
INVARIANCE AND INTENTIONALITY:

NEW PERSPECTIVES ON LOGICALITY

Marco Grossi

A Thesis Submitted for the Degree of MPhil
at the

University of St Andrews

2018

Full metadata for this thesis is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this thesis:
http://hdl.handle.net/10023/16573

This item is protected by original copyright

This item is licensed under a
Creative Commons Licence

https://creativecommons.org/licenses/by-nc-nd/4.0/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/161932359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/16573
https://creativecommons.org/licenses/by-nc-nd/4.0/

Invariance and Intensionality: new perspectives on

logicality.

Marco Grossi

This thesis is submitted in partial fulfilment for the degree of

Master of Philosophy (MPhil)

at the University of St Andrews

October 2018

Candidate's declaration

I, Marco Grossi, do hereby certify that this thesis, submitted for the degree of MPhil, which is

approximately 37,200 words in length, has been written by me, and that it is the record of work

carried out by me, or principally by myself in collaboration with others as acknowledged, and that it

has not been submitted in any previous application for any degree.

I was admitted as a research student at the University of St Andrews in September 2016.

I confirm that no funding was received for this work.

Date Signature of candidate

Supervisor's declaration

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations

appropriate for the degree of MPhil in the University of St Andrews and that the candidate is qualified

to submit this thesis in application for that degree.

Date Signature of supervisor

Permission for publication

In submitting this thesis to the University of St Andrews we understand that we are giving permission

for it to be made available for use in accordance with the regulations of the University Library for the

time being in force, subject to any copyright vested in the work not being affected thereby. We also

understand, unless exempt by an award of an embargo as requested below, that the title and the

abstract will be published, and that a copy of the work may be made and supplied to any bona fide

library or research worker, that this thesis will be electronically accessible for personal or research

use and that the library has the right to migrate this thesis into new electronic forms as required to

ensure continued access to the thesis.

I, Marco Grossi, confirm that my thesis does not contain any third-party material that requires

copyright clearance.

The following is an agreed request by candidate and supervisor regarding the publication of this

thesis:

Printed copy

No embargo on print copy.

Electronic copy

No embargo on electronic copy.

Date Signature of candidate

Date Signature of supervisor

Underpinning Research Data or Digital Outputs

Candidate's declaration

I, Marco Grossi, hereby certify that no requirements to deposit original research data or digital outputs

apply to this thesis and that, where appropriate, secondary data used have been referenced in the full

text of my thesis.

Date Signature of candidate

Abstract

What are logical notions? According to a very popular proposal, a logical notion is something

invariant under some “transformation” of objects, usually permutations (Tarski 1966) or

isomorphisms (Sher 1991). The first chapter is about extending “invariance” accounts of

logicality to intensional notions, by asking for invariance under arbitrary permutations of both

possible worlds and objects. I discuss the results one gets in this extended theory of invariance,

and how to fix many technical issues.

The second chapter is about setting out a better theory of logicality. I discuss the limits of

invariance frameworks, and the need for a theory of logicality with a more solid philosophical

ground. I believe that the concept of information can play a major role in defining what logic is

and what logical notions are. I spell out this intuition, by designing a new test for logicality. A

notion is logical iff it behaves in a certain way, by checking only “structural aspects of

information”, and it does so under arbitrary transformations of its “informational inputs”.

In the last chapter I explore some interesting features of my theory. I show how, contrary to

standard invariance, in mine logical notions tend to stay persistent across different models of

information. I also spell out an intermediate notion of quasi-logicality to make sense of the

formality of “world-sensitive” notions: notions whose behaviour changes across worlds. I finally

propose a case study: deontic modals. I discuss how one can argue for their quasi-logicality, in my

framework. The dissertation is concluded with a technical appendix, in which I prove that my

theory is a restriction of standard permutation invariance (at least for a class of items) when we

model the space of information in a certain way: as a set of complete powersets of some sets.

Contents

INTRODUCTION .. 1

CHAPTER 1. INVARIANCE AND INTENSIONALITY. .. 4

1.1 PERMUTATION INVARIANCE .. 5

1.2 A BETTER FRAMEWORK TO WORK ON .. 11

1.3 EXTENDING INVARIANCE TO INTENSIONAL OPERATORS ... 13

1.3.1 Problems of size ... 16

1.3.2 Invariant modal notions .. 17

1.4 OVERGENERATION? ... 21

1.4.1 A Lower and Upper Bound .. 21

1.4.2. Hyper-logicality .. 23

1.5 WOMBAT-DISJUNCTION AND OTHER STRANGE ITEMS.. 25

CHAPTER 2: A NEW PERSPECTIVE ON FORMALITY. ... 29

2.1 What permutation-invariance is missing. ... 30

2.1.1 Standard Invariance is not explanatory .. 30

2.1.2 Invariant items are impersistent ... 33

2.2 A Way out? Information first ... 35

2.2.1 Digression: MacFarlane’s theory. ... 37

2.3 The Structure of Information ... 38

2.4 Formal computability ... 42

2.5 How to model information ... 50

2.5.1 Transformation of infons ... 51

2.6 FORMAL COMPUTABILITY-INVARIANCE ... 52

2.6.1 Formal-Computability Invariance Defined ... 54

CHAPTER 3: APPLICATIONS OF FORMAL-COMPUTABILITY-INVARIANCE. .. 61

3.1 The object/modal system of information. ... 62

3.2 A simpler system of information. .. 66

3.2.1 An objection to persistence ... 68

3.3 Quantifiers. ... 70

3.3.1 Objection .. 73

3.4 World-Sensitivity and Quasi Logicality ... 75

3.4.1 Quasi-Formal-Computability .. 78

3.4.2 Quasi-Logicality defined. ... 83

3.4.3 Quasi Logical Items .. 86

3.5 A case study: Deontic Modality and Logicality. ... 88

3.5.1 Standard Deontic Logic ... 88

3.5.2 Is Standard Deontic Modality Formal? ... 90

CONCLUSION .. 97

Appendix A: Formal-Computability Invariance in Boolean Algebras of Infons... 99

BIBLIOGRAPHY .. 104

1

INTRODUCTION

What is this dissertation about?

This dissertation is about formality and logicality. What does it mean to say that logical notions are

formal? “Formal” is not a univocal concept, and before rushing into a discussion on what formal notions

are, one should first cut off potential misunderstandings. For formality is applied to many things:

theories, arguments, lexical notions, properties, etc. What is more, formality comes not just in different

kinds, but in different shades, as well: one might say, for example, that a theory is more formal than

another.

So, in what kind of formality are we interested in, in the scope of this work? The brief answer is this:

in the formality of logical notions, exclusively. Thus, firstly, we take the formality we are interested in to

apply to items of a formal language: it is “linguistic” formality. We are not interested in defining an

attribute that applies to theories or arguments. We need to be careful, though, when making this claim,

for a linguistic item, per se, is just a symbol without meaning. Yet, by logical “notions”, we mean a

linguistic item that is interpreted: so, formality here applies to items in a formal language that are

already coupled with a meaning, given through an interpretation. Before we give a meaning to it, the

item is just a symbol, and the very question of its formality cannot be raised. The general idea is that, in

a formal language, a demarcation should be made between notions that are logical/formal, and notions

that are not: conjunction and disjunction are formal, for example, while proper names for dogs are not.

Secondly, in the scope of this work, we are interested in the most formal notions: the logical ones. It

may be that, in a language, formality is not an all-or-nothing attribute. For example, one might want to

say that material implication is logical, while counterfactual implication is less formal, and yet more

formal than a binary operator that takes (˹2+2 = 4˺, ˹Lemons are vegetables˺) to ˹Oranges are

vegetables˺ and everything else to ⊥. We will say something about this topic in the last chapter but,

generally, when we talk about “formality”, we are referring to the formality shared by all and only the

2

logical notions. This is why, maybe unwisely, I will tend to use the term “logical” and “formal” as

interchangeable, in the scope of this work.

Historical roots of this work.

Formality is a complex notion with a complex history. This is not a dissertation on the history of

philosophy, yet I believe it would be unwise to approach the philosophical discussion of some concept

without having a grasp, first, on how the contemporary discussion on it has been shaped into its current

form. Novaes (2011), in her cunning article, distinguishes between two main ways logic is said to be

formal:

i. 1-Formality interprets formal as “pertaining to forms”: logic is formal because it “abstracts

from matter”.

ii. 2-formality, on the other hand, interprets “formal” as “pertaining to rules”: logic is formal

not because of what it is, but because of what it does. It is formal because it behaves formally,

by defining the rules for reasoning.

In this dissertation, we will mainly talk about 1-Formality, since we are “taking on” from “invariance”

theories of logicality, which are a kind of 1-formality theories. Let us talk briefly about 1-Formality. Its

historical root, according to Novaes, is to be traced back to Aristotle’s distinction between matter and

form. The opposite of “formal”, in 1-formality, is “material”. Different choices of what “material” is lead

to different interpretations of what 1-Formality means. For example, if we are focusing on the formality

of “arguments”, and we identify the “material” with some “lexical terms”, we get to the old idea that an

argument is formal because of the validity of its schema: the schema is the formal “structure” of the

argument, and it is obtained when we substitute its “material” parts with place-holders (Novaes 2011,

307). Examples of this idea are to be found in Buridan, which suggests that the “material” part of the

sentence are all its subjects and predicates, while the “formal” are all the other syncategorematic terms,

like connectives and quantifiers (Buridan 1976, I.7.2, pp. 30 (7–12)).

By assuming that what “pertains to the form” are all the syncategorematic terms, Buridan is already

making an important choice: what is the ground for it? Arguably, subjects and predicates, following the

3

Aristotelian tradition, correspond to substances and attributes. Thus, they are “material” because they

are “too involved” with the world: they are “sensitive” to it, in a non-logical way. This suggests something

interesting: the formality of linguistic items is not something that can be “tested” in the realm of

language alone, but it is essentially linked to their meanings, which, in turn, are tied to what the world

is. This “ontological” shift in the discussion on formality is even more apparent when one identifies

“matter” with “identities of objects”. Now, formal means “indifference to particulars” (MacFarlane 2000,

56). This is where invariance theories come into play. According to invariance theories, something is

logical because it abstracts away from objects. To test if this is the case, we transform the objects in the

model through which we are interpreting the linguistic term we are testing, and we check if the meaning

of the term gets upset by some transformation. If this never happens, then the item is logical. This

dissertation takes on from this tradition, so it is important to understand “how we got here”. We are

following a tradition that goes from Tarski onward, and that is closely related to the model-theoretic

account of logical consequence and the problem of the demarcation of logical constants, as we will see

in the first section of chapter 1.

4

CHAPTER 1. INVARIANCE AND INTENSIONALITY.

What are logical notions? The shape of the current debate on this issue has been heavily influenced by

Tarski’s work on logical consequence. Take the standard, Tarskian way of understanding logical

consequence:

Tarski Logical Consequence Γ⊨A iff every model that makes Γ true makes A true, where Γ is a

finitary set of sentences of the language.

What is a model? In a first order, extensional logic, a model is obtained when we interpret a language ℒ

over a domain of objects 𝔇, with an interpretation function that maps each element of the language to

an appropriate set-theoretic construction from the domain: it maps each name to an object, each

function of arity 1 to a subset of 𝔇, each 2-place relation to a subset of 𝔇×𝔇, each unary quantifier to a

set of subsets of the powerset of 𝔇, and so on. A language plus a domain is called a frame. For every

appropriate interpretation function we obtain a model for that frame. In a language ℒ, Γ⊨A iff every

model that makes Γ true makes A true.

Now the question is: what is an “appropriate” interpretation function? Suppose Γ=P∧Q. We now want

to say that P∧Q⊨P. To do that, we check that, for every reinterpretation of the premises and the

conclusion, we still obtain a valid argument. That is, every model that makes the premises true makes

the conclusion true. Note, however, that this is so only because we are keeping the interpretation of

conjunction fixed. Connectives, however, are part of ℒ: why, then, should we keep conjunction fixed?

Why not, for example, building a model in which conjunction is mapped onto disjunction? If such class

of models were admissible we would end up with a counterexample to P∧Q⊨P: we just need to swap

conjunction with disjunction and make P false.

The standard answer to the problem is saying that conjunction is logical, along with any other truth-

functional operator, and so it must be kept constant through interpretations. This is where the logicality

question becomes central to the model-theoretic account of logical consequence: having different sets

of logical constants will result in having different results on what follows from what. Suppose we keep

5

every item in the language constant: then we would have just one model 𝔐. Thus, for every set of

sentences Γ of ℒ, Γ⊨A iff either some sentence in Γ is false in 𝔐 or A is true in 𝔐. Suppose now that the

set of logical constants is empty. Then very few arguments would be valid: for example, Γ⊨Γ, for every

Γ of ℒ.

1.1 PERMUTATION INVARIANCE

Logical consequence is central to what logic is and does, but to make it work, we need an account of

logicality. We don’t only need an elaborate, philosophical definition: we need something that is apt to

formalization, so that we can build up a formal, precise test. This is where invariance come into play.

When Tarski was developing his model-theoretic account of logical consequence in 1936, he was

sceptical about the possibility of coming up with such a technical notion. However, in his famous paper

in 1966, he provided a very elegant and precise test for logicality: permutation invariance. Although this

idea was latter called “Tarskian”, he was not the first to put forward such an idea: we find similar

proposals in Mautner (1946) and Mostowski (1957:13). The proposal is quite simple: a logical notion

must be “general” and “topic-neutral”. ‘Human’ is not logical because it is sensitive to what humanity is,

which is not something logic should be concerned with. On the other hand, ‘identity’ is general enough

to be logical. To capture this idea, we can ask which notion remains invariant when we “swap” objects

in the domain arbitrarily. We call logical whatever notion “survives” every such “permutation of the

world onto itself” (Tarski 1966). The test gives plausible results: ˹Being human˺ is not logical, because

when we swap me with my laptop, ˹Being human˺ gets assigned a different subset of the domain: one in

which a non-human thing is present (my laptop). On the other hand, identity is logical because, no

matter what objects we swap around, every object is self-identical, and so identity will still be mapped

onto the set of all ordered pairs of an object with itself.

We can make this even clearer by talking in terms of “structure”: being sensitive to “Humanity”, in a

logical framework, can be modelled as being sensitive to the membership between a thing and the set

of humans. This membership relation creates a boundary, a structure in the logical space, because it

6

partitions things into two equivalence classes: the class of humans and the class of non-humans. To see

whether a notion is indifferent to Humanity, we take some transformation that does not preserve this

structure, like arbitrary permutations, where a permutation is just a “swapping” of the world onto itself.

If we swap a human with a non-human, for example, we will “upset” the meaning of ˹Being Human˺,

thereby showing that ˹Being Human˺ is not formal. If a notion is permutation-invariant, on the other

hand, then it must be insensitive to these “worldly”, boundaries of reality. The adequacy and efficiency

of the proposal rests on the choice of transformation we look at. According to Tarski (1966),

“permutations” are powerful enough to show abstraction from all the irrelevant “boundaries” of reality1.

We can make the Tarski machinery more precise in this way: every item in a language ℒ belongs to a

precise type: a unique set-theoretic construction from 𝔇. A permutation of a set X is any automorphism

of X; that is, any function from X to itself. σ : X → X and if a, b ∈ X and a ≠ b, then σ(a) ≠ σ(b). (Lang 1970,

7.5). Now, given a permutation σ of 𝔇, call σY the permutation of type Y induced by σ. In general, σY =

{σX|X ∈ Y} and σ(k) = σY(k) if Y ∈ 𝔇. We can now define permutation invariance:

PI An item k in type Y is permutation invariant iff, for every σ, σY(k) = k.

That is, k is invariant if permutations do not affect it. Tarski’s proposal is this:

Tarski A item is logical iff it is permutation invariant, in every model.

To be fair, Tarski just says that the notion should be “permutation invariant”. Yet, I guess that

generalizing to every model makes things clearer. For the notion should be invariant where? In the

actual world? In some model? And if so, in which one? Usually, if a notion is permutation invariant in

one model, it is so in every model, but we can make up items that change meaning across models, like a

notion that is mapped to identity in some model and to ˹Loving˺ in some other: this notion is

permutation invariant in the first but not in the second model. I suppose that Tarski believed that

invoking models in the definition of a logical constant was not a good idea, for the point of logical

constants was to extract the appropriate interpretation function, which in turn defines the set of models.

1 On the other hand, Sher (1991) and McGee (1996) think arbitrary bijections between domains may do the job.
Feferman (1999) employs an even more powerful transformation: homomorphisms. I discuss these solutions
later on.

7

Yet, if we use models to define logical constants, the theory would be viciously circular. This is fair, but

I am not necessarily worried by this because, even though my discussion “takes on” from Tarski’s, we

have different aims. Mine is not to ground what a model is in what a logical notion is, for I am just

interested in a general definition of logicality. In fact, it seems to me that the Tarskian project will

invariably fail, for invariance theories will ground what a logical notion is in what comes out invariant

under some transformation of the domains of models. So, it seems clear to me that they are grounding

logicality in model theory, not the other way around.

Let us now assess the main results of permutation invariance. This will also help shed light on the

proposal itself. Which item comes out logical via PI and Tarski?

i. Individual constants.

No zero-place function, because σ(k) = σY(k) for every such k. This is good, for we do not usually think

that names are logical. However, names for truth-values or empty names will probably be logical. The

firsts are logical because, as a rule, we cannot “swap” truth-values: if we have, in our language, an

individual constant that is mapped to some truth-value, that constant is automatically logical. Empty-

names are logical because they usually get mapped to the empty-set, which is permutation invariant.

This latter result may be problematic: what is the link between “emptiness” and logicality? Empty names

are a can of worms I do not want to open. As a suggestion, I suppose that my favourite way to deal with

this issue would be to take a “normative” stance, and do not allow empty names in the language2.

ii. Unary relations.

We can easily see that every trivial and empty unary property come out logical: they are mapped to 𝔇

and ∅ respectively, which are the only permutation-invariant subsets of 𝔇.

2 This is just a suggestion, and I do not necessarily endorse it. For example, why should we curtail language to reach
extensional adequacy? Should permutation invariance be enough to tell us that empty-names are not logical?

8

iii. N-ary relations.

Again: every trivial or empty relation is logical. Both this result and the former are heavily discussed

in the literature. Many think they are problematic. For example, take the predicate ˹Being a male-

widow˺: it is mapped to the empty-set, so it is invariant. Yet, it should not be logical, because it is empty

in virtue of the meaning of the non-logical terms “male” and “widow” (Gomez-Torrente 2002, 18). We

can build similar examples with metaphysical necessity: ˹Being a unicorn˺, if Kripke (2013) is right, is

necessarily empty, and yet it is not logical. We will see later on how we can try to deal with issues like

this in an intensional, more powerful framework.

These results are interesting, in their own right, because they suggest that the reliability of the results

we get depends on what a model is. When we are permuting objects in the domain, what are we doing,

really? What does the domain represent? In his quite famous book, Etchemendy (1990) argued that

models can be mainly conceptualized in two ways: either as reinterpretation of the language or as a

change in the world we are interpreting the language on. According to the first, the “world” does not

change: in every model, it is either the set of actual objects or restrictions of such domain. What changes

are the meaning of the terms: for example, we obtain a model by imagining that ˹Being a dog˺ means

˹Being a human˺. This first conception of model is inadequate for permutation invariance. For then, any

property that is “universal”, like ˹Being actually instantiated˺ would be logical, for it would be mapped

to the set of actual objects and any restriction of them. Yet, ˹ Being actually instantiated˺ cannot be logical:

it is not even something that things satisfy a priori.

According to the second conception, we keep the language fixed and change the “world” we are

interpreting the language on. For permutation invariance to work, in this second conception models

must somehow be “bigger” than the set of metaphysically possible worlds. For suppose this is not the

case and suppose Kripke is right: unicorns are metaphysically impossible. Then, in each world, ˹Being a

unicorn˺ would be mapped to ∅, and it would be invariant. Yet, it is not logical. The same goes for the

“male-widow” issue: we need a world with male-widows, or otherwise this item will be invariant.

9

iv. Quantifiers

Quantifiers are mapped to subsets of the powerset of 𝔇. For a quantifier is a function that takes

propositional functions or n-tuples of propositional functions to True and False. Its extension, then, will

be the set of all and only propositional functions taken to True. The existential quantifier, for example,

takes every propositional function that is satisfied by at least one object to True, the rest to False. So, its

extension will be the set of all non-empty subsets of 𝔇. The universal quantifier, on the other hand, will

be mapped on the set of the maximal subsets of 𝔇: that is, {𝔇}. Both are invariant under arbitrary

permutations. For take the existential quantifier: the only way to make it invariant would be to “switch”

the empty set with a non-empty. Yet, we saw that the empty set is invariant, so this is not possible. The

same goes with ∀: since 𝔇 is invariant, so is {𝔇}. What about other quantifiers? Well, for example, the

complementation of ∀ and ∃ in 𝓅𝔇 are logical: the quantifier whose extension is ∅ and 𝓅𝔇 − {𝔇},

respectively (the ˹Nothing˺ and ˹Not everything˺). Most quantifiers are not logical, however. Take ˹At

least one human˺: it takes all and only the predicates satisfied by at least one human to True. So, its

extension is the set of all X⊆𝔇 that contain at least one human. This unary quantifier will not be

permutation invariant, because we can swap some humans with some other things, like dogs: now ˹At

least a human˺ will have, in its extension, at least one set in which no human can be found.

Mostowski in the fifties proved that cardinality quantifiers are invariant under arbitrary bijections

between models (1957). Cardinality quantifiers are items that are sensitive only to the number of

elements of their extension. Examples are: ˹At least 4 things or ˹A transfinite number of things or ˹Only

15 things˺ etc. ˹ Exactly 4 objects˺ has, as extension, the set Y = {X⊆𝔇/|A| = 4}, where |X| is the cardinality

of set X. Arbitrary permutations in X, being the set of all automorphisms of X, are a subset of arbitrary

bijections between domains. Thus, permutations cannot affect the cardinality of the elements of 𝓅𝔇,

and so they cannot upset the extension of a quantifier that is sensitive only to the cardinality of sets.

There has been a great deal of discussion on cardinality quantifiers. In his 1999 paper, Feferman puts

forward a list of accusations to bijection-invariance (that applies to permutation-invariance, as well).

Two of his points are especially useful to our discussion:

I. The thesis assimilates logic to mathematics, specifically to set theory.

10

II. No natural explanation is given by it of what constitutes the same logical operation over

arbitrary basic domains (1999, 37).

The first accusation is related to things like cardinality quantifiers. According to Feferman, if cardinality

quantifiers are logical, then the theory results in a confusion between logic and mathematics. Now one

can “express the Continuum hypothesis and many other substantial mathematical propositions as

logically determinate statements” (1999, 38). Bonnay (2008) shares similar worries3.

Continuum Hypothesis the Continuum hypothesis (CH) states that the there is no set that is strictly

“bigger” than the set of Integers and strictly “smaller” than the set of Reals. That is, there is no set

X such that |ℤ|<|X|<|ℝ|, where |X| denotes the cardinality of X. As well know, it was proved by

Godel (1940) and Cohen (1963, 1964) that the standard Zaermelo-Frankel theory, together with

the axiom of choice, does not entail either the Continuum Hypothesis (CH) or its negation.

What does Feferman mean when he says that the CH can be expressed as “logically determinate”? The

choice of words is poor. As discussed in Griffiths & Paseau (2016), the threat may be that one will

overgenerate logical truths. It is known that one can express CH in purely second-order logic

vocabulary4. Feferman shows how one can turn a second-order quantifier into a first-order like

operation across domains that is bijection-invariant (and thus permutation-invariant), and that is

“cardinality-quantifier-like” (1999, 37-8). Consequently, so Feferman seems to think, CH will turn out

logically true if true and logically false if false, and this proves that PI has conflated logic with

mathematics5.

The second point hinges on cardinality, as well: it is unclear “what constitutes the same logical

operation over arbitrary basic domains”, because logical notions that act differently in domains with

different cardinality are bijection invariant and thus logical, according to Tarski (and to “bijection-

invariance theorists, like Sher (1991)). So, for example, a quantifier that is mapped to ∃ when |𝔇|>5,

3 Bonnay’s proposal is invariance under “potential isomorphisms” (2008). The test makes finite cardinality
quantifier logical, but not higher quantifiers, so the Continuum Hypothesis problem is avoided.
4 See, for example Shapiro (1991, 100-106).
5 Griffiths & Paseau (2016) discuss thoroughly this claim, and try to deflate the issue. Also, if someone is a logicist,
she may not be too unhappy with this result.

11

and to ∀ otherwise would be logical, on this view. This example makes explicit that cardinality, in

bijection-invariance and in permutation invariance theories, is “logical structure”: the quantifier above

is clearly sensitive to it, and it turns out logical6.

1.2 A BETTER FRAMEWORK TO WORK ON

Most of the standard examples of logical notions have been left out of our analysis: negation,

conjunction, disjunction, implication etc. The problem is that it is harder to see what their extension is,

when we see extensions as set-theoretic constructions from 𝔇. We can get around this in many ways.

For example, one way is Lindstrom’s (1966), quoted by Sher (1991, 68-71), in which connectives are

general quantifiers, where a quantifier is a class of sequences consisting in the domain 𝔇 and a series of

set-theoretical transformations on it. Lindstrom postulates that the only two 0-place relations are Truth

T and Falsity F. So, for example, negation becomes the class of all sequences ⟨𝔇, F⟩. The (classical) truth

operator ˹It is true that˺, on the other hand, would be ⟨𝔇, T⟩. Boolean connectives are sequences of form

⟨𝔇, S1, S2⟩, where Sn is any sentence of the language. So, for example, a disjunction is the class of

sequences ⟨𝔇, S1, S2⟩ such that either S1 or S2 is true (sentences are mapped either to T or to F). As far as

permutation-invariance goes, it is just assumed that truth-values are “fixed” and not “swappable” by

permutations, so every Boolean connective, and indeed any sentential operator in general, will turn out

automatically logical (more on this later).

The system works fine as long as we are in an extensional language, but it is unfit to model intensional

notions, unsurprisingly. Since we will be dealing with them, I prefer to work in a type theoretic

framework, with a categorial grammar, in the style of Van Benthem (1989) and MacFarlane (2000). In

this framework, each type is a function from one type to another. In an extensional language, we start

6 My stance on these complex issues will be clearer after having sketched my theory, in chapter 2. I can say now
that cardinality quantifiers are probably not logical, in my theory, and cardinality is not “logical structure”, unless
we state it explicitly.

12

with two basic types, O and V. O is the domain of objects, V is the set of truth-values. In general, we may

define the set of all types inductively, as the smallest set 𝕋 such that:

i. 〈O,V〉∈ 𝕋.

ii. if X, Y∈ 𝕋 then ⟨X,Y⟩∈ 𝕋.

The interpretation of each typed item is this: elements of O are objects of the domain; V are truth-

values; elements of type ⟨X,Y⟩ are elements of YX (functions from X to Y). O and V combine to form more

complex types. Examples:

i. ⟨O,V⟩ are one place predicates, that yield a truth-value when given an object.

ii. ⟨⟨O,V⟩,V⟩ are unary quantifiers, that yield a truth-value if fed with a predicate.

iii. ⟨V,V⟩ are unary sentential operators: functions from sentences to sentences.

With relations of arity n>1 we have different possibilities (MacFarlane 2000, 178). Take a binary

relation R: it is a function from tuples to truth-values. We can either complicate the system, by adding a

primitive way of chaining types (x, y), and take R to be of type ⟨(O,O),V⟩. The other alternative is to

analyse R as a relational, unary property. It is of type ⟨O,⟨O,V⟩⟩. This is the most popular option because

we would have ⟨O,⟨O,V⟩⟩ in our set of types anyway, and we can always transform a function from n-

tuples to truth-values to a unary function. Take ˹Love(x,y)˺: when it is given an object a, it “gives out” the

unary property ˹Loving-a˺. We can do the same for every n-ary function: in general, a function of arity n

is equivalent to a unary function whose value is a function whose arity is n-1. I will take this second

option.

With this system in place, we can ask which item is logical. Tarski’s proposal, for instance, is to call a

notion logical iff it is permutation invariant. In our type-system, this amounts to arbitrary permutations

of O:

PI Let σ be a permutation of type O, and let σy be the transformation on type Y induced by σ. An

item k in Y is permutation-invariant iff for every permutation σ of O, σy(k)=k.

13

We can define the transformation of Y induced by σ inductively, on the complexity of Y. MacFarlane

(2000, 183) offers an elegant definition:

• if Y=O, then for all k∈Y, σY(k) = σ(k)

• if Y=V, then for all k∈Y, σY(k)= k

• if Y=⟨X,Z⟩, for any types X, Z, then for all k∈Y, σY(k)= σZ ∘ k ∘ (σX)-1.

Here ∘ is composition: f ∘ g (a) = f(g(a)), for any f, g and a. f-1 is the inverse of function f: f(a) = b if and

only if f-1(b) = a. Now, since this definition is not that obvious, let us check it with an example. Take an

arbitrary permutation of O: σ(a) = b. We want to know what is the induced permutation in type 〈O,V〉.

Take an item k in 〈O,V〉 such that k(a) = T. Following the inductive definition above, σ〈O,V〉(k) is the

composite function σV ∘ k ∘ (σO)-1. So, it is a function O → O → V → V. In particular, (σX)-1(b) = a, so it will

go from a to b; then, since k(a) = T and σ(T) = T, it will end up in T. So, correctly, k goes from a to T, and

its transformation goes from b to T: we have swapped ‘a’ with ‘b’ in k.

1.3 EXTENDING INVARIANCE TO INTENSIONAL OPERATORS

How do we treat sentential operators? For we have already said that paradigmatic examples of

logicality, such as negation and conjunction, are sentential operators. Since their form has no occurrence

of type O, they are all trivially invariant and thus logical. This is fine, as long as we confine ourselves in

an extensional language, because in such a system the only sentential operators one can model are the

truth-functional, which are all plausibly logical. Yet, what happens if we want to say something about

more complex sentential operators, i.e. non-truth functional operators? Well, there are operators that

are not truth-functional, and not logical, at all. For example, take 𝒵: it is a unary sentential operator that

takes P: ˹Pizza is healthy˺ to ⊥ and everything else to ⊤. 𝒵 is too complex to be modelled in our system,

so the theory is just silent on such items. Yet, if we try to model it, it would come out trivially invariant,

because it would be of form ⟨V,V⟩. Another example: 𝒳 takes every sentence S to its ‘conjunction-

operator’ ˹∧S˺, with the exemption of P’: ˹Oranges are vegetables˺; here, the output is the ‘disjunction-

14

operator’, ˹∨S’˺7. 𝒳 is not to be modelled in our extensional system; yet, again, we would like to say that

it is not logical. Yet, if we do model it, it turns out trivially invariant. By “trivially” I mean that the test

gives its verdict not because 𝒵 or 𝒳 are somehow “special” operators, but only because they are

sentential operators.

The problem is that operators like 𝒳 and 𝒵 are sensitive to the identity of propositions in a non-logical

way. Yet, the system, being extensional, equates every proposition with its truth-value, making true (and

false) propositions undistinguishable. This is not a feature of our system only: it is usually just harder

to acknowledge, given the popular construction of sentential functions as generalized quantifiers. For

example, in Lindstrom’s framework (1966), we are forced to “respect” the identity of truth-values, and

the system identifies sentences extensionally.

Of course, this does not show that standard invariance theories make things like 𝒵 or 𝒳 logical, but

rather that they are just silent on those items, and structurally unfit to deal with them. If we take

invariance as a theory whose only aim is to give a technical notion of logicality, designed for the

restricted domain of extensional languages, then its inability to handle non-extensional operators

should not worry us. Yet, it should worry us if we see invariance as a sound, philosophical theory of what

logical notions are, for the concept of “logical notion” is not restricted to extensional logics: it is far more

general. We have just showed how two non-extensional items, 𝒵 and 𝒳, are not logical.

Granted that one wants invariance to be a general theory, we need a way to model intensionality in

our framework. To do so we need more “structure” and complexity. Semantics for non-extensional

operators “extensionalize” them, by interpreting these notions over some algebraic structure, like a set

of worlds/times and some relations on them. How does this work in type theory? I will show how to

model modal notions, but similar results can be obtained for other class of items, like temporal operators

in tense logic. First, we change the inductive definition of types:

i. O,V are types.

ii. If X and Y are types, then ⟨X,Y⟩ is a type.

7 MacFarlane (2000, 207-9) makes similar examples.

15

iii. If X is a type, then ⟨W,X⟩ is a type.

‘W’ is “worlds”. It is not a type by itself. The only basic types are still O and V. In this way, we do not

create funky items like ⟨⟨O,V⟩,W⟩, that we do not need8. We can now accommodate richer notions in our

theory:

• ⟨W,V⟩ are propositions: functions from worlds to truth-values.

• ⟨W,⟨O,V⟩⟩ are predicates that may change extensions across worlds.

• ⟨W,O⟩ are individual concepts: for each world, they yield an object.

Now, a second problem comes for standard invariance theories. Before, we said that items like 𝒵 or 𝒳

are simply non-representable, so it was best to say that the theory was just silent on their formality.

Now, however, we do have a mean to model non-truth-functional notions. And yet, if we follow standard

invariance and permute objects arbitrarily, 𝒵 and 𝒳 do come out logical. The reason is that their form is

〈〈W,V〉,〈W,V〉〉 and 〈〈W,V〉,〈〈W,V〉,〈W,V〉〉〉: O does not appear in it, and so they are both trivially invariant.

To fix this, the first requirement that comes to mind is that logical notions should be invariant under

permutations of worlds, as well (McCarthy 1981; Van Benthem 1989).

The way we define permutations on worlds and objects is just an extension of the old definition: for

any k of type Y, the permutation induced in k is defined like this:

• if Y=O, then for all k∈Y, σY(k) = σO(k)

• if Y=W, then for all k∈Y, σY(k) = σW(k)

• if Y=V, then for all k∈Y, σY(k)= k

• if Y=⟨X,Z⟩, for any types X, Z, then for all k∈Y, σY(k)= σZ ∘ k ∘ (σX)-1.

The new definition of permutation invariance is:

PI2 Let σO and σW be some permutations of O and W respectively, and let σy be the transformation

on type Y induced by such σO and σW. An item k in Y is permutation-invariant iff for all σO and

σW, σy(k)=k.

8 This is in the style of Montague’s universal grammar (1970, 1973). The other way is to take O, V and W as basic
and to have just one formation rule: you then simply disregard the items you do not need (e.g. Gallin 1975).

16

1.3.1 Problems of size

Things get messy, however, when we consider worlds with restricted or augmented domains. Take the

logical predicate F: ˹Being something˺. It is an element of ⟨W,⟨O,V⟩⟩. Take two worlds w1 and w2 with

different domains 𝔇1 and 𝔇2, respectively. When given w1, F yields the ⟨O,V⟩ whose extension is 𝔇1.

Define a permutation σw(w1) = w2. Now for w1, F yields the ⟨O,V⟩ whose extension is 𝔇2. F is not invariant

and not logical, via PI2. The same argument can be run with ∀: ∀ in w1 is the element which takes every

predicate whose extension is 𝔇1 to True, and everything else to False. In w2, it takes every predicate

whose extension is 𝔇2 to True, and everything else to false. By swapping w1 with w2, we show that ∀ is

not invariant.

The issue stems from the fact that O, in modal settings, is the set of all possible objects, and worlds may

have non-trivial subsets of O as domains: thus, logical items lose their “universality”. We need to be

careful here in distinguishing between two kinds of issues. The “extensional” universal quantifier ∀ and

the “extensional” logical predicate ˹Being something˺ are still logical, and their logicality is not called

into question. What is at stake, here, is rather the logicality of their intensional, modal counterparts of

type 〈W, 〈〈O, V〉, V〉〉〉 and 〈W, 〈O, V〉〉, respectively. For example, with quantifiers, we are asking whether

some “intensional quantifier” is logical. Such items, in modal logics with variable domains, will not

logical via PI2. This is bad because the logicality of at least a class of intensional quantifiers is desirable,

even though not all of them are logical. For example, take the modal ∀ defined over the set of worlds in

which there are purple cows9. It is unwise to let this quantifier be logical, because it is indirectly sensitive

to purple-cow-ness: when we swap a purple cows world with a world with no purple cows, we are

arguably upsetting this quantifier. On the other hand, it seems sensible to suppose that the modal ∀

defined over the set of all and only logically possible worlds is logical. Yet it will not be, along with any

other modal quantifier, if we let PI2 in place and we let domains vary.

9 Here I am assuming that, if an item k is defined only over some set X, it is undefined for every set that contains
some y ∉ X. So, if we swap an x ∈ X with some y ∉ X, we always upset k.

17

Having said that, let us look at how to amend this. I can see three options, here: (i) we keep the domain

fixed across worlds (very inelegant, yet suitable for “necessitists”10), (ii) we restrict the definition of

types, (iii) we disregard permutations that upset the membership of an object to a world. I will follow

the latter way. PI2 becomes:

PI3 Let σW be a permutation between worlds with the same domains, σO a permutation of O that

respects the membership of objects to worlds, and let σy be the transformation on type Y

induced by such σW and σO. An item k in Y is permutation-invariant iff for all σO and σW,

σy(k)=k.

Basically, now we just look at arbitrary permutations of worlds with the same domain and, for each

world, all and only the permutations of objects that exist in that world11. PI3 takes care of items like 𝒵

(just swap ˹Pizza is healthy˺ with some other proposition).

1.3.2 Invariant modal notions

What modal operators are invariant under PI3? Let us focus on unary operators, for simplicity. The

only invariant elements of ⟨W,V⟩ are the true in every world and true in no world, which we label ⊤ and

⊥, respectively. We can build up this table:

Argument Value

⊥ ⊤ ⊤ ⊤ ⊤ ⊥ ⊥ ⊥ ⊥

⊤ ⊥ ⊥ ⊤ ⊤ ⊥ ⊥ ⊤ ⊤

⟨W,V⟩−{⊥,⊤} ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥

Interpretation ¬□ ¬◊ Trivial ¬Conting Conting Empty ◊ □

Table 1

10 People that think that necessarily everything is necessarily something (Williamson 2013).
11 I feel like I should say more on this artificial restriction on the group of permutations. What is its philosophical
justification? I must admit that I do not have any reasonable answer to this worry. It seems clear to me that
something should be done to stop the failure of logicality for universal quantifiers defined over the set of logically
possible worlds. This is a way to do it. I am not sure about the philosophical consequences we can extract from
this choice, and I do not know if this is to be taken as a philosophically deep fact or just as a glitch in the system.

18

⟨W,V⟩−{⊥,⊤} is every element of type ⟨W,V⟩ except ⊤ and ⊥. The first column sets the input (the first

⟨W,V⟩), each other column is one full combination of outputs. The first line explains the meaning of the

results: “conting.” is contingency. In a Kripke relational semantics, Conting., □ and ◊ would be the modal

operators obtained from an accessibility relation R:w→w that is “universal”: such that, for every

w,w’∈W, R(w,w’).

Definition of Kripke Model. A Kripke frame is a tuple 〈W, R〉, where W is a set of worlds and R ⊆

W×W. Let language ℒ be the smallest set generated from a set of atomic sentences plus Boolean

connectives, enriched with an operator □. Let 𝒱 be an “atomic” valuation function that maps each

atomic formula to a subset of W. 〈W, R, V, ⊨〉12 is a Kripke model for ℒ, where ⊨ is a relation from

W to ℒ defined inductively:

i. w⊨ A iff w ∈ 𝒱(A), where A is atomic

ii. w⊨ ¬φ iff w⊭ A

iii. w⊨ φ ∧ ψ iff w⊨ φ and w⊨ ψ.

iv. w⊨ φ ∨ ψ iff not both w⊭ φ and w⊭ ψ.

v. w⊨ φ → ψ iff either w⊨ φ or w⊭ ψ.

vi. w⊨ □φ iff ∀w’(Rww’, w’⊨ φ)

 A formula A is valid in 𝔐 iff for all w ∈ W, w⊨ A. One can show that any Kripke model will make

valid some theorems and rules, like:

• K : □(P → Q) → (□P → □Q)

• Necessitation: ⊨ A then ⊨ □A.

• Distribution of □ over conjunction: □(A ∧ B) → (□A ∧ □B)

12 It is also common to remove 𝒱 and let ⊨ make the atomic valuation.

19

For modal logics that do not have these axioms, the so called “non-normal” modal logics, one needs

a different semantics, like Neighbourhood semantics or Algebraic semantics13. To have more

axioms, on the other hand, one can add properties to R.

In general, we obtain four invariant operators for every permutation-invariance operation. Example:

the identity operation is permutation-invariant. Call ‘=’ the output of the identity operation:

Argument Value

⊥ ⊤ ⊤ ⊥ ⊥

⊤ ⊤ ⊥ ⊥ ⊤

⟨W,V⟩−{⊥,⊤} = = = =

Interpretation Identity

Table 2

The last line says that every element of ⟨W,V⟩−{⊥,⊤} is mapped onto itself. The last column is identity,

the others are invariant combinations obtained from identity. “Identity” corresponds to the truth-

operator ˹ It is true that˺, at least if the semantics is classical. The fact that such operator is logical is good,

for we usually think that “Truth” is essential to logic. In Frege’s words, “Logic has much the same relation

to truth as physics has to weight or heat” (Ged. 58).

“Cardinality operators” are items like ˹In at least five worlds˺ or ˹In 25≤n≤60 worlds˺. Such operators

are sensitive only to the cardinality of the extension of the proposition they receive as input. E.g. ˹In at

least three worlds˺ takes every A whose extension X has cardinality |X|≥3 to ⊤, and everything else to

⊥. As already said, Mostowski (1957) proved that cardinality is invariant under isomorphic structures,

and the group of all permutations are a subset of all isomorphic structures (they are all the bijections

from a set to itself), so cardinality is permutation-invariant, as well. Thus, for every such operator, there

will be four invariant-operators. ˹In at least three worlds˺, for example, takes ⊥ to ⊥ and ⊤ to ⊤ (granted

that |W|>3). So, as before, we obtain three different variations, switching the output ⊥ with ⊤ and vice-

13 See Pacuit (2017) for a discussion on Neighbourhood Semantics and Chagrov & Zakharyaschev (1997) for
algebraic semantics.

20

versa. These variations correspond to Boolean combinations of cardinality operations (e.g: if we change

the output of ⊥ into ⊤ in ˹In at least three worlds˺, we obtain: ˹In at least three worlds or in none˺).

Benthem has this suggestion:

Benthem’s Proposition. “Among n-ary operations on sets, the only permutation invariant ones are

those defined at each tuple of arguments by some Boolean combination” (1989, 318).

He does not have a detailed proof, but a sketchy one: when one tries not to follow any Boolean

combination, one can easily come up with a permutation that upsets the operation. So, for example, take

this diagram:

Image 1

Take a binary operation F(X,Y) that is not defined through some Boolean combination. Then, you could

have, for example, that F(X,Y) contains u ∈ X∩Y and yet lacks v ∈ X∩Y. Yet, we can now define a

permutation σ(v) = u. σ〈W,V〉(X) = X and σ〈W,V〉(Y) = Y, and yet σ〈W,V〉(F(X,Y)) ≠ F(X,Y)14.

I would like to suggest that the inverse of Benthem’s proposition is less controversial: all Boolean

operations are permutation-invariant.

Inverted Benthem’s proposition. Among n-ary operations on sets, those defined at each tuple of

arguments by some Boolean combination are permutation-invariant.

If we model propositions as sets of possible worlds, we can model the intensional counterparts of

extensional Boolean operators as operation defined on sets of worlds (while the extensionals are

defined over truth-values): disjunction is union of sets, conjunction is intersection, negation is

complementation. These are clearly permutation-invariant. Thus, the “intensional” counterpart of the

14 Benthem makes an example with X−Y (1989, 319).

Image 1

X

Y W

u

v

21

extensional ∨, ∧ and →, along with any other Boolean combination of Boolean operators one can devise,

are all invariant under PI3.

1.4 OVERGENERATION?

The new intensional system may still be susceptible to counterexamples like 𝒵, in which operators

behave differently when given necessary/impossible propositions. Take ℋ: it yields ˹2+2=4˺ when

given ˹Socrates is human˺, ˹2+2=5˺ otherwise. Granted that all these propositions are equated to ⊥ or

⊤, ℋ will be invariant. These issues rely on the assumption that W is the set of all

metaphysically/mathematically possible worlds. If so, the system equates every

metaphysically/mathematically necessary and impossible proposition with their intensions, making

them invariant. To deal with items like this, one needs to make them not invariant. One very intuitive

way to do that is to extend W enough so that the truth-sets of such propositions come out different. One

then demands invariance under arbitrary permutations of this extended W. Yet, how big should W be?

1.4.1 A Lower and Upper Bound

We need W “bigger” than the set of metaphysically possible worlds, for two reasons. First, now the

item in 〈W, V〉 that takes every w to True, namely ⊤, is logical. If W is the set of metaphysically possible

worlds, any metaphysical truth would be logical. This seems wrong: intuitively, what we want is that ⊤

(which is mapped to W) represents a logical truth, because ⊤ is a formal notion (it is invariant). The

second reason is that, otherwise, the account over-generates. Suppose the physicalist is right: it is

metaphysically necessary that everything is physical. Take the unary function G: ˹Being physical˺. If W

is restricted to metaphysical possibility, and the physicalist is right, then G would be logical, because

regardless of how we permute objects or worlds, G will be invariant (it will be mapped to the function

from any world to the domain of that world, which is invariant under arbitrary, domain preserving

permutations). Yet, do we want ˹Being physical˺ to be a logical notion? I don’t think we do.

22

MacFarlane claims that operators defined through a “universal” relation between worlds, in a Kripke

relational semantics, are invariant (2000, 217). MacFarlane is right: if R = W×W then, no matter how

we permute W, we will never upset R. There are other invariant modal operators: modal operators

definable through (i) an empty accessibility relation (empty extension), obtainable by adding axiom □⊥,

or (ii) a “solipsistic” accessibility relation (R is just reflexive), obtainable when we add axiom □A↔A.

(Novaes 2014, 92): now both possibility and necessity collapse into the identity operation described in

table 2. How one should interpret these results? Novaes (2014) complained that this new account

discards S4-operators, which are widely used in logic and do not necessarily seem less “formal” than S5

operators. This is a first worry, which however I will not dwell upon, for the moment (more on this in

section 3.4). What about S5 operators? Well, S5-□ just means that the accessibility relation through

which we define □ is an equivalence relation. Such equivalence relation will be invariant only if it is

“universal”, and mapped to W×W. So, instead of asking: “Are S5 operators logical?” we should ask

“Which S5 operator, if any, is logical?”. The answer depends on which set is W. It is sensible to suppose

that at least the “logical” S5-necessity should be logical15. To ensure its logicality we should have, as a

rule, that the elements of W are all and only the logically possible worlds: in this way the only invariant,

“universal” S5-necessity is logical necessity, and thus we achieve a lower and an upper bound for W.

This move takes care of the ˹Being physical˺ problem since, unless we think that ˹Everything is

physical˺ is a logical truth: now we will now have, in W, a metaphysically impossible and yet logically

possible world in which something is not physical. It is also effective against counterexamples like ℋ,

unless they are not counterexamples: if mathematical truths are logical, then we can build ℋ-ish

invariant connectives that change meaning when given different mathematical truths. Yet, if

mathematical truths are really logical truths, I don’t see why such items should not be logical, as they

will be sensitive only to the identity of logical truths. If they are not logical truths, then there will be a

world that falsify them. If we equate W with the logically possible worlds (WL), then we can also take

care of some other objections to invariance, like the “male-widow issue” discussed in section 1.1.

15 I am assuming that logical necessity is an S5-operator. For a defence of this, see Burgess (1999).

23

Proof 1.1: ˹ Being male-widow˺ is of form ⟨W,⟨O,V⟩⟩. ˹ Nothing is a male-widow˺ is not a logical truth,

so there is a wk in W such that ˹Being a male-widow˺ (BMW) has a non-empty extension X. Define

a permutation σw(wk)=@. In the actual world there are no male widows so, when fed with @,

BMW gives out a predicate whose extension is ∅; yet σ〈W,〈O,V〉〉(BMW), when given @, yields a

predicate whose extension is X ≠ ∅. So σ〈W,〈O,V〉〉(BMW) ≠ BMW.

I suppose that setting W as the set of logically possible world is somehow disappointing. For it solves

all the issues by fiat, so to speak. It also makes impossible to ground what is logically possible in what

logical notions are, for we are grounding what comes out as logical notion in what is logically possible.

Yet, we are not trying to do that. In fact, I believe that this result comes with no surprise: we should

expect that what is logical in the modal space depends on the boundaries of what is logically possible.

We have a strong corroboration for this upper-bound: we cannot extend W beyond WL for otherwise

the system heavily under-generates16. Take for example the intensional, “objectual” identity defined

over the set of logical possibilities: this item is sensibly a good candidate for logicality. Yet, if we add

some logically impossible world wi to W, in which something is not identical to itself, logical identity

would not be invariant.

Proof 1.2. Take the element in type ⟨W,⟨O,⟨O,V⟩⟩⟩ that is logical identity (=L), and suppose wi ⊨

a≠a. When fed with wi and a, =L yields the ⟨O,V⟩ whose extension is ∅. Define a permutation

σO(a)=b, where b is such that b=b in wi. When fed with wi and b, =L now yields the ⟨O,V⟩ whose

extension is {b}. So, there is some permutation for which σ⟨W,⟨O,⟨O,V⟩⟩⟩(‘=L’) ≠ ‘=L’.

1.4.2. Hyper-logicality

To be fair, we have two ways of ensuring the logicality of =L: we can let W be as big as we want and

restrict the permutations we look at to all the permutations “inside” WL, or we can restrict W to WL. Both

ways ensure the logicality of logical necessity. In fact, the two solutions are equivalent for items defined

strictly in WL, and yet they come apart when we look at the logicality of items defined over some strict

16 One might say that there are no impossible worlds, so the problem does not arise. I want to stay neutral on this.
For a defence of impossible worlds, see Priest (2005). For a discussion, see Berto (2013).

24

superset of WL. Let us call these notions “hyper-logical”. If we restrict W to WL, then hyper-logical notions

are simply not representable in our system; in such a situation, it is up to us to decide what to make of

their logicality. We have two options:

i. PI3 is simply silent on hyper-logical items.

ii. PI3 can say something on Hyper-logical items: they are logical iff their partial image in WL is.

If, on the other hand, we decide to restrict the group of permutations, we can represent hyper-logical

items and test their logicality directly. The sensible option then is:

iii. PI3 is effective for hyper-logical items.

We can easily show that options (ii) and (iii) are equivalent. Suppose we take route (iii). Take all the

admissible bijections σ: WL→WL and all the admissible permutations of objects (that is, all the domain-

preserving permutations of WL and all the permutations of objects inside each w in WL). Call invariance

under such group of permutations invarianceWL. Options (iii) says that hyper-logical items are logical iff

they are invariantWL. Suppose now that we take option (ii): WL=W. Take some hyper-logical item k: such

item must have form 〈WN, Y〉, with WN ⊃ WL. The image of k under WL is the result of restricting the

function f: WN→Y to WL → Y, where the restricted function f’ is such that f’(w) = f(w) for all w in WL. This

image is invariant iff it is invariant under all the domain-preserving bijections WL → WL and under all

the admissible permutations of objects in WL. Unsurprisingly, these is exactly invarianceWL. Thus, the

image of k under WL is invariant iff k is invariantWL.

The real difference, then, is between options (i) vs options (ii) and (iii). What is the best route to take?

Take the modal identity =PC defined over WPC, where WPC is the union of WL and the set of logically

impossible yet conceivable worlds in which there are purple cows. Such =PC is indirectly sensitive to

purple-cow-ness: if we swap some logically impossible world with purple cows with another impossible

one with no purple cows, we would upset =PC17. WPC is a superset of WL, and its image under WL is the

invariant and logical =L, so =PC would be invariant, if we follow option (ii) or (iii). Thusly, my suggestion

17 Since they are impossible worlds, it may be that, in them, there are and there are not purple cows. I am assuming
that such worlds will not make both ˹There are purple cows˺ and its complement true.

25

is to follow route (i) and admit that invariance is silent on hyper-logical notions. So again, it is best to

equate W with WL.

1.5 WOMBAT-DISJUNCTION AND OTHER STRANGE ITEMS

In the literature, permutation invariance has been debated a lot. One popular objection is that

“permutations” are not powerful enough to show that an item is not sensitive to some logically-

extraneous structure. Take the “wombat-disjunction” (WD) example:

Wombat-Disjunction =df ∨ iff there are wombats in the domain, ∧ otherwise18.

 Wombat-disjunct satisfies permutation-invariance, but we don’t want it to be logical, because it is

sensitive to “wombat-ness”, which is not a logical structure (McGee 1996). The problem with wombat-

disjunct is that every permutation will rearrange the objects within the domain, without allowing

comparisons across domains. So, it does not matter if we swap all the wombats with some dogs: the

operator will still be assigned disjunction, because the rule through which it is defined forces us to look

at the domain in general, and the fact that we have swapped every wombat with some dog does not

make the wombats “go away”: they are still in the domain of the model. Similar issues can be built for

any type of item in the system:

Wombat-quantifier =df ∃ iff there are wombats in the domain, ∀ otherwise.

Wombat-relation =df R iff there are wombats in the domain, G otherwise, for some permutation

invariant n-ary relations R and G.

The standard solution, embraced both by McGee (1996) and Sher (1991), is to look at some stronger

transformation: all isomorphic transformations between domains. In our case, these are all and only the

bijections between domains, and therefore the stronger test is usually called “bijection-invariance”. In

general, two models 𝔐 and 𝔐’ are isomorphic iff there is a bijection f: 𝔇𝔐→𝔇𝔐’ satisfying:

18 Here we are assuming that domains vary between models, for extensional languages. Otherwise, we would get
that, if the cardinality of 𝔇 is n, ˹There are n things˺ would be logically true (Etchemendy 1990).

26

i. For each n-placed relation R of 𝔐 and the corresponding relation R’ of 𝔐’, R(x1 ... xn) if and

only if R’(f(x1) ...f(xn)), for all x1 ..., xn in 𝔇𝔐.

ii. For each constant x of 𝔐 and the corresponding constant x’ of 𝔐’, f (x) = x’. (Chang & Keisler

1990, 21).

Now, the WD issue is solved: take a model 𝔐1 with a domain with wombats 𝔇1. WD is assigned

disjunction. Define a bijection between 𝔇1 and an equinumerous domain 𝔇2 of some 𝔐2 in which every

wombat is replaced with some wolf. Now wombat-disjunct in 𝔇1 is assigned a different item:

conjunction, and thus it is not invariant.

Bijection invariance Where π is a bijection from X to Y, where X and Y are arbitrary domains of

the same cardinality, call πZ the variation of type Z induced by π. An item k in

Z is logical iff for every π, πZ(k)=k.

My suggestion is that WD is quite ambiguous: to which domain is it referring? In extensional

frameworks we have just one domain for each model, but in our intensional systems we have plenty. If

we understand “in the domain” as “in a domain of some world”, then the problem with WD is that its

interpretation-rule is such that it does not have the same output for every world one is valuating it from:

if one is valuating it from a world that is an element of the truth-set of ˹There are wombats˺, then the

output is disjunction; it is conjunction otherwise. So, WD is not invariant: we just need to swap a world

with wombats with another without wombats.

In this way, we also end up with a theory that may be more powerful than Bijection-Invariance. Take

this item:

𝔘: ˹More than the number of humans˺.

This is a quantifier, whose extension is {XX⊆𝔇: |X|= number of humans}19. Do we want this quantifier to

be logical? After all, it is sensitive to how many humans there are, which is hardly relevant to logic. Yet,

it is bijection-invariant, being sensitive only to cardinality. Yet, if there had been more humans, it would

19 Similar examples are presented in McCarthy (1981, 1987) and Hanson (1997). Sher (1991) criticised them. For
a recent discussion, see Sagi (2015).

27

have had a different extension: logical operators should not be “contingent” in this way. In our

framework, on the other hand, since the number of humans is contingent, there will be a logically

possible world with another number of humans, so the quantifier is not PI3 and not logical.

To avoid a potential misunderstanding here, it is quite essential to make a distinction: when we are

dealing with models for extensional languages, we should not confuse Wombat-disjunct with another,

similar operator:

Wombat-disjunct2(WD2) =df ∨ iff there are (actually) wombats, ∧ otherwise.

This second operator is different: its meta-language is talking about the presence of wombats in the

actual world, not in the domain of some model. WD2 is indeed bijection-invariant: it is disjunction in

every “extensional” model. The “original” wombat-disjunct, on the other hand, is defined through a rule

that talks about models and domains: WD is disjunction if there are wombats in the domain. A similar,

subtle distinction is to be made between 𝔘: ˹More than the numbers of humans˺ and 𝔘2, defined as

𝔘2 =df {XX⊆𝔇: |X| > number of humans in 𝔇𝔐}.

While the first quantifier is bijection-invariant, in Sher’s system, this second is not, because the number

of humans is not.

Proof 1.3. Take a model 𝔐 with domain 𝔇0. Take A0 = {x/ x ∈ 𝔇0 & x is human}. For any domain

𝔇 of any model, 𝔘2 is mapped in that model to {XX⊆𝔇: |X| > |A0|}. Define a bijection π(𝔇0) = 𝔇1,

with A1 = {x/ x ∈ 𝔇1 & x is human} and |A1| ≠ |A0|. Now 𝔘2 is mapped to {XX⊆𝔇: |X| > |A1|}. So,

π〈〈O,V〉,V〉(𝔘2) ≠ 𝔘2.

We may take 𝔘 and 𝔘2 and WD and WD2 to have different ways of being “contingent”: 𝔘 and WD2 are

“world” contingent, while 𝔘2 and WD are “model” contingent. The first two change extensions across

worlds, the seconds change extensions across models. Now, this distinction may be empty, if we take

models to be worlds, for example. Something similar is mentioned in relation to 𝔘 by Sagi (2015). She

rightfully highlights the fact that the satisfaction-conditions for these items are not clear: are these

conditions defined in the “object language”? That is, in the signature of the model? If so, it must be

28

valuated through models, and will be invariant only if “the number of humans” is, which clearly is not. If

they are not defined in the object language but in some meta-language, then we must be more precise:

are we talking about what might be the case, what is actually the case or what is the case in the model

we are handling?

The conclusion I want to draw is this: my impression is that the distinction between 𝔘 and 𝔘2 and WD

and WD2 may stop being relevant, when we make the language powerful enough to handle

intensionality. For, in our system, we can model modal notions. 𝔘 is not permutation invariant now,

because the number of humans is not the same across worlds. A similar argument works for WD, as we

saw. So, the system may be able to handle them without resorting to bijections. Having said that, we

could still build up a Wombat-Disjunction-ish item that survives arbitrary permutations in our

intensional type theory:

Wombat-Disjunction3 =df ∨ iff, in 𝔐, ˹There are wombats˺ = ∅; ∧ otherwise.

Here wombat-disjunction3 is mapped to disjunction if wombats are logically impossible. Now, it might

be that in no model wombats are logically impossible. Yet, do we want this item to be logical? After all,

it is sensitive to wombat-ness, in an indirect way. Yet, it is PI3 invariant. One might say that this item is

hyper-logical, and thus the theory is silent on it. I would rather conclude that this seems like a glitch in

the system, rather than a big objection. Yet, it still suggests that it would be better to switch to a bijection-

invariance framework. I will still stick to permutation-invariance, however, for two reasons: it is

technically easier, and it has the same results, for items that do not weirdly shift interpretation across

models like this one.

29

CHAPTER 2: A NEW PERSPECTIVE ON FORMALITY.

This chapter is about the limits of standard permutation invariance and how to fix them. I will try to

sketch a novel theory of logicality, with a better philosophical foundation.

In section 2.1 I will discuss the limits of standard invariance as a way of spelling out what formality is.

I put forward two main criticisms. The first is that invariance tests are not explanatory: the fact that an

item is invariant is usually not a reason, by itself, to explain its logicality. Rather, the authors tend to

draw from some external, independent theory of logicality the justification for the results they reach.

The second criticism is that what comes out invariant will invariably depend on the algebraic structure

of the system at hand. Different semantics will result in different invariant items. Yet, logical notions

should not vary across different systems in this way.

In section 2.2, I will introduce my theory. The general idea is that the concept of information can play

a major role in defining what is logical and what is not. Logical notions are notions that are sensitive

only to structural aspects of information. To be logical, they must satisfy two requirements:

I. They must perform an operation that checks only structural aspects of information. I call

this “formal computability”.

II. They must preserve formal computability under arbitrary permutations of their inputs.

In the remaining sections I set out my theory in the following steps: in section 2.3 I define the concept

of formal operation, where a formal operation is an operation that is sensitive only to structural aspects

of information. I will put forward some candidates. In section 2.4 I set out the technical system for

“formal computability”. In section 2.5 I define what is the basic formal system for describing information,

and how to transform it. In section 2.6 I finally suggest two different versions of “formal-computability

invariance”. I argue that something is a logical notion iff it is formal-computability invariant. The next

chapter will show the usefulness of the new theory, and its ties to the “old” permutation invariance.

30

2.1 What permutation-invariance is missing.

Why should we think that permutation-invariance is a useful test for formality? What is its implicit,

philosophical ground? What Tarski (1966), Mautner (1946) and Mowstowski (1957) had in mind,

probably, was a technical way of implementing a popular and old idea: logic is concerned with the most

abstract and general concepts, and thus logical notions must be the most abstract and general notions.

So, if a notion is sensitive to some specific “structure” of the world, then it is not “general” enough to be

logical. Arbitrary auto-morphisms of the universe will ensure that all such extraneous “sensitivities” are

discarded. At least, this was the initial idea.

The following popular improvements did not change the core presupposition of the theory: that logical

notions “abstract” away from matter. This is clearly reflected by the way the Tarskian account has been

revised over the years: the main issue was that its choice of transformation may not ensure enough

abstraction: bijection invariance takes care of even more “extraneous structure”, and it is better suited

as a test for logicality (Sher 1991), even though, again, it may not be powerful enough (McGee 1996).

Strong-homomorphism invariance is even a stricter test, and it was designed to abstract away from

cardinality, as well: logic should be even more general than mathematics (Feferman 1999). In this way,

identity goes out of the picture, as well, because it is not homomorphism-invariant: it is not abstract

enough.

2.1.1 Standard Invariance is not explanatory

The best way to show the limits of standard invariance accounts is to show the limits of the picture we

have just drawn. For it may be true that logic is the most abstract subject of all, but it is still about

something, in some sense. By that, I mean that logic is still concerned with “structures” of reality: it is

not the absence of structure. Thus, a more powerful test may not mean a more accurate one. Intuitively,

the test should not just “abstract away” from everything, but from all and only what is not relevant to

logic. And what is not relevant to logic, if not what is not logical structure? Therefore, the test should

check that a notion is sensitive only to logical structure, by abstracting away from all and only non-

logical structures. Yet, how can we be sure of the accuracy of the test? Well, we first need a theory that

31

tell us what logical structure is. Then, we need to build up a test that mirrors this theory. In this way, the

very fact that an item “passes” the test is a sufficient justification for its logicality.

Do we find such strategy in the literature on invariance? Not quite. Invariance theorists do not usually

give any such explanatory test. Rather, what they seem to do is this: they take an independently obtained

extension as desideratum, and “build up” the invariance test so that it happens to roughly pick out the

extension they have chosen “before-hand”. So, for example, Lindenbaum & Tarski (1935) show that the

standards connectives definable in simple type theory (that of Principia Mathematica) are all

permutation invariant. McGee (1996) generalized this result and proved that an operation is

permutation invariant if and only if it is describable in a language with, as only primitives,

paradigmatically logical items: identity, substitution, disjunction, negation and existential

quantification. So, these authors have already a rough idea on the what the results of the test should be,

and they seem to “swap around” the order of explanation: it is not that what passes the test is logical

because it passes the test, but rather the test is accurate because it gives out the “right” results, that we

already know to be right from independent sources. The same goes with Feferman (1999); at the very

beginning of his paper he says: “I have been moving more and more to the position that the first order

predicate logic has a privileged role in our thought” (31-2). He has an objective in mind: making logical

all and only first order predicate notions. This objective is independently motivated, and its ground is

not in homomorphism invariance. He then builds up the test so that it happens to pick out, roughly, only

first order predicate notions, identity excluded. Even in the most recent debates we find something

similar: Bonnay (2008) takes partial isomorphisms as the “right” transformations to look at, because

they avoid the Continuum Hypothesis problem, by making logical only “finite” cardinality quantifiers.

There is no special story about why logicality should be reflected by partial isomorphisms invariance.

Rather, there is a problem that is quite independent of invariance: we want logical notions not to include

a particular class of items. We then devise the test “bottom-up”, so that it does not pick out that class.

Again, it is not that what passes the test is logical because it passes the test, but rather the test is accurate

because it gives out what we planned to be the right results.

32

The problem with this strategy, as rightly noted by Novaes, is that it is a kind of “reverse engineering”

(2014, 87). There is a price to pay, if one devises a test by reverse engineering the already obtained

results: one loses explanatory power. A theory of logicality should not just be extensionally adequate,

but also explanatory: it should tell us why these are exactly the right notions to pick out. Yet, if one starts

from the results already, no test will tell you that. Suppose I disagree with Feferman: first-order logic is

not the only “genuine” logic, and cardinality quantifiers are logical. Feferman will reply with some

objections, like the issue with the Continuum Hypothesis discussed in section 1.1. Yet, none of the

arguments he will offer will hinge upon homomorphisms. That is, he will never say that his are the

“right” logical notions because they are homomorphism invariant. There is not “special”, explanatory

link between homomorphisms and logicality: they just happen to pick out what Feferman already

thought to be the right extension for logical constants, in the first place.

This issue becomes even more serious in intensional frameworks, where our intuitions on what counts

logical are less clear-cut. Again, Novaes made a good point about S4 operators: they are not permutation

invariant, and yet why should they be not logical?

The point is not that the S4 modal operators should necessarily be counted as logical; rather, the

point is what independent motivations would justify that the S4 modal operators do not count as

logical, whereas their counterparts interpreted on universal frames do. What is the fundamental,

philosophical difference between these two cases besides the fact that they are interpreted on

different structures? (2014, 94).

I am inclined to agree. Given that the test itself does not reflect and it is not “build up” from a criterion

of logicality, it is not persuasive to say that S4 operators are not logical because they do not pass the test.

Why should we trust that permutations or bijections or homomorphisms will “take care” only of non-

logical structure? Maybe they undergenerate. After all, these tests have been devised through “reverse

engineering”, so that the test itself is not really part of the explanation of why its results are logical.

Moreover, the extension the test was designed to pick is usually specific to a particular logical

framework: extensional logic. With such conditions in place, how can we be sure that, when applying

the same test in intensional frameworks, the results will be adequate? Thus, here comes the question:

33

what independent ground do we have for making S4 operators not-logical, if invariance is not per se

explanatory?

To sum up: if invariance theories are theories of what logical notions are, they need to tell us two

things: which notion is logical and why. Invariance theorists usually have already in mind a rough idea

of the extension of logical notions, and they build up the test “bottom-up”, so that it gives out that

extension. This is problematic, because now the test is not explanatory. What one should do is rather

this: she should first argue for an independently motivated theory of logicality, and then build up a test

that mirrors the theory, and see what results she gets. Any result will automatically have a better

philosophical ground, given that the test itself mirrors the underlying theory: the fact that the item

passes the test is itself a corroboration for its logicality. Moreover, we can be more confident that, when

we apply the test in different frameworks, we will get plausible results.

2.1.2 Invariant items are impersistent

I believe it is desirable that something should “come out” logical regardless of the semantic system we

choose to model it. Call this characteristic “persistence”:

Persistence. An item is persistent if and only if its logicality persists across different semantical

systems.

Logical items, in the standard invariance theories, are helplessly impersistent: their logicality strictly

depend on how we model our notions, and on the formal properties of the system at hand. For obviously,

what is invariant under arbitrary transformations of a system depends on the features of the system. I

will give an example of such behaviour. Suppose that, when we model propositions, instead of using

types W and V, we take them as elements of a primitive type P of propositions. We then define arbitrary

permutations on P. Take conjunction: it takes every two true propositions to their meet: the smallest

proposition that makes them both true. In this “propositional semantics” conjunction is not permutation

invariant: we just need to swap their meet with some other proposition. We can do it because elements

34

in P are “primitive”20. Thus, if we apply permutation invariance in this new system, we upset what is

invariant, and thus we change what is logical. This should not be: what is logical should be more

independent of the semantics choices we make, and the test should ideally “track” what is logical across

different semantics.

Sher realized this problem, when she says:

When it comes to sentential connectives, we can regard their formality as based on "not

distinguishing the identity of propositions." Intuitively, sentential connectives are formal iff they

distinguish only patterns of propositions possessing truth values and nothing else. The

interpretation of logical connectives as (denoting) Boolean truth functions reflects just this

intuition (1996, 678).

Sher seems to have in mind a model like our P. However, she also seems to be contradicting herself: first

she says that formal notions should not distinguish the “identity of propositions”, suggesting that we

should set arbitrary automorphisms of P, at least. Immediately after, however, she says that sentential

connectives are formal/logical if they do distinguish something: the “alethic structure” of P. So, they are

not invariant under arbitrary permutations of P. So, what should we do? Maybe Sher is suggesting that

we should limit the transformations the test is looking at: we should not “upset” the alethic structure.

Yet, why is that? If we decided that permutation/bijection invariance is the “right” test, and we apply it

in this system, we should not preserve alethic distinctions, because alethic distinctions are not

preserved under arbitrary permutations of propositions. This very fact should be evidence that alethic

distinctions are not logical structure, since we trusted that the test itself should preserve all and only

logical structure. Yet, again, given that bijection invariance is not really part of the explanation of the

logicality of the results, Sher is happy to limit the class of transformations one should look at. Her

justification is that we have the intuition that logical connectives are Boolean functions. Again, as

invariance theorists usually do, she is taking before-hand a favourite set of logical notions and she is

reverse-engineering the test so that it picks out that extension.

20 I discuss this in more details in section 3.2.

35

To sum up: in a “propositional” semantics like the one just described, permutation invariance, along

with any stricter test, heavily under-generates, while in a modal semantics we saw that it has some

plausible results. Yet, why should we “prefer” a modal semantics to a propositional, when we apply a

test for logicality? Since logical notions are logical independently of the system we choose to model

them, the results of the test, too, should be persistent across different semantical systems. Failure of

persistence is also tied to the fore-mentioned problem of “trusting” the test when we apply it to

intensional notions. If one reverse-engineers the test in a particular semantics, then the test will

probably have “plausible” results only in that semantics. When we “switch” to another system, we may

be forced to make additional assumptions to force the right results, for example by limiting the class of

permutations.

2.2 A Way out? Information first

My idea is that we can ground invariance theories only after we have discussed what logic is. One

should start from a criterion of logicality, and build up the test so that it clearly mirrors the criterion.

The first thing to do, then, is asking: “What is logical structure?”. Now, it seems clear to me that one

cannot tell what logical structure is if not by sketching first what logic is. Only then, she will be able to

suggest some plausible candidates. What is logic, then? This is a question that is so complicated and, at

the same time so important, that it surely deserves another dissertation. And yet, I somehow have now

to answer it, if I want to conclude this one21. In some sense, I find myself in a conundrum, and the only

way out, as far as I can see, is to make some assumptions. I need to assume a particular stance on what

logic is, and build up from there. If someone has a radically different view, she will be rightfully

disappointed. I hope that there will be some “overlapping consensus” on what logical structure is, even

though everyone starts from different perspectives on what logic is.

The general framework I will be assuming for my theory can be summarized as follows: logic is about

information, in a special way. Logic is the most abstract study of “controlled” information exchange.

21 I am sure I will be able to discuss this more thoroughly in my future doctoral research.

36

Information is everywhere, and in some sense, everything is “about” information. Biology is about a

specific kind of information: information about biological structures. Medicine, too, is about a specific

kind of information: information about how our bodies work, and maybe about how to make them work

properly. Yet, logic is somehow special in this respect, because it pays attention only to the structural

aspects of it. For example, the fact that a piece of information is “contained” in another piece of

information, or the fact that two pieces of information have some information in common. From this

point of view, logic is blind to most specific properties of information. For example, it does not “pay

attention” to the fact that a piece of information is about dogs, while another is not; or to the fact that a

piece of information is believed by a certain person, and not by some other; or, again, to the fact that a

piece of information is critical to my survival, while another is entirely useless.

Logic is insensitive to what information is about. However, this does not entail that logic is not

concerned with something: it is about the structural aspects of information. If information conveys

content, one can put it in this way: logic is not about the content of information, but about information

itself. Let us give an example. Take the information conveyed by the proposition ˹Fido is a black dog˺

and that conveyed by ˹ Fido is the dog walking down the street˺, call them infon1 and infon2, respectively.

They have many properties, like being about the same object, and being about Fido. Yet, logic is totally

blind to that: the only thing it registers is, for example, that infon1 and infon2 have some information in

common, whatever that is. Logic abstracts away from what they have in common, and from what they

are about (their content); what is left is their mere structure: the fact that there is a communality of

information between them.

To sum up, I will argue that a notion is logical iff it shares the same sensitivities and insensitivities that

logic, as a whole, possesses. What logic is sensitive to are all and only the structural aspects of

information. Thus, a notion is logical iff it is sensitive only to the structural aspects of information. For

example, a notion that is “sensitive” to usefulness to survival cannot be logical: not having this property

is necessary for logicality. On the other hand, a notion that is sensitive only to communalities of

information is logical: this is a sufficient condition for logicality. Formal notions are “formal” for two

reasons:

37

i. Because they behave formally: they handle information only by testing its structural

aspects.

ii. Because they abstract away from the non-structural aspects of information.

The first is a sort of 2-formality requirement: logicality is about what logical notions do. The second is

more like a 1-formality requirement: logical notions are formal because they abstract away from matter.

In my theory, these two reasons are mirrored by the two requirements for logicality I will spell out:

logical notion must behave in a certain way, and they must behave in that way regardless of the pieces

of information they are fed with. The first bit will be implemented by suggesting some basic

“computation” that we may take as describing a “formal operation”. The notion’s behaviour must be

describable through a combination of such basic computations. The second bit will be handled by

transforming arbitrarily the information content the notion is taking as input for its computation: the

notion must be computable by a formal operation under arbitrary permutations of inputs.

2.2.1 Digression: MacFarlane’s theory.

MacFarlane (2000) builds up a theory that shares some similarities with mine. His proposal consists

in defining a set of structures that we take as “intrinsic”22 and should not be disrupted by permutations.

We “save” the structure by delimiting the group of permutations we look at, for each type: all and only

the intrinsic-structure preserving permutations. His general definition is:

MarcFarlane PI A semantic value k in type Z is permutation-invariant iff for all intrinsic structure-

preserving permutations σA , σB , σC , etc., of the basic types A, B, C, etc., σZ (k) = k

(2000, 210).

I do agree with MacFarlane on the limits of standard invariance accounts. I also partially agree on the

solution: I agree on the necessity of specifying a set of “intrinsic/logical” structures. Yet, I am not sure

this will be sufficient. MacFarlane, on the other hand, shares with standard-invariance theorists the

opinion that our chosen transformation-invariance will also identify the logical behaviours: all and only

22 I don’t like the label because “intrinsic” does not seem relevant. In what sense the partition between human and
non-human things is not “intrinsic” to type O? Yet, it is not logical. I prefer to call it by its obvious name: “logical
structure”.

38

the transformation-invariant ones. My strategy may be more complicated, but I think it checks in a more

reliable way if the item is performing some logical operation, and it has therefore more explanatory

power. For my theory is two-fold: there is a “logical-behaviour” bit and an “abstraction” bit. The “logical

behaviour” bit should be done by specifying a set of “acceptable” formal behaviours. Then, the

“abstraction bit” is done by ensuring that such behaviour is not “by chance”, but really general: the

operator should act formally under arbitrary permutations of informational inputs. This have

consequences: for example, in my theory cardinality quantifiers are not logical, because they fail to

represent a formal operation (more in section 3.3). In MacFarlane’s, they are logical simply because they

are invariant.

2.3 The Structure of Information

The theory I will sketch in this dissertation puts information first and tries to extract logical structure

from information-structure. Logic is the study of controlled information exchange. Logical notions are

all and only the notions that are sensitive only to the structural aspects of information. This is tested in

two steps: the notion must check only structural aspects of information, and it should do so under

arbitrary permutations of the information-content it receives as input. To make clear how we are going

to implement this idea in our system, we need to specify first what information is, by putting forward

some candidates for “structural aspects of information”. These candidates will determine what

operations formal notions can perform, and define what “formal-computability” means.

What are formal operations, then? I will write down a list of them. The list will inevitably be

incomplete. Since logic is about the structural aspects of information, an operation is formal iff it can be

performed by being “sensitive” only to structural aspects of information. So, for example, the operation

that takes every sentence about humans to truth and everything else to false is not a logical operation

because, to perform it, the notion must be “aware” of the non-structural partitions, in the space of

information, between what is human and what is not. The question then is: what are the structural

aspects of information? The followings seem to me interesting candidates, worth discussing:

39

i. “Information-containment”.

There is a clear enough sense in which information is ordered by a notion of “containment”: an infon

contains another iff it conveys all that the other conveys. So, for example, the information ˹There are red

and blue roses˺ conveys the information that ˹There are red roses˺. “Containment” is probably just a

metaphor: it is not essentially set-theoretic, but we call it “containment” because it helps us understand

what is going on. Formally, this relation is a partial order in the space of information: it is reflexive,

transitive and antisymmetric. It is reflexive, because every infon contains all the information it has. It is

antisymmetric because if two infons “conveys each other”, they must contain the same information, and

if so, since infons are nothing but clusters of information, they are just the same infon. Transitivity is

reminiscent of the so called “Xerox principle” (Dretske 1981, 57): if α carries some information β, and β

carries some information γ, then α carries γ, as well. This seems to be inherent and essential to our very

concept of information. “Containment” goes by many names. In situation-theory, for example, it is called

“persistence” (Barwise and Perry 1983).

The corresponding operation for “containment” is, maybe unoriginally, the “information-containment-

operation”: the operation that checks if one piece of information conveys another. Containment, even

though it is not essentially set-theoretic, will usually be modelled as the subset relation, in the scope of

this dissertation. For example, a proposition P contains proposition Q iff ⟬Q⟭ ⊆ ⟬P⟭, where ⟬X⟭ is the truth-

set of X. In set-theoretic terms, containment is always the subset relation and not the membership-

relation (more on this in section 3.1).

ii. Trivial and Empty information.

In the system of information, we usually assume that there is a minimum and a maximum for every

“type” of information, defined by containment ⊑:

• k is the maximum of a certain type of information Y = k is the element such that ∀x∈ Y(x ⊑ k &

∀z∈Y(k ⊑ z → k=z))

• k is the minimum of Y = k is the element such that ∀x∈ Y(k ⊑ x & ∀z∈Y (z ⊑ k → k=z)).

40

Information may come in different types and, always, elements in different types are not linked by

containment. For example, if infon(a) answers the question “Which number is even?” and infon(b)

conveys the information: “There are roses”, these two infons do not bear any containment relation: one

is about objects, one is propositional. One may be modelled as a set of objects: the set of even numbers,

and the other, being propositional, may be modelled as a set of worlds. Yet, each of them has a unique

maximum and minimum, in their type: a “trivial” information that contains every other infon of that

type, and a null information that is contained in all the infons of that type. These are structural aspects

of the space of information, and we will usually refer to them as 1 and 0. What they mean depends on

the kind of information we are representing, in general. For example, in the set of truth-values, they are

Truth and Falsity, in the modal space, they are WL and the empty set; in the “objectual space”, the set of

all objects O and the empty set. This structural aspect is linked with the popular importance of alethic

distinctions in logic. Truth matters to logic: in my theory, this is reflected by the fact that Truth and

Falsity are structural aspects of information, being the maximum and minimum of the alethic space. The

corresponding operation a formal notion can perform is this: at any point of the computation, it can

“write down” 1 or 0, whatever they mean.

iii. Communalities of information.

Logic registers what is common between two infons, in the most abstract sense. That is, it does not

register how two pieces of information have something in common: it does not say, for example, whether

they are both about cats. It just says that they have some information in common, whatever that

information might be. This “structure” in the logical space is fundamental enough, and a plausible

candidate for logicality. The main formal operations mirrored by such structure are two. The first is the

operation that takes a set of infons Σ and gives, as output, the meet ⋀Σ (the infon that has all and only

the information common to every member of Σ). The second is the operation that takes a set of infons Σ

and gives, as output, the join ⋁Σ (the smallest infon that has all the information of every member of Σ).

This structure is probably reducible to containment, since we can define meet and join through it:

• ⋀{x, y} = z∈ ℐ/z ⊑ x & z ⊑ y & ∀i∈ ℐ((i ⊑ x & i ⊑ y) → (i ⊑ z)).

• ⋁{x, y} = z∈ ℐ/x ⊑ z & y ⊑ z & ∀i∈ ℐ((x ⊑ i & y ⊑ i) → (z ⊑ i)).

41

Meet and join are the intensional counterpart of conjunction and disjunction, respectively, when we are

modelling information as sets of possible worlds23. However, meet and join can take on different forms

when the space of information is not Boolean.

iv. The place of an infon in the space of information.

This is one of the most structural aspects of information. The correlated formal operation is

complementation: the operation that takes an infon α to the largest infon it excludes: αC. The idea is that

to understand what an infon carries is to know what it excludes. It is tightly correlated with

containment: αC contains everything that is excluded by α.

v. Compatibility of information.

Compatibility is one of the most general boundaries in the space of information. It is related to

complementation: the complement of an infon is the biggest infon incompatible with it. Its

correspondent operation checks whether two infons are compatible with each other. Usually,

compatibility is reducible to other structures. So, for example, α is compatible with β iff their meet is not

empty, or if the complement of α does not contain β.

So, to sum up, the hypothesis I will entertain is that the behaviour of a formal item will be describable

by a combination of the formal operations just mentioned. The most important structure is containment.

The list is provisional and up for upgrades. In the scope of this dissertation, I will focus just on those

candidates. We can already gain insights on the reasons why some of the most striking examples of

logical notions are logical. Take disjunction and conjunction, for example: why are they formal? The

information-theory explains this by saying that they are logical because they are sensitive only to

“communalities of information”. We can check this by looking at the operation they perform: it is one

instance of the information-structural operation that takes two pieces of information to their join and

to their meet, respectively. Of course, we are still lacking the “abstraction” part: we want to be sure that

23 In extensional languages, the information in a proposition is either T or F. Thus, for example, conjunction is
still the meet, because it checks what is the information common to some propositions: either all of it or none.

42

disjunction and conjunction perform the information-structural operation regardless of the

informational inputs they receive. This will be developed in section 2.6.

2.4 Formal computability

We said that the behaviour of a logical notion should be describable by a combination of formal

operations. To make all of this more precise we need a clear definition of “being describable by formal

operations”. Call this characteristic “formal-computability” (FC). When is a notion formally-computable?

First, let us do it in the “informal” way. We can describe a formal operation by specifying its inputs and

its rules of transformation. Inputs, intuitively, are countable sequences of infons (α, β, γ, δ, …) called

input-sequences. When we define an operation we also specify the length of the sequences it takes as

input. We will label |s| the length of a sequence s: if we take a sequence to be a function from natural

numbers to the set of elements of the sequence, then |s| is the cardinality of the range24. Where x, y and

z are variables for infons in the input sequence, the basic rules of a formal operation are the following:

1. Check x ⊑ y

2. Calculate ⋀{x, y, …, z}

3. Calculate ⋁{x, y, …, z}

4. Calculate xC

5. Check βC ⋢ α.

6. Write x, where x is an element of the input sequence.

The first rule-type is “information-containment”. Rule (2) and (3) are operations that register

“communalities of information”: meet and join. Rule (4) is about what a piece of information

excludes: it takes you to the relative complement of x in the type of information of x. (5) is

compatibility. Rule (6) “recalls” the inputs.

24 In the scope of this dissertation, by “range” I always mean the image of the domain in the codomain, and not the
codomain as a whole.

43

Definition 1 A formal-operation is whatever deterministic computation with a unique output can

be done by taking as input sequences of infons, and setting any appropriate sequence of

rules of type (1) … (6).

The F-operation must have a single infon as output, for every fully specified input. The F-operation,

thus, will be a function. To compute relations, we can have, as a rule, that an n-ary relation R is formal

iff its unique valuation 𝒱R is, where its valuation is the function 𝒱R: (A×B×, …, ×N) → {0, 1} such that

𝒱R(a, b, …, n) = 1 iff (a, b, …, n) ∈ R, 0 otherwise. The sequence of rules must be “appropriate”, in the

sense that it must picture a meaningful operation, and not just a bunch of actions that are not related to

one another (more on this later). The F-operation must be deterministic, as well: there is only one

possible output. So, the following cannot be an F-operation:

Fake F-operation Input: sequences of type (0, 1, α, β).

Rules:

i. check α⊑β.

ii. If yes print 0 or 1.

This is not admissible, because the operation can “choose” to follow one disjunct or the other. This also

takes care of potential trivializations, as we will see: we want logical items to act always in the same F-

computational way, regardless of the infons they receive as input. Suppose some k is F-computable by X

only when it takes as arguments (a, b, …n) and by Y only with arguments (o, p, …, z). Then k is arguably

“aware” of the specific identities of the arguments and should not be logical. Yet, using indeterministic

operations, one could just make up the new formal-operation X ∨ Y to describe the behaviour of k,

bypassing the uniqueness requirement.

Now we can have a first, rough definition of F-computability:

Definition 2. Take an item k and a formal operation Χ. k is computable by X iff, for any tuple (s,y)

∈ k, there is a tuple (s’, y) ∈ X, where s and s’ are sequences, and s has only elements of s’.

44

Basically, for some item k to be computable by an operation X, it must be that, for any instance of k, there

is an instance of the formal operation (FO) that takes, as input, the argument k has taken and maybe

something else, and gives out the same output. More technically, there must be a “composition function”

Comp: FO-1 ∘ k such that Comp(s) = s’ iff k(s) = FO(s’) and s has only elements of s’.

A first problem with this definition is that some operation may compute k in non-formal ways. That is,

it may be that, even though the formal operation can simulate k, it does so in a way that is sensitive to

some irrelevant structure. For example, take a quantifier like ˹Every dog˺. It takes predicates true of

every dog to 1 and everything else to 0. “Dog-ness” is not a structural aspect of information, but we can

still “sneak it in”, in the way we let a formal operation compute the quantifier. Take Compatibility, for

example: for every X such that (Every dog)(X) = 1, set Compatibility (X, O). For every other Y, set

Compatibility (X, ∅). Now ˹Every dog˺ is computed by compatibility: whenever the output is True, we

are checking the compatibility of the predicate with the trivial predicate, and whenever the output is

False, we are checking the compatibility with the empty predicate (that is never satisfied). To avoid this

trick, we can ask that the FO does the same thing, for every instance of the computation. A way to ensure

this is by complicating the requirements for the composition function to hold.

Definition 2’. Take an n-ary item k and a formal operation Χ. K is computable by X iff there exists a

function Comp: X-1 ∘ k such that:

a) For every s and s’, Comp(s) = s’ iff k(s) = X(s’)

b) For every s, Comp(s) is the sequence such that (bm)1≤m≤n = (am)s and (bm)m>n = k, where (ax)s

is the x-th element of s.

The definition says that the FO, in order to compute some K(a, b, …, n), must take a sequence that is the

exact copy of (a, b, …, n) up to n, and then, if it takes more elements, these are constants: they are the

same for every instance of the computation. Now the trick we used before is not available, anymore: the

FO cannot check the compatibility with the empty set for some elements, and with the trivial set with

some others.

45

There are more complications ahead, however. We can show that, using only rules of type (6), any

n-ary function whose output is some constant k is F-computable.

Proof 2.1. Let K be an arbitrary n-ary function whose range is a singleton. Define this formal

operation U (Universal-operation):

i. inputs: any sequence of length n+1.

ii. Rule: write (an+1).

Suppose K(a, b, …, n) = p, for any (a, b, …, n). U(a, b, …, n, p) = p, because (an+1) is p. Moreover, (a,

b, …, n, p) is the sequence such that (bm)1≤m≤n = (a, b, …, n) and (bm)m>n = p, for any argument of

U. So U computes K for any (a, b, …, n).

This is not as catastrophic as it looks, for the fact that such items are formally computable does not entail

that they are so regardless of the specific content they are fed with. Thus, the theory is not bluntly

trivialized by this result. In fact, when we introduce the invariance part, we can show that such items

will never be logical unless their output is 1 or 0 (the maximum or the minimum of the type of

information their inputs have, respectively).

It is time to implement a better framework to work on. For we have still no clear and precise idea about

what counts as an “admissible” formal operation: what does it mean, exactly, that the sequence of rules

should be “admissible”? We just need to make our framework more precise. For that, I need some very

simple automata theory. I will use Turing machines, even though they may be an overkill here, since I

suspect that the computation we are after can be done by simpler automata25.

Definition of a Turing Machine 26(Hopcroft et al. 2001: 8) A Turing Machine can be informally

described as an infinite tape with a head that can read what is written in each cell of the tape. The

head can read a symbol on a cell, move to the next cell, (over)write something on it, and move

either left, right or not move at all. Mathematically, it is defined with a tuple of seven elements 〈S,

25 I am inclined to think that pushdown automata, which are less powerful automata, can do the job. Finite state
automata may not be enough, though.
26 There are other equivalent definitions of Turing Machines, with slightly different instructions. For example,
Turing himself used instructions like “In tuple 〈s,a〉, print symbol b and move right/left/null (1937).

46

Σ, Γ, δ, s0, b, F〉. S is a set of linearly ordered states: the “cells” of the tape. Σ is the input alphabet of

the machine: the set of symbols the automaton can write. Γ is the set of tape symbols: it is always

a (sometimes improper) superset of Σ. s0 is the initial state. F is the set of final states, with F⊆S.

“b” is the blank symbol: the initial symbol written on any cell. Finally, δ is the transition function

S×Γ → S×Σ×D. It defines the instruction the Turing Machine can take. D means “direction”: it can

be left, right or null, usually referred to as -1, +1, 0. Informally, the instructions have always this

meaning: when in state s you read x, go in the next state q, write y and move right/left/don’t move.

A Turing Machine is deterministic iff for any tuple S×Γ, there is only one instruction.

It is important to make something clear from the start: for our purposes, we do not need to make the

Turing Machine do the actual work (it may probably be not even possible). By that, I mean that it is not

up to the Turing machine to actually check whether α is contained in β, or to calculate the meet ⋀{x, y,

…, z} of infons x, y, …z. What we will need the machine to do is just register the result of the test, and act

accordingly, by finally printing the right output. So, technically, it is more correct to say that there are

three actors in play, here: the item whose formality we are testing, a formal operation and a Turing

machine that registers what the formal operation is doing. However, to make things easier and more

concise, I will just speak as if the Turing machine and the formal operation are the same thing.

For our purposes, we do not need D, so we can take any instruction to have, as D, the null-direction 0.

Usually, I will just omit D all-together. As a rule, every Turing Machine will have printed, in its initial

state, the input sequence. That is, if the input-sequence is (a, b, c), then on s0, at the start of the

computation, we find symbol (a, b, c)27. This rule is not necessary, but it makes things easier. The rules

(1)-(6) above must be replaced by Turing instructions. We will model them as actions on couples of

〈state, symbol〉. Informally, we will say something like: when in state (s,a), perform action [.]. Atomic

actions, then, are functions defined over tuples S×Σ, which correspond to arguments and values of δ.

That is, [..](s,a) = (s’, b) iff δ(s, a) = (s’, b, 0). Compounded actions are sequences of simple actions. For

27 Note that the input is an ordered n-tuple.

47

example, [.][..](s,a) means: first, apply action [..] to (s,a), obtaining (s’, a’); then, apply action [.] to the

resulting (s’, a’). For our purposes, the following will be all and only the tests our machine can perform:

1. [1] (sn, a) = (sn+1, 1).

2. [0] (sn, a) = (sn+1, 0).

3. [⊑] (sn, (x,y)) = [1] (sn, (x,y)) iff x ⊑ y, [0] (sn, (x,y)) otherwise. That is, in state n read two

symbols x and y, move to the next state sn+1 and print 1 iff x ⊑ y, print 0 otherwise.

4. [⋀] (sn, a) = (sn+1, ⋀ {x/ x ∈ a}). That is, in state n read a = (x, y, …, z) move to the next state

sn+1 and print the meet of x, y, …, z.

5. [⋁] (sn, a) = (sn+1, ⋁ {x/ x ∈ a}). That is, in state n read a = (x, y, …, z), move to the next state

sn+1 and print the join of x, y, …, z.

6. [¬] (sn, x) = (sn+1, xC). That is, in state n read x, move to the next state sn+1 and print the

complement of x.

7. [C] (sn, a) = [⋀] (sn, a) iff ⋀ {x/ x ∈ a} = 0; [1] [⋀] (sn, a) otherwise. That is, in state n read a

= (x, y, …, z), go to the next state and print their meet. If the meet is not 0, go to the next

state and print 1.

8. [input, b] (sn, a) = (sn+1, b), where b is some sequence whose elements are in the input

sequence or on some state sm with m ≤ n.

As a rule, the set Σ of symbols a formal TM can write is defined inductively:

• If z ∈ input-sequence, or z=1 or z=0, then z ∈ Σ

• If z = ⋀ {x, y…, n} or ⋁ {x, y…, n} or xC, or x⊑z or z⊑x, then z ∈ Σ, where x, y, …, n ∈ Σ.

Basically, Σ is the closure under meet, join, complementation and containment of the set of elements of

the input-sequence plus 1 and 0.

Now, to (re)define formal computability, we just write:

Formal Turing Machine A Formal Turing Machine is any deterministic Turing Machine whose only

possible moves are combinations of actions of type (1)-(8).

48

Formal Computability K is Formally-Computable =df there is an FTM such that there exists a

function Comp: FTM-1 ∘ K such that:

a) For every s and s’, Comp(s) = s’ iff K(s) = FTM(s’)

b) For every s, Comp(s) is the sequence such that (bm)1≤m≤n = (am)s and

(bm)m>n = k, where (ax)s is the x-th element of s).

Some comments on the action-types. Action (7) says that, to register computability between x and y,

the machine will first write on the next cell the meet of x and y. If it is empty, the machine has nothing

else to do, since the join is 0, which is also the result of the compatibility test. If it is not empty, then the

machine writes 1.

Rule (8) is needed to let the machine work on some element of the input, or to “add” some transformed

element to some element in the input. To see why we need (8), suppose we want to model the operation

that checks if two items are contained in each other: call it “symmetric containment”. This is a formal

operation, in our sense. Yet, without (8) we cannot compute it, for we would need to apply the

containment test twice: first to (a,b) then to (b,a), where (a,b) is the input sequence. Yet, suppose a and

b are contained in each other. Then the result of applying [⊑] first to (a,b) will be 1. So, now the machine

reads 1 and does not know how to reiterate the test: we thus recall the inputs, using an instance of (8),

and then re-apply the containment test. Symmetric containment is thus formally computable by this

FTM:

• Input: sequences (x, y)

• F = {(s1, 0), s3}.

• Instructions:

o [⊑](s0, input).

o [input, (y,x)] (s1, 1).

o [⊑] (s2, (y,x)).

Here, the FTM first checks if x is in y. If not, it halts, printing 0. If yes, it goes on printing (y, x). It then

checks if y is in x. If not, it halts printing 0; if yes, it halts printing 1. A graph makes this very intuitive:

49

Table 3

Something similar happens for material implication. A → B is equivalent to ¬A ∨ B. Without (8), we could

not compute material implication in this way. Here is how we do it:

• Input: sequences (x, y)

• F = {s4}.

• Instructions:

o [input (x)](s0, input).

o [¬] (s1, x).

o [input (¬x, y)] (s2, (¬x)).

o [∨] (s3, (¬x, y)).

x, y

0 1

y, x

0

1

x, y

x

¬x

¬x, y

¬x ∨ y

⊑ ⊑

⊑

⊑

input

s0

s1 s1

s2

s3

s3

s0

s1

s4

s3

s2

input

¬

input

∨

Table 4

50

2.5 How to model information

Now that we have a formal machinery for modelling formal operations, we need to say what is

information, in our system, to implement the second requirement: that a formal notion is formally

computable regardless of the infons it is fed with. The most general and comprising way of modelling

information is this: we just assume a primitive set of infons ℐ, and define some relations on it. The

algebra we impose on the set will determine the formal properties of the system. In general, I will

require a minimal structure on ℐ, because I want to stay as neutral as possible on how to model

information. The minimal requirements, in the scope of this dissertation, have already been put forward

in the discussion on formal operations. On ℐ, we define a partial order of “containment”: i ⊑ i’ iff the

information contained in i is contained in i’. We will also suppose that there is a 0 and a 1, for every

“type” of information in ℐ: for every type Y, there is a unique element that is such that every i ∈ Y are

contained in it, and a unique element that is contained in every i ∈ Y. With containment, we can define

meet and join:

• ⋀{x, y} = z∈ ℐ/z ⊑ x & z ⊑ y & ∀i∈ ℐ((i ⊑ x & i ⊑ y) → (i ⊑ z)).

• ⋁{x, y} = z∈ ℐ/x ⊑ z & y ⊑ z & ∀i∈ ℐ((x ⊑ i & y ⊑ i) → (z ⊑ i)).

The meet of x and y is the biggest infon that is contained in x and y, the join of x and y is the smallest

infon that contains x and y. We can also let the complement of i be the biggest i incompatible with i. That

is, iC is the biggest element such that i ∧ iC = 0. I will not assume any other property. In particular, I will

not assume that, for any two infons, there is a join and a meet. I will not assume that for any infon i,

i ∨ iC = 1, either. So, I will not settle whether (ℐ, ≤) forms a lattice or a complemented lattice.

Definition Lattices (Birkhoff 1948). A lattice (A, ≤) is a partially ordered set such that every two

elements have a join and a meet. A lattice is distributed when join and meet distribute over each

other. A lattice is complete if any of its subsets has a meet and a join. A lattice is complemented

when it is distributed and every element has a complement in A (that is, for any i ∈ A, there exists

51

a ic such that i ∨ ic = 1 and i ∧ ic = 0, where 1 and 0 are the maximum and the minimum of A,

respectively). A complete, distributed and complemented lattice is a Boolean algebra.

How can the space of information not be a lattice? Well, it may be that two infons do not bear any

containment relation, and that there is no “super-infon” that contains them, because they are

different “kinds” of information. I will give such an example in chapter 3, in section 3.1. Depending

on how we are modelling information, however, each subset of ℐ closed under type membership may

form a Boolean Algebra, or some weaker algebra. In the Appendix I show that, if one takes these

classes to be the complete powersets of some sets, then they form a Boolean Algebra. In an interesting

paper, Barwise & Etchemendy show how to work with a Heyting Algebra of infons (1990). A Heyting

Algebra is weaker than a Boolean Algebra, because its elements may have only pseudo-complements:

it is not the case that i ∨ iC = 1, for any i28.

2.5.1 Transformation of infons

Since we want to stay neutral on the nature of infons, there will be no unique way to transform them.

There will rather be different levels of “transformation” of information, based on how we are modelling

it. By defining Formal Computability invariance, I will just talk generally of “transformation of

information”. When I give proofs, I am assuming that permutation invariance ensures enough

abstraction, and that information is modelled in a way akin to what we have done in the last chapter: we

build infons as set theoretical construction from the primitives sets W, O and V of worlds, objects and

truth-values, respectively. So, for example, if an item takes sentences as arguments, then we permute its

inputs by permuting worlds, thereby inducing a permutation in the set of sentences I discuss this system

thoroughly in section 3.1, in the next chapter.

28 Heyting Algebras were used by Heyting himself to give an algebraic, semantic theory for intuitionistic logic. See,
for example, Heyting (1966). Heyting was a student of Brower himself: the father of intuitionism.

52

2.6 FORMAL COMPUTABILITY-INVARIANCE

The fact that the behaviour of some item in the language is describable through a formal operation is

not enough to make it formal: it is only a necessary condition. Take this example: 𝒮 is ˹In every cat-

world˺, where a cat-world is any world in which the proposition ˹There are cats˺ is true. 𝒮 is “fixated”

with the existence of cats in a non-logical way. Yet, we can show that this item is formally computable:

Proof 2.2. Define the following FTM [⊒]:

• Input: sequences (x,y)

• F = {s2}.

• Instructions:

o [input (y, x)] (s0, input)

o [⊑] (s1, (y, x)).

Set y = [set of all cat-worlds]. Set x = A, where A is some arbitrary sentential argument of the

operator. [⊒] computes 𝒮 for A. For 𝒮(A) = 1 iff A is true in all cat-worlds, iff the set of all cat-

worlds is a subset of the truth-set of A29. A was arbitrary, so, for all sentential arguments φ, [⊒]

computes 𝒮, when given the appropriate sequence (φ, [set of all cat-worlds])30.

This result shows how little, on its own, formal computability can do. The next step, then, will be to

ensure that the item is not F-computable “by accident”, so to speak, and just for some specific pieces of

information, but generally. To ensure the formality of some notion k, k must be formally-computable

regardless of the specific content it is fed with. This is where permutation-invariance comes in handy.

The way to implement it, though, will be tricky. In standard invariance tests, we are asking invariance

of the “identity” of the notion under arbitrary permutations. Suppose we ask identity plus formal

computability. An item is be logical iff it is invariant and formally computable. In this case, our theory

29 With 𝒮, the output for φ is really the proposition ⌜In every cat-world: φ⌝. However, I take that this proposition
will be either true in every world or in none. For, if φ is true in every A-world, then this fact will not “change” from
world to world. So, its truth-set will be either ⊤ or ⊥; that is, 1 or 0.
30 𝒮 is computable in this way because it is equivalent to a Kripke modal operator defined over an accessibility
relation R such that R(w, w’) iff w’ is a cat-world. As we will see in the next chapter, any such Kripke modal operator
is formally computable.

53

would be a contraction of permutation invariance. I do not follow this theory, however, mainly because

we would have different sets of logical notions in different systems, based on how we are modelling

information. For, clearly, what is invariant under automorphisms of a system will depend on the features

of the system. In different systems we will end up with different invariant items (more of this in section

3.2).

What if we drop invariance of the “identity” of the item and, instead, we ask invariance under F-

computability? Then, an item k of type Y is formally-computable invariant (FCI or FC-invariant, for

short) iff:

i. k is F-computable

ii. For every admissible permutation of information content σ, the resulting σY(k) is still F-

computable.

Yet, this will not do, because the requirement is vacuous. It is easy to prove, for instance, that 𝒮 would

turn out FC-invariant, with this definition. For suppose we use the permutation-invariance system set

out in the last chapter, and we look at permutations of worlds. Take all σ〈〈W,V〉〈W,V〉〉(𝒮). For some, 𝒮 is

invariant (that is, σ〈〈W,V〉〈W,V〉〉(𝒮) = 𝒮) . If so, trivially it keeps its formal-computability. When it is not

invariant, it is because one transformed the set of all cats-words (call it C). Take some σ’ that does that,

and suppose σ’〈W,V〉(C)=C’. Now the result of the permutation 𝒮’ takes any proposition φ such that ⟬φ⟭ ⊇

C’ to ⊤, and everything else to ⊥, where ⟬φ⟭ is the truth-set of φ. By setting inputs (φ, C’), the resulting

𝒮’ is still F-computable by [⊒], for any sentential argument φ. So, this requirement would make 𝒮 logical.

We need another way of capturing the blindness to specific pieces of information that items like 𝒮 lack.

Intuitively, 𝒮 is F-computable only because we have a way of “choosing” the infons before-hand (that is,

before “passing them” to the formal-computation). Here is a suggestion: take the item whose formality

we are testing and the formal operation the item is supposed to be performing. Suppose we induce a

transformation in the inputs the two are receiving. What we do then is look if, under arbitrary

transformations of inputs, the formal operation and the item still behave in the same way, by printing

the same output. If so, then we may say that the item is logical, because it keeps its formal computability

54

regardless of how we transform its inputs. For each instance of the computation, each couple of inputs

“track” each other, under arbitrary transformations. This is the kind of invariance I will try to model, in

the next sections.

2.6.1 Formal-Computability Invariance Defined

To get to the technical definition of FC-invariance, however, we first need a definition of sequence-

permutation. The problem is that formal operations are taking as input sequences of infons, and we have

yet to explain how permutations affect sequences. First, let us add a type for sequences S:

Sequence An item in S is any sequence of elements x, y, …, z of any type X, Y, …, Z.

Take an arbitrary permutation σ of information. Call σS the transformation induced in type S by σ. It is

defined as follows:

Sequence permutation Take any n-ary sequence S = (a, b, …, n) of elements of types A, B, …, N

respectively. Take a permutation σ of information. Let σA, σB, …, σN be the transformation induced

by σ in types A, B, …, N respectively, and σS the transformation of sequences induced by σ. σS(S) =

(σA(a), σB(b), …, σN(N)).

We have now all the means necessary to define FC-invariance. I have two suggestions for FC-

invariance. The first takes an item to be FC-invariant if there is a formal operation that computes it under

arbitrary permutations of inputs. The second defines FC-invariance as preservation of computability

under arbitrary permutations of inputs. I will call the first FC-invariance, the second strong FC-

invariance.

FC-Invariance An item k is FC-invariant iff there is a FTM that computes k under arbitrary

permutations of inputs.

Strong FC-Invariance An item k is strongly FC-invariant iff it is computable by some FTM, and for

any FTM that computes k, FTM still computes it under arbitrary permutation

of inputs.

55

The second implies the first but not vice-versa. For the first, it can be that some (but not all) formal

Turing Machines compute k, yet do not compute it anymore when we permute their arguments. To

satisfy the stronger invariance, this cannot be the case: all FTM that compute k must compute it under

arbitrary permutations of their arguments.

Using the definition of permutation of sequences, and the definition of computability, we can give a

precise definition for both kinds of invariance. Start with the second. To be strongly FC-invariant means

that an item must keep its F-computability for every permutation of the input-sequence induced by

arbitrary permutations of information. That is:

Strong FC-Invariance An item k of arity n is strongly FC-invariant =df There is an FTM such that

there exists a function Comp: FTM-1 ∘ K such that:

a) For every s and s’, Comp(s) = s’ iff K(s) = FTM(s’).

b) For every s, Comp(s) is the sequence such that (bm)1≤m≤n = (am)s and (bm)m>n = k, where

(ax)s is the x-th element of s.

c) Let σ be a permutation of information and let σS be the transformation induced in type S

by such permutation. For every FTM that computes k, for every s and s’, if k(s) = FTM(s’)

then, for every σ, k(σS(s)) = FTM(σS(s’)).

Informally, we can describe what is happening with an image. Suppose there are some people in

different rooms. They all have some instructions to follow, which consist in receiving some inputs,

performing some tests, and finally printing a specific, unique output. Each person represents the

behaviour of some operation: person1 is the item K whose formality we are testing and person-2,

person-3 … person-N are all the formal operations K is supposed to be performing “blindly”, regardless

of the information it is fed with. To ensure that K is really “blind” to “specificities” of content, we permute

infons arbitrarily. We then “feed” the transformed infons to all the various people. If, under arbitrary

permutations, everyone still “tracks” everyone else, by printing the same output given the

correspondent transformed input, then we say that K is strongly FC-invariant.

56

What is crucial, in the definition, is the scope of the transformations: we do not write “σY(K)” but

“K(σS(a, b, …, n))”: we are not directly permuting the item we are testing, but only its arguments. That

is, if an item K is such that {((a, b), b), ((b, c), c) ((c, d), d)} ∈ K, then the permutations will not affect

this. What we rather do is this: we first check whether the item is formally computable. If so, there will

be a function “Comp”, as described above. Suppose K is F-computable by some FTM in this way:

This is a partial graph of how the computation works, and it is to be read like this: K takes (a, b) to b,

and the FTM takes (a, b, k) to b. Accordingly, Comp takes (a, b) to (a, b, k)

This was the first step. We now permute some objects: we can swap a with c, for example. We then

look at what permutation is induced in the relevant domain and range of the computation function. In

this case, σS(a, b) = (c, b) and σS(a, b, k) = (c, b, k). Now we “feed” K with σS(a, b), obtaining b. We feed

the transformed input-sequence σS(a, b, k) to FTM and we check if FTM, too, prints b. If yes, then the

formal-computability is preserved for that instance; if not, the item is not FCI. In this case, it is preserved,

because they both print b, so k(σ(a, b)) = FTM(σS(a, b, k)). I believe this system implements an intuitive

notion of “blindness to specific information content”. This is what we need for the invariance part of the

theory.

We can make this even clearer by proving that the non-logical item 𝒮 above is not strongly-FCI.

Domain K

• (a, b)

• (b, c)

• (c, b)

FTM(x)

• b

• c

Domain FTM

• (a, b, k)

• (b, c, k)

• (c, b, k)

Table 5

57

Proof 2.3. Define again the same FTM [⊒], that computes 𝒮 for arbitrary arguments φ when we set

as inputs (φ, C), where C = ˹There are cats˺. Take a φ such that ⟬C⟭ ⊆ ⟬φ⟭ and φ is not 1. Define a

permutation σ(w) = w’, with w ∈ ⟬C⟭ but w’ ∉ ⟬φ⟭. σ〈W,V〉(C) = C’, and σ〈W,V〉(φ)= φ’, with ⟬C’⟭ ⊆ ⟬φ’⟭

but ⟬C⟭ ⊈ ⟬φ’⟭. [⊒](σS(φ, C)) = [⊒](φ’, C’) = 1. Yet, 𝒮(σ〈W,V〉(φ)) = 𝒮(φ’) = 0. So, there is a

permutation σ for which 𝒮(φ) = [⊒](φ, C) and yet 𝒮(σ〈W,V〉(φ)) ≠ [⊒](σS(φ, C).

Informally, the two people here are simulating 𝒮 and the FTM [⊒], respectively. When we give a φ that

is true in every C-world for person1 and (φ, C) for person2, the two can simulate each other’s behaviour.

Yet, to see if this behaviour is general, we now swap an element w in C with w’, that is neither an C-world

nor a φ-world. This induce a permutation both in C and φ (because C ⊆ ⟬φ⟭), obtaining C’ and φ’. We

now give φ’ to person1: she will simulate 𝒮 by checking if φ’ is true in every cat-world, and the test will

be negative, for in φ’ there is w’, which is not a cat-world. Person2, on the other hand, is following the

rules above, and will check if C’ is contained in φ’, and the result is positive: she will print 1 as before.

We have found a permutation for which the two people behave differently, so 𝒮 is not FC-invariant.

We must note, here, that 𝒮 is not “aware” of the permutation induced in C, and so it does not change

behaviour. One might complain that, since the permutation changed C, 𝒮 should change accordingly.

However, again, we have ensured that this does not happen because of the way we set the definition of

FC-invariance: we are permuting only the inputs the operators take, not the operator itself. This is

essential: 𝒮 would change its behaviour only had it been in the scope of the transformation. The graph

we used before can make things more intuitive:

58

𝒮 and [⊒] fail to preserve computability for φ and (φ, C), because the transformed arguments,

indicated in red, cannot be “linked” by the composition function: the red lines fail to link them because

they do not give out the same value.

The way we define simple FC-Invariance is similar:

FC-Invariance An item k of arity n is FC-invariant =df There is an FTM such that there exists a

function Comp: FTM-1 ∘ K such that:

a) For every s and s’, Comp(s) = s’ iff K(s) = FTM(s’).

b) For every s, Comp(s) is the sequence such that (bm)1≤m≤n = (am)s and (bm)m>n

= k, where (ax)s is the x-th element of s.

c) Let σ be a permutation of information and let σS be the transformation induced

in type S by such permutation. For every s, s’, if k(s) = FTM(s’) then, for every

σ, k(σS(s)) = FTM(σS(s’)).

So, to test the FC-invariance of some item K we do this:

i. Firstly, we check if there is a FTM that computes it.

Domain 𝒮

• (φ)

• (φ')

[⊒](s)

• 0

• 1

Domain [⊒]

• (φ, C)

• (φ', C)

• (φ', C')

Table 6

59

ii. We then permute information arbitrarily. For any permutation, we then feed the transformed

arguments to K and FTM, and register the corresponding results we get. If they are still the

same, then it means that K is FCI.

I do not think that I should choose between one of these two definitions, for they both implement my

general idea of formality. Therefore, I will settle for the weaker version:

Logicality An item k is logical iff it is FC-invariant.

This completes the basic exposition of the theory. I will now give some examples of FCI items:

i. Conjunction, disjunction, negation are instances of meet, join and complementation, both in

an extensional and in an intensional language. For example, in an extensional language, the

information a proposition contains is either 1 or 0. In such a case, conjunction calculates the

smallest infon two propositions both contain: if they are both 1, it is 1; if one is 0, it is 0. In an

intensional language, conjunction calculates the intersection of the two propositions in the

modal space.

ii. The identity function is computed by the FTM whose instructions are empty. That is, by the

FTM such that F = {s0} and instructions: ∅. Since, by default, the input is written on s0, the

output is the input.

iii. N-ary functions that take everything to ⊤ can be computed by the FTM whose instructions

are [1] (s0, input). Any n-ary function that takes everything to ⊥ is computed by [0] (s0, input).

Any other function whose output is some constant k not equal to 1 or 0 will never be FCI31.

iv. The valuation of ≠ is computed by the complementation of symmetric containment. Input:

sequences (x,y). F = {(s2, 1), s4}. Instructions:

o [⊑](s0, (x, y)).

o [1] (s1, 0).

o [input, (y, x)] (s1, 1).

31 This is easy to prove. Take an n-ary K whose output is k, with k ≠ 1 and k ≠ 0. K(a, b, …, n) = [input (k)] (a, b, …,
n, k). Yet, k is not invariant: there is a σS(k) ≠ k. So, KσS(a, b, …, n) = k, but [input (k)] σS(a, b, …, n, k) = σS(k) ≠ k.

60

o [⊑] (s2, (y, x)).

o [0] (s3, 1)

o [1] (s3, 0).

Table 7

v. Universal and existential quantifiers are FCI, but cardinality quantifiers are not FCI. More on

this in the next chapter, in section 3.3.

vi. Logical necessity is FCI32. It is computed by various operations. Examples:

a. Containment of ⊤ in φ.

b. the operation that checks if the meet of φ and ⊤ is ⊤.

c. the operation that checks if the join of φ and ⊤ is ⊤.

vii. Logical possibility is FCI. For every way logical necessity is computed, there is a computation

of logical possibility via the transformation rule □φ iff ¬◊¬φ. So, for example, instead of (a)

we have the complementation of the containment test of ⊤ in the complement of φ.

viii. Empty necessity and possibility, where “empty necessity” is defined in a Kripke structure

through an empty R.

ix. ⊤ and ⊥ are computed by containment, when given input (⊤, ⊤) and (⊥, ⊥), respectively.

32 We are still assuming logical necessity to be S5. As I will show in section 3.4 of the next chapter, these ways of
computing necessity operators fail for some weaker logics.

x, y

0

1

1

y,x

1

0

0

1

⊑ ⊑

Input

⊑ ⊑

s3 s3

s1 s1

s2 s2

s4 s4

s0

61

CHAPTER 3: APPLICATIONS OF FORMAL-COMPUTABILITY-

INVARIANCE.

This chapter explores some applications of formal computability invariance. In section 3.1 I apply

formal-computability invariance to a very plausible model of information, which I call modal/object

system: information about objects are taken to be set-constructions from the set of objects, and

propositional information is a built up from the modal space. This system has some interesting features:

in the Appendix, I show how formal-computability-invariance sometimes collapses into permutation-

invariance, at least for a class of operations. This happens when we model information in a certain

way: if the set of infons is made up from the complete powersets of some sets. In the object/modal

system infons are usually built up from the powersets of W and 𝔇, so we do have the behaviour

described in the appendix.

For some systems, like the one just described, if an n-ary operation on the set of infon is formally

computable invariant, then it is permutation invariant. Yet, when we change our way of modelling

information we may lose this result. I will show how this may happen in section 3.2, in which I set up a

model of information in which some non-permutation invariance items are formally-computable

invariant. This shows something interesting: what is invariant under automorphisms of the space of

information strictly depends on how we are modelling information. On the other hand, what is formally-

computable invariant is more “stable” and tends to be preserved across different models. This is

something desirable, because what is logical should ideally be independent of our chosen model. I call

this feature “persistence”.

In section 3.3 I prove that the existential and the universal quantifiers are formally-computable

invariant. I also show how, even if something is permutation-invariant in some systems, there may not

be any system in which it is formally-computable invariant. I argue that this is the case for cardinality

quantifiers: they are not formally-computable, at all. Thus, the theory is not a conservative extension of

62

permutation invariance, generally. Cardinality quantifiers are usually regarded as a problematic case of

logicality, so I do not take this as a bad result.

In section 3.4 I introduce a relaxed concept of logicality we may call “quasi-logicality”. This concept can

be applied to the study of the formality of a class of modal operators which I call “world-sensitive”: they

change behaviour across different worlds. In section 3.5 I try to show how my theory may help shed

light on the formality of some interesting notions that have never been discussed in the literature, so

far. My case study will be deontic operators: is Ought logical, or at least quasi-logical? It depends: I argue

that a radical form of contextualism may make Ought more formal than people guess.

3.1 The object/modal system of information.

My definition of logicality does not specify a particular system of information. I want now to set up a

very intuitive model of information that can be applied to my theory. We take infons to be set theoretical

constructions from worlds and objects. Transformation of information is induced by arbitrary

permutations on W and O. There are philosophical reasons in favour of this solution. Firstly, it is very

intuitive. Suppose I am in a class, and I want to know which student is male. This “infon” can be modelled

as the set of all male students in the class. With propositional information, we have a “modal” account:

the infon of ˹There are dogs˺ is the set of all worlds in which there are dogs.

When we model a “propositional” infon as a set of worlds, I am following what Floridi calls a “modal”

approach to information (2011, 31). In a modal approach, an infon x is usually defined as the set of

possible worlds excluded by x33. For take a logical truth: its truth-set is the biggest possible in the system,

and yet logical truth are the least informative. So, its information content must be its complement, not

its truth-set. However, since it is just easier to go the other way around, I will normally take x to be the

set of possible worlds not excluded by x34. I do this for two reasons: one is that the two accounts are

33 I don’t know who was the first to suggest this way of modelling information. Floridi (2011, 111) says that Popper
(1935) was “one of the first” to suggest this kind of approach.
34 For a similar account, see Hanson (1990). Hanson, however, tends to use “situations”, which can be partial
worlds.

63

equivalent for most systems, because they usually lead to exactly the same conclusions (we have just

swapped each infon with its complement, in its correspondent type). The second is that it is just more

intuitive: now the informational content of a proposition is just its truth-set. A good reason for adopting

a “modal approach to information” lies in its “affinity” with the way we model beliefs in epistemic logic.

For example, take the information contained in a proposition: the more information it has, the more

logical space is excluded by the proposition (i.e. the “bigger” its complement is). In epistemic logic: the

more you know, the less worlds in the epistemic space will be accessible to you. Knowledge is a matter

of “subtraction” of the epistemic space35. The two limit cases are propositions whose truth-set is W and

whose truth-set is ∅. In the first case, WC=∅: the proposition carries no information. In the second case,

∅C=W: the proposition carries maximal information.

It is worth nothing that this leads to two well-known “oddities”, that I will just mention, here. First,

since W, for us, is the set of all logically possible worlds, every logical truth will have no information-

content whatsoever. To foster the analogy between modal approaches to information and epistemic

logic, this first problem is akin to the issue of logical omniscience: if Δ is a set of logical truths, then any

agent knows each member of Δ. (Hendricks & Symons 2015). Secondly, a contradiction has maximal

information content: this second issue is usually referred to in the literature as the Bar-Hillel-Carnap

Paradox, mainly because Bar-Hillel and Carnap (1953) were one of the first to discuss it. The idea is that

a contradiction is “too much” to be true. In our system W is 1 and ∅ is 0, since W and ∅ are the maximal

and minimal element, respectively, of the set of propositions, and so W is ⊤ and ∅ ⊥. However, we must

keep in mind that, informationally speaking, things are swapped around: W is the minimal element and

0 the maximal.

By adopting this system, we do not need to change our type theoretic framework a lot. “Objectual

information” will be modelled as sets of objects, “propositional information” as sets of worlds: their type

will be 〈O,V〉 or 〈W,V〉, respectively, since their extension is uniquely determined by a function. However,

this is not enough, for an infon may be about propositional infons, or about “objectual” infons. Suppose

I want to model the infon that answers the following question: “Which proposition is about dogs?”. This

35 For an overview on epistemic logic, see Hendricks & Symons (2015)

64

is not a propositional infon, but an infon about propositions. The simplest way to answer this question

is to show the list of all the sentences about dogs. This “list” is uniquely determined by a function from

propositions to truth-values: its type is 〈〈W,V〉V〉. Something similar can be raised for properties. Take

the infon that answers the following question: “Which ice-cream flavour do you prefer?”. This is a

question about properties: the answer is a list of flavour-properties, and its type is 〈〈O,V〉V〉. One can go

higher, if she fancies, by asking questions like “Among all the possible ice-cream flavours preferences

one can have, which are the best?”. The answer will be a list of lists of flavour-properties so, type-

theoretically, the infon is a higher-order unary quantifier 〈〈〈O,V〉V〉,V〉.

Since we are dealing with the same system of chapter 2, the same results apply: the only permutation-

invariant infons are O and ∅ for 〈O,V〉 and ⊤, ⊥ for 〈W,V〉. For sets of sentences 〈〈W,V〉V〉, invariant infons

are items like {⊤}, {⊤, ⊥}, {⊥}, {X∈〈W,V〉/ |X| = n}, etc. For short, we will call ⊤ 1 and ⊥ 0. We are also still

equating W with the set of all logically possible worlds, and we are assuming that such set contains

metaphysically impossible worlds. We are also assuming that, for any truth-set, there is a corresponding

proposition.

Information, usually, is at least a subset of some set, never an element: normally, there is no infon that

is mapped to some specific object, for example, even though, for any object, there is the infon that is the

singleton of that object. However, we need single objects and single worlds as pieces of information, for

otherwise we would never be able to compute any first-level item. So, I will assume that any element of

level 0 are “special” infons: any such infon contains and is contained only in itself. One could object to

this assumption, however, so I need to say more to justify it. For one may say that an infon α of type O is

“contained” in any infon that is mapped to a set X such that X ∈ α. For example, why is Fido not contained

in “dog-ness”? After all, it is an element of it and a set contains all its elements. The reason is that the

“containment” we are interested in is “information containment”, and this relation is never modelled as

the membership relation but, at most, as the subset-relation. This is very important, so I want to argue

for this in detail. Information-Containment is always a “horizontal” relation: it is between elements of

the same type. Membership, on the other hand, is “vertical”: it is (or rather it should be) always between

elements on different “levels” (Russell’s paradox docet). In the object/modal system, a type represents

65

a “kind” of information: e. g. 〈W, V〉 is propositional information and 〈〈W, V〉, V〉 is information “about”

propositions. We said that an infon contains another iff it conveys all that the other conveys. Since

elements of different types conveys different kinds of information, two infons of different kinds cannot

be such that one conveys all the information that the other conveys. In other terms: we assign a type to

an infon on the basis of the kind of information it conveys. For example, if an infon conveys propositional

information, this is sufficient to assign it to some 〈W,V〉. Suppose we think containment is sometimes

modelled by membership. Take a propositional infon α. There is at least an infon β of type 〈〈W, V〉, V〉

that contains α. Since α ∈ β, then α ⊑ β, then β must have all the information α has, which is propositional,

so β has propositional information and, therefore, it is of type 〈W,V〉. Yet, it is not, so it cannot be that α

⊑ β, so ‘membership’ does not model containment.

The object/modal system has interesting algebraic properties. Since “containment” is never

membership but at most subset-relation, any two elements of different types are “incomparable”: they

are not linked by containment. Thus, containment is not a total order. The space of information is not a

lattice, either. Take a set of worlds and a set of objects: not only they are not comparable, but there is

also no infon that contains both. Thus, they surely have no join. However, take the subclass of all the

propositional information of “level 1”: all the subsets of WL. In Appendix A I show that this is a Boolean

algebra. In general, in the Appendix I show that any system that models information from the complete

powerset of some set, like this one, will make Formal Computability Invariance collapse into standard

Permutation Invariance, at least for n-ary operations defined over the Boolean algebra. This behaviour

may not be preserved under extension of the list of formal operations: if we were to add some operations

to the list that are not permutation-invariant in this system, we would lose this result. Many formal

operations like complementation, disjunction, conjunction and containment, are all permutation-

invariant in the object/modal system, as I show in the Appendix: they are all Boolean and therefore

invariant, via Inverted Benthem’s Proposition.

66

3.2 A simpler system of information.

I will now propose another plausible model of information with different features. This is the simplest

way to model information I can think of: we start with primitive set of infons ℐ. The types of items in this

set are contextually determined by the type of items we are testing. So, for example, if we are looking at

sentential operators, ℐ may comprise the set of all sentences. We add new types if needed. On ℐ, we

define a partial oder of containment ⊑, with all and only these additional rules:

• if a ∈ Y and b ∈ Y, then a ⊑ b or b ⊑ a.

• if a ∈ Y and b ∈ X, with X ≠ Y, then a ⋢ b and b ⋢ a

We then define the transformation of information inductively. Where Y is a type and σY is the

transformation induced in type Y, σY = {σX|X ∈ Y}, unless k is such that ∀x∈ Y(x ⊑ k & ∀z∈Y (k ⊑ z → k=z))

or ∀x∈ Y(k ⊑ x & ∀z∈Y (z ⊑ k → k=z)). In that case, σℐ(k) = k. So, basically, we look at arbitrary

automorphisms in each type in ℐ, with the exception of each maximum and minimum, for each kind,

which remain constant. We need this exception for otherwise the system “crashes”: it is the most

minimal preservation condition I can think of36.

In this framework, we have lost “structure”, so to speak. By losing “structure”, the resulting

transformations are more powerful. This may be counterintuitive, so I will give an example. Take two

sentences S and S’ such that ⟬S⟭⊂⟬S’⟭ and S and S’ are not ⊥ or ⊤. Suppose we are in the object/modal

system: propositions are sets of worlds. There is no permutation for which σ〈W,V〉(S) = S’. One way to see

this is by looking at their cardinality: ⟬S⟭ is strictly contained in ⟬S’⟭, it is finite (if not, pick a finite one),

and so its cardinality must be strictly less than ⟬S’⟭: since for any permutation, σ〈W,V〉(S) has the same

cardinality of S, there is no permutation for which σ〈W,V〉(S) = S’. On the other hand, in this simpler

system, we can swap S with S’, because they are not identical to either ⊥ or ⊤. This has interesting

36 More on this in a few paragraphs.

67

consequences on the system: we can prove that, unlike the previous system, almost all canonical logical

operations will not be permutation invariant.

Proof 3.1. Take containment. It is permutation invariant iff (A⊑B iff σℐ(A) ⊑ σℐ(B)), for any σ.

Define a permutation σℐ(A) = C, with ⋀{C, A} = 0. A ⊑ B and yet it is not the case that σℐ(A) ⊑

σℐ(B). Similar proofs work with meet, join, complementation.

We can swap A with C without “changing” B because we are just taking items in ℐ as primitives, without

any “internal structure”, apart from the maximum and minimum. If we had modelled sentences as sets

of worlds, this would not have been possible. In this simpler system, containment is not the subset

relation. Another interesting feature is that 1 and 0 will not be invariant, unless we postulate it. We need

them invariant, however, for otherwise we “blow” up the system. For example, take logical necessity: it

is FCI via [⊒] when set with (φ, ⊤). Yet, if we could swap ⊤ with some other elements of propositional

information, logical necessity would not be formally computable invariant.

One might complain that I am cheating, because I am “keeping fixed” the maximum and minimum.

What I have to say in my defence is that what I care about, here, is just that the resulting system is still

a reasonable model for information. This fact alone is sufficient to show that our theory does not

“collapse” into permutation-invariance: some items that will not be permutation-invariant under this

system will be formally-computable-invariant. The simplest examples are the formal operations

themselves. In general, if we are applying FCI to any FTM, trivially, FTM(s) = FTM(s) and, for every

permutation σ, FTM(σS(s)) = FTM(σS(s)). So FTM is logical. Given that meet, join, complementation and

compatibility-test are all formal operations, trivially they will be FC-invariant, because they compute

themselves under arbitrary permutations of inputs. Yet, in this simpler system, they are not

permutation-invariant. Consequently, my theory in this system is not a contraction of PI, and it is clearly

more extensionally adequate: PI heavily under-generates logical notions, in this model. This also shows

something interesting. One of the problems with invariance theories we discussed was about the

“impersistence” of invariant notions: what comes out invariant depends on the features of the system at

hand. Yet, we said that logical notions should be persistent:

68

Persistence. An item is persistent if and only if its logicality persists across different systems of

information.

As I have shown, in the object-modal system we mostly get plausible results, when we apply

permutation-invariance. Yet, if we switch to simpler systems, like this one, the result may be

catastrophic: here intensional conjunction, disjunction and negation are not invariant. Yet, they still

retain their formal-computability invariance. In fact, since they satisfy trivially the FC-invariance

definition, they will be persistent across any system of information. This suggests that most FC-invariant

items will be persistent, as opposed to invariant items. However, not all FCI items will be invariant in

any system of information: if we had not kept the maxima and minima fixed, we could have made logical

necessity not FCI, in this system. Thus, we may suggest that all FCI items persist across all systems with

the minimal condition of keeping the maxima and minima fixed, while the FTM themselves are

persistent across any system whatsoever. This is still better than invariance, even though persistence is

not perfectly general.

3.2.1 An objection to persistence

An objection to the persistence of logicality across systems in the FC-invariance theory can be raised

with identity. Take the identity relation between propositions, for example. Since in the object/modal

system propositions are functions from W to V, if two propositions have the same truth-set, they are the

same proposition. In the simple system, on the other hand, we obtain a finer-grained model:

propositions with the same truth-set can be different. One then could argue that persistence fails for

identity. For take two different propositions with the same truth-set P and Q. In the simple system,

identity is computed by symmetric containment. The information in P is different from the information

in Q because P ≠ Q. Thus, in the simple system, when fed with (P, Q) symmetric containment will give

out 0. If we switch to the object/modal system, however, P and Q are the same truth-set, and so have the

same information. Thus, now symmetric containment, when fed with (P, Q), will give out 1, even though

P ≠ Q, by assumption, and thus, when fed with (P, Q), identity gives out 0. So, symmetric containment

does not compute identity anymore, and identity is not persistent.

69

I am not deeply troubled by this objection, because this is not a problem with my theory, but rather

with the definition of a proposition in standard, modal logics. It is well known that, in such systems,

necessarily equivalent propositions are identical, and this is often taken as an objection to the idea that

propositions are sets of worlds, or functions from worlds to truth-values. This is an example by

Merricks:

Fermat’s Last Theorem (FLT) is necessarily true. So, FLT is true in all possible worlds. So, the

proposition that dogs bark is true in all and only those possible worlds in which the proposition

that dogs bark and FLT is true is true. So, the set of possible worlds in which that dogs bark is true

is identical with the set of possible worlds in which that dogs bark and FLT is true is true. So, if

propositions are sets of possible worlds, the proposition that dogs bark is identical with the

proposition that dogs bark and FLT is true (Merricks 2015, 88).

The conclusion is that the proposition that dogs bark and FLT is true is not identical to the proposition

that dogs bark, therefore propositions are not sets of possible worlds (here, since we are looking at all

logically possible worlds, to make the same example we would have to switch Fermat’s last theorem

with some logical truth). Now, this is a matter of debate, and it is not in the business of this dissertation

to decide whether this is a good objection or not. It is interesting, however, because it does show an

intrinsic limit to the fine-grained-ness of the object/modal system: in such system, necessarily

coextensive propositions are identical. Therefore, it is unfair to assume, as the objection to persistence

does, that there are two different propositions with the same truth-set, in this system. Indeed, symmetric

containment does his job as it should be: when fed with P and Q, it will give out 1 because P is Q, in the

modal system, and thus (P, Q) is part of the extension of =, contrary to what the objection says. It is not

that symmetric containment fails to compute identity when we switch system. What happens is rather

that identity changes extension through different systems, and symmetric containment changes,

accordingly.

70

3.3 Quantifiers.

I want now to show how to apply my theory to quantifiers in an extensional language. In fact, we

already know that this is possible because quantifiers are structurally similar to modal operators: a

modal operator is like a quantifier that ranges over the modal space. Let us start with extensional,

universal quantifier. It is FCI.

Proof 3.2. Start with a set of objects 𝔇. ∀ is a function 𝓅𝔇 → {V, F}. It takes 𝔇 to T and everything

else to F. Define again this FTM [⊒]:

• Input: sequences (x,y)

• F = {s2}.

• Instructions:

o [input (y, x)] (s0, input)

o [⊑] (s1, (y, x)).

This is a reversed containment test. Here 0 and 1 are True and False. [⊒] computes ∀ when we set

input (X, 𝔇), where X is the argument of ∀. Feed [⊒] with (𝔇, 𝔇). Following the instructions, we

obtain this graph:

Table 8

So, correctly, when fed with (𝔇, 𝔇) the output is True. Now Feed [⊒] with any other (X, 𝔇).

𝔇, 𝔇

𝔇, 𝔇

1

Input

⊑

71

Table 9

Here, no proper subset of 𝔇 contains it, so the test is doomed to fail, for any X. So, correctly, the

output is False. So, [⊒] computes ∀.

Now, for the permutation part, set arbitrary permutations in 𝔇. ∀(X) is either 0 or 1. The only

invariant elements of the powerset 𝓅𝔇 are 𝔇 and ∅. So, the sequence (𝔇, 𝔇) is invariant as well.

Since (𝔇, 𝔇) is the only input for which [⊒] has value 1, for every σ, ∀(σ〈O,V〉(𝔇)) = [⊒](σS(𝔇, 𝔇))

= 1. Also, obviously, for any other X ≠ 𝔇., ∀(σ〈O,V〉(X)) = [⊒](σS(X, 𝔇)) = 0. For suppose this is not

the case: then there must be an X such that [⊒]σS(X, 𝔇) = 1 or ∀(σ〈O,V〉(X)) = 1. Yet, this happens

only if σ〈O,V〉(X) = 𝔇, but then 𝔇 would not be invariant. Thus, for every σ, ∀(σ〈O,V〉(X)) = [⊒](σS(X,

𝔇)).

Since ∃ is ¬∀¬ we know it is FCI, as well. Yet, let us prove it anyway.

Proof 3.3. Define FTM [¬][⊑]:

• Input: sequences (x,y)

• F = {s1}.

• Instructions:

o [⊑](s0, input).

o [¬] (s1, x).

This is the complementation of containment. ∃ is computed by [¬][⊑] when we feed it with (X, ∅):

∅ contains X if and only if X = ∅, so when X = ∅, the output is 0; 1 otherwise, which is exactly the

behaviour of ∃. So, again, there is a FTM [¬][⊑] such that, for any argument X of ∃, there exists a

sequence (X, ∅) such that ∃(X) = [¬][⊑](X, ∅).

X, 𝔇

𝔇, X

0
⊑

Input

72

For the permutation part, set again arbitrary permutations on 𝔇. ∅ is invariant, and so is (∅, ∅),

which is the only input for which [¬][⊑] is 0. Thus, under arbitrary permutations, ∃(σ〈O,V〉(∅)) =

[¬][⊑](σS(∅, ∅)) = 0. Since for any other argument, the output is 1, then under arbitrary

permutations, it will still be 1, for the same reasons as before. Thus, for every σ and every X,

∃(σ〈O,V〉(X)) = [¬][⊑](σS(X, ∅)).

I find these proofs interesting, because they give us a peculiar philosophical justification for the logicality

of ∀ and ∃. They are logical because they reproduce an instance of information-containment and its

complementation, respectively. The universal quantifier is logical because it can be computed by

something that checks whether a piece of information contains the maximum. The existential quantifier

is logical because it is like something that checks if the empty infon does not contain another infon. This

behaviour is general, because it is preserved under arbitrary automorphisms of the domain and induced

transformations of inputs that the quantifiers are receiving.

Here comes the interesting part: cardinality quantifiers are permutation-invariant, and yet I cannot

think of any way they could be formally-computable. We would need some combination of intersection,

union, complementation, containment and compatibility that imitates the behaviour of cardinality

quantifiers, but I cannot see how this can be possible. The only thing sets of cardinality 5 have in common

with all and only the sets of cardinality 5 is their cardinality, I take it. There is no checking of

containment, or communality of information these sets share. Being arguably not formally-computable

at all, cardinality quantifiers cannot be formally-computable invariant, and therefore they are not-

logical. This is not a bad result, I believe, because cardinality quantifiers are one of the main sources of

criticism for both permutation invariance and bijection invariance theories. As already discussed in

chapter 2, their logicality has been heavily criticised in Feferman (1999) and Bonnay (2008).

At any rate, I would like to point out that my theory may score better than permutation or bijection

invariance regardless of one’s opinion on the logicality of cardinality quantifiers. For these items, even

when they come out logical, they are mainly seen as “involuntary by-products” of the choice of

transformation we take. It is not that Sher and Tarski wanted cardinality quantifiers to be logical: they

just happened to come out that way because, unluckily, they turn out invariant. When we switch to

73

stricter transformations, like homomorphism invariance, they are not logical anymore (Feferman

1999). However, we have a price to pay: identity is not logical either! My theory, on the other hand,

makes clear what it takes for cardinality quantifiers to be logical. The fact that they do not change under

some transformation does not matter much. Do they or do they not perform an operation that, under

our general conception of what logic is, counts as logical? No. Then they cannot be logical, no matter

what invariance feature they might possess. However, if we were to change our underlying theory of

what logic is, and thus extend or alter our list of basic formal operations, then cardinality quantifiers

may turn out logical. For example, if we take the sizes of infons to be structural aspect of information,

then cardinality would arguably be logical structure. We will then have some formal operation that is

sensitive to cardinality that computes them. Since arbitrary permutations will not change the cardinality

of an infon, under arbitrary permutations of arguments, this operation will still compute some

cardinality quantifier. These considerations, I suggest, show that my theory is not on the wrong track. If

someone wants these items to be logical, she does not need to come up with some choice of

transformation that makes them invariant. Rather, she needs to show that cardinality matters to logic,

and that is logical structure: this seems like the right way to go.

3.3.1 Objection

Take a language ℒ∞∞ whose primitive notions are identity, substitution, disjunction, negation and

existential quantification. McGee (1996) proved that an n-ary operation is definable in ℒ∞∞ if and only

if it is permutation invariant. The left-to-right part is not interesting, but the right-to-left is very

important: it says that any PI operation is definable in that language. Since the language has, as

primitives, paradigmatic examples of logical notions, and since an operation describable by a

combination of logical notions is still a logical notion, McGee concludes that all permutation invariant

items are logical notions. In my theory cardinality quantifiers are not FCI. Yet, there is a language, namely

ℒ∞∞, whose all primitives are FCI-items, in which we can define cardinality quantifiers. This raises a

doubt: even if it was true that cardinality quantifiers are not formally-computable, is this a problem with

cardinality quantifiers or rather with the machinery we have been using? Maybe it is just a technical

74

limitation of our computational system, built in the way we set it up, rather than an interesting feature

of the theory.

Maybe so. In the next section I do raise doubts on how I set up the computational system. In fact, I do

believe that it must be changed to allow for more expressive power (see 3.4.1). So, suppose this

objection is right: then my theory, at least in the object/modal system, would probably collapse into PI.

This may not be so bad, after all. My theory would not collapse into PI in any system, so it would not be,

strictly speaking, just PI in another disguise. Secondly, my theory would still retain its explanatory

power. For, contrary to permutation invariance, it says more about why conjunction or disjunction are

logical: they are operations that checks what two infons have in common, and they reflect structural

aspects of information. If, in the object-modal case, PI is just FCI, then this would give a philosophical

ground for invariance theorists: permutation invariant items are all and only items which are intuitively

describable by operations that check only structural aspects of information, and structural aspects of

information, so I argued, are logical structure.

However, I am not sure that cardinality quantifiers do not come out F-computable due to quirks of the

system. Or, better, these “quirks” may not be quirks at all, but sensible limitations. I will give an analogy:

the sentence ˹ ∃n>3x(Fx)˺, where ∃n>3x is the cardinality quantifier ˹ At least three things˺, can be rewritten

employing paradigmatic logical notions only as ˹ ∃x∃y∃z(x≠y≠z & Fx & Fy & Fz)˺. Yet, this will not satisfy

the critics of the logicality of cardinality quantifiers, in the slightest. They will still point out the problems

related to these notions, which have not been addressed by the fact that we can substitute them with

some combination of logical notions. This may suggest, by analogy, that something similar is happening

with ℒ∞∞: maybe it allows too much, even though one is employing logical notions only. The debate, thus,

may still be open, and I could object that even though a notion is describable in McGee’s language, there

may be no logical operation that computes it.

75

3.4 World-Sensitivity and Quasi Logicality

 In the discussion on the logicality of modal operators, so far, we have always talked about a certain

kind of items: items that are not world-sensitive. By that, I mean that their behaviour does not change

from world to world. For example, take logical necessity: we assumed that it is an S5 modal operator,

where an S5 modal operator, in a Kripke semantics, is defined through an accessibility relation that is

transitive, reflexive and symmetric (Garson 2016). In such system, every world valuates modal

statements the same. For example, if P is possible from some w, it is possible from any w’ of the model.

If something is world-sensitive, on the other hand, it will show some sort of “indexicality” that S5

operators lack. By “indexicality” I mean that it shifts behaviour across contexts (I will be more precise

later on).

Take a S4 modal operator, for example. In a Kripke semantics, it is defined through an accessibility

relation that is reflexive, transitive but not symmetric. Thus, it may happen that some w is accessible

from w’, but w’ is not accessible from w. So, across worlds, the set of accessible worlds changes, and thus

the operator may change behaviour, as well. For example, so far, we computed Kripke modal operators

through reverse containment. Call “modal context of w” the set C = {w’/ Rww’}. We compute □P by

checking if P contains C, and we compute ◊P by checking if the complement of P does not contain C. The

simplest way to check that S4 is world-sensitive is to look at C: it varies from world to world, so it is

world-sensitive. Take a model with W = {w, u} and an accessibility relation R = {(w, u), (w, w), (u, u)}.

R satisfies S4. To valuate necessary statements before, we used [⊒] with inputs of type (φ, C), where C

was constant. However, now containment fails to account for the S4 necessity just described. This

happens for at least two, interconnected reasons. Firstly, C is not constant: in w, ⟬C⟭ = {w, u}, but in u,

⟬C⟭ = {u}. Finally, the value of □φ is neither 1 nor 0, for some formula φ (1 is mapped to ⊤, with ⟬⊤⟭ =

W, and 0 to ⊥, with ⊥ = ∅). Suppose ⟬φ⟭ = {u}. Then, φ is necessary from u but not from w, so ⟬□φ⟭ =

{u} ≠ 1 or 0. This is the most powerful way to spot world-sensitivity, since it is applicable to semantics

that are not Kripkean (like Algebraic semantics, Neighbourhood semantics etc.37). If the operation we

37 As already mentioned, these semantics are useful for modal logics that cannot be captured through Kripke
frames. For example, logics without necessitation (where P is a theorem, so is □P), or without

76

use to valuate modal statements does not change across worlds, then every world will “agree” on every

modal statement. Thus, an item is world sensitive in 𝔐 if, for some modal formula ψ, ψ ≠ 1 and ψ ≠ 0.

So, a Kripke modal operator is world-sensitive if this holds:

i. Not for all w ∈ 𝔐, Cw ≠ k, where k is some constant and Cw={w’/ R(w, w’)}.

The general definition however is this:

World-sensitivity: An n-ary sentential operator 𝒳 is world-sensitive iff, for some 𝔐 for 𝒳,

𝒳(a, b, …, n) ≠ ⊤ and 𝒳(a, b, …, n) ≠ ⊥, for any n-ary sequence of formulas (a, b,

…, n) of the language.

World-sensitivity generalizes (i), since (i) implies the condition set in the definition. Suppose 𝒳 is a

necessity operator □. Suppose C is not constant. Then there will be two worlds w and u such that Cw ≠

Cu. Regardless, there will be at least a proposition P such that □P is true in w but not in u, and thus

∅⊂⟬□P⟭⊂W (Cw and Cu are either one a subset of the other or not. If they are, then take the P whose

truth-set is the smaller context. If they are not, take the P whose truth-set is one of the contexts). The

condition in the definition implies (i) in Kripke semantics, as well.

The fact that the definition of world-sensitivity is all about the extension of modal statements helps

clarify what world-sensitivity is. I called it a form of indexicality, yet this was imprecise. An item is

indexical if it shifts content through contexts (in this case, worlds). In Kaplanian terms, we take these

items to have both a character and a content. A character is a function from circumstances of evaluation

to contents, a content is the extension of some term (Kaplan 1989). For example, ˹ Today˺ has a character

that “takes you” from a context to a day: the day of the context. An item is indexical iff it has different

contents in different contexts. Yet S4 modal operators are not indexical, in this sense. For take what is

supposed to be their character: the function from context to contents. Since the modal is the relevant

variable that makes the content “shift”, we can equate the context with type W. S4 necessity is of type

〈〈W,V〉,〈W,V〉〉, thus its character is of type 〈W,〈〈W,V〉,〈W,V〉〉〉. Yet, this function takes any w to the same

K: □(P→Q)→(□P→□Q) etc. The definition will apply as long as, if some formula is mapped to 1, then it is necessary
from every world, and if it is mapped to 0, it is impossible from every world.

77

content: to the same function from propositions to propositions. So, the content of S4 necessity does not

shift, and it is not indexical. What is changing across worlds is rather the extension of statements that

contain S4 necessity. MacFarlane has carefully distinguished these two kinds of sensitivity to context:

Use-sensitive. An expression (or content) is use-sensitive iff its extension (relative to a context of

use and context of assessment38) depends on features of the context of use.

Use-indexical. An expression is use-indexical iff it expresses different contents at different

contexts of use (MacFarlane 2015, 79).

S4 necessity is use-sensitive, but it is not use-indexical.

Being not world-sensitive is not a sufficient condition for logicality. For example, take a necessity

operator defined over an accessibility relation that is such that, for any w ∈ W, Rwa, where ‘a’ is constant.

This operator is not world-sensitive, but it is clearly not FCI. In fact, the already mentioned 𝒮: ˹In every

cat-world˺ is not world-sensitive and yet not logical. As one may suspect already, however, FCI usually

implies world-insensitivity. This happens for two reasons, mainly. Firstly, the operator that is world-

sensitive cannot be computed by an operation whose output is 1 or 0. The only way to compute it, then,

would consist in some combination of meet, join and complementation, but this is usually impossible

for things like necessity operators. Secondly, almost all the FTMs suggested so far for computing Kripke

modal operators presupposed a fixed “modal context”. To compute a Kripke world-sensitive operator

we would have to change the final part of the sequence the FTM is taking, and thus the item would not

fit the requirements for formal computability, for its input-sequences would not be such that (b2) = k.

Consequently, modal operators in logics weaker than S5 will usually not be FC-invariant. The same

usually goes for any “context-variable” modal operators. There is an exception, though: take a Kripke

model such that R(w, w), for any w: it is the “solipsistic” R already mentioned. In such models, necessity

and possibility collapse into the identity function, which is FCI: to compute these operators we just need

the empty FCI.

38 MacFarlane thinks some notions are “assessment-sensitive”: they are sensitive to shifts in context of assessment,
rather than context of “use”.

78

3.4.1 Quasi-Formal-Computability

As already mentioned, Novaes criticizes standard invariance for making S4 modal operators not

logical:

The point is not that the S4 modal operators should necessarily be counted as logical; rather, the

point is what independent motivations would justify that the S4 modal operators do not count as

logical, whereas their counterparts interpreted on universal frames do. What is the fundamental,

philosophical difference between these two cases besides the fact that they are interpreted on

different structures? (2014, 94).

This is a fair point, which is linked to our discussion of standard invariance theories: they are usually

not very explanatory, since they fail to specify what is “logical structure” and what is not, and they tend

to reverse engineer the test so that it gives out the extension they have in mind for reasons independent

of invariance per se. In such a situation, it is fair to ask: why is S4 accessibility relation not logical? Why

should it be “below” the lower bound of logical structures, given that we did not specify any? Formal

Computability Invariance, however, does account for the difference between a S5 modal operator

defined over the set of logically possible worlds, and an S4 modal operator defined over the same set.

The first is computable by an operation that checks only structural aspects of information, which are

“logical structure”, and this behaviour is preserved under transformations of the information the

operator receives. The second, however, is not computable by any such operation, at all. Thus, S4 modal

operators are never logical: either they are not defined over the set of all logically possible worlds (and

thus will never be invariant), or, even if they are, they are not formally computable.

To be fair, though, Novaes may have a point: maybe our test is too restrictive. Yet in what sense can S4

operators be logical? We said that there are two problems: the context shifts and the output in neither

1 nor 0. Well, the second issue is arguably a limitation of our system, rather than a philosophical

problem. For suppose we want to valuate □φ in w, where □ is S4, and it is defined over WL. We can use

containment: we just need to check if {w’/Rww’} ⊆ ⟬φ⟭. If yes, the output is True (i.e. 1), otherwise False

(i.e. 0). We may then design an FTM that “stores” the worlds for which the output is 1, and then print

79

the list of them: this will give you the extension of □φ. This improvement in the FTM will not jeopardize

its “formality”, I take it. However, I prefer another solution. In section 2.4, we have already established

that relations are logical iff their “valuation” is, so we may do something similar here. Call the valuation

of a n-ary sentential operator 𝒳, relative to a model 𝔐 = 〈W, R, V, ⊨〉 the set of instances of some FTM

needed to evaluate, for each w ∈ W, formulas of the form 𝒳(a, b, …n), where (a, b, …, n) is any n-ary

sequence of well-formed sentences of the language (not only atomic). This operation will “follow” the ⊨

relation of the model:

1. Valuation of 𝓧 relative to 𝕸 (𝓥𝕸
𝓧). Take any n-ary modal operator 𝒳. Where Sn is the set of all

n-ary sequences of sentences of the language, 𝒱𝔐
𝒳 is the function W×Sn → V such that, for

any (P, Q, …N) ∈ Sn, 𝒱𝔐
𝒳 (w, (P, Q, …, N)) = T iff w⊨ 𝒳(P, Q, …, N); F otherwise.

This takes care of the first problem. There are other issues, though: suppose we want to compute some

Kripkean world-sensitive operator through [⊒]. We can’t, for two reasons: (i) the sequences the FTM

takes as arguments are not such that (bm)m>n = k, since the context shifts; (ii) the sequences would not

match the input of containment, since the valuation has, as inputs, a world and a sentence, the other a

set of worlds and a sentence. Yet, suppose we want to stick to our intuition that, in some sense, we are

using containment to evaluate formulas at each world. We may try to model a notion of weak formal

computability. A first guess could be this: we relax compatibility by dropping the assumption that

(bm)m>n = k. Now the context can “shift”, for we are just asking that the FTM takes, as input, a sequence

that contains the argument of the item we are testing. For the other issue, we can make an exception:

Quasi-FC.1. An n-ary modal operator 𝒳 defined over WL is quasi-FC =df the valuation of 𝒳 is weakly

formally-computable. That is, for any model 𝔐 for 𝒳 such that WL ∈ 𝔐, for

some FTM, there exists a function Comp: FTM-1 ∘ 𝒱𝔐
𝒳 such that:

d) For every (w, sn) and s, Comp(w, sn) = s iff 𝒱𝔐
𝒳(w, sn) = FTM(s).

e) For every (w, sn), Comp(w, sn) is the sequence such that (bm)1≤m≤n = (am)sn, where (ax)sn

is the x-th element of sn.

80

As it should be, quasi-formal computability does not imply formal computability39. However, this

definition will not do because it is too weak. We can show that most unary operators whose output is 0

or 1 are weakly FC:

Proof 3.4. Define [⊑]:

• Input: sequences (x,y)

• F = {s1}.

• Instructions: [⊑](s0, input).

This is a simple containment test. Now define [C]:

• Input: sequences (x,y)

• F = {s1}.

• Instructions: [C](s0, input).

This is compatibility. Now take any unary sentential operator k whose output is either 0 or 1 and

such that either for any w of 𝔐, 𝒱𝔐
𝑘 (w, ∅) = 1 or, for any w of 𝔐, 𝒱𝔐

𝑘 (w, ∅) = 0.

Suppose the former: in any w ∈ 𝔐, w ⊨ k(∅). When 𝒱𝔐
𝑘 (w, φ) = 1, take [⊑] and set (φ, W). When

𝒱𝔐
𝑘 (w, φ) = 0, take [⊑] and set (φ, ∅). [⊑] weakly computes 𝒱𝔐

𝑘 . For take all the φ’s such that

𝒱𝔐
𝑘 (w, φ) = 1. 𝒱𝔐

𝑘 (w, φ) = [⊑](φ, W), because every φ is contained in the W, even ∅. On the other

hand, for any φ such that 𝒱𝔐
𝑘 (w, φ) = 0, 𝒱𝔐

𝑘 (w, φ) = [⊑](φ, ∅), for the only thing that is contained

in ∅ is ∅, but we have assumed that 𝒱𝔐
𝑘 (w, ∅) = 1.

Now suppose the latter: 𝒱𝔐
𝑘 (w, ∅) = 0, for any w of 𝔐. When 𝒱𝔐

𝑘 (w, φ) = 1, take [C] and set

(φ, W). When 𝒱𝔐
𝑘 (w, φ) = 0, take [C] and set (φ, ∅). For all φ such that 𝒱𝔐

𝑘 (w, φ) = 0, 𝒱𝔐
𝑘 (w, φ) =

[C](φ, W), for [C](φ, W) = 1 iff ⋀(φ, W) ≠ ∅, and this does not happen only for ⋀(∅, W), but we

39 The reverse may not hold, as well. It holds whenever an item k is computable by an FTM whose output is 0 or 1.
For then its valuation is weakly computable by the same machine. Yet, if the output of the FTM that computes k is
not 0 or 1, we cannot use the same FTM to compute k’s valuation, since the range of 𝒱 is 0 and 1. It can be, then,
that there is no way to compute k’s valuation, even though k is formally-computable, or even FCI. This problem
suggests that we should change the machine so that it can “store” the results of the valuation, for each world, and
then print the list of worlds for which 𝒱(w, sn) = 1. I will not do this here, however, for my focus will be Kripke
modal operators only, for which we do not need such complication.

81

have assumed that 𝒱𝔐
𝑘 (w, ∅) = 0. On the other hand, for all φ such that 𝒱𝔐

𝑘 (w, φ) = 0, 𝒱𝔐
𝑘 (w, φ)

=[C](φ, ∅), for everything is incompatible with ∅, even ∅ itself and W: ⋀(∅, W) = ∅ and ⋀(∅, ∅) =

∅. So, in any case, k is weakly formally computable either by [⊑] or by [C].

So, any unary operator that does not change behaviour across worlds when it takes as input ∅ will be

weakly formally computable. Should we fix this? Maybe. I think we should, because, intuitively, the

valuation of a necessity operator in a Kripke structure is almost never checking if some sentence is

compatible with the empty set. Rather, it checks if the sentence is true in the extension of R for that

world. How can we strengthen our notion of computation, so that the FTM that computes the valuation

of 𝒳 really “simulates” it? We may ask that whenever the valuation does something different, so does

the FTM that computes it. When does this happen? Valuations take, as arguments, a world and some

sequence of sentences. A change in sequence is not interesting for us, so we will assume that switching

sequence never changes what the valuation is doing. Changing world, however, may or may not change

what the valuation is doing: the valuation of a Kripkean necessity operator, for example, does something

different only when we change the extension of the accessibility relation. This is why logical necessity,

for example, is not world-sensitive: the extension of the accessibility relation is constant, so the

valuation is always doing the same thing.

The problem with Quasi FC.1 is now clearer: what the FTM is doing does not “track” changes in what

the valuation is doing. For the fact that 𝒱𝔐
𝒳(w, φ) = 𝒱𝔐

𝒳(v, φ) alone does not imply that, in these two

instances, the valuation of k is doing “the same thing”: it may be that Cw ≠ Cv. To fix this, we ask that, for

every “change” in what the valuation is doing, there is a correspondent “change” in what the FTM is

doing. So, suppose we divide the behaviour of some item in “actions”. Actions will partition the domain

of the item: different kinds of inputs will require a different action. Actions of some K are individuated

as subsets of the domain of K. Actions for FTMs are finely grained in this sense: suppose an FTM

computes an n-ary item. Then, actions of the FTM are all the subsets of its domain whose elements are

identical from n+1 up. For example, with Kripkean necessity operators, actions of the FTM are

equinumerous with the set of Cw: there is one action for every “shift” in the extension of R.

82

I will call the set of actions of K 𝒜(K). A single action will be labelled by capital letters A, B, C etc. We

can give this definition of quasi-FC:

Quasi-FC.2. An n-ary modal operator 𝒳 defined over WL is quasi-FC =df the valuation of 𝒳 is

weakly formally-computable. I.e., for any model 𝔐 for 𝒳 such that WL ∈ 𝔐, for some FTM,

there exists a function Comp: FTM-1 ∘ 𝒱𝔐
𝒳 such that:

a) For every sn and s, Comp(w, sn) = s iff 𝒱𝔐
𝒳(w, sn) = FTM(s).

b) For every (w, sn), Comp(w, sn) is the sequence such that (bm)1≤m≤n = (am)sn, where (ax)sn

is the x-th element of sn.

c) There is an injection between 𝒜(𝒱𝔐
𝒳) and 𝒜Comp, where

𝒜Comp = {A ∈ 𝒜(FTM)/ A ⊆ Comp(x)}.

From now on, when I speak of quasi-FC, I mean quasi-FC.2. Condition (c) looks at the domain and range

of Comp, and divides them in actions. If there are at least as many actions in the range as there are in the

domain, then (c) is satisfied. Now, for the most part, it will be impossible to use just [⊑] or [C] for most

unary operators, as in proof 3.4, because, in both cases, the set of actions of the range has just two

elements: there are just two 2nd elements of any input of the FTM: either ∅ or W. If the valuation is doing

at least three different things, there is not injection between the two sets. If not, then we may as well use

that FTM to weakly compute the valuation.

It is hard to give a precise definition of quasi-formal computability in this way, since the notion of

“actions” is somewhat vague. We have, however, a pretty clear definition of different actions for unary

modal operators in a Kripke structure, which will be enough for our discussion. The set 𝒜(𝒱𝔐
𝐾) for some

Kripkean modal operator K is the set of X such that:

i. X ⊆ W×S1

ii. If (w, φ) ∈ X then (v, φ’) ∈ X iff (R(w, w’) iff R(v, w’)), for any w, w’, v ∈ W.

Basically, 𝒜(𝒱𝔐
𝐾) is the set of sets of (w, φ) closed under identity of Cw. Thus, actions of 𝒱𝔐

𝐾 will be

equinumerous with the set of Cw. In fact, for most Kripkean modal operators, the injection will be a

83

bijection. For, usually, for any way they are weakly-computable, the range of Comp is the set of (φ, Cw).

Suppose it is so for K. Since 𝒜(𝒱𝔐
𝐾) is equinumerous with the set of Cw, which is equinumerous with

𝒜Comp, there will be a bijection between 𝒜(𝒱𝔐
𝐾) and 𝒜Comp40.

3.4.2 Quasi-Logicality defined.

Now that we have a notion of quasi-formal-computability, we need a relaxed notion of invariance as

well. However, asking for the invariance of the item’s weakly formal computability may be too stringent.

For, in this case, we are asking that, if some (w, φ) was computed by (φ, Cw), then the same (w, φ) must

be computed by the same (φ, Cw) under permutations. They are tracking each other individually, so to

speak. Yet in this way, most world-sensitive items do not come out quasi-logical, anyway. If our intent

was to model a relaxed notion of logicality, this would not get us very far. We may relax the notion even

more in this way: what if we ask that the “tracking” under permutations, rather than applying

individually, for each argument and value of Comp, it applies “collectively”? Suppose an FTM weakly

computes the valuation of K, and suppose we list all the instances of the FTM needed to weakly compute

each instance of 𝒱𝔐
𝐾 . My suggestion is that an item is quasi-logical iff, under arbitrary permutations, the

whole transformed list of instances of FTM is still enough to weakly compute in the same way the whole

transformed list of instances of 𝒱𝔐
𝐾 . Before, we were asking that each couple of permuted inputs of the

item and permuted inputs of the FTM “tracked” each other, by still giving out the same output. Now we

are just asking that, under arbitrary permutations of inputs, for each permuted inputs of the item, the

“work” needed to compute the resulting instance of the valuation can still be done by some member of

the transformed list of instances of the FTM.

40 Interestingly, for modal operators defined over the “solipsistic” R, even though 𝒱𝔐

𝐾(w, φ) = FTM (φ), with the
empty FTM, this FTM cannot be used to weakly compute these items, because it performs the same action across
any world, even though the items are world-sensitive. So, here we will need to use reversed containment.

84

Quasi-Logicality.1. An n-ary modal operator 𝒳 is quasi-logical =df it is completely defined over WL

and for any model 𝔐 for 𝒳, for some FTM, there exists a function Comp:

FTM-1 ∘ 𝒱𝔐
𝒳 such that:

a) For every sn and s, Comp(w, sn) = s iff 𝒱𝔐
𝒳(w, sn) = FTM(s).

b) For every sn, Comp(w, sn) is the sequence such that (bm)1≤m≤n = (am)sn, where (ax)sn is

the x-th element of sn.

c) There in an injection between 𝒜(𝒱𝔐
𝒳) and 𝒜Comp = {A ∈ 𝒜(FTM)/ A ⊆ Comp(x)}.

d) For every permutation of information σ, for every (w, sn), there exists a (w’, sn’) such

that Comp(σS(w, sn)) = σS(Comp(w’, sn’)).

This is a noteworthy behaviour, I believe, which shows an interesting abstraction from content. Not only

the item is computable by a formal operation but, no matter how we permute information, the

transformed instances of the formal operation can compute in the same way the transformed instances

of the item. It is also clear why this is still weaker than “pure” logicality: it may be that some transformed

instance of the operation is computed by some other transformed instance of the item. The “tracking”

which invariance consists of is not done for each couple of argument-value of Comp, but on a collective

scale: the transformed domain of Comp is still computed by the transformed range.

More generally, since the item we are testing is usually completely defined, something interesting

happens. By “completely” I mean that, if the item 𝒳 is a “normal” n-ary operator, the valuation function

will valuate any n-ary sequence of sentences of the language in each world of the model. That is, the

valuation function will have, as domain, the complete cartesian product WL×Sn. This is as it should be.

For suppose the item is not completely valuated. Then, somehow, the item is sensitive either to the

identity of some specific logically possible world, or to the identity of some proposition. This may be a

good reason to deny it the status of “logical” item, or even “quasi-logical” item.

The domain of 𝒱𝔐
𝒳 is invariant under arbitrary automorphisms of WL, because WL×Sn is: for any

(w, sn), for any σ, there will be a (σ(w), σS(sn)) ∈ WL×Sn, simply because σ(w) ∈ WL and σS(sn) ∈ Sn, given

that permutations cannot switch cardinality (σS(sn) cannot “end up” in some element of Sm, with m ≠ n)

85

and sentences, in the model, are mapped to subsets of WL (so, transforming sentences means ending up

in some other subset of WL). Since the domain of 𝒱𝔐
𝒳 is the domain of Comp, it must be that, for any

(w, sn), for any σ, Comp(σS(w, sn)) = Comp(w’, sn’), for some (w’, sn’) in the domain of Comp. So,

necessarily, Comp (σS(w, sn)) = σS(Comp(w’, sn’) for some (w’, sn’) if and only if σS(Comp(w’, sn’)) is

“already” in the range41 of Comp; that is iff σS(Comp(w’, sn’)) = Comp (w’’, sn’’), for some (w’’, sn’’). This

definition of quasi-logicality is thus equivalent to the previous one:

Quasi-Logicality.2. An n-ary item 𝒳 is quasi-logical iff

a) Its valuation is complete and defined over WL.

b) Its valuation is weakly FC.

c) For any permutation σ, for any (w, sn), σS(Comp(w, sn)) = Comp(w’, sn’) for some (w’, sn’).

Basically, the definition says that K is quasi-logical only if, no matter how you transform a value of the

computation function, you still “end up” in one value of the range of the computation. More generally, K

is quasi-logical only if the range of the computation function that weakly computes its valuation is

invariant. For the range of Comp is invariant iff, for any σ, σS(s) = s’, with s, s’ ∈ Comp (x).

Now, take a modal operator in a Kripke semantics: for either of them, the arguments any FTM uses to

compute an arbitrary instance of their valuation is always (φ, Cw), where Cw is the modal context of w.

Therefore, when we transform (φ, Cw), we transform φ or Cw. If only the former, then we are obviously

“ending up” in the valuation of the operator in w for σ〈W,V〉(φ). If the latter, then we are switching context,

and the only way for σS(φ, Cw) not to “end up” outside the range of the computation function is that

σ〈W,V〉(Cw) is some Cu, where u is some world of the model. Therefore, another way to express condition

(c) above for these modal operators is to say that, under arbitrary permutations, for any w ∈ WL, there

exists a v ∈ WL such that σ〈W,V〉(Cw) = Cv.

41 Again, by “range” I mean the image of the domain in the codomain, and not the codomain as a whole.

86

3.4.3 Quasi Logical Items

We can easily prove that any Kripkean modal operator that is not world-sensitive and not FCI is not

Quasi-Logical.

Proof 3.5. Take any □ defined in a Kripke structure. For any model 〈W, R, V, ⊨〉, for any w of the

model, Cw = C, with C constant and not permutation invariant (otherwise the operator would be

FCI). The valuation of □ is weakly computed by [⊒], when given (φ, C), for any sentential argument

φ. Define a permutation such that σ〈W,V〉(C) ≠ C. Now, for any (w, φ) there is no (w’, φ’) such that

Comp(σS(w, φ)) = σS(Comp(w’, φ’)), for σS(Comp(w’, φ’)) = (σ〈W,V〉(φ), σ〈W,V〉(C)), for all (w, φ),

Comp(w, φ) = (φ, C), and (φ, C) ≠ (φ, σ〈W,V〉(C)). For any other way □ is computable, a similar

proof applies. For ◊, a similar proof applies.

Thus, items like ˹In any cat-world˺ are not logical. This is a good start. We can also prove that any FCI

unary modal operator we encountered so far is quasi-logical:

• The valuation of logical necessity is computed by [⊒] with, as domain, the set of (φ, WL). WL

is invariant, so the range of the computation function is invariant, as well. Thus, logical

necessity (and possibility, for the same reason) is quasi-logical.

• The valuation of “empty” necessity is computed by [⊒] with, as range for Comp, the set of (φ,

∅). Again, this range is invariant, so the item is quasi-logical.

• The modal operator defined over the solipsistic relation R/R(w, w), for any w ∈ WL is quasi

logical. For, again, we have that the item is weakly computable by reverse containment and

the range of Comp is the set of (φ, {w}), for any φ and any w ∈ WL, and this set is invariant.

What world-sensitive items are quasi-logical? Well, we can come up with some examples of items that

are not FCI and yet quasi-logical. What we need is (i) that the item is completely evaluated over WL, (ii)

that this valuation is weakly-computable, and (iii) that the range of the FTM that weakly computes the

item is invariant. I have some examples of quasi-logical and yet not FCI Kripkean necessity operators:

a. Take a Kripke necessity operator defined over WL, with an R such that R(w, v) iff w ≠ v. The

valuation of this item is weakly computable via [⊒], for any (w, φ). Since, by the definition of

87

permutation, the complement of identity is preserved under arbitrary permutations, if

w ≠ w’ then σ(w) ≠ σ(w’), for any w and w’. Thus, given that Cw = WL − {w}, which is the

extension of the complement of identity for w, we have that, for any σ, σ〈W,V〉(Cw) = Cv, for

some v ∈ WL. In particular, if σ(w) = w, then σ〈W,V〉(Cw) = Cw, and if σ(w) = v, then σ〈W,V〉(Cw)

= Cv. Interestingly, this necessity operator is world-sensitive (Cw is not constant) and, even

though R is nothing but the complement of the identity relation, and even though the

necessity operator defined over the identity relation was FCI, this operator is not FCI, because

it is not formally computable42.

b. Take any bijection 𝒷 between WL and itself. Define an accessibility relation R on WL such that

R(w, v) iff 𝒷(w) = v. The corresponding necessity operator is not worldly-invariant, and is

probably not FCI, with the exception of one case: the identity bijection 𝒷(w) = {w} (in that

case, the item is the “solipsistic” operator). Yet, it is weakly computable by [⊒], for every (w,

φ), when given the corresponding (φ, Cw). In particular, the range of Comp will be invariant,

because it is the total cartesian product of S1×WL1, where WL1 is the set of all singletons of

elements of WL and S1 is the set of sentences of the language. Since cardinality is permutation

invariant, WL1 is permutation invariant; S1 is invariant, as well, being the total 𝓅WL, so their

cartesian product must be invariant, as well. Therefore, the so defined necessity operator is

quasi-logical. Since bijections between WL and itself are nothing but permutations of WL,

there is a different quasi-logical necessity operator for every permutation of WL.

42 The operator is not PI, either. This is interesting: while FCI is preserved under complementation, it is not
preserved for modal operators under complementation of their accessibility relation. The same goes for
permutation invariance.

88

3.5 A case study: Deontic Modality and Logicality.

In this section, I want to show an application of my theory to a particular, well-discussed item of the

language: deontic modality. Are deontic modals formal? And if so, in what sense? This is an interesting

discussion, I believe, for it shows how the framework we are setting up has potential, under-discussed

ramifications, given its general applicability. I will show how a contextualist Ought might be quasi-

logical.

3.5.1 Standard Deontic Logic

Deontic modals have been extensively studied in linguistics and philosophy of language. There are

numerous, very different semantical accounts of their meaning43. However, there is a system that is

standard, in the literature. In fact, it is called “Standard Deontic Logic” (SDL)44. It is unclear who first

thought of this application of modal logic to normative systems: SDL was probably heavily influenced

by Von Wright’s work on the application of modal logic, in the 50’s (Von Wright 1951, 1953).

More technically, we obtain SDL when we take propositional logic and we add these axioms45:

(K) 𝒪(p → q) → (𝒪p → 𝒪q).

(N) if ⊢ p then ⊢ 𝒪p

(D) 𝒪p → ¬𝒪¬p.

Sometimes we also to this minimal SDL this additional axiom:

(4) 𝒪(𝒪p → p)

The first is K: it says that ‘Ought’ distributes over implication. The second is Necessitation: whatever is

a theorem, it ought to be the case. The third is the standard axiom D: it says that if something is necessary

43 For an overview of the current debate, see McNamara (2014). For an updated philosophical discussion, see
Charlow, N., & Chrisman (2016). For a more logic-driven discussion, see Gabbay et al. (2013).
44 See, for example, McNamara (2014) or Hilpinen & McNamara (2013).
45 Here I am following McNamara’s axiomatization (2014).

89

it is possible. Axiom (4) is not derivable through the minimal SDL, but it is desirable: it says that it ought

to be that whatever ought to be the case is realised.

The semantics for SDL is quite simple: since we have both K and N, it is a normal modal logic, and it can

be modelled via standard Kripke semantics. Let language ℒ be the smallest set generated from a set of

atomic sentences plus Boolean connectives, enriched with operators 𝒪. Let 𝒱 be an “atomic” valuation

function that maps each atomic formula to a subset of WL, where WL is the set of all logically possible

worlds. 〈WL, R, V, ⊨〉 is a Kripke model for ℒ, where ⊨ is a relation from WL to ℒ defined inductively:

i. w⊨ A iff w∈𝒱(A), where A is atomic

ii. w⊨ ¬φ iff w⊭ A

iii. w⊨ φ∧ψ iff w⊨ φ and w⊨ ψ.

iv. w⊨ φ∨ψ iff not both w⊭ φ and w⊭ ψ.

v. w⊨ φ→ψ iff either w⊨ φ or w⊭ ψ.

vi. w⊨ 𝒪φ iff ∀w’(Rww’, w’⊨φ).

The conditions on R depends on the system we choose. In minimal SDL, we assume R to be serial:

Seriality ∀w(∃v(Rwv)).

Seriality implies that if something is necessary it is possible: it is axiom D. D is satisfied when, from every

world, you can access some world. This prevents the clause for Ought to be trivially satisfied: if, for some

w, no world is accessible, the system would make in w every φ a duty. (4), on the other hand, is

equivalent to this condition:

Shift-Reflexivity ∀w(∀v(Rwv → Rvv)).

What is the meaning of Rwv? Generally, it is thought to mean that, from w, v is (one of the) best worlds.

So, something ought to be the case from w iff it is the case in every best world from w. Something is

permissible iff it is true in at least one best-world from w. The fact that we are talking about “best”

worlds suggests that we are implicitly “extracting” the accessibility relation out of an ethical ordering

between worlds. So, suppose that, for any v of WL, we define an indexed relation ≤v on WL:

90

i. w ≤v w (reflexivity)

ii. (w ≤v w’ & w’ ≤v w’’) → w ≤v w’’ (transitivity)

iii. w ≤v w’ or w’ ≤v w (Totality)

iv. ∃w(∀w’(w’ ≤v w)) (Limit Assumption)

≤v is thus a pre-order with an upper bound. The limit assumption corresponds to seriality: from any

world, there is always a best-world, for any world-indexed ethical ordering (McNamara 2014). The idea

is that it ought to be the case that P, from v, iff in every upper bound of ≤v, P is the case46 (we will discuss

in the end a system without the Limit Assumption).

3.5.2 Is Standard Deontic Modality Formal?

Now that we have a decent grasp on the standard semantics for deontic modality, we may ask: if this

was the right semantics for Ought, would Ought be logical? By sticking to standard invariance, the

answer would just be: “Of course not”. That is, unless R is either empty or if it collapses into logical

possibility, or if it is the “solipsistic” necessity47, but this is very unlikely: relevant worlds in which we

evaluate what ought to be the case will arguably be a proper subset of WL, so arbitrary permutations of

worlds will affect deontic modals. Yet, one may ask: why do we permute worlds arbitrarily? Maybe the

ethical ordering is logical structure and, if so, we should not “abstract away” from it. How can we

establish if this is the case?

Standard invariance does not provide an answer to this, nor does it help providing it, because it does

not offer an opinionated definition of logical structure we can apply, here. I believe that my theory can

do a better job in justifying whatever conclusion we reach. Is ethical ordering logical structure? Yes, if

and only if it is a structural aspect of information. If so, then there will be a corresponding formal

operation that computes Ought, by being sensitive only to this logical structure. Personally, I do not

46 Even though, at first glance, a translation between SDL and a semantics with such ordering relation should be
quite straightforward, it is not. An investigation on how to extract SDL out of an “ordering” semantics is in Goble
2003.
47 If this was the case, it would be true in every world that the actual world is the best of all possible worlds.
Pangloss would surely be happy to embrace this view without hesitation.

91

believe that ethical orderings are structural aspects of information, though: they do not seem to shape

the structure of information as such. In any case, if someone wants to, she can try to give some

arguments in this direction, and then Ought will come out logical. For then, no matter how we permute

worlds, when we give the resulting input to 𝒪, some FTM will still simulate its behaviour. This is the

road one should take, I believe: it does not matter much if Ought is invariant, but rather if it behaves

logically, and if it does so “blindly”.

This is a first possibility: that the ethical ordering is logical structure. However, it is quite far-fetched.

What if the ethical ordering is not a structural aspect of information? Then Ought is probably not logical.

Yet, it may be quasi-logical. An item is quasi logical iff (i) it is completely defined over WL, (ii) its

valuation is weakly-computable and (iii) the range of the computation function that weakly computes

its valuation is invariant. We already know that Ought, at least in SDL, is weakly-computable, because it

is a necessity operator in a normal Kripke semantics. We just need some FTM like reversed containment

[⊒]: for every 𝒱𝔐
𝒪 , [⊒] computes 𝒱𝔐

𝒪 (w, φ) when given (φ, Cw), where Cw = {w’/Rww’}. We can also

safely assume that Ought is completely definable over WL.

Now, for the invariance part, we really need to know more about how we are ordering worlds. For

suppose that what is ethically the best is not world-sensitive: then the best-worlds is a constant set, and

does not change from world to world. In this case, unless there is no best world, or any world is the best,

or in every world the actual is the best, then Ought will not be quasi-logical. This is highly unlikely: it is

more sensible to suppose that, for any world w, the w-best-worlds are a proper subset of WL. Therefore,

via proof 3.5, Ought is not quasi-logical: by swapping a world “inside” Cw with one “outside” Cw we will

upset it. However, things are not that easy: by doing that, we will upset “Ought from w”. Yet, it may still

be that the valuation of Ought is weakly-FCI: we just need that, when transforming Cw, the resulting

transformation is a Cv, for some v ∈ WL. That is, for any permutation σ, for any (w, φ), σS(Comp(w, φ))

= Comp(w’, φ’) for some (w’, φ’), where Comp is the relevant computation function Comp: [⊒]-1 ∘ 𝒱𝔐
𝒪 .

92

How can this happen? It is hard, but not impossible. Let us give an example. Since we adopted the Limit

Assumption, our ordering of worlds will have a unique set of best-world, for every w. Therefore, Cv =

{w/∀w’(w ≮v w’)}48, where <w is the correspondent strict version of ≤w:

i. w ≮v w (irreflexivity)

ii. w <v w’ → w’ ≮v w (a-symmetry)

iii. (w <v w’ & w’ <v w’’) → w <v w’’ (transitivity)

 We lose totality, for it may be that two worlds are “weighted” the same, so any two words are not such

that one is strictly better than the other or vice-versa. Since the range of the computation function for 𝒪,

in this case, is the set of all the tuples (φ, {w’/∀w’’ (w’ ≮w w’’)}), it follows that 𝒪 is quasi-logical only if,

for any indexed ethical linear order <w, the set of its upper bounds is such that, for any permutation σ,

σ〈W,V〉({w’/∀w’’ (w’ ≮w w’’) = {u/∀w’’ (u ≮v w’’}, for some v ∈ WL. We can now give necessary and

sufficient conditions for the quasi-logicality of 𝒪:

Quasi-Logicality of 𝒪 𝒪 is quasi-logical iff:

a) it is completely defined over WL

b) It is weakly computable.

c) for any indexed ethical linear order ≤w, the set of its upper bounds is such

that, for any permutation σ, σ〈W,V〉 ({w’/∀w’’ (w’ ≮w w’’) = {u/∀w’’ (u ≮v w’’},

for some v ∈ WL (Abundance).

There is no reason to doubt that (a) is satisfied. We also know that 𝒪 satisfies (b). Moreover, for any way

𝒪 is weakly-computable, the range of Comp is a subset of 𝓅WL×𝓅WL: the set of (φ, Cw), with Cw =

{w’/∀w’’ (w’ ≮w w’’}. What about (c)? Call this condition Abundance. Since the set of transformations

induced by arbitrary permutations, for a subset X of WL, is the set of sets of cardinality |X|, we have

Abundance iff, for any Cw, any X of cardinality |Cw| is some Cv, for some v ∈ WL. Now we can prove that 𝒪

is quasi-logical iff conditions (a), (b) and (c) are met:

48 {w/∀w’(w ≮v w’)} = {w/∀w’(w’ ≤v w)}, since everything is not strictly better than w iff everything is less-or-
equal-to w.

93

Proof 3.6. Conditions (a) and (b) are part of the definition of quasi-logicality, and we already know

that 𝒪 meets them. For condition (c), first, suppose Abundance is not met. Then, for some indexed

ethical linear order ≤v, the set of its upper bounds Cv is not such that, for any permutation σ,

σ〈W,V〉 ({w/∀w’ (w ≮v w’) = {w’’/∀w’ (w’’ ≮u w’}, for some u ∈ WL. Since the set of transformations

of Cv are all and only the subsets of WL with cardinality |Cv|, it follows that there must an A ⊆ WL

of cardinality |Cv|, such that ∄w ∈ WL (Cw = A). 𝒱𝔐
𝒪 is weakly computable by an FTM such that

Comp has, as range, the set of all (φ, Cw). Define a set of permutation σ1, σ2… such that σ〈W,V〉(Cv) =

A (we know this is possible because Cv and A have the same cardinality). There exists at least a

(w, φ) such that σS(Comp(w, φ)) ≠ Comp(w’, φ’) for any (w’, φ’). In particular, this happens for

any (v, φ). For σS(Comp(v, φ)) = σS(φ, Cv) = (σ〈W,V〉(φ), A), and, for any (w’, φ’), Comp (w’, φ’) ≠

(σ〈W,V〉(φ), A), since for no w, Cw = A. Therefore, 𝒪 is not quasi-logical. Ergo, if 𝒪 is quasi-logical,

then Abundance is met.

Now for the reverse, suppose Abundance is met. Then for any Cw, any X of cardinality |Cw| is some

Cw’, for some w’ ∈ WL. We know that 𝒪 is weakly-computable, so there is a Comp [⊒]-1 ∘ 𝒱𝔐
𝒪 such

that Comp(w, φ) = (φ, Cw). We know conditions (a) and (b) are met. Since Abundance is met, the

range of Comp is such that, for any permutation, σS(Comp(w, φ) = Comp (w’, φ’), since for any σ,

σ〈W,V〉(Cw) = Cw’, for some Cw’. So, condition (c) is met and 𝒪 is quasi-logical.

Now we just have to make sense of the Abundance condition. How can it be possibly met? My guess is

that, in the framework we have been discussing so far, Abundance is highly unlikely. To see why, let us

ask first why orders change from world to world. One reason is that, for example, if in w it is true that

˹𝒪: John saves Maria˺, all the upper-bounds of ≤w must be worlds in which Maria exists, at least. The set

of upper-bounds for some other world v in which Maria does not exist cannot be the same, then, for

otherwise in v it would be true that ˹𝒪: John saves Maria˺: the poor John ought to save a non-existent

person! There can be other reasons why we need more than one order: for example, it may be that we

have the same domain in w and w’, and yet in w things develop so that it is better to do some action A in

some situation, while in w’ the same A would have catastrophic effects. So, w and w’ will have different

indexed orders: one with best-worlds in which A happens, and one with no best-A-worlds.

94

However, even so, it is very hard to make sense of such a plenitude of sets of upper-bounds, as

Abundance asks. For we are changing the ordering relation across worlds because different things

happen in different worlds, not because we are changing the criterion of preference with which we are

building the ordering itself: that is kept constant across worlds, it just has different outputs, in different

worlds, given different backgrounds of events. Now, suppose that the criterion we take is broadly

hedonistic: what ought to be the case is what minimizes pain and maximises pleasure. Suppose some Cv

has cardinality n. Take n worlds in WL with the same domain, but with very different states of affairs.

One is paradisiac: everyone is happy and we all live in peace; another is hellish: everyone suffers

strenuously and perpetually, and war is everywhere; another is so and so: more like our world. There

can hardly be a set of upper-bounds that contains these worlds, given the hedonistic criterion we have

chosen in the first place. Now, suppose the criterion is more “deontological”: duties are determined by

compliance to general Laws of morality. Take a world in which everyone is very dutiful, according to our

set of Laws, and another world in which people do the exact opposite. Hardly will we find a set of upper-

bounds with both these two worlds in. What I mean is that, for any kind of preference criterion one can

conjure up, it seems to me that we can always find a set of worlds that cannot be in any set of upper-

bounds of the preference relation that we extracted from that criterion. So, there will be a series of

permutations for any set of upper-bounds, such that the resulting transformed set is not the set of upper-

bounds, for any world. If so, Abundance cannot be met, regardless of the preference choices we make,

unless our criterion is empty, or a total, irrational mess (in that case, arguably, anything is a best-world

or none is, respectively).

The fact that in this framework 𝒪 is not logical does not entail that in no framework is. Suppose we

take Ought to work in this way: given a certain preference criterion that is usually pragmatically

determined by the context, 𝒪 takes you to some set of duties Γ, given a certain situation49. 𝒪 has,

therefore, a character and a content. The character takes you from a preference criterion and a world to

a content: a function from sentences to sentences. In SDL, the world-variable is apparent, but not the

preference criterion. Yet, it seems intuitive to me that we need such variable. Take these examples:

49 Kratzer has a similar view on Ought, even though she uses a Neighbourhood modal logic to model it (1977).

95

i. “You ought to go to bed early, if you want to wake up early”.

ii. Bob and Maria want to rob a bank. Bob says: “We ought to use masks to cover our faces”.

iii. “You ought to help others” (said by a priest during mass).

In (i), the preference criterion is made explicit through a conditional. In (ii), the preference condition is

pragmatically identified by the discourse. In (iii), the preference criterion is probably ethical/religious.

In fact, for any situation, we can make the preference criterion explicit by prefixing a ˹ In view of X˺ clause,

as suggested by Kratzer (1977, 340). So, what the priest says in (iii) can be rewritten as something like:

iv. In view of what the Bible says, you ought to help others.

I argue that this is a sensible theory of how 𝒪 works. Different contexts will result in different sets of

duties, given different circumstances. We can associate to each context a preference criterion that

determines an ordering indexed to worlds. So, in this framework, 𝒪 is determined by a function from

preference criteria to functions from worlds to orderings of worlds. To make things easier, we can think

of 𝒪 as changing across couples of 〈pc, w〉, where pc is a variable for preference criterion: the pc

determines the indexed ordering, the world determines the index of the ordering, to extract the relevant

best-worlds.

It seems to me that in this contextualist framework it may be that, for any random bunch of worlds we

take from WL, there is some possibly very weird preference criterion that makes this random set the

upper-bound of its ordering relation, for some world. For the set of preference criteria we are taking is

very big and wide: it is the set of all conceivable preference criteria, however queer they might seem to

us. This set definitely outstrips the realm of the rational and the sensible, or of the coherent, for what

matters. After all, what is a preference criterion? It is just a way of ranking different situations. Take any

bunch of worlds X: they are the meet of some set of propositions. Take the truth of these propositions

as what counts for the ranking, and you will extract a preference criterion whose sets of best worlds is

exactly X. If I am right, then this Ought can be quasi-logical, for it is fair to assume that, for any sets of

upper-bounds, for any transformations of these sets, the result is still a set of upper-bounds, according

to some (possibly) very weird and yet conceivable preference criterion.

96

This contextual Ought would be quasi-logical even in more complicated systems. For example, one

very influential alternative to SDL is a logic without the limit assumption:

∃w ∀w’ w’ ≤v w (Limit Assumption)

The limit assumption has been subjected to a lot of criticism. For it seems conceivable that there is not

upper limit to some ordering ≤w: for any world, there could always be one that is slightly better. If so,

the standard system would have the weird consequence of making seriality fail in w: no world is

accessible from it, for the extension of R in w is the set of upper-bounds for ≤w, which is empty. So, in w,

everything is a duty, because the universal clause for 𝒪 is trivially satisfied. To improve the system,

Lewis (1973; 1974) suggested a new clause for Ought, that can be summarised as follows:

Lewis 𝓞 w⊨ 𝒪: φ iff ∀w’ u ≤w w’, w’⊨ φ, where u is some constant associated with ≤w.

The idea is that every order comes with an associated “least respectable” world u from which we can

start to evaluate the Ought clause. Ought: P iff in every world at least as good as the least acceptable u,

P is the case. If there is an upper limit, the modified clause collapses into the old one, so this adjustment

is conservative. If we do accept this adjustment, we can still make a case for the quasi-logicality of the

contextualist Ought. Indeed, the new framework makes even more sense: for many queer preference

criteria, there can be no upper-bound to what is the best world associated with that criterion.

97

CONCLUSION

Standard invariance theories claim that a notion is logical iff it is invariant under some transformation

of the domain of objects. In this dissertation I first used a categorial grammar to extend standard

invariance theories to intensional notions: a notion is logical iff it is invariant under arbitrary

automorphisms of both the domain and the modal space. I then showed what I take to be the limits of

standard invariance in this extended framework. I tried to sketch a novel theory of logicality, based on

the idea that logic is about information, in a special way. Logical notions are notions that are sensitive

only to the structural aspects of information. Something is logical if it performs an information-structure

operation, and it does so under arbitrary transformations of informational inputs. The new theory

preserves some desiderata of standard invariance, like the formality of paradigmatic examples of logical

notions: conjunction, negation, material implication, existential quantifiers etc. Logical possibility and

necessity are invariant, as well. Thus, the new theory achieves extensional adequacy. However, it is

somehow more restrictive than permutation invariance: I believe that cardinality quantifiers are not

logical, on my view. What is more, in my theory logical notions tend to stay persistent across many

different models of information, while in standard invariance this is hardly the case. Finally, I tried to

spell out a relaxed notion of quasi-logicality, because I believe that logicality is a kind of formality, and

formality comes in shades. I concluded this work by applying my theory of quasi-logicality to deontic

modals, showing how they might be quasi-logical, if a strong form of contextualism is true.

I am not entirely satisfied with my theory, so far. I hope that, in my future PhD dissertation, I will be

able to dig a little deeper into the matter. I still believe that my theory may be too fixated on the algebraic

structure of the system we are choosing to model information, and this may not be ideal. I already

showed how “persistence” is not perfectly general, in my theory. How can we fix that? What should be

the link between algebraic structure and logicality? It is also still unclear where my theory is situated.

For example, my invariance requirement would be something like “invariance of computability under

transformations of inputs”: it would be interesting to see if there are some similarities between this

requirement and other novel proposals, like potential isomorphisms invariance (Bonnay 2008) or

invariance under bisimulations (Van Benthem & Bonnay 2008).

98

I also want to make a final point: the literature on invariance is usually focused solely on “extensional”

notions. I ended up with a theory that is applicable to any intensional notion, as well. In fact, it is

applicable to any notion that can be modelled in a Montague grammar. Still, there is much work to be

done in non-classical frameworks: what about the logicality of non-classical notions, like intuitionistic

negation and relevant implication? What about non-truth-functional logics, like dynamic logic? I highly

doubt that standard invariance can be the answer, here. In fact, I suspect it may be catastrophic, if

applied in non-classical frameworks. Yet, will my theory score any better, in its current form? I hope

that, in my future work, I will be able to deal extensively on these undiscussed and yet important

matters.

99

Appendix A: Formal-Computability Invariance in Boolean Algebras of

Infons.

In this appendix, we will prove that, in a Boolean algebra of infons, “formal computability invariance”

is a restriction of standard permutation-invariance, for n-ary operations on the set of infons.

Definition of Boolean Algebra A Boolean algebra is a (A, +, ×, 0, 1), where A is a set, + and × are

operations on A and 0 and 1 the minimal and maximal elements of A. To be Boolean + and × must

satisfy these conditions, for any a, b, c, elements of A:

i. a + b = b + a

ii. a × b = b × a

iii. (a + b) × c = (a × c) + (b × c)

iv. (a × b) + c = (a + c) × (b + c)

v. (a + b) + c = a + (b + c)

vi. (a × b) × c = a × (b × c)

In short, + and × must be commutative, associative, and they must distribute over each other.

In general, we are interested in cases in which some subclass of ℐ, together with ∧ and ∨, forms a

Boolean algebra. This generally happens when we are modelling information from the powerset of a set,

as in the object/modal system of chapter 3. In the following, I will call ℐ the set of all infons, and ℐ1, ℐ2, …,

ℐn all the “subclasses” of ℐ, where a subclass is any subset of ℐ closed under membership to a type.

Theorem 1. When ℐn is the powerset of some set X, (ℐn, ⊑) forms a complemented distributive lattice,

and thus a Boolean Algebra.

There is no need for a proof for this, really, because these are well known properties of any powerset of

a set (e.g. Enderton 1977). Where ℐn is the powerset 𝓅X of some set X, information-containment is the

subset relation ⊆ defined on 𝓅X. Meet and Join are intersection and union: A∩B is the meet of {A,B}, A∪B

is the join of {A,B}. For every two elements of 𝓅X, there exists their intersection and union. Thus, 𝓅X

forms a lattice. This lattice is distributive, because union and intersection are distributive and, for any

100

three sets, clearly, A∩(B∪C)=(A∩B)∪(A∩C) and A∪(B∩C)=(A∪B)∩(A∪C). Moreover, for any A in ℐn,

there is the complement AC such that A∪AC = 1 and A∩AC = 0, where 1 and 0 are the greatest and lowest

element of the lattice (in 𝓅X, the greatest element is X and the lowest is ∅). In 𝓅X, the complement of A

is simply X – A. Thus, for every Y in 𝓅X, Y∩(X−Y) = ∅ and Y∪(X−Y) = X, because Y⊆X. So, 𝓅X is a

complemented distributive lattice. So, (𝓅X, ⊆) is a distributive complemented lattice, and thus a Boolean

algebra.

Inverted Benthem’s Proposition. Among n-ary operations on sets, those defined at each tuple of

arguments by some Boolean combination are permutation-invariant.

Theorem 2 When ℐn is the powerset of some set X, ∧, ∨ and ¬ are permutation invariant.

Proof A.1. Suppose ℐn is some 𝓅X. Then, for Theorem 1, (ℐ, ⊑) forms a Boolean Algebra. By Inv.

Benthem’s proposition, ∧, ∨ and ¬ are permutation invariant, because they are Boolean.

When ℐn = 𝓅X, for some X, elements of ℐn, are systematically equivalent to functions from X to V. In

particular, for every i ∈ ℐn, there exists a function f: X → V such that f(x)= T iff x ∈ i. Thus, there is a

bijection between elements of ℐn and elements of type 〈X,V〉. Let σ be a permutation of X and σY the

induced transformation in type Y:

• if Y=X, then for all k∈Y, σY(k) = σ(k)

• if Y=V, then for all k∈Y, σY(k)= k

• if Y=⟨X,Z⟩, for any types X, Z, then for all k∈Y, σY(k)= σZ ∘ k ∘ (σX)-1.

An element k of type Y is permutation invariant iff ∀σ, k = σY(k).

Assumption 1: Suppose Y ∈ 𝓅X. Define a permutation σ(a) = b, with a and b elements of X. σ〈X,V〉Y =

(Y−{a})∪{b}.

Theorem 3: When ℐn is the powerset of some X, ⊆ is permutation invariant. That is, Z ⊆ Y iff

σ〈X,V〉(Z) ⊆ σ〈X,V〉(Y), for any permutation of X and any induced transformation σ〈X,V〉.

Proof A.2. Take any two Z and Y of 𝓅X and suppose Z⊆Y. Then ∀x∈X (x ∈ Z → x ∈ Y). The only way

to upset Z⊆Y would be to change some elements in Z so that something is an element of Z but not

101

Y. Define a permutation σX(a)=a’, with a ∈ Z. If a’ ∈ Z, then σ〈X,V〉(Z) ⊆ σ〈X,V〉(Y). If a’ ∉ Z, by

Assumption 1, σ〈X,V〉(Z)= Z’ = (Z−{a})∪{a’}. Given that Z⊆Y, a ∈ Y. If a’ ∈ Y, as well, then σ〈X,V〉(Y)=Y,

and Z’ ⊆ Y. If a’ ∉ Y, then, by Assumption 1, σ〈X,V〉(Y) = Y’, where Y’= (Y−{a})∪{a’}. But then Z’ ⊆ Y’,

since a’ ∈ Z’ and a’ ∈ Y’. Thus, for any permutation σ of X and any corresponding induced

permutation in 〈X,V〉, if Z⊆Y then σ〈X,V〉 (Z) ⊆ σ〈X,V〉 (Y).

Now, for the reverse, suppose Z⊈Y. Then ∃x∈X (x ∈ Z ∧ x ∉ Y). The only way to upset this would be

to change all such x’s, so that no element of Z is not an element of Y. Define a series of permutations

σX(a) = a’, σX(b) = b’, …, σX(n) = n’, where {a, b, …, n} = {x / x ∈ Z ∧ x ∉ Y}, and {a’, b’, …, n’} is a

subset of both Z and Y. σ〈X,V〉 (Z)=Z, for all the permutations are nothing but automorphisms of Z

({a, b, …, n} and {a’, b’, …, n’} are both subsets of Z). The transformation induced in Y is σ〈X,V〉 (Y)=Y’,

where Y’=(Y−{a, b, …, n})∪{a’, b’, …, n’}, by Assumption 1. But then Z ⊈ Y’, for {a, b, …, n} is a subset

of Z but not of Y’, by assumption. So, if Z ⊈ Y then σ〈X,V〉 (Z) ⊈ σ〈X,V〉 (Y). Thus, Z ⊆ Y iff σ〈X,V〉 (Z) ⊆

σ〈X,V〉 (Y), for any permutation σ.

The proof itself comes with no surprise, since information-containment, in our system, is the order of

the lattice, and it can be defined using intersection or union: A⊆B iff A∩B=A and iff A∪B=B.

Theorem 4 When ℐn is the powerset of some X, Compatibility is permutation invariant. That is, C (x, y)

iff C (σ〈X,V〉(x), σ〈X,V〉(y))., for any permutation of X and any induced transformation σ〈X,V〉.

Proof A.3. Take a binary relation of compatibility C defined over sets of elements of X.

C(Z,Y) =df Z∩Y≠∅. Suppose there are some A and B such that C(A,B) but ¬C(σ〈X,V〉(A),σ〈X,V〉(B)).

This can be only if the permutations “switch” all the (a, b, …, n) that are elements of both A and B

with some elements (a’, b’, …, n’) that are not in A nor in B. Yet, via assumption 1, now

σ〈X,V〉(A) = (A−{a, b, …, n’})∪{a’, b’, …, n’} and σ〈X,V〉(B) = (B−{a, b, …, n’})∪{a’, b’, …, n’}. Since

{a, b, …, n} ⊆ ⋂{σ〈X,V〉(A), σ〈X,V〉(B)}, we have C(σ〈X,V〉(A), σ〈X,V〉(B)), contrary to our assumption. So,

for any Z and Y in 𝓅X, if C(Z,Y) then C(σ〈X,V〉(Z),σ〈X,V〉(Y)).

For the reverse, suppose ¬C(A,B) and yet C(σ〈X,V〉(A), σ〈X,V〉(B)). Then A∩B=∅ and σ〈X,V〉(A) ∩

σ〈X,V〉(B) ≠ ∅. Then there must be at least a permutation σ(a) = a’ such that a’ ∈

102

⋂{σ〈X,V〉(A), σ〈X,V〉(B)}. By assumption 1, σ〈X,V〉(A)=(A−{a})∪{a’} and σ〈X,V〉(B)=(B−{a})∪{a’}. But

then A =(σ〈X,V〉(A)−{a’})∪{a} and B =(σ〈X,V〉(B)−{a’})∪{a}. So a ∈ A∩B and thus C(A, B), contrary to

our assumption. So, by reductio, ¬C(σ〈X,V〉(A), σ〈X,V〉(B)). So, if C(σ〈X,V〉(A), σ〈X,V〉(B)) then C(A, B).

Corollary 1: Take any FTM, and the formal operation Ω it describes. When ℐn is some powerset 𝓅X, Ω is

permutation invariant.

Proof A.4. By Theorem 1-4, the formal operations of meet, join, information-containment,

complementation and compatibility are permutation invariant. These are all the basic formal

operations. Any formal operation is a combination of basic formal operations. Any combination of

permutation-invariant operations is permutation invariant. Ω, being a formal operator, is a

combination of permutation invariant operations, so it is permutation invariant, as well.

Corollary 2: When ℐn is some powerset 𝓅X, an n-ary operator defined on X is FC-invariant only if

permutation-invariant.

Proof A.5. Suppose ℐn is some powerset 𝓅X. An n-ary operator K is FC-invariant iff there is an FTM

such that there exists a function Comp: FTM-1 ∘ K such that:

a) For every s and s’, Comp(s) = s’ iff K(s) = FTM(s’).

b) For every s, Comp(s) is the sequence such that (bm)1≤m≤n = (am)s and (bm)m>n = k, where

(ax)s is the x-th element of s.

c) Let σ be a permutation of information and let σS be the transformation induced in type S

by such permutation. For every s, s’, if k(s) = FTM(s’) then, for every σ, k(σS(s)) =

FTM(σS(s’)).

Suppose K is not permutation invariant. Then, there exists a series of permutations for which

K ≠ σY(K), where Y is the type for K. That is, there is a series of permutations σ1, σ2, …, σn such

that, for some argument (a, b, …, n) and value t of K, K(a, b, …, n) = t but K(σS(a, b, …, n)) ≠

σS(t). K is either F-computable or not. If not, then it is not FCI. So, suppose K is F-computable

by some FTM Ω. Then K(a, b, …, n) = Ω (a, b, …, n, …, k) = t. By Corollary 1, Ω is permutation

invariant. Thus, Ω(s) = s’ iff Ω(σS(s)) = σS(s’), for any permutation σ of X and any induced σS.

103

In particular, under σ1, σ2, …, σn, Ω(σS(a, b, …, n, ..., k)) = σS(t). Thus, Ω(σS(a, b, …, n, …, k)) =

σS(t) ≠ K(σS(a, b, …, n)). Hence, even if K is F-computable it is not FCI. So, in any case, if K is

not permutation invariant, it is not FCI. Thus, K is FC-invariant only if permutation-invariant.

Here the schema of the proof. FC-invariance is (FC) = F-computability & (I) = persistence of

computability under permutations. So, what we want is to prove is ⊢ FC&I → PI.

1, (1) ¬PI. Assumption.

⊢ (2) FC ∨ ¬FC. Excluded middle.

3, (3) ¬FC. Assumption.

3, (4) ¬(FC&I). 3, meaning of &.

⊢ (5) ¬FC→ ¬(FC&I). 3, 4, Conditional Proof.

6, (6) FC. Assumption.

1,6, (7) FC&¬PI. 1, 6, &-introduction.

1,6 (8) ¬(FC&I). 1, 6, proof explained above.

1 (9) FC→ ¬(FC&I). 6, 8, Conditional Proof.

1, (10) ¬(C&I). 2, 5, 9, Disjunction Elimination.

⊢ (11) ¬P → ¬(C&I). 1, 10, Conditional Proof.

⊢ (12) C&I → PI. 11, Logical equivalences.

Thus, in a Boolean algebra of infons, FC-invariance is a “contraction” of permutation invariance, for n-

ary operations defined over the set of infons. However, this does not entail that my theory is a

contraction of permutation invariance, in general, as I have already discussed in section 3.2.

QED

104

BIBLIOGRAPHY

Barwise, J., & Etchemendy, J. (1990). Information, infons, and inference. In Situation theory and its

applications, 1(22). Center for the Study of Language (CSLI).

—. & Perry, John (1983). Situations and Attitudes. Mit Press.

Bar-Hillel, Y. (1964). Language and Information: Selected Essays on Their Theory and Application

Reading, Mass.; London: Addison-Wesley.

—., Carnap, R. (1953), An Outline of a Theory of Semantic Information. Reprinted In Bar-Hillel (1964),

221–274.

Beaney, Michael (ed.) (1997). The Frege Reader. Blackwell.

Berto, Francesco. (2013) Impossible Worlds The Stanford Encyclopedia of Philosophy (Winter 2013

Edition), Edward N. Zalta (ed.). URL = <https://plato.stanford.edu/ archives/win2013/

entries/impossible-worlds/>.

Birkhoff, G. (1948). Lattice theory (Vol. 25). American Mathematical Society.

Bonnay, D. (2008). Logicality and invariance. Bulletin of Symbolic Logic, 14(1), 29-68.

Buridan, J. 1976. Tractatus de Consequentiis. In Hubert Hubien, Louvain: Publications Universitaires.

Burgess, J.P. (1999). Which modal logic is the right one? Notre Dame Journal of Formal Logic, vol. 40 pp.

81–93.

Chagrov, A., & Zakharyaschev, M. (1997). Modal Logic. Oxford logic guides: 35. Clarendon press.

Chang, C. C., & Keisler, H. J. (1990). Model theory (Vol. 73). Elsevier.

Charlow, N., & Chrisman, M. (Eds.). (2016). Deontic modality. Oxford University Press.

Cohen, Paul J. (1963). The independence of the continuum hypothesis. Proceedings of the National

Academy of Sciences 50.6: 1143-1148.

105

Cohen, Paul J. (1964). The independence of the continuum hypothesis, II. Proceedings of the National

Academy of Sciences, 51(1), 105-110.

Dretske, F. I. (1981). Knowledge and the Flow of Information. Oxford: Blackwell.

Enderton, Herbert B. (1977). Elements of Set Theory. Academic Press.

Etchemendy, John (1990). The Concept of Logical Consequence. Harvard University Press.

Feferman, Solomon (1999). Logic, Logics, and Logicism. Notre Dame Journal of Formal Logic 40 (1):31-

54.

Floridi, L. (2011). The Philosophy of Information. Oxford University Press.

Frege, Gottlob (Ged). Der Gedanke. Eine logische Untersuchung. In Beiträge zur Philosophie des

deutschen Idealismus 2 1918-1919, S. 58-77. Translation from Beaney (ed) (1977).

Gabbay, D., Horty, J., Parent, X., van der Meyden, R., & van der Torre, L. (2013). Handbook of deontic logic

and normative systems. College Publications.

Gallin, D. (1975). Intensional and Higher Order Modal Logic. North Holland, Amsterdam.

Garson, James. (2016). Modal Logic, The Stanford Encyclopedia of Philosophy . (Spring 2016 edition)

Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/spr2016/entries/logic-

modal/>.

Griffiths, Owen & Paseau, A. C. (2016). Isomorphism invariance and overgeneration. Bulletin of Symbolic

Logic 22 (4):482-503.

Goble, Lou. (2003). Preference Semantics for Deontic Logic Part I — Simple Models. Logique et Analyse,

46(183–184): 383–418.

Gödel, K. (1940). The Consistency of the Continuum-Hypothesis. Princeton University Press.

Gomez-Torrente, Mario (2002). The Problem of Logical Constants. Bulletin of Symbolic Logic 8 (1):1-

37.

106

Hanson, P. P. (ed.) (1990), Information, Language, and Cognition. Vancouver: University of British

Columbia Press.

Hanson, William H. (1997). The Concept of Logical Consequence. The Philosophical Review, Vol. 106,

No. 3, pp. 365-409.

Heyting, A. (1966). Intuitionism: an introduction (Vol. 41). Elsevier.

Hendricks, Vincent & Symons, John, (2015). Epistemic Logic, The Stanford Encyclopedia of Philosophy

Edward N. Zalta (ed.), (Fall 2015 edition). URL = <https:// plato.stanford.edu/

archives/fall2015/entries/logic-epistemic/>.

Hilpinen R. & McNamara P. (2013) Deontic Logic: a Historical Survey and Introduction. In Gabbay, D. et

al. (2013).

Hopcroft, J. E; Motwani, R; Ullman, J. D. (2001). Introduction to Automata Theory, Languages and

Computation: 2nd Edition. Pearson Education India.

Kaplan, D. (1989). Themes from Kaplan. Oxford University Press.

Kratzer, A. (1977). What ‘must’and ‘can’must and can mean. Linguistics and philosophy, 1(3), 337-355.

Kripke, Saul (2013) Reference and Existence. Oxford University Press.

Lang, Serge. (1970) Introduction to Linear Algebra. Addison-Wesley Series in Mathematics.

Lewis, David K. (1973). Counterfactuals. Oxford: Blackwell.

—. (1974). Semantic Analyses for Dyadic Deontic Logic. In Stenlund, S (eds) (1974). Logical Theory and

Semantic Analysis: Essays Dedicated to Stig Kanger on His Fiftieth Birthday. Dordrecht: D. Reidel

Publishing Company.

Lindenbaum, A. & A. Tarski. (1935). Über die Beschränktheit der Ausdrucksmittel deduktiver Theorien.

Trad: On the Limitations of the Means of Expression of Deductive Theories. Ergebnisse eines

mathematischen Kolloquiums, 7: 15–22. (Translated in Tarski 1983.)

Lindstrom, P. (1966) First Order Predicate Logic with Generalized Quantifiers. Theoria 32: 186-195.

107

MacFarlane, John (2000). What Does It Mean to Say That Logic is Formal?. Dissertation, University of

Pittsburgh.

—. (2015). Assessment Sensitivity: Relative Truth and its Applications. Oxford University Press.

Mautner, F. I. (1946). An Extension of Klein’s Erlanger Program: Logic as Invariant-Theory.

 American Journal of Mathematics 68, 345-384.

McCarthy, Timothy (1981). The Idea of a Logical Constant. Journal of Philosophy 78 (9):499-523.

—. (1987) “Modality, Invariance, and Logical Truth,” Journal of Philosophical Logic, 16: 423–443.

McGee, Vann (1996). Logical Operations. Journal of Philosophical Logic 25 (6):567 - 580.

McNamara, Paul (2014). Deontic Logic. The Stanford Encyclopedia of Philosophy (Winter 2014 Edition),

Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/ archives/win2014/ entries/logic-

deontic/>.

Merricks, Trenton (2015). Propositions OUP Oxford.

Montague, R. (1970). Universal Grammar, Theoria 36 : 373-398. Reprinted in Montague (1974), 222-

246.

—. (1973). The proper treatment of quantification in ordinary English. Approaches to natural language,

221-242. Springer, Dordrecht. Reprinted in Montague (1974), 247-270.

—. (1974). Formal Philosophy: Selected Papers on Richard Montague, edited and with an introduction

by Richmond Thomason. Yale University Press, New Haven.

Mostowski, A. (1957). On a Generalization of Quantifiers. Fundamenta Mathematicae 44: 12-36.

Novaes Catarina Dutilh (2011) The Different Ways in which Logic is (said to be) Formal, History and

Philosophy of Logic, 32:4, 303-332.

—. (2014). The Undergeneration of Permutation Invariance as a Criterion for Logicality. Erkenntnis 79

(1):81-97.

108

Pacuit, E. (2017). Neighbourhood Semantics for Modal Logic. Springer International PU.

Popper, K. R. (1935), Logik Der Forschung: Zur Erkenntnistheorie Der Modernen Naturwissenschaft.

Wien: J. Springer. English Translation: The Logic of Scientific Discovery. (1959) London:

Hutchinson.

Priest, Graham (2005). Towards Non-Being: The Logic and Metaphysics of Intentionality. Oxford

University Press.

Sagi, Gil (2015). The Modal and Epistemic Arguments against the Invariance Criterion for Logical Terms.

Journal of Philosophy 112 (3):159-167.

Shapiro, S. (1991). Foundations without foundationalism: A case for second-order logic (Vol. 17).

Clarendon Press.

Sher, Gila (1991). The Bounds of Logic: A Generalized Viewpoint. MIT Press.

▁. (1996). Did Tarski commit “Tarski's fallacy”?. The Journal of Symbolic Logic, 61(2), 653-686.

Tarski, Alfred. (1936). “On the concept of logical consequence”. Translated in Tarski (1983), 2, 1-11,

Oxford University Press.

▁. (1966). “What are Logical Notions?” Reprinted in Ed. John Corcoran. History and Philosophy of Logic

(1986), 7: 143–154.

▁. (1983). Logic, Semantics, Metamathematics: papers from 1923 to 1938. 2nd edition. J. Corcoran (ed.).

Indianapolis: Hackett.

Turing, A. M. (1937). On computable numbers, with an application to the Entscheidungsproblem.

Proceedings of the London mathematical society, 2(1), 230-265.

Van Benthem, J. (1989). Logical Constants across varying Types. Notre Dame Journal of Formal Logic 30

(3):315-342.

▁ & Bonnay, D. (2008). Modal logic and invariance. Journal of Applied Non-Classical Logics, 18(2-3),

153-173.

109

Von Wright. G.H. (1951). Deontic Logic. Mind, 60: 1–15.

▁. (1953) An Essay in Modal Logic. North Holland, Amsterdam.

Williamson, T. (2013). Modal Logic as Metaphysics. Oxford University Press.

