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Highlights

• Inference of population genetic parameters from a sample of sequences
represented as site frequency spectra (SFS), using concepts akin to the
forward-backward algorithm of hidden Markov models is described.

• Discrete transition matrices and continuous diffusion models of iterating
the population allelic proportion, forward and backward in time, are used
for calculating the marginal likelihood of the data for maximum likelihood
inference of parameters.

• The method is demonstrated for simulated joint site frequency spectra
(i.e., data from two or more populations) under different models of muta-
tion and for different demographic scenarios.

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Inference in Population Genetics Using Forward and
Backward, Discrete and Continuous Time Processes

Juraj Bergmana,b, Dominik Schrempfa,b, Carolin Kosiola,d, Claus Voglc,∗

aInstitut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, A-1210 Wien,
Austria

bVienna Graduate School of Population Genetics, A-1210 Wien, Austria
cInstitut für Tierzucht und Genetik, Vetmeduni Vienna, Veterinärplatz 1, A-1210 Wien,

Austria
dCentre of Biological Diversity, School of Biology, University of St. Andrews, St Andrews

KY16 9TH, UK

Abstract

A central aim of population genetics is the inference of the evolutionary history
of a population. To this end, the underlying process can be represented by a
model of the evolution of allele frequencies parametrized by e.g., the popula-
tion size, mutation rates and selection coefficients. A large class of models use
forward-in-time models, such as the discrete Wright-Fisher and Moran models
and the continuous forward diffusion, to obtain distributions of population al-
lele frequencies, conditional on an ancestral initial allele frequency distribution.
Backward-in-time diffusion processes have been rarely used in the context of pa-
rameter inference. Here, we demonstrate how forward and backward diffusion
processes can be combined to efficiently calculate the exact joint probability
distribution of sample and population allele frequencies at all times in the past,
for both discrete and continuous population genetics models. This procedure is
analogous to the forward-backward algorithm of hidden Markov models. While
the efficiency of discrete models is limited by the population size, for continuous
models it suffices to expand the transition density in orthogonal polynomials of
the order of the sample size to infer marginal likelihoods of population genetic
parameters. Additionally, conditional allele trajectories and marginal likeli-
hoods of samples from single populations or from multiple populations that
split in the past can be obtained. The described approaches allow for efficient
maximum likelihood inference of population genetic parameters in a wide variety
of demographic scenarios.
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algorithm, forward-backward diffusion, exact inference.
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1. Introduction1

Most basic population genetic models, e.g., the Wright-Fisher and the Moran2

models as well as the forward and backward diffusion models, were introduced3

before molecular sequence data became available [reviewed in 10]. Thus, em-4

phasis was on demonstrating processes over time and on qualitatively explaining5

observations, rather than on quantitative inference of population genetic forces6

given molecular data. Much later, coalescent theory [17] has been used both for7

demonstration of processes as well as for inference given a population sample8

[13, 38]. The coalescent reconstructs the genealogical history of a particular9

sample at a particular locus conditional on population genetic forces. However,10

the aim in statistical population genetics is usually the inference of evolution-11

ary forces or of the evolutionary trajectory of allele proportions of the whole12

population.13

Population genetic parameters have often been inferred from allele frequency14

data of a single locus sampled at multiple time-points in the past. Due to the15

short time-spans, mutation can usually be neglected, while selection is impor-16

tant. Bollback et al. [4] developed a method based on a forward diffusion model17

to infer the strength of selection acting on an allele. This method was later ex-18

tended to additionally infer the age of the selected allele [22]. To calculate the19

likelihood of the observed trajectory, these methods rely on solving the diffu-20

sion equation using a numerical grid approach. On the other hand, Steinrücken21

et al. [31] use a system of orthogonal polynomials, i.e., a spectral representa-22

tion of the transition density [29], to analytically solve the diffusion equation23

and model the evolution of allele frequency. Recently, Schraiber et al. [27] de-24

veloped a Bayesian approach that uses Markov chain Monte Carlo (MCMC)25

integration of allele frequency trajectories to provide estimates of population26

genetic parameters.27

While the above-described methods deal with a single locus with data from28

multiple time-points, the focus of this study is to infer the demographic history29

and the population genetic forces acting on a whole population from present-day30

data. Specifically, we are interested in inference of population genetic parame-31

ters, such as the scaled mutation rate or mutation bias given data y from the32

present, t = 0, that consist of an alignment of M (haploid) sequences. Nu-33

cleotide data are assumed to be independently and identically drawn from a34

population across L freely recombining nucleotide sites. The sites are assumed35

to be neutral, e.g., in short introns, or at least nearly-neutral, e.g., fourfold de-36

generate sites, such that the data are informative about population demography37

and mutation processes. Because sites are assumed independent, they can be38

summarized as a site frequency spectrum (SFS), also called the allele frequency39

spectrum. The likelihood of the population sample y can be calculated given the40

present population allele frequency x0 and a probability model of the sampling41

process. The distribution of x0 is in turn given by a population genetic model42

parametrized to capture mutation or the demographic history. These population43
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genetic parameters can be inferred by first integrating over x0 and subsequently44

maximizing the marginal likelihood of the data y by varying the model parame-45

ters; a strategy that may also be viewed as the empirical Bayes method [e.g., 5].46

Under the assumption of equilibrium and given a general mutation-drift model,47

this strategy leads to a beta-binomial likelihood, which can be maximized using48

an expectation-maximization algorithm [34]. Assuming that mutations are rare49

and arise only at fixed sites, i.e., a boundary mutation model, it is possible to50

derive maximum likelihood estimators of the mutation rate and bias as well as51

the selection coefficient [35]. The estimator of the mutation rate in [35] is a52

variant of the well-know Ewens-Watterson θ [9, 39].53

The assumption of equilibrium is often violated in natural populations and,54

therefore, within this framework, modelling allele frequency trajectories is neces-55

sary to accurately infer parameters from the observed SFS. Furthermore, even56

under equilibrium, maximum likelihood inference requires modelling of allele57

trajectories with data from two or more populations that split some time in the58

past, represented by a joint SFS (jSFS). Herein, we mostly focus on inference59

using the jSFS given the canonical model of two populations that split at some60

known or unknown time in the past, from which samples of sizes M (1) and M (2)
61

are obtained at the present time. Inference using jSFS has been implemented62

in the well-known program ∂a∂i by Gutenkunst et al. [12]. It is widely used to63

infer migration rates, selection coefficients and split times given data from mul-64

tiple populations using a numerical grid approach to solve the forward diffusion65

equation and model allele trajectories. An alternative approach was developed66

in Lukić et al. [21] and Lukić and Hey [20], where as in [29, 31], orthogonal poly-67

nomials are used to model allele frequency evolution. A similar, but discrete68

model of allele frequency evolution is presented in Jewett et al. [14].69

All of these methods model the evolution of the allele frequency forward in70

time. However, backward models can also be used to model allele frequency tra-71

jectories and calculate the likelihood of the data y conditional on the population72

allele frequency xt at earlier times (t < 0). Based on the Wright-Fisher model,73

Zhao et al. [46] provide an algorithm to calculate probabilities of intermediate74

states conditional on the starting and end states. This allows simulation of75

conditional trajectories. Schrempf et al. [28] use a Moran model in phylogenetic76

inference. The “pruning algorithm” [11] allows computation of the likelihood77

from the tips of a phylogenetic tree down to the root, i.e., backward in time. For78

efficient inference of phylogenetic trees reversibility of the evolutionary process79

is generally assumed.80

In this article, we demonstrate the usefulness of backward-in-time processes81

in parameter inference, while considering both discrete population genetics mod-82

els and continuous diffusion. We also show parallels between discrete and83

continuous models. Combining the forward and backward processes, as with84

the forward-backward algorithm of hidden Markov models (HMM) [25], the85

probability distribution of population allele frequencies conditional on data86

Pr(xt | y, . . . ) can be inferred at time t in the past and the distribution of con-87

ditional trajectories can be simulated. We therefore use forward and backward88

processes to conveniently calculate probability distributions in time conditional89
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on a SFS or jSFS from the present. Furthermore, we introduce bi-allelic bound-90

ary mutation models, with mutations occurring only at fixed sites. Specifically,91

we present the solution to the boundary mutation-drift diffusion model, which92

underlies the infinite site or Poisson-random-fields models [16, 26] and is impor-93

tant in statistical inference in population genetics as a starting point to derive94

maximum likelihood estimators, such as the well-known Ewens-Watterson es-95

timator of the scaled mutation rate [9, 39]. The Markov chains of the models96

under consideration have no absorbing states and therefore have stationary dis-97

tributions. We do not always assume time-reversibility. For the discrete models,98

the transition matrix must be multiplied repeatedly to obtain the distribution99

of population allele frequencies forward and backward in time. As the size of100

the transition matrix depends on the population size N , multiplication becomes101

cumbersome if N is large. In the limit of large population sizes, the corre-102

sponding Kolmogorov forward and backward diffusion equations are obtained.103

Orthogonal polynomials provide a flexible and fast method to solve the diffusion104

equations and calculate marginal likelihoods for inference in population genet-105

ics. For most purposes, expansion of polynomials up to the order of the sample106

size M suffices to accurately infer the transition density. With two populations,107

it can be shown that the order of the expansion is between the minimum and the108

maximum of the two sample sizes, depending on the starting distribution. As109

this is usually much less than the population size, continuous diffusion models110

may be much more efficient for parameter inference in population genetics than111

equivalent discrete models.112

2. Time-homogeneous discrete Markov chains113

In this section we apply the forward-backward algorithm [25] to discrete114

population genetic models for inference given a SFS or a jSFS. To this end, we115

rephrase iteration using discrete population genetic models (Wright-Fisher or116

Moran) in the terminology of the forward-backward algorithm [e.g., 25]. We117

mainly use matrix notation to emphasize the similarities between discrete iter-118

ation and the continuous models in Sections 3 and 7.1. For completeness and119

clarity, subsections include reviews of standard theory.120

2.1. Assumptions121

(i) Assume a haploid population of size N and a bi-allelic mutation model.122

The time-dependent frequency of allele one in the population at time t is123

denoted xt (0 ≤ xt ≤ N) and is assumed to evolve as a discrete, time-124

homogeneous Markov chain with a transition probability matrix T, where125

(T)ij = Pr(xt+1 = j |xt = i) with i, j ∈ {0, . . . , N}. T is an aperiodic,126

right stochastic matrix.127

(ii) At a (possibly unknown) time t = s (s < 0) in the past, a distribution128

of population allele proportions is given by ρ with entries (ρi)i∈{0,...,N} =129

Pr(xs = i). In particular, ρ may be the stationary distribution π =130

(πi)i∈{0,...,N} or may correspond to a joint distribution of some other data131

and the equilibrium allele frequency distribution.132
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(iii) The population evolves until the present time t = 0, when a sample of133

size M is drawn. We denote the sampled frequency of allele one as y134

(0 ≤ y ≤ M). The probability of observing y, i.e., the likelihood, is135

Pr(y |M,x0) (we may drop the dependency on M in the following) and136

will be defined according to the application.137

For two populations, assumptions (ii) and (iii) are modified:138

(ii) At a (possibly unknown) time t = s (s < 0) in the past, xs is drawn from a139

distribution of population allele proportions ρ. The population separates140

immediately into two populations with the same initial allele frequency xs.141

(iii) The two populations evolve independently until the present time t = 0,142

when samples of sizes M (1) and M (2) are drawn from each population.143

For discrete models, iteration is more efficient if the population size N is144

small. N can be decreased by increasing the mutation rate µ such that their145

product θ = Nµ remains constant. For moderate N , the error introduced by146

such scaling is small and converges to zero in the diffusion limit. Therefore, N147

can be set according to numerical convenience. Often, our data are from the148

present and we want to condition on the configuration of allele frequencies at149

earlier times.150

2.2. The forward-backward algorithm151

The forward-backward algorithm of hidden Markov models (HMMs) [e.g.,152

25, 6, 37] is an efficient numerical method for calculating probabilities assuming153

a Markovian underlying process, where key variables, the “states”, are assumed154

to be unknown, i.e., “hidden”. Intermediate results and the algorithm in general155

can readily be interpreted probabilistically. The algorithm’s numerical efficiency156

is based on the simple, acyclic conditional dependence structure of the unknown157

variables, which allows for “dynamic programming”. In our case, the possible158

values of the population allele frequency xt correspond to the hidden states,159

while the probability distribution Pr(y|xt = i) to the emission probabilities.160

With the Wright-Fisher or the Moran models, allele frequencies at the next161

time-point xt+1 depend only on the current ones, which conforms to a Markov162

process. Knowing the sample allele frequencies generally does not completely163

identify the population allele frequencies at any time-point; the exact state of164

the underlying variable remains “hidden”.165

2.3. Forward in time166

We introduce the row vector ft with entries (ft)i = Pr(xt = i |ρ), where167

i ∈ {0, . . . , N}, and fs = ρ, i.e., the vector of initial probabilities of states, and168

define recursively:169

ft+1 = ftT (s ≤ t < 0). (1)

Thus, ft can be interpreted as the probability of the allele frequency at time t170

conditional on the ancestral state ρ, ft = Pr(xt |ρ). This corresponds to the171

forward method in the forward-backward algorithm in the theory of HMMs [e.g.,172
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25, 37]. Let b′0 be a column vector (the prime ′ depicts matrix transposition)173

corresponding to the conditional of the sampling process, such that (b0)i =174

Pr(y |x0 = i) with i ∈ {0, . . . , N}. The marginal likelihood then is175

Pr(y |ρ) = ρT|s|b′0. (2)

2.4. Backward in time176

Using a strategy as with the backward method in the theory of HMM [25, 37],177

we set178

b′t = Tb′t+1 (s ≤ t < 0) , (3)

which can also be written as179

(bt)i = Pr(y |xt = i) =
∑

j

Pr(xt+1 = j |xt = i) Pr(y |xt+1 = j). (4)

From the definition of bt, it follows that we condition on xt. The recursion180

moves the conditioning to ever earlier times. The marginal likelihood (2) may181

also be obtained as follows:182

Pr(y |ρ) = ρ
[
T|s|b′0

]

= ρb′s

=
∑

i

ρi Pr(y |xs = i).

(5)

2.5. Constant marginal distribution and adjointness183

Considering the sampling probability, we can choose any arbitrary t such184

that185

Pr(y |ρ) = ftb
′
t =

∑

i

Pr(xt = i |ρ) Pr(y |xt = i) = 〈ft,bt〉, (6)

holds, where 〈·, ·〉 denotes an inner product. It follows that the forward and186

backward transition matrices, i.e., T and its transpose T′, are adjoint since187

Pr(y |ρ) = Pr(y |ρ)

(ftT)b′t+1 = ft(Tb′t+1)

〈ftT,bt+1〉 = 〈ft,bt+1T
′〉.

(7)

This adjoint relationship allows movement forward and backward in time.188

2.6. Joint and conditional distribution189

The probability of xt = i and y conditional on the starting distribution ρ is190

Pr(xt = i, y |ρ) = (ft)i(bt)i . (8)

Furthermore, the probability of xt = i conditional on the data and the starting191

distribution is192

Pr(xt = i | y,ρ) =
(ft)i(bt)i

ftb′t
. (9)

This allows calculation of the distribution of population allele frequencies con-193

ditional on the data and an initial condition at any time.194

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2.7. Sampling from conditional trajectories195

It is possible to simulate trajectories given the initial distribution ρ at time196

s and the likelihood at time t = 0. Note that Zhao et al. [46] provide a similar197

algorithm based on the Wright-Fisher model to simulate trajectories of popula-198

tion allele proportions conditional on the starting and end states. In contrast,199

we start with a sample at time t = s from the conditional probabilities (9).200

Given the state at time t− 1 the probability of the state at time t is201

Pr(xt = j |xt−1 = i, y) =
(T)ij(bt)j

(bt−1)i
, (10)

which can be used to obtain a sample trajectory. Although the probability202

distribution of trajectories depends on ρ, the transition at a given time t (10)203

does not contain ρ since it is a Markov process.204

2.8. Left and right eigenvectors, stationary distribution205

Let π = (πi)i∈{0,...,N} be the stationary distribution of T, if it exists. π is206

the left eigenvector associated with the largest eigenvalue (equal to one) [10, p.207

87]208

π = πT. (11)

All entries of π are strictly greater than zero because the transition matrix209

was assumed to be irreducible and
∑
πi = 1. Thus the entries of π can be210

interpreted as probabilities. Since the rows of T sum to one, it is obvious211

that a column vector of all ones 1′ is the right eigenvector associated with the212

unit eigenvalue. In our context, this means that iterating forward in time will213

converge to a vector proportional to π and iterating backward in time to a214

vector proportional to 1′. Thus, every state is equally likely when s → −∞215

and we have no information about the initial distribution of states, because the216

process has already reached equilibrium.217

2.9. Reversibility218

Define the diagonal matrix Π with the entries πi on the main diagonal. Since219

irreducible Markov chains with finite state space have stationary distributions220

with only strictly positive entries, Π is invertible with Π−1 being a diagonal221

matrix with entries 1/πi. Set222

T∗ = ΠTΠ−1 . (12)

The Markov chain is reversible, if T∗ = T′, because then223

T′ = ΠTΠ−1

T′Π = ΠT ,
(13)

which corresponds to the condition of detailed balance.224
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If reversibility holds, we can separate ft into a product of a time dependent225

row vector gt and the stationary distribution matrix Π226

ft = gtΠ. (14)

Under reversibility, we have forward in time227

gt+1Π = gtΠT

gt+1 = gtΠTΠ−1

gt+1 = gtT
′ .

(15)

We may interpret gt as a “projected likelihood” that, when multiplied with228

the stationary distribution, gives the joint distribution ft. Note that with the229

decomposition (14), the likelihood becomes230

Pr(y |ρ) = gtΠb′t for all t. (16)

The adjoint relationship (7) can be modified analogously, to result in the self-231

adjoint relationship232

Pr(y |ρ) = Pr(y |ρ)

(gtΠT)b′t+1 = gt(T
′
Πb′t+1)

〈gtΠT,bt+1〉 = 〈gt,bt+1ΠT〉.
(17)

2.10. Example: Conditional probabilities under irreversible mutation233

As a particular realization of a discrete process consider a bi-allelic model,234

where alleles can be labeled either as ancestral (zero) or derived (one). Mutation235

rates are assumed to be small (at most one mutation is segregating per site) and236

occur only at the boundary zero. When a derived allele is fixed, it immediately237

becomes ancestral. This process is a variant of the infinite sites model [16], but238

differs in that it allows for a stationary distribution at a particular site. Using239

diffusion theory, Evans et al. [8] provide an analysis based on moments of the240

allele proportions of a similar model with mutations from only one boundary,241

assuming changing population sizes, i.e., not assuming equilibrium. Zivkovic242

et al. [48] extend the analysis to include selection.243

The transition matrix T is defined as follows. Given a time-homogeneous244

mutation rate µ, transition probabilities at the boundary zero are245

{
Pr(xt+1 = 0 |xt = 0) = 1− µ/(1− θHN−1)

Pr(xt+1 = 1 |xt = 0) = µ/(1− θHN−1),
(18)

where θ = Nµ and the harmonic number HN−1 =
∑N−1
i=1 1/i. With this defini-246

tion, we consider the Moran model where with each time-step (note that with247

the Moran model N time-steps correspond to one generation with the Wright-248

Fisher model), one individual sampled at random has one offspring that replaces249

9
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one other random individual. Within the polymorphic region, random drift is250

the only force affecting allele frequencies, such that for 2 ≤ i ≤ N − 2251





Pr(xt+1 = i− 1 |xt = i) = 1
N2 i(N − i)

Pr(xt+1 = i |xt = i) = 1− 1
N2 2i(N − i)

Pr(xt+1 = i+ 1 |xt = i) = 1
N2 i(N − i) .

(19)

For i = N − 1, drift may lead to fixation of the derived allele, which then252

becomes the ancestral allele, i.e.,253





Pr(xt+1 = N − 2 |xt = N − 1) = 1
N2 (N − 1)

Pr(xt+1 = N − 1 |xt = N − 1) = 1− 1
N2 2(N − 1)

Pr(xt+1 = 0 |xt = N − 1) = 1
N2 (N − 1) .

(20)

The state i = N is never reached and is left out of the state space. The system254

is not in detailed balance, as probability mass moves from state i = N − 1 to255

state i = 0, but not in the reverse direction.256

The stationary distribution is257

π(x) =

{
Pr(x = 0) = 1− θHN−1

Pr(x = i)i∈{1,...,N−1} = θ/i ,
(21)

as can be ascertained by substitution.258

Note that the proportion of polymorphism in equilibrium is θHN−1. This259

equilibrium proportion corresponds to the Ewens-Watterson estimator θW [9,260

39], which was derived using the infinite site model [16]. In formula (18), the261

mutation probability per time-step µ is weighted by the inverse of the probability262

of being at the boundary 1−θHN−1, which ensures that the average probability263

of mutations per time-step is constant, irrespective of N . This in turn assures264

correspondence to the infinite site model.265

Assume a hypergeometric likelihood of y, conditional on N , x0 = i, and the266

sample size M ≤ N267

Pr(y |N, x0 = i,M) =

(
i
y

)(
N−i
M−y

)
(
N
M

) , (22)

where 0 ≤ y ≤ M and 0 ≤ i ≤ (N − 1). In equilibrium, the joint distribu-268

tion is obtained by multiplying the stationary distribution with the likelihood.269

Summing out the population allele frequency x0, the marginal distribution is270

obtained271

Pr(y |M) =

{
Pr(y = 0 |M) = 1− θHM−1

Pr(y = i |M)i∈{1,...,M−1} = θ/i .
(23)

It follows that the expected heterozygosity, i.e., the probability of obtaining one272

derived allele and one ancestral allele in a sample of size M = 2 is θ.273

10
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As an example of a demographic scenario (Fig. 1A), consider a population274

with a stationary allele frequency distribution (21) defined by the ancestral275

mutation rate µa at some time s in the past; i.e., ρ = πa. Furthermore, assume276

an instantaneous increase in the mutation rate µ between generations s and277

s+1. As θ = Nµ, this mimicks an expansion of the population size, without the278

inconvenience of having to change the dimension of the transition matrix. From279

then on, the population is out of equilibrium and evolving with a new current280

mutation rate µc > µa. At the present time (t = 0), we sample M haplotypes281

from the population. Assume that the ancestral state of the sampled haplotypes282

can be determined without error. Thus, a polarized SFS may be constructed.283

The transition matrix T and its transpose T
′

can be calculated conditional on284

µc. Assume hypergeometric sampling. The conditional probabilities of allelic285

states Pr(xt | y,ρ), for any time s ≤ t ≤ 0, in a site frequency spectrum of size286

M can then be calculated (Fig. 2).287

A

T
im

e
(t
)

s
s+1

µa

µc

0

B

T
im

e
(t
)

s
s+1

0

µ

µ µ

1

Figure 1: Demographic scenarios. A) Population expansion. B) Population split.
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Figure 2: Conditional probabilities of allelic states in a site frequency spectrum of size M = 3.
The solid lines represent the conditional probabilities of an allelic state xt given y, at t = s,
while the dashed lines represent the probabilities at t = 0. The parameters were set to
µa = 0.05, µc = 0.1, s = −200 and N = 20.

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2.11. Example: Joint site frequency spectrum under reversible mutation288

As another realization of a discrete process consider a bi-allelic mutation-289

drift decoupled Moran model [2, 7] with haploid population size N , mutation290

rate towards zero µ0 and mutation rate towards one µ1 (µ = µ0 + µ1). We291

introduce the parameters α = µ1/µ (0 ≤ α ≤ 1) and β = 1 − α = µ0/µ292

which are the mutation biases towards allele one and zero, respectively. Let i293

(0 ≤ i ≤ N) be the frequency of allele one. Then, the tri-diagonal transition294

rate matrix T depends on N , µ and α295





Pr(xt+1 = i− 1 |xt = i) = i(N−i)
N2 + βµ i

N

Pr(xt+1 = i |xt = i) = 1− 2i(N−i)
N2 + βµ i

N + αµN−iN

Pr(xt+1 = i+ 1 |xt = i) = i(N−i)
N2 + αµN−iN .

(24)

The stationary distribution of x is a beta-binomial296

Pr(x = i |N,α, θ) =

(
N

i

)
Γ(θ)

Γ(αθ)Γ(βθ)

Γ(i+ αθ)Γ(N − i+ βθ)

Γ(N + θ)
, (25)

which can be verified by substitution into the equations of detailed balance (25).297

As above, hypergeometric sampling at time t = 0 is assumed. Assuming equi-298

librium, the marginal likelihood of a single sample of size M is again a beta-299

binomial, with M replacing N [34].300

Consider an ancestral population with the stationary allele frequency dis-301

tribution (25). The ancestral population splits into two at some time s in the302

past (Fig. 1B). For simplicity, no change in the mutation, the drift parameter,303

and the size in both populations is assumed. A jSFS is simulated from both304

populations (Table 1) at t = 0. The likelihood of the split time s calculated305

given the simulated jSFS (Figure 3A) has a single maximum close to the true306

value of t = −40.307

It may be instructive to calculate some marginal and conditional probabili-308

ties with this example. We set for the likelihood of the second population, i.e.,309

the conditional distribution of the data given the allele frequencies in the sec-310

ond population at time t = 0, b
(2)
0 = Pr(y(2) |x(2)

0 ). We then iterate backward311

within the second population until t = s to obtain the joint probability of the312

second sample y(2) and the ith allele frequency xs = i at time t = s:313

Pr(xs = i, y(2) |ρ) = ρi(b
(2)
s )i . (26)

Note that, on the left side of the above equation, we drop the superscript to314

indicate the population for xs, because time t = s is just before the split into the315

two descendant populations. Without information from the second population,316

we would set the starting distribution of the first population f
(1)
s to the prior317

probability of the allele frequencies at time t = s, i.e., f
(1)
s = ρ. With infor-318

mation on the second population, we instead start at time t = s from the joint319

probability (26) and set f
(1)∗
s = Pr(xs, y

(2) |ρ). As before, we iterate forward320

to obtain f
(1)∗
t within the first population; we can interpret f

(1)∗
t as the joint321
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probability of the allele frequency in the first population and the data of the322

second population: f
(1)∗
t = Pr(x

(1)
t , y(2) |ρ). Setting now for the likelihood of323

the first population b
(1)
0 = Pr(y(1) |x(1)

0 ) and iterating backward within the first324

population until t, we obtain the probability of the allele frequency of the first325

population at t, conditional on data from both the first and second population326

as well as on the prior distribution ρ as:327

Pr(x
(1)
t = i | y(1), y(2),ρ) =

(f
(1)∗
t )i(b

(1)
t )i

f
(1)∗
t b

(1)
t

. (27)

Figure 3B gives the conditional probability Pr(xt | y(1), y(2),ρ) for one site class328

of the jSFS determined by y(1) and y(2) which denote the polymorphism levels329

of the specific class for populations one and two, respectively; e.g., the site class330

determined by y(1) = 1 and y(2) = 2 contains all sites with one derived allele in331

population one and two derived alleles in population two.332

Table 1: A jSFS simulated with a discrete Moran model with parameters L = 105, M(1) =
M(2) = 3, α = 2/3, θ = 0.1, s = −40 and N = 20.

y 0 1 2 3

0 29037 1315 436 185
1 1276 688 539 432
2 446 529 662 1524
3 202 507 1430 60792
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−111600
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Figure 3: A) The log-likelihood of the split time s, given a jSFS (Table 1). The dashed
line indicates the true split time. B) The conditional probability of the allelic state xt given
y(1) = 1 and y(2) = 2, at t = s (solid line) and t = 0 (dashed line).

2.12. Summary: discrete Markov chains333

With standard discrete population genetic models, e.g., the Wright-Fisher334

or the Moran models, iteration of discrete Markov chains forward in time cor-335

responds to the forward algorithm and backward in time to the backward al-336

gorithm of the forward-backward algorithm [25]. With such algorithms, it is337
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straightforward to calculate exact likelihoods given SFS and jSFS from the338

present. Some standard population genetic mutation models are reversible,339

others are not. In contrast to phylogenetic applications [11, 28], reversibility340

of the Markov chain does not simplify calculations considerably; in both cases,341

iteration of an (N + 1)× (N + 1) transition matrix is needed.342

3. Forward and backward diffusion equations343

In this section, we provide theory for the continuous analogs of the discrete344

forward and backward transition probabilities both for reversible and irreversible345

Markov processes and illustrate with examples. We derive the forward and346

backward diffusion equations from the discrete general mutation-drift Moran347

model using only the definitions of the first and second symmetric derivative348

(Appendix 7.1).349

With the forward and backward diffusion operators350

L = − ∂

∂x
P (x) +

∂2

∂x2
Q(x)

L∗ = P (x)
∂

∂x
+Q(x)

∂2

∂x2
,

(28)

the forward and backward diffusion equations are written as351

∂

∂τ
φ(x | τ, ρ) = Lφ(x | τ, ρ)

− ∂

∂τ
ψ(y |x, τ) = L∗ψ(y |x, τ) ,

(29)

where τ is the continuous-time analog of t, and ρ is the initial condition of352

the countinuous allele frequency x. The functions φ(x | τ, ρ) and ψ(y |x, τ) are353

transition density functions of the forward an backward diffusion, respectively.354

Obviously, these functions must be twice differentiable in the open interval (0, 1).355

The operators L and L∗ together with the boundary conditions correspond to356

the forward transition matrix T and its transpose T
′
, respectively.357

3.1. Forward and backward in time358

As in the discrete case, consider the situation when the distribution of359

the continuous allelic proportion x at time τ = s is given by ρ(x). Setting360

φ(x | τ = s) = ρ(x), φ(x | τ = 0, ρ) can be calculated using the forward dif-361

fusion equation (29). Assume again a discrete sample of size M with a fre-362

quency of y alleles of type one at time τ = 0. In the backward time direction,363

ψ(y |x, τ = 0) = Pr(y |x, τ = 0,M), which corresponds to a binomial likelihood364

as the allelic proportion is now assumed to be continuous. Note that a binomial365

likelihood corresponds to a polynomial of order of the sample size M and is thus366

finite. With the backward diffusion equation (29), the conditioning on x may367
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be moved backward in time. The marginal likelihood of y may be obtained by368

integration over the product of the forward and backward functions369

Pr(y | ρ) =

∫ 1

0

φ(x | τ, ρ)ψ(y |x, τ) dx for s ≤ τ ≤ 0, (30)

analogously to equation (6). As with the discrete case, we require the marginal370

likelihood to be constant irrespective of time. Furthermore, for any marginal371

likelihood of a discrete random variable 0 ≤ Pr(y | ρ) ≤ 1 must hold. This372

constrains the boundary conditions.373

As Pr(y | ρ) is independent of time τ , its derivative with respect to time τ374

must be 0. Exchanging the order of differentiation and integration and applying375

the product rule to Pr(y | ρ), we have376

∂

∂τ
Pr(y | ρ) = 0

∫ 1

0

[
∂

∂τ
φ(x | τ, ρ)

]
ψ(y |x, τ) dx+

∫ 1

0

φ(x | τ, ρ)

[
∂

∂τ
ψ(y |x, τ)

]
dx = 0 .

(31)

Substituting the right sides of the forward and backward diffusion equations377

(29) for the time derivatives, we have the adjoint relationship378

∫ 1

0

[Lφ(x | τ, ρ)]ψ(y | τ) dx =

∫ 1

0

φ(x | τ, ρ) [L∗ψ(y |x, τ)] dx

〈Lφ(x | τ, ρ), ψ(y |x, τ)〉 = 〈φ(x | τ, ρ),L∗ψ(y |x, τ)〉.
(32)

The adjoint relationship (32) requires the boundary condition (84) to hold (Ap-379

pendix 7.2). At each time-point, any change to the marginal likelihood from380

applying the forward operator L to the forward function φ(x | τ, ρ) is exactly381

matched by a change from applying the backward operator L∗ to the back-382

ward function ψ(y |x, τ). As in the discrete case, the adjoint relationship allows383

movement forward and backward in time.384

3.2. Self-Adjointness and Reversibility385

In this section, we deal with reversible Markov processes. Introduce the386

weight or speed function [e.g., 10, 29]387

w(x) =
1

Q(x)
e
∫ x
0
P (z)
Q(z)

dz . (33)

Substituting w(x)g(x, τ, ρ) for φ(x | τ, ρ), the boundary condition (84) becomes388

(Appendix 7.2)389

w(x)Q(x)

(
g(x, τ, ρ)

d

dx
ψ(y |x, τ)− ψ(y |x, τ)

d

dx
g(x, τ, ρ)

)∣∣∣∣
1

0

= 0 . (34)

Since w(x)Q(x) may be infinite at the boundary, ψ(y |x, τ) and g(x, τ, ρ) need390

to be finite.391
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Assume w(x) > 0 for x ∈]0, 1[, and substitute w(x)g(x, τ, ρ) for φ(x | τ, ρ)392

into the general forward equation (29)393

∂

∂τ
w(x)g(x, τ, ρ) = − ∂

∂x
P (x)w(x)g(x, τ, ρ) +

∂2

∂x2
Q(x)w(x)g(x, τ, ρ)

w(x)
∂

∂τ
g(x, τ, ρ) = P (x)w(x)

∂

∂x
g(x, τ, ρ) +Q(x)w(x)

∂2

∂x2
g(x, τ, ρ)

∂

∂τ
g(x, τ, ρ) = P (x)

∂

∂x
g(x, τ, ρ) +Q(x)

∂2

∂x2
g(x, τ, ρ) .

(35)

Note that the last line is identical to the backward equation (29), with the394

exception of the reversed sign to the left. Note that, nevertheless, φ(x | τ, ρ) may395

be infinite. If the stationary distribution π(x) exists, it is proportional to w(x).396

From substituting π(x)g(x, τ, ρ) for φ(x | τ, ρ) into the marginal likelihood (30),397

it follows that g and φ are square integrable with respect to the weight function398

π(x) ∝ w(x) [29]. The Markov process is then self-adjoint and reversible and the399

relationship between the forward operator L and its adjoint L∗ may be written400

compactly401

L∗ =
1

π(x)
[Lπ(x)] , (36)

similar to the reversed transition matrix (eq. 12) or to the condition of detailed402

balance (eq. 13) in the discrete case.403

3.3. Joint and conditional distributions404

The function corresponding to the joint distribution of the allelic proportion405

x and the sample allele frequency y in the discrete case (8) at time τ (s ≤ τ ≤ 0)406

is407

j(x, y | τ) = φ(x | τ, ρ)ψ(y |x, τ) . (37)

For the conditional distribution of the allelic proportion x given the sample408

allele frequency y, corresponding to eq. (9) in the discrete case, j(x, y | τ) must409

be divided by the marginal likelihood (30)410

p(x | τ, ρ, y) =
j(x, y | τ)

Pr(y | ρ)
. (38)

3.4. General mutation and drift and orthogonal polynomials411

The diffusion operators in this section are as in (28), with P (x) = θ(α− x)412

and Q(x) = x(1− x). In population genetics, Q(x) is generally half the genetic413

variance with the bi-allelic Moran model (see also Appendix 7.1). In the context414

we consider, the backward function ψ(y |x, τ) at time τ = 0 is a binomial415

likelihood, i.e., a polynomial of the degree of the sample size M . Without416

selection, the backward function remains a polynomial with degree M for s ≤417

τ ≤ 0.418

With the general bi-allelic mutation-drift model, Song and Steinrücken [29]419

already demonstrated self-adjointness and showed how to use modified Jacobi420
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polynomials to obtain a solution. For the general mutation-drift model, the421

weight function w(x, α, θ) = xαθ−1(1− x)βθ−1 is proportional to the stationary422

distribution423

π(x) =
Γ(θ)

Γ(αθ)Γ(βθ)
xαθ−1(1− x)βθ−1 . (39)

Since Q(x) = x(1−x), the boundary condition (34) holds if, at both boundaries424

x = 0 and x = 1, x(1 − x)w(x) = 0 and ψ(y |x, τ) and g(x, τ, ρ) are finite.425

Since x(1 − x)w(x) = xαθ(1 − x)βθ is zero at both boundaries for the non-426

degenerate case of θ > 0 and 0 < α < 1, the boundary condition (34) holds427

if ∂
∂x

(
g(x, τ, ρ)ψ(y |x, τ)) is finite at the boundaries, which can be assumed for428

population genetic applications.429

The (modified) Jacobi polynomials (compare formula 22.3.2 in Abramowitz430

and Stegun [1])431

R(α,θ)
n (x) =

n∑

l=0

(−1)l
Γ(n− 1 + l + θ)Γ(n+ αθ)

Γ(n− 1 + θ)Γ(l + αθ)l!(n− l)!x
l (40)

are eigenvectors of the backward operator432

−λnR(α,θ)
n (x) = L∗R(α,θ)

n (x) , (41)

with eigenvalues433

λn = n(n+ θ − 1) . (42)

The corresponding eigenfunctions of the forward operator are w(x)R
(α,θ)
n (x)434

with identical eigenvalues.435

Since a binomial distribution with sample size M corresponds to a polyno-436

mial of order M , the likelihood can be represented by an expansion with coef-437

ficients cn(y) into the modified Jacobi polynomials up to order M . Note that438

a change in the effective population size (population demography), or equiva-439

lently in the scaled mutation rate from θa to θc needs to be accommodated with440

a change in the base from R
(α,θa)
n (x) to R

(α,θc)
n (x).441

The orthogonality relationship of the modified Jacobi polynomials is442

∫ 1

0

R(α,θ)
n (x)R(α,θ)

m (x)w(x) dx = δn,m∆(α,θ)
n , (43)

where δn,m is the Kronecker delta, and443

∆(α,θ)
n =

Γ(n+ αθ)Γ(n+ βθ)

(2n+ θ − 1)Γ(n+ θ − 1)Γ(n+ 1)
. (44)

Let cn(y) be the coefficients of the expansion of the likelihood into the mod-444

ified Jacobi polynomials, which breaks off at n = M . Then the solution to the445

backward equation can be written as446

ψ(y |x, τ) =
M∑

n=0

cn(y)R(α,θ)
n (x)e−λnτ , (45)
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with ψ(y |x, τ = 0) = Pr(y |M,x) corresponding to the likelihood.447

Let ρn be the coefficients of the expansion of the starting distribution ρ(x)448

at time τ = s. The solution to the forward equation can then be represented as449

450

φ(x | τ, ρ) = w(x)

∞∑

n=0

ρnR
(α,θ)
n (x)e−λn(s−τ) . (46)

The orthogonality relationship can be used to simplify the marginal likeli-451

hood452

Pr(y | ρ) =

∫ 1

0

φ(x | τ, ρ)ψ(y |x, τ) dx

=

∫ 1

0

M∑

n=0

ρncn(y)w(x)
[
R(α,θ)
n (x)

]2
e−λnτe−λn(s−τ) dx

=
M∑

n=0

ρncn(y)∆(α,θ)
n e−λns.

(47)

Because of the orthogonality relation (43), the calculation of the marginal453

likelihood (47) requires an expansion in eigenfunctions up to order M , where454

M is the minimum of the forward-in-time expansion of ρ(x), say Mf , and the455

backward-in-time expansion of Pr(y|x, τ = 0), sayMb. Therefore, for calculating456

the joint distribution (37) and thus also the conditional (38), an expansion up457

to order Mf ×Mb is needed.458

3.4.1. Example: two splitting populations and binomial likelihoods459

Here, we apply the theory to a model with two populations and binomial460

likelihoods; i.e., a jSFS analogous to the second example in the discrete case461

(subsection 2.11). The initial distribution ρ(x) is assumed to be the equilibrium462

distribution. Only the first eigenfunction is necessary to expand the equilibrium463

distribution; i.e., ρ0 = 1

∆
(α,θ)
0

while ρn≥1 = 0. In equilibrium, the marginal like-464

lihood of a single-population sample of size M assuming mutation-drift equilib-465

rium with parameters α and θ is a beta-binomial, as in the discrete case (25),466

467

Pr(y |M,α, θ) =

∫ 1

0

Pr(y |M,x)π(x, α, θ) dx

=

∫ 1

0

(
M

y

)
Γ(θ)

Γ(αθ)Γ(βθ)
xαθ+y−1(1− x)βθ+M−y−1 dx

=

(
M

y

)
Γ(θ)

Γ(αθ)Γ(βθ)

Γ(y + αθ)Γ(M − y + βθ)

Γ(M + θ)
.

(48)

It follows from the orthogonality relation that only the first term in the ex-468

pansion n = 0 contributes to the marginal likelihood, i.e., the inner product469
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470

Pr(y |M,α, θ) =

∫ 1

0

c0(y)R
(α,θ)
0 (x)π(x, α, θ) dx

=

∫ 1

0

c0(y)R
(α,θ)
0 (x)

1

∆
(α,θ)
0

R
(α,θ)
0 (x)xαθ−1(1− x)βθ−1 dx

= c0(y) .

(49)

For two populations with sample sizes M (1) and M (2), the respective likeli-471

hoods Pr(y(1) |M (1)) and Pr(y(2) |M (2)) are similarly expanded into the modi-472

fied Jacobi polynomials with coefficients cn(y(1)) and cm(y(2)). At time τ back473

in the past, we have474

Pr(y(1) |x,M (1), α, θ, τ) =

M(1)∑

n=0

cn(y(1))R(α,θ)
n (x)e−λnτ (50)

and similarly for the second population. If the two populations join at time475

τ = s in the past, when the population is assumed to be in mutation-drift476

equilibrium, the marginal likelihood is477

Pr(y(1), y(2) |M (1),M (2), α, θ, τ = s) =
M(1)∑

n=0

M(2)∑

m=0

∫ 1

0

cn(y(1))R(α,θ)
n (x)e−λns

× cm(y(2))R(α,θ)
m (x)π(x, α, θ)e−λms dx

=
M∑

n=0

∫ 1

0

cn(y(1))cn(y(2))
[
R(α,θ)
n (x)

]2
π(x, α, θ)e−2λns dx

=
M∑

n=0

cn(y(1))cn(y(2))∆
(α,θ)
n e−2λns

∆
(α,θ)
0

,

(51)

where M = min(M (1),M (2)), since higher order terms contribute zero weight478

to the inner product.479

A joint site frequency spectrum is drawn (Table 2) at the present time τ = 0.480

Given the jSFS, the likelihood of the population split time is readily calculated481

(Figure 4). The jSFSs in Tables 1 and 2 are similar because scaled mutation482

rates and biases under which they are simulated are identical; for the discrete483

model, the population size is set to 20 instead of approaching infinity as in the484

continuous model, which, together with sampling variation, explains the slight485

differences.486

3.4.2. Summary: bi-allelic general mutation-drift diffusion487

Assuming a bi-allelic general mutation-drift model, forward and backward488

diffusion equations and continuous analogs to the discrete forward and backward489
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Table 2: A jSFS simulated with a continuous diffusion model with parameters L = 105,
M(1) = M(2) = 3, α = 2/3, θ = 0.1, and s = −0.1.

y 0 1 2 3

0 28877 1447 494 231
1 1448 570 491 557
2 497 516 543 1491
3 253 521 1506 60558
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Figure 4: The log-likelihood of the split time s, given a jSFS (Table 2). The dashed line
indicates the true split time.

algorithms, as well as the forward-backward algorithm, are derived. As with the490

discrete models, it is straightforward to calculate exact likelihoods given a SFS491

or a jSFS from the present. With the bi-allelic general mutation-drift model492

a self-adjoint system results. Modified Jacobi polynomials R
(α,θ)
n (x) provide a493

convenient base for calculations, both forward and backward in time. In the494

discrete case, iteration of an (N + 1) × (N + 1) transition matrix is needed to495

evolve the allelic proportion; in the continuous case, only polynomials up to the496

sample size M are needed with mutation-drift models. As M � N , this may497

lead to considerably increased efficiency. A change in the effective population498

size (population demography), or equivalently in the scaled mutation rate needs499

to be accommodated with a change in the base of the orthogonal polynomials500

as in Steinrücken et al. [32].501

4. Boundary mutation-drift model502

In this section we deal with irreversible Markov processes. If mutation rates503

are small relative to drift, polymorphism in a sample of moderate size originates504

from a single mutation. We can therefore assume that mutations originate ex-505

clusively from sites fixed for allele zero or one, i.e., from the boundaries. Such506

models are particularly important for statistical inference in population genet-507

ics [e.g., 9, 39, 12] and it is therefore worthwhile to provide solutions to the508

corresponding diffusion equations. As a solution to the forward and backward509

diffusion equations we present a system of orthogonal eigenfunctions. Through-510
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out the presentation, we emphasize the similarities with previous approaches.511

While the solution to the forward diffusion is mainly a review, the backward512

direction and the overall concepts are new.513

4.1. Pure drift model514

We start with the pure drift model and clarify basic concepts. The forward515

and backward diffusion operators are516

L =
∂2

∂x2
Q(x)

L∗ = Q(x)
∂2

∂x2
.

(52)

For the pure drift model, the adjoint relationship between the forward and517

backward operators holds as long as the boundary condition (84) with Q =518

x(1− x) holds within the unit interval519

0 =

(
x(1− x)φψ′ − (x(1− x)φ)′ψ

)∣∣∣∣
1

0

. (53)

Following Kimura [15], most population geneticists implicitly or explicitly re-520

quire at both boundaries ψ(y |x, τ) and x(1 − x)φ(x | τ, ρ) to be zero [see also521

10, 29]. With these assumptions, modified Gegenbauer polynomials Un(x) =522

− 2
nC

(3/2)
n−2 (2x− 1) (Cνk (z) are the Gegenbauer polynomials as defined in [1]) are523

eigenfunctions of the forward diffusion equation with eigenvalues λn = n(n− 1)524

for n ≥ 2. Furthermore x(1−x)Un(x) are eigenfunctions of the backward equa-525

tion with identical eigenvalues. The forward and backward operators are then526

self-adjoint with the weight function w(x) = x−1(1 − x)−1 [10, 29]. Note that527

without mutation no stationary distribution exists. The orthogonality relation528

of Un(x) is529 ∫ 1

0

Un(x)Um(x)w(x) dx = δn,m∆n , (54)

with530

∆n =
n− 1

(2n− 1)n
. (55)

However, these assumptions are too restrictive; polynomials of zeroth and531

first degree, 1 and x, cannot be represented by x(1 − x)Un(x), but both are532

eigenfunctions of the pure drift backward equation with eigenvalues λ0 = λ1 = 0.533

Importantly, assuming a binomial likelihood, these eigenfunctions are needed534

when representing monomorphic samples. To address this issue, Tran et al.535

[33] add 1 and x to the eigenfunctions of the backward equation. The two new536

backward eigenfunctions require augmenting the forward eigenfunctions with537

point masses at the boundaries that counterbalance the probability mass in the538

interior. Additionally, point masses at the boundaries, independent of those539

associated with the forward eigenfunctions, need to be introduced [33].540
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Independently from Tran et al. [33], we derived a boundary mutation-drift541

model forward in time from probabilistic population genetic considerations [35]542

with eigenfunctions proportional to those in Tran et al. [33]. Our approach543

is similar to that presented in McKane and Waxman [23] and Waxman [40].544

Furthermore, we showed that the forward eigenfunctions can be derived from545

those of the general mutation-drift model, i.e., from Jacobi polynomials times546

the stationary beta distribution (or the proportional weight function w(x, α, θ)),547

by expanding into a Taylor series in θ and keeping terms up to order zero [36,548

Appendix A.1]. Therefore, in the context of pure drift, the set of eigenfunc-549

tions, which provide the solution to the forward diffusion equation, can then be550

represented in relation to Jacobi polynomials R
(α,θ)
n as551





F
(α,0)
0 (x) = limθ→0 π(x, α, θ) = βδ(x) + αδ(x− 1)

F
(α,0)
1 (x) = limθ→0 w(x, α, θ)R

(α,θ)
1 = −δ(x) + δ(x− 1)

F
(α,0)
n≥2 (x) = limθ→0 w(x, α, θ)R

(α,θ)
n = − (−1)n

n δ(x) + Un(x)− 1
nδ(x− 1) ,

(56)
where δ(x) is the Dirac delta functional. Note that eigenfunctions are only552

defined up to a proportionality constant. The associated eigenvalues are553





λ0 = 0

λ1 = limθ→0 θ = 0

λn≥2 = n(n− 1) .

(57)

Similarly, the backward eigenfunctions can be derived by expanding the554

modified Jacobi polynomials into a Taylor series in θ and keeping terms up to555

order zero.556





B
(α,0)
0 (x) = R

(α,θ)
0 = 1

B
(α,0)
1 (x) = 1

θR
(α,θ)
1 = x− α

B
(α,0)
n≥2 (x) = limθ→0R

(α,θ)
n = x(1− x)Un(x) .

(58)

The eigenvalues correspond to those forward in time in eq. (57). The mutation557

bias α may obtain any value between zero and one. If α is set to zero, the558

backward eigenfunctions correspond to those of Tran et al. [33].559

The orthogonality relation is560

∫ 1

0

F (α,0)
n (x)B(α,0)

m (x) dx = δn,m∆n , (59)

with ∆0 = ∆1 = 1 and ∆n as in (55). However, note that561

∫ 1

0

B(α,0)
n (x)B(α,0)

m (x)w(x) dx = δn,m∆n (60)

only holds for pairs m,n ≥ 2 and the pair m = 0 and n = 1, but not for the562

pairs m = 0 (or m = 1) and n ≥ 2; and similarly for the forward eigenfunctions563

Fn(x).564
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The forward function is then set to565

φ(x | τ, ρ) =

∞∑

n=0

ρnF
(α,0)
n (x)e−λn(s−τ) (61)

and the backward function to566

ψ(y |x, τ) =
∞∑

m=0

cn(y)B(α,0)
n (x)e−λnτ . (62)

The marginal and joint distribution can now be defined as above. The time567

derivative of the marginal likelihood (31) of the eigenfunctions with n = 0568

and n = 1 is zero, because the respective eigenvalues are zero. For n ≥ 2,569

the backward expansion contains only the terms x(1 − x)Un(x) as does w(x)570

times the forward expansion, w(x)F
(α,0)
n≥2 (x) = x(1 − x)Un≥2(x). Indeed the571

eigenfunctions with n ≥ 2 correspond to those usually considered [15, 29]. As572

backward and forward functions are thus zero at both boundaries, the boundary573

condition (53) is met. It is also straightforward to show for n = 0 and n = 1574

that condition (32) holds, because the integrals on both sides are always zero.575

4.2. Mutation-drift model576

Following Vogl and Bergman [36], we introduce recurrent mutations into the577

pure drift model by setting the eigenvalue λ1 = θ. We consider the case where578

0 < θ � 1, such that mutations occur at a low rate and thus, do not affect the579

allele frequency dynamics of the polymorphic classes; these classes are governed580

exclusively by genetic drift and therefore, eigenfunctions with n ≥ 2 remain as581

in the pure drift model. We may thus distinguish between two classes of sites582

with distinct spatial and temporal differences: the slowly evolving boundaries,583

where the rate of evolution depends on θ, and the fast evolving polymorphic584

classes governed by genetic drift [e.g., 42, 36]. Furthermore, we may think of585

the boundary mutation-drift model as a first order Taylor series expansion in586

the scaled mutation rate θ of the general mutation-drift model.587

Note that, with the discrete boundary mutation model, we scaled the mu-588

tation rate such that, independent of the population size N , the heterozygosity589

in a sample of size two is equal to θ for the model with mutations from a single590

boundary (compare the term µ/(1− θ∑N−1
i=1

1
i ) in (18)), or 2αβθ for the model591

with mutations from both boundaries. With the transition to continuous dif-592

fusion, N → ∞ and thus θ
∑N−1
i=1

1
i will grow logarithmically without bound.593

Mutations are therefore modeled from the boundary zero at a rate αθb0(τ),594

where αθ is the mutation rate towards allele one and b0(τ) corresponds to the595

probability mass already at boundary zero plus the probability mass to arrive596

there quickly by drift, and similarly at the boundary one. The system is thus597

not in detailed balance and therefore not reversible.598

Forward expansion. With mutations from the boundaries and forward in time,599

Vogl and Bergman [36] use the same augmented forward eigenfunctions as with600
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pure drift (56) to model the spatial part of the eigensystem. With pure drift, the601

temporal parts of the eigenfunctions (e−λn(s−τ)) with n ≥ 2 fulfill homogeneous602

differential equations, i.e., are decreasing exponentially from starting values at603

rates λn = n(n− 1), while the first two eigenfunctions with n = 0 and n = 1 do604

not change with time. With the boundary mutation model, the temporal part605

Tn(τ) corresponds to a system of linear differential equations: homogeneous for606

n = 0 and n = 1 with eigenvalues λ0 = 0 and λ1 = θ, and inhomogenous for607

n ≥ 2 with eigenvalues λn = n(n− 1):608





d
dτ T0(τ) = 0
d
dτ T1(τ) = −θT1(τ)
d
dτ Tn≥2(τ) = −λnTn(τ) + ϑEnT0(τ) + θOnT1(τ) ,

(63)

with609

ϑ = αβθ ,

En = −(n− 1)
((−1)n + 1)

∆n
,

On = −(n− 1)
(−1)nα− β

∆n
,

(64)

where β = (1− α) and ∆n as in (55).610

The forward system can be diagonalized by setting611





F
(α,θ)
0 (x) = F

(α,0)
0 (x) + ϑ

∑∞
n=2

En
λn
F

(α,0)
n (x)

F
(α,θ)
1 (x) = F

(α,0)
1 (x) + θ

∑∞
n=2

On
λn
F

(α,0)
n (x)

F
(α,θ)
n≥2 (x) = F

(α,0)
n (x) ,

(65)

where the polynomials with base (α, 0) on the right hand side of the equations612

are as in (56). The temporal parts of the system are then d
dτ Tn(τ) = −λnTn(τ)613

for all n.614

With increasing N , the stationary distribution converges to the following
function [35, 36]

π(x, α, θ) = F
(α,θ)
0 (x) = lim

N→∞





β − ϑ
∫ N−1

N
1
N

1
x dx if 0 ≤ x < 1/N

ϑ 1
x(1−x) if 1/N ≤ x ≤ 1− 1/N

α− ϑ
∫ N−1

N
1
N

1
1−x dx if 1− 1/N < x ≤ 1 .

(66)

This function integrates to unity, but has singularities at the boundaries, which615

makes it difficult to interpret probabilistically. Moments about zero up to an616

order m = Mmax may be defined meaningfully, by multiplying π(x, α, θ) with617
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xm and integrating. We have618

∫ 1

0

π(x)xm dx = α− ϑ
∫ 1

0

1− xm−1

1− x dx

= α− ϑHm−1 ,

(67)

where Hm−1 is the harmonic number. As this same relationship must also hold619

for the moments about boundary one, min(α, β)/ϑ < Hm−1, which leads to620

Mmax ≈ emin(α,β)/ϑ. Note that a monomorphic sample from a binomial distri-621

bution, with sample size M , leads to terms xM or (1−x)M , which correspond to622

the moments about zero and one. Thus the sample size needs to be restricted to623

M ≈ emin(α,β)/ϑ to avoid negative values for probabilities. Since the boundary624

mutation model generally requires θ < 0.1 [35], this constraint on M should not625

pose practical problems.626

Note that the same issue occurs with the closely related Ewens-Watterson627

estimator θ̂W of molecular diversity [9, 39]. With the assumptions used for628

deriving θ̂W , the probability of obtaining a monomorphic sample of size M629

is 1 − θ
∑M−1
i=1

1
i . It is therefore necessary to restrict the sample size below630

Mmax ≈ e1/θ.631

Backward expansion. The backward system of differential equations with eigen-632

functions B
(α,θ)
n (x) is the transpose of the forward system (65). It can also be633

diagonalized by setting634





B
(α,θ)
0 (x) = B

(α,0)
0 (x) = 1

B
(α,θ)
1 (x) = B

(α,0)
1 (x) = x− α

B
(α,θ)
n≥2 (x) = B

(α,0)
n (x)− ϑEn∆n

λn
B

(α,0)
0 (x)− θBn∆n

λn
B

(α,0)
1 (x) .

(68)

It can be verified that the forward and backward eigenfunctions fulfil the635

orthogonality relation (59) with ∆0 = ∆1 = 1 and ∆n as in (55). In particular,636

for n = 0 and m ≥ 2, we have637

∫ 1

0

F
(α,θ)
0 (x)B(α,θ)

m (x) dx =

∫ 1

0

(
F

(α,0)
0 (x) + ϑ

∞∑

n=2

En
λn

F (α,0)
n (x)

)

×
(
B(α,0)
m (x)− ϑEm∆m

λm
B

(α,0)
0 (x)− θOm∆m

λm
B

(α,0)
1 (x)

)
dx

= ϑ
Em
λm

∆m − ϑ
Em∆m

λm
∆0 = 0 ,

(69)

and similarly for m = 1 and n ≥ 2.638

Furthermore, we have, as before, the forward function639

φ(x | τ, ρ) =
∞∑

n=0

ρnF
(α,θ)
n (x)Tn(τ) , (70)
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and the backward function640

ψ(y |x, τ) =

∞∑

n=0

cn(y)B(α,θ)
n (x)Tn(τ) . (71)

The backward function and the marginal distribution, as long as M < Mmax ≈641

emin(α,β)/ϑ, can be interpreted probabilistically as with the general mutation-642

drift or the pure drift model. As the forward function may attain negative643

values, expanding it beyond the sample size M has little meaning.644

4.2.1. Example: one change in the mutation parameters645

We present the version of the boundary mutation model with the inhomo-646

geneous linear differential equations, i.e., with the eigenfunctions F
(α,0)
0 and647

B
(α,0)
n . With this choice, a change in the effective population size (population648

demography), or equivalently in the scaled mutation rate does not necessitate a649

change in the base. Assume a population in equilibrium at τ = s with mutation650

parameters θa and αa, such that the initial distribution is ρ(x) = π(x | θa, αa).651

The scaled mutation parameters then changes immediately to θ and α, respec-652

tively, and remain constant thereafter. Expanding the stationary distribution653

at time τ = s into the forward eigenfunctions F
(α,0)
n (x) results in654

φ(x | τ = s) = F
(α,0)
0 (x) + (αa − α)e−θτ F (α,0)

1 (x)

+
∞∑

n=2

(
En(ϑ+ (ϑa − ϑ)e−λn(s−τ)

+ (αa − α)θOn(e−θ(s−τ) − e−λn(s−τ))

)
F (α,0)
n (x) .

(72)

With a sample of size M with y alleles of the first type at time τ = 0, the655

binomial likelihood can be expanded into the backward eigenfunctions with656

ψ(y |x, τ = 0) =

M∑

n=0

cn(y)B(α,0)
n (x) (73)

The marginal likelihood, calculated at time τ = 0, is657

Pr(y) =

∫ 1

0

φ(x | τ = 0, ρ)ψ(y |x, τ = 0) dx =

[
c0(y) · 1

]
+

[
c1(y)(αa − α)e−θs · 1

]

+

[ M∑

n=2

cn(y)

(
En(ϑ+ (ϑa − ϑ)e−λns)

+ (αa − α)θOn(e−θs − e−λns)
)
·∆n

]
,

(74)

where the terms in the successive square brackets come from the terms in the658

expansion with n = 0, n = 1, and 2 ≤ n ≤M , respectively, while all terms with659
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n > M are zero. Within the square brackets, the terms before the dot are the660

time-dependent functions of the forward expansion. The same marginal likeli-661

hood is also obtained by using the backward eigenfunctions B
(α,0)
n , multiplying662

with the stationary distribution at τ = s, and integrating:663

Pr(y) =

∫ 1

0

ψ(y |x, τ = s)π(x, αa, θa) dx

=

[(
c0(y) + ϑ

M∑

n=2

cn(y)En∆n(1− e−n(n−1)s)

)
· 1
]

+

[(
c1(y)e−θs + θ

M∑

n=2

cn(y)En∆n(e−θs − e−λns)
)
· (αa − α) · 1

]

+

[ M∑

n=2

cn(y)e−λns · ϑaEn∆n

]
.

(75)

Within the square brackets, the terms before the dot are the time-dependent664

functions of the backward expansion. The two different versions of the marginal665

likelihoods evaluated at τ = 0 and τ = s are identical.666

4.2.2. Summary: boundary mutation-drift diffusion667

Assuming a bi-allelic boundary mutation-drift model, a system of orthogonal668

eigenfunctions is defined. As with Jacobi polynomials for the general mutation-669

drift model, these functions provide a convenient base for calculations. While670

some mathematical inconvenience compared to the modified Jacobi polynomials671

is encountered, changes in the (effective) population size (i.e., θ) are easily672

accommodated, because the base of the polynomials need not be changed. As673

with the general mutation-drift model, efficiency is increased compared to the674

discrete models since only eigenfunction expansions up to order M instead of675

N are needed.676

5. The order of the expansion677

With bi-allelic diffusion models we naturally assumed a binomial likelihood.678

This likelihood function corresponds to a polynomial of the order of the sample679

size M . Both with the general mutation-drift model as with the boundary680

mutation-drift model only orthogonal polynomials up to the order of the sample681

size are needed when modeling the allele trajectory backward in time. We also682

note that a change in the base of the polynomials, because the scaled mutation683

parameters changed, does not change the order of the expansion.684

Now consider two populations with sample sizes M (1) and M (2). Tracing685

back the allele frequency evolution to the split time requires a polynomial expan-686

sion of up to max(M (1),M (2)). Integrating over the population allelic propor-687

tion to obtain the marginal likelihood of the data at the split time then requires688

multiplication with the starting distribution, which can also be expanded into689

27



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

orthogonal polynomials of order Ma. If the starting population is in equilib-690

rium, then Ma = 0. If we first multiply the starting distribution with the691

backward orthogonal expansion of the smaller population, we obtain a forward692

expansion of order at least Ma+min(M (1),M (2)). Because of the orthogonality693

relation, when multiplying with the backward expansion of the second popula-694

tion, only polynomials of order up to the minimum of Ma + min(M (1),M (2))695

and max(M (1),M (2)) are needed for obtaining the marginal likelihood. Thus696

the maximal expansion needed depends on the sample sizes and the starting dis-697

tribution, but is always at least min(M (1),M (2)) and at most max(M (1),M (2)).698

Therefore, the required degree of the polynomial expansion is considerably less699

than previously thought necessary [21, 20]. Similar considerations also apply to700

more than two populations, where it can be shown that the required expansion701

to obtain the marginal likelihood is less than the sum of the sample sizes.702

6. Discussion703

Starting from bi-allelic mutation-drift models, we use forward and backward704

processes in discrete or continuous time to efficiently calculate probabilities of705

population allele proportions. Given a sample from a single population, i.e., a706

SFS, or samples from more than one population, i.e., a jSFS, from the present,707

this theory may be used to infer trajectories of population allele frequencies708

in the past. Integrating over the population allelic proportion, the marginal709

likelihood of the data may be used to infer population genetic parameters.710

The discrete-time algorithm is a variant of the forward-backward algorithm711

and thus makes use of dynamic programming. The continuous time algorithm712

uses orthogonal polynomials for even more convenient calculation. Further-713

more, we introduce bi-allelic population genetic models that provide us with714

time-reversible and irreversible transition matrices or kernels. The irreversible715

models are related to the infinite site [16, 8] or Poisson-random-field models716

[26]. Both reversible and irreversible models have stationary distributions.717

Previous diffusion-based methods for inference of population genetic param-718

eters are generally based on modelling allelic proportion trajectories forward-719

in-time. Solutions to the forward diffusion equations are either approximated720

numerically [e.g., 4, 12, 22] or are provided as functions of orthogonal polyno-721

mials [e.g., 21, 20, 29, 31]. These methods can, in principle, accommodate many722

demographic scenarios while considering general selection and continuous migra-723

tion. The complexity of these models in combination with the forward-in-time724

approach often results in complex likelihood functions. Herein, we demonstrate725

that combining forward- and backward-in-time approaches naturally leads to726

relatively simple likelihood functions for both discrete and continuous popula-727

tion genetics models (compare eqs. 16 and 30, respectively).728

Discrete models involve repeated multiplications with a transition matrix729

of dimension (N + 1) × (N + 1), where N is the haploid population size. For730

biological reasons, N should be large to model the large (effective) population731

sizes usually encountered. For numerical reasons, N should be small, because732
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iteration of large matrices is time-consuming and numerical errors may accumu-733

late. Mutation rates can be scaled to account for a reduction of N . Transition734

matrices may be diagonalized to speed up calculations. In any case, N must735

be at least as big as the sample size M to not lose information. A prior distri-736

bution must be assumed at some time in the past. If this distribution is taken737

as the stationary distribution of the transition matrix, calculations simplify. At738

the present time, a probability model of the sampling process, generally a hy-739

pergeometric likelihood, is assumed that is conditional on the sample size M .740

Zhao et al. [46] present a similar method that is also based on the iteration of a741

transition matrix (in their case, based on the Wright-Fisher model) and allows742

for conditioning on the beginning and end states of the chain. They derive the743

marginal distribution of states intermediate in the chain and simulate trajecto-744

ries. Extending this method to distributions instead of states (in our case, the745

prior at the beginning and the likelihood at the end of the chain) requires ad-746

ditional considerations and diagonalizing the transition matrix seems necessary747

in all but the simplest cases.748

With continuous diffusion models, the use of orthogonal polynomials is con-749

venient. The degree of the polynomials need not be higher than the sample size750

M , while the population size is large, which usually fits biological reality. Thus,751

the diffusion approach is mostly preferable over the discrete approach.752

Song and colleagues [29, 30, 31, 48] analyse self-adjoint continuous models,753

such as the general mutation-drift model herein. These authors usually take a754

Dirac delta function as starting condition instead of a prior distribution at τ = s755

(but see Supplemental Information, Section D in Steinrücken et al. [31]). Repre-756

sentation of a Dirac delta function requires an infinite expansion and modeling757

an arbitrary distribution as starting condition would require a further step (see758

Appendix 7.3). As these authors also consider selection, eigenfunctions with, in759

principle, infinite expansions are necessary in any case. A problem with their760

approach for pure drift models, however, is the restriction at the boundaries,761

which allows only polymorphic samples to be analyzed (see the subsection 4.1).762

Interestingly, Zhao et al. [45] also present a diffusion approach to calculate con-763

ditional trajectories that involves the product of solutions of the forward and764

backward equations. They consider a Dirac delta function as starting state765

and, additionally, also as a final state. Usually in population genetics, however,766

only a sample from the present is given, while the starting conditions are even767

less well defined. Applying this approach to real data thus requires integration768

over possible starting and final states, which adds another layer of complex-769

ity avoided with our approach. In contrast, Lukić and Hey [20] also use the770

equilibrium distribution as a starting condition as with the approach presented771

herein.772

Generally, using a delta function as an initial condition requires an infinite773

expansion in orthogonal polynomials. Yet for calculating marginal likelihoods a774

much lower expansion is needed. Lukić and Hey [20], citing [26], set the degree775

of polynomial expansion to (M − 2)K , where M is the number of haplotypes776

sampled and K the number of populations. Yet we show that only an expan-777

sion between min(M (1),M (2)) and max(M (1),M (2)) is needed, where M (1) and778
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M (2) are the sample sizes in the two populations. With additional populations,779

the expansion needed is less than
∑K
i=1Mi. Furthermore, these authors use780

Chebyshev polynomials, which are not orthogonal with respect to the forward781

and backward operators. This necessitates numerical integration of a linear sys-782

tem of differential equations to obtain the temporal part of the solution. With783

orthogonal polynomials, the corresponding system of differential equations is784

diagonal and thus much simpler.785

An analysis also involving a coupled system of ordinary differential equa-786

tions for the temporal evolution of moments [8, 47, 48] also provides solutions787

for the forward and backward diffusions. The basic model analyzed by these788

authors is the continuous version of the single-boundary mutation-drift model789

presented here, where ancestral and derived alleles are differentiated. Zivkovic790

and Stephan [47] also point out relations of the backward approach to coales-791

cent theory. Recently, a diffusion framework of weak mutation and selection792

has been incorporated in the theoretical analysis of adaptive landscapes [42], a793

concept first formulated by Wright [41].794

We note that many approaches above [8, 21, 20, 47, 48, 36] use boundary795

mutation models. Indeed, much of the statistics of population genetics is based796

on this model, e.g., the important Ewens-Watterson θ [9, 39]. For this model,797

only the forward transition probabilities have been given so far [8, 21, 36]. For798

the first time, we give the backward system of orthogonal polynomials and their799

corresponding eigenvalues herein. The system of eigenfunctions of the pure drift800

model [33] follows as a special case. As explained above, the possibility to move801

backward simplifies inference.802

The demographic scenarios presented here (Fig. 1) are common,e.g., in nat-803

ural populations of fruit flies of the Drosophila genus [e.g., 19, 43, 24]. Addi-804

tionally, the abundance of population data for Drosophila species makes them805

especially suitable for SFS and jSFS analysis under the described framework.806

Furthermore, the theory can be extended to more than two populations, i.e., to807

phylogenetic inference. Our methods can also be adjusted to an experimental808

setting with samples from multiple time points, as e.g., in evolve-and-resequence809

experiments [18]. Furthermore, a setting with multiple time-points also applies810

to the analysis of ancient DNA samples as noted by Steinrücken et al. [31].811

Generally, the methods and models we present in this article are simple, yet812

allow for maximum marginal likelihood analysis of SFS and jSFS from split-813

ting populations with mutation-drift or pure drift models, and for inference of814

evolutionary trajectories of population allele proportions conditional on data.815
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7. Appendices945

7.1. Derivation of the forward and backward diffusion equations from the de-946

coupled general mutation-drift Moran model947

In this appendix, we derive the forward and backward diffusion equation948

from the forward and backward transition probabilities of the decoupled Moran949

model with general mutation and drift and show the tight connections between950

the discrete and continuous models. Derivations are simpler than usual [10];951

terms higher than the first derivative with respect to time and second derivative952

with respect to space do not occur.953

Consider a focal bi-allelic site with the population frequency of allele one954

denoted by i (1 ≤ i ≤ N−1). With the transition probabilities of the decoupled955

Moran model (24), the frequency i may increase or decrease by one due to956

mutation or drift, or remain constant. Forward in time, the difference of the957

probability at frequency i per Moran step may be written as958

Pr(xt+1 = i)− Pr(xt = i) =

αθ

N2

(
(N − i+ 1) Pr(xt = i− 1)− (N − i) Pr(xt = i)

)

+
βθ

N2

(
(i+ 1) Pr(xt = i+ 1)− iPr(xt = i)

)

+
1

N2

(
(i− 1)(N − i+ 1) Pr(xt = i− 1)

+ (i+ 1)(N − i− 1) Pr(xt = i+ 1)− 2i(N − i) Pr(xt = i)

)
,

(76)

where the term within the first pair of square brackets corresponds to mutation959

towards allele one, the term within the second pair to mutation towards allele960

zero, and the term within the third pair to genetic drift.961

To approximate the change in frequency as a process in continuous time962

and space, the quantities δτ = 1/N2 and δx = 1/N are introduced. Further-963

more, time is rescaled as τ = tδτ , the allele proportions as x = iδx, such that964

φ(x | τ, ρ)δτδx = Pr(xt = i). Taking the limit N →∞, eq. (76) is rewritten as965

lim
N→∞

φ(x | τ + δτ, ρ)− φ(x | τ, ρ)

δτ
=

lim
N→∞

[
αθ

(
(1− x+ δx)φ(x− δx | τ, ρ)− (1− x)φ(x | τ, ρ)

δx

)

+ βθ

(
(x+ δx)φ(x+ δx | τ, ρ)− xφ(x | τ, ρ)

δx

)

+

(
(x− δx)(1− x+ δx)φ(x− δx | τ, ρ)

δx2

+
(x+ δx)(1− x− δx)φ(x+ δx | τ, ρ)

δx2
− 2x(1− x)φ(x | τ, ρ)

δx2

)]
.

(77)
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The term to the left of the equality sign of (77) corresponds to the definition966

of the first derivative with respect to time τ of φ(x | τ, ρ); the terms with muta-967

tions correspond to the first derivatives with respect to x of −(1− x)φ(x | τ, ρ)968

and xφ(x | τ, ρ), respectively; the drift term corresponds to the definition of the969

second symmetric derivative with respect to x of x(1−x)φ(x | τ, ρ). After minor970

rearrangements, the familiar form of the forward general mutation-drift diffusion971

equation is obtained972

∂

∂τ
φ(x | τ, ρ) = − ∂

∂x
θ(α− x)φ(x | τ, ρ) +

∂2

∂x2
x(1− x)φ(x | τ, ρ). (78)

Considering the Moran model backward in time (see Subsection 2.4), the973

change in frequency i back in time is determined by the transpose of the forward974

transition matrix (24) and can be written as975

Pr(y |xt = i)− Pr(y |xt+1 = i) =

αθ(N − i)
N2

(
Pr(y |xt+1 = i+ 1)− Pr(y |xt+1 = i)

)

+
βθi

N2

(
Pr(y |xt+1 = i− 1)− Pr(y |xt+1 = i)

)

+
i(N − i)
N2

(
Pr(y |xt+1 = i+ 1) + Pr(y |xt+1 = i− 1)

− 2 Pr(y |xt+1 = i)

)
.

(79)

After rescaling time and space, considering the limit N → ∞, and setting976

ψ(y |x, τ) = Pr(y |xt+1 = i), we get the backward diffusion equation977

− ∂

∂τ
ψ(y |x, τ) = θ(α− x)

∂

∂x
ψ(y |x, τ) + x(1− x)

∂2

∂x2
ψ(y |x, τ). (80)

The minus sign on the left side of the backward diffusion equation (80) may978

be unusual [compare 10], but necessary such that the time τ runs in the same979

direction in the forward and backward diffusion. Note that Zhao et al. [44] also980

use a pair of forward and backward diffusion equations with differing signs.981

7.2. Boundary condition982

In the following, we use the prime (′) to indicate the (partial) derivative with983

respect to x and leave away the terms in brackets for φ and ψ. Eq. (32) can984

then be written as985

∫ 1

0

[
−(Pφ)

′
+ (Qφ)

′′]
ψ dx =

∫ 1

0

φ
[
Pψ

′
+Qψ

′′]
dx . (81)

The first term on the right side is986

∫ 1

0

φPψ
′
dx = φPψ

∣∣1
0
−
∫ 1

0

(φP )
′
ψdx (82)

36



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and the second term on the right side is987

∫ 1

0

φQψ
′′
dx = φQψ

′ ∣∣1
0
−
∫ 1

0

(Qφ)
′
ψ

′
dx

= φQψ
′ ∣∣1

0
− (φQ)

′
ψ
∣∣1
0

+

∫ 1

0

(Qψ)
′′
ψdx ,

(83)

Hence for eq. (81) to hold, we require the boundary condition988

(
φQψ

′ − (φQ)
′
ψ + φPψ

)∣∣1
0

= 0 . (84)

Using the weight function w(x) defined in formula (33), this condition can be989

represented more compactly. The weight function fulfils990

Pw = (wQ)
′
. (85)

Substitute φ(x | τ) = w(x)g(x, τ, ρ) into eq. (84) to obtain991

0 =
(
wQgψ

′ − (wQg)
′
ψ + Pwgψ

)∣∣1
0

=
(
wQgψ

′ − ((wQ)
′
g + wQg′)ψ + Pwgψ

)∣∣1
0

=
(
wQgψ

′ − Pwgψ − wQg′ψ + Pwgψ
)∣∣1

0

= wQ(gψ
′ − g′ψ)

∣∣1
0

(86)

Note that w(x)Q(x) ∝ 1/ξ(x) where ξ(x) is the scale function defined in eq. (2)992

of Song and Steinrücken [29] and g(x) and ψ(x) correspond to f(x) in Song and993

Steinrücken [29]. This condition obviously holds if, at both boundaries, either994

w(x)Q(x) = 0 while (gψ
′ − g′ψ) is finite, or (gψ

′ − g′ψ) = 0 while w(x)Q(x) is995

finite.996

7.3. Propagator997

Song and Steinrücken [29] analyze self-adjoint differential equations, with998

a Dirac delta function δ(x − p) as starting point at τ = s. Denote the eigen-999

functions of the diffusion equation with the backward operator L∗ with Bn(x).1000

Eq. (5) of Song and Steinrücken [29] defines a “propagator” [3, chap. 19]1001

p(x | p, τ) =
∞∑

n=0

e−λiτπ(x)
Bn(x)Bn(p)

〈Bn(x)Bn(p)〉π
(87)

as the solution of the diffusion equation with a starting state modeled by the1002

Dirac Delta function δ(x− p). If the starting condition is not a particular state1003

but, more usually, a distribution ρ(p), the function1004

h(x | p, ρ, τ) =

∫ 1

0

p(x | p, τ)ρ(p) dp (88)

solves the diffusion equation. From the orthogonality relation it is evident that,1005

also with this indirect route, only an expansion of degree M is needed for cal-1006

culating the marginal likelihood.1007
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