
Closed Frequent Itemset Mining with Arbitrary Side
Constraints

Gökberk Koçak∗, Özgür Akgün∗, Ian Miguel∗, Peter Nightingale†
∗School of Computer Science, University of St Andrews, St Andrews, Fife KY16 9SX, UK

{gk34, ozgur.akgun, ijm}@st-andrews.ac.uk
†Department of Computer Science, University of York, Deramore Lane, Heslington, York YO10 5GH, UK

peter.nightingale@york.ac.uk

Abstract—Frequent itemset mining (FIM) is a method for
finding regularities in transaction databases. It has several
application areas, such as market basket analysis, genome anal-
ysis, and drug design. Finding frequent itemsets allows further
analysis to focus on a small subset of the data. For large datasets
the number of frequent itemsets can also be very large, defeating
their purpose. Therefore, several extensions to FIM have been
studied, such as adding high-utility (or low-cost) constraints
and only finding closed (or maximal) frequent itemsets. This
paper presents a constraint programming based approach that
combines arbitrary side constraints with closed frequent itemset
mining. Our approach allows arbitrary side constraints to be
expressed in a high level and declarative language which is then
translated automatically for efficient solution by a SAT solver.
We compare our approach with state-of-the-art algorithms via
the MiningZinc system (where possible) and show significant
contributions in terms of performance and applicability.

Index Terms—Data mining, Pattern mining, Frequent itemset
mining, Closed frequent itemset mining, Constraint Modelling

I. INTRODUCTION

Frequent itemset mining (FIM) finds regularities in transac-
tion databases. It has numerous applications, such as to market
basket analysis, genome analysis, and drug design [1], [2].
Finding frequent itemsets allows further analysis and human
inspection to focus on a small subset of the data [3].

FIM is performed on transaction databases, where each
transaction is a set of items. For a subset of items S, we
define support(S) to represent the number of transactions
that have S as a subset. A frequent itemset is any S with
support(S) ≥ t, where t is the threshold of frequency. This
threshold is often given as a percentage of the total number
of transactions in the dataset.

The number of transactions and the number of items in a sin-
gle transaction may vary greatly among application domains.
For example, among the sixteen datasets listed on the CP4IM
website1 and hosted on the UCI Machine Learning Repository
[4], the number of transactions range between 101 and 8124,
and the number of items ranges between 27 and 287.

Lymphography [5] is a dataset with just 148 transactions
and 68 items. Despite this relatively small size, there are nearly
ten million frequent itemsets in this dataset (with t = 10%).
Extensions to FIM were proposed to reduce the number of

This work was supported via EPSRC EP/P015638/1.
1https://dtai.cs.kuleuven.be/CP4IM/datasets/

1 language Essence 1.3

2 letting ITEM be domain int(...)

3 letting SUPPORT be domain int(...)

4 given db : mset of set of ITEM

5 given min_support : int

6 given current_size : int

7 given solutions_so_far :

8 set of (set of ITEM, SUPPORT)

9 find fis :

10 (set (size current_size) of ITEM, SUPPORT)

11 such that

12 fis[2] = (sum entry in db .

13 toInt(fis[1] subsetEq entry)),

14 fis[2] >= min_support,

15 C(fis),

16 forAll (sol, sup) in solutions_so_far .

17 (fis[1] subset sol) -> (fis[2] > sup)

Fig. 1. ESSENCE specification for Closed and Constrained Frequent Itemset
Mining, slightly abbreviated.

frequent itemsets and to produce more focused results. There
are broadly two categories of these extensions in the literature:

1) application-specific side constraints on the frequent
itemsets;

2) constraints between solutions, such as maximality or
closedness.

The combination of these two kinds of constraints was ex-
plored in [6], where the employed algorithm needs to be
carefully configured depending on the properties of the side
constraints. In this paper, we present a constraint programming
based declarative approach that works with arbitrary side con-
straints completely automatically. We focus on closed (instead
of maximal) frequent itemset mining since it is a significantly
more difficult problem to solve. Our approach can be applied
to maximal frequent itemset mining with a minor change to a
specification. No programming whatsoever is required.

Figure 1 presents an ESSENCE [7]–[9] specification for
closed and frequent itemset mining, which we will use

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/161932402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dtai.cs.kuleuven.be/CP4IM/datasets/


throughout this paper. ESSENCE is a constraint specification
language whose key feature is support for abstract decision
variables, such as multisets, sets, functions, and relations, as
well as nested types, such as multisets of relations, or the set
of tuples present in the figure. The abstraction of ESSENCE
enables novel solving strategies [10], [11]. ESSENCE specifica-
tions may be solved via a toolchain comprising the CONJURE
[12]–[14] and SAVILE ROW [15]–[18] automated constraint
modelling tools. SAVILE ROW has multiple backends to ac-
commodate solution via constraint or SAT solvers. Herein we
employ the SAT solver nbc_minisat_all [19].

In the specification, lines 4–5 contain the declarations for
the initial database represented as a multi-set of sets, and the
min_support value that is the frequency threshold. Key to
our approach is the iterative solution of the model refined from
this specification, starting with the largest frequent itemset
cardinality and decrementing the cardinality by one at each
iteration. The cardinality of the frequent itemset at each
iteration is governed by the current_size parameter at
Line 6. Lines 7–8 define an additional parameter needed for
iteratively solving this model, as detailed in Section IV. Lines
9–10 contain the decision variable fis, whose domain is
a tuple with two components: the set of items, and their
support. Lines 12–14 post the frequency constraint, and Line
15 represents a placeholder for the side constraint. Our method
supports any constraint at this position, and in this paper we
focus on two side constraints from the literature: high utility
[20] and low cost [6]. Lines 16–17 represent the closedness
constraint. This constraint can be straightforwardly modified
to find maximal frequent itemsets instead.

A. Contributions

We give a high-level declarative problem specification in
ESSENCE for the closed frequent itemset mining problem and
a method that supports arbitrary side constraints. Our method
is completely automated: it does not require the user to make
any decisions about which mining algorithm to employ. We
present an exhaustive empirical study where we compare our
method to several execution plans offered by MiningZinc [20],
[21]. We also construct non-trivial instances for the high-utility
and low-cost closed itemset mining problems at varying levels
of frequency thresholds, which we hope will become valuable
to facilitate further research on these problems.

II. BACKGROUND: CONSTRAINT PROGRAMMING AND
PROPOSITIONAL SATISFIABILITY

In this paper we use existing tools for solving discrete
decision-making and optimisation problems. It is natural to
characterise such problems as a set of decision variables,
each representing a choice that must be made in order to
solve the problem at hand (e.g. which staff member is on
duty for the Friday night shift), and a set of constraints
describing allowed combinations of variable assignments (e.g.
a staff member cannot be assigned to a day shift immediately
following a night shift). A solution is an assignment of a value

to each variable satisfying all constraints. Many decision-
making and optimisation formalisms take this general form,
including: constraint programming (CP) [22], propositional
satisfiability (SAT) and its extensions [23], and operations
research approaches, particularly Mixed Integer Programming
(MIP) [24]. These approaches have much in common, but
differ in the types of decision variables and constraints they
support, and the inference mechanisms used to find solutions.

The Propositional Satisfiability Problem (SAT) is to find an
assignment to a set of Boolean variables so as to satisfy a given
Boolean formula, typically expressed in conjunctive normal
form [23]. SAT has many important applications, such as
hardware design and verification, planning, and combinatorial
design [25]. Powerful, robust solvers have been developed for
SAT employing techniques such as conflict-driven learning,
watched literals, restarts and dynamic heuristics for back-
tracking solvers [26], and sophisticated incomplete techniques
such as stochastic local search [27]. We employ an AllSAT
solver [19] designed to find all solutions to a given Boolean
formula. The AllSAT solver we use (nbc_minisat_all) is
a backtracking solver benefiting from conflict-driven learning
and the other techniques mentioned above.

CP provides a richer language of discrete variables with
domains either given in extension or expressed in terms of
upper and lower bounds, arithmetic and logical operators
over these variables, and a library of ‘global’ constraints that
capture common reasoning patterns. We use the automated
modelling assistant SAVILE ROW [15]–[17] that takes a solver-
independent CP model in the language ESSENCE PRIME and
translates it into a form suitable for a specific solver, while
also improving the formulation using a variety of techniques.
SAVILE ROW supports integer and Boolean decision variables,
and matrices of these two types. It uses the MINION [28] CP
solver in a preprocessing mode to filter the variable domains.
In this paper we use SAVILE ROW to encode the problem
instances into SAT before solving with the AllSAT solver.

CONJURE [12]–[14] is an automated constraint modelling
tool, supporting higher-level variable types such as partitions,
sets, multisets, functions and sequences (nested arbitrarily)
expressed in the ESSENCE language [7]–[9]. CONJURE trans-
lates ESSENCE specifications into ESSENCE PRIME suitable
for input into SAVILE ROW. Our use of CONJURE enables
natural, declarative and very concise specifications of frequent
itemset mining and its variations.

III. EXTENSIONS TO FREQUENT ITEMSET MINING

Plain frequent itemset mining is concerned only with finding
subsets of items that occur together in a transaction database.
There are typically a large number of frequent itemsets and
algorithms like Apriori, LCM and Eclat provide very efficient
ways of enumerating them. For example, for the dataset in
Figure 2 with four items (in I) and three transactions (in T),
there are ten frequent itemsets if the minimum support is 2.



I = {1, 2, 3, 4}

T = {{1, 2, 4}, {1, 2, 3, 4}, {3, 4}}

FIS = {{},{1}, {2}, {3}, {4}, {1, 2},
{1, 4}, {2, 4}, {3, 4}, {1, 2, 4}}

Fig. 2. A small database of transactions

A. Side constraints

Application-specific side constraints are often added to an
itemset mining problem to provide focus for the results.
Some of these constraints are simple: excluding a certain
itemset altogether, insisting that a certain itemset has to be
in every result, putting lower/upper bounds on the cardinality
of itemsets, etc. Constraints like these have been incorporated
into existing frequent itemset solvers in the past. For example,
LCMv2 [29] does not support itemset cardinality constraints,
however a later version (LCMv5) added support for them.
Adding support for new side constraints inside a dedicated
itemset solver requires modification to the solver. Moreover,
every new constraint requires non-trivial reasoning in terms of
its integration to the existing algorithm.

High-utility frequent itemset mining is a more complex
extension. Recent work [20] presents a constraint model for
this problem, which is a straightforward encoding of a utility
value per item and an arithmetic constraint requiring the sum
of utilities in an itemset to be greater than a minimum utility
value. In our running example in Figure 2 if we use 1, 2, 2, 1
as the utility values for items 1, 2, 3, 4 respectively, and with
a minimum utility threshold of 3, the remaining frequent
itemsets are {{1, 2}, {2, 4}, {3, 4}, {1, 2, 4}}.

Low-cost frequent itemset mining is another similar exten-
sion that is used as a motivating example in [6]. In low-cost
itemset mining we post an arithmetic constraint that requires
the sum of all costs in an itemset to be lower than a cost
threshold, as opposed to greater than a utility threshold in
high-utility mining. In our running example, using 1, 2, 2, 1
as cost values for items 1, 2, 3, 4 respectively, and with a
maximum cost threshold of 3, the remaining frequent itemsets
are {{}, {1}, {2}, {3}, {4}, {1, 2}, {1, 4}, {2, 4}, {3, 4}}.

B. Constraints among solutions

Another class of extensions to frequent itemset mining in-
volves constraints among solutions, which are written in terms
of the full set of solutions (all frequent itemsets). Maximality
is a well-known constraint in this class [30]. A frequent itemset
is maximal if and only if none of its supersets are frequent.
This condition intuitively follows from the observation that
if an itemset is frequent all of its subsets are also frequent.
Including them in the results does not add value.

Closedness is a similar constraint [31]. A frequent itemset is
closed if and only if its support is greater than that of all of its
supersets. Hence, in contrast to maximal itemset mining, the
result set of closed itemset mining may include subsets of other

closed itemsets if the support of the smaller set is greater than
the support of the larger set. Intuitively, the closed itemsets are
a succinct representation of the full set of frequent itemsets,
whereas the maximal itemsets are not.

In our running example with min_support 2, the maxi-
mal itemsets are {{3, 4}, {1, 2, 4}} and the closed itemsets are
{{4}, {3, 4}, {1, 2, 4}}. This is because {4} has support of 3,
which is greater than that of all of its frequent supersets.

Herein we focus on closed frequent itemset mining since
it is a significantly more difficult problem to solve. Our
approach can be applied to maximal frequent itemset mining
with a small change to the ESSENCE specification and no
programming whatsoever.

C. Closed and constrained itemset mining

Combining problem specific side constraints with con-
straints between solutions is appealing since this combination
would provide the benefits of both classes of extensions. There
is some ambiguity about what this combination might mean
and this was one of the motivations of our method.

There are two possible definitions for the combined prob-
lem: (1) all closed frequent itemsets that also satisfy the
side constraint (2) all frequent itemsets that satisfy the side
constraint and are closed within this solution set.

The former is strictly less useful since when we remove
a closed frequent itemset from the solution set due to the
side constraint, we might also remove several of its subsets.
We demonstrate the difference between the two definitions in
Table I using our running example with a minimum support
value of 2, and a minimum cost threshold of 3. Starting from
the same database, the two methods reach different sets of
solutions. In the first table, the problem arises from removing
the set {1, 2, 4} and consequently losing all of its subsets from
the solution set. This produces an incomplete set of solutions.

This problem only occurs when the side constraint is not
monotone [6]. A side constraint C is monotone when for any
two frequent itemsets a and b with a ⊂ b, C(a) =⇒ C(b).
The two side constraints that we consider in this paper are
high-utility (monotone) and low-cost (not monotone).

The combination of these two kinds of constraints was
explored in [6], where the employed algorithm needs to
be carefully configured depending on properties of the side
constraints. In this paper, we present a constraint programming
based declarative approach that works with arbitrary side
constraints completely automatically.

IV. CLOSED FIM WITH ARBITRARY SIDE CONSTRAINTS

Our approach to closed itemset mining (with or without side
constraints) is iterative. We first find frequent itemsets of the
largest cardinality possible, that of the largest transaction. For
the largest cardinality, all frequent itemsets are guaranteed to
be also closed frequent itemsets, since they have no frequent
supersets that can rule them outside of the closed set. We
then iteratively decrement the cardinality by one and solve
for all frequent itemsets. At each iteration we also produce
an exclusion constraint (see Lines 13–14 of Figure 1), which



TABLE I
THE DIFFERENCE BETWEEN THE ORDER OF APPLICATION OF SIDE CONSTRAINTS AND THE CLOSEDNESS CONSTRAINT.

(Step 1)
Database

(Step 2)
Closed Itemsets

(Step 3)
Closed and Low-Cost

{{1, 2, 4},
{1, 2, 3, 4},
{3, 4}}

{{4}, {3, 4}, {1, 2, 4}} {{4}, {3, 4}}

(Step 1)
Database

(Step 2)
Frequent Itemsets

(Step 3)
Low-Cost

(Step 4)
Low-Cost and Closed

{{1, 2, 4},
{1, 2, 3, 4},
{3, 4}}

{{}, {1}, {2}, {3},
{4}, {1, 2}, {1, 4},
{2, 4}, {3, 4},
{1, 2, 4}}

{{}, {1}, {2}, {3},
{4}, {1, 2}, {1, 4},
{2, 4}, {3, 4}}

{{4}, {1, 2}, {1, 4},
{2, 4}, {3, 4}}

ensures that all solutions found at a certain iteration are closed
with respect to solutions found at previous iterations. This
approach is sound, i.e. we do not produce any frequent itemsets
that are not closed, since the closedness property of an itemset
only depends on larger frequent itemsets. It is also complete
since we enumerate all solutions for every itemset cardinality.
This is related to general constraint dominance programming
approaches [32], [33]. Here, we present a specialised method
that exploits the dominance relationship among the solutions
and the order of search to achieve high-performance.

1: procedure ITERATIVEMINER(D)
2: ub ← SMARTSTART(D)
3: solutions ← {}
4: size ← ub
5: while size ≥ 0 do
6: s← SOLVE(D, solutions, size)
7: solutions ← solutions ∪ s
8: size ← size − 1
9: end while

10: return solutions
11: end procedure

Fig. 3. Iterative Closed and Constrained Itemset Mining with CP

For a given problem class CONJURE is called once to refine
the ESSENCE specification in Figure 1 into a constraint model
in ESSENCE PRIME. CONJURE produces an Occurrence model
[34] for the set variable, which uses an array of Boolean
decision variables for each item. SAVILE ROW employs the
MINION constraint solver as a preprocessing step that achieves
singleton arc consistency on the lower and upper bounds of
decision variables. This step has the potential to reduce the
number of iterations considerably by reducing the range of
itemset cardinalities that need to be considered. Thereafter,
each iteration is performed as described in Figure 3.

The SMARTSTART procedure that is called on Line 2 of
Figure 3 invokes Eclat [35] to get a good upper bound. Eclat
is a frequent itemset solver that does not support any of the
side constraints that we are interested in. For some datasets
Eclat is able to count the number of maximal frequent itemsets
at each cardinality level very quickly. For others it takes a very

long time and/or a lot of memory. We use a simple method
of benefiting from Eclat at this step: we run it with a fixed
time limit of three minutes and a memory limit of 15GB. If it
finishes within these limits, we use the cardinality of the largest
maximal frequent itemset as our starting point. Otherwise,
we start from the cardinality of the widest transaction in the
database. In our experiments this SMARTSTART phase often
helps us reduce the number of iterations.

The main loop (lines 5–9) is implemented within a lightly
modified version of SAVILE ROW. The problem instance is
translated into SAT using the standard encoding provided by
SAVILE ROW. We selected a SAT solver due to the large
number of Boolean variables in the model and the relatively
simple constraints. We use nbc_minisat_all [19], which
is an AllSAT solver based on MiniSat [36]. AllSAT solvers are
designed to enumerate all solutions of an instance of SAT. The
SAT encoding is generated once then incrementally modified
(by adding new exclusion constraints and changing the value
of the size variable) for each iteration of the main loop.

V. EMPIRICAL EVALUATION

We test our method on all of the sixteen datasets listed on
the CP4IM website. We design two closed itemset mining ex-
periments with side constraints and compare the performance
of our method against MiningZinc. MiningZinc works with
a declarative model, and calculates a number of execution
plans after inspecting a given model. It is hard to estimate
the relative performance of these execution plans, so in the
interest of fairness we ran every execution plan offered by
MiningZinc.

The first experiment uses a high-utility constraint, and we
compare our computational results against the MiningZinc
model given in Figure 8 of [20]. The second experiment uses
a low-cost constraint in addition to the high-utility constraint.
The low-cost constraint can be written in the MiningZinc
language in a similar way to the high-utility constraint in the
model of Figure 8 of [20]. MiningZinc produces a number
of execution plans when provided with this model. However,
all of these execution plans produce faulty answers. The low-
cost constraint is not monotonic, so the MiningZinc execution
plans suffer from the problem we describe in Section III-C.



Experiments were performed with 16 processes in parallel
on a 32-core AMD Opteron 6272 at 2.1 GHz with 256 GB
RAM. We modified the MiningZinc source code to use a
different temporary directory for each of its invocation. By
default MiningZinc uses a fixed directory for its temporary
files, which precludes us from running multiple MiningZinc
processes at the same time.2

A. Closed High-Utility Itemset Mining

In order to experiment with high-utility itemset mining, we
need to assign utility values for each item and decide on a
threshold value for total utility. We do this by uniformly ran-
domly assigning a value between 0 and 5 to each item. We then
choose a utility threshold value that results in finding at most
tens of thousands of closed frequent itemsets. The changes
to the ESSENCE specification given in Figure 1 are minimal.
We add two parameters and a single arithmetic constraint as
seen below. We experiment with the same frequency thresholds
(10%, 20%, 30%, 40% and 50%) as [20].

1 given utilities : matrix indexed by

2 [ITEM] of int(0..5)

3 given min_util : int

4 such that

5 (sum item in fis[1] . utilities[item])

6 >= min_util

MiningZinc calculates eighteen execution plans for closed
high-utility itemset mining. Plans 1–2 run Eclat to find closed
itemsets, followed by different ways of filtering the closed
itemsets using a constraint programming based approach.
Plans 3–6 run a preprocessing step followed by different
configurations of Gecode [37]. Plans 7–14 run Gecode without
a preprocessing step. Plans 15–18 run LCM (v2 and v5) to find
closed itemsets, followed by a constraint programming based
approach to filter the side constraints.

All of these execution plans either calculate closed itemsets
first and then apply side constraints, or contain the closedness
constraint inside a constraint model and apply it simultane-
ously with the side constraints.

For sixteen datasets and five different frequency levels we
construct 80 instances. With a 3-hour time limit, we are able
to solve all but 6 of these instances. We also run all execution
plans produced by MiningZinc, and 12 plans out of 18 produce
an incorrect number of solutions for at least one instance. To
be clear, this is not for reasons of monotonicity, since the high-
utility constraint is monotonic; the reasons are unknown to us.
We exclude these execution plans from our comparison.

Table II gives the runtimes of several MiningZinc execution
plans and our method (ESSENCE Mining). The last line of
each heading indicates the execution plan we use. For example
MZ-11 means that this was the eleventh execution plan. In
square brackets we indicate the Gecode option used, where
F represents a model rewriting called freq_items, and R

2We make all of our data files and software available at
http://github.com/stacs-cp/OEDM18-mining

represents another called reify. FI indicates a preprocessing
step, FreqItems, that runs before Gecode.

The ESSENCE Mining column contains time taken by our
method, including modelling overhead and the call to Eclat (in-
side the SMARTSTART procedure). We compare this runtime
against the runtimes of the MiningZinc execution plans and
indicate the winner using a bold font. In addition, we provide
the time taken by only the AllSAT solver for our method
in the ESSENCE Mining (Solver Time) column. In general,
the modelling overhead is small. However in some cases
(for example in the audiology dataset) there is a significant
difference between the total time and the solver time. This is
a unique case in our experiments: on the audiology dataset
the SMARTSTART procedure always times out (we use a fixed
time limit of 3 minutes) without making any progress. On the
harder instances of the hypothyroid dataset our method is
the only one that finishes before the time limit.

Overall, on this experiment our method, which does not
require the user to select among a large set of execution
plans, reliably finds correct results and is competitive with the
six of the eighteen execution plans produced by MiningZinc
that produce correct solutions. This is despite not exploiting
the monotonicity of the high-utility constraint. However, the
greatest benefit of our approach is its generality. In the next
section we analyse our performance in the presence of a
constraint that is not monotone.

B. Closed High-Utility and Low-Cost Itemset Mining

We experiment with a combined high-utility and low-cost
itemset mining problem. To generate costs per item and a cost
threshold, we follow a similar procedure to that of generating
utility values and the utility threshold. The cost values are
uniformly randomly chosen to a value between 0 and 5. We
also maintain the utility values that were previously generated.
A cost threshold and a utility threshold is chosen to limit
the number of closed frequent itemsets to at most tens of
thousands of closed frequent itemsets. We add two more
parameters and another arithmetic constraint.

1 given cost_values : matrix indexed by

2 [ITEM] of int(0..5)

3 given max_cost : int

4 such that

5 (sum item in fis[1] . cost_values[item])

6 <= max_cost

Extending our ESSENCE problem specification to work
with the low-cost constraint is trivial. We add the necessary
statements for the parameter values and post an arithmetic
constraint that requires the total cost of an itemset to be less
than the cost threshold.

We also tried extending the MiningZinc model (from Figure
8 of [20]) similarly. Due to the issue that was explained in
Section III-C the extended model gives incorrect results: it
misses a large number of solutions. Hence, comparing our
performance to this model is not sensible.

http://github.com/stacs-cp/OEDM18-mining


TABLE II
CLOSED HIGH-UTILITY ITEMSET MINING RESULTS ON 9 DATASETS. TIMES ARE IN SECONDS (* INDICATES A 3-HOUR TIMEOUT).

Instance Gecode
(MZ-11)

Gecode
[F]

(MZ-13)

Gecode
[FR]

(MZ-12)

Gecode
[R]

(MZ-14)

FI +
Gecode

[F]
(MZ-6)

FI +
Gecode

[FR]
(MZ-5)

Essence
Mining

Essence
Mining
(Solver
Time)

Number
of

Solutions

lymph-50 2 2 3 3 3 3 15 0 684
lymph-40 3 3 4 4 3 4 17 1 981
lymph-30 4 4 6 5 4 6 16 2 1,042
lymph-20 6 6 8 8 6 8 22 7 1,844
lymph-10 13 13 19 19 13 19 48 29 4,443
krvskp-50 704 702 149 150 710 145 964 842 1
krvskp-40 1,008 1,002 253 249 1,006 249 1,621 1,487 5
krvskp-30 4,674 4,692 626 629 4,678 629 3,883 3,732 18
krvskp-20 * * 1,651 1,636 * 1,651 10,171 9,985 113
krvskp-10 * * 3,708 3,657 * 3,697 10,746 10,509 189
hypo-50 * * 643 624 * 632 3,226 3,076 302
hypo-40 * * 2,027 2,019 * 2,020 8,045 7,872 691
hypo-30 * * 6,933 6,842 * 6,923 10,111 9,911 163
hypo-20 * * * * * * 6,936 6,711 16
hypo-10 * * * * * * 10,646 10,422 32
hepatitis-50 5 5 4 4 5 5 15 2 444
hepatitis-40 13 13 7 7 13 7 17 5 251
hepatitis-30 42 41 19 19 42 19 33 19 659
hepatitis-20 51 52 29 29 52 29 58 32 555
hepatitis-10 99 106 98 94 108 99 247 204 11,493
heart-50 13 13 12 12 13 12 25 8 29
heart-40 36 37 36 36 37 36 51 33 27
heart-30 197 201 116 117 198 117 254 218 47
heart-20 901 904 496 491 906 497 1,039 997 635
heart-10 3,971 3,991 3,387 3,383 3,971 3,374 * * 38,774
german-50 27 28 13 13 27 13 59 19 8
german-40 49 48 26 25 48 25 125 85 5
german-30 141 148 52 51 147 52 524 469 2
german-20 732 714 214 216 716 212 1,295 1,234 53
german-10 6,063 6,151 2,011 2,021 6,071 2,008 6,701 6,588 5,911
australian-50 58 59 31 32 58 30 87 56 2
australian-40 245 242 132 130 240 129 636 582 104
australian-30 892 878 380 376 870 381 1,791 1,732 7
australian-20 3,848 3,812 1,531 1,510 3,825 1,514 6,409 6,342 146
australian-10 * * 6,901 6,959 * 6,962 * * 717
audiology-50 2,098 2,111 241 239 2,146 242 286 48 166
audiology-40 1,362 1,360 226 225 1,370 225 364 48 3,463
audiology-30 649 648 196 197 648 198 260 43 2,278
audiology-20 307 312 209 211 311 211 235 51 738
audiology-10 215 214 282 277 215 280 329 122 7,643
anneal-50 75 75 17 16 75 16 63 28 39
anneal-40 124 124 43 43 123 42 129 84 63
anneal-30 266 270 99 98 274 98 293 244 163
anneal-20 514 514 277 283 512 277 654 609 893
anneal-10 774 771 1,102 1,105 786 1,094 2,688 2,601 18,335

Following the analysis of [6] we decided to relax the closed-
ness condition for MiningZinc and find all frequent itemsets
that satisfy the side constraints. This is the only sensible
comparison since the full set of closed frequent itemsets is
a lossless compression of the full set of frequent itemsets, and
thus the two contain identical amounts of information. In other
words, we use MiningZinc to perform the first three steps in
the second table of Table I. To achieve the same results as our
method another procedure would be needed in MiningZinc.

We verified the correctness of our results compared with
those obtained by MiningZinc by implementing an optional

post-processing step that expands the set of closed frequent
itemsets into the set of all frequent itemsets satisfying the side
constraints. We found the same number of frequent itemsets
as MiningZinc whenever ESSENCE Mining did not time out.

Table III contains the results of this experiment. We limited
this experiment to the six execution plans that gave correct
results in Section V-A. Often the number of closed frequent
itemsets are much smaller than the number of all frequent
itemsets, therefore directly calculating the set of closed item-
sets may have less overhead. However it is important to note
that from the full set of closed itemsets (our results), it is



TABLE III
CLOSED HIGH-UTILITY AND LOW-COST ITEMSET MINING ON 9 DATASETS. TIMES ARE IN SECONDS (* INDICATES A 3-HOUR TIMEOUT).

Instance Gecode
(MZ-11)

Gecode
[F]

(MZ-13)

Gecode
[FR]

(MZ-12)

Gecode
[R]

(MZ-14)

FI +
Gecode

[F]
(MZ-6)

FI +
Gecode

[FR]
(MZ-5)

Essence
Mining

Essence
Mining
(Solver
Time)

Number
of

Solutions

lymph-50 15 5 10 10 5 9 16 1 1,492
lymph-40 33 8 23 23 9 20 17 2 1,711
lymph-30 103 29 93 91 32 80 24 6 3,902
lymph-20 194 60 202 203 64 188 38 17 6,322
lymph-10 920 526 987 1,263 447 1,002 165 126 22,606
krvskp-50 * 3,896 282 281 3,911 274 1,001 872 381
krvskp-40 * 6,774 794 792 6,901 761 2,221 2,079 1,035
krvskp-30 * * 3,057 3,057 * 2,971 4,735 4,531 4,371
krvskp-20 * * * * * * * * *
krvskp-10 * * * * * * * * *
hypo-50 * * * * * * 4,984 4,498 30,950
hypo-40 * * * * * * 2,455 2,281 1,629
hypo-30 * * * * * * 7,800 7,574 2,748
hypo-20 * * * * * * 5,585 5,358 39
hypo-10 * * * * * * 6,036 5,727 481
hepatitis-50 15 9 15 15 9 15 21 6 3,590
hepatitis-40 67 37 72 73 39 68 54 31 12,587
hepatitis-30 322 195 256 254 200 237 83 54 18,139
hepatitis-20 1,862 1,402 1,192 1,191 1,452 1,119 214 175 23,379
hepatitis-10 10,368 8,614 3,283 3,356 9,457 2,962 251 211 17,685
heart-50 55 16 18 17 16 16 27 8 483
heart-40 254 107 122 120 110 113 92 68 3,630
heart-30 1,469 760 521 516 774 485 298 264 7,165
heart-20 * 8,219 7,561 7,585 8,082 6,564 3,367 3,224 68,040
heart-10 * * * * * * 4,380 4,296 19,053
german-50 98 36 23 23 35 23 72 27 377
german-40 354 136 127 128 140 120 182 125 1,969
german-30 1,479 662 893 883 671 844 620 519 9,087
german-20 7,049 3,532 6,371 6,369 3,618 5,683 1,904 1,614 40,311
german-10 * * 6,780 7,288 * 6,485 4,730 4,633 5,581
australian-50 479 200 182 177 204 177 166 118 2,093
australian-40 2,860 1,688 1,182 1,174 1,764 1,094 553 492 4,474
australian-30 * * 10,672 10,647 * 10,272 2,131 2,003 16,020
australian-20 * * * * * * 9,044 8,862 22,374
australian-10 * * * * * * * * *
audiology-50 * * 1,123 1,115 * 1,025 265 17 6,699
audiology-40 * * 436 433 * 370 274 14 8,283
audiology-30 * 4,688 423 417 4,751 349 259 14 7,357
audiology-20 * * 1,940 1,950 * 1,647 260 28 9,667
audiology-10 * * 5,081 5,113 * 4,591 254 33 6,761
anneal-50 * * * * * * 411 335 17,456
anneal-40 * * * * * * 1,595 1,474 36,041
anneal-30 * * * * * * 1,150 1,048 25,487
anneal-20 * * * * * * 1,672 1,572 24,728
anneal-10 * * * * * * 2,809 2,683 32,689

trivial to generate the set of all frequent itemsets.
Lymphography (lymph) is a relatively small that has 10M

frequent itemsets and 47K closed itemsets (at 10% frequency).
The results show that there is an overhead in our system for
easy instances, for lymph-50 even though the solver spends
1 second, the total time is 16 seconds. This overhead quickly
becomes negligible for harder instances, in the rest of the
lymph-X instances the speed-up achieved by our method
progressively increases as the instance becomes harder.

Kr-vs-kp (krvskp) is the only instance where our method
is consistently slower than MiningZinc. This dataset is both
very large and it also seems to have a very large ratio between

the number of frequent itemsets and closed frequent itemsets.
Intuitively the set of frequent itemsets of this dataset does
not compress very well. Since the number of closed itemsets
is very close to the number of frequent itemsets, it is not
surprising that a more specialised tool that focuses on mining
tasks handles this case slightly better.

Hypothyroid (hypo) is a medical dataset that is of a similar
size to Kr-vs-kp, but seems to have a lower ratio of closed
itemsets to frequent itemsets. Our approach is the only one
that can complete the task in the 3-hour time limit. The
performance does not seem to directly depend on the number



1 5 10 20 30 40 50
Lymphography

0

1,000

2,000 Essence Mining
FI + Gecode[FR]

1 5 10 20 30 40 50
Hepatitis

0

5,000

10,000 Essence Mining
FI + Gecode[FR]

1 5 10 20 30 40 50
Audiology

0

5,000

10,000 Essence Mining
FI + Gecode[FR]

Fig. 4. Closed High-Utility and Low-Cost itemset mining for Lymphography, Hepatitis, and Audiology datasets at lower levels of frequency thresholds. The
horizontal axes contain the frequency level that we use, and the vertical axis is time in seconds.

of solutions or the frequency threshold.
Hepatitis is another medical dataset that has a low ratio

of frequent itemsets to close itemsets (less than 0.01%). We
observe a similar phenomenon here to Lymphography. As the
instances get harder (and the frequency threshold gets lower)
our approach becomes relatively much faster. We show that
this behaviour does not stop at the frequency level 10% and
give results for lower frequency levels in section Section V-C.

Heart-cleveland (heart) is a third medical dataset that
is very similar to the Hepatitis dataset in its behaviour.
One difference between this dataset and Hepatitis is that
this datasets had around an order of magnitude more closed
frequent itemsets. The performance of our method progresses
similarly to Hepatitis at a slightly larger scale.

The German-credit (german) and Australian-credit
(australian) datasets relate to credit risks and credit
card transactions. The German dataset is smaller and has a
ratio of roughly 1/20 between frequent itemsets and closed
frequent itemsets. For easy instances of this dataset the
modelling overhead of our method causes us to be slower
than MiningZinc. For harder instances and for all instances
of the Australian dataset our approach is comfortably faster.

Audiology is one of the largest datasets with more than
167M closed frequent itemsets (at 10%). We were not able to
calculate the ratio of the number of frequent itemsets to the
number of closed itemsets since there are a very large number
of both. Our method is much faster for all five instances
that we tested. Noticeably, the our solver time is tiny in
comparison to the total time, this is due to running Eclat
until the 3-minute time limit without any gain. Improving
the SMARTSTART procedure to avoid cases like this is an
important future research direction.

The Anneal dataset relates to steel annealing. It has a very
small ratio of frequent itemsets to closed frequent itemsets
and hence is a prime opportunity for our method to shine.
For all instances of this dataset, all execution plans offered by
MiningZinc reach the time limit whereas our method finishes
the task in less than one third of the time limit.

In all of our experiments we sometimes find a trade-off
between different execution plans offered by MiningZinc. No
single execution plan seems to give the best results for all

instances. For example, even though FI + Gecode[FR] is
faster in a large number of cases, FI + Gecode[F] is faster
for all instances of the Lymphography dataset (see Table III).

C. Lower frequency thresholds for a selection of datasets

In the Lymphography, Hepatitis and Audiology datasets,
our method provides the best performance for all instances
by roughly one order of magnitude for the five frequency
levels. In order to demonstrate the performance of our method
at lower frequency levels, for these three datasets we ran
additional experiments to compare our method with the FI
+ Gecode[FR] execution plan of MiningZinc (since this is
the best option overall in our earlier experiments). Figure 4
contains the runtimes of the two solvers on these instances.
We see that at lower frequency levels, our method presents an
even bigger advantage. This is due to the decreased ratio of
closed itemsets to frequent itemsets at lower frequency levels.

VI. CONCLUSION

In this paper we have presented a high-level declarative
problem specification in ESSENCE for the closed frequent
itemset mining problem and a method that supports arbitrary
side constraints. Our method is completely declarative and
automated. It does not require the user to make any decisions
about which mining algorithm to employ. To the best of our
knowledge this is the first declarative method of performing
the closed frequent itemset mining task with arbitrary side
constraints (whether they are monotone or not).

We tested our method against all execution plans offered
by MiningZinc for two different kinds of side constraints:
high utility and low cost. The former is monotonic and
hence MiningZinc offers very efficient ways handling it. We
found that even though our approach does not exploit the
monotonicity of the constraint if offers competitive results.
The latter constraint is not monotonic and our approach proves
to be very effective in handling it.

We used all datasets published on the CP4IM website in our
experiments, however these datasets do not contain utility (or
cost) values and thresholds. This was a challenge: we had to
create non-trivial instances that can be solved within our time
limit of 3 hours. Most randomly generated threshold values
(for both cost and utility) produce either trivially unsatisfiable



instances or instances that are too hard. In order to aid future
research in this field, we make our datasets available. We
also plan to investigate a more systematic way of generating
challenging instances for these problems in the near future.

Future Work

In Section V-B, we are unable to compare our results with
those of MiningZinc. This is due to the missing step (Step
4 of Table I) in the MiningZinc part of our experiments.
We plan to implement a compressor that takes the full set
of frequent itemsets and produces the corresponding closed
itemsets. Including the time required for the compression on
top of the time spent by MiningZinc execution plans would
also make the comparisons more fair.

In our SMARTSTART procedure, we use Eclat in its maximal
frequent itemset mining mode to find the cardinality of the
largest frequent itemset (without side constraints). This often
helps us by reducing the number of iterations required; how-
ever, it sometimes fails to make any useful progress within the
time allowed. An example is the Audiology dataset which has
a very large number of maximal frequent itemsets. We plan to
improve our SMARTSTART procedure to become smarter and
avoid running Eclat for datasets like Audiology.

REFERENCES

[1] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in ACM SIGMOD Record,
vol. 22. ACM, 1993, pp. 207–216.

[2] S. Naulaerts, P. Meysman, W. Bittremieux, T. N. Vu, W. Vanden Berghe,
B. Goethals, and K. Laukens, “A primer to frequent itemset mining for
bioinformatics,” Briefings in bioinformatics, vol. 16, no. 2, pp. 216–231,
2013.

[3] P. Fournier-Viger, J. C.-W. Lin, B. Vo, T. T. Chi, J. Zhang, and H. B.
Le, “A survey of itemset mining,” Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, vol. 7, no. 4, 2017.

[4] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,”
2017. [Online]. Available: http://archive.ics.uci.edu/ml

[5] M. Zwitter and M. Soklic, “Lymphography domain,” University Medical
Center, Institute of Oncology, Ljubljana, Yugoslavia, 1988.

[6] F. Bonchi and C. Lucchese, “On closed constrained frequent pattern
mining,” in Data Mining, 2004. ICDM’04. Fourth IEEE International
Conference on. IEEE, 2004, pp. 35–42.

[7] A. M. Frisch, M. Grum, C. Jefferson, B. M. Hernández, and I. Miguel,
“The essence of essence,” Modelling and Reformulating Constraint
Satisfaction Problems, p. 73, 2005.

[8] A. M. Frisch, W. Harvey, C. Jefferson, B. Martı́nez-Hernández, and
I. Miguel, “Essence: A constraint language for specifying combinatorial
problems,” Constraints, vol. 13, no. 3, pp. 268–306, 2008.

[9] A. M. Frisch, M. Grum, C. Jefferson, B. M. Hernández, and I. Miguel,
“The design of essence: A constraint language for specifying combina-
torial problems.” in IJCAI, vol. 7, 2007, pp. 80–87.

[10] O. Akgün, S. Attieh, I. P. Gent, C. Jefferson, I. Miguel, P. Nightingale,
A. Z. Salamon, P. Spracklen, and J. Wetter, “A framework for constraint
based local search using Essence,” in Proceedings of the 27th Interna-
tional Joint Conference on Artificial Intelligence, 2018, pp. 1242–1248.

[11] P. Spracklen, O. Akgün, and I. Miguel, “Automatic generation and
selection of streamlined constraint models via monte carlo search on
a model lattice,” in Principles and Practice of Constraint Programming
(CP 2018), 2018, pp. 362–372.

[12] Ö. Akgün, A. M. Frisch, I. P. Gent, B. S. Hussain, C. Jefferson, L. Kot-
thoff, I. Miguel, and P. Nightingale, “Automated symmetry breaking and
model selection in conjure,” in International Conference on Principles
and Practice of Constraint Programming. Springer, 2013, pp. 107–116.

[13] Ö. Akgün, I. P. Gent, C. Jefferson, I. Miguel, and P. Nightingale,
“Breaking conditional symmetry in automated constraint modelling with
conjure.” in ECAI, 2014, pp. 3–8.

[14] Ö. Akgün, I. Miguel, C. Jefferson, A. M. Frisch, and B. Hnich,
“Extensible automated constraint modelling,” in Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelligence. AAAI Press,
2011, pp. 4–11.

[15] P. Nightingale, Ö. Akgün, I. P. Gent, C. Jefferson, and I. Miguel,
“Automatically improving constraint models in Savile Row through
associative-commutative common subexpression elimination,” in 20th
International Conference on Principles and Practice of Constraint
Programming (CP 2014). Springer, 2014, pp. 590–605.

[16] P. Nightingale, P. Spracklen, and I. Miguel, “Automatically improving
SAT encoding of constraint problems through common subexpression
elimination in Savile Row,” in Proceedings of the 21st International
Conference on Principles and Practice of Constraint Programming (CP
2015), 2015, pp. 330–340.

[17] P. Nightingale, Ö. Akgün, I. P. Gent, C. Jefferson, I. Miguel, and
P. Spracklen, “Automatically improving constraint models in Savile
Row,” Artificial Intelligence, vol. 251, pp. 35–61, 2017.

[18] O. Akgün, I. P. Gent, C. Jefferson, I. Miguel, P. Nightingale, and
A. Z. Salamon, “Automatic discovery and exploitation of promising
subproblems for tabulation,” in Principles and Practice of Constraint
Programming (CP 2018), 2018, pp. 3–12.

[19] T. Toda and T. Soh, “Implementing efficient all solutions sat solvers,”
Journal of Experimental Algorithmics (JEA), vol. 21, pp. 1–12, 2016.

[20] T. Guns, A. Dries, S. Nijssen, G. Tack, and L. De Raedt, “Miningzinc:
A declarative framework for constraint-based mining,” Artificial Intelli-
gence, vol. 244, pp. 6–29, 2017.

[21] L. De Raedt, T. Guns, and S. Nijssen, “Constraint programming for
itemset mining,” in Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2008, pp.
204–212.

[22] F. Rossi, P. van Beek, and T. Walsh, Eds., Handbook of Constraint
Programming. Elsevier, 2006.

[23] A. Biere, M. Heule, and H. van Maaren, Handbook of Satisfiability.
IOS Press, 2009, vol. 185.

[24] F. S. Hillier and G. J. Lieberman, Introduction to Operations Research,
9th ed. McGraw-Hill, 2010, international Edition.

[25] J. Marques-Silva, “Practical applications of boolean satisfiability,” in
9th International Workshop on Discrete Event Systems (WODES 2008),
2008, pp. 74–80.

[26] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in Proceedings of the 38th
annual Design Automation Conference. ACM, 2001, pp. 530–535.

[27] Y. Shang and B. W. Wah, “A discrete lagrangian-based global-search
method for solving satisfiability problems,” Journal of global optimiza-
tion, vol. 12, no. 1, pp. 61–99, 1998.

[28] I. P. Gent, C. Jefferson, and I. Miguel, “Minion: A fast scalable constraint
solver,” in Proceedings ECAI 2006, 2006, pp. 98–102.

[29] T. Uno, M. Kiyomi, and H. Arimura, “Lcm ver. 2: Efficient mining
algorithms for frequent/closed/maximal itemsets,” in Fimi, vol. 126,
2004.

[30] K. Gouda and M. J. Zaki, “Efficiently mining maximal frequent item-
sets,” in Data Mining, 2001. ICDM 2001, Proceedings IEEE Interna-
tional Conference on. IEEE, 2001, pp. 163–170.

[31] J. Pei, J. Han, R. Mao et al., “Closet: An efficient algorithm for mining
frequent closed itemsets.” in ACM SIGMOD workshop on research
issues in data mining and knowledge discovery, vol. 4, 2000, pp. 21–30.

[32] B. Negrevergne, A. Dries, T. Guns, and S. Nijssen, “Dominance pro-
gramming for itemset mining,” in Data Mining (ICDM), 2013 IEEE 13th
International Conference on. IEEE, 2013, pp. 557–566.

[33] T. Guns, P. J. Stuckey, and G. Tack, “Solution dominance over constraint
satisfaction problems.”

[34] Ö. Akgün, “Extensible automated constraint modelling via refinement
of abstract problem specifications,” Ph.D. dissertation, University of St
Andrews, 2014.

[35] C. Borgelt, “Efficient implementations of apriori and eclat,” in FIMI’03:
Proceedings of the IEEE ICDM workshop on frequent itemset mining
implementations, 2003.

[36] N. Een, “MiniSat: A SAT solver with conflict-clause minimization,” in
Proc. SAT-05: 8th Int. Conf. on Theory and Applications of Satisfiability
Testing, 2005, pp. 502–518.

[37] C. Schulte, M. Lagerkvist, and G. Tack, “Gecode,” Software download
and online material at the website: http://www.gecode.org.

http://archive.ics.uci.edu/ml

	Introduction
	Contributions

	Background: Constraint Programming and Propositional Satisfiability
	Extensions to Frequent Itemset Mining
	Side constraints
	Constraints among solutions
	Closed and constrained itemset mining

	Closed FIM with arbitrary side constraints
	Empirical evaluation
	Closed High-Utility Itemset Mining
	Closed High-Utility and Low-Cost Itemset Mining
	Lower frequency thresholds for a selection of datasets

	Conclusion
	References

