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Highlights

e Inference of population genetic parameters from a sample of sequences
represented as site frequency spectra (SFS), using concepts akin to the
forward-backward algorithm of hidden Markov models is described.

e Discrete transition matrices and continuous diffusion models of iterating
the population allelic proportion, forward and backward in time, are
for calculating the marginal likelihood of the data for maximum likeli
inference of parameters.

e The method is demonstrated for simulated joint site fre tra
(i.e., data from two or more populations) under different/models uta-
tion and for different demographic scenarios.
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Abstract

A central aim of population genetics is the inference ofithe/evolutionary history
of a population. To this end, the underlying process can be represented by a
model of the evolution of allele frequencies patametrized by e.g., the popula-
tion size, mutation rates and selection coefficients” A large class of models use
forward-in-time models, such as the discrate’ Wright-Fisher and Moran models
and the continuous forward diffusion, to obtain distributions of population al-
lele frequencies, conditional on an ancestral initial allele frequency distribution.
Backward-in-time diffusion processes have been rarely used in the context of pa-
rameter inference. Here, we_demonstrate how forward and backward diffusion
processes can be combinéd to efficiently calculate the exact joint probability
distribution of sample.andipopulation allele frequencies at all times in the past,
for both discrete and continuous population genetics models. This procedure is
analogous to the forward-backward algorithm of hidden Markov models. While
the efficiency of discrete models is limited by the population size, for continuous
models it suffices tojexpand the transition density in orthogonal polynomials of
the ordersf the sample size to infer marginal likelihoods of population genetic
parameters. “Additionally, conditional allele trajectories and marginal likeli-
hoods$, of /samples from single populations or from multiple populations that
splitin the past can be obtained. The described approaches allow for efficient
maximun likelihood inference of population genetic parameters in a wide variety
ofidemographic scenarios.

Keywords:  bi-allelic mutation-drift model, Markov chain, forward-backward
algorithm, forward-backward diffusion, exact inference.
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1. Introduction

Most basic population genetic models, e.g., the Wright-Fisher and the Moran
models as well as the forward and backward diffusion models, were introduced
before molecular sequence data became available [reviewed in 10]. Thus, em-
phasis was on demonstrating processes over time and on qualitatively expldining
observations, rather than on quantitative inference of population genetic forces
given molecular data. Much later, coalescent theory [17] has been usediboth for
demonstration of processes as well as for inference given a populationssample
[13, 38]. The coalescent reconstructs the genealogical history”of a particular
sample at a particular locus conditional on population genetic forces. JHowever,
the aim in statistical population genetics is usually the inference of’evolution-
ary forces or of the evolutionary trajectory of allele proportions of the whole
population.

Population genetic parameters have often been inferred from allele frequency
data of a single locus sampled at multiple time“peintstin.the past. Due to the
short time-spans, mutation can usually be neglected, while selection is impor-
tant. Bollback et al. [4] developed a method based on a forward diffusion model
to infer the strength of selection acting on'an allele. This method was later ex-
tended to additionally infer the age of the\sélected allele [22]. To calculate the
likelihood of the observed trajectory; theseymethods rely on solving the diffu-
sion equation using a numerical grid approach. On the other hand, Steinriicken
et al. [31] use a system of orthogonal polynomials, i.e., a spectral representa-
tion of the transition density,[29], t6”analytically solve the diffusion equation
and model the evolutionfof allele frequency. Recently, Schraiber et al. [27] de-
veloped a Bayesian approach that uses Markov chain Monte Carlo (MCMC)
integration of allelefrequency trajectories to provide estimates of population
genetic parameters:

While the above-deseribed methods deal with a single locus with data from
multiple time=pointsy the focus of this study is to infer the demographic history
and the population genetic forces acting on a whole population from present-day
data. Specifically, we are interested in inference of population genetic parame-
ters;such as)the scaled mutation rate or mutation bias given data y from the
present, ¢ = 0, that consist of an alignment of M (haploid) sequences. Nu-
cleotide)data are assumed to be independently and identically drawn from a
population across L freely recombining nucleotide sites. The sites are assumed
to be neutral, e.g., in short introns, or at least nearly-neutral, e.g., fourfold de-
generate sites, such that the data are informative about population demography
and mutation processes. Because sites are assumed independent, they can be
summarized as a site frequency spectrum (SFS), also called the allele frequency
spectrum. The likelihood of the population sample y can be calculated given the
present population allele frequency xg and a probability model of the sampling
process. The distribution of xg is in turn given by a population genetic model
parametrized to capture mutation or the demographic history. These population
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genetic parameters can be inferred by first integrating over xy and subsequently
maximizing the marginal likelihood of the data y by varying the model parame-
ters; a strategy that may also be viewed as the empirical Bayes method [e.g., 5].
Under the assumption of equilibrium and given a general mutation-drift model,
this strategy leads to a beta-binomial likelihood, which can be maximized using
an expectation-maximization algorithm [34]. Assuming that mutations are raré
and arise only at fixed sites, i.e., a boundary mutation model, it is possible to
derive maximum likelihood estimators of the mutation rate and bias as well'as
the selection coefficient [35]. The estimator of the mutation rate in [35is a
variant of the well-know Ewens-Watterson 6 [9, 39].

The assumption of equilibrium is often violated in natural populations=and,
therefore, within this framework, modelling allele frequency trajectoriesismeces-
sary to accurately infer parameters from the observed SFS. Furthermore, even
under equilibrium, maximum likelihood inference requirés modelling of allele
trajectories with data from two or more populations that split some time in the
past, represented by a joint SFS (jSFS). Herein, we mostly-fecus on inference
using the jSFS given the canonical model of two populations that split at some
known or unknown time in the past, from which samplesof sizes M1 and M)
are obtained at the present time. Inference ising=jSES has been implemented
in the well-known program dadi by Gutenkunstet al. [12]. It is widely used to
infer migration rates, selection coefficients and.split times given data from mul-
tiple populations using a numerical grid approach to solve the forward diffusion
equation and model allele trajectories. "An alternative approach was developed
in Lukié¢ et al. [21] and Luki¢ andiHey [20], where as in [29, 31], orthogonal poly-
nomials are used to model allele frequency evolution. A similar, but discrete
model of allele frequency evelution is presented in Jewett et al. [14].

All of these methods@model the evolution of the allele frequency forward in
time. However, backward medels can also be used to model allele frequency tra-
jectories and calculate the likelihood of the data y conditional on the population
allele frequency 4, at earlier times (¢t < 0). Based on the Wright-Fisher model,
Zhao et al. [46] provide an algorithm to calculate probabilities of intermediate
states conditional on-the starting and end states. This allows simulation of
conditionalitrajectories. Schrempf et al. [28] use a Moran model in phylogenetic
inference., The, “pruning algorithm” [11] allows computation of the likelihood
from thetipslof a phylogenetic tree down to the root, i.e., backward in time. For
efficient inférence of phylogenetic trees reversibility of the evolutionary process
is generally assumed.

In-this article, we demonstrate the usefulness of backward-in-time processes
in parameter inference, while considering both discrete population genetics mod-
els and continuous diffusion. We also show parallels between discrete and
continuous models. Combining the forward and backward processes, as with
the forward-backward algorithm of hidden Markov models (HMM) [25], the
probability distribution of population allele frequencies conditional on data
Pr(zt]y,...) can be inferred at time ¢ in the past and the distribution of con-
ditional trajectories can be simulated. We therefore use forward and backward
processes to conveniently calculate probability distributions in time conditional
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on a SFS or jSFS from the present. Furthermore, we introduce bi-allelic bound-
ary mutation models, with mutations occurring only at fixed sites. Specifically,
we present the solution to the boundary mutation-drift diffusion model, which
underlies the infinite site or Poisson-random-fields models [16, 26] and is impor-
tant in statistical inference in population genetics as a starting point to derive
maximum likelihood estimators, such as the well-known Ewens-Watterson es<
timator of the scaled mutation rate [9, 39]. The Markov chains of the models
under consideration have no absorbing states and therefore have stationary dis
tributions. We do not always assume time-reversibility. For the discrete models,
the transition matrix must be multiplied repeatedly to obtain the distribution
of population allele frequencies forward and backward in time. ,Asithesize of
the transition matrix depends on the population size N, multiplication becomes
cumbersome if N is large. In the limit of large population| sizes, the corre-
sponding Kolmogorov forward and backward diffusion equationssaré obtained.
Orthogonal polynomials provide a flexible and fast method®o solve the diffusion
equations and calculate marginal likelihoods for inference in-population genet-
ics. For most purposes, expansion of polynomials, upito the order of the sample
size M suffices to accurately infer the transition density:=With two populations,
it can be shown that the order of the expansionistbetween the minimum and the
maximum of the two sample sizes, depending on the starting distribution. As
this is usually much less than the populatiénssize; continuous diffusion models
may be much more efficient for parameter inference in population genetics than
equivalent discrete models.

2. Time-homogeneous discrete"Markov chains

In this section we apply the forward-backward algorithm [25] to discrete
population genetic m@dels for inference given a SFS or a jSFS. To this end, we
rephrase iteration atsing ‘discrete population genetic models (Wright-Fisher or
Moran) in the términology of the forward-backward algorithm [e.g., 25]. We
mainly use matrix,notation to emphasize the similarities between discrete iter-
ation and the'continuous models in Sections 3 and 7.1. For completeness and
clarity, subsections include reviews of standard theory.

2.1.7 Asstumptions

(i) Assumie a haploid population of size N and a bi-allelic mutation model.
The time-dependent frequency of allele one in the population at time ¢ is
denoted z; (0 < 2y < N) and is assumed to evolve as a discrete, time-
homogeneous Markov chain with a transition probability matrix T, where
(T)ij = Pr(zy41 = jlay = 1) with 4,5 € {0,...,N}. T is an aperiodic,
right stochastic matrix.

(ii) At a (possibly unknown) time ¢t = s (s < 0) in the past, a distribution
of population allele proportions is given by p with entries (p;)icqo,... N} =
Pr(xzs = 4). In particular, p may be the stationary distribution = =
(mi)ie{o,...,n} or may correspond to a joint distribution of some other data
and the equilibrium allele frequency distribution.
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(iii) The population evolves until the present time ¢ = 0, when a sample of
size M is drawn. We denote the sampled frequency of allele one as y
(0 < y < M). The probability of observing y, i.e., the likelihood, is
Pr(y| M, zo) (we may drop the dependency on M in the following) and
will be defined according to the application.

For two populations, assumptions (ii) and (iii) are modified:

(ii) At a (possibly unknown) time ¢ = s (s < 0) in the past, x5 is drawndroma
distribution of population allele proportions p. The population separates
immediately into two populations with the same initial allele fréquency zz.

(iii) The two populations evolve independently until the present time t = 0,
when samples of sizes M1 and M) are drawn from ea¢h population.

For discrete models, iteration is more efficient if the population size N is
small. N can be decreased by increasing the mutation rate“gsuch that their
product # = Ny remains constant. For moderate N, the error introduced by
such scaling is small and converges to zero in the diffusion\limit. Therefore, N
can be set according to numerical convenience.” Qfteny our data are from the
present and we want to condition on the configuration of allele frequencies at
earlier times.

2.2. The forward-backward algorithm,

The forward-backward algorithm\ofyhidden Markov models (HMMs) [e.g.,
25, 6, 37] is an efficient numericallmethod for calculating probabilities assuming
a Markovian underlying process, where key variables, the “states”, are assumed
to be unknown, i.e., “hidden”wIntermediate results and the algorithm in general
can readily be interpreted.probabilistically. The algorithm’s numerical efficiency
is based on the simple; acyeclic conditional dependence structure of the unknown
variables, which allows for\“dynamic programming”. In our case, the possible
values of the population allele frequency x; correspond to the hidden states,
while the probability distribution Pr(y|z; = ¢) to the emission probabilities.
With the Wright-Fisher or the Moran models, allele frequencies at the next
time-point @41 depend only on the current ones, which conforms to a Markov
process. Knowing the sample allele frequencies generally does not completely
identify.the population allele frequencies at any time-point; the exact state of
the underlying variable remains “hidden”.

2.8wForward in time

We introduce the row vector f; with entries (f¢); = Pr(z; = i|p), where
7€ {0,...,N}, and f; = p, i.e., the vector of initial probabilities of states, and
define recursively:

ft+1 = ftT (S S t < 0) (1)

Thus, f; can be interpreted as the probability of the allele frequency at time ¢
conditional on the ancestral state p, f; = Pr(x¢|p). This corresponds to the
forward method in the forward-backward algorithm in the theory of HMMs [e.g.,
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25, 37]. Let b{, be a column vector (the prime ’ depicts matrix transposition)
corresponding to the conditional of the sampling process, such that (bg); =
Pr(y|zo =) with ¢ € {0,..., N}. The marginal likelihood then is

Pr(y|p) = pT!*Iby. (2)

2.4. Backward in time
Using a strategy as with the backward method in the theory of HMM [25,37],
we set

by = Th,, (s<1<0), ®)
which can also be written as

(by)i = Pr(y|ay = i) = ZPT(%H =Jjlze =) Pr(y| L1 = j): (4)

From the definition of by, it follows that we condition on"z;.) The recursion
moves the conditioning to ever earlier times. The marginal-ikelihood (2) may
also be obtained as follows:

Pr(y| p) = p [TV
= pby (5)
= Do piRefyTes = ).

2.5. Constant marginal distribution.and adjointness
Considering the sampling probability, we can choose any arbitrary ¢ such
that

Pr(y|p) = fibj= ZPF(% =i|p) Pr(y |z, = 1) = (£, by), (6)

holds, where (-,-) denotes an inner product. It follows that the forward and
backward transition matrices, i.e., T and its transpose T’, are adjoint since

Pr(y|p) =Pr(y|p)
(ftT)b;H = ft(Tb;H) (7)
<ftTabt+1> = <ft7bt+1T/>~

This.adjoint/relationship allows movement forward and backward in time.

2.6. Joint and conditional distribution
The probability of z; = i and y conditional on the starting distribution p is

Pr(ze =i,y p) = (ft)i(be); . (8)
Furthermore, the probability of x; = i conditional on the data and the starting
distribution is
(£:)i(be)i

Pr(z; =1y, p) = ————. 9
(m=ilv.p) = Vg )

This allows calculation of the distribution of population allele frequencies con-
ditional on the data and an initial condition at any time.
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2.7. Sampling from conditional trajectories

It is possible to simulate trajectories given the initial distribution p at time
s and the likelihood at time ¢t = 0. Note that Zhao et al. [46] provide a similar
algorithm based on the Wright-Fisher model to simulate trajectories of popula-
tion allele proportions conditional on the starting and end states. In contrast,
we start with a sample at time ¢ = s from the conditional probabilities (9).
Given the state at time ¢ — 1 the probability of the state at time t is

Pr(es = j | 2e1 = iry) = % (10)

which can be used to obtain a sample trajectory. Althoughs/the probability
distribution of trajectories depends on p, the transition at a given time ¢ (10)
does not contain p since it is a Markov process.

2.8. Left and right eigenvectors, stationary distribution
Let m = (7;)ic{o,...,n} be the stationary distribution off T, if it exists. 7 is
the left eigenvector associated with the largest eigenvalue”(equal to one) [10, p.
87]
7 =7T. (11)

All entries of 7 are strictly greater than, zerorbecause the transition matrix
was assumed to be irreducible and D3r; = 1. Thus the entries of 7 can be
interpreted as probabilities. Since the rows of T sum to one, it is obvious
that a column vector of all ones 1/ isithe right eigenvector associated with the
unit eigenvalue. In our context, thisSymeans that iterating forward in time will
converge to a vector proportional to 7 and iterating backward in time to a
vector proportional to 1% Thus, every state is equally likely when s — —oo
and we have no information about the initial distribution of states, because the
process has already reached equilibrium.

2.9. Reversibility

Define‘the diagonal matrix IT with the entries 7; on the main diagonal. Since
irredueible Markov chains with finite state space have stationary distributions
with“only stiictly positive entries, IT is invertible with II~! being a diagonal
matrix with’entries 1/m;. Set

T =TI . (12)
The Markov chain is reversible, if T* = T’, because then

T =TI !

13
T'II = IIT, (13)

which corresponds to the condition of detailed balance.
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If reversibility holds, we can separate f; into a product of a time dependent
row vector g; and the stationary distribution matrix IT

Under reversibility, we have forward in time

gt—l—l]-_-[ = gtHT
gii1 = g IITIT ! (15)
g1 =gT .

We may interpret g; as a “projected likelihood” that, whens/multiplied with
the stationary distribution, gives the joint distribution f;. Note thatj with the
decomposition (14), the likelihood becomes

Pr(y|p) = g IIb; for all ¢. (16)

The adjoint relationship (7) can be modified analogously,/to result in the self-
adjoint relationship

Pr(y|p) = Pr(y|p)
(gtHT)bQH = gt(T’Hb;-s-l) (17)
(g JIT, byt1 ), = (g1ybi1 IIT).

2.10. Ezxzample: Conditional probabilities under irreversible mutation

As a particular realizationtef a discrete process consider a bi-allelic model,
where alleles can be labeled either as ancestral (zero) or derived (one). Mutation
rates are assumed to,be small (at most one mutation is segregating per site) and
occur only at the boundary,zero. When a derived allele is fixed, it immediately
becomes ancestral. This,process is a variant of the infinite sites model [16], but
differs in thatit allows for a stationary distribution at a particular site. Using
diffusion thieory, Evans et al. [8] provide an analysis based on moments of the
allele proportions of a similar model with mutations from only one boundary,
assuming)changing population sizes, i.e., not assuming equilibrium. Zivkovic
et_al. [48] extend the analysis to include selection.

The transition matrix T is defined as follows. Given a time-homogeneous
mutation rate pu, transition probabilities at the boundary zero are
Pr(zi41 =0z, =0) =1-—p/(1—0HN_1) (18)

Pr(zi41=1]2;=0) =p/(1—0HN_1),

where # = Ny and the harmonic number Hy_1 = Ef\:ll 1/4. With this defini-
tion, we consider the Moran model where with each time-step (note that with
the Moran model N time-steps correspond to one generation with the Wright-
Fisher model), one individual sampled at random has one offspring that replaces
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one other random individual. Within the polymorphic region, random drift is
the only force affecting allele frequencies, such that for 2 <7 < N — 2

Pr(zip1 =i—1|z, =1i) = 5i(N —1i)
Pr(zip1 =i|x, = 1) =1-— 22i(N —1i) (19)
Pr(zis1 =i+ 1|z =14) = zi(N —1i).
For ¢ = N — 1, drift may lead to fixation of the derived allele, whick then
becomes the ancestral allele, i.e.,

Pr(act+1:N—2\a:t:N—1) :ﬁ(N—l)
Pr(zis1 =N -1z, =N—-1) =1- 32(N #1) (20)
PI‘(It+1:0‘It:N—1) :%(N—l)

The state i = N is never reached and is left out of thestate space. The system
is not in detailed balance, as probability mass moves from state i = N — 1 to
state ¢ = 0, but not in the reverse direction.
The stationary distribution is
Pr(z =0 =1—60HyN_
(x) = { =0 v (21)

Pr(z = i)ieq1,.. . w-1yw=0/i,

as can be ascertained by substitutiony

Note that the proportion of‘pelymorphism in equilibrium is  Hy_;. This
equilibrium proportion corresponds.to the Ewens-Watterson estimator Oy [9,
39], which was derived using the infinite site model [16]. In formula (18), the
mutation probability per‘time-step u is weighted by the inverse of the probability
of being at the boundary 1 =60 Hy_1, which ensures that the average probability
of mutations per time-step)is constant, irrespective of V. This in turn assures
correspondence £o the infinite site model.

Assume ahypergeometric likelihood of y, conditional on N, xg = 4, and the
sample size"M < N

iy (N—i
(y) (1\/]—3;)
Ny

(1)
where 0 < y < M and 0 < ¢ < (N — 1). In equilibrium, the joint distribu-
tion"is obtained by multiplying the stationary distribution with the likelihood.

Summing out the population allele frequency xg, the marginal distribution is
obtained

Pr(y| N,z =i, M) = (22)

Pr(y:0|M) :1—9HM_1

‘ ‘ (23)
Pr(y =i|M)ieq1,..m—1y =10/i.

Pr(yIM)—{

It follows that the expected heterozygosity, i.e., the probability of obtaining one
derived allele and one ancestral allele in a sample of size M = 2 is 6.

10
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As an example of a demographic scenario (Fig. 1A), consider a population
with a stationary allele frequency distribution (21) defined by the ancestral
mutation rate p, at some time s in the past; i.e., p = w4. Furthermore, assume
an instantaneous increase in the mutation rate p between generations s and
s+1. As 8 = Ny, this mimicks an expansion of the population size, without the
inconvenience of having to change the dimension of the transition matrix. From
then on, the population is out of equilibrium and evolving with a new current
mutation rate p. > piq. At the present time (¢ = 0), we sample M haplotypes
from the population. Assume that the ancestral state of the sampled haplotypes
can be determined without error. Thus, a polarized SFS may be constructed:
The transition matrix T and its transpose T can be calculated conditional on
te. Assume hypergeometric sampling. The conditional probabilities of-allelic
states Pr(z: |y, p), for any time s < ¢t < 0, in a site frequency spectrum of size
M can then be calculated (Fig. 2).

A B

Time ¢
Time ¢

y=0 y=1 y=2 y=3
0.75+
2
5 050
Qo
[
T 0.25-
s J L
0.001, T : : T ; . : e T : : T T T :
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

Figure 2: Conditional probabilities of allelic states in a site frequency spectrum of size M = 3.
The solid lines represent the conditional probabilities of an allelic state xz+ given y, at t = s,
while the dashed lines represent the probabilities at ¢ = 0. The parameters were set to
e = 0.05, e = 0.1, s = —200 and N = 20.
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2.11. Exzample: Joint site frequency spectrum under reversible mutation

As another realization of a discrete process consider a bi-allelic mutation-
drift decoupled Moran model [2, 7] with haploid population size N, mutation
rate towards zero po and mutation rate towards one puy (u = po + p1). We
introduce the parameters @ = p1/p (0 < a < 1) and f =1—a = po/u
which are the mutation biases towards allele one and zero, respectively. Let
(0 < i < N) be the frequency of allele one. Then, the tri-diagonal transition
rate matrix T depends on IV, p and «

i(N—i)

Pr(zipr =i— 1|2 =10) :Tﬁ-ﬁu%
Pr(wess =ifo=i) =1 2504 B o+ auleh =24)
Pr(mt+1:i+1|xt:i) :2(1]\7\77;2)_’_&”%

The stationary distribution of z is a beta-binomial

N) I(0)  T(i+af)T(N —i+ f36)
T'(a)T'(B0) DV + ) ’

Pr(ac:i|N,a,6’):( (25)

i
which can be verified by substitution into the.equations of detailed balance (25).
As above, hypergeometric sampling at time ¢ =0 is assumed. Assuming equi-
librium, the marginal likelihood of a singlessample of size M is again a beta-
binomial, with M replacing N [34].

Consider an ancestral population with the stationary allele frequency dis-
tribution (25). The ancestral pepulation splits into two at some time s in the
past (Fig. 1B). For simplicity, no ‘change in the mutation, the drift parameter,
and the size in both populations is assumed. A jSFS is simulated from both
populations (Table 1) at{t = 0. The likelihood of the split time s calculated
given the simulated jSFS (Figure 3A) has a single maximum close to the true
value of t = —40.

It may be instructive to calculate some marginal and conditional probabili-
ties with this example. We set for the likelihood of the second population, i.e.,
the conditiomal distribution of the data given the allele frequencies in the sec-
ond population at time ¢t = 0, bff) = Pr(y® \ac(()z)). We then iterate backward
within/the second population until £ = s to obtain the joint probability of the
secondysample y(?) and the ith allele frequency z = i at time ¢t = s:

Pr(z, =i,y | p) = p;(b?); . (26)

Note that, on the left side of the above equation, we drop the superscript to
indicate the population for x s, because time t = s is just before the split into the
two descendant populations. Without information from the second population,
we would set the starting distribution of the first population fs(l) to the prior
probability of the allele frequencies at time t = s, i.e., fS(l) = p. With infor-
mation on the second population, we instead start at time ¢ = s from the joint
probability (26) and set £0* = Pr(a,, y®@ | p). As before, we iterate forward

ft(l)*

to obtain within the first population; we can interpret ft(l)* as the joint
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probability of the allele frequency in the first population and the data of the
second population: £7* = Pr(z{",y® | p). Setting now for the likelihood of
the first population bél) =Pr(y™ | x(()l)) and iterating backward within the first
population until ¢, we obtain the probability of the allele frequency of the first
population at ¢, conditional on data from both the first and second population
as well as on the prior distribution p as:

(£, (M)

Pr(z) =i|y™M,y®, p) =
t ft(l)*bgl)

(27)

Figure 3B gives the conditional probability Pr(z, |y, y?, p) foronefsite class
of the jSFS determined by y(* and %) which denote the polgmorphismi levels
of the specific class for populations one and two, respectively; e.g., the site class
determined by y™) =1 and y®) = 2 contains all sites with one.derived allele in
population one and two derived alleles in population two.

Table 1: A jSFS simulated with a discrete Moran model with,parameters L = 105, M1 =
M® =3 a=2/3,0=0.1, s=—40 and N = 20.

y O 1 2 3
0 29037 1315 1436 185
1 1276 688 539 432
2 446 529 662 1524
3 202 507 1430 60792
A B
-111450 :
3 -111500 E 0.0754
2 1115501 | 2
= 1 Qo 4
% ~111600 E _§ 0.050
c'?,—lueso- : & 0.0254
— ~111700+ |
-111750 - 1 ; \ ) 0.000 4 T T T T
-40 -30 -20 -10 0 0 5 10 15 20
t

Xt

Figure 3; A) The log-likelihood of the split time s, given a jSFS (Table 1). The dashed
linevindicates the true split time. B) The conditional probability of the allelic state z+ given
y() =1 and y =2, at t = s (solid line) and t = 0 (dashed line).

2.12. Summary: discrete Markov chains

With standard discrete population genetic models, e.g., the Wright-Fisher
or the Moran models, iteration of discrete Markov chains forward in time cor-
responds to the forward algorithm and backward in time to the backward al-
gorithm of the forward-backward algorithm [25]. With such algorithms, it is
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straightforward to calculate exact likelihoods given SFS and jSFS from the
present. Some standard population genetic mutation models are reversible,
others are not. In contrast to phylogenetic applications [11, 28], reversibility
of the Markov chain does not simplify calculations considerably; in both cases,
iteration of an (N 4 1) x (N + 1) transition matrix is needed.

3. Forward and backward diffusion equations

In this section, we provide theory for the continuous analogs of the discrete
forward and backward transition probabilities both for reversible and‘irreversible
Markov processes and illustrate with examples. We derive the. forward and
backward diffusion equations from the discrete general mutation-drift " Moran
model using only the definitions of the first and second symmetric derivative
(Appendix 7.1).

With the forward and backward diffusion operators

0 0?
—__p Il
L=——Pa)+ Q) -
=P 2 4 Qlons,
— 5 Vo2
the forward and backward diffusion equations are written as
0
87¢(x | T, p) = ,Cd)(.%' ‘ 7, p)
g (29)

0
—51#(21 I JJ,T) = ‘C*d}(y | 5(},7') s

where 7 is the continuous-time analog of ¢, and p is the initial condition of
the countinuous allele frequency z. The functions ¢(z |7, p) and Y(y |z, 7) are
transition density functions of the forward an backward diffusion, respectively.
Obviously, these functions must be twice differentiable in the open interval (0, 1).
The operators: L and”L* together with the boundary conditions correspond to
the forwarditransition matrix T and its transpose T, respectively.

3.1.. Forward and backward in time

As inthe discrete case, consider the situation when the distribution of
the continuous allelic proportion z at time 7 = s is given by p(x). Setting
o(xT = s) = p(x), p(x|7 = 0,p) can be calculated using the forward dif-
fusion equation (29). Assume again a discrete sample of size M with a fre-
quency of y alleles of type one at time 7 = 0. In the backward time direction,
Y(y|x,m=0) =Pr(y|z,7 =0, M), which corresponds to a binomial likelihood
as the allelic proportion is now assumed to be continuous. Note that a binomial
likelihood corresponds to a polynomial of order of the sample size M and is thus
finite. With the backward diffusion equation (29), the conditioning on x may
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be moved backward in time. The marginal likelihood of y may be obtained by
integration over the product of the forward and backward functions

1
Pr(y| p) = /0 (@ | pyily |z, 7)de  fors <7 <0, (30)

analogously to equation (6). As with the discrete case, we require the marginal
likelihood to be constant irrespective of time. Furthermore, for any marginal
likelihood of a discrete random variable 0 < Pr(y|p) < 1 must hold{, This
constrains the boundary conditions.

As Pr(y|p) is independent of time 7, its derivative with respe¢t to time 7
must be 0. Exchanging the order of differentiation and integrationrand applying
the product rule to Pr(y| p), we have

0
EPY(MP)—O

'To L o (31)
[ ot mo] vtwlanacs [ otein) [ Gevwlpn] as=o.
Substituting the right sides of the forward and=backward diffusion equations
(29) for the time derivatives, we have the adjoint relationship

/0 £z | 0)] $ly| 7) dafs / O m,p) (L0 (y | z,7)) do
<£¢(I | T, p)7'(/)(y|1‘77—)> ~ <¢(‘T|T7 P)»E*¢(y|$»7')>~

The adjoint relationship (32)srequiresthe boundary condition (84) to hold (Ap-
pendix 7.2). At each time-point, any change to the marginal likelihood from
applying the forward/eperator /L to the forward function ¢(x|T,p) is exactly
matched by a change frem applying the backward operator £* to the back-
ward function (¢} z,7). As in the discrete case, the adjoint relationship allows
movement forward and backward in time.

(32)

3.2. Self“Adjointness and Reversibility

Inthis seetion, we deal with reversible Markov processes. Introduce the
weightior speed function [e.g., 10, 29]

elo @ (33)

Substituting w(z)g(x, T, p) for ¢(z |7, p), the boundary condition (84) becomes
(Appendix 7.2)

1
=0. (34
0

w(2)Q@) (960 7.0) g0l [ 7) ~ 00y 2.7 o7 0) )

Since w(z)Q(z) may be infinite at the boundary, ¥ (y|z,7) and g(z, 7, p) need
to be finite.
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Assume w(z) > 0 for z €]0,1[, and substitute w(x)g(z, 7, p) for ¢(z |, p)
into the general forward equation (29)

2
2 w@)gler7,p) = ~ o P@)w(@)g(a,7,p) + g Qhu(a)g(z, 7. p)

2
w(e) gl 7.p) = Plew(e) gz p) + Qejule) oo, p) (35
0 0 0?
5.9 7 p) = P(x) 5-g(z.7,p) + Qz) 55 9(2,7, ).

Note that the last line is identical to the backward equation (29), with the
exception of the reversed sign to the left. Note that, nevertheless; ¢(z |7, p) may
be infinite. If the stationary distribution 7(z) exists, it is proportional to w(x).
From substituting 7(z)g(z, T, p) for ¢(z |7, p) into the margimal likelihood (30),
it follows that g and ¢ are square integrable with respect tostheyweight function
7(z) o< w(z) [29]. The Markov process is then self-adjoint,and reversible and the
relationship between the forward operator £ and itsiadjoint £* may be written
compactly
o= b
m(x)
similar to the reversed transition matrix (eq12) or to the condition of detailed
balance (eq. 13) in the discrete case.

[Lm(®)] (36)

3.8. Joint and conditional distributions

The function corresponding to the joint distribution of the allelic proportion
x and the sample allele frequeney y in the discrete case (8) at time 7 (s < 7 < 0)
is

iz, gr) = o7, p)¢(y |z, 7). (37)

For the conditional distribution of the allelic proportion = given the sample
allele frequengy Yy corresponding to eq. (9) in the discrete case, j(x,y | 7) must
be divided byathe marginal likelihood (30)

j(z,y|7)
Pr(y|p)

8.4. General mutation and drift and orthogonal polynomials

p(x|7,py) = (38)

The diffusion operators in this section are as in (28), with P(x) = (o — x)
and Q(z) = z(1 — z). In population genetics, Q(z) is generally half the genetic
variance with the bi-allelic Moran model (see also Appendix 7.1). In the context
we consider, the backward function ¥(y|z,7) at time 7 = 0 is a binomial
likelihood, i.e., a polynomial of the degree of the sample size M. Without
selection, the backward function remains a polynomial with degree M for s <
7 <0.

With the general bi-allelic mutation-drift model, Song and Steinriicken [29]
already demonstrated self-adjointness and showed how to use modified Jacobi
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polynomials to obtain a solution. For the general mutation-drift model, the

weight function w(z, a, ) = 2*9~1(1 — )%~ is proportional to the stationary
distribution -

m(x) = __Lo

I'(ad)T(B0)

Since Q(z) = z(1—z), the boundary condition (34) holds if, at both boundaries
x=0and z =1, z(1 — x)w(z) = 0 and Y(y|=z,7) and g(z, T, p) are fidite.
Since z(1 — z)w(z) = (1 — 2)%? is zero at both boundaries for thé nons
degenerate case of # > 0 and 0 < a < 1, the boundary condition (34) helds
if %(g(x,ﬁ p)Y(y |z, 7)) is finite at the boundaries, which can be dssumed for
population genetic applications.

The (modified) Jacobi polynomials (compare formula 22.3.2 in Abramowitz
and Stegun [1])

011 — z)P0L, (39)

o = F'(n—1+1+0)I'(n +a0
ReO(@) =3 _(-1) F(n(— Y —i—)oa(9)l!(n —)5)!5”1 (40)

1=0

are eigenvectors of the backward operator

MR (2) = LR (), (41)
with eigenvalues
A =nn+60-1). (42)

The corresponding eigenfunctiofisyof the forward operator are w(z)Rﬁf"e)(az)
with identical eigenvalues.

Since a binomial distribution with sample size M corresponds to a polyno-
mial of order M, the likélihood can be represented by an expansion with coef-
ficients ¢, (y) into the’modified/ Jacobi polynomials up to order M. Note that
a change in the efféctive~population size (population demography), or equiva-
lently in the scaled mutation rate from 6, to 6. needs to be accommodated with
a change in the base from R (z) to R (2).

The orthogenality relationship of the modified Jacobi polynomials is

1
/ R ()R () w(z) dx = 8 ALY (43)
0

where 6, ,, is the Kronecker delta, and

@) _ I'(n+ af)'(n + (0)
AR = @2n+60—-1)IC(n+60—-1)C(n+1)" (44)

Let ¢, (y) be the coefficients of the expansion of the likelihood into the mod-
ified Jacobi polynomials, which breaks off at n = M. Then the solution to the
backward equation can be written as

M

dyle,m) =Y ealy) RED (@)e 7, (45)

n=0
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with ¢(y |z, 7 = 0) = Pr(y| M, z) corresponding to the likelihood.
Let p,, be the coefficients of the expansion of the starting distribution p(x)
at time 7 = s. The solution to the forward equation can then be represented as

ol | 7.p) = w(x) 3 puRED ()0 (46)

n=0

The orthogonality relationship can be used to simplify the marginal likeli
hood

Pr(y|p) = /0 o |7, o)y |z, 7) d
= / > pncalyuw(@) [ @) e e de 4y
0 n=0

M
= Z PnCn (y)Agzaﬁ)ei/\ns'
n=0

Because of the orthogonality relation (43)jthescalculation of the marginal
likelihood (47) requires an expansion in eigenfunctions up to order M, where
M is the minimum of the forward-in-time eéxpansion of p(x), say My, and the
backward-in-time expansion of Pr(y|z{r = 0), say M. Therefore, for calculating
the joint distribution (37) and thus alse,the-conditional (38), an expansion up
to order My x M is needed.

3.4.1. Example: two splittimgapopulations and binomial likelihoods

Here, we apply the theory to a model with two populations and binomial
likelihoods; i.e., a jSFS analogous to the second example in the discrete case
(subsection 2.11). The initial’ distribution p(z) is assumed to be the equilibrium
distribution. Ounly the first’eigenfunction is necessary to expand the equilibrium
distribution; ée., pg = ﬁ while p,>1 = 0. In equilibrium, the marginal like-
lihood of a single—populagion sample of size M assuming mutation-drift equilib-
rium with parameters « and 6 is a beta-binomial, as in the discrete case (25),

1
Pr(y|M,oz,0):/ Pr(y| M, z)n(z,a,0) dx
0

_ 1 M &xaewfl — BO+M—y—1 "
- /0 ( y > T'(af)T(36) (1-2) de (48

_ (M) re) T(y+ad)I(M—y+p0)
~ \y /T (ad)I(BY) I'(M+0) '

It follows from the orthogonality relation that only the first term in the ex-
pansion n = 0 contributes to the marginal likelihood, i.e., the inner product
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1
Pr(y| M, a,0) = / co(y) R (2)m(x, o, 0) da
0

e (a,0) (a,0) -1 BO—1 (49)
=, co(y)Ry ' (2) (a ay 1o (z)x (1—=x) dx

=co(y) -

For two populations with sample sizes M) and M@, the respegctive likeli-
hoods Pr(y™ | M™M) and Pr(y? | M) are similarly expanded infe the modi-
fied Jacobi polynomials with coefficients ¢, (y(")) and ¢, (y?). At time 7 back
in the past, we have

MO
Pr(y™ |z, MM, 0,0,7) = Y e, (y)RED (w)e 27 (50)
n=0

and similarly for the second population. If thé two pepulations join at time
7 = s in the past, when the population is<assumed to be in mutation-drift
equilibrium, the marginal likelihood is

M® )
Pr(y®,y® | MDY, M@ 00,7 ="sh= Y Z/ (V)R ()¢ Ans

n=0 m=0"0
X (Y PR (2) 7 (1, 0, 0) e da

= Z/ (1) (2)) [Rgla,é’)(x)}Q 7(([13,04,9)67%‘"8 dx

M a,0) — s
— Z Cn(y(l))cn(y(z))Agz )6 2An
a,0 ’
n=0, A(() )

(51)

where AT = tin(M™), M(?)), since higher order terms contribute zero weight
to theyinner product.

A joing site frequency spectrum is drawn (Table 2) at the present time 7 = 0.
Given the jSFS, the likelihood of the population split time is readily calculated
(Figure'4). The jSFSs in Tables 1 and 2 are similar because scaled mutation
rates and biases under which they are simulated are identical; for the discrete
model, the population size is set to 20 instead of approaching infinity as in the
continuous model, which, together with sampling variation, explains the slight
differences.

3.4.2. Summary: bi-allelic general mutation-drift diffusion

Assuming a bi-allelic general mutation-drift model, forward and backward
diffusion equations and continuous analogs to the discrete forward and backward
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Table 2: A jSFS simulated with a continuous diffusion model with parameters L = 10°,
MDD =M32) =3 a=2/3,0=0.1, and s = —0.1.

0 1 2 3

28877 1447 494 @ 231
1448 570 491 557
497 516 543 1491
253 521 1506 60558

W RO

—-116000 -

-116200 A

-116400

Log-Likelihood

-116600 -

—-116800 -

T T T T
-0.20 -0.15 -0.10 -0.05 0.00
T

Figure 4: The log-likelihood of the split time s, givensa jSFS (Table 2). The dashed line
indicates the true split time.

algorithms, as well as the forward-backward ‘algorithm, are derived. As with the
discrete models, it is straightforwardsto calculate exact likelihoods given a SFS
or a jSFS from the present. With'the bi-allelic general mutation-drift model
a self-adjoint system results. Modified Jacobi polynomials REL“’G) () provide a
convenient base for calculations, both forward and backward in time. In the
discrete case, iteration ef any(NV + 1) x (N + 1) transition matrix is needed to
evolve the allelic proportion; in the continuous case, only polynomials up to the
sample size M sare needed with mutation-drift models. As M < N, this may
lead to considerably increased efficiency. A change in the effective population
size (population demography), or equivalently in the scaled mutation rate needs
to be acecommodated with a change in the base of the orthogonal polynomials
as indSteinriicken et al. [32].

4. Boundary mutation-drift model

In this section we deal with irreversible Markov processes. If mutation rates
are small relative to drift, polymorphism in a sample of moderate size originates
from a single mutation. We can therefore assume that mutations originate ex-
clusively from sites fixed for allele zero or one, i.e., from the boundaries. Such
models are particularly important for statistical inference in population genet-
ics [e.g., 9, 39, 12] and it is therefore worthwhile to provide solutions to the
corresponding diffusion equations. As a solution to the forward and backward
diffusion equations we present a system of orthogonal eigenfunctions. Through-
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out the presentation, we emphasize the similarities with previous approaches.
While the solution to the forward diffusion is mainly a review, the backward
direction and the overall concepts are new.

4.1. Pure drift model

We start with the pure drift model and clarify basic concepts. The forward
and backward diffusion operators are

82
L= @Q(x)
32
0x?”

(52)
£ = Q)

For the pure drift model, the adjoint relationship between the forward and
backward operators holds as long as the boundary condition®(84) with Q =
z(1 — z) holds within the unit interval

1

0= (x(l )0 — ({1 - x>¢>’w> (53)

0

Following Kimura [15], most population‘geneticists implicitly or explicitly re-
quire at both boundaries ¥ (y |z, 7) and 2(V'— Z)¢(x |7, p) to be zero [see also
10, 29]. With these assumptions, modified, Gegenbauer polynomials U, (x) =
—%Cff’_/;)(Zx —1) (CY(#) are thexGegenbarer polynomials as defined in [1]) are
eigenfunctions of the forward diffusion equation with eigenvalues A, = n(n —1)
for n > 2. Furthermore z(L=a)U, (z) are eigenfunctions of the backward equa-
tion with identical eigenvalues.' The forward and backward operators are then
self-adjoint with the weight, function w(x) = x=1(1 — x)~! [10, 29]. Note that
without mutation no stationary distribution exists. The orthogonality relation
of Uy, (x) is

1
/() Un(w)Um(z)w(x) dx = 6n,mAna (54)
with
Ap= T (55)
" 2n—1)n’

However, these assumptions are too restrictive; polynomials of zeroth and
fizst degree, 1 and z, cannot be represented by (1 — )U,(z), but both are
eigenfunctions of the pure drift backward equation with eigenvalues A\g = A; = 0.
Importantly, assuming a binomial likelihood, these eigenfunctions are needed
when representing monomorphic samples. To address this issue, Tran et al.
[33] add 1 and z to the eigenfunctions of the backward equation. The two new
backward eigenfunctions require augmenting the forward eigenfunctions with
point masses at the boundaries that counterbalance the probability mass in the
interior. Additionally, point masses at the boundaries, independent of those
associated with the forward eigenfunctions, need to be introduced [33].
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Independently from Tran et al. [33], we derived a boundary mutation-drift
model forward in time from probabilistic population genetic considerations [35]
with eigenfunctions proportional to those in Tran et al. [33]. Our approach
is similar to that presented in McKane and Waxman [23] and Waxman [40].
Furthermore, we showed that the forward eigenfunctions can be derived from
those of the general mutation-drift model, i.e., from Jacobi polynomials times
the stationary beta distribution (or the proportional weight function w(z, a,#)),
by expanding into a Taylor series in 6 and keeping terms up to order zero [36;
Appendix A.1]. Therefore, in the context of pure drift, the set of eigenfunc-
tions, which provide the solution to the forward diffusion equation, ¢an then be

. . . . (e,0)
represented in relation to Jacobi polynomials R, ' as

FO(Q’O)(x) = limg_,o7(z, o, ) = Bé(x) + ad(z — 1)
FlO () =limg_o w(z, o, )R = —5(z) + 6(z 1)
F2D(@) = limgow(z,a,0)RYY = 0 6(0)4 U, () L5(x - 1),
) (56)
where 6(z) is the Dirac delta functional. Note(that, eigenfunctions are only
defined up to a proportionality constant. The associated eigenvalues are

Ao =0
)\1 = limg_m =0 (57)
An>2 =m(n+=1).

Similarly, the backward eigenfunetions can be derived by expanding the

modified Jacobi polynomials into a*Taylor series in 6 and keeping terms up to
order zero.

B @ =R =1

BieNa)), = 4R =2 —a (58)
BN = limg o R = o(1 — 2)Un(a) .

The eigenyalues correspond to those forward in time in eq. (57). The mutation

bias o mayhobtain any value between zero and one. If « is set to zero, the

backwardyeigenfunctions correspond to those of Tran et al. [33].
Theyorthogonality relation is

1
| EeO @B @) do = S (59)
0
with Ag = A; =1 and A,, as in (55). However, note that
1
/ B9 () Bl (2)w(x) dx = 6 mAn (60)
0

only holds for pairs m,n > 2 and the pair m = 0 and n = 1, but not for the
pairs m =0 (or m = 1) and n > 2; and similarly for the forward eigenfunctions
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The forward function is then set to
o(z|,p) Zp F(@0) (g)e=Anls=7) (61)
and the backward function to
Y(y|z,7) = i en(y) B0 (z)e AT (62)
m=0

The marginal and joint distribution can now be defined as aboves The time
derivative of the marginal likelihood (31) of the eigenfunctions with.n = 0
and n = 1 is zero, because the respective eigenvalues are zero. For'n > 2,
the backward expansion contains only the terms z(1 — 2)U,, (@) as/does w(x)
times the forward expansion, w(x)F(a O)(x) = z(1 —x)Ups3(z). Indeed the
eigenfunctions with n > 2 correspond to those usually eonsidered [15, 29]. As
backward and forward functions are thus zero at beth boundaries, the boundary
condition (53) is met. It is also straightforward to shewfor n = 0 and n = 1
that condition (32) holds, because the integralsson,both sides are always zero.

4.2. Mutation-drift model

Following Vogl and Bergman [36]4we introduce recurrent mutations into the
pure drift model by setting the eigenvalue M{ = 6. We consider the case where
0 < 0 < 1, such that mutations‘@ecur ‘at a low rate and thus, do not affect the
allele frequency dynamics of the polymorphic classes; these classes are governed
exclusively by genetic drift“and therefore, eigenfunctions with n > 2 remain as
in the pure drift model.We may thus distinguish between two classes of sites
with distinct spatial and temperal differences: the slowly evolving boundaries,
where the rate of .évolution depends on 6, and the fast evolving polymorphic
classes governed/by genetic drift [e.g., 42, 36]. Furthermore, we may think of
the boundary{mutation-drift model as a first order Taylor series expansion in
the scaled mutation rate 0 of the general mutation-drift model.

Note thats/ with the discrete boundary mutation model, we scaled the mu-
tation/rate such-that, independent of the population size N, the heterozygosity
in a'sample of size two is equal to 6 for the model with mutations from a single
boundary (Compare the term /(1 — ZN ! 1) in (18)), or 2a36 for the model
with mutations from both boundaries. With the transition to continuous dif-
fusion; N — oo and thus HZN ! % will grow logarithmically without bound.
Mutations are therefore modeled from the boundary zero at a rate afby(T),
where af is the mutation rate towards allele one and by(7) corresponds to the
probability mass already at boundary zero plus the probability mass to arrive
there quickly by drift, and similarly at the boundary one. The system is thus
not in detailed balance and therefore not reversible.

Forward expansion. With mutations from the boundaries and forward in time,
Vogl and Bergman [36] use the same augmented forward eigenfunctions as with
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pure drift (56) to model the spatial part of the eigensystem. With pure drift, the
temporal parts of the eigenfunctions (e=*(*=7)) with n > 2 fulfill homogeneous
differential equations, i.e., are decreasing exponentially from starting values at
rates A, = n(n — 1), while the first two eigenfunctions with n =0 and n =1 do
not change with time. With the boundary mutation model, the temporal part
T,,(7) corresponds to a system of linear differential equations: homogeneous for
n =0 and n = 1 with eigenvalues \y = 0 and A\; = @, and inhomogenous/for
n > 2 with eigenvalues A\, = n(n — 1):

LTy(r) =0
#h(r)  =-0n(r) (63)
%TnZQ(T) = —)\nTn(T) + ﬂEnT() (T) + eOnTl (T) 5
with
9 =apb,
(=1)" +1)
En==ln = D)"=0 R0 (64)
_ ("2 =8
Op =—(n— 1)T7

where 8 = (1 — o) and A, as in (55)¢
The forward system can be diagonalized'by setting

a,f a,0 [} n a,

RO @) = RO + 000, B m ()
(oc 0)( ) = Fl(a,O)(I) + 922022 %:FT(La,O) (33) (65)
a,f «

F£>2>< = i (@),

where the polynomials‘with base («,0) on the right hand side of the equations
are as in (56). The temporal parts of the system are then d%Tn(T) = =\Tn(7)
for all n.

With increasing /N, the stationary distribution converges to the following
function~35;:36]

N—1
B—9 [N Ldz if0<z<1/N
N

w(x,a,0) = Féa’e)(x) = A}im 9 ifl/N<z<1-1/N
— 00

1
z(1—x)

a—9 [N Lodr if1-1/N<z<1.
N
(66)

This function integrates to unity, but has singularities at the boundaries, which
makes it difficult to interpret probabilistically. Moments about zero up to an
order m = Mpax may be defined meaningfully, by multiplying 7 (z, o, 8) with
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™ and integrating. We have

1 1 1— xm—l
/ ﬂ(x)xmdx:a—ﬁ/ —dzx
0 0 1—=x (67)
= — 19Hm—1 9

where H,,_1 is the harmonic number. As this same relationship must also hold
for the moments about boundary one, min(«, 3)/¢¥ < Hp,—1, which leads to
Moy ~ e™in(@8)/9  Note that a monomorphic sample from a binomial distri-
bution, with sample size M, leads to terms z™ or (1), which corfespond to
the moments about zero and one. Thus the sample size needs to bé restricted to
M ~ emin(@8)/0 t6 avoid negative values for probabilities. Sin€e the boundary
mutation model generally requires § < 0.1 [35], this constraintion M should not
pose practical problems.

Note that the same issue occurs with the closely related Ewens-Watterson
estimator 6y of molecular diversity [9, 39]. With thesassumiptions used for
deriving éw, the probability of obtaining a monomorphic sample of size M
is 1 — 02 _1 1 It is therefore necessary to restrictsthe sample size below
Moax ~ et/ 9.

Backward expansion. The backward systemrof differential equations with eigen-

functions Bfla’e)(x) is the transpose of the'forward system (65). It can also be
diagonalized by setting

By (@) =By (@) =
B (x) = B}" (%)
)7

Bff;? () =B e

1
z (68)
ﬁEnAnB(O‘ 0)( ) — ng,mAn Biavo)(lﬂ)'

It can be verifiedythat the forward and backward eigenfunctions fulfil the
orthogonality relation (59) with Ag = A; =1 and A, as in (55). In particular,
for n = 0 and'm >12, we have

/O lFé”’a)(x)B,(,‘f’g)(x)dx: /0 (F(“)( )+79Z - a0>(x)>

E7YLA'HL [e3 7YLA'"L [e3
X <Bff;"0)(m) — =5 B (a) —970 B 70)(96)) dr  (69)

m )\m

E EnA
= 9N, — 9T
Am Am

Ao =0,

and similarly for m =1 and n > 2.
Furthermore, we have, as before, the forward function

$(z|7,p) =Y puF ™" (@) To(r), (70)

n=0
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and the backward function

o0

dylae,m) =Y ealy) B (@)Tu(r). (71)

n=0

The backward function and the marginal distribution, as long as M < My ax =
emin(@B)/0 " can be interpreted probabilistically as with the general mutations
drift or the pure drift model. As the forward function may attain negative
values, expanding it beyond the sample size M has little meaning.

4.2.1. Example: one change in the mutation parameters
We present the version of the boundary mutation model with-the,inhomo-
geneous linear differential equations, i.e., with the eigenfunctions Féa’o) and

B7(1a,0)' With this choice, a change in the effective population size (population
demography), or equivalently in the scaled mutation rate'doesmot necessitate a
change in the base. Assume a population in equilibrium‘at 7.=- with mutation
parameters 6, and «,, such that the initial distribution is\p(z) = m(x |04, aq).
The scaled mutation parameters then changes immediately to § and «, respec-
tively, and remain constant thereafter. Expanding the stationary distribution
at time 7 = s into the forward eigenfunctions F}(La’o)(x) results in

oz | = s) = Fg™ (2) + (au — @)e P (@)
+ ; <En(19 4 (8, 2)e Anls=T) (72)

+ (g™ @O, (e =) — e)‘"(ST))> E(@0 ().

With a sample of size M with y alleles of the first type at time 7 = 0, the
binomial likelihood can’ be expanded into the backward eigenfunctions with

M
P(y|z,m=0)=> caly)BL0 () (73)
n=0
The marginal likelihood, calculated at time 7 = 0, is

i) - | ol l7 =0, ppily | 2,7 = 0) die = [CO@) - 1} n [q(y)(aa —a)e®.1

" [f a0 (B0 + 0 = 0)7)

nj(% ~ )00, (7" - e‘“s)> | A"} |
(74)

where the terms in the successive square brackets come from the terms in the
expansion with n =0, n =1, and 2 < n < M, respectively, while all terms with
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n > M are zero. Within the square brackets, the terms before the dot are the
time-dependent functions of the forward expansion. The same marginal likeli-
hood is also obtained by using the backward eigenfunctions Bﬁfl’o), multiplying
with the stationary distribution at 7 = s, and integrating:

1
Pr(y) = /0 Yy |z, T = s)m(z, aq,0,) dx

- [(Co(y) + i cn(y)EnAn (1 — fn(n_ms)) ‘ 1]

n=2

’ {(Cl(y)e_es +0 i en(y) Enn (e — e_Ms)> A G 1]

n=2

M
+ {Z cn(y)e’)‘"s . ﬁaEnAn] .

n=2

Within the square brackets, the terms before the dot, are/the time-dependent
functions of the backward expansion. The two different versions of the marginal
likelihoods evaluated at 7 = 0 and 7 = s are identical.

4.2.2. Summary: boundary mutation-drift\diffusion

Assuming a bi-allelic boundary mutation-drift model, a system of orthogonal
eigenfunctions is defined. As with Jacebipelynomials for the general mutation-
drift model, these functions provide ‘@ convenient base for calculations. While
some mathematical inconvenience compared to the modified Jacobi polynomials
is encountered, changes dn the, (effective) population size (i.e., 6) are easily
accommodated, because the base of the polynomials need not be changed. As
with the general mutation-drift model, efficiency is increased compared to the
discrete models sinceonly jeigenfunction expansions up to order M instead of
N are needed.

5. The, order of the expansion

With/bi-allelic diffusion models we naturally assumed a binomial likelihood.
This likelihdod function corresponds to a polynomial of the order of the sample
size M. ‘Both with the general mutation-drift model as with the boundary
mutation-drift model only orthogonal polynomials up to the order of the sample
size are needed when modeling the allele trajectory backward in time. We also
note that a change in the base of the polynomials, because the scaled mutation
parameters changed, does not change the order of the expansion.

Now consider two populations with sample sizes M) and M®). Tracing
back the allele frequency evolution to the split time requires a polynomial expan-
sion of up to max(M™), M®@)). Integrating over the population allelic propor-
tion to obtain the marginal likelihood of the data at the split time then requires
multiplication with the starting distribution, which can also be expanded into
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orthogonal polynomials of order M,. If the starting population is in equilib-
rium, then M, = 0. If we first multiply the starting distribution with the
backward orthogonal expansion of the smaller population, we obtain a forward
expansion of order at least M, + min(M(l), M(z)). Because of the orthogonality
relation, when multiplying with the backward expansion of the second popula-
tion, only polynomials of order up to the minimum of M, + min(M(l), M(Q))
and max(M® M (2)) are needed for obtaining the marginal likelihood. Thus
the maximal expansion needed depends on the sample sizes and the starting dis
tribution, but is always at least min(M ™), M?)) and at most max(M ™), M?)).
Therefore, the required degree of the polynomial expansion is considerably less
than previously thought necessary [21, 20]. Similar considerations also/apply to
more than two populations, where it can be shown that the required expansion
to obtain the marginal likelihood is less than the sum of the sample sizes.

6. Discussion

Starting from bi-allelic mutation-drift modelsyweuse forward and backward
processes in discrete or continuous time to efficiently calculate probabilities of
population allele proportions. Given a sample froma single population, i.e., a
SFS, or samples from more than one population,vi.e., a jSFS, from the present,
this theory may be used to infer trajectorieswof population allele frequencies
in the past. Integrating over the population allelic proportion, the marginal
likelihood of the data may be used\teninfer population genetic parameters.
The discrete-time algorithm is“a wariant of the forward-backward algorithm
and thus makes use of dynamic programming. The continuous time algorithm
uses orthogonal polynomials fer even more convenient calculation. Further-
more, we introduce bi-allelic population genetic models that provide us with
time-reversible and irreversible/transition matrices or kernels. The irreversible
models are related to the infinite site [16, 8] or Poisson-random-field models
[26]. Both revegsible and itreversible models have stationary distributions.

Previous diffusien-based methods for inference of population genetic param-
eters are génerally based on modelling allelic proportion trajectories forward-
in-time,s Solutions to the forward diffusion equations are either approximated
numerically [e.g7, 4, 12, 22] or are provided as functions of orthogonal polyno-
mials [esg., 21, 20, 29, 31]. These methods can, in principle, accommodate many
demographic scenarios while considering general selection and continuous migra-
tion. The complexity of these models in combination with the forward-in-time
approach often results in complex likelihood functions. Herein, we demonstrate
that combining forward- and backward-in-time approaches naturally leads to
relatively simple likelihood functions for both discrete and continuous popula-
tion genetics models (compare egs. 16 and 30, respectively).

Discrete models involve repeated multiplications with a transition matrix
of dimension (N + 1) x (N + 1), where N is the haploid population size. For
biological reasons, N should be large to model the large (effective) population
sizes usually encountered. For numerical reasons, N should be small, because
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iteration of large matrices is time-consuming and numerical errors may accumu-
late. Mutation rates can be scaled to account for a reduction of N. Transition
matrices may be diagonalized to speed up calculations. In any case, N must
be at least as big as the sample size M to not lose information. A prior distri-
bution must be assumed at some time in the past. If this distribution is taken
as the stationary distribution of the transition matrix, calculations simplify. At
the present time, a probability model of the sampling process, generally a‘hy-
pergeometric likelihood, is assumed that is conditional on the sample size M
Zhao et al. [46] present a similar method that is also based on the iteratiomof a
transition matrix (in their case, based on the Wright-Fisher model)/and allows
for conditioning on the beginning and end states of the chain. Theyideriverthe
marginal distribution of states intermediate in the chain and simulate trajecto-
ries. Extending this method to distributions instead of states (in our/ case, the
prior at the beginning and the likelihood at the end of the chaim)sréquires ad-
ditional considerations and diagonalizing the transition matrix seems necessary
in all but the simplest cases.

With continuous diffusion models, the use of orthegonal polynomials is con-
venient. The degree of the polynomials need not be higher than the sample size
M, while the population size is large, which usuallysfits biological reality. Thus,
the diffusion approach is mostly preferable over‘the discrete approach.

Song and colleagues [29, 30, 31, 48] analyse self-adjoint continuous models,
such as the general mutation-drift model herein. These authors usually take a
Dirac delta function as starting condition instead of a prior distribution at 7 = s
(but see Supplemental InformatiéngSection D in Steinriicken et al. [31]). Repre-
sentation of a Dirac delta function‘requires an infinite expansion and modeling
an arbitrary distribution assstarting condition would require a further step (see
Appendix 7.3). As thesefauthors also consider selection, eigenfunctions with, in
principle, infinite expansions are necessary in any case. A problem with their
approach for pure.drift/models, however, is the restriction at the boundaries,
which allows only polymorphic samples to be analyzed (see the subsection 4.1).
Interestingly, Zhao. et al’ [45] also present a diffusion approach to calculate con-
ditional trajectories that involves the product of solutions of the forward and
backward equations. They consider a Dirac delta function as starting state
and, additionally, also as a final state. Usually in population genetics, however,
only aisample from the present is given, while the starting conditions are even
less well ‘defined. Applying this approach to real data thus requires integration
over possible starting and final states, which adds another layer of complex-
ityravoided with our approach. In contrast, Lukié and Hey [20] also use the
eqnilibrium distribution as a starting condition as with the approach presented
hérein.

Generally, using a delta function as an initial condition requires an infinite
expansion in orthogonal polynomials. Yet for calculating marginal likelihoods a
much lower expansion is needed. Lukié¢ and Hey [20], citing [26], set the degree
of polynomial expansion to (M — 2)X, where M is the number of haplotypes
sampled and K the number of populations. Yet we show that only an expan-
sion between min(M ™, M) and max(M®, M) is needed, where M) and
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M® are the sample sizes in the two populations. With additional populations,
the expansion needed is less than Zfil M;. Furthermore, these authors use
Chebyshev polynomials, which are not orthogonal with respect to the forward
and backward operators. This necessitates numerical integration of a linear sys-
tem of differential equations to obtain the temporal part of the solution. With
orthogonal polynomials, the corresponding system of differential equations i$
diagonal and thus much simpler.

An analysis also involving a coupled system of ordinary differentialc equa#
tions for the temporal evolution of moments [8, 47, 48] also provides solutions
for the forward and backward diffusions. The basic model analyzed by these
authors is the continuous version of the single-boundary mutation-driftsmoedel
presented here, where ancestral and derived alleles are differentiated. Zivkovic
and Stephan [47] also point out relations of the backward approach to coales-
cent theory. Recently, a diffusion framework of weak mutationwand selection
has been incorporated in the theoretical analysis of adaptive landscapes [42], a
concept first formulated by Wright [41].

We note that many approaches above [8, 21,203.47, 48, 36] use boundary
mutation models. Indeed, much of the statistics of\population genetics is based
on this model, e.g., the important Ewens-Watterson:d [9, 39]. For this model,
only the forward transition probabilities have been given so far [8, 21, 36]. For
the first time, we give the backward system of.orthogonal polynomials and their
corresponding eigenvalues herein. Thé system of eigenfunctions of the pure drift
model [33] follows as a special case. As‘explained above, the possibility to move
backward simplifies inference.

The demographic scenarios presented here (Fig. 1) are common,e.g., in nat-
ural populations of fruit fliesvef the Drosophila genus [e.g., 19, 43, 24]. Addi-
tionally, the abundance«f population data for Drosophila species makes them
especially suitable for"SFStand jSFS analysis under the described framework.
Furthermore, the theory can be extended to more than two populations, i.e., to
phylogenetic inference., Our methods can also be adjusted to an experimental
setting with samples from multiple time points, as e.g., in evolve-and-resequence
experiments”[18]. Furthermore, a setting with multiple time-points also applies
to the analysis of ancient DNA samples as noted by Steinriicken et al. [31].

Generally, the methods and models we present in this article are simple, yet
allow for’ maximum marginal likelihood analysis of SFS and jSFS from split-
ting populations with mutation-drift or pure drift models, and for inference of
evolutionary trajectories of population allele proportions conditional on data.

Acknowledgments

The authors thank Reinhard Biirger, Joachim Hermisson and other col-
leagues from the Faculty of Mathematics of the University of Vienna, all mem-
bers of the Institute of Population Genetics at the University of Veterinary
Medicine, Vienna, and Andreas Futschik (Johannes Kepler Universtiy, Linz).
All authors were supported by the Austrian Science Fund (FWF): DK W1225-
B20. DS and CK were partially funded by FWF-P24551-B25. CK has been

30



823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850,

851

852

853

854

855

856

857

partially funded by the Vienna Science and Technology Fund (WWTF) through
project MA16-061.

References

[1] Abramowitz, M. and Stegun, 1., editors (1970). Handbook of Mathematicdl
Functions. Dover, 9th ed. edition.

[2] Baake, E. and Bialowons, R. (2008). Ancestral processes with sélegtion:
branching and Moran models. Banach center publications, 80, 33<52.

[3] Bayin, S. (2006). Mathematical methods in science and engineering. Wiley,
N.Y.

[4] Bollback, J. P., York, T. L., and Nielsen, R. (2008)¢" Estimation of 2N.s
from temporal allele frequency data. Genetics, 179(d),497-502.

[5] Carlin, B. and Louis, T. (2000). Bayes and empirical Bayes methods. Chap-
man and Hall, 2nd ed. edition.

[6] Durbin, R., Eddy, S., Krogh, A., and Mitchison,"G. (1998). Biological se-
quence analysis. Cambridge University, Press, Cambridge.

[7] Etheridge, A. and Griffiths, R. (2009). A’coalescent dual process in a Moran
model with genic selection. Theoretical Population Biology, 75, 320-330.

[8] Evans, S., Shvets, Y., and Slatkin;"M. (2007). Non-equilibrium theory of the
allele frequency spectrum. Theoretical Population Biology, 71, 109-119.

[9] Ewens, W. (1974). /A, note on the sampling theory for infinite alleles and
infinite sites modelsS.” Theoretical Population Biology, 6, 143-148.

[10] Ewens, W. (2004):, Mathematical Population Genetics. Springer, N.Y., 2nd
edition.

[11] Felseustein, J. (1981). Evolutionary trees from DNA sequences: a maximum
likelihood approach. Journal of Molecular Evolution, 17, 368-376.

[12], Gutenkunst, R., Hernandez, R., Williamson, S., and Bustamante, C.
(2009)-/Inferring the Joint Demographic History of Multiple Populations
from Multidimensional SNP Frequency Data. PLoS Genetics, 5, €1000695.

[13] Hein, J., Schierup, M., and Wiuf, C. (2005). Gene genealogies, variation,
and evolution: a primer in coalescent theory. Oxford University Press.

[14] Jewett, E. M., Steinriicken, M., and Song, Y. S. (2016). The effects of
population size histories on estimates of selection coefficients from time-series
genetic data. Molecular biology and evolution, 33(11), 3002-3027.

(15] Kimura, M. (1955). Solution of a process of random genetic drift with a
continuous model. Proc. Natl. Acad. Sci. USA, 41, 144-150.

31



858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

[16] Kimura, M. (1969). The number of heterozygous nucleotide sites main-
tained in a finite population due to steady flux of mutations. Genetics, 61,
893-903.

[17] Kingman, J. (1982). On the genealogy of large populations. Journal of
Applied Probability, 19A, 27-43.

[18] Kofler, R. and Schlétterer, C. (2014). A guide for the design of evolvedand
resequencing studies. Molecular Biology and Evolution, 31, 474-483.

[19] Li, H. and Stephan, W. (2006). Inferring the Demographic History and
Rate of Adaptive Substitution in Drosophila. PLOS Genetics ;,105,e166:

[20] Lukié, S. and Hey, J. (2012). Demographic inference using spectral meth-
ods on SNP data, with an analysis of the human out-of-Africa_éxpansion.
Genetics, 192(2), 619-639.

[21] Lukié, S., Hey, J., and Chen, K. (2011). Nonséquilibrium allele frequency
spectra via spectral methods. Theoretical population biology, 79(4), 203-219.

[22] Malaspinas, A.-S., Malaspinas, O., EvangpS=Ne, and Slatkin, M. (2012).
Estimating allele age and selection coefficient from time-serial data. Genetics,
192(2), 599-607.

[23] McKane, A. and Waxman, D. (2007).\ Singular solutions of the diffusion
equation of population geneties. Journal of Theoretical Biology, 247, 849—
858.

[24] Pool, J. E., Corbett-Petigy R. B., Sugino, R. P., Stevens, K. A., Cardeno,
C. M., Crepeau, M. Wiy Duchen, P., Emerson, J. J., Saelao, P., Begun, D. J.,
and Langley, C. H. (2012). Population genomics of sub-saharan Drosophila
melanogaster: African diversity and non-African admixture. PLOS Genet,
8(12), e1003080.

[25] Rabinef,"L. and”Juang, B. (1986). An introduction to hidden Markov
models. [IEEE ASSP magazine, 3, 4-16.

[26] Sawyer,S! and Hartl, D. (1992). Population genetics of polymorphism and
divergence. Genetics, 132, 1161-1176.

[27] Schraiber, J. G., Evans, S. N.; and Slatkin, M. (2016). Bayesian inference of
natural selection from allele frequency time series. Genetics, 203(1), 493-511.

[28] Schrempf, D., Minh, B. Q., De Maio, N., von Haeseler, A., and Kosiol,
C. (2016). Reversible polymorphism-aware phylogenetic models and their
application to tree inference. Journal of Theoretical Biology, 407, 362-370.

[29] Song, Y. and Steinriicken, M. (2012). A simple method for finding ex-
plicit analytic transition densities of diffusion processes with general diploid
selection. Genetics, 190, 1117-1129.

32



895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

[30] Steinriicken, M., Wang, R., and Song, Y. (2013). An explicit transition den-
sity expansion for a multi-allelic WrightFisher diffusion with general diploid
selection. Theoretical Population Biology, 83, 1-14.

[31] Steinriicken, M., Bhaskar, A., and Song, Y. (2014). A novel method for
inferring general diploid selection from time series genetic data. Annals of
Applied Statistics, 8, 2203-2222.

[32] Steinriicken, M., Jewett, E. M., and Song, Y. S. (2015). SpectralTDF:
transition densities of diffusion processes with time-varying selection param-
eters, mutation rates and effective population sizes. Bioinformdtics, 32(5),
795-797.

[33] Tran, T., Hofrichter, J., and Jost, J. (2013). An introduction to the math-
ematical structure of the Wright-Fisher model of population genetics. Theory
in Biosciences, 132, 73-82.

[34] Vogl, C. (2014). Estimating the Scaled Mutation Rate and Mutation Bias
with Site Frequency Data. Theoretical Population Biology, 98, 19—27.

[35] Vogl, C. and Bergman, J. (2015). Inférence of*directional selection and
mutation parameters assuming equilibrium. Theoretical Population Biology,
106, 71-82.

[36] Vogl, C. and Bergman, J. (2016).%Computation of the likelihood of joint
site frequency spectra using ofthogonal polynomials. Computation, 4, 6.

[37] Vogl, C. and Futschik, A. (2010). Hidden markov models in biology. In
O. Carugo and F. Elsenhaber, editors, Biological Data Mining., Methods in
Molecular Biology. Humana Press.

[38] Wakeley, J. (2009)" Coalescent theory, an Introduction. Roberts and Co.

[39] Watterson, G. (1975). On the number of segregating sites in genetical
models without reeombination. Theoretical Population Biology, 7, 256-276.

[40] Waxmany D. (2011). Comparison and content of the WrightFisher model
of“random genetic drift, the diffusion approximation, and an intermediate
modely, Journal of Theoretical Biology, 269, 79-87.

[41] Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding, and
selection in evolution. Proceedings of the sixth international congress of ge-
netics, 1, 356-366.

[42] Xu, S., Jiao, S., Jiang, P., and Ao, P. (2014). Two-time-scale population
evolution on a singular landscape. Physical Review E, 89(1), 012724.

[43] Zeng, K. and Charlesworth, B. (2010). Studying patterns of recent evo-
lution at synonymous sites and intronic sites in Drosophila melanogaster.
Journal of Molecular Evolution, 183, 651-662.

33



ACCEPTED MANUSCRIPT

o2 [44] Zhao, L., Lascoux, M., Overall, A., and Waxman, D. (2013a). The charac-
033 teristic trajectory of a fixing allele: a consequence of fictitious selection that
03 arises from conditioning. Genetics, 195, 993—-1006.

a5 [45] Zhao, L., Yue, X., and Waxman, D. (2013b). Complete numerical solution
036 of the diffusion equation of random genetic drift. Genetics, 194, 419-426.

a7 [46] Zhao, L., Yue, X., and Waxman, D. (2014). Exact solution of conditioned
038 Wright-Fisher models. Journal of Theoretical Biology, 194, 973-985

a9 [47] Zivkovic, D. and Stephan, W. (2011). Analytical results on the
940 equilibrium allele frequency spectrum based on diffusion theo
oa1 Population Biology, 79, 184-191.

w2 [48] Zivkovic, D., Steinriicken, M., Song, Y., and Stepha
a3 tion densities and sample frequency spectra of diffusio
oa tion and variable population size. Genetics, 200, 6

34



945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

7. Appendices

7.1. Derivation of the forward and backward diffusion equations from the de-
coupled general mutation-drift Moran model

In this appendix, we derive the forward and backward diffusion equation
from the forward and backward transition probabilities of the decoupled Moran
model with general mutation and drift and show the tight connections between
the discrete and continuous models. Derivations are simpler than usual [10)
terms higher than the first derivative with respect to time and second derivative
with respect to space do not occur.

Consider a focal bi-allelic site with the population frequency of,allelerone
denoted by i (1 <4 < N —1). With the transition probabilities/©of the degoupled
Moran model (24), the frequency ¢ may increase or decrease by one due to
mutation or drift, or remain constant. Forward in timesthe differénce of the
probability at frequency i per Moran step may be written‘as

Pr(mt_;,_l = Z) — PI‘([Et = Z) =

JO\ﬁ((N—i—Q—l)Pr(xt =i—1)— (N.—4)Pr(z; :Z))
+ % <(i + 1) Pr(z; =i+ 1) — i Pa(a, = i)) 76)

+<(i—1)(N—i+1)Pr(a:t:i—1)
-I-(i—l—l)(N—i—l)Pr(l’t=i—|—1)—22'(N—i)P1r(1“t—i))7

where the term within*the first pair of square brackets corresponds to mutation
towards allele one,4he ferm within the second pair to mutation towards allele
zero, and the term within the third pair to genetic drift.

To approximate the change in frequency as a process in continuous time
and space, the quantities 7 = 1/N? and dz = 1/N are introduced. Further-
more, timenis rescaled as 7 = tdT, the allele proportions as x = idx, such that
¢(z | /p)oTdm= Pr(z, = i). Taking the limit N — oo, eq. (76) is rewritten as

o Q|7+ 01,p) — ¢z | T,p)

M ot -
i oo (U310t 17~ (L= )0ts )
+/Be<(z+5x)¢(x+5a@5|;'7p) z¢(x|r,p)> -
) ((zéw)(lxgﬁ)qﬁ(xcsmm
RO ;j;)qﬁ(er(Sx\T,p) 2u(1 - ?xgi;(mh,p))}
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The term to the left of the equality sign of (77) corresponds to the definition
of the first derivative with respect to time 7 of ¢(z |7, p); the terms with muta-
tions correspond to the first derivatives with respect to x of —(1 — x)¢(z | T, p)
and z¢(x | 7, p), respectively; the drift term corresponds to the definition of the
second symmetric derivative with respect to x of x(1—z)¢(z | 7, p). After minor
rearrangements, the familiar form of the forward general mutation-drift diffusion
equation is obtained

2

(w1 7.0) = — 4o~ ) 7.p) + ol — )7 p). NS

Considering the Moran model backward in time (see Subsegtion/2:4); the
change in frequency 7 back in time is determined by the transpgse of the forward
transition matrix (24) and can be written as

Pr(y|a, = i) = Pr(y |2 = 1) =

O(N — i . :
O[(N2Z)<Pr(y|xt+1 =i+1) - Py |z = Z))
B0i , .
+ N2<Pr(ywt+1 =i—1) =Py, = Z)) (79)
i(N —i " .
+W<Pr(ylxt+1 =tk Pr(y|ze1 =i —1)

—2Pr(y|zp41 = z)) .

After rescaling time andsspace, considering the limit N — oo, and setting
Y(y|z,7) = Pr(y | zi41 =), we get the backward diffusion equation

Lty z, e oy 1) by )+ 21— )byl ). (80)

The minus sign on the left side of the backward diffusion equation (80) may
be unusual/{compare”10], but necessary such that the time 7 runs in the same
direction inithe forward and backward diffusion. Note that Zhao et al. [44] also
use a pair, of forward and backward diffusion equations with differing signs.

7.2. Boundary condition

In the following, we use the prime (') to indicate the (partial) derivative with
respect to = and leave away the terms in brackets for ¢ and ¢. Eq. (32) can
then be written as

| oy v @ vas= [Co[pi' +Quas. s

The first term on the right side is

1 , 1 1 ,
/ oPY dz = P / (6P) dx (82)
0 0
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and the second term on the right side is

/quw dz = QU |} - /Q¢)wdx

— QU [ — (6Q) v|L + / (Qu) vz,
Hence for eq. (81) to hold, we require the boundary condition

(6Q¢ — (6Q)' + ¢PY)|y = 0. (84)

Using the weight function w(x) defined in formula (33), this condition*ean be
represented more compactly. The weight function fulfils

Pw = (wQ)" . (85)
Substitute ¢(z | 7) = w(x)g(z, T, p) into eq. (84) to obtain

0= (wQg — (wQg)' v + Pwgy)fy
= (wQgv' — (wQ) g+ wQg Y Pugt)|,
= (wQg¥' — Pwg — wQg' P Pwgy)|,
= wQ(g¥ — g'¥)],

Note that w(z)Q(x) < 1/&(x) where &(®).is the scale function defined in eq. (2)
of Song and Steinriicken [29] and g(x).and ¢ (x) correspond to f(x) in Song and
Steinriicken [29]. This condition obviously holds if, at both boundaries, either
w(z)Q(z) = 0 while (g¢" =g4p) is finite, or (gv" — g'¥) = 0 while w(z)Q(z) is
finite.

(86)

7.83. Propagator

Song and Stéinriicken/[29] analyze self-adjoint differential equations, with
a Dirac deltadunction d(x — p) as starting point at 7 = s. Denote the eigen-
functions of the diffusion equation with the backward operator £* with B, (x).
Eq. (5) of Seng and Steinriicken [29] defines a “propagator” [3, chap. 19]

ar B,.(z) B,
(z1p,7) = Ze T Bn<(x>)8n<§£)>w (87)

asithe_ solution of the diffusion equation with a starting state modeled by the
Dirac Delta function §(z — p). If the starting condition is not a particular state
but, more usually, a distribution p(p), the function

1
hx|p,p,7) = / p(z|p,7)p(p) dp (88)

0
solves the diffusion equation. From the orthogonality relation it is evident that,

also with this indirect route, only an expansion of degree M is needed for cal-
culating the marginal likelihood.
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