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2Oukaimeden Observatory, High Energy Physics and Astrophysics Laboratory, Cadi Ayyad University, Marrakech, Morocco

3Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK
4Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria
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ABSTRACT

We present the new discovery of three new transiting hot-Jupiters by the WASP-South

project, WASP-161 b, WASP-163 b and WASP-170 b. Follow-up radial velocities obtained with

the Euler/CORALIE spectrograph and transit light-curves obtained with the TRAPPIST-North,

TRAPPIST-South, SPECULOOS-South, NITES, and Euler telescopes have enabled us to deter-

mine the masses and radii for these transiting exoplanets. WASP-161 b completes an orbit around

its V = 11.1 F6V-type host star in 5.406 days, and has a mass Mp = 2.5 ± 0.2MJup and radius

Rp = 1.14± 0.06 RJup. WASP-163 b orbiting around its host star (spectral type G8V and the magni-

tude V = 12.5 ) each 1.609 days, and has a mass MP = 1.9 ± 0.2 MJup and a radius Rp = 1.2 ± 0.1

RJup. WASP-170 b has a mass of 1.7± 0.2 MJup and a radius of 1.14± 0.09 RJup, is on a 2.344 days

orbit around a G1V-type star of magnitude V = 12.8. Given their irradiations (∼ 109 erg.s−1.cm−2)

and masses, the three new planets’ sizes are in the good agreement with classical models of irradiated

giant planets.

Keywords: planetary systems- stars: WASP-161, WASP-163 and WASP-170- techniques: photometric,

radial velocities and spectroscopic

1. INTRODUCTION

Inaugurated by the seminal discovery of 51 Peg b in 1995 (Mayor and Queloz 1995), the study of exoplanets has

dramatically developed to become one of the most important fields of modern astronomy. Since 1995, the number of

exoplanets detected, most of them by the transit technique (Charbonneau et al. 2000; Henry et al. 2000).

Among this large harvest, highly irradiated giant planets (aka hot Jupiters) transiting bright nearby stars have

a particular scientific interest. These rare objects - < 1% of solar-type stars (Winn and Fabrycky 2015) - undergo

irradiation orders of magnitude larger than any solar system planets (Fortney et al. 2007), and are also subject to intense

gravitational and magnetic fields (Correia and Laskar 2010; Chang et al. 2010). Studying in detail their physical and

chemical response to such extreme conditions provides a unique opportunity to improve our knowledge on planetary

structure, composition and physics. The brightness of their host star combined to their eclipsing configuration makes
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possible such detailed characterization, notably to measure precisely their size, mass, and orbital parameters (Winn

2010; Deming and Seager 2009), but also to probe their atmospheric properties, for example the P−T profiles, chemical

composition and albedos (Seager and Deming 2010; Sing et al. 2016; Crossfield 2015).

The WASP (Wide Angle Search for Planets) project (described in Pollacco et al. (2006); Collier Cameron et al.

(2007) )uses two robotic installations, one at La Palma (Spain) and one at Sutherland (South Africa), to scout the

sky for gas giants transiting the solar type stars. With more than 100 hot Jupiters discovered so far in front of bright

nearby stars, WASP is a key contributor to the study of highly irradiated giant planets. In this paper, we report the

discovery of three new gas giants, WASP-161 b, WASP-163 b and WASP-170 b, transiting bright (V= 11.1, 12.5 &

12.8) solar-type (F6-, G8- and G1-type) dwarf stars.

In Section 2, we present the observations used to discover WASP-161 b, WASP-163 b and WASP-170 b, and to confirm

their planetary natures and measure their parameters. In Section 2.2.1, we describe notably TRAPPIST-North, a 60cm

robotic telescope installed recently by the University of Liège at Oukaimeden observatory (Morocco), that played a

significant role in the confirmation and characterization of the planets. Section 3.1 presents the determination of the

atmospheric parameters of the host stars. In Section 3.2, we describe our global analysis of the dataset for the three

planetary systems that enabled us to determine their main physical and orbital parameters. We discuss briefly our

results in Section 6.

2. OBSERVATIONS AND DATA REDUCTION

2.1. WASP photometry

WASP-161 and WASP-170 (see Table 1 for coordinates and magnitudes) were observed with the WASP-South

(Hellier et al. 2011, 2012) in 2011 and 2012, while WASP-163 was observed in 2010 and 2012. The WASP-South data

reduction methods described by Collier Cameron et al. (2006), and selected (Collier Cameron et al. 2007) as valuable

candidates showing possible transits of short-period (∼ 5.4, 1.6, and 2.3 days) planetary sizes bodies (Fig. 1).
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Figure 1. The light curve of WASP-161 (top), WASP-163 (middle) and WASP-170 (bottom) (binned = 10 min) folded on the
transit ephemeris from the transit search algorithm described in Collier Cameron et al. (2006).

2.2. Follow-up Photometry

2.2.1. TRAPPIST-North

TRAPPIST-North is a new robotic telescope of 60-cm diameter installed in June 2016 at Oukaimeden Observatory

(Morocco). It is installed by the University of Liège (Belgium) and in collaboration with the Cadi Ayyad University

of Marrakech (Morocco). TRAPPIST-North extends the TRAPPIST project to the Northern hemisphere, and, as its

Southern twin TRAPPIST-South, aims to the detection and characterization of transiting exoplanets, and the study

of comets and other small bodies (e.g. asteroids) in the Solar System. The exoplanet program of TRAPPIST (75%
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Star general informations

WASP-161 WASP-163 WASP-170

2MASS08252108-1130035 2MASS17060901-1024467 2MASS09013992-2043133

GaiaId 5751177091580191360 GaiaId 4334991786994866304 GaiaId 5656184406542140032

RA (J200) 08h25m21.09s 17h06m08.98s 09h01m39.93s

Dec (J200) −11◦30′03.6′′ −10◦24′47.0′′ −20◦43′13.6′′

Vmag [UCAC4] 10.98 12.54 12.65

Jmag [2MASS] 10.09 10.67 11.13

Gmag [Gaia-DR1] 10.84 12.13 12.36

Parallax [mas] [Gaia-DR2] 2.8864 ± 0.0345 3.7981 ± 0.0525 3.2439 ± 0.0390

Stellar parameters from spectroscopic analysis

Teff (K) 6400 ± 100 5500 ± 200 5600 ± 150

log g? [cgs] 4.5 ± 0.15 4.0 ± 0.3 4.0 ± 0.2

[Fe/H] +0.16 ± 0.09 −0.34 ± 0.21 +0.22 ± 0.09

Spectral type F6 G8 G1

V sin i [Km/s] 18 ± 0.8 < 5 5.6 ± 1

logA(Li) No Lithium seen < 1.6 1.52 ± 0.09

Parameters from MCMC analysis

MCMC Jump parameters

(Rp/R?)2 [%] 0.45092 ± 0.00023 1.417 ± 0.067 1.382 ± 0.001

Impact parameter b [R?] 0.14+0.15
−0.10 0.45+0.09

−0.06 0.689 ± 0.021

Transit duration W [d] 0.2137 ± 0.0022 0.093 ± 0.001 0.085 ± 0.001

Mid-transit T0 [HJD] 7416.5289 ± 0.0011 7918.4620 ± 0.0004 7802.3915 ± 0.0002

Orbital period P [d] 5.4060425 ± 0.0000048 1.6096884 ± 0.0000015 2.34478022 ± 0.0000036

RV K2 [m.s−1d1/3] 405 ± 20 386.69 ± 16 340 ± 20

Effective temperature Teff [K] 6406 ± 100 5499 ± 200 5593 ± 150

Metallicity [Fe/H] 0.16 ± 0.09 −0.34 ± 0.21 0.21 ± 0.19

Deduced stellar parameters from MCMC

Mean density ρ? [ρ�] 0.282+0.013
−0.027 0.92+0.13

−0.10 1.121+0.093
−0.076

Stellar surface gravity log g? [cgs] 4.111+0.023
−0.033 4.411+0.042

−0.040 4.466 ± 0.031

Stellar mass M? [M�] 1.39 ± 0.14 0.97 ± 0.15 0.93 ± 0.15

Stellar radius R? [R�] 1.712+0.083
−0.072 1.015+0.071

−0.074 0.938+0.056
−0.061

Luminosity L? [L�] 4.44+0.56
−0.48 0.84+0.20

−0.17 0.77 ± 0.14

Deduced planet parameters from MCMC WASP-161 b WASP-163 b WASP-170 b

RV K [ms−1] 230 ± 12 329 ± 14 255 ± 15

Planet/star radius ratio Rp/R? 0.0671 ± 0.0017 0.119 ± 0.003 0.1175 ± 0.0041

Impact parameter b [R?] 0.14+0.15
−0.10 0.448+0.063

−0.094 0.689 ± 0.021

Semi-major axis a/R? 8.49+0.13
−0.28 5.62+0.26

−0.21 7.71+0.21
−0.18

Orbital semi-major axis a [AU] 0.0673 ± 0.0023 0.0266 ± 0.0014 0.0337 ± 0.0018

Inclination ip [deg] 89.01+0.69
−1.0 85.42+1.10

−0.85 84.87 ± 0.28

Density ρp [ρJup] 1.66 ± 0.22 1.07+0.23
−0.17 1.21+0.24

−0.19

Surface gravity log gp [cgs] 3.69+0.37
−0.42 3.52 ± 0.05 3.54 ± 0.05

Mass Mp [MJup] 2.49 ± 0.21 1.87 ± 0.21 1.6 ± 0.2

Radius Rp [RJup] 1.143+0.065
−0.058 1.202 ± 0.097 1.096 ± 0.085

Roche limit aR [AU] 0.01101+0.00075
−0.00068 0.011 ± 0.001 0.011 ± 0.001

a/aR 6.12+0.25
−0.28 2.35+0.16

−0.13 3.15 ± 0.19

Equilibrium temperature Teq [K] 155734
−29 1638 ± 68 1422 ± 42

Irradiation [erg.s−1.cm−2] 1.35+0.34
−0.26 × 109 1.63 ± 0.45 × 109 9.3+2.3

−2.5 × 108

Table 1. The parameters of the WASP-161, WASP-163, and WASP-170 planetary systems (values + 1σ error bars), as deduced
from our data analysis presented in Section 3
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of its observational time) is dedicated to several programs: participating to the SPECULOOS project that aims to

explore the nearest ultracool dwarf stars for transiting terrestrial planets (Gillon et al. 2017; Gillon 2018; Burdanov

et al. 2017; Delrez et al. 2018); the search for the transit of planets previously detected by radial velocity (Bonfils

et al. 2011); the follow-up of transiting planets of high interest (e.g. Gillon et al. 2012); and the follow-up of transiting

planet candidates identified by wide-field transit surveys like WASP (e.g. Delrez et al. 2014). TRAPPIST-North has

a F/8 Ritchey-Chretien optical design and protected by a 4.2 meters diameter dome equipped with a weather station

and independent rain and light sensors. The telescope is equipped with a thermoelectrically-cooled 2048×2048 deep-

depletion Andor IKONL BEX2 DD CCD camera that has a pixel scale of 0.60” that translates into a FOV of 19.8’ ×
19.8’. It is coupled to a direct-drive mount of German equatorial design. For more technical details and performances

of the TRAPPIST telescopes described in Jehin et al. (2011).

TRAPPIST-North observed two partial transits of WASP-161 b in the Sloan-z′ filter (20 Dec 2017 and 12 Feb 2018),

two partial transits and one full transit of WASP-163 b in the I + z filter (24 Apr, 02 May, and 13 Jun 2017), and

three partial transits of WASP-170 b in the I + z (19 Apr 2017 and 11 Jan 2018) and V (17 Feb 2017) filters. The

reduction and photometric analysis of the data were performed as described in Gillon et al. (2013). The resulting light

curves are shown in figures 2, 3, and 4.

2.2.2. TRAPPIST-South

We used the 60cm robotic telescope TRAPPIST-South (TRansiting Planets and PlanetesImals Small Telescope;

Gillon et al. 2011; Jehin et al. 2011) at La Silla (Chile) to observe a partial transit of WASP-161 b in the Sloan-z′

filter on 28 Jan 2016, two partial transits of WASP-163 b in a broad I + z filter on 6 Sep 2014 and 5 July 2016, and

two transits (one full + one partial) of WASP-170 b in I + z on 25 Dec 2015 and 26 Feb 2017. TRAPPIST-South is

equipped with a thermoelectrically-cooled 2K × 2K CCD with the pixel scale of 0.65” that translates into a 22’ ×
22’ of FOV. Standard calibration of the images, fluxes extraction and differential photometry were then performed as

described in Gillon et al. (2013). The resulting light curves are shown in figures 2, 3, and 4.

2.2.3. EulerCam

We used the EulerCam camera (Lendl et al. 2012) on the 1.2-m Euler-Swiss telescope at La Silla Observatory in

Chile to observe a transit of WASP-163 b on 27 July 2016 in the RG filter, and also a transit of WASP-170 b on 20

Dec 2016 in the broad NGTS filter (λNGTS = [500− 900nm], Wheatley et al. 2017). The calibration and photometric

reduction (aperture + differential photometry) of the images were performed as described by Lendl et al. (2012). The

resulting light curves are shown in figures 3 and 4.

2.2.4. NITES

We use 0.4-m NITES (Near-Infrared Transiting ExoplanetS Telescope, McCormac et al. 2014) robotic telescope at

La Palma (Canary Islands) to observe two transits of WASP-163 b. The first transit was full and observed in R-band

on 27 June 2016, while the second was only partial and observed in I-band on 10 July 2016. NITES is equipped with

a 1024×1024 CCD camera that has a pixel scale of 0.66′′ that translates into a FOV of 11.3’ × 11.3’. The standard

calibration of the science images, fluxes extraction and differential photometry were then performed as described in

Craig et al. (2015); Barbary (2016); Bertin and Arnouts (1996); McCormac et al. (2013). The resulting light curves

are shown in figure 3.

2.2.5. SPECULOOS-South

We use 1-m robotic SSO-Europa telescope, one of the four telescopes of the SPECULOOS-South facility, (more

details found in Delrez et al. (2018); Gillon (2018); Burdanov et al. (2017)) to observe one full-transit of WASP-

161 b on 5 Jan 2018 in the Sloan-z′ filter. Each 1-m robotic telescope equipped with 2K×2K CCD camera, with

good sensitivities in the very-near-infrared up to 1 µm. The calibration and photometric reduction of the data were

performed as described in Gillon et al. (2013). The resulting light curve is shown in figure 2.

2.3. Follow-up spectroscopy

We gathered series of spectra of the three stars with the CORALIE spectrograph (Queloz et al. 2000) mounted on

the 1.2-meter Euler-Swiss telescope at ESO La Silla Observatory in Chile. An exposure time of 30 min was used for

each of these spectroscopic observations. We measured 24 spectra of WASP-161 between December 2014 and January
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2017; 25 spectra of WASP-163 between June 2015 and May 2017; and 20 spectra of WASP-170 between February 2015

and May 2017. We applied the cross correlation technique described in Baranne et al. (1996) on the spectra of each

star to measure the radial velocities (RVs) presented in Table 6. The resulting RV time-series show clear sinusoidal

signals with periods and phases in good agreement with those deduced from the WASP transit detections (Fig. 2, 3,

and 4).

For each star, the bisector spans (BS, Queloz et al. 2001) of the cross correlation functions (CCF) have standard

deviations close to their average errors (122 vs 80 ms−1, 116 vs 125 ms−1 and 87 vs 97 ms−1 for WASP-161, WASP-163

and for WASP-170 respectively). Furthermore, a linear regression analysis do not show any significant correlation with

between these BS and the corresponding RVs, the computed slopes being −0.02 ± 0.16, 0.07 ± 0.09, and 0.01 ± 0.11

for, respectively, WASP-161, WASP-163 and WASP-170 (Fig. 2, 3, and 4). This absence of correlation enables us to

discard the scenario of a blended eclipsing binary (BEB). Indeed, if the orbital signal of a BEB was causing a clear

periodic wobble of the sum of its CCF(s) and the one of the target, then it should also create a significant periodic

distortion of its shape, resulting in variations of the BS in phase with those of the RV, and with the same order of

magnitude Torres et al. (2004).

3. DATA ANALYSIS

3.1. Spectroscopic analysis

For each host star, we co-added the CORALIE spectra to produce a combined spectrum with an average S/N

per pixel between 50 and 100. We analyzed each combined spectrum with the technique described by Doyle et al.

(2013) to determine the following stellar atmospheric parameters: the effective temperature Teff , the surface gravity

log g, the lithium abundance logA(Li), the metallicity [Fe/H], and the projected rotational velocity v sin i. v sin i

was constrained using the calibration of Doyle et al. (2014), assuming macroturbulence values of 5.31 km.s−1, 3.59

km.s−1 and 3.74 km.s−1 for WASP-161, WASP-163 and WASP-170 respectively. The results of this spectral analysis

are shown in Table 1.

3.2. RVs + light curves analysis

We performed a global analysis of the RVs (Table 6) and transit light curves (Table 3) with the MCMC (Markov-

Chain Monte Carlo) algorithm described by Gillon et al. (2012) to determinate the parameters of each planetary

system. While the CORALIE RVs were modeled with a classical Keplerian model (e.g. Murray and Correia 2010),

the transit light curves were represented by the transit model of Mandel and Agol (2002), assuming a quadratic limb-

darkening law, multiplied by a baseline model consisting of a polynomial function of one or several external parameters

(time, background, airmass, etc., see Table 3). The selection of the model used for each time-series was based on the

minimization of the Bayesian Information Criterium (BIC, Schwarz 1978).

TRAPPIST-North and TRAPPIST-South telescopes are equipped with German equatorial mounts that have to

rotate of 180◦ at meridian, resulting in different positions of the stars’ images on the detector after the flip, translating

into an offset of the fluxes in the light curves. For the corresponding light curves, a normalization offset at the time

of the flip was thus added to the assumed model (Table 3).

For each system, the ”jump” parameters of the Markov Chains, i.e. the parameters perturbed at each step of the

chains, were the transit duration, depth, and impact parameter (W , dF and b, respectively), the orbital period P ,

the mid-transit time T0, the parameters
√
e cosω and

√
e sinω (with ω the argument of periastron and e the orbital

eccentricity), the parameter K2 = K
√

1− e2P 1/3 (with K is the RV semi-amplitude), and the stellar metallicity

[Fe/H] and effective temperature Teff . In addition, for each filter, the combinations, c1 = 2×u1+u2 and c2 = u1−2×u2
were also jump parameters, u1 and u2 being the linear and quadratic limb-darkening coefficients. Normal prior

probability distribution functions (PDFs) based on the theoretical tables of Claret (2000) were assumed for u1 and

u2 (Table 5). For Teff and [Fe/H], gaussian PDFs based on the values + errors derived from our spectral analysis

(Table 1) were used. For the other jump parameters, uniform prior PDFs were assumed (e.g. e ≥ 0, b ≥ 0).

Each global analysis was composed of three Markov Chains of 105 steps whose convergence was checked using the

statistical test presented by Gelman and Rubin (1992). The correlation of the noise present in the light curves was

taken into account by rescaling the errors as described by Gillon et al. (2012). For the RVs, the quadratic difference

between the mean error of the measurements and the standard deviation of the best-fit residuals were computed as

32.6 m.s−1, 54.1 m.s−1, and 42.8 m.s−1 for WASP-161, WASP-163 and WASP-170, respectively. These ’jitter’ noises

were added quadratically to the errors.
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Figure 2. Right-hand panel: Individual follow-up transit light curves for WASP-161 binned per 0.005d (7.2min). The solid red
lines are the best-fit transit models. We shifted the light curves along the y axis for clarity. Left-hand panel, top: CORALIE
RVs for WASP-161 with the best-fit Keplerian model in red. Left-hand panel, bottom: bisector spans (BIS) vs RVs diagram.

At each step of the Markov chains, a value for the stellar density ρ∗ was computed from dF , b, W , P ,
√
e cosω, and√

e sinω (see, e.g., Winn 2010). This value of ρ∗ was then used in combination with the values for Teff and [Fe/H] to

compute a value for the stellar mass M∗ from the empirical calibration of (Enoch et al. 2010). Two MCMC analyses

were performed for each system, one assuming an eccentric orbit and one assuming a circular one. The Bayes factors,

computed as exp(−∆BIC/2), were largely (> 1000) in favor of a circular model for the three systems, and we thus

adopted the circular solution for all of them. These solutions are presented in Table 1. The non-circular solutions

enable us to estimate the 3σ upper limits on the orbital eccentricity as 0.43, 0.13 and 0.23 for respectively, WASP-161

b, WASP-163 b and WASP-170 b.

As a sanity check of our results, we also estimated the stellar radius R? from the star’s parallax determined by

Gaia (Gaia Collaboration et al. 2018), its effective temperature Teff , and its bolometric magnitude Mbol, using the

equations:

Mv = Vmag − 5 log10(d/10), (1)
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Figure 3. Same as Fig. 2 but for WASP-163.

Mbol = Mv +BC, (2)

L?/L� = 100.4(4.74−Mbol), (3)

R? = L?/4πσT
4
eff , (4)

where Mv is the absolute visual magnitude, BC the bolometric correction (Pecaut and Mamajek 2013), d the

distance in parsec pc, L? is the star luminosity, and σ the Stefan-Boltzmann constant. We estimated the error on R?

by propagating the errors of all other parameters. We obtained 1.55 ± 0.08 R� for WASP-161, 0.86 ± 0.07 R� for

WASP-163, and 0.91± 0.06 R� for WASP-170, in good agreement with our MCMC results shown in table 1.

4. STARS ROTATION PERIODS

Our photometric and radial-velocity data will be available in the web site, http://cdsarc.u-strasbg.fr

http://cdsarc.u-strasbg.fr
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Figure 4. same as Fig. 2 but for WASP-170.

The WASP-170 light curve from WASP-South show a quasi-periodic modulation with an amplitude of about 0.6 %

and a period of about 7.8 days. We assume this is due to the star spots (i.e. the combination of the star rotation

and the magnetic activity). The rotational modulation of each star was estimated by using the sine-wave fitting

method described in Maxted et al. (2011). The star variability due to star spots is not expected to be coherent on

long time-scales as a consequence of the finite lifetime of the stars spots and differential rotation in the photosphere

so we analyzed the WASP-170 data separately. We analyzed separately the WASP-170 data from each camera used,

so that we can estimate the reliability of the results. The transit signal was removed from the data to calculating

the periodograms by subtracting a simple transit model from the light curve. We calculated the periodograms over

uniformly spaced frequencies from 0 to 1.5 cycles/day. The False Alarm Probability (FAP) is calculated by the boot-

starp Monte Carlo as described in Maxted et al. (2011). The results are presented in the table 2, and the periodograms

and light curves are shown in the figure 5. The rotation period value we obtain is Prot = 7.75 ± 0.02 days from the

clear signal near 7.8 days in 5 out of 7 data sets. From the stellar radius estimated and rotation period implies the

value of Vrot sin I = 6.1 ± 0.3 km s−1, assuming that the axises of the star and the planet orbital are approximately

aligned, in the good agreement with our spectroscopic analysis (vsini = 5.6 ± 1.0 km s−1, see the table 1). We
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modeled the rotational modulation in the light curves for each camera and season with the rotation period fixed at

Prot = 7.75 d using the least-squares fit of a sinusoidal function and its first harmonic. Similar analysis for WASP-161

and WASP-163.

Camera Dates N P [d] a [mmag] FAP

(JD-2450000)

227 4846-4943 4899 7.780 0.010 < 10−4

227 5567-5675 2407 3.978 0.005 0.15

227 5913-6041 2794 7.725 0.007 < 10−4

228 4846-4943 5283 7.703 0.011 < 10−4

228 5212-5308 4747 7.813 0.006 0.002

228 5613-5676 2651 4.073 0.003 1.00

228 5913-6041 3649 7.747 0.008 < 10−4

Table 2. Periodogram analysis of the WASP light curves for WASP-170. N : the number of observations used in our analysis,
a: the semi-amplitude of the best-fit sine wave at the period P found in the periodogram with false-alarm probability FAP.

5. STELLAR EVOLUTION MODELING

We estimated the mass and age of the host stars using the software BAGEMASS1 based on the Bayesian method

described in Maxted et al. (2015). The models used in the software BAGEMASS were calculated using the GARSTEC

stellar evolution code as described in Weiss and Schlattl (2008). The deduced stellar masses and ages calculated are

shown in the table 4. The inferred masses are in good agreement with the ones resulting from our global MCMC

analysis (see Table 1).

6. DISCUSSION

WASP-161 b, WASP-163 b and WASP-170 b are planets slightly larger (1.14 ± 0.06 RJup, 1.2 ± 0.1 RJup, and

1.10± 0.09 RJup) and more massive (2.5± 0.2 MJup, 1.9± 0.2 MJup, and 1.6± 0.2 MJup) than Jupiter. Given their

masses and their large irradiations (Fig. 6 a), their radii are well reproduced by the models of Fortney et al. (2007),

assuming a core mass of a few dozens of M⊕ and ages larger than a few hundreds Myr (Fig. 6 b).

The empirical relationship derived by Weiss et al. (2013) for planets more massive than 150M⊕, Rp/R⊕ =

2.45(Mp/M⊕)−0.039±0.01(F/erg s−1cm−2)0.094 predicts radii of 1.16 ± 0.30 RJup, 1.20 ± 0.34 RJup and 1.15 ± 0.31

RJup for WASP-161 b, 163 b, and 170 b, respectively, which are consistent with our measured radii. The three new

planets whose discovery is described appear thus to be ’standard’ hot Jupiters that do not present a ’radius anomaly’

challenging standard models of irradiated gas giants.

The discovery of WASP-161 b, WASP-163 b, and WASP-170 b establishes the new robotic telescope TRAPPIST-

North as a powerful Northern facility for the photometric follow-up of transiting exoplanet candidates found by

ground-based wide-field surveys like WASP, and soon by the space-based mission TESS (Ricker et al. 2016).
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Target Night Telescope Filter Np Texp (s) Baseline function σ (%) σ7.2m(%) βw βr CF

WASP-161 2016-01-28 TRAPPIST-S Sloan-z′ 938 10 p(t+ xy + o) 0.37 0.051 1.29 1.08 1.39

WASP-161 2017-12-20 TRAPPIST-N Sloan-z′ 902 10 p(t+ b) 0.43 0.072 1.14 1.05 1.20

WASP-161 2018-01-05 SPECULOOS Sloan-z′ 1235 10 p(xy) 0.44 0.087 1.22 1.44 1.72

WASP-161 2018-02-12 TRAPPIST-N Sloan-z′ 892 10 p(a) 0.46 0.054 1.14 1.20 1.37

WASP-163 2014-09-06 TRAPPIST-S I + z 345 12 p(t) 0.33 0.006 1.06 1.00 1.06

WASP-163 2016-06-27 NITES Johnson-R 443 30 p(t) 0.41 0.012 1.71 1.00 1.71

WASP-163 2016-06-27 EulerCam RG 170 60 p(t+ f + b) 0.11 0.005 1.20 1.10 1.31

WASP-163 2016-07-05 TRAPPIST-S I + z 602 12 p(a+ xy) 0.35 0.011 1.16 1.35 1.56

WASP-163 2016-07-10 NITES Johnson-I 388 30 p(t) 0.58 0.012 1.55 1.18 1.83

WASP-163 2017-04-24 TRAPPIST-N I + z 487 12 p(t+ xy + o) 0.31 0.008 1.02 1.07 1.09

WASP-163 2017-05-02 TRAPPIST-N I + z 213 12 p(b) 0.54 0.009 0.90 1.00 0.90

WASP-163 2017-06-13 TRAPPIST-N I + z 557 14 p(t+ f) 0.69 0.021 0.87 1.16 1.01

WASP-170 2015-12-25 TRAPPIST-S I + z 359 15 p(f) 0.29 0.008 1.04 1.05 1.09

WASP-170 2016-12-20 EulerCam NGTS 207 40 p(t) 0.11 0.005 1.49 1.13 1.68

WASP-170 2017-02-17 TRAPPIST-N Johnson-V 239 20 p(t) 0.46 0.013 1.22 1.00 1.22

WASP-170 2017-02-26 TRAPPIST-S I + z 545 15 p(t+ a) 0.51 0.015 1.32 1.16 1.53

WASP-170 2017-04-19 TRAPPIST-N I + z 186 15 p(a+ xy) 0.41 0.008 0.99 1.00 0.99

WASP-170 2018-01-11 TRAPPIST-N I + z 315 15 p(t) 0.26 0.007 0.75 1.11 0.83

Table 3. The table shows for each light curve the date , telescope, filter, number of data points, the exposure time, the selected
baseline function, the RMS of the best-fit residuals, the deduced values for βw, βr and CF = βw ×βr. For the baseline function,
p(εN ), denotes, respectively, a N−order polynomial function of time (ε = t), airmass (ε = a), full-width at half maximum
(ε = f), background (ε = b), and x and y positions (ε = xy). The symbol o demotes an offset fixed at the time of the meridian
flip.

Table 4. Stellar mass and age estimates from the software BAGEMASS.

Star Mass [M�] Age [Gyr]

WASP-161 A 1.42 ± 0.05 (1.40) 2.4 ± 0.4 (2.4)

WASP-163 A 0.87 ± 0.06 (0.78) 11.4 ± 3.5 (17.4)†

WASP-170 A 0.99 ± 0.07 (1.03) 4.8 ± 3.1 (2.9)

† Best fit occurs at edge of model grid.
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Figure 5. Left panel: Periodograms of WASP-170. Horizontal lines indicate false-alarm probability levels 0.1, 0.01 and 0.001.
Right panel: Light curves binned in the blue points on the assumed rotation period of 7.75 days with second-order harmonic
series fit by least squares in the green lines.

LD coefficient WASP-161 WASP-163 WASP-170

u1,z′ 0.184 ± 0.011 - -

u2,z′ 0.300 ± 0.005 - -

u1,I+z - 0.207 ± 0.012 0.2539 ± 0.0202

u2,I+z - 0.297 ± 0.010 0.2788 ± 0.0152

u1,Johnson−I - 0.331 ± 0.034 0.2727 ± 0.0321

u2,Johnson−I - 0.251 ± 0.019 0.2805 ± 0.0158

u1,Johnson−R - 0.420 ± 0.043 -

u2,Johnson−R - 0.248 ± 0.027 -

u1,Johnson−V - - 0.437 ± 0.044

u2,Johnson−V - - 0.271 ± 0.025

Table 5. The quadratic limb-darkening (LD) coefficients u1 and u2 used in our MCMC analysis.
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Target HID - RV σRV BS Target HID - RV σRV BS

2,450,000 (km s−1) (km s−1) (km s−1) 2,450,000 (km s−1) (km s−1) (km s−1)

WASP-163 7193.741864 -37.28368 0.11764 -0.05553 WASP-161 6995.779435 37.47673 0.03954 0.10140

WASP-163 7194.544082 -37.93075 0.07383 0.14349 WASP-161 7404.735111 37.93140 0.04051 -0.15260

WASP-163 7221.642393 -37.90136 0.07320 -0.10196 WASP-161 7421.604076 37.83967 0.03886 -0.17254

WASP-163 7264.560197 -37.21532 0.08258 0.30132 WASP-161 7422.600890 37.60262 0.03490 -0.17929

WASP-163 7265.528948 -37.85780 0.08717 0.20131 WASP-161 7423.668930 37.52064 0.03555 -0.28021

WASP-163 7268.579849 -37.96344 0.07401 0.09958 WASP-161 7425.646222 37.72356 0.03456 -0.04948

WASP-163 7276.497340 -37.95927 0.10641 -0.01258 WASP-161 7426.579130 37.96837 0.03946 -0.16563

WASP-163 7277.497313 -37.30844 0.07177 -0.11522 WASP-161 7428.627488 37.41733 0.03252 0.04443

WASP-163 7292.517764 -37.82511 0.09442 0.24068 WASP-161 7451.572650 37.47357 0.03171 -0.18188

WASP-163 7293.464761 -37.14368 0.07405 0.24267 WASP-161 7452.635935 37.57245 0.03459 0.02944

WASP-163 7294.524814 -37.73113 0.08910 0.15248 WASP-161 7453.567361 37.93838 0.03395 -0.14701

WASP-163 7484.863204 -37.46746 0.03879 -0.03903 WASP-161 7457.538982 37.46129 0.03590 0.10144

WASP-163 7486.827998 -37.42444 0.04741 0.16399 WASP-161 7481.604825 37.65253 0.04218 -0.16457

WASP-163 7487.796538 -37.79839 0.04198 0.09038 WASP-161 7485.611602 37.80633 0.03723 0.06739

WASP-163 7488.843232 -37.86941 0.03227 0.08838 WASP-161 7669.874869 37.96450 0.03643 -0.26075

WASP-163 7523.858463 -37.41079 0.04884 0.02768 WASP-161 7670.873488 37.54791 0.03644 0.07926

WASP-163 7567.695488 -37.80440 0.03823 0.05318 WASP-161 7674.868344 37.89486 0.04877 -0.13512

WASP-163 7569.757824 -37.85478 0.05104 0.07520 WASP-161 7716.752403 37.48642 0.06487 -0.04681

WASP-163 7575.726750 -37.81565 0.04977 -0.13093 WASP-161 7717.747923 37.75662 0.04854 -0.01920

WASP-163 7576.662344 -37.38270 0.04033 0.02235 WASP-161 7718.788841 37.80035 0.03818 -0.07805

WASP-163 7577.523403 -37.95890 0.04961 0.01980 WASP-161 7726.778064 37.39224 0.03876 0.01718

WASP-163 7593.681424 -37.95775 0.05024 0.00629 WASP-161 7746.846331 37.51936 0.03845 -0.04507

WASP-163 7652.535369 -37.33184 0.03470 -0.02346 WASP-161 7751.735303 37.69111 0.05137 -0.11653

WASP-163 7823.841592 -38.04752 0.05155 -0.10981 WASP-161 7761.696319 37.93171 0.04203 -0.35162

WASP-163 7894.742995 -37.97268 0.04302 0.07214

WASP-170 7066.749515 30.67098 0.04671 0.16402 WASP-170 7753.676136 30.70862 0.03924 -0.12366

WASP-170 7686.843189 31.25138 0.06427 -0.08954 WASP-170 7754.698984 31.19850 0.04009 -0.08925

WASP-170 7694.846421 30.81621 0.04224 -0.09353 WASP-170 7759.695126 31.20223 0.04579 -0.08356

WASP-170 7719.778573 31.25569 0.04232 -0.07239 WASP-170 7760.780900 30.70044 0.03683 -0.09317

WASP-170 7721.746763 31.13284 0.04660 -0.03291 WASP-170 7773.792434 31.17400 0.03803 0.01621

WASP-170 7723.773046 30.84403 0.05319 -0.00621 WASP-170 7801.545185 31.08175 0.06548 -0.07362

WASP-170 7724.787756 31.05367 0.03945 0.00095 WASP-170 7812.635803 30.67711 0.06835 0.12073

WASP-170 7726.799025 31.25678 0.03495 -0.04931 WASP-170 7825.546120 31.14228 0.04425 -0.03448

WASP-170 7747.780705 31.16081 0.03596 -0.07385 WASP-170 7859.637199 30.88820 0.07800 -0.20830

WASP-170 7749.729288 31.01646 0.04208 0.03075 WASP-170 7883.473343 31.07842 0.06692 -0.19927

Table 6. CORALIE radial-velocity measurements for WASP-161, WASP-163 and WASP-170 (BS = bisector spans).
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