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ABSTRACT
We present models for the magnetic support of the ‘slingshot prominences’ observed in the
coronae of rapidly rotating stars. We calculate mechanical equilibria of loops in a spherical
geometry. Prominence-forming loops are found first for dipolar and quadrupolar stellar fields
that are fully closed. Equilibria are then found within the stellar wind for a dipolar field that
becomes open beyond a given radius. We identify two physical processes that may produce
gaps in the distribution of prominence heights: the location of this opening radius, and the
behaviour of the buoyancy force. The buoyancy may differ from one prominence-bearing
loop to another if they are at different temperatures, thus potentially smearing out any gap in
observed height distributions. We produce synthetic prominence distributions and compare to
the observations of two well-observed stars: AB Doradus and Speedy Mic. The model recovers
the more compact prominence distribution observed for Speedy Mic and reproduces better the
overall shape of the height distributions for both stars when the opening radius is beyond the
co-rotation radius.
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1 IN T RO D U C T I O N

Prominences are cool condensations of neutral hydrogen, embed-
ded within a hot corona. These features are perhaps best known as
dark filamentary structures against the solar disc, or bright material
protruding above the solar limb. They are not restricted to our Sun,
however, having been observed on many other stars albeit not in the
same resolution. Since they are confined by the magnetic field, they
trace out the coronal magnetic field structure. This makes them use-
ful since the current method of generating such information involves
extrapolation of the stellar surface magnetic field, gained from Zee-
man Doppler imaging. These features could have consequences for
stellar evolution. Ejection of active prominences is thought to be a
method of stellar angular momentum and mass-loss (Hussain 2013).
While the effect of these features will likely be small while com-
pared to the stellar wind, it could be non-negligible (Aarnio, Matt &
Strassun 2012; Cranmer 2017; Odert et al. 2017). Ejections could
also be responsible for loss of helicity from the system, as on the
Sun (Low 2006, 1994; Wang, Zhou & Zhang 2004). Development
of any nearby planets, and their ability to harbour life, could also
be influenced by ejection of these condensations. Impact of ejected
prominences with an exoplanet could lead to geomagnetic storms,
compression of the planetary magnetosphere by shock waves (Gon-
zalez et al. 1994), and atmospheric erosion due to the stripping of
the planetary atmosphere by frequent impacts (Khodachenko et al.
2007).

� E-mail: rw47@st-andrews.ac.uk

The first suggestion of prominences on other stars came from bi-
nary systems where, as one star eclipsed its partner, the light from the
background star was used to probe the atmosphere of the foreground
star (Schroder 1983). When analysing the spectra, unexplained ab-
sorption features were found immediately preceding or subsequent
to the rotation phase at which the eclipse took place. These transient
absorption features had been seen to reoccur on consecutive peri-
ods, sometimes dimming or brightening in intensity. This suggested
the material being supported in co-rotation could, in some cases, be
reasonably stable. The star SS Bootis was observed by Hall et al.
(1990) in 1987 and 1988, and then again in 1992 by Hall & Ramsey
(1992) as part of a larger scale study into these features. The authors
reported the existence of a feature at the same height in both works.
They suggested that either the feature was incredibly stable or that
this could be a particularly stable point within the magnetic field,
with condensations being repeatedly trapped at this point.

Similar absorption features were subsequently seen on the rapidly
rotating, K0V type star, AB Doradus (Cameron & Robinson 1989).
They were observed as transient dips in the Hα profiles, cross-
ing the disc in a matter of hours and sometimes reappearing on
consecutive nights. This behaviour was consistent with absorbing
material located around two to nine stellar radii from the stellar
rotation axis and co-rotating with the star (Cameron & Robinson
1989). Thought to be held in co-rotation by the coronal magnetic
field, these features were coined ‘slingshot prominences’ (Cameron
1996; Steeghs et al. 1996). While AB Dor may be the best observed
rapid-rotator prominence host, prominences have been observed
on multiple rapidly rotating stars(Dunstone et al. 2006a,b; Jeffries
1993; Byrne, Eibe & Rolleston 1996; Barnes et al. 1998; Cameron &
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Woods 1992; Barnes et al. 2000; Leitzinger et al. 2016; Skelly et al.
2008, 2009, 2010; Eibe 1998).

Slingshot prominences have also been seen on M dwarfs, for
example V374 Peg (Vida et al. 2016), a fully convective, ultrafast
rotator. Later, Stauffer et al. (2017) found 19 M dwarfs exhibiting
prominence-like absorption dips within K2 light curves. Variations
in flux that repeated at the same phase on each rotation were consis-
tent with cloud condensations trapped in co-rotation. These stellar
prominences on rapidly rotating stars are rather different to their
solar namesakes. They typically occult a larger area of the stellar
surface than solar prominences, are 10–100 times larger in mass
and can be found significantly further out from the stellar rotation
axis (Cameron 1999).

Previously, Jardine & Cameron (1991) published a model to de-
scribe prominence formation within the equatorial plane of such
rapidly rotating stars. The authors showed that for an isothermal
atmosphere in hydrostatic equilibrium, a cool loop may reach a
mechanical equilibrium whereby a prominence may be supported.
This is achieved through the balance of the gravitational, Lorentz
and centrifugal forces. Ferreira (2000) later published a paper dis-
cussing the stability of such prominences and Jardine & van Bal-
legooijen (2005) found available equilibria within the stellar wind.
This removed the requirement for the stellar corona to be closed
up to the large heights from the stellar surface at which promi-
nences are typically observed. More recently, Villarreal D’Angelo,
Jardine & See (2018) categorized which low-mass stars could be
capable of supporting such prominences. By comparing whether
the Alfvén radii of stars were inside or outside of the co-rotation
radius, the authors were able to determine if prominence formation
could be supported. This work adopted terms such as ‘centrifugally
supported magnetospheres’ and ‘dynamical magnetospheres’, pre-
viously applied in the context of massive stars (Petit et al. 2013;
Owocki et al. 2016). These terms are used to distinguish between
distinct types of phenomena by which material is either supported
against gravity or will fall back to the stellar surface. This idea of
supporting material beyond the Keplerian co-rotation radius under
force balance has been extensively discussed (Cassinelli et al. 2002;
Townsend & Owocki 2005; ud-Doula, Owocki & Townsend 2008).

In this paper we aim to extend the model developed by Jardine &
van Ballegooijen (2005) of prominence formation in a locally two-
dimensional, Cartesian geometry. Here we extend their model to
a spherical coordinate system, describing the low-order multipoles
that dominate the magnetic field structure at the heights of several
stellar radii at which these prominences are supported. Most im-
plementations of the Zeeman–Doppler imaging technique express
the recovered fields in terms of spherical harmonics and so can pro-
vide insight into the contribution of the different modes (Donati &
Landstreet 2009). In particular, we aim to show that solutions for
mechanical equilibria in this geometry replicates the results of Jar-
dine & van Ballegooijen (2005) for prominence formation within
the open field region. We consider the influence of the background
field topology, as well as the impact of allowing the field to become
open above and below the co-rotation radius. Since there is no direct
observational evidence of the location at which the stellar magnetic
field becomes open, we consider both cases here.

2 ME T H O D

The physical scenario that we model is that of cooled loops embed-
ded in a hot external magnetic field. We choose both dipolar and
quadrupolar external fields, and in both cases the magnetic axes lie
in the equatorial plane of the star. In the case of the dipolar field,

Figure 1. Diagrams of the external magnetic fields used: (top) dipolar,
(middle) quadrupolar, and (bottom) dipolar with the addition of a source
surface (red dashed line). The stellar surface is shown by the orange circle;
this is used throughout the figures in the rest of this paper. The magnetic
axis is aligned along the horizontal axis.

we also investigate the impact of allowing the field to be open be-
yond some radius, known as the ‘source surface’ rs (Altschuler &
Newkirk 1969). We focus only on the equatorial plane as shown
in Fig. 1 where the field structures are defined by the following
equations:

Be = B0
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)
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and
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for dipolar and quadrupolar fields and a dipolar field that is open
beyond rs (Jardine, Cameron & Donati 2002a). B0 is the maximum
magnetic field strength at the stellar surface and φ represents the
angle, measured from the dipole axis (φ = 0), measured in the
equatorial plane.

Within this model, we assume that the loops in question are
isothermal and ‘thin’, so that any internal quantities do not vary
across the width of the flux tube. In assuming the thin flux tube
approximation we also assume that the area of the flux tube is much
smaller than the pressure scale height squared, and that the tube does
not significantly disturb the background field (Parker 1975; Spruit
1981). They must be in pressure balance with their environment

B2
i = B2

e + 2μ(pe − pi), (4)

where μ represents the permeability of free space and p the gas
pressure. The subscripts e and i refer to external and internal quan-
tities, respectively. Then, in order to determine the shape of the
loops, force balance must be solved along and across the magnetic
field lines.

We assume our system to be in hydrostatic equilibrium with no
flows, therefore the forces acting on the loop can be modelled by

0 = −∇p + (j × B) + ρg , (5)

where ∇p is the gradient of the gas pressure, (j × B) is the Lorentz
force, ρ represents the gas density (defined by the equation of
state, p = KBTρ/m, where symbols have the usual meanings and
m represents the mean molecular mass) and g is the gravitational
acceleration. Decomposing the Lorentz force into magnetic pressure
and tension terms yields

0 = −∇p + (B.∇)
B
μ

− ∇
(

B2

2μ

)
+ ρg. (6)

We construct our equations in the co-rotating frame, combining the
centrifugal and gravitational forces into an ‘effective gravity’ term,

gef =
(

−GM�

r2
+ ω2r

)
r̂ (7)

which replaces g in equation (6) and where ω is the stellar rotation
rate. The nature of this equilibrium can be most clearly seen by
combining equations (4), (6), and (7) to give

0 = −(ρe − ρi)gef − ∇
(

B2
e

2μ

)
+ (Bi.∇)

Bi

μ
, (8)

where the tension of the loop balances the combined effects of
buoyancy and the gradient of the external field. The loop tension is
of course determined by its shape. In order to determine this, we
decompose equation (6) into components parallel (ŝ) and perpen-
dicular (n̂) to the path of the magnetic field line, we define the unit
vectors

ŝ = 1√
r2 + (r ′)2

(r ′, r) (9)

n̂ = 1√
r2 + (r ′)2

(−r, r ′). (10)

Parallel to the magnetic field line, there is no Lorentz force and
equation (6) simplifies to

∂p

∂r
= gefρ, (11)

where we have taken the gas pressure (p0 at the stellar surface) to
be independent of φ. This defines the gas pressure variation with
distance from the surface

p = p0 exp

(
m

KBT

∫ r

R�

gef (r)dr

)
. (12)

The function H(r) can be defined such that

H (r) ≡ m

KBTe

(
−GM�

r

(
1 − r

R�

)
+ ω2

2

(
r2 − R2

�

))
, (13)

which yields a more compact form of equation (12)

pi(r) = p0i exp(H (r)), (14)

where p0i is the base pressure inside the flux tube.
The component of equation (6) perpendicular to the magnetic

field is

0 = −∇p.n̂ +
(

B2 ∂ ŝ
∂s

)
· n̂ + ∇

(
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2μ

)
· n̂ + ρg.n̂, (15)

where
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and

∂ ŝ
∂s

= (ŝ.∇)ŝ = (rr ′′ − r2 − 2(r ′)2)

(r2 + (r ′)2))3/2
n̂. (17)

Therefore, the component of the force balance equation perpendic-
ular to the magnetic field line simplifies to

2B2
i r(r2 + 2(r ′)2 − rr ′′)

(r2 + (r ′)2)
=

(
−r2 ∂

∂r
+ r ′ ∂

∂φ

)
B2

i . (18)

Combining equation (18) with pressure balance as expressed in
equation (4), the path of the cooled field line, r(φ), can be calculated
and the loop shape plotted.

3 LO O P S H A P E S

In exploring the factors that determine the loop shapes we use, as
an example, the stellar parameters for a specific star. We choose
here to take the parameters of AB Doradus: R� = 0.96 R�, M� =
0.86 M� and period of 0.514 d (Innis et al. 1988; Guirado et al.
2010, 2011). We assume the background corona has a temperature
of 107 K (Hussain et al. 2005; Close et al. 2007).

3.1 Pressure variation with height

In order to achieve an equilibrium for these loops, two constraints
must be satisfied: the internal gas pressure must not become too
large relative to its environment and the forces perpendicular to
the loop must be in balance. The first constraint is such that in
equation (4), B2

i > 0. B2
e will always be positive, however (pe − pi)

may be negative if pi becomes too large. If this difference is small,
this need not be a problem for equilibria, so long as B2

e is large
enough to balance it. The external field strength decays with height,
however, and so beyond a certain value, this will no longer be true
and no equilibria may be found. The second constraint corresponds
to equation (18), where the magnetic tension (shown on the left-
hand side) must be equal to the magnetic pressure gradient (shown
on the right-hand side).

Considering the component of force balance along the field line
yields equation (14). From this it can be seen how gas pressure
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1516 R. F. P. Waugh and M. M. Jardine

Figure 2. Example of the variation of pressure (pi) with height within these
cool loops. This is scaled to the external pressure (p0e) at the loop footpoints.
This example was calculated with parameters: Te = 107 K, β = 10−7, p0i =
2p0e, Ti = 0.03 Te. The background field into which this loop would be
embedded is shown in grey. The co-rotation radius is shown by the black,
dashed line.

varies with height, noting that the sign of H(r) depends on distance
from the stellar rotation axis, taking a negative value at low radii
and a positive value at high radii. This is dependent on the stellar
rotation rate and thus from here the effects of rapid rotation can
be seen. Due to the rapid rotation, gas above the co-rotation radius
of the star is driven outwards into the tops of loops. Fig. 2 shows
an example of the increase in gas pressure with height beyond the
co-rotation radius within a magnetic loop. This is similar to the
results from Jardine & Cameron (1991) in a Cartesian geometry,
with pressure dropping with height below the co-rotation radius and
rising beyond it, as per equation (14).

3.2 Varying the field topology

We first choose to vary the field topology, applying both a dipolar
and quadrupolar external magnetic field.

An external dipolar field is applied and using equation (18),
combined with pressure balance (equation 4), solutions can be found
for a set of mechanical equilibria. The magnetic field strength is
scaled to the external value at the stellar surface. The top panel of
Fig. 4 shows the external field in grey on the right-hand side of
the figure and some example solutions shown by the blue loops on
the left-hand side. The loop shapes deviate from the background
field significantly at large heights where the gas pressure dominates
over magnetic pressure. The effect of the centrifugal force acting
to stretch out the cool, mass-loaded loops can be clearly seen. A
‘Height-Width plot’ shown in the bottom panel of Fig. 4 shows the
family of solutions, with ‘height’ and ‘width’ defined in Fig. 3. In
this parameter regime, the footpoint separation of the cool loops
increases with summit height, following the external field at low
radii before deviating from the external field and becoming smaller
with increasing loop height as the magnetic field strength drops
to zero. It should be noted that ‘width’ here refers to the angular
distance between the loop footpoint and loop summit.

Here we use a very small value of β for illustrative effects, to
exaggerate the distortion of the loops by the centrifugal effects.
When calculating the prominence distributions generated from this
model and comparing them to observations, we chose a more real-

Figure 3. Figure showing the definitions of ‘loop height’ (or ‘distance from
the rotation axis’) and ‘loop width’.

istic value of β. This value of β was viewed as realistic since the
average field strength on AB Dor is observed to be around 10G and
the base pressure can be estimated using p = κB2 = 10−5.5B2 (Jar-
dine et al. 2002b), with B in Gauss. Thus using β = 2μp/B2 a
value of 10−3 was seen as reasonable. The effects of varying the
base plasma beta value on the maximum loop height was discussed
by Jardine & Cameron (1991), where smaller β values were found
to allow taller loops. The cooled loops shown in all the examples
throughout this paper are only cooled to a tenth of the external field,
or Ti = 106 K. This was chosen purely for ease of calculation as
dropping the internal temperature can make solutions increasingly
difficult to solve for. The effects of varying temperature on these
hydrostatic solutions has been discussed previously by Jardine &
van Ballegooijen (2005) and thus was not examined in detail here.
Jardine & van Ballegooijen (2005) considered the effects of de-
creasing the loop temperature on maximum loop height and found
the maximum loop height did not vary significantly between Ti =
106 K and Ti = 104 K.

An external quadrupolar field is also applied and by the same
method, solutions can again be found for a set of mechanical equi-
libria. An example is shown in Fig. 5 for the same parameters as the
above dipolar case. Once again, the cool internal loops are shown
in blue on the left-hand side of the top panel and the external field
shown on the right-hand side in grey. As with the dipolar field, the
family of solutions for the cooled loops follows the external field at
low heights, before deviating and becoming taller and thinner with
increasing summit height. Naturally, these loops are constrained to
a smaller angular extent by the geometry of the system, with the
loops now being constrained to π

4 radians rather than π
2 radians.

This is seen clearly by comparison of the height versus width plots
for the two cases.

The maximum attainable loop height can be calculated by con-
sidering the point at which the magnetic field of these cool loops
(Bi) vanishes, i.e. where the footpoint separation of the loop is equal
to zero. These were found to be r = 5.98 R� and r = 5.34 R� for the
dipole and quadrupole, respectively. Beyond this height, the tension
force cannot increase enough to balance the gradient in magnetic
pressure and buoyancy forces, and thus no more hydrostatic solu-
tions can be found.

3.3 Allowing the field to become open at large heights

Choosing a background field that has a source surface above the co-
rotation radius, and solving for the shapes of cool loops embedded
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Figure 4. Background (grey) and cooled (blue) loops and the corresponding
variation of loop height with footpoint separation (or width) for parameters:
Te = 107 K, Ti = Te/10, p0i = 2p0e and a plasma β at the loop footpoints of
β = 10−7. The black dashed line shows the co-rotation radius.

Figure 5. Background (grey) and cooled (blue) loops and corresponding
variation of loop height with footpoint separation (or width) for parameters:
Te = 107 K, Ti = Te/10, p0i = 2p0e and a plasma β at the loop footpoints of
β = 10−7. The black dashed line shows the co-rotation radius.

Figure 6. Background (grey) and cooled (blue) loops with inclusion of a
source surface (red dashed) and the corresponding variation of loop height
with footpoint separation. The co-rotation radius is marked by the black
dashed line. The parameters for the cooled loop are Te = 107 K, Ti = Te/10,
p0i = 11p0e and the plasma β at the loop base is β = 10−3. The source
surface set to rs = 3.8R�.

within it, yields Fig. 6. Above the source surface, all external field
lines are open, so closed field lines exist in the external field only
below this height. As a result, the footpoints of the external field
have a maximum separation that depends on the choice of source
surface (Jardine et al. 2002a). The tallest closed field line in a dipolar
external field connects to the surface at a value of φ = φmax where

sin2(φmax) = 3rsR�

R3
� + 2r3

s

. (19)

Hence the maximum distance between footpoints and the summits
for the background field is (π /2 − φmax). As can be seen in Fig. 6,
the curve defining the solutions for the external field terminates at
this footpoint separation. For the cooled loops, the solutions for
low heights are very similar to those for the external field, but at
greater heights their shape differs from that of the external field.
Their footpoints can extend beyond the last closed field line in the
external region, reaching into the open field region.

Notably, there is a range of heights where no equilibria are avail-
able, but a family of equilibria do exist at large heights beyond
the source surface, where force balance allows the support of these
loops within the stellar wind.

Including a source surface below the co-rotation radius yields
Fig. 7. The results for the variation of loop height with footpoint
separation are also shown. The loop shapes can be seen to be con-
siderably thinner than the external field at low heights, and once
again there is a range of heights around the source surface where no
equilibria are available. At greater heights there is a second height
range where there are no solutions in this case, and once again there
is a family of very tall solutions beyond this.

3.4 Comparing with observations

It is clear from the above that there may be several height ranges
where no equilibria are available. One is always located around the
source surface, and the other at a height where buoyancy and the
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Figure 7. Variation of loop height with footpoint separation for the same
parameters as Fig. 6 but now with rs = 1.8 R�.

upwards pressure gradient of the external field can no longer bal-
ance the tension of the cool loop. This latter height range depends
on the loop parameters (such as temperature) and the effective sur-
face gravity of the star (which depends on the stellar rotation rate).
If a star has loops at a range of temperatures and base pressures,
then these ‘gaps’ in the possible prominence heights may over-
lap, making it difficult to detect this second gap in the allowed
equilibria.

In order to compare these example equilibria with what is ob-
served, we consider two stars for which many prominences have
been detected. The two stars selected are AB Dor and BO Mic
[also known as Speedy Mic, with spectral type K3V Dunstone et al.
(2006a)] and have similar masses but different radii and rotation
rates. As a result, their effective gravities and the location of their
co-rotation radii are quite different. Comparing these stars therefore
allows us to explore the role of the buoyancy force in determining
prominence locations. We note that magnetic maps do not exist for
Speedy Mic and so we simply assume that the magnetic field is simi-
lar to that of AB Dor. The stellar parameters used for Speedy Mic are
M� = 0.82 M�, R� = 1.06 R� and a period of 0.380 d (Dunstone
et al. 2006a).

We have compiled a histogram of the heights of all detected
prominences for AB Dor (Cameron & Robinson 1989; Donati &
Cameron 1997; Cameron et al. 1999; Donati et al. 1999) and Speedy
Mic (Dunstone et al. 2006a). These are shown in Fig. 8 for AB Dor in
blue and Speedy Mic in green, with their respective co-rotation radii
shown by the black dashed lines. Example histograms for predicted
prominence heights for typical model parameters are compared to
these observations, and shown in grey. These were calculated by
sampling the height of loops in increments of 0.2 R� along the
Height-Width curves. In Fig. 8, the parameters used are the same as
in Fig. 6: Te = 107 K, Ti = Te/10, p0i = 11p0e, β = 10−3 and rs =
3.8 R�. For both stars, our model shows a peak at very low heights,
close to the stellar surface, where prominences cannot easily be
observed due to their small size, meaning they will not occult a
large enough fraction of the star to be easily visible. Their size will

be restricted by the magnetic loop constraining them, and thus small
loops close to the stellar surface will contain small prominences,
which are harder to detect as absorption tracks.

For both stars, a peak is also seen in the model beyond the co-
rotation radius and for AB Dor a third peak is seen beyond the
source surface at around five stellar radii. The gap seen around
3.5 to 4.5 stellar radii from the rotation axis in the histograms for
AB Dor corresponds to the gap seen in the Height-Width curves,
denoting a transition from magnetically dominated force balance
at low heights, to magneto-centrifugal balance at greater heights.
These very tall loops can only be supported when the negative
buoyancy of the loop is sufficiently large. This can be seen clearly
in the plot of the variation of the buoyancy with height (top left-
hand panel). In the case of Speedy Mic, in this parameter range,
solutions are not found within the stellar wind since the internal
magnetic field strength has fallen to zero before the background
field has become open.

Considering now the histograms with a lower internal temper-
ature of Ti = Te/15, the model shows a similar shape of promi-
nence distribution as before but with the peak above co-rotation
now shifted to larger heights in both stellar cases. In this parame-
ter range, decreasing the temperature causes the top branch of the
Height-Width curve to move outwards from the stellar surface. This
can be seen most clearly by considering the force balance shown
in equation (8). It is worth noting that despite applying the same
magnetic fields to both stars, the loops will experience different
buoyancy forces due to the difference in gravitational acceleration
on the two stars. This leads to different types of behaviours on the
two stars.

While tension always acts inwards and the gradient of the external
field acts outwards, the direction of the buoyancy force can change.
This term is complicated by the fact that both g and (ρe − ρ i)
may take positive or negative values. In the case presented here, the
Height-Width curve at low heights does not change significantly
with a decrease in internal temperature, due to the dominance of
the magnetic field. However, the buoyancy force at large heights
becomes larger for a decrease in internal temperature, and since for
loops of the same width the tension term will be very similar, this
requires a smaller gradient of external field term in order to still
reach an equilibrium. This results in the top branch of the curve
moving outwards, and thus the final peak in the distribution also
moving to larger heights. It should be noted that this behaviour
will not always be seen, as it depends on the parameter regime in
which we find ourselves, due to the complexity of the buoyancy
term.

Speedy Mic. still cannot support prominences within the open
field with these parameters, though again the peak of the dis-
tribution has shifted outwards. The buoyancy term here is more
straightforward since for these parameters the term only changes
sign at the co-rotation radius i.e. when the effective gravity changes
sign. However, we find ourselves in a similar situation as the
buoyancy term acts outwards and becomes larger with decreas-
ing temperature, thus once again the peak of the distribution moves
outwards.

Plotting prominence distributions for a source surface below co-
rotation, with parameters as Fig. 7, results in rather different be-
haviour, as shown in Fig. 9. For AB Dor the gap in the Height-Width
curve shown in Fig. 7 can be seen clearly, in addition to another
gap around the source surface. For Speedy Mic however, the rapid
rise in the magnitude of the buoyancy above the co-rotation radius
cannot be balanced by the loop tension without the added effect
of the upwards pressure gradient of the external field. In this case,
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Stellar prominences 1519

Figure 8. Top Panel: Buoyancy (ρe − ρi)/gef (left) and Height-Width plots (right) for AB Doradus (blue) and Speedy Mic (green). The co-rotation radii for the
stars are shown by dots. Middle and Bottom Panels: Histograms of prominence observations for the two stars and example distributions in grey for an internal
temperature of Ti = Te/10 and Ti = Te/15. The co-rotation radius and source surface (rs = 3.8 R�) are shown by the black and red dashed lines, respectively.
Parameters here are as Fig. 6.

because the field is open above the co-rotation radius, it is im-
possible to achieve force balance for heights significantly above
co-rotation and so the distribution of model equilibrium heights is
extremely compact.

4 D ISCUSSION

The effective gravity of a star, and in particular its rotation rate,
clearly has a strong influence on the equilibrium summit heights of
loops that have cooled. The geometry of the background field may
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1520 R. F. P. Waugh and M. M. Jardine

Figure 9. Top Panel: Buoyancy (left) and Height-Width plots (right) for AB Doradus (blue) and Speedy Mic (green). The co-rotation radii for the stars are
shown by dots. Bottom Panel: Histograms of prominence observations for the two stars and example distributions in grey for an internal temperature of Ti =
Te/10. The co-rotation radius and source surface (rs = 1.8 R�) are shown by the black and red dashed lines, respectively. Parameters here are as Fig. 6.

also play a role, however, of particular important is the radius at
which this background field becomes open.

4.1 Changing the field topology

With this model we have prescribed both dipolar and quadrupolar
stellar fields. These are the two lowest order terms in the multipo-
lar expansion for the overall structure of the stellar magnetic field
and are the ones most likely to dominate at the large heights at
which prominences are observed. The quadrupolar field would nat-
urally result in prominences of smaller angular extent. This topology
would also be able to explain the presence of four prominences in
each hemisphere at one time, as opposed to the two prominences
from the dipolar field.

The two multipoles examined here also show slight variation in
the maximum attainable height of these loops, with r = 5.98 R�

and r = 5.34 R� for the dipole and quadrupole, respectively. This
is explained by the fact that the prescribed quadrupolar magnetic
field falls off more rapidly with height than the dipolar field. The
difference in maximum height is small, and it is unlikely that from

observed prominence heights alone one would be able to predict the
loop topology that best describes the prominence hosting loop. This
maximum height is also dependent on the loop parameters, which
cannot be obtained directly from observational data.

Although results have only been shown for a dipole and
quadrupole external field, in principle any external magnetic field
may be prescribed here. This could include higher order multipole
expansions, a combination of the multipole expansions, or an en-
tirely different external field.

4.2 Inclusion of a source surface

Results here replicate the essential conclusion of Jardine & van
Ballegooijen (2005) that prominences may be supported within the
open field region, i.e. within the stellar wind. We find equilibria for
source surfaces both above and below the co-rotation radius, and in
both cases ‘helmet streamer’ loop shapes can be found. Solutions
around the source surface are, however, difficult to find.

In the case of rs > rk, the Height-Width curve generated is similar
in form to that of the pure dipole case with an upper and lower
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Stellar prominences 1521

branch, separated by a gap around the location of the source surface.
Once the source surface is brought inside of co-rotation, however,
(Fig. 7) the family of solutions now shows a middle branch, with
gaps above and below it, although it still retains the same overall
shape. Loops in this case have considerably flatter loop summits, in
order to balance the forces acting on them, than is seen in the other
cases presented here.

The location of the gap in equilibria due to the growth in the buoy-
ancy force above co-rotation depends on the loop parameters (such
as the temperature and field strength) and the stellar parameters
(principally the effective gravity). Its presence could therefore be
difficult to detect by compiling a histogram of all observed promi-
nences, since they may have a variety of parameters. The gap due to
the location of the source surface is at the same height for all loops
however.

4.3 Development from previous models

One of the main limitations of Jardine & van Ballegooijen (2005)
was that it was restricted to a Cartesian geometry. It is therefore
most suitable for small scales where the star is locally flat. By
extending this to a spherical geometry, we have been able to allow
for the global field structure of star. In addition, we have removed
the infinite horizontal domain implicit in the earlier models. In the
present model, loop footpoints may only extend to π radians in the
dipolar case and π /2 radians in the quadrupolar case.

As a result of the Cartesian geometry, the solutions of Jardine &
van Ballegooijen (2005) did not allow equilibria at the co-rotation
radius, if this was above the source surface (i.e. in the open field
region). The reason is that at the co-rotation radius, the effective
gravity, and hence the buoyancy force, is zero. In a Cartesian ge-
ometry, however, the field lines in the wind region are straight and
purely vertical and so there is no gradient in the magnetic pressure
to balance the loop tension. As a result, no equilibria exist. In a
spherical geometry, the magnetic pressure gradient does not vanish
in the radial field of the wind and so equilibria may still exist at the
co-rotation radius.

In principle, the source surface model here does not require a
specific prescribed external field, as is the case in the Cartesian
model, and various multipoles could be prescribed in the place
of the dipole. This model is still restricted to the equatorial plane,
through our definition of the effective gravity term, and development
of this into a fully three-dimensional model would be interesting
but complex.

4.4 Interpreting the observed distributions of prominence
heights

The aim of this work is not to attempt to reproduce the observed
distributions of prominence heights in detail, but to shed light on
their overall structure. The observations reveal the location of large
prominences that form at heights of several stellar radii. Smaller,
more low-lying prominences (such as those predicted by our mod-
els) may be present, but they would not produce sufficiently large
absorption signatures to be detected. We therefore focus on the
height distributions of the larger prominences that are supported at
greater heights.

Our analysis reveals that there may be two gaps in the prominence
distribution, caused by two different physical effects. The first is the
location of the source surface, where the field transitions from closed
to open. This is at a fixed location in our model. The second gap is
due to the behaviour of the buoyancy, which for the tallest equilibria

is the dominant force opposing the tension of the cool loop. As can
be seen from Fig. 8, this force behaves quite differently in our
two example stars. For Speedy Mic the co-rotation radius is much
closer to the stellar surface, with the result that centrifugal effects
dominate at lower heights. This leads to a more compact distribution
of equilibria, regardless of the location of the source surface. The
buoyancy force depends not only on the effective gravity, which is a
global stellar parameter, but also on the local parameters (such as the
temperature) for each cool loop. We show in Fig. 8 the effect on this
term of a change in the temperature. Although this is less significant
than the difference between the two stars, it can still change the
location and width of the gap in loop equilibria. Consequently, if
a star has cool loops at a range of temperatures, any gaps due to
buoyancy effects may be smeared out in the distribution of observed
prominence heights.

It should also be noted that the histogram for the observed data
for Speedy Mic came from one observing run, with only a few data
points, while the data used for AB Dor came from a 10 yr period.
The magnetic field structure for AB Dor had changed over this time
period (varying by an order of magnitude over 10 yr, corresponding
to a change in β of 0.01) and thus the histogram plotted may in fact
be a combination of multiple histograms. We do not have X-ray
data over this extended period and so we do not know if the coronal
temperature varied. Extended observations of a star, long enough to
include a meaningful number of data points and catch prominences
at all heights, taken over a shorter time period than the data used
here for AB Dor would be needed in order to better compare the
model to data.

5 SU M M A RY A N D C O N C L U S I O N S

We present a model for calculating mechanical equilibrium of mag-
netic loops for rapidly rotating stars in a spherical geometry. We
model families of solutions for loops embedded in a background
field that is either a dipolar or quadrupolar geometry, showing that
the model is able to adapt to different stellar magnetic field topolo-
gies. We have included the effect of the magnetic field becoming
open beyond some radius (the source surface), both within and
outside of co-rotation, and solutions have been found in the open
field region as in Jardine & van Ballegooijen (2005). Using these
solutions, we show histograms of prominence heights for various
prominence temperatures and compare to data from AB Dor and
Speedy Mic. The model is able to predict the peak of prominences
above the co-rotation radius, but also predicts many prominences at
low heights, where they cannot be detected by current methods.

Unlike the Cartesian model previously presented by Jardine &
van Ballegooijen (2005), our spherical geometry allows for equilib-
ria that pass smoothly through the co-rotation radius. This matches
the observational data from AB Dor. Looking at the Height-Width
curves, we notice that lower solutions are almost force free, fol-
lowing the external field very closely, before the buoyancy term
becomes important and can no longer be ignored, ultimately deter-
mining the maximum height once the force has become too large
to be balanced. We find that the exact balancing of these forces is
complex, based on the buoyancy force which may act outwards or
inwards depending on both the direction of the effective gravity and
the sign of the density difference. By comparison of the observed
prominence distributions, we expect Speedy Mic to have a more
compact corona than AB Dor, since a third peak of prominences is
not seen here, which is consistent with the stronger effective gravity
force of this star due to its larger radius and shorter rotation period.
We note that for both stars the overall shape of the height distribu-
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1522 R. F. P. Waugh and M. M. Jardine

tions is closer to that observed when the opening radius is beyond
the co-rotation radius.

We have identified two physical processes that can produce gaps
in the height distribution of prominences. The first is the opening up
of field lines at the source surface and the second is the magnitude
and direction in which the buoyancy force acts. This second process
will vary from loop to loop if individual loops are at different
temperatures and this may act to disguise the presence of this gap
in distributions of prominences for an entire star. The location of
the source surface may be more robust to variations from loop to
loop and so this may be detectable in distributions of observed
prominence heights if these are acquired over a short enough time
period that the background stellar field does not evolve.
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