

geted by a sender. Its presence in the system does disrupt the transfer
even when it is not targeted itself.

The N, = 4, N, = 3 network does not have any degenerate eigenstates, but if
we move to a 5x5 network, for example, we can illustrate a nice feature of degenerate
eigenstates. In this case there is a 5-fold degenerate 0 kHz eigenstate which we illus-
trate to the left in Fig. we have put squares (circles) around the locations of the
two sender (receiver) couplings. All senders and receivers target the zero eigenvalue
and we can see from the routing dynamics on the right of the figure that these de-
generate states are remarkably well protected from bleeding through each other. The
behaviour is presumably due to the largely diagonal nature of the states with the two
configurations above and below the legend in Fig. forming the primary channels.
Obviously this type of routing is not amenable to switching target receivers, but this
network could be used as a multi-channel: one channel, but with multiple transport
processes. It would be interesting to see whether this protection decayed more rapidly
than the protection afforded by choosing different eigenvalues when an environment

was present. Also, it is not immediately obvious if this degenerate eigenstate effect



Chapter 5. Entanglement routing 120

would break down if the transport was anything other than perfectly simultaneous.
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FIGURE 5.21: Left: The 5-fold degenerate 0 kHz eigenstates of the N, =
N, = 5 network. Right: Successfully address simultaneous routing
dynamics through these degenerate eigenstates.

The final thing we have to say concerning our small time spent exploring the vast
parameter space of the double entanglement router is with regards to the processes
in Egs. (5.8)-(5.10). So far we have been targeting single excitation eigenstates and
essentially using only the last two processes. To see if the first process is a viable

option we need to find a double excitation eigenstate.

We will use an N, = 3, N, = 2 network for this discussion. The eigenstate
structure in Fig. remains, but our k = 200 kHz means ¢ € (£482.8427, £200,
+82.8427) kHz. There are fourteen double excitation eigenstates with the highest
energy two having eigenvalues 784.9363 and 489.8979 kHz. So, if we want to imple-
ment a process as in Eq. with er, = 482.8427 kHz we can try eg, € (302.0936,
7.0552) kHz. Both of the double excitation energy values are reasonably far from any

single excitation value combination.

As we can see in Fig. similar amplitude transfer across the network is possi-
ble for both pairs albeit with different time scales. This is understandable as in order
to transfer to the second receiver an excitation must already be present in the network
so as this excitation is transferred to its receiver the transfer of the second pair cannot

proceed. There is a step-like structure to the second receiver’s E dynamics that can
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be seen (several instances are indicated with arrows) in the top panels that indicates
this sort of dynamics. The 489.8979 kHz double excitation eigenstate would seem to
not have a suitable PAP for the sender and receiver coupling locations used here. This
can be seen in the bottom left panel of Fig.[5.22] where the entanglement between the

second receiver and ancilla is weak.
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FIGURE 5.22: Routing dynamics implementing a double excitation
pathway through our x = 200 kHz N, = 3, N, = 2 network with
top) er, = 302.0936 kHz and bottom) eg, = 7.0552 kHz. On the
left we have the first sender targeting the single excitation first re-
ceiver whereas on the right it targets the double excitation-bridging
second receiver. It would appear that the 489.8979 kHz double exci-
tation eigenstate (bottom) does not have a PAP that compliments our
selection of sender and receiver coupling locations. Arrows indicate
step-like structures corresponding to the blocked dynamics afforded
by requiring the presence of the double excitation eigenstate.
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5.4 Concluding remarks

JIE have shown that it is undoubtedly possible to route one or two entanglement

4 4| pairs through a network of spin-1/2 sites using eigenspectrum tunnelling. The

presence of a dissipative environment both here and in the previous chapter has been
shown to reduce the performance of such transfer but it does not prevent operation
completely. The great number of configurations and parameters available for study
mean that the work here has but scratched the surface of all possibilities however we

have found systems that perform well.

There are a number of points we discovered and presented here that bear further
investigation. Firstly, adding a third receiver to a well functioning two receiver, sin-
gle sender routing set-up, with the intention of preserving the behaviour but adding
another routing channel, has a small but noticeable disruptive effect. Understanding
the extent of this phenomenon with different networks and eigenstates could lead to

protection against such disruption.

Secondly the use of degenerate eigenstates seems to be remarkably robust and it
would be interesting to find ways in which this can be exploited and indeed broken.
Finally we have the use of the double excitation pathway: there are many double-
single excitation eigenstate processes that can be implemented. A thorough search
through them might unveil better matched transfer of both entanglement pairs for

instance.

Adding more senders would be another route to explore: how many entangle-
ment pairs can be transferred through one network? Each extra sender requires ex-
tension of the excitation subspace though which begins to limit the size of network
which can be efficiently simulated. Another equally rewarding but simpler pathway
would be to look at deviation from the simultaneous transfer studies present here;
starting transfer of one pair and then sometime later activating the coupling of the
second sender. We do not believe this would prevent routing processes and the single
excitation transfer schemes should behave much the same and carry on in parallel
with each other. So while we have presented an investigation and proof that routing

is possible, this clearly not a completed area of research.
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In closing

6.1 An overview

>=—=1HE chapters of this thesis have covered many aspects of the diverse field of

9

o open quantum systems (OQS). We started in Chapter [1) with an introduction
to the field, taking time to familiarise the reader with some of the areas work has
been focussed. Firstly we explored how photosynthesis is expanding beyond the
domains of biologists and chemists and into the realm of the physicist. Advances in
measurement and theory have allowed us to probe the nature of the energy transfer in
the light harvesting complexes that mediate an absorbed photon’s excitonic transfer
to the chemical centre of the process. Discoveries that such transfer may be quantum
mechanical in nature, with long lived coherences, has led to a fervent discussion as
to what exactly the source of the coherence protection is in a quantum photosynthetic
system or indeed what its functional role might be. Part of this discussion turns its
attention to the interplay between the protein environment and the molecular exciton

transfer sites; a perfect topic to frame in OQS language.

We also introduced quantum state transfer in the context of spin-1/2 chains and
while that may sound specific it is still a rich area of investigation. The theoretical
approach of tunnelling through an eigenstate of such chains to achieve high fidelity
transfer in dissipationless systems was reviewed. Further, a physical implementation
was discussed, nitrogen-vacancy centre qubits and nitrogen impurity chains, a system
in which the dissipation, mediated by the surrounding crystalline environment, has

been shown to prohibitively lower state transfer fidelity. However, the notions of
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entanglement distillation from weakly entangled pairs have been demonstrated to
be a good fit for such a system where dissipative transfer of entanglement can be
achieved. The question arises as to whether the spin chain geometry can be improved

upon: clearly here we have another OQS ripe for further investigation.

In Chapter 2| we introduced the mathematical techniques and formalisms that
make the work in the subsequent chapters possible. Density matrices allow us to
go beyond pure state descriptions, moving to systems that incorporate mixing, an
invaluable tool when dealing with the environmental effects of OQS. Equations of
motion for density matrices were presented, as was the matrix product formalism: a
tool for their efficient solution. We also described our simulation and measurement

processes.

The next three chapters were accounts of the research carried out over the course
of this period of study. Rather than give a review of these chapters, which all three
feature in their respective ‘Concluding remarks’ sections, we here seek to tie them to
each other and the broader scope of OQS. The common thread of course throughout
the chapters is our use of OQS methods, even at the end of Chapter |5/ where we ne-
glect dissipation. But more than this, from the simple system of Chapter 3 through
the grounded physical implementation of Chapter |4 to the theoretical proposal of
Chapter 5, we are considering the behaviour of information: the persistence of ‘quan-

tumness’ and the mechanisms for transferring it, hence the thesis title.

Whilst not a direct enquiry, the work of Chapter 3| was initially motivated by the
role of quantum mechanics in photosynthesis: what can we still learn from simple
models that can inform our understanding of realisations of OQSs? That question
sums up the motivation behind all three chapters, to a varying degree. Featuring pos-
sibly the simplest model of a two level system, single mode and environment, follow-
ing a decidedly not simple master equation derivation, our investigation in Chapter
produced the very interesting result that the interaction of the environment and the
single mode can enhance the coherence of the two level system. Arguably still a sim-
ple model, the spin-1/2 channels of Chapter E] and their nitrogen vacancy qubits were
treated with the ever evolving matrix product formalism providing an informative

study beyond traditional limits for realistic systems and traditional applications of
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the formalism. Finally the routing investigation in Chapter [5|features a simple, albeit
non-trivial to code, approach which offers an interesting extension of the concept of
entanglement transfer. The three chapters successfully contribute new discoveries,
complementing old, using and pushing OQS techniques to obtain answers to ques-

tions asked simply but, by no means answered trivially or with trivial answers.

6.2 Impact

an

Y
b

| T is a rarity in science that a piece of work leaves all questions answered in
|3 a field or investigates all lines of inquiry. What is documented here is no
exception to this trend. The work in Chapter [3| exists in an area where there is a
wide amount of work on similar models and so proposals to extend the number
of bosonic modes included must bear this body of previous work in mind. In gen-
eral it can be said that our work should provide further reason to continue along the
paths of using simple models to investigate complex phenomena and of investigating
environmental-system interplay. Specifically, working closely with a physical imple-
mentation, perhaps along the lines of the reservoir engineering mentioned in Sec.

to consider a specific environment structure and system would be a nice application

of the theory put forward in this work.

Physical implementation is the motivation behind the study in Chapter [, but
obviously concerning a different problem than in the previous chapter. Extensions of
the work here could entail other channel structures, for example the direction taken in
Chapter 5} or the application of other matrix product-type formalisms. For example,
the projected entangled pair states (PEPS) formalism allows state approximation in a
similar way to the matrix product methods we used, however they allow generalisa-
tion to higher dimension systems [109]. Alternatively one could think of tackling an-
other system with similar schemes, such as DNA and its electrical conductivity [182]

or ideas of carbon nanotubes as quantum wires [183].

Following our look, in Chapter|5, at what is possible with entanglement routing
through spin-1/2 networks, one possible next step would be to introduce coupling

variation and the idea of imperfect networks, as we did in the chapter preceding it.
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A necessary consideration then would be obtaining the eigenspectrum of a ‘broken’
network which is so important for the routing processes. Another path to follow
would be, again, the route of finding an implementation. The choice of the parameter
values at the start of Sec. [5.2) were meant to put one in mind of a nitrogenic diamond
implementation similar to Chapter i One other promising system for this sort of
quantum routing is optical lattice quantum systems [184] which are robust to several
forms of decoherence [185] and can be manipulated using sophisticated control of

potentials [186].

Importantly though we hope this body of work holds together as a cohesive tes-
tament to what is achievable with OQS thinking, is approachable for those who wish

to learn and informative for those who wish to build upon it.
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