Accepted Manuscript

Inference in Population Genetics Using Forward and Backward, Discrete and Continuous Time Processes

Juraj Bergman, Dominik Schrempf, Carolin Kosiol, Claus Vogl

 PII:
 S0022-5193(17)30547-7

 DOI:
 10.1016/j.jtbi.2017.12.008

 Reference:
 YJTBI 9290

To appear in:

Journal of Theoretical Biology

Received date:1 June 2017Revised date:23 November 2017Accepted date:8 December 2017

Please cite this article as: Juraj Bergman, Dominik Schrempf, Carolin Kosiol, Claus Vogl, Inference in Population Genetics Using Forward and Backward, Discrete and Continuous Time Processes, *Journal of Theoretical Biology* (2017), doi: 10.1016/j.jtbi.2017.12.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Highlights

- Inference of population genetic parameters from a sample of sequences represented as site frequency spectra (SFS), using concepts akin to the forward-backward algorithm of hidden Markov models is described.
- Discrete transition matrices and continuous diffusion models of iterating the population allelic proportion, forward and backward in time, are used for calculating the marginal likelihood of the data for maximum likelihood inference of parameters.
- The method is demonstrated for simulated joint site frequency spectra (i.e., data from two or more populations) under different models of mutation and for different demographic scenarios.

1

Inference in Population Genetics Using Forward and Backward, Discrete and Continuous Time Processes

Juraj Bergman^{a,b}, Dominik Schrempf^{a,b}, Carolin Kosiol^{a,d}, Claus Vogl^{c,*}

^aInstitut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, A-1210 Wien Austria

^b Vienna Graduate School of Population Genetics, A-1210 Wien, Austria ^c Institut f
ür Tierzucht und Genetik, Vetmeduni Vienna, Veterin
ärplatz 1, A-1210 Wien, Austria

^dCentre of Biological Diversity, School of Biology, University of St. Andrews, St Andrews KY16 9TH, UK

Abstract

A central aim of population genetics is the inference of the evolutionary history of a population. To this end, the underlying process can be represented by a model of the evolution of allele frequencies parametrized by e.g., the population size, mutation rates and selection coefficients. A large class of models use forward-in-time models, such as the discrete Wright-Fisher and Moran models and the continuous forward diffusion, to obtain distributions of population allele frequencies, conditional on an ancestral initial allele frequency distribution. Backward-in-time diffusion processes have been rarely used in the context of parameter inference. Here, we demonstrate how forward and backward diffusion processes can be combined to efficiently calculate the exact joint probability distribution of sample and population allele frequencies at all times in the past, for both discrete and continuous population genetics models. This procedure is analogous to the forward-backward algorithm of hidden Markov models. While the efficiency of discrete models is limited by the population size, for continuous models it suffices to expand the transition density in orthogonal polynomials of the order of the sample size to infer marginal likelihoods of population genetic parameters. Additionally, conditional allele trajectories and marginal likelihoods of samples from single populations or from multiple populations that split in the past can be obtained. The described approaches allow for efficient maximum likelihood inference of population genetic parameters in a wide variety of demographic scenarios.

Keywords: bi-allelic mutation-drift model, Markov chain, forward-backward algorithm, forward-backward diffusion, exact inference.

Email addresses: juraj.bergman@vetmeduni.ac.at (Juraj Bergman), dominik.schrempf@vetmeduni.ac.at (Dominik Schrempf), ck202@st-andrews.ac.uk (Carolin Kosiol), claus.vogl@vetmeduni.ac.at (Claus Vogl)

Preprint submitted to Journal of Theoretical Biology

December 8, 2017

^{*}Corresponding author

1 1. Introduction

Most basic population genetic models, e.g., the Wright-Fisher and the Moran 2 models as well as the forward and backward diffusion models, were introduced 3 before molecular sequence data became available [reviewed in 10]. Thus, emphasis was on demonstrating processes over time and on qualitatively explaining 5 observations, rather than on quantitative inference of population genetic forces given molecular data. Much later, coalescent theory [17] has been used both for demonstration of processes as well as for inference given a population sample [13, 38]. The coalescent reconstructs the genealogical history of a particular 9 sample at a particular locus conditional on population genetic forces. However, 10 the aim in statistical population genetics is usually the inference of evolution-11 ary forces or of the evolutionary trajectory of allele proportions of the whole 12 population. 13

Population genetic parameters have often been inferred from allele frequency 14 data of a single locus sampled at multiple time-points in the past. Due to the 15 short time-spans, mutation can usually be neglected, while selection is impor-16 tant. Bollback et al. [4] developed a method based on a forward diffusion model 17 to infer the strength of selection acting on an allele. This method was later ex-18 tended to additionally infer the age of the selected allele [22]. To calculate the 19 likelihood of the observed trajectory, these methods rely on solving the diffu-20 sion equation using a numerical grid approach. On the other hand, Steinrücken 21 et al. [31] use a system of orthogonal polynomials, *i.e.*, a spectral representa-22 tion of the transition density [29], to analytically solve the diffusion equation 23 and model the evolution of allele frequency. Recently, Schraiber et al. [27] de-24 veloped a Bayesian approach that uses Markov chain Monte Carlo (MCMC) 25 integration of allele frequency trajectories to provide estimates of population 26 genetic parameters. 27

While the above-described methods deal with a single locus with data from 28 multiple time points, the focus of this study is to infer the demographic history 29 and the population genetic forces acting on a whole population from present-day 30 data. Specifically, we are interested in inference of population genetic parame-31 ters, such as the scaled mutation rate or mutation bias given data y from the 32 present, $t \neq 0$, that consist of an alignment of M (haploid) sequences. Nu-33 cleotide data are assumed to be independently and identically drawn from a 34 population across L freely recombining nucleotide sites. The sites are assumed to be neutral, e.g., in short introns, or at least nearly-neutral, e.g., fourfold de-36 generate sites, such that the data are informative about population demography and mutation processes. Because sites are assumed independent, they can be summarized as a site frequency spectrum (SFS), also called the allele frequency spectrum. The likelihood of the population sample y can be calculated given the present population allele frequency x_0 and a probability model of the sampling 41 process. The distribution of x_0 is in turn given by a population genetic model 42 parametrized to capture mutation or the demographic history. These population 43

genetic parameters can be inferred by first integrating over x_0 and subsequently 44 maximizing the marginal likelihood of the data y by varying the model parame-45 ters; a strategy that may also be viewed as the empirical Bayes method [e.q., 5]. 46 Under the assumption of equilibrium and given a general mutation-drift model, 47 this strategy leads to a beta-binomial likelihood, which can be maximized using 48 an expectation-maximization algorithm [34]. Assuming that mutations are rare 49 and arise only at fixed sites, *i.e.*, a boundary mutation model, it is possible to 50 derive maximum likelihood estimators of the mutation rate and bias as well as 51 the selection coefficient [35]. The estimator of the mutation rate in [35] is a 52 variant of the well-know Ewens-Watterson θ [9, 39]. 53

The assumption of equilibrium is often violated in natural populations and, 54 therefore, within this framework, modelling allele frequency trajectories is neces-55 sary to accurately infer parameters from the observed SFS. Furthermore, even 56 under equilibrium, maximum likelihood inference requires modelling of allele 57 trajectories with data from two or more populations that split some time in the 58 past, represented by a joint SFS (jSFS). Herein, we mostly focus on inference 59 using the jSFS given the canonical model of two populations that split at some 60 known or unknown time in the past, from which samples of sizes $M^{(1)}$ and $M^{(2)}$ 61 are obtained at the present time. Inference using *jSFS* has been implemented 62 in the well-known program $\partial a \partial i$ by Gutenkunst *et al.* [12]. It is widely used to 63 infer migration rates, selection coefficients and split times given data from mul-64 tiple populations using a numerical grid approach to solve the forward diffusion 65 equation and model allele trajectories. An alternative approach was developed 66 in Lukić et al. [21] and Lukić and Hey [20], where as in [29, 31], orthogonal poly-67 nomials are used to model allele frequency evolution. A similar, but discrete 68 model of allele frequency evolution is presented in Jewett et al. [14]. 69

All of these methods model the evolution of the allele frequency forward in 70 time. However, backward models can also be used to model allele frequency tra-71 jectories and calculate the likelihood of the data y conditional on the population 72 allele frequency x_t at earlier times (t < 0). Based on the Wright-Fisher model, 73 Zhao et al. [46] provide an algorithm to calculate probabilities of intermediate 74 states conditional on the starting and end states. This allows simulation of 75 conditional trajectories. Schrempf et al. [28] use a Moran model in phylogenetic 76 inference. The "pruning algorithm" [11] allows computation of the likelihood 77 from the tips of a phylogenetic tree down to the root, *i.e.*, backward in time. For 78 efficient inference of phylogenetic trees reversibility of the evolutionary process 79 is generally assumed. 80

In this article, we demonstrate the usefulness of backward-in-time processes in parameter inference, while considering both discrete population genetics models and continuous diffusion. We also show parallels between discrete and continuous models. Combining the forward and backward processes, as with the forward-backward algorithm of hidden Markov models (HMM) [25], the probability distribution of population allele frequencies conditional on data $\Pr(x_t | y, ...)$ can be inferred at time t in the past and the distribution of conditional trajectories can be simulated. We therefore use forward and backward processes to conveniently calculate probability distributions in time conditional

on a SFS or jSFS from the present. Furthermore, we introduce bi-allelic bound-90 ary mutation models, with mutations occurring only at fixed sites. Specifically, 91 we present the solution to the boundary mutation-drift diffusion model, which 92 underlies the infinite site or Poisson-random-fields models [16, 26] and is impor-93 tant in statistical inference in population genetics as a starting point to derive 94 maximum likelihood estimators, such as the well-known Ewens-Watterson es-95 timator of the scaled mutation rate [9, 39]. The Markov chains of the models 96 under consideration have no absorbing states and therefore have stationary dis-97 tributions. We do not always assume time-reversibility. For the discrete models, 98 the transition matrix must be multiplied repeatedly to obtain the distribution 99 of population allele frequencies forward and backward in time. As the size of 100 the transition matrix depends on the population size N, multiplication becomes 101 cumbersome if N is large. In the limit of large population sizes, the corre-102 sponding Kolmogorov forward and backward diffusion equations are obtained. 103 Orthogonal polynomials provide a flexible and fast method to solve the diffusion 104 equations and calculate marginal likelihoods for inference in population genet-105 ics. For most purposes, expansion of polynomials up to the order of the sample 106 size M suffices to accurately infer the transition density. With two populations, 107 it can be shown that the order of the expansion is between the minimum and the 108 maximum of the two sample sizes, depending on the starting distribution. As 109 this is usually much less than the population size, continuous diffusion models 110 may be much more efficient for parameter inference in population genetics than 111 equivalent discrete models. 112

113 2. Time-homogeneous discrete Markov chains

In this section we apply the forward-backward algorithm [25] to discrete population genetic models for inference given a SFS or a jSFS. To this end, we rephrase iteration using discrete population genetic models (Wright-Fisher or Moran) in the terminology of the forward-backward algorithm [*e.g.*, 25]. We mainly use matrix notation to emphasize the similarities between discrete iteration and the continuous models in Sections 3 and 7.1. For completeness and clarity, subsections include reviews of standard theory.

121 2.1. Assumptions

122

123

124

125

127

128

120

130

131

132

- (i) Assume a haploid population of size N and a bi-allelic mutation model. The time-dependent frequency of allele one in the population at time t is denoted x_t ($0 \le x_t \le N$) and is assumed to evolve as a discrete, time-homogeneous Markov chain with a transition probability matrix \mathbf{T} , where $(\mathbf{T})_{ij} = \Pr(x_{t+1} = j | x_t = i)$ with $i, j \in \{0, \ldots, N\}$. \mathbf{T} is an aperiodic, right stochastic matrix.
- (ii) At a (possibly unknown) time t = s (s < 0) in the past, a distribution of population allele proportions is given by ρ with entries $(\rho_i)_{i \in \{0,...,N\}} =$ $\Pr(x_s = i)$. In particular, ρ may be the stationary distribution $\pi =$ $(\pi_i)_{i \in \{0,...,N\}}$ or may correspond to a joint distribution of some other data and the equilibrium allele frequency distribution.

(iii) The population evolves until the present time t = 0, when a sample of size M is drawn. We denote the sampled frequency of allele one as y $(0 \le y \le M)$. The probability of observing y, *i.e.*, the likelihood, is $\Pr(y | M, x_0)$ (we may drop the dependency on M in the following) and will be defined according to the application.

For two populations, assumptions (ii) and (iii) are modified:

(ii) At a (possibly unknown) time t = s (s < 0) in the past, x_s is drawn from a distribution of population allele proportions ρ . The population separates immediately into two populations with the same initial allele frequency x_s .

(iii) The two populations evolve independently until the present time t = 0,

(iii) The two populations evolve independently until the present time t =when samples of sizes $M^{(1)}$ and $M^{(2)}$ are drawn from each population.

For discrete models, iteration is more efficient if the population size N is small. N can be decreased by increasing the mutation rate μ such that their product $\theta = N\mu$ remains constant. For moderate N, the error introduced by such scaling is small and converges to zero in the diffusion limit. Therefore, Ncan be set according to numerical convenience. Often, our data are from the present and we want to condition on the configuration of allele frequencies at earlier times.

151 2.2. The forward-backward algorithm

138

The forward-backward algorithm of hidden Markov models (HMMs) [e.g., 152 25, 6, 37] is an efficient numerical method for calculating probabilities assuming 153 a Markovian underlying process, where key variables, the "states", are assumed 154 to be unknown, *i.e.*, "hidden". Intermediate results and the algorithm in general 155 can readily be interpreted probabilistically. The algorithm's numerical efficiency 156 is based on the simple, acyclic conditional dependence structure of the unknown 157 variables, which allows for "dynamic programming". In our case, the possible 158 values of the population allele frequency x_t correspond to the hidden states, 159 while the probability distribution $Pr(y|x_t = i)$ to the emission probabilities. 160 With the Wright-Fisher or the Moran models, allele frequencies at the next 161 time-point x_{t+1} depend only on the current ones, which conforms to a Markov 162 process. Knowing the sample allele frequencies generally does not completely 163 identify the population allele frequencies at any time-point; the exact state of 164 the underlying variable remains "hidden". 165

166 2.3. Forward in time

We introduce the row vector \mathbf{f}_t with entries $(\mathbf{f}_t)_i = \Pr(x_t = i | \boldsymbol{\rho})$, where $i \in \{0, \dots, N\}$, and $\mathbf{f}_s = \boldsymbol{\rho}$, *i.e.*, the vector of initial probabilities of states, and define recursively:

$$\mathbf{f}_{t+1} = \mathbf{f}_t \mathbf{T} \quad (s \le t < 0). \tag{1}$$

Thus, \mathbf{f}_t can be interpreted as the probability of the allele frequency at time tconditional on the ancestral state $\boldsymbol{\rho}$, $\mathbf{f}_t = \Pr(x_t | \boldsymbol{\rho})$. This corresponds to the forward method in the forward-backward algorithm in the theory of HMMs [*e.g.*, ¹⁷³ 25, 37]. Let \mathbf{b}'_0 be a column vector (the prime ' depicts matrix transposition) ¹⁷⁴ corresponding to the conditional of the sampling process, such that $(\mathbf{b}_0)_i =$ ¹⁷⁵ $\Pr(y | x_0 = i)$ with $i \in \{0, \ldots, N\}$. The marginal likelihood then is

$$\Pr(y \,|\, \boldsymbol{\rho}) = \boldsymbol{\rho} \mathbf{T}^{|s|} \mathbf{b}_0'.$$

(2)

176 2.4. Backward in time

Using a strategy as with the backward method in the theory of HMM [25, 37] we set

$$\mathbf{b}_t' = \mathbf{T}\mathbf{b}_{t+1}' \quad (s \le t < 0)$$

179 which can also be written as

$$(\mathbf{b}_t)_i = \Pr(y \,|\, x_t = i) = \sum_j \Pr(x_{t+1} = j \,|\, x_t = i) \Pr(y \,|\, x_{t+1} = j).$$
(4)

From the definition of \mathbf{b}_t , it follows that we condition on x_t . The recursion moves the conditioning to ever earlier times. The marginal likelihood (2) may also be obtained as follows:

$$\Pr(y \mid \boldsymbol{\rho}) = \boldsymbol{\rho} \left[\mathbf{T}^{\mid s \mid} \mathbf{b}_{0}^{\prime} \right]$$
$$= \boldsymbol{\rho} \mathbf{b}_{s}^{\prime}$$
$$= \sum_{i} \rho_{i} \Pr(y \mid \boldsymbol{x}_{s} = i).$$
(5)

- 183 2.5. Constant marginal distribution and adjointness
- ¹⁸⁴ Considering the sampling probability, we can choose any arbitrary t such that

$$\Pr(y \mid \boldsymbol{\rho}) = \mathbf{f}_t \mathbf{b}_t = \sum_i \Pr(x_t = i \mid \boldsymbol{\rho}) \Pr(y \mid x_t = i) = \langle \mathbf{f}_t, \mathbf{b}_t \rangle, \tag{6}$$

holds, where $\langle \cdot, \cdot \rangle$ denotes an inner product. It follows that the forward and backward transition matrices, *i.e.*, **T** and its transpose **T**', are adjoint since

$$\Pr(y \mid \boldsymbol{\rho}) = \Pr(y \mid \boldsymbol{\rho})$$

$$(\mathbf{f}_{t} \mathbf{T}) \mathbf{b}_{t+1}' = \mathbf{f}_{t} (\mathbf{T} \mathbf{b}_{t+1}')$$

$$\langle \mathbf{f}_{t} \mathbf{T}, \mathbf{b}_{t+1} \rangle = \langle \mathbf{f}_{t}, \mathbf{b}_{t+1} \mathbf{T}' \rangle.$$
(7)

188 This adjoint relationship allows movement forward and backward in time.

2.6. Joint and conditional distribution

189

190

The probability of $x_t = i$ and y conditional on the starting distribution ρ is

$$\Pr(x_t = i, y \mid \boldsymbol{\rho}) = (\mathbf{f}_t)_i (\mathbf{b}_t)_i.$$
(8)

Furthermore, the probability of $x_t = i$ conditional on the data and the starting distribution is

$$\Pr(x_t = i \,|\, y, \boldsymbol{\rho}) = \frac{(\mathbf{f}_t)_i (\mathbf{b}_t)_i}{\mathbf{f}_t \mathbf{b}'_t} \,. \tag{9}$$

- ¹⁹³ This allows calculation of the distribution of population allele frequencies con-
- ¹⁹⁴ ditional on the data and an initial condition at any time.

¹⁹⁵ 2.7. Sampling from conditional trajectories

It is possible to simulate trajectories given the initial distribution ρ at time s and the likelihood at time t = 0. Note that Zhao *et al.* [46] provide a similar algorithm based on the Wright-Fisher model to simulate trajectories of population allele proportions conditional on the starting and end states. In contrast, we start with a sample at time t = s from the conditional probabilities (9). Given the state at time t - 1 the probability of the state at time t is

$$\Pr(x_t = j \,|\, x_{t-1} = i, y) = \frac{(\mathbf{T})_{ij}(\mathbf{b}_t)_j}{(\mathbf{b}_{t-1})_i},$$

which can be used to obtain a sample trajectory. Although the probability distribution of trajectories depends on ρ , the transition at a given time t (10) does not contain ρ since it is a Markov process.

205 2.8. Left and right eigenvectors, stationary distribution

Let $\pi = (\pi_i)_{i \in \{0,...,N\}}$ be the stationary distribution of **T**, if it exists. π is the left eigenvector associated with the largest eigenvalue (equal to one) [10, p. 87]

$$\boldsymbol{\pi} = \boldsymbol{\pi} \mathbf{T}.$$
 (11)

(10)

All entries of π are strictly greater than zero because the transition matrix 209 was assumed to be irreducible and $\sum \pi_i = 1$. Thus the entries of π can be interpreted as probabilities. Since the rows of **T** sum to one, it is obvious 210 211 that a column vector of all ones $\mathbf{1}'$ is the right eigenvector associated with the 212 unit eigenvalue. In our context, this means that iterating forward in time will 213 converge to a vector proportional to π and iterating backward in time to a 214 vector proportional to 1'. Thus, every state is equally likely when $s \to -\infty$ 215 and we have no information about the initial distribution of states, because the 216 process has already reached equilibrium. 217

²¹⁸ 2.9. Reversibility

²¹⁹ Define the diagonal matrix Π with the entries π_i on the main diagonal. Since ²²⁰ irreducible Markov chains with finite state space have stationary distributions ²²¹ with only strictly positive entries, Π is invertible with Π^{-1} being a diagonal ²²² matrix with entries $1/\pi_i$. Set

$$\mathbf{T}^* = \mathbf{\Pi} \mathbf{T} \mathbf{\Pi}^{-1} \,. \tag{12}$$

The Markov chain is reversible, if $\mathbf{T}^* = \mathbf{T}'$, because then

$$\begin{aligned} \mathbf{T}' &= \mathbf{\Pi}\mathbf{T}\mathbf{\Pi}^{-1} \\ \mathbf{T}'\mathbf{\Pi} &= \mathbf{\Pi}\mathbf{T} \,, \end{aligned} \tag{13}$$

which corresponds to the condition of detailed balance.

If reversibility holds, we can separate \mathbf{f}_t into a product of a time dependent row vector \mathbf{g}_t and the stationary distribution matrix $\mathbf{\Pi}$

 $\mathbf{f}_t = \mathbf{g}_t \mathbf{\Pi}.$

227 Under reversibility, we have forward in time

$$\mathbf{g}_{t+1}\mathbf{\Pi} = \mathbf{g}_t\mathbf{\Pi}\mathbf{T}$$

 $\mathbf{g}_{t+1} = \mathbf{g}_t\mathbf{\Pi}\mathbf{T}\mathbf{\Pi}^{-1}$
 $\mathbf{g}_{t+1} = \mathbf{g}_t\mathbf{T}'$.

228 We may interpret \mathbf{g}_t as a "projected likelihood" that, when multiplied with

- the stationary distribution, gives the joint distribution \mathbf{f}_t . Note that with the
- $_{230}$ decomposition (14), the likelihood becomes

$$\Pr(y \mid \boldsymbol{\rho}) = \mathbf{g}_t \mathbf{\Pi} \mathbf{b}_t' \quad \text{for all } t.$$
(16)

(14)

The adjoint relationship (7) can be modified analogously, to result in the selfadjoint relationship

$$\Pr(y \mid \boldsymbol{\rho}) = \Pr(y \mid \boldsymbol{\rho})$$

$$(\mathbf{g}_{t} \mathbf{\Pi} \mathbf{T}) \mathbf{b}_{t+1}' = \mathbf{g}_{t} (\mathbf{T}' \mathbf{\Pi} \mathbf{b}_{t+1}')$$

$$\langle \mathbf{g}_{t} \mathbf{\Pi} \mathbf{T}, \mathbf{b}_{t+1} \rangle = \langle \mathbf{g}_{t}, \mathbf{b}_{t+1} \mathbf{\Pi} \mathbf{T} \rangle.$$
(17)

233 2.10. Example: Conditional probabilities under irreversible mutation

As a particular realization of a discrete process consider a bi-allelic model, 234 where alleles can be labeled either as ancestral (zero) or derived (one). Mutation 235 rates are assumed to be small (at most one mutation is segregating per site) and 236 occur only at the boundary zero. When a derived allele is fixed, it immediately 237 becomes ancestral. This process is a variant of the infinite sites model [16], but 238 differs in that it allows for a stationary distribution at a particular site. Using 239 diffusion theory, Evans et al. [8] provide an analysis based on moments of the 240 allele proportions of a similar model with mutations from only one boundary, 241 assuming changing population sizes, *i.e.*, not assuming equilibrium. Zivkovic 242 et al. [48] extend the analysis to include selection. 243

The transition matrix **T** is defined as follows. Given a time-homogeneous mutation rate μ , transition probabilities at the boundary zero are

$$\begin{cases} \Pr(x_{t+1} = 0 \mid x_t = 0) &= 1 - \mu/(1 - \theta H_{N-1}) \\ \Pr(x_{t+1} = 1 \mid x_t = 0) &= \mu/(1 - \theta H_{N-1}), \end{cases}$$
(18)

where $\theta = N\mu$ and the harmonic number $H_{N-1} = \sum_{i=1}^{N-1} 1/i$. With this definition, we consider the Moran model where with each time-step (note that with the Moran model N time-steps correspond to one generation with the Wright-Fisher model), one individual sampled at random has one offspring that replaces one other random individual. Within the polymorphic region, random drift is the only force affecting allele frequencies, such that for $2 \le i \le N-2$

$$\begin{cases} \Pr(x_{t+1} = i - 1 \mid x_t = i) &= \frac{1}{N^2} i(N - i) \\ \Pr(x_{t+1} = i \mid x_t = i) &= 1 - \frac{1}{N^2} 2i(N - i) \\ \Pr(x_{t+1} = i + 1 \mid x_t = i) &= \frac{1}{N^2} i(N - i) . \end{cases}$$

(19)

For i = N - 1, drift may lead to fixation of the derived allele, which ther becomes the ancestral allele, *i.e.*,

$$\begin{cases} \Pr(x_{t+1} = N - 2 \mid x_t = N - 1) &= \frac{1}{N^2}(N - 1) \\ \Pr(x_{t+1} = N - 1 \mid x_t = N - 1) &= 1 - \frac{1}{N^2}2(N - 1) \\ \Pr(x_{t+1} = 0 \mid x_t = N - 1) &= \frac{1}{N^2}(N - 1). \end{cases}$$
(20)

The state i = N is never reached and is left out of the state space. The system is not in detailed balance, as probability mass moves from state i = N - 1 to state i = 0, but not in the reverse direction.

²⁵⁷ The stationary distribution is

$$\pi(x) = \begin{cases} \Pr(x=0) = 1 - \theta H_{N-1} \\ \Pr(x=i)_{i \in \{1,\dots,N-1\}} = \theta/i, \end{cases}$$
(21)

²⁵⁸ as can be ascertained by substitution.

Note that the proportion of polymorphism in equilibrium is θH_{N-1} . This equilibrium proportion corresponds to the Ewens-Watterson estimator θ_W [9, 39], which was derived using the infinite site model [16]. In formula (18), the mutation probability per time-step μ is weighted by the inverse of the probability of being at the boundary $1 - \theta H_{N-1}$, which ensures that the average probability of mutations per time-step is constant, irrespective of N. This in turn assures correspondence to the infinite site model.

Assume a hypergeometric likelihood of y, conditional on N, $x_0 = i$, and the sample size $M \leq N$

$$\Pr(y \mid N, x_0 = i, M) = \frac{\binom{i}{y}\binom{N-i}{M-y}}{\binom{N}{M}},$$
(22)

where $0 \leq y \leq M$ and $0 \leq i \leq (N-1)$. In equilibrium, the joint distribution is obtained by multiplying the stationary distribution with the likelihood. Summing out the population allele frequency x_0 , the marginal distribution is obtained

$$\Pr(y \mid M) = \begin{cases} \Pr(y = 0 \mid M) &= 1 - \theta H_{M-1} \\ \Pr(y = i \mid M)_{i \in \{1, \dots, M-1\}} &= \theta/i. \end{cases}$$
(23)

²⁷² It follows that the expected heterozygosity, *i.e.*, the probability of obtaining one ²⁷³ derived allele and one ancestral allele in a sample of size M = 2 is θ .

As an example of a demographic scenario (Fig. 1A), consider a population 274 with a stationary allele frequency distribution (21) defined by the ancestral 275 mutation rate μ_a at some time s in the past; *i.e.*, $\rho = \pi_a$. Furthermore, assume 276 an instantaneous increase in the mutation rate μ between generations s and 277 s+1. As $\theta = N\mu$, this mimicks an expansion of the population size, without the 278 inconvenience of having to change the dimension of the transition matrix. From 279 then on, the population is out of equilibrium and evolving with a new current 280 mutation rate $\mu_c > \mu_a$. At the present time (t = 0), we sample M haplotypes 281 from the population. Assume that the ancestral state of the sampled haplotypes 282 can be determined without error. Thus, a polarized SFS may be constructed. 283 The transition matrix \mathbf{T} and its transpose \mathbf{T}' can be calculated conditional on 284 μ_c . Assume hypergeometric sampling. The conditional probabilities of allelic 285 states $\Pr(x_t | y, \rho)$, for any time $s \leq t \leq 0$, in a site frequency spectrum of size 286 M can then be calculated (Fig. 2). 287

scenarios. A) Population expansion. B) Population split.

Figure 1: Demographic

Figure 2: Conditional probabilities of allelic states in a site frequency spectrum of size M = 3. The solid lines represent the conditional probabilities of an allelic state x_t given y, at t = s, while the dashed lines represent the probabilities at t = 0. The parameters were set to $\mu_a = 0.05$, $\mu_c = 0.1$, s = -200 and N = 20.

288 2.11. Example: Joint site frequency spectrum under reversible mutation

As another realization of a discrete process consider a bi-allelic mutationdrift decoupled Moran model [2, 7] with haploid population size N, mutation rate towards zero μ_0 and mutation rate towards one μ_1 ($\mu = \mu_0 + \mu_1$). We introduce the parameters $\alpha = \mu_1/\mu$ ($0 \le \alpha \le 1$) and $\beta = 1 - \alpha = \mu_0/\mu$ which are the mutation biases towards allele one and zero, respectively. Let i($0 \le i \le N$) be the frequency of allele one. Then, the tri-diagonal transition rate matrix **T** depends on N, μ and α

$$\begin{cases} \Pr(x_{t+1} = i - 1 \mid x_t = i) &= \frac{i(N-i)}{N^2} + \beta \mu \frac{i}{N} \\ \Pr(x_{t+1} = i \mid x_t = i) &= 1 - \frac{2i(N-i)}{N^2} + \beta \mu \frac{i}{N} + \alpha \mu \frac{N-i}{N} \\ \Pr(x_{t+1} = i + 1 \mid x_t = i) &= \frac{i(N-i)}{N^2} + \alpha \mu \frac{N-i}{N} \end{cases}$$
(24)

296 The stationary distribution of x is a beta-binomial

$$\Pr(x=i \mid N, \alpha, \theta) = \binom{N}{i} \frac{\Gamma(\theta)}{\Gamma(\alpha\theta)\Gamma(\beta\theta)} \frac{\Gamma(i+\alpha\theta)\Gamma(N-i+\beta\theta)}{\Gamma(N+\theta)}, \quad (25)$$

which can be verified by substitution into the equations of detailed balance (25). As above, hypergeometric sampling at time t = 0 is assumed. Assuming equilibrium, the marginal likelihood of a single sample of size M is again a betabinomial, with M replacing N [34]. Consider an ancestral population with the stationary allele frequency dis-

Consider an ancestral population with the stationary allele frequency distribution (25). The ancestral population splits into two at some time s in the past (Fig. 1B). For simplicity, no change in the mutation, the drift parameter, and the size in both populations is assumed. A jSFS is simulated from both populations (Table 1) at t = 0. The likelihood of the split time s calculated given the simulated jSFS (Figure 3A) has a single maximum close to the true value of t = -40.

It may be instructive to calculate some marginal and conditional probabilities with this example. We set for the likelihood of the second population, *i.e.*, the conditional distribution of the data given the allele frequencies in the second population at time t = 0, $\mathbf{b}_0^{(2)} = \Pr(y^{(2)} | x_0^{(2)})$. We then iterate backward within the second population until t = s to obtain the joint probability of the second sample $y^{(2)}$ and the *i*th allele frequency $x_s = i$ at time t = s:

$$\Pr(x_s = i, y^{(2)} | \boldsymbol{\rho}) = \boldsymbol{\rho}_i(\mathbf{b}_s^{(2)})_i.$$
(26)

Note that, on the left side of the above equation, we drop the superscript to indicate the population for x_s , because time t = s is just before the split into the two descendant populations. Without information from the second population, we would set the starting distribution of the first population $\mathbf{f}_s^{(1)}$ to the prior probability of the allele frequencies at time t = s, *i.e.*, $\mathbf{f}_s^{(1)} = \boldsymbol{\rho}$. With information on the second population, we instead start at time t = s from the joint probability (26) and set $\mathbf{f}_s^{(1)*} = \Pr(x_s, y^{(2)} | \boldsymbol{\rho})$. As before, we iterate forward to obtain $\mathbf{f}_t^{(1)*}$ within the first population; we can interpret $\mathbf{f}_t^{(1)*}$ as the joint probability of the allele frequency in the first population and the data of the second population: $\mathbf{f}_{t}^{(1)*} = \Pr(x_{t}^{(1)}, y^{(2)} | \boldsymbol{\rho})$. Setting now for the likelihood of the first population $\mathbf{b}_{0}^{(1)} = \Pr(y^{(1)} | x_{0}^{(1)})$ and iterating backward within the first population until t, we obtain the probability of the allele frequency of the first population at t, conditional on data from both the first and second population as well as on the prior distribution $\boldsymbol{\rho}$ as:

$$\Pr(x_t^{(1)} = i \,|\, y^{(1)}, y^{(2)}, \boldsymbol{\rho}) = \frac{(\mathbf{f}_t^{(1)*})_i (\mathbf{b}_t^{(1)})_i}{\mathbf{f}_t^{(1)*} \mathbf{b}_t^{(1)}} \,.$$

27

Figure 3B gives the conditional probability $Pr(x_t | y^{(1)}, y^{(2)}, \rho)$ for one site class of the jSFS determined by $y^{(1)}$ and $y^{(2)}$ which denote the polymorphism levels of the specific class for populations one and two, respectively; *e.g.*, the site class determined by $y^{(1)} = 1$ and $y^{(2)} = 2$ contains all sites with one derived allele in population one and two derived alleles in population two.

Table 1: A jSFS simulated with a discrete Moran model with parameters $L = 10^5$, $M^{(1)} = M^{(2)} = 3$, $\alpha = 2/3$, $\theta = 0.1$, s = -40 and N = 20.

Figure 3: A) The log-likelihood of the split time s, given a jSFS (Table 1). The dashed line indicates the true split time. B) The conditional probability of the allelic state x_t given $y^{(1)} = 1$ and $y^{(2)} = 2$, at t = s (solid line) and t = 0 (dashed line).

2.12. Summary: discrete Markov chains

333

With standard discrete population genetic models, *e.g.*, the Wright-Fisher or the Moran models, iteration of discrete Markov chains forward in time corresponds to the forward algorithm and backward in time to the backward algorithm of the forward-backward algorithm [25]. With such algorithms, it is straightforward to calculate exact likelihoods given SFS and jSFS from the present. Some standard population genetic mutation models are reversible, others are not. In contrast to phylogenetic applications [11, 28], reversibility of the Markov chain does not simplify calculations considerably; in both cases, iteration of an $(N + 1) \times (N + 1)$ transition matrix is needed.

³⁴³ 3. Forward and backward diffusion equations

In this section, we provide theory for the continuous analogs of the discrete forward and backward transition probabilities both for reversible and irreversible Markov processes and illustrate with examples. We derive the forward and backward diffusion equations from the discrete general mutation-drift Moran model using only the definitions of the first and second symmetric derivative (Appendix 7.1).

³⁵⁰ With the forward and backward diffusion operators

$$\mathcal{L} = -\frac{\partial}{\partial x} P(x) + \frac{\partial^2}{\partial x^2} Q(x)$$

$$\mathcal{L}^* = P(x) \frac{\partial}{\partial x} + Q(x) \frac{\partial^2}{\partial x^2},$$
(28)

³⁵¹ the forward and backward diffusion equations are written as

$$\frac{\partial}{\partial \tau} \phi(x \mid \tau, \rho) = \mathcal{L} \phi(x \mid \tau, \rho)
- \frac{\partial}{\partial \tau} \psi(y \mid x, \tau) = \mathcal{L}^* \psi(y \mid x, \tau),$$
(29)

where τ is the continuous-time analog of t, and ρ is the initial condition of the countinuous allele frequency x. The functions $\phi(x | \tau, \rho)$ and $\psi(y | x, \tau)$ are transition density functions of the forward an backward diffusion, respectively. Obviously, these functions must be twice differentiable in the open interval (0, 1). The operators \mathcal{L} and \mathcal{L}^* together with the boundary conditions correspond to the forward transition matrix \mathbf{T} and its transpose \mathbf{T}' , respectively.

358 3.1. Forward and backward in time

As in the discrete case, consider the situation when the distribution of 359 the continuous allelic proportion x at time $\tau = s$ is given by $\rho(x)$. Setting 360 $\phi(x | \tau = s) = \rho(x), \ \phi(x | \tau = 0, \rho)$ can be calculated using the forward dif-361 fusion equation (29). Assume again a discrete sample of size M with a fre-362 quency of y alleles of type one at time $\tau = 0$. In the backward time direction, 363 $\psi(y \mid x, \tau = 0) = \Pr(y \mid x, \tau = 0, M)$, which corresponds to a binomial likelihood 364 as the allelic proportion is now assumed to be continuous. Note that a binomial 365 likelihood corresponds to a polynomial of order of the sample size M and is thus 366 finite. With the backward diffusion equation (29), the conditioning on x may 367

be moved backward in time. The marginal likelihood of y may be obtained by integration over the product of the forward and backward functions

$$\Pr(y \mid \rho) = \int_0^1 \phi(x \mid \tau, \rho) \psi(y \mid x, \tau) \, dx \qquad \text{for } s \le \tau \le 0, \tag{30}$$

analogously to equation (6). As with the discrete case, we require the marginal likelihood to be constant irrespective of time. Furthermore, for any marginal likelihood of a discrete random variable $0 \leq \Pr(y | \rho) \leq 1$ must hold. This constrains the boundary conditions.

As $\Pr(y | \rho)$ is independent of time τ , its derivative with respect to time τ must be 0. Exchanging the order of differentiation and integration and applying the product rule to $\Pr(y | \rho)$, we have

$$\frac{\partial}{\partial \tau} \Pr(y \mid \rho) = 0$$

$$\int_{0}^{1} \left[\frac{\partial}{\partial \tau} \phi(x \mid \tau, \rho) \right] \psi(y \mid x, \tau) \, dx + \int_{0}^{1} \phi(x \mid \tau, \rho) \left[\frac{\partial}{\partial \tau} \psi(y \mid x, \tau) \right] \, dx = 0 \,.$$
(31)

Substituting the right sides of the forward and backward diffusion equations (29) for the time derivatives, we have the adjoint relationship

$$\int_{0}^{1} \left[\mathcal{L} \phi(x \mid \tau, \rho) \right] \psi(y \mid \tau) \, dx = \int_{0}^{1} \phi(x \mid \tau, \rho) \left[\mathcal{L}^{*} \psi(y \mid x, \tau) \right] \, dx \qquad (32)$$
$$\langle \mathcal{L} \phi(x \mid \tau, \rho), \psi(y \mid x, \tau) \rangle = \langle \phi(x \mid \tau, \rho), \mathcal{L}^{*} \psi(y \mid x, \tau) \rangle.$$

The adjoint relationship (32) requires the boundary condition (84) to hold (Appendix 7.2). At each time-point, any change to the marginal likelihood from applying the forward operator \mathcal{L} to the forward function $\phi(x | \tau, \rho)$ is exactly matched by a change from applying the backward operator \mathcal{L}^* to the backward function $\psi(y | x, \tau)$. As in the discrete case, the adjoint relationship allows movement forward and backward in time.

385 3.2. Self-Adjointness and Reversibility

In this section, we deal with reversible Markov processes. Introduce the weight or speed function [e.g., 10, 29]

$$w(x) = \frac{1}{Q(x)} e^{\int_0^x \frac{P(z)}{Q(z)} dz} \,. \tag{33}$$

Substituting $w(x)g(x,\tau,\rho)$ for $\phi(x | \tau,\rho)$, the boundary condition (84) becomes (Appendix 7.2)

$$w(x)Q(x)\left(g(x,\tau,\rho)\frac{d}{dx}\psi(y\,|\,x,\tau) - \psi(y\,|\,x,\tau)\frac{d}{dx}g(x,\tau,\rho)\right)\Big|_{0}^{1} = 0.$$
 (34)

Since w(x)Q(x) may be infinite at the boundary, $\psi(y | x, \tau)$ and $g(x, \tau, \rho)$ need to be finite.

Assume w(x) > 0 for $x \in]0,1[$, and substitute $w(x)g(x,\tau,\rho)$ for $\phi(x \mid \tau,\rho)$ 392 into the general forward equation (29)393

$$\begin{split} \frac{\partial}{\partial \tau} w(x) g(x,\tau,\rho) &= -\frac{\partial}{\partial x} P(x) w(x) g(x,\tau,\rho) + \frac{\partial^2}{\partial x^2} Q(x) w(x) g(x,\tau,\rho) \\ w(x) \frac{\partial}{\partial \tau} g(x,\tau,\rho) &= P(x) w(x) \frac{\partial}{\partial x} g(x,\tau,\rho) + Q(x) w(x) \frac{\partial^2}{\partial x^2} g(x,\tau,\rho) \\ \frac{\partial}{\partial \tau} g(x,\tau,\rho) &= P(x) \frac{\partial}{\partial x} g(x,\tau,\rho) + Q(x) \frac{\partial^2}{\partial x^2} g(x,\tau,\rho) \,. \end{split}$$

Note that the last line is identical to the backward equation (29), with the 394 exception of the reversed sign to the left. Note that, nevertheless, $\phi(x | \tau, \rho)$ may 395 be infinite. If the stationary distribution $\pi(x)$ exists, it is proportional to w(x). 396 From substituting $\pi(x)g(x,\tau,\rho)$ for $\phi(x \mid \tau,\rho)$ into the marginal likelihood (30), 397 it follows that g and ϕ are square integrable with respect to the weight function $\pi(x) \propto w(x)$ [29]. The Markov process is then self-adjoint and reversible and the 399 relationship between the forward operator \mathcal{L} and its adjoint \mathcal{L}^* may be written 400 compactly 401

$$\mathcal{L}^* = \frac{1}{\pi(x)} \left[\mathcal{L}\pi(x) \right], \tag{36}$$

similar to the reversed transition matrix (eq. 12) or to the condition of detailed 402 balance (eq. 13) in the discrete case. 403

3.3. Joint and conditional distributions 404

417

The function corresponding to the joint distribution of the allelic proportion 405 x and the sample allele frequency y in the discrete case (8) at time τ ($s \le \tau \le 0$) 406 is 407

$$j(x, y \mid \tau) = \phi(x \mid \tau, \rho) \psi(y \mid x, \tau) .$$
(37)

For the conditional distribution of the allelic proportion x given the sample 408 allele frequency y, corresponding to eq. (9) in the discrete case, $j(x, y | \tau)$ must 409 be divided by the marginal likelihood (30)410

$$p(x \mid \tau, \rho, y) = \frac{j(x, y \mid \tau)}{\Pr(y \mid \rho)}.$$
(38)

3.4. General mutation and drift and orthogonal polynomials 411

The diffusion operators in this section are as in (28), with $P(x) = \theta(\alpha - x)$ 412 and Q(x) = x(1-x). In population genetics, Q(x) is generally half the genetic 413 variance with the bi-allelic Moran model (see also Appendix 7.1). In the context 414 we consider, the backward function $\psi(y | x, \tau)$ at time $\tau = 0$ is a binomial 415 likelihood, *i.e.*, a polynomial of the degree of the sample size M. Without 416 selection, the backward function remains a polynomial with degree M for $s \leq$ $\tau \leq 0.$ 418

With the general bi-allelic mutation-drift model, Song and Steinrücken [29] 419 already demonstrated self-adjointness and showed how to use modified Jacobi 420

⁴²¹ polynomials to obtain a solution. For the general mutation-drift model, the ⁴²² weight function $w(x, \alpha, \theta) = x^{\alpha \theta - 1} (1 - x)^{\beta \theta - 1}$ is proportional to the stationary ⁴²³ distribution

$$\pi(x) = \frac{\Gamma(\theta)}{\Gamma(\alpha\theta)\Gamma(\beta\theta)} x^{\alpha\theta-1} (1-x)^{\beta\theta-1}.$$
(39)

Since Q(x) = x(1-x), the boundary condition (34) holds if, at both boundaries x = 0 and x = 1, x(1-x)w(x) = 0 and $\psi(y | x, \tau)$ and $g(x, \tau, \rho)$ are finite. Since $x(1-x)w(x) = x^{\alpha\theta}(1-x)^{\beta\theta}$ is zero at both boundaries for the nondegenerate case of $\theta > 0$ and $0 < \alpha < 1$, the boundary condition (34) holds if $\frac{\partial}{\partial x}(g(x, \tau, \rho)\psi(y | x, \tau))$ is finite at the boundaries, which can be assumed for population genetic applications.

The (modified) Jacobi polynomials (compare formula 22.3.2 in Abramowitz
 and Stegun [1])

$$R_n^{(\alpha,\theta)}(x) = \sum_{l=0}^n (-1)^l \frac{\Gamma(n-1+l+\theta)\Gamma(n+\alpha\theta)}{\Gamma(n-1+\theta)\Gamma(l+\alpha\theta)l!(n-l)!} x^l$$
(40)

⁴³² are eigenvectors of the backward operator

$$-\lambda_n R_n^{(\alpha,\theta)}(x) = \mathcal{L}^* R_n^{(\alpha,\theta)}(x) , \qquad (41)$$

433 with eigenvalues

$$\lambda_n = n(n+\theta-1). \tag{42}$$

The corresponding eigenfunctions of the forward operator are $w(x)R_n^{(\alpha,\theta)}(x)$ with identical eigenvalues.

Since a binomial distribution with sample size M corresponds to a polynomial of order M, the likelihood can be represented by an expansion with coefficients $c_n(y)$ into the modified Jacobi polynomials up to order M. Note that a change in the effective population size (population demography), or equivalently in the scaled mutation rate from θ_a to θ_c needs to be accommodated with a change in the base from $R_n^{(\alpha,\theta_a)}(x)$ to $R_n^{(\alpha,\theta_c)}(x)$.

⁴⁴² The orthogonality relationship of the modified Jacobi polynomials is

$$\checkmark \int_0^1 R_n^{(\alpha,\theta)}(x) R_m^{(\alpha,\theta)}(x) w(x) \, dx = \delta_{n,m} \Delta_n^{(\alpha,\theta)} \,, \tag{43}$$

443 where $\delta_{n,m}$ is the Kronecker delta, and

$$\Delta_n^{(\alpha,\theta)} = \frac{\Gamma(n+\alpha\theta)\Gamma(n+\beta\theta)}{(2n+\theta-1)\Gamma(n+\theta-1)\Gamma(n+1)} \,. \tag{44}$$

Let $c_n(y)$ be the coefficients of the expansion of the likelihood into the modified Jacobi polynomials, which breaks off at n = M. Then the solution to the backward equation can be written as

$$\psi(y \mid x, \tau) = \sum_{n=0}^{M} c_n(y) R_n^{(\alpha,\theta)}(x) e^{-\lambda_n \tau}, \qquad (45)$$

- 447 with $\psi(y | x, \tau = 0) = \Pr(y | M, x)$ corresponding to the likelihood.
- Let ρ_n be the coefficients of the expansion of the starting distribution $\rho(x)$ at time $\tau = s$. The solution to the forward equation can then be represented as

$$\phi(x \mid \tau, \rho) = w(x) \sum_{n=0}^{\infty} \rho_n R_n^{(\alpha,\theta)}(x) e^{-\lambda_n(s-\tau)} \,.$$

(46)

The orthogonality relationship can be used to simplify the marginal likeli
 hood

$$\Pr(y \mid \rho) = \int_0^1 \phi(x \mid \tau, \rho) \psi(y \mid x, \tau) dx$$

=
$$\int_0^1 \sum_{n=0}^M \rho_n c_n(y) w(x) [R_n^{(\alpha, \theta)}(x)]^2 e^{-\lambda_n \tau} e^{-\lambda_n (s-\tau)} dx \qquad (47)$$

=
$$\sum_{n=0}^M \rho_n c_n(y) \Delta_n^{(\alpha, \theta)} e^{-\lambda_n s}.$$

Because of the orthogonality relation (43), the calculation of the marginal likelihood (47) requires an expansion in eigenfunctions up to order M, where M is the minimum of the forward-in-time expansion of $\rho(x)$, say M_f , and the backward-in-time expansion of $\Pr(y|x, \tau = 0)$, say M_b . Therefore, for calculating the joint distribution (37) and thus also the conditional (38), an expansion up to order $M_f \times M_b$ is needed.

459 3.4.1. Example: two splitting populations and binomial likelihoods

Here, we apply the theory to a model with two populations and binomial likelihoods; *i.e.*, a jSFS analogous to the second example in the discrete case (subsection 2.11). The initial distribution $\rho(x)$ is assumed to be the equilibrium distribution. Only the first eigenfunction is necessary to expand the equilibrium distribution; *i.e.*, $\rho_0 = \frac{1}{\Delta_0^{(\alpha,\theta)}}$ while $\rho_{n\geq 1} = 0$. In equilibrium, the marginal likelihood of a single-population sample of size M assuming mutation-drift equilibrium with parameters α and θ is a beta-binomial, as in the discrete case (25),

$$\Pr(y|M, \alpha, \theta) = \int_{0}^{1} \Pr(y|M, x) \pi(x, \alpha, \theta) dx$$

=
$$\int_{0}^{1} {\binom{M}{y}} \frac{\Gamma(\theta)}{\Gamma(\alpha\theta)\Gamma(\beta\theta)} x^{\alpha\theta+y-1} (1-x)^{\beta\theta+M-y-1} dx \qquad (48)$$

=
$$\binom{M}{y} \frac{\Gamma(\theta)}{\Gamma(\alpha\theta)\Gamma(\beta\theta)} \frac{\Gamma(y+\alpha\theta)\Gamma(M-y+\beta\theta)}{\Gamma(M+\theta)}.$$

It follows from the orthogonality relation that only the first term in the expansion n = 0 contributes to the marginal likelihood, *i.e.*, the inner product 470

$$\Pr(y \mid M, \alpha, \theta) = \int_0^1 c_0(y) R_0^{(\alpha, \theta)}(x) \pi(x, \alpha, \theta) dx$$

= $\int_0^1 c_0(y) R_0^{(\alpha, \theta)}(x) \frac{1}{\Delta_0^{(\alpha, \theta)}} R_0^{(\alpha, \theta)}(x) x^{\alpha \theta - 1} (1 - x)^{\beta \theta - 1} dx$ (49)
= $c_0(y)$.

For two populations with sample sizes $M^{(1)}$ and $M^{(2)}$, the respective likelihoods $\Pr(y^{(1)} | M^{(1)})$ and $\Pr(y^{(2)} | M^{(2)})$ are similarly expanded into the modified Jacobi polynomials with coefficients $c_n(y^{(1)})$ and $c_m(y^{(2)})$. At time τ back in the past, we have

$$\Pr(y^{(1)} \mid x, M^{(1)}, \alpha, \theta, \tau) = \sum_{n=0}^{M^{(1)}} c_n(y^{(1)}) R_n^{(\alpha, \theta)}(x) e^{-\lambda_n \tau}$$
(50)

and similarly for the second population. If the two populations join at time $\tau = s$ in the past, when the population is assumed to be in mutation-drift equilibrium, the marginal likelihood is

$$\Pr(y^{(1)}, y^{(2)} | M^{(1)}, M^{(2)}, \alpha, \theta, \tau = s) = \sum_{n=0}^{M^{(4)}} \sum_{m=0}^{M^{(2)}} \int_{0}^{1} c_{n}(y^{(1)}) R_{n}^{(\alpha,\theta)}(x) e^{-\lambda_{n}s} \times c_{m}(y^{(2)}) R_{m}^{(\alpha,\theta)}(x) \pi(x, \alpha, \theta) e^{-\lambda_{m}s} dx = \sum_{n=0}^{M} \int_{0}^{1} c_{n}(y^{(1)}) c_{n}(y^{(2)}) \left[R_{n}^{(\alpha,\theta)}(x) \right]^{2} \pi(x, \alpha, \theta) e^{-2\lambda_{n}s} dx = \sum_{n=0}^{M} \frac{c_{n}(y^{(1)}) c_{n}(y^{(2)}) \Delta_{n}^{(\alpha,\theta)} e^{-2\lambda_{n}s}}{\Delta_{0}^{(\alpha,\theta)}},$$
(51)

where $M = \min(M^{(1)}, M^{(2)})$, since higher order terms contribute zero weight to the inner product.

A joint site frequency spectrum is drawn (Table 2) at the present time $\tau = 0$. Given the jSFS, the likelihood of the population split time is readily calculated (Figure 4). The jSFSs in Tables 1 and 2 are similar because scaled mutation rates and biases under which they are simulated are identical; for the discrete model, the population size is set to 20 instead of approaching infinity as in the continuous model, which, together with sampling variation, explains the slight differences.

487 3.4.2. Summary: bi-allelic general mutation-drift diffusion

Assuming a bi-allelic general mutation-drift model, forward and backward diffusion equations and continuous analogs to the discrete forward and backward

Table 2: A jSFS simulated with a continuous diffusion model with parameters $L = 10^5$, $M^{(1)} = M^{(2)} = 3, \ \alpha = 2/3, \ \theta = 0.1, \ \text{and} \ s = -0.1.$

Figure 4: The log-likelihood of the split time s, given a jSFS (Table 2). The dashed line indicates the true split time.

algorithms, as well as the forward-backward algorithm, are derived. As with the 490 discrete models, it is straightforward to calculate exact likelihoods given a SFS 491 or a jSFS from the present. With the bi-allelic general mutation-drift model 492 a self-adjoint system results. Modified Jacobi polynomials $R_n^{(\alpha,\theta)}(x)$ provide a 493 convenient base for calculations, both forward and backward in time. In the 494 discrete case, iteration of an $(N+1) \times (N+1)$ transition matrix is needed to 495 evolve the allelic proportion; in the continuous case, only polynomials up to the 496 sample size M are needed with mutation-drift models. As $M \ll N$, this may 497 lead to considerably increased efficiency. A change in the effective population 498 size (population demography), or equivalently in the scaled mutation rate needs 499 to be accommodated with a change in the base of the orthogonal polynomials 500 as in Steinrücken *et al.* [32]. 501

Boundary mutation-drift model 4.

502

506

507

508

500

510

In this section we deal with irreversible Markov processes. If mutation rates 503 are small relative to drift, polymorphism in a sample of moderate size originates from a single mutation. We can therefore assume that mutations originate ex-505 clusively from sites fixed for allele zero or one, *i.e.*, from the boundaries. Such models are particularly important for statistical inference in population genetics [e.q., 9, 39, 12] and it is therefore worthwhile to provide solutions to the corresponding diffusion equations. As a solution to the forward and backward diffusion equations we present a system of orthogonal eigenfunctions. Through⁵¹¹ out the presentation, we emphasize the similarities with previous approaches. ⁵¹² While the solution to the forward diffusion is mainly a review, the backward ⁵¹³ direction and the overall concepts are new.

514 4.1. Pure drift model

We start with the pure drift model and clarify basic concepts. The forward and backward diffusion operators are

$$\mathcal{L} = \frac{\partial^2}{\partial x^2} Q(x)$$
$$\mathcal{L}^* = Q(x) \frac{\partial^2}{\partial x^2}.$$

For the pure drift model, the adjoint relationship between the forward and backward operators holds as long as the boundary condition (84) with Q = x(1-x) holds within the unit interval

$$0 = \left(x(1-x)\phi\psi' - (x(1-x)\phi)'\psi \right) \Big|_{0}^{1}.$$
 (53)

(52)

Following Kimura [15], most population geneticists implicitly or explicitly re-520 quire at both boundaries $\psi(y | x, \tau)$ and $x(1-x)\phi(x | \tau, \rho)$ to be zero [see also 521 10, 29]. With these assumptions, modified Gegenbauer polynomials $U_n(x) =$ 522 $-\frac{2}{n}C_{n-2}^{(3/2)}(2x-1)$ ($C_k^{\nu}(z)$ are the Gegenbauer polynomials as defined in [1]) are 523 eigenfunctions of the forward diffusion equation with eigenvalues $\lambda_n = n(n-1)$ 524 for $n \geq 2$. Furthermore $x(1-x)U_n(x)$ are eigenfunctions of the backward equa-525 tion with identical eigenvalues. The forward and backward operators are then 526 self-adjoint with the weight function $w(x) = x^{-1}(1-x)^{-1}$ [10, 29]. Note that 527 without mutation no stationary distribution exists. The orthogonality relation 528 of $U_n(x)$ is 529

$$\int_0^{\infty} U_n(x)U_m(x)w(x)\,dx = \delta_{n,m}\Delta_n\,,\tag{54}$$

530 with

$$\Delta_n = \frac{n-1}{(2n-1)n}.\tag{55}$$

However, these assumptions are too restrictive; polynomials of zeroth and 531 first degree, 1 and x, cannot be represented by $x(1-x)U_n(x)$, but both are 532 eigenfunctions of the pure drift backward equation with eigenvalues $\lambda_0 = \lambda_1 = 0$. 533 Importantly, assuming a binomial likelihood, these eigenfunctions are needed when representing monomorphic samples. To address this issue, Tran et al. 535 [33] add 1 and x to the eigenfunctions of the backward equation. The two new 536 backward eigenfunctions require augmenting the forward eigenfunctions with 537 point masses at the boundaries that counterbalance the probability mass in the 538 interior. Additionally, point masses at the boundaries, independent of those 539 associated with the forward eigenfunctions, need to be introduced [33].

Independently from Tran et al. [33], we derived a boundary mutation-drift 541 model forward in time from probabilistic population genetic considerations [35] 542 with eigenfunctions proportional to those in Tran et al. [33]. Our approach 543 is similar to that presented in McKane and Waxman [23] and Waxman [40]. 544 Furthermore, we showed that the forward eigenfunctions can be derived from 545 those of the general mutation-drift model, *i.e.*, from Jacobi polynomials times 546 the stationary beta distribution (or the proportional weight function $w(x, \alpha, \theta)$), 547 by expanding into a Taylor series in θ and keeping terms up to order zero [36, 548 Appendix A.1]. Therefore, in the context of pure drift, the set of eigenfunc-549 tions, which provide the solution to the forward diffusion equation, can then be 550 represented in relation to Jacobi polynomials $R_n^{(\alpha,\theta)}$ as 551

$$\begin{cases} F_0^{(\alpha,0)}(x) &= \lim_{\theta \to 0} \pi(x, \alpha, \theta) = \beta \delta(x) + \alpha \delta(x-1) \\ F_1^{(\alpha,0)}(x) &= \lim_{\theta \to 0} w(x, \alpha, \theta) R_1^{(\alpha,\theta)} = -\delta(x) + \delta(x-1) \\ F_{n \ge 2}^{(\alpha,0)}(x) &= \lim_{\theta \to 0} w(x, \alpha, \theta) R_n^{(\alpha,\theta)} = -\frac{(-1)^n}{n} \delta(x) + U_n(x) - \frac{1}{n} \delta(x-1) , \end{cases}$$
(56)

where $\delta(x)$ is the Dirac delta functional. Note that eigenfunctions are only defined up to a proportionality constant. The associated eigenvalues are

$$\begin{cases} \lambda_0 &= 0\\ \lambda_1 &= \lim_{\theta \to 0} \theta \neq 0\\ \lambda_{n \ge 2} &= n(n-1) \,. \end{cases}$$
(57)

Similarly, the backward eigenfunctions can be derived by expanding the modified Jacobi polynomials into a Taylor series in θ and keeping terms up to order zero.

$$\begin{cases} B_0^{(\alpha,0)}(x) = R_0^{(\alpha,\theta)} = 1\\ B_1^{(\alpha,0)}(x) = \frac{1}{\theta} R_1^{(\alpha,\theta)} = x - \alpha\\ B_{n\geq 2}^{(\alpha,0)}(x) = \lim_{\theta\to 0} R_n^{(\alpha,\theta)} = x(1-x)U_n(x) \,. \end{cases}$$
(58)

The eigenvalues correspond to those forward in time in eq. (57). The mutation bias α may obtain any value between zero and one. If α is set to zero, the backward eigenfunctions correspond to those of Tran *et al.* [33].

560 The orthogonality relation is

$$\int_{0}^{1} F_{n}^{(\alpha,0)}(x) B_{m}^{(\alpha,0)}(x) \, dx = \delta_{n,m} \Delta_{n} \,, \tag{59}$$

with $\Delta_0 = \Delta_1 = 1$ and Δ_n as in (55). However, note that

$$\int_{0}^{1} B_{n}^{(\alpha,0)}(x) B_{m}^{(\alpha,0)}(x) w(x) \, dx = \delta_{n,m} \Delta_{n} \tag{60}$$

only holds for pairs $m, n \ge 2$ and the pair m = 0 and n = 1, but not for the pairs m = 0 (or m = 1) and $n \ge 2$; and similarly for the forward eigenfunctions $F_n(x)$. 565 The forward function is then set to

$$\phi(x \mid \tau, \rho) = \sum_{n=0}^{\infty} \rho_n F_n^{(\alpha,0)}(x) e^{-\lambda_n(s-\tau)}$$

(61)

566 and the backward function to

$$\psi(y \,|\, x, \tau) = \sum_{m=0}^{\infty} c_n(y) B_n^{(\alpha,0)}(x) e^{-\lambda_n \tau} \,.$$

The marginal and joint distribution can now be defined as above. The time 567 derivative of the marginal likelihood (31) of the eigenfunctions with n = 0568 and n = 1 is zero, because the respective eigenvalues are zero. For $n \ge 2$, 569 the backward expansion contains only the terms $x(1-x)U_n(x)$ as does w(x)570 times the forward expansion, $w(x)F_{n\geq 2}^{(\alpha,0)}(x) = x(1-x)U_{n\geq 2}(x)$. Indeed the eigenfunctions with $n \geq 2$ correspond to those usually considered [15, 29]. As 571 572 backward and forward functions are thus zero at both boundaries, the boundary 573 condition (53) is met. It is also straightforward to show for n = 0 and n = 1574 that condition (32) holds, because the integrals on both sides are always zero. 575

576 4.2. Mutation-drift model

Following Vogl and Bergman [36], we introduce recurrent mutations into the 577 pure drift model by setting the eigenvalue $\lambda_1 = \theta$. We consider the case where 578 $0 < \theta \ll 1$, such that mutations occur at a low rate and thus, do not affect the 579 allele frequency dynamics of the polymorphic classes; these classes are governed 580 exclusively by genetic drift and therefore, eigenfunctions with $n \geq 2$ remain as 581 in the pure drift model. We may thus distinguish between two classes of sites 582 with distinct spatial and temporal differences: the slowly evolving boundaries, 583 where the rate of evolution depends on θ , and the fast evolving polymorphic 584 classes governed by genetic drift [e.g., 42, 36]. Furthermore, we may think of 585 the boundary mutation-drift model as a first order Taylor series expansion in 586 the scaled mutation rate θ of the general mutation-drift model. 587

Note that, with the discrete boundary mutation model, we scaled the mu-588 tation rate such that, independent of the population size N, the heterozygosity 589 in a sample of size two is equal to θ for the model with mutations from a single 590 boundary (compare the term $\mu/(1-\theta\sum_{i=1}^{N-1}\frac{1}{i})$ in (18)), or $2\alpha\beta\theta$ for the model with mutations from both boundaries. With the transition to continuous dif-591 592 fusion, $N \to \infty$ and thus $\theta \sum_{i=1}^{N-1} \frac{1}{i}$ will grow logarithmically without bound. 593 Mutations are therefore modeled from the boundary zero at a rate $\alpha \theta b_0(\tau)$, 50/ where $\alpha \theta$ is the mutation rate towards allele one and $b_0(\tau)$ corresponds to the probability mass already at boundary zero plus the probability mass to arrive there quickly by drift, and similarly at the boundary one. The system is thus 597 not in detailed balance and therefore not reversible. 598

Forward expansion. With mutations from the boundaries and forward in time, Vogl and Bergman [36] use the same augmented forward eigenfunctions as with

pure drift (56) to model the spatial part of the eigensystem. With pure drift, the 601 temporal parts of the eigenfunctions $(e^{-\lambda_n(s-\tau)})$ with $n \ge 2$ fulfill homogeneous 602 differential equations, *i.e.*, are decreasing exponentially from starting values at 603 rates $\lambda_n = n(n-1)$, while the first two eigenfunctions with n = 0 and n = 1 do 604 not change with time. With the boundary mutation model, the temporal part 605 $T_n(\tau)$ corresponds to a system of linear differential equations: homogeneous for 606 n = 0 and n = 1 with eigenvalues $\lambda_0 = 0$ and $\lambda_1 = \theta$, and inhomogenous for 607 $n \ge 2$ with eigenvalues $\lambda_n = n(n-1)$: 608

$$\begin{cases} \frac{d}{d\tau}T_0(\tau) = 0\\ \frac{d}{d\tau}T_1(\tau) = -\theta T_1(\tau)\\ \frac{d}{d\tau}T_{n\geq 2}(\tau) = -\lambda_n T_n(\tau) + \vartheta E_n T_0(\tau) + \theta O_n T_1(\tau) , \end{cases}$$
(63)

609 with

.

$$\vartheta = \alpha \beta \theta,$$

$$E_n = -(n-1) \frac{((-1)^n + 1)}{\Delta_n},$$

$$O_n = -(n-1) \frac{(-1)^n \alpha - \beta}{\Delta_n},$$
(64)

610 where $\beta = (1 - \alpha)$ and Δ_n as in (55).

⁶¹¹ The forward system can be diagonalized by setting

$$\begin{cases} F_{0}^{(\alpha,\theta)}(x) &= F_{0}^{(\alpha,0)}(x) + \vartheta \sum_{n=2}^{\infty} \frac{E_{n}}{\lambda_{n}} F_{n}^{(\alpha,0)}(x) \\ F_{1}^{(\alpha,\theta)}(x) &= F_{1}^{(\alpha,0)}(x) + \theta \sum_{n=2}^{\infty} \frac{O_{n}}{\lambda_{n}} F_{n}^{(\alpha,0)}(x) \\ F_{n\geq2}^{(\alpha,\theta)}(x) &= F_{n}^{(\alpha,0)}(x) , \end{cases}$$
(65)

where the polynomials with base $(\alpha, 0)$ on the right hand side of the equations are as in (56). The temporal parts of the system are then $\frac{d}{d\tau}T_n(\tau) = -\lambda_n T_n(\tau)$ for all n.

With increasing N, the stationary distribution converges to the following function [35, 36]

$$\pi(x, \alpha, \theta) = F_0^{(\alpha, \theta)}(x) = \lim_{N \to \infty} \begin{cases} \beta - \vartheta \int_{\frac{1}{N}}^{\frac{N-1}{N}} \frac{1}{x} \, dx & \text{if } 0 \le x < 1/N \\ \vartheta \frac{1}{x(1-x)} & \text{if } 1/N \le x \le 1 - 1/N \\ \alpha - \vartheta \int_{\frac{1}{N}}^{\frac{N-1}{N}} \frac{1}{1-x} \, dx & \text{if } 1 - 1/N < x \le 1. \end{cases}$$
(66)

⁶¹⁵ This function integrates to unity, but has singularities at the boundaries, which ⁶¹⁶ makes it difficult to interpret probabilistically. Moments about zero up to an ⁶¹⁷ order $m = M_{\text{max}}$ may be defined meaningfully, by multiplying $\pi(x, \alpha, \theta)$ with $_{618}$ x^m and integrating. We have

$$\int_{0}^{1} \pi(x) x^{m} dx = \alpha - \vartheta \int_{0}^{1} \frac{1 - x^{m-1}}{1 - x} dx$$

= $\alpha - \vartheta H_{m-1}$, (67)

where H_{m-1} is the harmonic number. As this same relationship must also hold 619 for the moments about boundary one, $\min(\alpha,\beta)/\vartheta < H_{m-1}$, which leads to 620 $M_{\rm max} \approx e^{\min(\alpha,\beta)/\vartheta}$. Note that a monomorphic sample from a binomial distri-621 bution, with sample size M, leads to terms x^M or $(1-x)^M$, which correspond to 622 the moments about zero and one. Thus the sample size needs to be restricted to 623 $M\approx e^{\min(\alpha,\beta)/\vartheta}$ to avoid negative values for probabilities. Since the boundary 624 mutation model generally requires $\theta < 0.1$ [35], this constraint on M should not 625 pose practical problems. 626

Note that the same issue occurs with the closely related Ewens-Watterson estimator $\hat{\theta}_W$ of molecular diversity [9, 39]. With the assumptions used for deriving $\hat{\theta}_W$, the probability of obtaining a monomorphic sample of size Mis $1 - \theta \sum_{i=1}^{M-1} \frac{1}{i}$. It is therefore necessary to restrict the sample size below $M_{\text{max}} \approx e^{1/\theta}$.

⁶³² Backward expansion. The backward system of differential equations with eigen-⁶³³ functions $B_n^{(\alpha,\theta)}(x)$ is the transpose of the forward system (65). It can also be ⁶³⁴ diagonalized by setting

$$\begin{cases} B_0^{(\alpha,\theta)}(x) &= B_0^{(\alpha,0)}(x) = 1\\ B_1^{(\alpha,\theta)}(x) &= B_1^{(\alpha,0)}(x) = x - \alpha\\ B_{n\geq 2}^{(\alpha,\theta)}(x) &= B_n^{(\alpha,0)}(x) - \vartheta \frac{E_n \Delta_n}{\lambda_n} B_0^{(\alpha,0)}(x) - \theta \frac{B_n \Delta_n}{\lambda_n} B_1^{(\alpha,0)}(x) \,. \end{cases}$$
(68)

It can be verified that the forward and backward eigenfunctions fulfil the orthogonality relation (59) with $\Delta_0 = \Delta_1 = 1$ and Δ_n as in (55). In particular, for n = 0 and $m \ge 2$, we have

$$\int_{0}^{1} F_{0}^{(\alpha,\theta)}(x) B_{m}^{(\alpha,\theta)}(x) dx = \int_{0}^{1} \left(F_{0}^{(\alpha,0)}(x) + \vartheta \sum_{n=2}^{\infty} \frac{E_{n}}{\lambda_{n}} F_{n}^{(\alpha,0)}(x) \right) \\ \times \left(B_{m}^{(\alpha,0)}(x) - \vartheta \frac{E_{m}\Delta_{m}}{\lambda_{m}} B_{0}^{(\alpha,0)}(x) - \theta \frac{O_{m}\Delta_{m}}{\lambda_{m}} B_{1}^{(\alpha,0)}(x) \right) dx \quad (69)$$
$$= \vartheta \frac{E_{m}}{\lambda_{m}} \Delta_{m} - \vartheta \frac{E_{m}\Delta_{m}}{\lambda_{m}} \Delta_{0} = 0,$$

and similarly for m = 1 and $n \ge 2$.

Furthermore, we have, as before, the forward function

$$\phi(x \mid \tau, \rho) = \sum_{n=0}^{\infty} \rho_n F_n^{(\alpha,\theta)}(x) T_n(\tau) , \qquad (70)$$

 $_{640}$ $\,$ and the backward function $\,$

$$\psi(y \mid x, \tau) = \sum_{n=0}^{\infty} c_n(y) B_n^{(\alpha,\theta)}(x) T_n(\tau) .$$
(71)

The backward function and the marginal distribution, as long as $M < M_{\text{max}} \approx e^{\min(\alpha,\beta)/\vartheta}$, can be interpreted probabilistically as with the general mutationdrift or the pure drift model. As the forward function may attain negative values, expanding it beyond the sample size M has little meaning.

645 4.2.1. Example: one change in the mutation parameters

We present the version of the boundary mutation model with the inhomo-646 geneous linear differential equations, *i.e.*, with the eigenfunctions $F_0^{(\alpha,0)}$ and 647 $B_n^{(\alpha,0)}$. With this choice, a change in the effective population size (population 648 demography), or equivalently in the scaled mutation rate does not necessitate a 649 change in the base. Assume a population in equilibrium at $\tau = s$ with mutation 650 parameters θ_a and α_a , such that the initial distribution is $\rho(x) = \pi(x | \theta_a, \alpha_a)$. 651 The scaled mutation parameters then changes immediately to θ and α , respec-652 tively, and remain constant thereafter. Expanding the stationary distribution 653 at time $\tau = s$ into the forward eigenfunctions $F_n^{(\alpha,0)}(x)$ results in 65

$$\phi(x \mid \tau = s) = F_0^{(\alpha,0)}(x) + (\alpha_a - \alpha)e^{-\theta\tau}F_1^{(\alpha,0)}(x) + \sum_{n=2}^{\infty} \left(E_n(\vartheta + (\vartheta_a - \vartheta)e^{-\lambda_n(s-\tau)} + (\alpha_a - \alpha)\theta O_n(e^{-\theta(s-\tau)} - e^{-\lambda_n(s-\tau)}) \right) F_n^{(\alpha,0)}(x).$$
(72)

With a sample of size M with y alleles of the first type at time $\tau = 0$, the binomial likelihood can be expanded into the backward eigenfunctions with

$$\psi(y \mid x, \tau = 0) = \sum_{n=0}^{M} c_n(y) B_n^{(\alpha,0)}(x)$$
(73)

⁶⁵⁷ The marginal likelihood, calculated at time $\tau = 0$, is

1

$$\Pr(y) = \int_{0}^{1} \phi(x \mid \tau = 0, \rho) \psi(y \mid x, \tau = 0) \, dx = \left[c_0(y) \cdot 1\right] + \left[c_1(y)(\alpha_a - \alpha)e^{-\theta s} \cdot 1\right] \\ + \left[\sum_{n=2}^{M} c_n(y) \left(E_n(\vartheta + (\vartheta_a - \vartheta)e^{-\lambda_n s}) + (\alpha_a - \alpha)\theta O_n(e^{-\theta s} - e^{-\lambda_n s})\right) \cdot \Delta_n\right],$$

$$(74)$$

- $_{658}$ where the terms in the successive square brackets come from the terms in the
- espansion with n = 0, n = 1, and $2 \le n \le M$, respectively, while all terms with

⁶⁶⁰ n > M are zero. Within the square brackets, the terms before the dot are the ⁶⁶¹ time-dependent functions of the forward expansion. The same marginal likeli-⁶⁶² hood is also obtained by using the backward eigenfunctions $B_n^{(\alpha,0)}$, multiplying ⁶⁶³ with the stationary distribution at $\tau = s$, and integrating:

$$\Pr(y) = \int_{0}^{1} \psi(y \mid x, \tau = s) \pi(x, \alpha_{a}, \theta_{a}) dx$$

= $\left[\left(c_{0}(y) + \vartheta \sum_{n=2}^{M} c_{n}(y) E_{n} \Delta_{n} (1 - e^{-n(n-1)s}) \right) \cdot 1 \right]$
+ $\left[\left(c_{1}(y) e^{-\theta s} + \theta \sum_{n=2}^{M} c_{n}(y) E_{n} \Delta_{n} (e^{-\theta s} - e^{-\lambda_{n}s}) \right) \cdot (\alpha_{a} - \alpha) \cdot 1 \right]$
+ $\left[\sum_{n=2}^{M} c_{n}(y) e^{-\lambda_{n}s} \cdot \vartheta_{a} E_{n} \Delta_{n} \right].$ (75)

Within the square brackets, the terms before the dot are the time-dependent functions of the backward expansion. The two different versions of the marginal likelihoods evaluated at $\tau = 0$ and $\tau = s$ are identical.

667 4.2.2. Summary: boundary mutation-drift diffusion

Assuming a bi-allelic boundary mutation-drift model, a system of orthogonal 668 eigenfunctions is defined. As with Jacobi polynomials for the general mutation-669 drift model, these functions provide a convenient base for calculations. While 670 some mathematical inconvenience compared to the modified Jacobi polynomials 671 is encountered, changes in the (effective) population size (*i.e.*, θ) are easily 672 accommodated, because the base of the polynomials need not be changed. As 673 with the general mutation-drift model, efficiency is increased compared to the 674 discrete models since only eigenfunction expansions up to order M instead of 675 N are needed. 676

677 5. The order of the expansion

With bi-allelic diffusion models we naturally assumed a binomial likelihood. This likelihood function corresponds to a polynomial of the order of the sample size M. Both with the general mutation-drift model as with the boundary mutation-drift model only orthogonal polynomials up to the order of the sample size are needed when modeling the allele trajectory backward in time. We also note that a change in the base of the polynomials, because the scaled mutation parameters changed, does not change the order of the expansion.

Now consider two populations with sample sizes $M^{(1)}$ and $M^{(2)}$. Tracing back the allele frequency evolution to the split time requires a polynomial expansion of up to max $(M^{(1)}, M^{(2)})$. Integrating over the population allelic proportion to obtain the marginal likelihood of the data at the split time then requires multiplication with the starting distribution, which can also be expanded into

orthogonal polynomials of order M_a . If the starting population is in equilib-690 rium, then $M_a = 0$. If we first multiply the starting distribution with the 691 backward orthogonal expansion of the smaller population, we obtain a forward 692 expansion of order at least $M_a + \min(M^{(1)}, M^{(2)})$. Because of the orthogonality 693 relation, when multiplying with the backward expansion of the second popula-694 tion, only polynomials of order up to the minimum of $M_a + \min(M^{(1)}, M^{(2)})$ 695 and $\max(M^{(1)}, M^{(2)})$ are needed for obtaining the marginal likelihood. Thus 696 the maximal expansion needed depends on the sample sizes and the starting dis-697 tribution, but is always at least $\min(M^{(1)}, M^{(2)})$ and at $\max(M^{(1)}, M^{(2)})$. Therefore, the required degree of the polynomial expansion is considerably less than previously thought necessary [21, 20]. Similar considerations also apply to 700 more than two populations, where it can be shown that the required expansion 701 to obtain the marginal likelihood is less than the sum of the sample sizes. 702

703 6. Discussion

Starting from bi-allelic mutation-drift models, we use forward and backward 704 processes in discrete or continuous time to efficiently calculate probabilities of 705 population allele proportions. Given a sample from a single population, *i.e.*, a 706 SFS, or samples from more than one population, *i.e.*, a jSFS, from the present, 707 this theory may be used to infer trajectories of population allele frequencies 708 in the past. Integrating over the population allelic proportion, the marginal 700 likelihood of the data may be used to infer population genetic parameters. 710 The discrete-time algorithm is a variant of the forward-backward algorithm 711 and thus makes use of dynamic programming. The continuous time algorithm 712 uses orthogonal polynomials for even more convenient calculation. Further-713 more, we introduce bi-allelic population genetic models that provide us with 714 time-reversible and irreversible transition matrices or kernels. The irreversible 715 models are related to the infinite site [16, 8] or Poisson-random-field models 716 [26]. Both reversible and irreversible models have stationary distributions. 717

Previous diffusion-based methods for inference of population genetic param-718 eters are generally based on modelling allelic proportion trajectories forward-719 in-time. Solutions to the forward diffusion equations are either approximated 720 numerically [e.g., 4, 12, 22] or are provided as functions of orthogonal polyno-721 mials [e.g., 21, 20, 29, 31]. These methods can, in principle, accommodate many 722 demographic scenarios while considering general selection and continuous migra-723 tion. The complexity of these models in combination with the forward-in-time 724 approach often results in complex likelihood functions. Herein, we demonstrate 725 that combining forward- and backward-in-time approaches naturally leads to 726 relatively simple likelihood functions for both discrete and continuous popula-727 tion genetics models (compare eqs. 16 and 30, respectively). 728

Discrete models involve repeated multiplications with a transition matrix of dimension $(N + 1) \times (N + 1)$, where N is the haploid population size. For biological reasons, N should be large to model the large (effective) population sizes usually encountered. For numerical reasons, N should be small, because

iteration of large matrices is time-consuming and numerical errors may accumu-733 late. Mutation rates can be scaled to account for a reduction of N. Transition 734 matrices may be diagonalized to speed up calculations. In any case, N must 735 be at least as big as the sample size M to not lose information. A prior distri-736 bution must be assumed at some time in the past. If this distribution is taken 737 as the stationary distribution of the transition matrix, calculations simplify. At 738 the present time, a probability model of the sampling process, generally a hy-739 pergeometric likelihood, is assumed that is conditional on the sample size M. 740 Zhao et al. [46] present a similar method that is also based on the iteration of a 741 transition matrix (in their case, based on the Wright-Fisher model) and allows 742 for conditioning on the beginning and end states of the chain. They derive the 743 marginal distribution of states intermediate in the chain and simulate trajecto-744 ries. Extending this method to distributions instead of states (in our case, the 745 prior at the beginning and the likelihood at the end of the chain) requires ad-746 ditional considerations and diagonalizing the transition matrix seems necessary 747 in all but the simplest cases. 748

⁷⁴⁹ With continuous diffusion models, the use of orthogonal polynomials is con-⁷⁵⁰ venient. The degree of the polynomials need not be higher than the sample size ⁷⁵¹ M, while the population size is large, which usually fits biological reality. Thus, ⁷⁵² the diffusion approach is mostly preferable over the discrete approach.

Song and colleagues [29, 30, 31, 48] analyse self-adjoint continuous models, 753 such as the general mutation-drift model herein. These authors usually take a 754 Dirac delta function as starting condition instead of a prior distribution at $\tau = s$ 755 (but see Supplemental Information, Section D in Steinrücken et al. [31]). Repre-756 sentation of a Dirac delta function requires an infinite expansion and modeling 757 an arbitrary distribution as starting condition would require a further step (see 758 Appendix 7.3). As these authors also consider selection, eigenfunctions with, in 759 principle, infinite expansions are necessary in any case. A problem with their 760 approach for pure drift models, however, is the restriction at the boundaries, 761 which allows only polymorphic samples to be analyzed (see the subsection 4.1). 762 Interestingly, Zhao et al. [45] also present a diffusion approach to calculate con-763 ditional trajectories that involves the product of solutions of the forward and 764 backward equations. They consider a Dirac delta function as starting state 765 and, additionally, also as a final state. Usually in population genetics, however, 766 only a sample from the present is given, while the starting conditions are even 767 less well defined. Applying this approach to real data thus requires integration 768 over possible starting and final states, which adds another layer of complex-769 ity avoided with our approach. In contrast, Lukić and Hey [20] also use the 770 equilibrium distribution as a starting condition as with the approach presented 771 herein. 772

Generally, using a delta function as an initial condition requires an infinite expansion in orthogonal polynomials. Yet for calculating marginal likelihoods a much lower expansion is needed. Lukić and Hey [20], citing [26], set the degree of polynomial expansion to $(M-2)^K$, where M is the number of haplotypes sampled and K the number of populations. Yet we show that only an expansion between min $(M^{(1)}, M^{(2)})$ and max $(M^{(1)}, M^{(2)})$ is needed, where $M^{(1)}$ and $M^{(2)}$ are the sample sizes in the two populations. With additional populations, the expansion needed is less than $\sum_{i=1}^{K} M_i$. Furthermore, these authors use Chebyshev polynomials, which are not orthogonal with respect to the forward and backward operators. This necessitates numerical integration of a linear system of differential equations to obtain the temporal part of the solution. With orthogonal polynomials, the corresponding system of differential equations is diagonal and thus much simpler.

An analysis also involving a coupled system of ordinary differential equa-786 tions for the temporal evolution of moments [8, 47, 48] also provides solutions 787 for the forward and backward diffusions. The basic model analyzed by these 788 authors is the continuous version of the single-boundary mutation-drift model 789 presented here, where ancestral and derived alleles are differentiated. Zivkovic 790 and Stephan [47] also point out relations of the backward approach to coales-791 cent theory. Recently, a diffusion framework of weak mutation and selection 792 has been incorporated in the theoretical analysis of adaptive landscapes [42], a 793 concept first formulated by Wright [41]. 794

We note that many approaches above [8, 21, 20, 47, 48, 36] use boundary 795 mutation models. Indeed, much of the statistics of population genetics is based 796 on this model, e.g., the important Ewens-Watterson θ [9, 39]. For this model, 797 only the forward transition probabilities have been given so far [8, 21, 36]. For 798 the first time, we give the backward system of orthogonal polynomials and their 799 corresponding eigenvalues herein. The system of eigenfunctions of the pure drift 800 model [33] follows as a special case. As explained above, the possibility to move 801 backward simplifies inference. 802

The demographic scenarios presented here (Fig. 1) are common, e.g., in nat-803 ural populations of fruit flies of the Drosophila genus [e.g., 19, 43, 24]. Addi-804 tionally, the abundance of population data for *Drosophila* species makes them 805 especially suitable for SFS and jSFS analysis under the described framework. 806 Furthermore, the theory can be extended to more than two populations, *i.e.*, to 807 phylogenetic inference. Our methods can also be adjusted to an experimental 808 setting with samples from multiple time points, as e.g., in evolve-and-resequence 809 experiments [18]. Furthermore, a setting with multiple time-points also applies 810 to the analysis of ancient DNA samples as noted by Steinrücken et al. [31]. 811

Generally, the methods and models we present in this article are simple, yet allow for maximum marginal likelihood analysis of SFS and jSFS from splitting populations with mutation-drift or pure drift models, and for inference of evolutionary trajectories of population allele proportions conditional on data.

Acknowledgments

The authors thank Reinhard Bürger, Joachim Hermisson and other colleagues from the Faculty of Mathematics of the University of Vienna, all members of the Institute of Population Genetics at the University of Veterinary Medicine, Vienna, and Andreas Futschik (Johannes Kepler University, Linz). All authors were supported by the Austrian Science Fund (FWF): DK W1225-B20. DS and CK were partially funded by FWF-P24551-B25. CK has been partially funded by the Vienna Science and Technology Fund (WWTF) through
project MA16-061.

825 **References**

- [1] Abramowitz, M. and Stegun, I., editors (1970). Handbook of Mathematical Functions. Dover, 9th ed. edition.
- ⁸²⁸ [2] Baake, E. and Bialowons, R. (2008). Ancestral processes with selection:
 ⁸²⁹ branching and Moran models. *Banach center publications*, **80**, 33–52.
- [3] Bayin, S. (2006). Mathematical methods in science and engineering. Wiley,
 N.Y.
- [4] Bollback, J. P., York, T. L., and Nielsen, R. (2008). Estimation of $2N_es$ from temporal allele frequency data. *Genetics*, **179**(1), 497–502.
- [5] Carlin, B. and Louis, T. (2000). Bayes and empirical Bayes methods. Chapman and Hall, 2nd ed. edition.
- [6] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological se quence analysis. Cambridge University Press, Cambridge.
- Etheridge, A. and Griffiths, R. (2009). A coalescent dual process in a Moran
 model with genic selection. *Theoretical Population Biology*, **75**, 320–330.
- [8] Evans, S., Shvets, Y., and Slatkin, M. (2007). Non-equilibrium theory of the
 allele frequency spectrum. *Theoretical Population Biology*, **71**, 109–119.
- ⁸⁴² [9] Ewens, W. (1974). A note on the sampling theory for infinite alleles and
 ⁸⁴³ infinite sites models. *Theoretical Population Biology*, 6, 143–148.
- [10] Ewens, W. (2004). Mathematical Population Genetics. Springer, N.Y., 2nd
 edition.
- [11] Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum
 likelihood approach. Journal of Molecular Evolution, 17, 368–376.
- [12] Gutenkunst, R., Hernandez, R., Williamson, S., and Bustamante, C.
 (2009). Inferring the Joint Demographic History of Multiple Populations from Multidimensional SNP Frequency Data. *PLoS Genetics*, 5, e1000695.
- ⁸⁵¹ [13] Hein, J., Schierup, M., and Wiuf, C. (2005). *Gene genealogies, variation,* ⁸⁵² *and evolution: a primer in coalescent theory.* Oxford University Press.
- [14] Jewett, E. M., Steinrücken, M., and Song, Y. S. (2016). The effects of population size histories on estimates of selection coefficients from time-series genetic data. *Molecular biology and evolution*, **33**(11), 3002–3027.
- [15] Kimura, M. (1955). Solution of a process of random genetic drift with a continuous model. *Proc. Natl. Acad. Sci. USA*, 41, 144–150.

ACCEPTED MANUSCRIPT

- [16] Kimura, M. (1969). The number of heterozygous nucleotide sites main tained in a finite population due to steady flux of mutations. *Genetics*, 61,
 893–903.
- ⁸⁶¹ [17] Kingman, J. (1982). On the genealogy of large populations. *Journal of* ⁸⁶² Applied Probability, **19A**, 27–43.
- [18] Kofler, R. and Schlötterer, C. (2014). A guide for the design of evolve and
 resequencing studies. *Molecular Biology and Evolution*, **31**, 474–483.
- [19] Li, H. and Stephan, W. (2006). Inferring the Demographic History and
 Rate of Adaptive Substitution in *Drosophila*. *PLOS Genetics*, **10**, e166.
- ⁸⁶⁷ [20] Lukić, S. and Hey, J. (2012). Demographic inference using spectral meth ⁸⁶⁸ ods on SNP data, with an analysis of the human out-of-Africa expansion.
 ⁸⁶⁹ Genetics, 192(2), 619–639.
- ⁸⁷⁰ [21] Lukić, S., Hey, J., and Chen, K. (2011). Non-equilibrium allele frequency ⁸⁷¹ spectra via spectral methods. *Theoretical population biology*, **79**(4), 203–219.
- [22] Malaspinas, A.-S., Malaspinas, O., Evans, S. N., and Slatkin, M. (2012).
 Estimating allele age and selection coefficient from time-serial data. *Genetics*, **192**(2), 599–607.
- [23] McKane, A. and Waxman, D. (2007). Singular solutions of the diffusion
 equation of population genetics. *Journal of Theoretical Biology*, 247, 849–
 858.
- ⁸⁷⁸ [24] Pool, J. E., Corbett-Detig, R. B., Sugino, R. P., Stevens, K. A., Cardeno,
 ⁸⁷⁹ C. M., Crepeau, M. W., Duchen, P., Emerson, J. J., Saelao, P., Begun, D. J.,
 ⁸⁸⁰ and Langley, C. H. (2012). Population genomics of sub-saharan *Drosophila*⁸⁸¹ melanogaster: African diversity and non-African admixture. *PLOS Genet*,
 ⁸⁸² 8(12), e1003080.
- [25] Rabiner, L. and Juang, B. (1986). An introduction to hidden Markov
 models. *IEEE ASSP magazine*, 3, 4–16.
- [26] Sawyer, S. and Hartl, D. (1992). Population genetics of polymorphism and
 divergence. *Genetics*, **132**, 1161–1176.
- ⁸⁸⁷ [27] Schraiber, J. G., Evans, S. N., and Slatkin, M. (2016). Bayesian inference of natural selection from allele frequency time series. *Genetics*, **203**(1), 493–511.
 - [28] Schrempf, D., Minh, B. Q., De Maio, N., von Haeseler, A., and Kosiol, C. (2016). Reversible polymorphism-aware phylogenetic models and their application to tree inference. *Journal of Theoretical Biology*, 407, 362–370.
- ⁸⁹² [29] Song, Y. and Steinrücken, M. (2012). A simple method for finding ex ⁸⁹³ plicit analytic transition densities of diffusion processes with general diploid
 ⁸⁹⁴ selection. *Genetics*, **190**, 1117–1129.

891

- [30] Steinrücken, M., Wang, R., and Song, Y. (2013). An explicit transition den sity expansion for a multi-allelic WrightFisher diffusion with general diploid
 selection. *Theoretical Population Biology*, 83, 1–14.
- [31] Steinrücken, M., Bhaskar, A., and Song, Y. (2014). A novel method for
 inferring general diploid selection from time series genetic data. Annals of
 Applied Statistics, 8, 2203–2222.
- [32] Steinrücken, M., Jewett, E. M., and Song, Y. S. (2015). SpectralTDF:
 transition densities of diffusion processes with time-varying selection param eters, mutation rates and effective population sizes. *Bioinformatics*, **32**(5),
 795–797.
- [33] Tran, T., Hofrichter, J., and Jost, J. (2013). An introduction to the math ematical structure of the Wright-Fisher model of population genetics. *Theory in Biosciences*, 132, 73–82.
- ⁹⁰⁸ [34] Vogl, C. (2014). Estimating the Scaled Mutation Rate and Mutation Bias ⁹⁰⁹ with Site Frequency Data. *Theoretical Population Biology*, **98**, 19–27.
- [35] Vogl, C. and Bergman, J. (2015). Inference of directional selection and mutation parameters assuming equilibrium. *Theoretical Population Biology*, 106, 71–82.
- ⁹¹³ [36] Vogl, C. and Bergman, J. (2016). Computation of the likelihood of joint ⁹¹⁴ site frequency spectra using orthogonal polynomials. *Computation*, **4**, 6.
- [37] Vogl, C. and Futschik, A. (2010). Hidden markov models in biology. In
 O. Carugo and F. Elsenhaber, editors, *Biological Data Mining.*, Methods in
 Molecular Biology. Humana Press.
- 918 [38] Wakeley, J. (2009). Coalescent theory, an Introduction. Roberts and Co.
- ⁹¹⁹ [39] Watterson, G. (1975). On the number of segregating sites in genetical ⁹²⁰ models without recombination. *Theoretical Population Biology*, 7, 256–276.
- [40] Waxman, D. (2011). Comparison and content of the WrightFisher model
 of random genetic drift, the diffusion approximation, and an intermediate
 model. Journal of Theoretical Biology, 269, 79–87.
- [41] Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding, and
 selection in evolution. *Proceedings of the sixth international congress of genetics*, 1, 356–366.
- [42] Xu, S., Jiao, S., Jiang, P., and Ao, P. (2014). Two-time-scale population evolution on a singular landscape. *Physical Review E*, **89**(1), 012724.
- [43] Zeng, K. and Charlesworth, B. (2010). Studying patterns of recent evo lution at synonymous sites and intronic sites in *Drosophila melanogaster*.
 Journal of Molecular Evolution, 183, 651–662.

- [44] Zhao, L., Lascoux, M., Overall, A., and Waxman, D. (2013a). The characteristic trajectory of a fixing allele: a consequence of fictitious selection that
 arises from conditioning. *Genetics*, **195**, 993–1006.
- ⁹³⁵ [45] Zhao, L., Yue, X., and Waxman, D. (2013b). Complete numerical solution ⁹³⁶ of the diffusion equation of random genetic drift. *Genetics*, **194**, 419–426.
- ⁹³⁷ [46] Zhao, L., Yue, X., and Waxman, D. (2014). Exact solution of conditioned
- ⁹³⁸ Wright-Fisher models. Journal of Theoretical Biology, **194**, 973–985,
- [47] Zivkovic, D. and Stephan, W. (2011). Analytical results on the neutral non equilibrium allele frequency spectrum based on diffusion theory. *Theoretical Population Biology*, **79**, 184–191.
- 942 [48] Zivkovic, D., Steinrücken, M., Song, Y., and Stephan, W. (2015). Transi-
- ⁹⁴³ tion densities and sample frequency spectra of diffusion processes with selec-
- tion and variable population size. *Genetics*, **200**, 601–617.

945 7. Appendices

7.1. Derivation of the forward and backward diffusion equations from the de coupled general mutation-drift Moran model

In this appendix, we derive the forward and backward diffusion equation from the forward and backward transition probabilities of the decoupled Moran model with general mutation and drift and show the tight connections between the discrete and continuous models. Derivations are simpler than usual [10]; terms higher than the first derivative with respect to time and second derivative with respect to space do not occur.

Consider a focal bi-allelic site with the population frequency of allele one denoted by $i \ (1 \le i \le N-1)$. With the transition probabilities of the decoupled Moran model (24), the frequency i may increase or decrease by one due to mutation or drift, or remain constant. Forward in time, the difference of the probability at frequency i per Moran step may be written as

$$\Pr(x_{t+1} = i) - \Pr(x_t = i) = \frac{\alpha\theta}{N^2} \left((N - i + 1) \Pr(x_t = i - 1) - (N - i) \Pr(x_t = i) \right) + \frac{\beta\theta}{N^2} \left((i + 1) \Pr(x_t = i + 1) - i \Pr(x_t = i) \right) + \frac{1}{N^2} \left((i - 1)(N - i + 1) \Pr(x_t = i - 1) + (i + 1)(N - i - 1) \Pr(x_t = i + 1) - 2i(N - i) \Pr(x_t = i) \right),$$
(76)

where the term within the first pair of square brackets corresponds to mutation
towards allele one, the term within the second pair to mutation towards allele
zero, and the term within the third pair to genetic drift.

To approximate the change in frequency as a process in continuous time and space, the quantities $\delta \tau = 1/N^2$ and $\delta x = 1/N$ are introduced. Furthermore, time is rescaled as $\tau = t\delta \tau$, the allele proportions as $x = i\delta x$, such that $\phi(x \mid \tau, \rho)\delta \tau \delta x = \Pr(x_t = i)$. Taking the limit $N \to \infty$, eq. (76) is rewritten as

$$\lim_{N \to \infty} \frac{\phi(x \mid \tau + \delta\tau, \rho) - \phi(x \mid \tau, \rho)}{\delta\tau} = \lim_{N \to \infty} \left[\alpha \theta \left(\frac{(1 - x + \delta x)\phi(x - \delta x \mid \tau, \rho) - (1 - x)\phi(x \mid \tau, \rho)}{\delta x} \right) + \beta \theta \left(\frac{(x + \delta x)\phi(x + \delta x \mid \tau, \rho) - x\phi(x \mid \tau, \rho)}{\delta x^2} \right) + \left(\frac{(x - \delta x)(1 - x + \delta x)\phi(x - \delta x \mid \tau, \rho)}{\delta x^2} + \frac{(x + \delta x)(1 - x - \delta x)\phi(x + \delta x \mid \tau, \rho)}{\delta x^2} - \frac{2x(1 - x)\phi(x \mid \tau, \rho)}{\delta x^2} \right) \right].$$
(77)

The term to the left of the equality sign of (77) corresponds to the definition of the first derivative with respect to time τ of $\phi(x \mid \tau, \rho)$; the terms with mutations correspond to the first derivatives with respect to x of $-(1-x)\phi(x \mid \tau, \rho)$ and $x\phi(x \mid \tau, \rho)$, respectively; the drift term corresponds to the definition of the second symmetric derivative with respect to x of $x(1-x)\phi(x \mid \tau, \rho)$. After minor rearrangements, the familiar form of the forward general mutation-drift diffusion equation is obtained

$$\frac{\partial}{\partial \tau}\phi(x\,|\,\tau,\rho) = -\frac{\partial}{\partial x}\theta(\alpha-x)\phi(x\,|\,\tau,\rho) + \frac{\partial^2}{\partial x^2}x(1-x)\phi(x\,|\,\tau,\rho).$$
(7)

78`

⁹⁷³ Considering the Moran model backward in time (see Subsection 2.4), the ⁹⁷⁴ change in frequency i back in time is determined by the transpose of the forward ⁹⁷⁵ transition matrix (24) and can be written as

$$\Pr(y \mid x_{t} = i) - \Pr(y \mid x_{t+1} = i) = \frac{\alpha\theta(N-i)}{N^{2}} \left(\Pr(y \mid x_{t+1} = i+1) - \Pr(y \mid x_{t+1} = i) \right) + \frac{\beta\theta i}{N^{2}} \left(\Pr(y \mid x_{t+1} = i-1) - \Pr(y \mid x_{t+1} = i) \right) + \frac{i(N-i)}{N^{2}} \left(\Pr(y \mid x_{t+1} = i+1) + \Pr(y \mid x_{t+1} = i-1) - 2\Pr(y \mid x_{t+1} = i) \right).$$
(79)

After rescaling time and space, considering the limit $N \to \infty$, and setting $\psi(y | x, \tau) = \Pr(y | x_{t+1} = i)$, we get the backward diffusion equation

$$-\frac{\partial}{\partial\tau}\psi(y\,|\,x,\tau) = \theta(\alpha - x)\frac{\partial}{\partial x}\psi(y\,|\,x,\tau) + x(1-x)\frac{\partial^2}{\partial x^2}\psi(y\,|\,x,\tau).$$
(80)

The minus sign on the left side of the backward diffusion equation (80) may be unusual [compare 10], but necessary such that the time τ runs in the same direction in the forward and backward diffusion. Note that Zhao *et al.* [44] also use a pair of forward and backward diffusion equations with differing signs.

982 7.2. Boundary condition

In the following, we use the prime (') to indicate the (partial) derivative with respect to x and leave away the terms in brackets for ϕ and ψ . Eq. (32) can then be written as

$$\int_{0}^{1} \left[-(P\phi)^{'} + (Q\phi)^{''} \right] \psi \, dx = \int_{0}^{1} \phi \left[P\psi^{'} + Q\psi^{''} \right] dx \,. \tag{81}$$

⁹⁸⁶ The first term on the right side is

$$\int_{0}^{1} \phi P \psi' dx = \phi P \psi \Big|_{0}^{1} - \int_{0}^{1} (\phi P)' \psi dx$$
(82)

 $_{987}$ $\,$ and the second term on the right side is

$$\begin{split} \int_{0}^{1} \phi Q \psi^{''} dx &= \phi Q \psi^{'} \big|_{0}^{1} - \int_{0}^{1} (Q \phi)^{'} \psi^{'} dx \\ &= \phi Q \psi^{'} \big|_{0}^{1} - (\phi Q)^{'} \psi \big|_{0}^{1} + \int_{0}^{1} (Q \psi)^{''} \psi dx \,, \end{split}$$

Hence for eq. (81) to hold, we require the boundary condition

$$\left(\phi Q\psi' - (\phi Q)'\psi + \phi P\psi\right)\Big|_{0}^{1} = 0$$

Using the weight function w(x) defined in formula (33), this condition can be represented more compactly. The weight function fulfils

$$Pw = (wQ)'.$$

(85)

(83)

⁹⁹¹ Substitute
$$\phi(x | \tau) = w(x)g(x, \tau, \rho)$$
 into eq. (84) to obtain

$$0 = (wQg\psi' - (wQg)'\psi + Pwg\psi)|_{0}^{1}$$

= $(wQg\psi' - ((wQ)'g + wQg')\psi + Pwg\psi)|_{0}^{1}$
= $(wQg\psi' - Pwg\psi - wQg'\psi + Pwg\psi)|_{0}^{1}$
= $wQ(g\psi' - g'\psi)|_{0}^{1}$ (86)

⁹⁹² Note that $w(x)Q(x) \propto 1/\xi(x)$ where $\xi(x)$ is the scale function defined in eq. (2) ⁹⁹³ of Song and Steinrücken [29] and g(x) and $\psi(x)$ correspond to f(x) in Song and ⁹⁹⁴ Steinrücken [29]. This condition obviously holds if, at both boundaries, either ⁹⁹⁵ w(x)Q(x) = 0 while $(g\psi' - g'\psi)$ is finite, or $(g\psi' - g'\psi) = 0$ while w(x)Q(x) is ⁹⁹⁶ finite.

997 7.3. Propagator

Song and Steinrücken [29] analyze self-adjoint differential equations, with a Dirac delta function $\delta(x-p)$ as starting point at $\tau = s$. Denote the eigenfunctions of the diffusion equation with the backward operator \mathcal{L}^* with $B_n(x)$. Eq. (5) of Song and Steinrücken [29] defines a "propagator" [3, chap. 19]

$$p(x \mid p, \tau) = \sum_{n=0}^{\infty} e^{-\lambda_i \tau} \pi(x) \frac{B_n(x) B_n(p)}{\langle B_n(x) B_n(p) \rangle_{\pi}}$$
(87)

as the solution of the diffusion equation with a starting state modeled by the Dirac Delta function $\delta(x-p)$. If the starting condition is not a particular state but, more usually, a distribution $\rho(p)$, the function

$$h(x \mid p, \rho, \tau) = \int_0^1 p(x \mid p, \tau) \rho(p) \, dp \tag{88}$$

solves the diffusion equation. From the orthogonality relation it is evident that, also with this indirect route, only an expansion of degree M is needed for calculating the marginal likelihood.