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ABSTRACT: Isothioureas catalyze the enantioselective addition of 4-nitrophenyl esters to tetrahydroisoquinoline-derived iminium 

ions. 4-Nitrophenoxide, generated in situ from initial N-acylation of 

the isothiourea by the 4-nitrophenyl ester, is used to facilitate catalyst 

turnover in this reaction process. Optimization showed that 4-

nitrophenyl esters give the best reactivity in this protocol over a range 

of alternative aryl esters, with the observed enantioselectivity mark-

edly dependent upon the nature of the iminium counterion. Highest 

yields and enantioselectivity were obtained using iminium bromide 

ions generated in situ via photoredox catalysis using BrCCl3 and Ru(bpy)3Cl2 (0.5 mol%) and commercially available tetramisole (5 

mol%) as the Lewis base catalyst. The scope and limitations of this procedure was developed, giving the desired β-amino amide 

products in up to 96% yield, 79:21 dr and ermajor (2R,1′S) 99.5:0.5.  
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INTRODUCTION  

Ammonium enolate intermediates1 generated by the action of 

tertiary amines2 in Lewis base catalysis3 have found wide-

spread application in chiral heterocycle synthesis via formal 

cycloaddition reactions, with many diverse scaffolds accessi-

ble in high yields and excellent enantiocontrol. While tradi-

tional strategies for ammonium enolate generation utilize the 

direct reaction of a Lewis base with ketenes,4 more recently 

the use of bench-stable carboxylic acids,5 anhydrides6 or acyl 

imidazoles7 as ammonium enolate precursors have also been 

employed. The nucleophilic ammonium enolate generated in 

situ reacts with an electrophilic reagent containing a latent 

nucleophile to generate a species capable of catalyst turnover 

in an intramolecular fashion (Figure 1, eqn 1). This approach 

represents a key limitation in this branch of catalysis, with 

ammonium enolate chemistry typically applied in formal 

[2+2],8 [3+2]9 or [4+2]10 cycloaddition methodologies. The 

established exception to this reactivity issue is the pioneering 

work from Lectka and co-workers in the area of enantioselec-

tive halogenations (Figure 1, eqn 2).11 In a series of elegant 

manuscripts polyhalogenated quinones were used to affect 

enantioselective halogenation of an ammonium enolate.12 Eno-

late addition to an electrophilic polyhalogenated quinone re-

sults in formation of an ammonium aryloxide ion pair, with 

the aryloxide generated in situ used for catalyst turnover.13 

Further seminal work in exploiting aryloxide “rebound” catal-

ysis was reported by Scheidt,14 who applied this concept to an 

NHC-catalyzed formal Mannich process, utilizing α-

aryloxyaldehydes as azolium enolate precursors (Figure 1, eqn 

3). 

 

Figure 1. Strategies for catalyst turnover in ammonium 

enolate catalysis 
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More recently, activated aryl esters have emerged as alterna-

tive enolate precursors, offering a potentially general solution 

to this challenge.15 An attractive feature of aryl ester substrates 

is the potential ability of the aryloxide, liberated upon initial 

catalyst acylation, to assist catalyst turnover. Expanding on 

Chi’s use of aryl esters in NHC-catalyzed formal cycloaddi-

tions (in which the aryloxide generated upon acylation of the 

NHC serves solely as a leaving group and is not required to 

promote turnover),16 in 2014 we developed an isothiourea-

catalyzed [2,3]-rearrangement of allylic ammonium ylides. In 

this process catalyst turnover relied on in situ formed arylox-

ide,17 with a HOBt co-catalyst necessary for optimum reactivi-

ty (Figure 2, eqn 1).18 Aryloxides have also been utilized stoi-

chiometrically as catalyst turnover agents by Fu and co-

workers in the chiral DMAP-catalyzed α-fluorination of ke-

tenes.19 Recent reports by first Snaddon (Figure 2, eqn 2)20 and 

subsequently Hartwig (Figure 2, eqn 3)21 have elegantly ap-

plied this idea in co-operative isothiourea/metal-catalyzed 

enolate allylation reactions using pentafluorophenyl ester pre-

cursors. In both cases, an isothiourea-derived ammonium eno-

late reacts with a metal π-allyl complex to affect the allylation 

reaction. Snaddon employed palladium catalysis to give a 

range of α-allyl esters in up to 95% yield and 99:1 er, whereas 

Hartwig used a chiral iridium catalyst that preferentially gives 

the branched regioisomeric products in up to 99% yield, >20:1 

dr and >99:1 er. Through judicious pairing of the enantiomers 

of each chiral catalyst all four possible diastereoisomers of the 

product were prepared with excellent enantioselectivity. 

 

Figure 2. Recent work exploiting in situ generated arylox-

ide to provide catalyst turnover 

Building upon these precedents, it was envisaged that tetrahy-

droisoquinoline derived iminium ions could act as stoichio-

metric reactive electrophiles using ammonium enolates gener-

ated from aryl esters. Importantly, catalyst turnover in this 

intermolecular process could only be achieved using a exoge-

nous nucleophile to promote catalyst release (in this case an 

aryloxide generated in situ from an aryl ester). In this process, 

N-acylation of the isothiourea catalyst 1 with an activated aryl 

ester 2 would generate the corresponding acyl ammonium 

aryloxide ion pair 3, with subsequent deprotonation leading to 

ammonium enolate 4 (Figure 3).  Reaction of ammonium eno-

late 4 with iminium electrophile 5 would give intermediate 6. 

Catalyst release from intermediate 6 cannot be achieved by an 

intramolecular nucleophile as required for a formal cycloaddi-

tion strategy, but instead uses an “external” nucleophile (ar-

yloxide) to provide turnover. The origin of enantiocontrol in 

isothiourea-catalyzed ammonium enolate transformations is 

proposed to rely upon an no to σ*C−S interaction22 between the 

enolate oxygen and catalyst sulfur atom. This formally pro-

vides a conformational lock, with subsequent addition prefer-

entially anti- to the phenyl stereodirecting group promoted by 

the 1,5-syn-coplanar S•••O arrangement. Catalyst turnover 

would be achieved via nucleophilic attack of the aryloxide 

upon acyl ammonium 6, giving the β-amino ester product 7. 

Notably, in the absence of the aryloxide, catalyst turnover 

could not be achieved using ammonium enolates generated 

directly at the carboxylic acid oxidation level. This work de-

scribes the successful realization of this goal. Notably, the 

enantioselectivity of this process showed a marked depend-

ence on the nature of the iminium counterion, with the opti-

mized protocol using photoredox catalysis to generate the key 

reactive iminium bromide salt in situ. 

 

Figure 3. This work: isothiourea-catalyzed enantioselective 

addition to iminium ions 

RESULTS AND DISCUSSION  

Initial proof of concept studies. Proof of principle investiga-

tions began on a simplified model system to demonstrate the 

feasibility of in situ generated aryloxide to provide turnover in 

this process. Iminium ion 11 was isolated via stoichiometric 

oxidation of N-phenyl tetrahydroisoquinoline with DDQ23 and 

used in optimization studies for the isothiourea-catalyzed pro-

cess. Iminium 11 and activated 4-nitrophenyl (PNP) ester 8 

were treated with benzotetramisole (BTM) 13 (20 mol%) and 

i-Pr2NEt (1.5 equiv) in THF at −10 °C for 24 h. Preliminary 

work indicated that lower isolated yields of the corresponding 

PNP ester product were obtained than expected by reaction 

conversion,24 consistent with this product being unstable to 

purification. Consequently, benzylamine (BnNH2) was added 

to form a stable isolable amide product 12 in 39% yield and 

73:27 dr (Table 1, entry 1: ermajor (2R,1′S) 72:28; erminor (2R,1′R) 

63:37).25 Other isothiourea catalysts were trialed, with Hyper-

BTM 14 giving similar yield and er, but reduced dr (entry 2: 

66:34 dr). Tetramisole·HCl 1·HCl gave amide 12 in an im-

proved 64% yield, whilst maintaining the observed levels of 
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diastereo- and enantiocontrol (entry 3: 75:25 dr, ermajor (2R,1′S) 

72:28; erminor (2R,1′R) 59:41). Alternative aryl esters were 

screened to assess their reactivity and impact on stereoselec-

tivity. The reaction of iminium 11 with 2,4,6-trichlorophenyl 

ester 9 in the presence of 1·HCl produced no observable prod-

uct (entry 4), while 3,5-bis(trifluoromethyl)phenyl ester 10 

gave the amide product 12 in 71:29 dr (ermajor (2R,1′S) 94:6; erminor 

(2R,1′R) 85:15) but in a poor 22% yield (entry 5). The use of al-

ternative 2,3,5,6-tetrafluoro- and pentafluorophenyl esters 

gave poor (<5%) product yields.26 No product was observed in 

the absence of 1·HCl when the PNP ester 8 was used, indicat-

ing no competitive base-mediated background reaction being 

operative under these conditions (entry 6). 

Table 1. Initial proof of concept studiesa 

 

aReaction conditions: (i) 11 (1 equiv, 0.25 mmol), 8-10 (1.5 equiv), cata-

lyst (20 mol%), i-Pr2NEt (1.5 equiv), THF (0.18 M), −10 °C, 24 h; (ii) 

BnNH2 (5 equiv), −10 °C, 24 h. bdr of crude product determined by 1H 
NMR spectroscopic analysis. cIsolated yields given as a mixture of dia-

stereoisomers. Only the major diastereoisomer is shown. der of major and 

minor diastereoisomers determined by chiral HPLC analysis. 

Reaction Optimization.  

(a) Additive and solvent screen. Previous work in catalytic 

enantioselective [2,3]-rearrangements from our laboratory has 

identified the role of additives in improving reaction enanti-

oselectivity.17 Addition of tetrabutylammonium bromide 15 (1 

equiv) to the 1·HCl-catalyzed reaction of iminium 11 and ester 

8 resulted in a significant enhancement in enantioselectivity 

(Table 2, entry 1: ermajor (2R,1′S) 89:11; erminor (2R,1′R) 80:20), how-

ever the isolated yield dropped to 32%. Addition of tetrabu-

tylammonium 4-nitrophenoxide (TBAPNP) 16 maintained this 

improved enantioselectivity and increased the yield to 63% 

(entry 2). This increase is likely due to a combination of in-

creased polarity of the reaction mixture and the influence of 4-

nitrophenoxide in facilitating catalyst turnover. A dual combi-

nation of 16 (1 equiv) and HOBt 17 (1 equiv) was attempted, 

but led to a decreased yield of 54% without any improvement 

in stereoselectivity (entry 3). Performing the reaction with 

only 16 as an additive and in the absence of 1·HCl confirmed 

that no competitive background reaction was operative under 

these conditions (entry 4). Additional controls confirmed that 

the observed diastereomeric ratio is consistent throughout the 

course of the reaction, and is thus not the result of epimeriza-

tion by BnNH2.
27 A solvent screen showed that MeCN (entry 

5) and CH2Cl2 (entry 6) were the only other solvents to give 

good conversion to product, albeit with reduced enantioselec-

tivity (Table 2). 

Table 2. Additive and solvent screena 

 

Entry 
Additive 

(1 equiv) 
Solvent drb 

Yield 

(%)c 

ermajor 

(2R,1′S)
d 

erminor 

(2R,1′R)
d 

1 15 THF 72:28 32 89:11 80:20 

2 16 THF 73:27 63 89:11 73:27 

3 16, 17 THF 76:24 54 89:11 70:30 

4 16 THF − − − − 

5 16 MeCN 83:17 73 75:25 66:34 

6 16 CH2Cl2 78:22 59 80:20 66:34 
aReaction conditions: (i) 11 (1 equiv, 0.25 mmol), 8 (1.5 equiv), 1·HCl (20 
mol%), additive (1 equiv), i-Pr2NEt (1.5 equiv), THF (0.18 M), −10 °C, 24 

h; (ii) BnNH2 (5 equiv), −10 °C, 24 h. bdr of crude product determined by 
1H NMR spectroscopic analysis. cIsolated yields given as a mixture of 
diastereoisomers. Only the major diastereoisomer is shown. der of major 

and minor diastereoisomers determined by chiral HPLC analysis. 

(b) Effect of the iminium counterion. The effect of the imin-

ium counterion upon reactivity and enantioselectivity was 

investigated next. A range of iminium ions was prepared by 

either oxidation using bromotrichloromethane (BrCCl3) in the 

presence of blue light (Table 3, entry 1) or counterion ex-

change (entries 2-5) to examine the effect on the yield and 

selectivity. While the diastereoselectivity of the process was 

essentially invariant, changing the counterion showed signifi-

cant variation in yield and enantioselectivity. The smaller, 

coordinating halide counterions (Br− and Cl−) gave the amide 

product 12 in comparable yield to the model system (entries 1 

and 2) and with improved enantioselectivity (ermajor (2R,1′S): 97:3 

and 96:4 respectively). The larger, non-coordinating counteri-

ons (BF4
−, PF6

− and BPh4
−) gave higher yields in comparison 

with the model system (entries 3-5), but with reduced enanti-

oselectivity (ermajor (2R,1′S): 90:10, 87:13 and 82:18). As the syn-

thesis of iminium bromide 18 is facile via either oxidation 

O

OAr

NPh

O

NHBn

NPh

+

H

H

X

(i) catalyst (20 mol%) 

i-Pr2NEt (1.5 equiv) 

THF, - 10 °C, 24 h

N

SN

Ph

(S)-Tetramisole·HCl 

1·HCl

N

SNPh

i-Pr

(2R,3S)-HyperBTM 

14

N

SN

Ph

(S)-Benzotetramisole

BTM 13

12

11

ClCl

CNNC

OHO

X =

·HCl

8, Ar = 4-NO2C6H4

9, Ar = 2,4,6-Cl3C6H2

10, Ar = 3,5-(CF3)2C6H3

(ii) BnNH2 (5 equiv)

 - 10 °C, 24 h

2

1ʹ

O

OPNP

O

NHBn

NPh

H

H

12

8

NBu4 Br NBu4
O NO2 N

N

N

OH
15 16 17

(i) 1·HCl (20 mol%)

additive (1 equiv)

i-Pr2NEt (1.5 equiv) 

solvent, -10 °C, 24 h

NPh

+

X

11

PNP = 4-NO2C6H4

(ii) BnNH2 (5 equiv)

 -10 °C, 24 h

ClCl

CNNC

OHO

X =

2

1¢

Entry Ar Catalyst drb 
Yield 

(%)c 

ermajor 

(2R,1′S)
d 

erminor 

(2R,1′R)
d 

1 8 13 73:27 39 72:28 63:37 

2 8 14 66:34 40 73:27 52:48 

3 8 1·HCl 75:25 64 72:28 59:41 

4 9 1·HCl − − − − 

5 10 1·HCl 71:29 22 94:6 85:15 

6 8 − − − − − 



 

using BrCCl3 in the presence of blue light or photoredox-

catalyzed process, the bromide counterion was chosen for all 

further studies (Table 3). 

Table 3. Iminium counterion effecta 

 

Entry X drb 
Yield 

(%)c 

ermajor 

(2R,1′S)
d 

erminor 

(2R,1′R)
d 

1 Br (18) 74:26 55 97:3 96:4 

2 Cl (19) 72:28 67 96:4 95:5 

3 BF4 (20) 80:20 87 90:10 75:25 

4 PF6 (21) 77:23 88 87:13 70:30 

5 BPh4 (22) 76:24 88 82:18 67:33 
aReaction conditions: (i) 18-22 (1 equiv, 0.25 mmol), 8 (1.5 equiv), 1·HCl 

(20 mol%), TBAPNP 16 (1 equiv), i-Pr2NEt (1.5 equiv), THF (0.18 M), 

−10 °C, 24 h; (ii) BnNH2 (5 equiv), −10 °C, 24 h. bdr of crude product 
determined by 1H NMR spectroscopic analysis. cIsolated yields given as a 

mixture of diastereoisomers. Only the major diastereoisomer is shown. der 

of major and minor diastereoisomers determined by chiral HPLC analysis. 

 

(c) Developing a sequential photocatalytic oxida-

tion/isothiourea-catalyzed procedure. The use of photoredox 

catalysis in recent years has emerged as a powerful tool that 

has been widely exploited in organic chemistry.28 Applications 

in organocatalysis are being realized, with dual catalytic pro-

cedures29 involving imidazolidinone,30 NHC,31 proline-

derived,32 thiourea33 and DABCO34 catalysts already devel-

oped. Having shown that highest enantioselectivity was ob-

served using the iminium bromide salt, attention turned to 

incorporating a photocatalytic oxidation to generate the re-

quired iminium ion. Following Zeitler’s precedent,35 the oxi-

dation of N-phenyl tetrahydroisoquinoline 23 using BrCCl3 in 

THF and irradiation with blue LED light at rt for 24 h was 

followed. Removal of the light source, followed by the or-

ganocatalytic step gave amide 12 in 59% yield, 75:25 dr and 

ermajor (2R,1′S) 95:5 (Table 4, entry 1).36 As an alternative, using 

Ru(bpy)3Cl2 24 as a photocatalyst (1 mol%)37 gave complete 

oxidation within 2 h, and after organocatalytic functionaliza-

tion gave the desired product 12 in a similar yield with no 

change in diastereo- and enantioselectivity (entry 2). When 

both photo- and organocatalytic reaction steps were carried out 

in MeCN a significant enhancement in yield was observed, 

with 12 obtained in 77% yield but with reduced stereoselectiv-

ity (entry 3). A screen of THF:MeCN mixtures was carried out 

to find a system that delivered high yields without compromiz-

ing stereoselectivity. To achieve consistently high yields, it 

was necessary to conduct the oxidation step in MeCN. In-

creased enantioselectivity in the organocatalytic step was 

achieved by the addition of THF, with a 3:1 ratio of 

THF:MeCN being found to be optimal. Under these condi-

tions, amide 12 was isolated in 78% yield, 77:23 dr and ermajor 

(2R,1′S) 95:5 (entry 4). Further studies were undertaken to reduce 

the loading of the two catalyst systems. Reduction of the or-

ganocatalyst 1·HCl loading from 20 mol% to 10 mol% gave 

12 in 65% (entry 5) and 5 mol% resulted in 12 in 70% yield 

with no loss in selectivity (entry 7). Further reduction of the 

loading of 1·HCl gave reduced reactivity, with a severely di-

minished yield observed at 2 mol% (entry 9). Although 0.5 

mol% of Ru(bpy)3Cl2 24 showed a marginally better yield and 

selectivity than 1 mol% when 10 mol% of 1·HCl was used 

(entry 6), the optimal catalyst loading was 5 mol% of 1·HCl 

and 0.5 mol% of 24 (entry 8). Attempts to carry out both pho-

to- and organocatalyzed steps simultaneously, rather than se-

quentially, were conducted. Reaction catalyzed by 1 mol% of 

Ru(bpy)3Cl2 24 and 20 mol% of 1·HCl in MeCN:THF (2:1) 

resulted in formation of amide 12 in 57% yield and 67:33 dr, 

but only 56:44 er. Under the developed conditions, attempts to 

utilize either N,N-dimethylaniline or N-benzyl-N-

methylaniline as starting materials rather than 23 did not lead 

to any observable product.26 

 

Table 4. Optimizing a sequential photoredox/isothiourea-

catalyzed procedure 

 

Entry Solvent 1/2 24a 1·HCla drb Yield 

(%)c 

ermajor 

(2R,1′S)
d 

1e THF/ − 0 20 75:25 59 95:5 

2 THF/ − 1 20 74:26 56 95:5 

3 MeCN/ − 1 20 64:36 77 92:8 

4 MeCN/THFf 1 20 77:23 78 95:5 

5 MeCN/THFf 1 10 73:27 65 94:6 

6 MeCN/THFf 0.5 10 70:30 70 95:5 

7 MeCN/THFf 1 5 72:28 70 94:6 

8 MeCN/THFf 0.5 5 74:26 78 94:6 

9 MeCN/THFf 1 2 70:30 35 93:7 
aCatalyst loading in mol%. bdr of crude product determined by 1H NMR 

spectroscopic analysis. cIsolated yields given as a mixture of diastereoi-

somers. Only the major diastereoisomer is shown. der of major diastereoi-
somer determined by chiral HPLC analysis. eOxidation reaction carried 

out for 24 h. fAfter oxidation was complete the reaction mixture was 

cooled to −10 °C and THF was added, such that the second step was car-

ried out in a 3:1 mixture of THF:MeCN. 

 

Reaction scope and generality. With an optimized sequential 

photoredox/Lewis base-catalyzed procedure in hand, the gen-

erality of this process was investigated, with the scope of the 

ester component examined first (Table 5). For the range of 

substituted arylacetic PNP esters studied, both the position and 

electronic nature of the substituent markedly influenced their 
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reactivity and product enantioselectivity, while the product 

diastereoselectivity remained at approximately 75:25 dr. Sub-

stitution at the 3-position of the aromatic ring was successful, 

giving 3-methyl substituted 25 in 85% yield and ermajor (2R,1′S) 

90:10. Introduction of a methyl substituent at the 2-position 

however had a deleterious effect on reactivity: 2-methyl sub-

stituted 26 was obtained in a reduced 51% yield and ermajor 

(2R,1′S) 78:22. Reaction of the phenylacetic acid derivative in 

this protocol worked well, giving 27 in 81% yield and ermajor 

(2R,1′S) 92:8. Aromatic rings bearing an electron-donating groups 

were well tolerated, with 4-methoxy substitution giving 28 in 

70% yield and ermajor (2R,1′S) 94:6. A 3-methoxy substituted aro-

matic ring gave 29 in 56% yield and ermajor (2R,1′S) 91:9, however 

attempts to include an 2-methoxy substituent resulted in a 

significant reduction in yield, with the desired product difficult 

to isolate.38 Introduction of an electron-withdrawing 4-CF3 

substituted aromatic gave reduced reactivity, making it neces-

sary to increase the 1·HCl loading to 20 mol%,39 giving 30 in 

76% yield but with reduced er (ermajor (2R,1′S) 76:24). 4-Bromo, 

4-phenyl and 2-naphthyl substitutions were all well tolerated 

to give 31, 32 and 33 in approximately 80% yield and ermajor 

(2R,1′S) 90:10, 84:16 and 91:9 respectively. In contrast, 1-

naphthyl substitution required 10 mol% 1·HCl catalyst load-

ing, giving 34 in 61% yield and ermajor (2R,1′S) 82:18. A 3-

thiophene substituent was tolerated, giving 35 in 85% yield 

and ermajor (2R,1′S) 92:8. Although alkyl substituted 4-nitrophenyl 

esters did not prove compatible with this methodology,26 

alkenyl-substituted 4-nitrophenyl esters were compatible, but 

required 10 mol% 1·HCl for optimal product yields, providing 

36 and 37 in 64% and 73% yield and good enantioselectivity. 

Alternative nucleophilic amines to were also examined to pre-

pare a range of isolable amide derivatives. Addition of pyrrol-

idine, N-Boc piperazine and morpholine resulted in the corre-

sponding amides 38, 39 and 40 in excellent yield (79-86%), 

and comparable stereoselectivity (~75:25 dr, and ermajor (2R,1′S) 

95:5). 

 

Table 5. Scope of the sequential photoredox/isothiourea-catalysis: variation of PNP ester and amine nucleophile  

  

The er of the major diastereoisomer is stated. For the er of the minor diastereoisomer, see SI. a20 mol% 1·HCl catalyst loading. b10mol% 1·HCl catalyst 

loading. c10 equiv of amine used for quench.  

 



 

Further studies probed the scope of this process with respect to 

skeletal variation within the tetrahydroisoquinoline (Table 6). 

Substituent variation of the carbocylic skeleton showed that 

incorporation of 6,7-(MeO)2 substituents gave products 41 and 

42 with excellent yields but reduced enantioselectivity with 

respect to 12. However, incorporation of  either 5- or 7-Cl 

substituents proceeded with high enantioselectivity to give 43 

and 44. 

Table 6. Scope with variation in N-aryl tetrahydroisoquin-

oline substrate  

 
The er of the major diastereoisomer is stated. For the er of the minor dia-

stereoisomer, see SI. a20 mol% 1·HCl catalyst loading. 

 

Variation of the N-substituent showed that while oxidation 

was successful with an N-methyl substituent, no conversion to 

the desired product was observed after the organocatalytic 

step. Incorporating a 4-methyl substituent gave 45 in 70% 

yield and ermajor (2R,1′S) 89:11. Introduction of a 4-fluoro substit-

uent was well tolerated, giving 46 in 90% yield and excellent 

enatioselectivity (ermajor (2R,1′S) 95:5), while 4-bromo substituent 

gave 47 in 67% yield and ermajor (2R,1′S) 94:6. Unfortunately, 

substrates bearing an electron-withdrawing (4-CF3 phenyl) and 

electron-donating (4-methoxyphenyl) aromatic N-substitution 

were unsuccessful, indicating limited electronic tolerance of 

the N-aryl substituent within this protocol. 

CONCLUSION  

In conclusion, the enantioselective isothiourea-catalyzed addi-

tion of 4-nitrophenyl esters to tetrahydroisoquinoline-derived 

iminium ions has been demonstrated using ammonium enolate 

catalysis. This methodology does not rely on an intramolecular 

nucleophile to achieve catalyst turnover, instead the 4-

nitrophenoxide expelled through N-acylation of the 4-

nitrophenyl ester is able to re-enter the catalytic cycle to facili-

tate turnover of the catalyst. Control studies showed that reac-

tion enantioselectivity was markedly dependent upon the na-

ture of the iminium counterion. Extensive optimization lead to 

a sequential photoredox/isothiourea-catalyzed reaction being 

adopted, leading to the synthesis of substituted tetrahydroiso-

quinolines in high yield and excellent er. The substrate scope 

with respect to arylacetic and alkenylacetic 4-nitrophenyl es-

ters, variation of the carbocyclic and N-aryl groups within the 

tetrahydroisoquinoline skeleton, as well as amine nucleophilic 

quench has been examined. Current work in our laboratory is 

focused on further applications of using in situ generated ar-

yloxides to promote catalyst turnover in Lewis base cataly-

sis.40 

AUTHOR INFORMATION 

Corresponding Author 

* E-mail: ads10@st-andrews.ac.uk  

Notes 
The authors declare no competing financial interest. 

ASSOCIATED CONTENT  

Supporting Information (SI). Experimental procedures, charac-

terization data, copies of NMR spectra and HPLC chromato-

grams. This material is available free of charge via the Internet at 

http://pubs.acs.org. 

ACKNOWLEDGMENT  

We thank AstraZeneca and the EPSRC (grant codes 

EP/M506631/1; J.N.A. and EP/J018139/1; A.B.F.) for funding. 

The European Research Council under the European Union’s 

Seventh Framework Programme (FP7/2007-2013) ERC Grant 

Agreement No. 279850 is also acknowledged. A.D.S. thanks the 

Royal Society for a Wolfson Research Merit Award. We also 

thank the EPSRC UK National Mass Spectrometry Facility at 

Swansea University. 

REFERENCES 

(1) (a) Gaunt, M. J.; Johansson, C. C. C. Chem. Rev. 2007, 107, 

5596-5605. (b) Morrill, L. C.; Smith, A. D. Chem. Soc. Rev. 2014, 43, 

6214-6226. 

(2) (a) Fu, G. Acc. Chem. Res. 2000, 33, 412-420. (b) France, S.; 

Guerin, D. J.; Miller, S. J.; Lectka, T. Chem. Rev. 2003, 103, 2985-

3012. (c) Taylor, J. E.; Bull, S. D.; Williams, J. M. J. Chem. Soc. Rev. 

2012, 41, 2109-2121. (d) Merad, J.; Pons, J.-M.; Chuzel, O.; Bressy, 

C. Eur. J. Org. Chem. 2016, 5589-5610. 

(3) Denmark, S. E.; Beutner, G. L. Angew. Chem. Int. Ed. 2008, 

47, 1560-1638. 

(4) Paull, D. H.; Weatherwax, A.; Lectka, T. Tetrahedron 2009, 65, 

6771-6803 and references therein. 



 

(5) (a) Cortez, G. S.; Tennyson, R. L.; Romo, D. J. Am. Chem. Soc. 

2001, 123, 7945-7946. (b) Oh, S. H.; Cortez, G. S.; Romo, D. J. Org. 

Chem. 2005, 70, 2835-2838. (c) Henry-Riyad, H.; Lee, C.; Purohit, V. 

C.; Romo, D. Org. Lett. 2006, 8, 4363-4366. (d) Morrill, L. C.; Stark, 

D. G.; Taylor, J. E.; Smith, S. R.; Squires, J. A.; D'Hollander, A. C. 

A.; Simal, C.; Shapland, P.; O'Riordan, T. J. C.; Smith, A. D. Org. 

Biomol. Chem. 2014, 12, 9016-9027. (e) Yeh, P.-P.; Daniels, D. S. B.; 

Fallan, C.; Gould, E.; Simal, C.; Taylor, J. E.; Slawin, A. M. Z.; 

Smith, A. D. Org. Biomol. Chem. 2015, 13, 2177-2191. (f) Stark, D. 

G.; Young, C. M.; O'Riordan, T. J. C.; Slawin, A. M. Z.; Smith, A. D. 

Org. Biomol. Chem. 2016, 14, 8068-8073. 

(6) (a) Morrill, L. C.; Ledingham, L. A.; Couturier, J.-P.; Bickel, J.; 

Harper, A. D.; Fallan, C.; Smith, A. D. Org. Biomol. Chem. 2014, 12, 

624-636. (b) Stark, D. G.; Morrill, L. C.; Cordes, D. B.; Slawin, A. M. 

Z.; O'Riordan, T. J. C.; Smith, A. D. Chem. Asian J. 2016, 11, 395-

400. 

(7) Young, C. M.; Stark, D. G.; West, T. H.; Taylor, J. E.; Smith, 

A. D. Angew. Chem. Int. Ed. 2016, 55, 14394-14399. 

(8) (a) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Drury, W. 

J.; Lectka, T. J. Am. Chem. Soc. 2000, 122, 7831-7832. (b) Wilson, J. 

E.; Fu, G. C. Angew. Chem. Int. Ed. 2004, 43, 6358-6360. (c) Purohit, 

V. C.; Malta, A. S.; Romo, D. J. Am. Chem. Soc. 2008, 130, 10478-

10479. (d) Leverett, C. A.; Purohit, V. C.; Romo, D. Angew. Chem. 

Int. Ed. 2010, 49, 9479-9483. (e) Smith, S. R.; Douglas, J.; Prevet, H.; 

Shapland, P.; Slawin, A. M. Z.; Smith, A. D. J. Org. Chem. 2014, 79, 

1626-1639. (f) Morrill, L. C.; Smith, S. M.; Slawin, A. M. Z.; Smith, 

A. D. J. Org. Chem. 2014, 79, 1640-1655. 

(9) (a) Hesping, L.; Biswas, A.; Daniliuc, C. G.; Mück-Lichtenfeld, 

C.; Studer, A. Chem. Sci. 2015, 6, 1252-1257. (b) Li, B.-S.; Wang, Y.; 

Jin, Z.; Chi, Y. R. Chem. Sci. 2015, 6, 6008-6012. (c) Smith, S. R.; 

Fallan, C.; Taylor, J. E.; McLennan, R.; Daniels, D. S. B.; Morrill, L. 

C.; Slawin, A. M. Z.; Smith, A. D. Chem. Eur. J. 2015, 21, 10530-

10536. 

(10) (a) Bekele, T.; Shah, M. H.; Wolfer, J.; Abraham, C. J.; 

Weatherwax, A.; Lectka, T. J. Am. Chem. Soc. 2006, 128, 1810-1811. 

(b) Xu, X.; Wang, K.; Nelson, S. G. J. Am. Chem. Soc. 2007, 129, 

11690-11691. (c) Belmessieri, D.; Morill, L. C.; Simal, C.; Slawin, A. 

M. Z.; Smith, A. D. J. Am. Chem. Soc. 2011, 133, 2714-2720. (d) 

Simal, C.; Lebl, T.; Slawin, A. M. Z.; Smith, A. D. Angew. Chem. Int. 

Ed. 2012, 51, 3653-3657. (e) Kasten, K.; Cordes, D. B.; Slawin, A. 

M. Z.; Smith, A. D. Eur. J. Org. Chem. 2016, 21, 3619-3624. 

(11) Hafez, A. M.; Taggi, A. E.; Wack, H.; Esterbrook, J.; Lectka, 

T. Org. Lett. 2001, 3, 2049-2051. 

(12) For a short review on aryloxide-promoted catalyst turnover in 

Lewis base organocatalysis, see: Hartley, W. C.; O’Riordan, T. J. C.; 

Smith, A. D. Synthesis 2017, 49, 3303-3310. 

(13) (a) Wack, H.; Taggi, A. E.; Hafez, A. M.; Drury, W. J.; Lec-

tka, T. J. Am. Chem. Soc. 2001, 123, 1531-1532. (b) Taggi, A. E.; 

Wack, H.; Hafez, A. M.; France, S.; Lectka, T. Org. Lett. 2002, 4, 

627-629. (c) France, S.; Wack, H.; Taggi, A. E.; Hafez, A. M.; Wa-

gerle, T. R.; Shah, M. H.; Dusich, C. L.; Lectka, T. J. Am. Chem. Soc. 

2004, 126, 4245-4255. (d) Bernstein, D.; France, S.; Wolfer, J.; Lec-

tka, T. Tetrahedron: Asymmetry 2005, 16, 3481-3483. For aryloxide 

generated in situ for N-heterocyclic carbene turnover, see: (e) Doug-

las, J.; Ling, K. B.; Concellón, C.; Churchill, G.; Slawin, A. M. Z.; 

Smith, A. D. Eur. J. Org. Chem. 2010, 5863-5869. (f) Concellón, C.; 

Duguet, N.; Smith, A. D. Adv. Synth. Catal. 2009, 351, 3001-3009. 

(14) Kawanaka, Y.; Phillips, E. M.; Scheidt, K. A. J. Am. Chem. 

Soc. 2009, 131, 18028-18029. 

(15) (a) Cheng, J.; Huang, Z.; Chi, Y. R. Angew. Chem. Int. Ed. 

2013, 52, 8592-8596. (b) Hao, L.; Chen, S.; Xu, J.; Tiwari, B.; Fu, Z.; 

Li, T.; Lim; J.; Chi, Y. R. Org. Lett. 2013, 15, 4956-4959. (c) Fu, Z.; 

Xu, J.; Zhu, T.; Leong, W. W. Y.; Chi, Y. R. Nat. Chem. 2013, 5, 

835-839. 

(16) (a) Hao, L.; Du, Y.; Lv, H.; Chen, X.; Jiang, H.; Shao, Y.; Chi, 

Y. R. Org. Lett. 2012, 14, 2154-2157. (b) Hao, L.; Chan, W. C.; Gan-

guly, R.; Chi, Y. R. Synlett 2013, 24, 1197-1200; (c) Hao, L.; Chen, 

X.; Chen, S.; Jiang, K.; Torres, J.; Chi, Y. R. Org. Chem. Front. 2014, 

1, 148-150. 

(17) West, T. H.; Daniels, D. S. B.; Slawin, A. M. Z.; Smith, A. D. 

J. Am. Chem. Soc. 2014, 136, 4476-4479. 

(18) (a) West, T. H.; Walden, D. M.; Taylor, J. E.; Brueckner, A. 

C.; Johnston, R. C.; Cheong, P. H.-Y.; Lloyd-Jones, G. C.; Smith, A. 

D. J. Am. Chem. Soc. 2017, 139, 4366-4375. (b) Vora, H. U.; Rovis, 

T. J. Am. Chem. Soc. 2007, 129, 13796-13797. (c) Wheeler, P.; Vora, 

H. U.; Rovis, T. Chem. Sci. 2013, 4, 1674-1679. 

(19) Lee, S. Y.; Neufeind, S.; Fu, G. C. J. Am. Chem. Soc. 2014, 

136, 8899-8902. 

(20) Schwarz, K. J.; Amos, J. L.; Klein, J. C.; Do, D. T.; Snaddon, 

T. N. J. Am. Chem. Soc. 2016, 138, 5214-5217. 

(21) Jiang, X.; Beiger, J. J.; Hartwig, J. F. J. Am. Chem. Soc. 2017, 

139, 87-90.  

(22) For S•••O interactions as control elements in isothiourea ca-

talysis, see: (a) Robinson, E. R. T.; Walden, D. M.; Fallan, C.; Green-

halgh, M. D.; Cheong, P. H.-Y.; Smith, A. D. Chem. Sci. 2016, 7, 

6919-6927. (b) Abbasov, M. E.; Hudson, B. M.; Tantillo, D. J.; Ro-

mo, D. J. Am. Chem. Soc. 2014, 136, 4492-4495. (c) Liu, P.; Yang, 

X.; Birman, V. B.; Houk, K. N.  Org. Lett. 2012, 14, 3288-3291. (d) 

Birman, V. B.; Li, X.; Han, Z. Org. Lett. 2007, 9, 37-40. For an alter-

native use of S•••O interactions in asymmetric synthesis, see: (e) 

Nagao, Y.; Miyamoto, S.; Miyamoto, M.; Takeshige, H.; Hayashi, K.; 

Sano, S.; Shiro, M.; Yamaguchi, K.; Sei, Y. J. Am. Chem. Soc. 2006, 

128, 9722-9729. For a recent computational manuscript on the origin 

of S•••O interactions see Pascoe, D. J., Ling, K. B., Cockcroft, S. L. J. 

Am. Chem. Soc. 2017, 139, 15160-15167. 

(23) (a) Tsang, A. S.-K.; Todd, M. H. Tetrahedron Lett. 2009, 50, 

1199-1202. (b) Tsang, A. S.-K.; Jensen, P.; Hook, J. M.; Hashmi, A. 

S. K.; Todd, M. H. Pure App. Chem. 2011, 83, 655-665. 

(24) The PNP ester product is susceptible to hydrolysis upon 

workup. Adding BnNH2 after the organocatalysis step ensures full 

conversion to the more stable amide 12. The isolated yields were 

comparable to that analyzed by 1H NMR spectroscopy of the crude 

mixture using 1,4-dinitrobenzene as an internal standard. 

(25) The relative configurations of both 4-bromo-31 (major) and 4-

bromo-31 (minor) diastereoisomers were confirmed by single crystal 

X-ray diffraction analysis. CCDC 1554610 contains the supplemen-

tary crystallographic data for 31 (major) and CCDC 1554609 for 31 

(minor), with all other substrates assigned by analogy. See SI for 

further details. The absolute configuration was assigned by analogy to 

the facial selectivity of all other isothiourea-derived ammonium eno-

lates, see references: 5 (d)-(f), 6, 7, 8 (e)-(f), 9 (c), 10 (c)-(d), 17, 18 

(a), 20 and 21. 

(26) See SI for full experimental details. 

(27) Additional control reactions were performed to track the 

origin of the minor diastereoisomer. A small amount of the PNP ester 

product was obtained, and its dr determined. This product was then 

subjected to a nucleophilic quench with BnNH2; the dr remained 

unaltered and was consistent with that of amide product 12 isolated 

from a standard reaction. The 1·HCl-catalyzed reaction prior to the 

BnNH2 quench was monitored by 1H NMR spectroscopy, and it was 

found that the dr of the corresponding PNP ester product as it was 

forming was the same as that of the isolated amide product (73:27 dr).  

(28) (a) Zeitler, K. Angew. Chem. Int. Ed. 2009, 48, 9785-9789. (b) 

Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527-532. (c) 

Xuan, J.; Xiao, W.-J. Angew. Chem. Int. Ed. 2012, 51, 6828-6838. (d) 

Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 

102-113. (e) Tucker, J. W.; Stephenson, C. R. J. J. Org. Chem. 2012, 

77, 1617-1622. (f) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. 

Chem. Rev. 2013, 113, 5322-5363. (g) Shaw, M. H.; Twilton, J.; 

MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898-6926. 

(29) Hopkinson, M. N.; Sahoo, B.; Li, J.-L.; Glorius, F. Chem. Eur. 

J. 2014, 20, 3874-3886. 

(30) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77-

80. 

(31) DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 8094-

8097. 

(32) (a) Rueping, M.; Vila, C.; Koenigs, R. M.; Poscharny, K.; 

Fabry, D. C. Chem. Commun. 2011, 47, 2360-2362. (b) Silvi, M.; 

Arceo, E.; Jurberg, I. D.; Cassani, C.; Melchiorre, P. J. Am. Chem. 

Soc. 2015, 137, 6120-6123. 

(33) Bergonzini, G.; Schindler, C. S.; Wallentin, C.-J.; Jacobsen, E. 

N.; Stephenson, C. R. J. Chem. Sci. 2014, 5, 112-116. 



 

(34) Feng, Z.-J.; Xuan, J.; Xia, X.-D.; Ding, W.; Guo, W.; Chen, 

J.-R.; Zou, Y.-Q.; Lu, L.-Q.; Xiao, W.-J. Org. Biomol. Chem. 2014, 

12, 2037-2040. 

(35) Franz, J. F.; Kraus, W. B.; Zeitler, K. Chem. Commun. 2015, 

51, 8280-8283. 

(36) The generality of protocol for the oxidation using BrCCl3 and 

blue LEDs in the absence of a photocatalyst was explored with some 

substrates, but yields were lower than using the photoredox proce-

dure. See SI for further details. 

(37) For an example of nucleophilic trapping of iminium interme-

diates derived from the oxidation of tetrahydroisoquinolines, see: 

Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson, C. R. J. Org. 

Lett. 2012, 14, 94-97. 

(38) The amide product bearing an 2-methoxy substitution on the 

aromatic ring was formed in 58:42 dr and ermajor (2R,1′S) 65:35 at 10 

mol% 1·HCl catalyst loading. Multiple attempts at purification by 

column chromatography failed to separate the desired product from 

unidentified side products, with an approximate isolated yield of 32%. 

See SI for further details. 

(39) A reaction involving 4-CF3 PNP ester with iminium bromide 

18 in the absence of organocatalyst 1·HCl gave the corresponding 

amide product 30 in 68% isolated yield and 58:42 dr. This is con-

sistent with a competitive base-mediated background reaction being 

operative under these reaction conditions. 

(40) The research data underpinning this publication can be ac-

cessed at: http://dx.doi.org/10.17630/12bb1529-4947-4d75-b607-

583606a66652. 

Table of Contents (TOC) Graphic 

 

 

 


