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Abstract

Ionising radiation is present in a variety of astrophysical problems, and it is particularly

important for shaping the process of star formation in molecular clouds, containing hot,

high-mass stars. In order to account for the e↵ects of ionising radiation within numerical

models of star formation, we need to combine a hydrodynamics method with a radiative

transfer method and obtain a radiation hydrodynamics scheme (RHD). In this thesis I

achieve live radiation hydrodynamics by coupling the Smoothed Particle Hydrodynamics

(SPH) code Phantom with the Monte Carlo Radiative Transfer (MCRT) code CMa-

cIonize. Since SPH is particle-based and MCRT is grid-based, I construct an unstruc-

tured, Voronoi grid in order to establish a link between the two codes. In areas with large

density gradients, a Voronoi grid based purely on the SPH particle positions achieves insuf-

ficient resolution, and therefore I propose a novel algorithm for inserting a small number of

additional grid cells to improve the local resolution. Furthermore, the MCRT calculations

require the knowledge of an average density for each Voronoi cell. To address this, I de-

velop an analytic density mapping from SPH to a Voronoi grid, by deriving an expression

for the integrals of a series of kernel functions over the volume of a random polyhedron.

Finally, I demonstrate the validity of the live RHD through the benchmark test of D-type

expansion of an H II region, where good agreement is shown with the existing literature.

The RHD implementation is then used to perform a proof-of-concept simulation of a col-

lapsing cloud, which produces high-mass stars and is subsequently partially ionised by

them. The presented code is a valuable tool for future star formation studies, and it can

be used for modelling a broad range of additional astronomical problems involving ionising

radiation and hydrodynamics.
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In the darkest clouds in space, known to me and you

Hot young stars get formed and proceed to shining through.

But can the light of newborn stars

Ionise and tear up the clouds?

Yes, it can. And my computer simulations show it too.

#phdlimerick



Chapter 1

Introduction

Our galaxy, the Milky Way, is a disk-like structure containing stars and clouds of gas

and dust. The clouds are mostly concentrated in the galaxy’s spiral arms, where they

are compressed and stretched due to collisions and tidal forces. As in all other gas-rich

galaxies, many of the clouds within the Milky Way will gravitationally collapse over time,

leading to the birth of new stars and the gradual depletion of gas. Astronomers have been

studying this process, and while we now have a good understanding of how individual stars

are born, there are still some open questions related to star formation on larger scales,

where environmental factors within the star-forming clouds play an important role.

In this chapter I will overview the properties of the primary stellar birth sites, known

as giant molecular clouds, and the numerical e↵orts of modelling star formation on that

size scale. Furthermore, I will discuss the e↵ects that the newborn stars exert on their

environment through the light that they emit, and I will introduce the goal of this thesis of

improving some of the numerical models of star formation by including better treatment

of stellar radiation.

1.1 A recipe for a star

1.1.1 Numerical models

The study of star formation has evolved as a combination of observations, theory and

numerical models. Since a typical cloud takes millions of years to collapse to the size of a

star, we cannot observe the full duration of the process. Instead we can look for snapshots
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of star formation in our galaxy. By identifying objects, such as pre-stellar cloud cores

and young stellar objects, we can observe the di↵erent stages of star formation and study

their properties. To complement the observations, theory-driven numerical simulations

can follow the time evolution of a star-forming cloud, taking into account the various

physical processes that the cloud would be experiencing.

Both the observations and numerical models of star formation have their limitations.

Young, still forming stars are obscured by thick layers of gas and dust, and cannot be

observed directly. Their properties are instead inferred through measurements of the gas

and dust emission. On the other hand, numerical simulations are constrained by the

available computing power, both in terms of the resolution that they can achieve, and also

in the accuracy with which they model physical processes. Both of these considerations

have made the numerical methods particularly useful for studying single star formation,

which I will overview in the following section.

The process of star formation, however, extends far beyond the individual stars and

spans many size scales. Most stars are born in groups or clusters, in which the individual

members share a common birth environment and gravitational potential. On even larger

scales these clusters are embedded into giant molecular clouds (GMCs) which can have

di↵erent structure and environmental conditions in di↵erent regions, resulting in di↵er-

ences in star formation rate and mass distribution of the newborn stars. Furthermore, the

GMCs are located in the spiral arms of galaxies and are built and shaped by the large-scale

galactic dynamics. This makes the individual act of star formation interlinked with even

the most global galactic processes, and our numerical models should ideally be able to

account for this link.

In reality we are not able to resolve individual stars when modelling entire galaxies.

Nowadays, however, we can achieve su�cient resolution to follow the individual star for-

mation on GMC scale (Bonnell et al. (2011), Krumholz et al. (2011)). This is a crucial

shift within the scientific field, as it allows us to explore how the di↵erent environments

and the stars themselves a↵ect the ongoing process of star formation. These developments

call for the need to include realistic physical conditions within the GMCs, as well as the

feedback e↵ects of the existing stars on their environment, alongside the physics that has

to do with individual star formation.
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1.1.2 Single-star formation

The core underlying idea of the theory of star formation is that stars are born as a result of

the gravitational collapse of clouds. This idea dates back to Newton in 1692 (as quoted by

Larson (2003)), and is almost as old as the first formulation of the gravitational attraction

itself. The formation of a star hence begins with a cloud which becomes unstable, and for

which gravity can counteract the e↵ects of all other forces that prevent the collapse.

For a cloud of given density and temperature, Jeans (1902) showed that gravitational

collapse can begin only if the cloud is larger than a characteristic size scale (see also Jeans

(2009)). This size scale is known as Jeans length and can be written as:

�J = ⇡1/2c(G⇢)�1/2, (1.1)

where G is the gravitational constant, ⇢ is the density of the cloud that has temperature

T and mean particle mass m, and c = (kT/m)1/2 is the sound speed (Larson (2003)).

Using the Jeans length, we can also arrive at the minimum cloud mass required for a

gravitational collapse, which is known as the Jeans mass and is given by:

MJ / c3G�3/2⇢�1/2. (1.2)

Jeans’ analysis was performed for an infinite cloud of uniform density in which grav-

ity was only counteracted by thermal pressure, and his work has been criticised for its

mathematical inconsistencies (Binney and Tremaine (1987)). More rigorous analysis by

Larson (1985), however, studied gravitational instabilities in di↵erent cloud geometries,

such as infinite plane-parallel sheets and cylinders, and with di↵erent equations of state

of the gas. His findings agree with the critical mass emerging from Jeans’ analysis up to

the numerical coe�cient, thus demonstrating that the concepts of Jeans length and mass

are valuable estimates for gravitational instabilities.

Once a cloud becomes unstable under gravity the gas begins to infall towards the

cloud’s centre. As this happens, the density and pressure in the central region increase,

and an outward pressure gradient develops in the cloud, slowing down the collapse of the

outer layers. As a result, the inner regions infall faster than the outer ones, which creates a
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centrally peaked density profile, with ⇢ / r�2 close to the centre (Larson (1973), Tohline

(1982), Foster and Chevalier (1993)). This e↵ect leads to a very small fraction of the

cloud’s mass forming the initial star. The star then accumulates most of its mass later on,

through subsequent accretion of the gas envelope which surrounds it (Larson (2003)).

In the early stages of the gravitational collapse the density is still low and the cloud can

cool very e�ciently by emitting thermal photons. The collapse is therefore approximately

isothermal and the cloud temperature remains close to 10K (Low and Lynden-Bell (1976),

Rees (1976)). Later on, when the central column density exceeds a critical value, the

cooling becomes ine�cient due to dust absorption, and the central region increases its

temperature dramatically. The pre-stellar core undergoes brief hydrostatic phases before

it finally begins the fusion of hydrogen and can be considered a star.

The presence of cloud rotation flattens the collapsing gas into a disk, and it is presently

believed that young stars accumulate their mass via an accretion disk (Norman et al.

(1980), Narita et al. (1984)). Similarly, magnetic fields also flatten the gas on a plane per-

pendicular to the field lines, and they can significantly slow down the overall gravitational

collapse (Mouschovias (1991)).

For completeness, we should note that the above star formation theory has been de-

veloped and established for low-mass stars. High-mass stars are hotter, and hence their

accretion can be disrupted by the substantial stellar feedback e↵ects in the form of ra-

diative heating, radiation pressure or ionisation. Some authors have found that a star

can reach at most a mass of 10 M� when accreting from a spherically infalling envelop

(Yorke and Krügel (1977), Wolfire and Cassinelli (1987)). Numerical models including

cloud rotation and circumstellar disks, have produced higher stellar masses of up to about

30 M�, however the star formation process was found to be ine�cient and requiring very

massive initial cloud cores (Yorke and Sonnhalter (2002)). Furthermore, high-mass stars

are primarily observed in the central regions of stellar clusters and they almost always

appear in binary or multiple systems (Preibisch et al. (1999), Duchêne and Kraus (2013)).

This environmental bias suggests that the formation of massive stars, and especially those

over 10–30 M�, may happen through protostellar interactions and collisions (Bonnell and

Bate (2002)).
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1.2 Birthplaces

1.2.1 Giant molecular clouds

GMCs are large (⇠ 100 pc) structures, which are positioned along the spiral arms of the

galaxy. They appear mostly dark with bright patches where they are illuminated by em-

bedded stars. GMCs have complex, clumpy structure and density spanning many orders

of magnitude (see Figure 1.1). Larger dense areas in these clouds are called clumps and

are believed to be the birthplaces of clusters of stars. The smallest cloud structures with

the most concentrated mass are referred to as cores. A core can potentially undergo a

gravitational collapse and form a single star. We probe the densities of the more concen-

trated parts of the clouds by measuring the strength of the molecular emission lines of

NH
3

, N
2

H+, HCO+, HCN etc., which serve as a cooling mechanism in these environments.

Additionally to the complex density profiles, GMCs have large, and in most places

supersonic, velocities, as evidenced by the commonly observed line broadening due to the

Doppler e↵ect (Larson (2003)). These motions within the clouds typically have velocity

dispersions which increase with the size of the region over which they are observed, and

are attributed to turbulence (Larson (1981), Heyer and Brunt (2004)). Possible trigger-

ing mechanisms for these velocities include large-scale cloud motions due to the galactic

potential and stellar feedback in the form of stellar radiation, stellar winds and supernovae.

The temperature structure of GMCs is also non-homogeneous, with the dense cloud

regions being cold (< 100 K ), and being surrounded by warm, low density gas (⇠ 8000 K).

The two distinct temperature regions can co-exist in a stable pressure balance, following

the two-phase interstellar medium (ISM) solution of Field et al. (1969). The cold phase

(100 K) of the ISM consists of neutral molecular and atomic gas, and it contains most of

the cloud mass, while the warm phase (8000 K) is a mixture of neutral and ionised gas

and occupies a large volume. Later work by McKee and Ostriker (1977) has proposed that

a third, hot phase of the ISM, with a temperature of ⇠ 106 K, co-exists with the other

two, and is caused by supernova heating. Due to the focus of this thesis, I will review the

ionised portion of the warm gas in more detail in the next section.

Finally, GMCs provide valuable sites for computing star formation statistics, as they

are typically hosting a large number of newly formed stars. In the past few decades we have
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been able to identify individual young stellar objects (YSOs), thanks to the launch of the

Spitzer Space Telescope, the Herschel Space Observatory and the Hubble Space Telescope.

These large sets of YSOs have allowed us to find the star formation rate in di↵erent clouds,

and the mass distribution of young stars, known as the initial mass function (IMF) (e.g.

Hillenbrand (1997)).

The IMF represents the relative occurrence of di↵erent stellar masses at the time that

the stars form. As a whole, low-mass stars are more numerous than high-mass stars, and

this relation was first quantified by Salpeter (1955). He described the number of stars per

unit mass interval as proportional to M�2.35
⇤ , where M⇤ is the stellar mass. This power

law shape for the IMF was found to be constrained on both ends of the mass range. At

low stellar masses of about 0.1–0.3 M�, the IMF peaks and then decreases as the mass

decreases further (Da Rio et al. (2012)). On the high-mass side of the distribution, there

is a cut-o↵ at 150 M�, beyond which no stars exist (Zinnecker and Yorke (2007)). A

major question within the scientific community is whether or not the shape of the IMF

is universal. While some authors have found no significant observational evidence for

environment-dependent IMF (Bastian et al. (2010)), others have argued that the IMF

varies between di↵erent galaxies (Cappellari et al. (2012)). Typically, however, the IMF is

assumed to be universal, and it is used for calculating the star formation rate in galaxies.

The star formation rate (SFR) is defined as the gas mass that gets converted into stars

per unit time (typically in solar masses per year). We can obtain the SFR in two di↵erent

ways — by counting stars of a given age within our galaxy and its satellites (Hillenbrand

(1997)), or by assuming the IMF and relating the light emitted from further away galaxies

to the number of stars (Overzier et al. (2011)). The SFR has long been found to relate

to the cold gas surface density, ⌃, via the power law SFR / ⌃1.5, known as the Schmidt-

Kennicut relation (Schmidt (1959), Kennicutt (1998), Kennicutt and Evans (2012)). This

relation was shown to hold on a broad range of scales from small star-forming regions to

entire galaxies, however it exhibits signs of environment-dependent scatter (e.g. Momose

et al. (2010)).

Apart from computing the SFR and the IMF, identifying individual YSOs gives us

spatial information about how they are grouped, and has helped us identify stellar clusters

within GMCs (Beerer et al. (2010)). There is strong observational evidence that YSOs

6



1.2. Birthplaces

appear in high concentrations around the areas of ionised gas which form around hot,

young stars (Beerer et al. (2010), Thompson et al. (2012)). This link between ongoing star

formation and ionised regions demonstrates again the need for larger scale star formation

models to include ionising stellar feedback.

1.2.2 H II regions

The common name for the areas in space that consist primarily of ionised hydrogen (H+)

is H II regions. Their presence in the Milky Way was detected in the late 19th century by

observing their emission lines, however it was not until the 1930s when astronomers started

to realise how numerous these objects were (Struve (1937), Struve et al. (1938), Struve

and Elvey (1939)). Their primary observed feature, the H↵ emission line, originates from

hydrogen atoms whose electrons de-excite from the n = 3 to the n = 2 energy level. This

transition occurs when free electrons are recaptured by H+ ions, and hence it is indicative

of the presence of continuously recombining hydrogen.

Soon after the revelation of substantial amounts of ionised hydrogen in our galaxy,

a theoretical model of the structure of H II regions was developed by Strömgren (1939).

In his pioneering work, Strömgren painted a picture in which hot, high-mass stars are

surrounded by spherical regions of fully ionised hydrogen, with sizes varying from a few

parsecs to hundreds of parsecs. In these regions ionisation is balanced by recombination

events where electrons are recaptured by the H+ ions. These spherical regions are now

referred to as Strömgren spheres, and their sizes are given by the Strömgren radius:

RSt =

 
3Qm2

p

4⇡↵B⇢2o

!
1/3

. (1.3)

In the above, Q is the number of ionising photons per second emitted by the central

star, mp is the hydrogen mass, ↵B is the recombination coe�cient, and ⇢o is the density

of hydrogen surrounding the star. I will review how this equation is derived as I introduce

the topic of radiative transfer.

Strömgren also demonstrated that the transition from fully ionised to neutral hydrogen

happens in a shell so thin that it could be treated as a sharp discontinuity, referred to as

the ionisation front.
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Building on Strömgren’s static model of an H II region, Kahn (1954) studied the dy-

namics of an ionisation front when the central star switches on. At early times the high

density of ionising photons causes the ionisation front to expand supersonically, as hydro-

gen atoms further and further from the star become ionised. This stage is called R-type

expansion and continues until photoionisation balances recombination in the cloud. There-

after the expansion can only continue through pressure gradients from the hot, ionised

gas. The latter expansion mechanism is referred to as D-type expansion, and the tran-

sition between the two physical regimes happens at the Strömgren radius. During the

D-type expansion the ionisation front moves subsonically for the ionised hydrogen, but

supersonically for the neutral hydrogen and is preceded by a shock.

These simple models do not take into account 3D e↵ects or the presence of clumps

and other structures in the neutral gas that we see in observations, however they help us

build a physical intuition for the processes occurring in an H II region. They also serve as

valuable benchmarks for more complex numerical models, and hence I will return to the

concepts of R-type and D-type expansion later on in Chapter 5.

Nowadays numerous H II regions have been identified in the Milky Way and the sur-

rounding spiral and irregular galaxies. Since H II regions are associated with young, hot

stars (of O and B types), which have lifetimes of the order of millions of years (as opposed

to billions of years for cooler stars), H II regions are viewed as signatures of recent and

ongoing star formation.

1.3 Ionising stellar feedback in numerical models

1.3.1 Ionising feedback and star formation

So far we have seen that the ionising radiation of massive stars, which creates H II regions,

is commonly present in star-forming clouds and it a↵ects the gas dynamics. When it comes

to a↵ecting the process of star formation, this type of stellar feedback has been argued to

both induce it (Elmegreen and Lada (1977)) and inhibit it under di↵erent circumstances

(Whitworth (1979), McKee et al. (1984), Matzner (2002)).

One way in which star formation can be triggered is via the collect-and-collapse mech-

anism, first theoretically formulated by Elmegreen and Lada (1977). The mechanism
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a↵ects the material which is swept up in a shock by the expansion of an H II region. The

shell of gas within the shock can reach su�ciently high densities in order to fragment and

collapse gravitationally. This type of star formation has been extensively studied with

numerical models, which show that the masses of the newly produced stars depend on the

thickness of the shocked shell (Wünsch et al. (2010), Dale et al. (2011)). Whitworth et al.

(1994a) and Whitworth et al. (1994b) found that the stars formed in this way would be

preferentially more massive, which in turn could create another H II region triggering star

formation, and result in a self-propagating high-mass star formation.

Another way in which star formation can be triggered is by making pre-existing cloud

cores unstable under gravity as they get compressed by an expanding H II region. This

mechanism is known as radiation-driven implosion, and has been shown to occur in nu-

merical models (Kessel-Deynet and Burkert (2003), Mellema et al. (2006), Bisbas et al.

(2011)). Walch et al. (2013) have studied the e↵ect of the morphology of the swept-up cold

gas on the resulting star formation, and found that gas with low fractal dimension results

in the formation of clusters, whereas high fractal dimension gas produces individual stars

or multiple systems.

Observationally, there are some signs of triggered star formation around H II regions.

YSOs have been found in pillars carved out by ionising radiation in regions of the Eagle

Nebula (Sugitani et al. (2002)), Cygnus X (Beerer et al. (2010)), and others. Apart from

physical proximity to the H II regions, newly formed YSOs need to be observed to be

younger than the ionising sources by an appropriate amount in order to claim that it was

a triggered event. Such age gradients have been observed in some star-forming regions,

making a strong claim of feedback-triggered star formation (Choudhury et al. (2010)).

Additionally, a concentration of YSOs has been reported around Spitzer mid-infrared

bubbles, indicating triggered star formation in expanding shells (Thompson et al. (2012)).

On the other hand, H II regions can have a negative e↵ect on star formation by dis-

persing the surrounding gas. Within simulations, this has been observed both on small

scales, with ionisation destroying the circumstellar disks around massive stars (Hollen-

bach et al. (2000)), and on larger scales, with H II regions blowing apart the molecular

clouds they are embedded in (Walch et al. (2012), Dale et al. (2012)). When it comes to

observations, we see many clouds with visibly disrupted morphologies within the Milky
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Way. Furthermore, velocity measurements suggest that many of them undergo expansion,

consistent with cloud dispersal due to stellar feedback (e.g. O’dell et al. (1993), Walborn

et al. (2007)).

1.3.2 Dynamic models of ionising feedback

We have seen that the ionising stellar feedback appears commonly in star-forming regions,

and it can have profound impact on their dynamics and the process of star formation. I

will now focus on how we incorporate ionising feedback into star formation models.

The process of star formation is modelled via hydrodynamics codes, which simulate

the gas dynamics and the gravitational collapse. Depending on the numerical method

which is used, hydrodynamics codes can be grid-based (e.g. Teyssier (2002)), particle-

based (Lucy (1977) and Gingold and Monaghan (1977)), or moving mesh (e.g. Springel

(2010)). On the other hand, the interactions of ionising radiation with matter are mod-

elled with radiative transfer methods. Both of these numerical approaches are reviewed

in detail in Chapter 2. In order to incorporate the stellar radiative feedback into star

formation models, astronomers have combined various radiative transfer techniques with

hydrodynamics, creating radiation hydrodynamics (RHD) schemes.

Since the hydrodynamical models of star formation are complex and computationally

costly on their own, computing power has been the main limiting factor of using RHD.

Therefore the earlier e↵orts of achieving RHD have been using radiative transfer methods

with approximate accuracy and lower cost. Krumholz et al. (2009) used flux-limited

di↵usion (FLD) method in a RHD scheme to study the formation of high mass stars

via accretion. Later on, Kuiper et al. (2010) implemented a hybrid radiative transfer

treatment combining FDL and ray tracing. The hybrid scheme improves the accuracy

of the radiative transfer done only with FDL, while at the same time it decreases the

computing time (Kuiper and Klessen (2013)).

More recently, RHD using Monte Carlo radiative transfer (MCRT) has been success-

fully achieved in combination with grid hydrodynamics (Harries (2015), Vandenbroucke

and Wood (2018)) and moving mesh hydrodynamics (Vandenbroucke and Wood (2018)).

This is a significant breakthrough in the field, since MCRT performs accurate radiative

transfer despite its substantial computing time. This recent development has been the
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inspiration for my thesis, which aims to combine MCRT with a particle-based hydrody-

namics model, namely the smoothed particle hydrodynamics (SPH).

Presently, MCRT has been applied to the outputs of SPH simulations, after they had

already finished running (e.g. MacLachlan et al. (2015)). This post-processing approach

can be of value if we want to find out which parts of a cloud would become ionised by stars,

however, it does not allow for the stellar feedback to a↵ect the dynamics of the collapsing

gas. In contrast, a live RDH scheme would perform the SPH and MCRT calculations

together, in an integrated manner, and it would recreate ionisation-driven gas dynamics.

Achieving live RHD is the goal of this thesis, and its realisation would allow for a variety

of astrophysical problems to be addressed.

1.4 Thesis outline

In this thesis I wish to address one of the less understood aspects of star formation, namely

how the ionising radiative feedback of young, hot stars a↵ects the ongoing star formation

in a cloud. In order to do so I use both hydrodynamics and radiative transfer models

simultaneously and present my work towards developing a novel radiation hydrodynamics

scheme.

Chapter 2 introduces the topics of fluid dynamics and radiative transfer, and overviews

the numerical methods that are commonly employed to model them. Two of these methods

are of particular interest — Smoothed Particle Hydrodynamics (SPH), used for modelling

the gravitational collapse of star-forming clouds, and Monte Carlo Radiative Transfer

(MCRT), which allows us to simulate the e↵ects of stellar light on the irradiated gas.

Combined together, SPH and MCRT can form a live radiation hydrodynamics scheme,

and the remaining chapters of this thesis follow the steps that I took to achieve live

radiation hydrodynamics.

Chapter 3 addresses the main incompatibility between SPH and MCRT, which comes

from the fact that SPH is particle-based and MCRT is grid-based. In order to bridge the

gap between the two codes, I construct a Voronoi tessellation, which is a grid structure

consisting of irregular polyhedra, built around a set of generating sites. This allows for

the SPH density structure to be mapped onto a grid, which the MCRT code can use for

its calculations. In this chapter I discuss the choice of generating sites for the Voronoi
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tessellation, and suggest an algorithm for improving the resolution in regions of large

density gradient, where a more simplistic choice of a Voronoi tessellation proves insu�cient.

In Chapter 4 I address the question of how to accurately map the SPH density onto a

Voronoi grid. The solution that I present uses the integral of an SPH kernel function inside

the volume of a grid cell and links it to the average cell density through the SPH formalism

(Petkova et al. (2018)). This approach is first analytically derived, and then numerically

implemented and tested. Furthermore, I improve its computational performance by pre-

computing and tabulating its functional form.

Finally, in Chapter 5 I describe how I used my work from Chapters 3 and 4 in order

to assemble a live radiation hydrodynamics scheme using the SPH code Phantom (Price

et al. (2017)) and the MCRT code CMacIonize (Vandenbroucke and Wood (2018)). I

demonstrate the validity of the scheme by applying it to the benchmark test of D-type

expansion of an H II region (Bisbas et al. (2015)). I also perform a proof-of-concept live

radiation hydrodynamics simulation of a star-forming cloud, analogous to the work of

Dale et al. (2012), in which naturally created high-mass stars ionise their surroundings

and a↵ect the ongoing star formation.

12



1.4. Thesis outline

Figure 1.1: H↵ image of the star forming region Cygnus X, and the H II region containing
the North America and the Pelican Nebulae (left). Courtesy MDW Hydrogen-Alpha Sky Survey
(mdwskysurvey.org).
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Chapter 2

Numerical Modelling of Matter

and Light

In this chapter I will introduce the topics of fluid dynamics and radiative transfer, and

describe how they are numerically modelled. I will specifically focus on the methods of

Smoothed Particle Hydrodynamics (SPH) and Monte Carlo Radiative Transfer (MCRT),

as they have been the focus of my work. Finally, I will discuss how fluid dynamics and

radiative transfer can be combined to create more comprehensive star formation models,

and I will formulate the steps necessary to achieve the overarching goal of my thesis of

combining SPH and MCRT and running them simultaneously.

2.1 Modelling star formation: Hydrodynamics and SPH

2.1.1 Fluid dynamics

In order to model the gravitational collapse of molecular clouds into stars, we need to have

a formulation of the physics that governs this process. Since clouds behave like fluids, we

can use the fluid equations in order to describe their motions under a set of forces.

Let us consider our (cloud) fluid which occupies a certain volume and is characterised

by a set of parameters (such as density, pressure, temperature etc.) which may di↵er from

one point in space to another. We can break down the volume into fluid elements which

are small enough that the physical parameters can be considered constant within each

fluid element. There are two ways in which we can do this breakdown, depending on the
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reference frame that we choose to adopt. One way is to define each fluid element as an

entity which is fixed in space. The fluid can then flow in and out of this fluid element,

carrying with itself momentum and energy. This is known as the Eulerian description of a

fluid. The alternative approach would be to consider fluid elements which are carried along

the flow of the fluid, and which are constantly rearranging and reorganising themselves.

This description is know as the Lagrangian one.

The Lagrangian and the Eulerian formulations of a fluid are equivalent, and any equa-

tion written by using one of the descriptions can be transformed into the other one. To

demonstrate how this is done, let us consider some quantity of the fluid, A. If we want to

know how A changes with time at a fixed position (i.e. under the Eulerian description), we

need to find the partial time derivative @A
@t . If, however, we want to know how A changes

in time in a Lagrangian fluid element, we can write the Lagrangian derivative as:

DA

Dt
=
@A

@t
+ v ·rA, (2.1)

where v is the fluid velocity (Clarke and Carswell (2007)).

Using the above formulation, we can now introduce the three fluid equations which

ensure that mass, momentum and energy are conserved. Under the Eulerian description

we can write them respectively as (adapted from Choudhuri (1998), Clarke and Carswell

(2007) and Price (2012)):

@⇢

@t
+r · (⇢v) = 0; (2.2)

@v

@t
+ (v ·r)v = �1

⇢
rP + af ; (2.3)

@u

@t
+ v ·ru+

P

⇢
r · v = Q̇h. (2.4)

In the above, ⇢ is the fluid mass density, P is the pressure and u is the specific internal

energy.

By using equation 2.1 we can adapt the above to the Lagrangian formulation and get:
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D⇢

Dt
+ ⇢r · v = 0; (2.5)

Dv

Dt
= �1

⇢
rP + af ; (2.6)

Du

Dt
� P

⇢2
D⇢

Dt
= Q̇h. (2.7)

The vector af stands for the net acceleration induced by forces other than pressure

gradients, and it depends on the physical processes that are significant for the problem

of interest. In the case of modelling star formation we will most commonly use af = g,

where g is the gravitational acceleration. In fluids where viscosity has an important e↵ect,

af can also contain a viscous term, given by µ
⇢r

2v, where µ is the viscosity coe�cient.

Similarly, magnetic field e↵ects or radiation pressure can also contribute towards af .

The term Q̇h in the energy equations stands for net heating and cooling , which can

include local change of heat due to thermal conduction, radiation, viscous heating etc. If

the temperature in our fluid is constant everywhere and unchanging, then there will be

no heat flow between di↵erent points in space, and Q̇h = 0. Such fluid is referred to as

being isothermal. If, however, temperature gradients are present within the fluid, we can

have, for example, Q̇h = 1

⇢r · (KrT ) due to thermal conductivity, where T is the fluid

temperature and K is the conductivity coe�cient.

Equation of state

If both af and Q̇h are zero, the equations of fluid dynamics contain six quantities (if

we count the three components of v), which have their time evolution described by five

equations (if we break down the momentum equation into its three components). This

means that we need to have at least one more equation in order to describe the time

evolution of a fluid. This missing link is the equation of state and it provides a relationship

between P , ⇢, and the fluid temperature, T .

There are many di↵erent equations of state, depending on the behaviour of the fluid

of interest. If the fluid can be approximated to an ideal gas (which is the case for most

astrophysical systems), we can write its equation of state as:
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P =
kB
m̄
⇢T, (2.8)

where kB = 1.38 ⇥ 10�23 J/K is the Boltzmann constant, and m̄ is the mean particle

mass within the gas (Clarke and Carswell (2007)). The specific internal energy, u, is then

proportional to T , and can be written as u = 3

2

k
B

m̄ T for atomic gas.

There are some special cases of fluids for which the equation of state is barotropic,

i.e. P depends only on ⇢ (Clarke and Carswell (2007)). One such case is when the fluid

is isothermal and then P / ⇢. Another special case is when the fluid is adiabatic and

P / ⇢� , where � is the adiabatic index. In both of these cases we do not need the energy

equation in order to evolve the fluid in time.

Gravity

As previously stated, when modelling star formation we will commonly assume that af =

g. In order to include gravity in the treatment of the fluid we need another equation that

can tie it to the rest of the physical quantities.

Since gravity is a conservative force, i.e. one for which the work done in a closed loop

is zero (
H
F ·dl = 0, see Clarke and Carswell (2007)), we can express it in terms of a scalar

potential. This means that we can define a gravitational potential,  , such that:

g = �r . (2.9)

Poisson’s equation then allows us to link the local gravitational potential and the local

density by:

r2 = 4⇡G⇢, (2.10)

where G = 6.67⇥ 10�11 m3 kg�1 s�2 is the gravitational constant.

With this extra equation in mind, we are now in a position to model the hydrodynamics

of star formation.
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2.1.2 Numerical hydrodynamics

For complex fluid flows with non-symmetric geometries, such as in the case of star forming

clouds, the equations presented in Section 2.1.1 are typically solved numerically, and the

time evolution of the fluid properties is tracked via hydrodynamics codes. These codes

use a discretisation of the simulated volume following either Lagrangian or Eulerian fluid

elements. The di↵erent types of numerical schemes have certain advantages and disad-

vantages, which I will now present and discuss.

Grid codes

Grid-based codes, also known as finite volume schemes, model the fluid dynamics by fol-

lowing the Eulerian description. They divide the simulation volume into cells, which have

fixed positions in space. The cells can be evenly spaced, or constructed via an adaptive

mesh refinement scheme, which increases the resolution in certain areas by breaking down

some of the existing cells into smaller subcells (Fryxell et al. (2000), Teyssier (2002)). The

fluid dynamics is modelled by calculating fluxes of physical parameters between neigh-

bouring cells and numerically solving the di↵erential equations governing the parameters’

time evolution. Various approaches have been adopted for solving these equations, and

the development of second order schemes has allowed for the accurate treatment of shocks,

which are important for star formation and stellar feedback problems (van Leer (1979)).

The downside of the grid codes is that they are fixed in geometry and in size of

the simulation volume, which requires us to have prior knowledge of the system that is

modelled. Nevertheless, due to their accuracy, grid codes are very widely used for studying

astronomical systems.

Particle codes

Particle codes follow the Lagrangian formalism by breaking down the fluid into a finite set

of particles. The particles are then moved incrementally with the local fluid velocity, and

can form complex geometries, naturally clustering and increasing the resolution at areas

of high density.

The method of Smoothed Particle Hydrodynamics (SPH) was first put forward by

Lucy (1977) and Gingold and Monaghan (1977) as an attempt to tackle non-spherically
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symmetric problems in astronomy. Such scenarios required 3D simulations, which were

computationally unachievable at the time with the finite volume (i.e. grid-based) schemes

that were being used. SPH transforms the fluid equations into summations over particle

parameters, which are quick and easy to compute. These summations are approximations

and have errors associated with them, however the SPH formalism conserves the total

mass, momentum and angular momentum to machine accuracy.

Agertz et al. (2007) found that the Smoothed Particle Hydrodynamics method was un-

able to correctly model scenarios where large density, temperature and pressure gradients

were present. Further improvements of the method, however, have addressed these issues

and have demonstrated that SPH can be used for the modelling of shocks and instabilities

(see Price (2008) and Hopkins (2013)).

Moving mesh codes

In recent years, moving mesh codes were developed as a hybrid of the Lagrangian and

Eulerian fluid formalism (Springel (2010), Du↵ell and MacFadyen (2011), Vandenbroucke

and De Rijcke (2016)). These codes use particles, which move with the fluid, but also an

unstructured grid is constructed for each particle configuration in order to compute fluxes

between neighbouring particles. The unstructured grid is called a Voronoi tessellation and

it will be introduced in more detail in Chapter 3. By adopting this approach, the moving

mesh codes aim to combine the best parts of both the grid and particle-based methods.

The main down side is the algorithmic complexity and high computing cost.

2.1.3 Smoothed Particle Hydrodynamics

SPH is the hydrodynamics method which has been used for the work presented in this

thesis. As previously mentioned, it solves the Lagrangian fluid equations (2.5, 2.6, 2.7), by

expressing them in terms of summations. Therefore, to understand the approach in more

detail I will first introduce the SPH summations, and I will then continue with overviewing

some contemporary code features.

SPH formalism

In order to represent a continuous fluid with a set of N discrete particles, we need a

way of interpolating the physical quantities describing the fluid at each point in space, or
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otherwise we will end up with unphysical gaps in the fluid. This interpolation is a key

feature of SPH, and I will demonstrate how it is constructed (see Monaghan (1992)).

Let us start with some quantity A, which is defined for each point, r, of the simulation

volume. We can write A(r) as the following integral over the whole simulation volume V :

A(r) =

Z
V
A(r0)�(r� r0)dr0. (2.11)

In the above, �(r � r0) is the Dirac delta function, which equals zero for r 6= r0 and

infinity otherwise. The delta function also has the property

Z
V
�(r� r0)dr0 = 1. (2.12)

Instead of using the Dirac delta in the previous expression we can approximate it by a

kernel function, W (r� r0, h), which is also peaked at r = r0, however it has a finite width

of the peak, h. The kernel function is also normalised, so that its integral over all space

equals one. Then we can rewrite the expression for A(r) as

A(r) ⇡
Z
V
A(r0)W (r� r0, h)dr0 (2.13)

=

Z
V
A(r0)

W (r� r0, h)

⇢(r0)
⇢(r0)dr0, (2.14)

where ⇢(r0) is the density at r0.

If we now assume that we have a set of N particles, and we have a list of properties

assigned to each particle, then we can interpolate A by

A(r) ⇡
NX
b=1

Abmb

⇢b
W (r� rb, h). (2.15)

In the above mb and ⇢b are the mass and the density of particle b, and Ab is the value

of property A for the same particle.

We can now replace A with any property of interest and evaluate it. Note that from
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now on for simplicity we will use an equal sign when writing equations containing SPH

sums, however these expressions are always approximations. In the most trivial case we

can write the density ⇢(r) as

⇢(r) =
NX
b=1

mbW (r� rb, h). (2.16)

The fluid equations, however, do not only contain physical parameters, but also some

gradients of them, e.g. rP , and we need to establish how to handle gradients under the

SPH formalism.

Starting from the SPH form of P (r):

P (r) =
NX
b=1

Pbmb

⇢b
W (r� rb, h), (2.17)

the naive form of the gradient can be expressed as:

rP (r) =
NX
b=1

Pbmb

⇢b
rW (r� rb, h). (2.18)

In particular, we need the gradient of P at the location of a particle a:

(rP )a =
NX
b=1

Pbmb

⇢b
raWab, (2.19)

where ra is the derivative with respect to ra, and Wab = W (ra � rb, h).

Then, by using equation 2.6 and disregarding af , we have:

Dva

Dt
= � 1

⇢a

NX
b=1

Pbmb

⇢b
raWab, (2.20)

The above expression, however, does not conserve the total linear or angular momen-

tum of the system, which is a problem in a hydrodynamical numerical simulation (see

Monaghan (1992)).

Instead we can use that
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1

⇢
rP = r

✓
P

⇢

◆
+

P

⇢2
r⇢, (2.21)

and get that:

Dva

Dt
= �

NX
b=1

Pbmb

⇢2b
raWab �

Pa

⇢2a

NX
b=1

mbraWab (2.22)

= �
NX
b=1

mb

✓
Pb

⇢2b
+

Pa

⇢2a

◆
raWab. (2.23)

Then the time derivative of the total momentum is:

D

Dt

NX
a=1

mava = �
NX
a=1

NX
b=1

mamb

✓
Pb

⇢2b
+

Pa

⇢2a

◆
raWab = 0. (2.24)

The above expression is zero due to the overall symmetry of its components, together

with the fact that raWab = �rbWab, and it demonstrates that the total momentum is

conserved.

In a similar fashion, other derivatives are carefully constructed, so that they obey

conservation laws. For a more detailed discussion see Monaghan (1992) and Price (2012).

Contemporary code features

There have been many improvements in the area of SPH numerical modelling since the

1970s, and here I will mention only the ones which are most relevant to the work described

in this thesis.

First I will introduce the concepts of particle neighbours and variable smoothing length.

I have previously mentioned that the kernel function, W (r� r0, h), is used to approximate

the Dirac delta function. In doing so, W is chosen, such that it has compact support, i.e.

its value becomes zero when |r� r0| is greater than a certain distance, which is expressed

in terms of the smoothing length, h. This means that we can think of all other particles

which are within a radius of this critical distance from a certain particle, as the particle’s

neighbours. While in the early days of SPH all particles had the same smoothing length at

a given time, it was later decided that h should be spatially varied in order to reflect the
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local particle number density. Therefore, nowadays SPH particles have their individual

smoothing lengths, so that each particle has roughly the same number of neighbours.

Mathematically, h can be found by iterating the equations

⇢(ra) =
NX
b=1

mbW (ra � rb, ha); h(ra) = ⌘

✓
⇢a
ma

◆
1/3

, (2.25)

where ⌘ is a unitless parameter, typically assumed to be ⌘ = 1.2 (Springel and Hern-

quist (2002), Price and Monaghan (2007)).

Another important feature of modern SPH codes is the creation of sink particles (Bate

et al. (1995)). A sink particle replaces a group of gas particles which are gravitationally

bound to one another and are undergoing a collapse, such as in the case of star formation.

Once a sink particle has been created, it interacts with the other particles only gravita-

tionally, and it can accrete additional gas particles if criteria related to proximity, energy

and angular momentum of the gas are met. The incorporation of sink particles has cre-

ated a great computational advantage, since gas particles trapped in tight orbits around

collapsed, dense regions would require very short time steps (and hence long computing

times) in order to be propagated correctly.

Finally I will briefly explain how gravity is computed within SPH. Unlike most of

the other forces a↵ecting fluids, gravity has a long range of action, and therefore each

particle a↵ects each other particle gravitationally. To compute these forces directly would

be a slow task, and therefore SPH codes use tree algorithms (Appel (1985), Springel

et al. (2001)). A tree (connected, non-cyclic graph) is a hierarchical structure, which can

organise the particles according to their spatial distribution (see Figure 2.1). It consists

of a number of nodes with links between them, and in this case each node corresponds to

a box of the simulation volume (Clark et al. (2012)). The tree is built from the ”root”

node, which contains all particles. Each (parent) node is then divided into a number of

daughter nodes, containing parts of the volume of the parent node. Through this division

the parent becomes linked to its daughters. This process is repeated until the ”youngest”

generation of nodes (”leaves”) contain only single SPH particles. The construction of this

tree structure allows for particles which are clustered together to be approximated to a
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point mass when the gravitational force is computed for a far away particle, and this

speeds up the gravity calculations significantly.

Leaves	

Root	

Figure 2.1: A schematic of a tree graph with the root and the leaves labelled.

With this we have reviewed how the process of star formation is modelled via the

hydrodynamics of SPH, and we can now move on to discussing the modelling of stellar

radiation.

2.2 Modelling radiation: Radiative transfer and MCRT

2.2.1 Radiative transfer

In order to review how radiation is modelled numerically, I will first introduce some ba-

sic concepts from the area of radiative transfer (see Rybicki and Lightman (1979) and

Osterbrock and Ferland (2006) for more details).

dA	

θ	

dΩ	

Iν	

Figure 2.2: A schematic of a light ray with specific intensity I⌫ and frequency ⌫, coming from
an angle ✓, spanning a solid angle d⌦, and hitting an area element dA.
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Let us start by considering the very common astronomical scenario of light hitting a

surface element of area dA (see Figure 2.2). We can think of this surface element as part

of a telescope detector, a pupil, or any arbitrary surface that we can define. If we are

interested in the amount of energy that this incident light brings to the surface element,

we could parameterise the problem by separating the light into di↵erent rays, each with

its own specific intensity (I⌫), frequency (⌫), direction (✓) and area of the sky (d⌦) that

it spans. The energy contribution from each ray of light within a time period of dt can be

written as:

dE⌫ = I⌫ cos(✓)dAdtd⌫d⌦. (2.26)

We can now find the total energy by integrating the above expression. In astronomy,

however, we are typically interested in other quantities, such as the mean intensity:

J⌫ =
1

4⇡

Z
I⌫d⌦, (2.27)

or the flux:

F⌫ =

Z
I⌫ cos(✓)d⌦. (2.28)

Here it is important to mention that the quantity I⌫ is independent from the distance

to the source, and is constant along a ray in the case when there is no extra absorption

or emission of light happening between the source and the chosen surface element. The

inverse square law that we expect for the flux (F / 1

r2
; r – distance to source) therefore

occurs from the fact that the specific intensity of a source is integrated over the angular

size of the source, which in its turn depends on the inverse distance squared.

Some additional quantities that we can also derive using I⌫ are the energy density and

the radiation pressure, given respectively by:

u⌫ =
1

c

Z
I⌫d⌦ =

4⇡

c
J⌫ , (2.29)

and
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p⌫ =
1

c

Z
I⌫ cos

2(✓)d⌦. (2.30)

From the above equations it is apparent that in order to model how energy is trans-

ported via radiation, all we need to know is the value of the specific intensity everywhere.

This is a trivial task when our sources (i.e. stars) exist in vacuum, however I⌫ is harder

to find in the more realistic case where the sources are surrounded by material which can

absorb and emit photons.

We can write the increment of energy added to a ray within a volume element dV as:

dE⌫ = j⌫dV dtd⌫d⌦. (2.31)

In the above j⌫ is the emission coe�cient, which can contain contributions from thermal

and non-thermal emission, as well as light scattered into the ray of interest. We can then

write the change in the specific intensity at a point s along the ray as:

dI⌫(s) = j⌫ds. (2.32)

Similarly, energy can be lost from the ray due to scattering and absorption, and the

change in the specific intensity is given in terms of the extinction coe�cient (a⌫) by:

dI⌫(s) = �a⌫I⌫ds. (2.33)

From equations 2.32 and 2.33 we arrive at the equation of radiative transfer (ERT):

dI⌫
ds

= j⌫ � a⌫I⌫ . (2.34)

Note that in the above equation there is no time dependence and this is because we

have implicitly assumed that the radiation field around us is at a steady state. This

is a reasonable assumption if we are modelling a system in which the variation of the

optical properties of the medium change on a time scale that is much longer than the light

propagation time. In this thesis I will focus on time-independent problems only. Being
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able to write the specific form of the ERT for a given problem of interest and then solve

it, is the essence of performing radiative transfer.

2.2.2 Ionisation

In this section we will consider the way ionising radiation is expressed within the area

of radiative transfer. Let us assume that we have hot (high mass) stars surrounded by

gaseous medium, consisting of pure hydrogen. What we want to find in this case is which

parts of the medium would be ionised by the stars. Any such system would rapidly reach

a state of ionisation balance in which the number of ionisation events will counterbalance

the number of recombination events at each point in space. This idea can be expressed

mathematically by (Osterbrock and Ferland (2006)):

n
0

Z 1

⌫0

4⇡J⌫
h⌫

�⌫d⌫ = npne↵A(T ), (2.35)

where n
0

, np and ne are the local number densities of neutral hydrogen, ionised hydrogen

(or protons) and electrons, respectively. Furthermore, �⌫ is the ionisation cross section

of hydrogen, ↵A(T ) is the total recombination coe�cient (i.e. including hydrogen atoms

recapturing electrons to any of the bound energy levels), which is function of the local

temperature, T , and h is the Planck constant. In the above we have only included photons

of frequencies above ⌫
0

, which corresponds to the ionisation energy of hydrogen, h⌫
0

=

13.6eV .

It is important to note that as a recombination event occurs, a photon is also emitted.

When the recaptured electrons occupy any of the excited states of hydrogen, the photons

that are emitted have frequencies ⌫ < ⌫
0

, so for our purposes we can disregard them.

Recombination events to the ground state, however, emit ionising photons on their own.

This leads us to a natural separation between the stellar ionisation field (of photons coming

from the stars) and the di↵use field (of photons originating from recombination events).

In order to obtain the ionisation structure we need to formulate the ERT (see 2.34).

First, we can separate the specific intensity into a stellar term (I⌫s) and a di↵use term

(I⌫d):
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I⌫ = I⌫s + I⌫d. (2.36)

Since the stellar term consists only of ionising light that originates from the stars, the

ERT for it is simply:

dI⌫s
ds

= �a⌫I⌫s, (2.37)

where a⌫ = n
0

�⌫ . The above equation has the solution

I⌫s(⌧⌫) = I⌫s(0)e
�⌧

⌫ , (2.38)

with ⌧⌫ being the optical depth, defined as

⌧⌫(s) =

Z s

s0

a⌫ds
0 =

Z s

s0

n
0

�⌫ds
0. (2.39)

The term I⌫s(0) is either zero if there is no star along the line of sight of the ray, or is

equal to the brightness of the stellar surface.

The ERT for the di↵use term is more complex and can be written as:

dI⌫d
ds

= �n
0

�⌫I⌫d + j⌫ . (2.40)

This equation has a solution of the form:

I⌫d(⌧⌫) = I⌫d(0)e
�⌧

⌫ +

Z ⌧
⌫

0

e�(⌧
⌫

�⌧ 0
⌫

)

j⌫
n
0

�⌫
d⌧ 0⌫ . (2.41)

The term j
⌫

n0�⌫

is known as the source function and we can sometimes approximate it

to the Planck function, given by:

B⌫(T ) =
2h⌫3

c2
1

exp(h⌫/kT )� 1
, (2.42)

where c is the speed of light. This approximation holds for physical systems in which the

particles follow Maxwellian distribution before and after recombination.
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In principle we could now obtain any di↵use field radiative transfer quantity provided

that we knew the temperature and density at any point of the hydrogen gas surrounding

the stars. However, since the local temperature depends on the local ionisation state, the

temperature may need to be obtained iteratively.

In order to better describe what is meant by the local ionisation state of the medium

we can express the fraction of hydrogen which is ionised at any point in space. We will

denote this as the ionic fraction fi =
n
p

n0+n
p

. For a pure hydrogen medium we have that

ne = np, and then by using equation 2.35 we can solve for fi.

Strömgren radius

If, like Strömgren, we consider a single star placed in a uniform density cloud, and we are

interested in the question how far away from the star the cloud will stop being ionised, we

can derive this distance (Strömgren radius) from the above formalism. First, we need to

notice that j⌫ is related to the number of recombinations to the ground level by :

Z 1

⌫0

4⇡j⌫
h⌫

d⌫ = npne↵1

(H0, T ), (2.43)

where ↵
1

(T ) < ↵A(T ) is the recombination coe�cient to the ground level.

Since we consider a cloud which is larger than the whole ionised region, we can assume

that none of the photons are escaping, and therefore we have:

Z
4⇡j⌫
h⌫

dV =

Z
4⇡J⌫d
h⌫

n
0

�⌫dV. (2.44)

Next, we assume that this relation holds locally as well. This is called ”on-the-spot”

approximation and yields

J⌫d =
j⌫

n
0

�⌫
. (2.45)

By noticing that J⌫ = J⌫s+J⌫d in equation 2.35, and substituting 2.45 in 2.35, we get:

n
0

Z 1

⌫0

4⇡J⌫s
h⌫

�⌫d⌫ = npne↵B(T ), (2.46)
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with ↵B(T ) = ↵A(T )� ↵
1

(T ).

We can express J⌫s from equation 2.27 as

J⌫s =
1

4⇡

Z
I⌫sd⌦ =

R2

4r2
I⌫s, (2.47)

where R is the radius of the star and r is the distance from it. The above expression

assumes that r >> R, which is a reasonable assumption considering the sizes of H II

regions.

Substituting the above together with equation 2.38 into equation 2.46, we get:

R2n
0

r2

Z 1

⌫0

⇡I⌫s(0)

h⌫
�⌫e

�⌧
⌫d⌫ = npne↵B(T ), (2.48)

Finally, we will integrate both sides of 2.48 over volume, giving

Z 1

r=0

4⇡R2n
0

Z 1

⌫=⌫0

⇡I⌫s(0)

h⌫
�⌫e

�⌧
⌫d⌫dr =

Z 1

0

4⇡npne↵B(T )r
2dr. (2.49)

Let us consider the left hand side of the equation. The only parameters which vary

with r are n
0

and ⌧⌫ . From earlier we can express d⌧
⌫

dr = n
0

�⌫ , which means that

Z 1

0

n
0

�⌫e
�⌧

⌫dr =

Z 1

0

e�⌧
⌫d⌧⌫ = 1. (2.50)

What is left of the left hand side is now

4⇡R2

Z 1

⌫0

⇡I⌫s(0)

h⌫
d⌫ =

Z 1

⌫0

L⌫

h⌫
d⌫ = Q, (2.51)

where L⌫ is the stellar luminosity at ⌫, and Q is the total number of ionising photons

emitted by the star per unit time.

On the right-hand-side we can notice that np = ne ⇡ 0 when r > RSt with RSt being

the Strömgren radius. Conversely, np = ne ⇡ nH , where nH is the total number density

of hydrogen atoms and ions. Both of these observations lead to the following expression

for the right-hand-side:
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Z 1

0

4⇡npne↵B(T )r
2dr =

4

3
⇡R3

Stn
2

H↵B. (2.52)

Combining equations 2.51 and 2.52 we can express the Strömgren radius as:

RSt =

✓
3Q

4⇡↵Bn2

H

◆
1/3

(2.53)

2.2.3 Modelling radiative transfer

As I stated in the previous section, we can obtain any desired quantity in radiative transfer

if we know the specific intensity, I⌫ . Solving for the specific intensity, however, can be

non-trivial for any setup which is non-uniform or non-spherically symmetric. Furthermore,

even if we could find I⌫ , it is a six-dimensional quantity (it depends on three spatial

coordinates, two directional coordinates, and frequency). This makes it beyond the scope

of any analytic treatment for scenarios where we are modelling a complex, clumpy medium,

such as a star forming cloud. For that reason radiative transfer is typically modelled

numerically, using a variety of algorithms, such as di↵usion, ray tracing and Monte Carlo

techniques.

Similarly to the hydrodynamics models, numerical radiative transfer requires a way of

describing the density structure of the gaseous medium surrounding the sources of light.

Both particle and grid-based discretisations of space have been employed by some of the

radiative transfer methods, as they evolved alongside the hydrodynamics.

The goals of the radiative transfer models can be divided into two categories. The

first one is to obtain values for parameters, such as temperature, ionic fraction, radiation

pressure etc., at each particle or cell within the simulated volume. These calculations are

particularly useful when the radiative transfer method is coupled with a hydrodynamics

scheme, which can incorporate the radiative e↵ects into the gas or dust dynamics. The

second category is to do with producing synthetic images, which can serve as a link between

numerical models and observations of nebulae.

I will now overview some of the most common approaches used to model radiative

transfer and I will discuss how they compare to one another.
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Di↵usion method

The di↵usion method approximates the propagation of light in an absorbent medium to

a di↵usive process, which can be described by an equation of the type (Lucy (1977)):

F / ��SBT
3

⇢
rT, (2.54)

with F being the radiative flux, �SB being the Stephan-Boltzmann constant,  being the

Rosalind mean opacity, and T and ⇢ being the local temperature and density of the cloud,

respectively.

The di↵usion method has a low computational cost and it has been used since the

early days of Smoothed Particle Hydrodynamics by Lucy (1977), with its formulation

being later improved by Brookshaw (1994). In the context of SPH the radiative di↵usion

was added as an extra term (⇠ �1

⇢r · F) to the energy equation and was used to model

optically thick (with ⌧⌫ > 1) protostars.

In optically thin regions (with ⌧⌫ < 1) the di↵usion method breaks down, as it can

result in very large propagation speeds which violate causality. As a result, various authors

have adopted flux limiters to correct for this issue (e.g. Levermore and Pomraning (1981)).

Even with this modification, however, the flux-limited di↵usion approach does not model

optically thin regions accurately. In particular, it is unable to cast sharp shadows behind

thick barriers illuminated by point sources.

Ray tracing method

The ray tracing method follows the path of rays originating from the sources and passing

through the surrounding cloud. In some ways this method has the strongest resemblance

to the theoretical description of radiative transfer. As we move along each ray we calculate

the optical depth (⌧⌫) to the current location and the attenuation of the stellar flux that

it creates (Pawlik and Schaye (2008)).

The ray tracing method works for both optically thin and optically thick environments,

however it requires careful sampling of the directions in which rays are propagated. In

simulations containing complex, clumpy clouds, particles or cells (if adaptive grid is used)

are clustered together in the denser regions. With high particle or cell density in some
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areas of the simulation volume, there is the risk that some of the particles/cells will not be

crossed by any of the rays that are considered, resulting in parts of the simulation volume

being omitted. In order to address this issue, more rays need to be generated through

denser environments, increasing the computational cost of the method.

Monte Carlo method

Monte Carlo radiative transfer (MCRT) imitates the process of light-matter interaction

in nature by emitting photon packets from the radiation sources and propagating them

through the surrounding medium. A photon packet can undergo scattering and have

its direction altered, or it could get absorbed and deposit its energy at a location. An

absorbed photon packet is later reemitted at a new frequency corresponding to the local

temperature of the cloud.

MCRT bypasses solving the equation of radiative transfer (see 2.34), however it com-

putes accurate values for the radiative parameters of interest, and it produces correct

shadows. Additionally, by keeping track of the photon packets escaping the simulation

volume, the Monte Carlo method can be employed for creating synthetic images. The

downside of MCRT is the Poisson noise arising from the statistical description of the stel-

lar radiation, which can be improved by using a large number of photon packets to increase

the signal-to-noise ratio. This need for more photon packets adds an extra computational

cost of the method, however due to its highly parallelizable nature MCRT is broadly used

for tackling complex problems.

Hybrid methods

Various hybrid combinations of the above methods have also been adopted for specific

purposes. Flux-limited di↵usion has been used together with ray tracing to model ionising

stellar radiation in environments which have both optically thick and optically thin regions

(Kuiper et al. (2010)). The ray tracing is used around the stars, until the light enters the

denser regions of the cloud and could be accurately represented by flux-limited di↵usion.

MCRT is also sometimes combined with flux-limited di↵usion for very dense and optically

thick regions (Min et al. (2009)). In environments of high density the photon packets have

very short propagation distances between consecutive scattering events and can become

trapped in such environments, thus greatly contributing to the computational cost of the
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Monte Carlo method. Finally, MCRT is often used alongside ray tracing for imaging

purposes (Robitaille (2011)). The Monte Carlo approach is typically the one used for

calculating the temperature profile of the cloud and then parallel rays are traced through

the cloud in the direction of an imaging plane. This hybrid technique can greatly reduce

the noise which is typically present in pure MCRT synthetic images.

2.2.4 Monte Carlo radiative transfer for photoionisation

The Monte Carlo method has been used since the 1940s to model the transport of, first,

neutrons and, later on, photons through a medium. For the work in this thesis I will

focus in particular on the Monte Carlo radiative transfer method, as applied to ionising

radiation.

Probabilities

From a mathematical perspective, the Monte Carlo method is about statistical sampling

of probability distributions. There are certain properties of astrophysical sources of light

that we have statistical information about. For example, stars have known spectra that

tell us how many photons of a certain frequency a star would be emitting relative to

photons of other frequencies. If a spectrum is normalised so that the integral over its

whole range equals one, then it becomes a probability function. When choosing a large

number of photon packets that our star emits by sampling the probability distribution

of the stellar spectrum, we ensure that the resulting radiative transfer scheme will lead

to correct results. This general approach applies to all other statistical information that

we have about the system, such as the preferred direction in which sources emit (for our

purposes that would be isotropic), optical depth etc. Through the Monte Carlo method

we will sample all of these independent properties in order to generate photon packets

which will be emitted by sources and propagated through the surrounding medium until

they get absorbed or they exit the simulation volume.

In practice, the sampling of probability distributions happens by casting a random

number between 0 and 1 and relating it to the probability function P (x) of a property x.

Let us denote the random number by ⇠. Note that it is a di↵erent random number each

time. Then, if x can take values in the range between a and b, then
R b
a P (x)dx = 1, since

P (x) is a probability function. This means that we can always find X 2 [a, b], such that
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Z X

a
P (x)dx = ⇠. (2.55)

By inverting the above equation and solving it for X, we perform random sampling of

the probability distribution for x.

Relating Monte Carlo to radiative transfer parameters

As with the hydrodynamics, the Monte Carlo radiative transfer (MCRT) method requires

a discretisation of the simulation volume, and this can be done both via particles and grid

cells, as previously discussed. MCRT has been performed on SPH particles directly by

some authors (Forgan and Rice (2010), Lomax and Whitworth (2016)), however none of

these approaches have been adapted for ionising radiation so far. Therefore, from now on

we will only focus on the Monte Carlo method as applied to a grid.

In order to reproduce radiative transfer quantities with MCRT, we need to establish a

connection between the two frameworks. Since MCRT handles photon packets, it can store

information about their frequencies, and paths through the grid. These can be related to

the mean intensity, J⌫,i, in a grid cell i, by the following equation from Vandenbroucke

and Wood (2018):

Z 1

⌫0

4⇡J⌫,i
h⌫

�⌫d⌫ ⇡ Q

WtVi

X
j

wjli,j�⌫
j

. (2.56)

In the above, the right hand side contains a sum over all photon packets which pass

through the cell. Each photon packet has a frequency ⌫j , a path length of li,j as it passes

through cell i, and a weight wj , which is determined by the luminosity of its source. The

weights are included in order to ensure that low luminosity sources would emit su�cient

numbers of photon packets, thus reducing the numerical noise of the Monte Carlo method.

Wt is the sum of all photon packet weights in the simulation, and Q is the total number of

photons emitted per second. Finally, Vi is the volume of the cell. By combining equation

2.35 with equation 2.56 we can then solve for the ionic fraction in each grid cell.

Similarly, we can relate MCRT to the force per unit volume due to deposition of

momentum in each grid cell by:
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frad,i ⇡
Qn

0,ih

WtVic

X
j

wj⌫j�⌫
j

li,j l̂i,j , (2.57)

where n
0,i is the number density of neutral hydrogen in cell i, l̂i,j is the unit vector along

the direction of the path li,j , and c is the speed of light. The above expression has been

adapted from Harries (2015) and disregards scattering events.

There are other properties that can also be computed with an MCRT photoionisation

code, however the ones mentioned above are all that are necessary in order to perform

radiation hydrodynamics, as I will discuss in the next section.

2.3 Radiation hydrodynamics

We have reviewed both fluid dynamics and radiative transfer, and the ways in which

they can be modelled numerically. We can now combine them into the topic of radiation

hydrodynamics, which is a fundamental part of the work in this thesis.

Simply stated, radiation hydrodynamics (RHD) is the combination of a hydrodynam-

ics model with a radiative transfer scheme. The term is used quite broadly and can stand

for one of two approaches of combining the above methods. One way is by applying a

radiative transfer code to a snapshot of a hydrodynamics simulation after its completion.

This is commonly done for producing synthetic images, or for a computationally cheaper

way of finding what e↵ect the radiation might have on the gaseous medium of interest,

and is referred to as post-processing. The other approach involves performing the radia-

tive transfer and the hydrodynamics simultaneously, so that they can communicate their

calculations to each other during runtime. This is known as live RHD and achieving it

using SPH and MCRT is the goal of my work.

From a theoretical standpoint, the way to include radiative transfer into the hydrody-

namics calculations is through modifying the af and Q̇h terms in equations 2.6 and 2.7,

based on the radiative transfer calculations. af can be related to the radiation pressure,

while Q̇h depends on the ionisation fraction of each particle. For the work presented in

this thesis I will only use the ionisation fraction and modify Q̇h. From a practical perspec-

tive, there are preliminary considerations to make when combining the particle-based SPH

and the grid-based MCRT. Due to the di↵erent ways in which the two numerical models

represent the density structure of a di↵use medium, we need to include an intermediate
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step of mapping the SPH dataset onto a grid structure. For this work I have chosen the

grid to be a Voronoi tessellation, which I will introduce and discuss in the next chapter.

Once a grid has been constructed, another important consideration is how to map the

SPH densities onto the grid cells. Finally, after the MCRT is performed on the grid and it

computes ionic fractions and thermal energies, these parameters then need to be mapped

back onto the particles in order to be used by SPH.

In the following chapters I will address the preliminary considerations listed above and

I will demonstrate a proof of concept of the live radiation hydrodynamics scheme, which

I have assembled.
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Voronoi Tessellation

In this chapter I will introduce the concept of a Voronoi tessellation (grid), as a geometric

structure that can be used to link Smoothed Particle Hydrodynamics (SPH) and Monte

Carlo Radiative Transfer (MCRT). I will review its properties and construction algorithms,

and I will then move to describing how MCRT can be performed on a Voronoi tessellation.

Additionally, I will discuss the issues related to resolving SPH particles with a Voronoi

grid, and will propose methods for locally addressing these issues by using a higher or a

lower number of Voronoi cells per SPH particle.

3.1 Voronoi tessellation: a geometric link between SPH and

MCRT

The goal of this thesis is to achieve live radiation hydrodynamics with SPH and MCRT. To

run MCRT on complex non-uniform density data (such as from a star-forming cloud), we

must be able to assign di↵erent properties to di↵erent parts of the medium (temperature,

density, chemical abundance, ionisation fraction etc.). This is commonly achieved by

discretising space, i.e. by constructing a grid structure and mapping the SPH density

distribution onto the grid.

The simplest way to achieve this is by using a Cartesian grid (or evenly spaced cylin-

drical or spherical grid), as it is trivial to build and store. Propagating photon packets

through the grid structure boils down to being able to identify in which cell the photon

packet currently is, at what point it is leaving the cell and in which cell is it going next.
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The main downside of this approach is that SPH particles follow the flow of a fluid and

can have very uneven arrangements, so in order to achieve good resolution we will need a

lot of grid cells and most of them will not contain any SPH particles.

An improvement of the Cartesian grid is the adaptive mesh refinement (AMR) scheme

(Kurosawa and Hillier (2001), Steinacker et al. (2002), Harries et al. (2004)). AMR is

achieved by taking a coarse Cartesian grid and recursively breaking down each cell into

subcells if more resolution is needed there. A very common type of AMR is the octree in

which each refined cell is divided into 8 new cells. This method can drastically improve

the memory required by a well resolved Cartesian grid and is also relatively easy to imple-

ment. If the cells are stored in a tree structure, the photon packets can be propagated by

performing searches in the tree. A downside of this method is the fact that it still creates

plenty of empty cells (in some cases up to 60% being empty, as reported by Camps et al.

(2013)).

In recent years an alternative approach using Voronoi tessellations has been proposed

by some authors (Brinch and Hogerheijde (2010), Camps et al. (2013), Vandenbroucke

and Wood (2018)). A Voronoi tessellation is a discretisation of space into di↵erent cell

structures organised around a set of generating sites (see Figure 3.1). Each generating site

is assigned the points in space that are closer to itself than to any other generating site

(Voronoi (1908), Dirichlet (1850)). Typically for MCRT purposes the generating sites are

taken to be the SPH particle positions, and hence there is exactly one cell per particle.

This is certainly more e�cient in terms of particle numbers, and is the method that has

been selected for the rest of my thesis work. A downside of this method is that it is

more complex to implement in terms of grid construction, and I will review the Voronoi

tessellation construction algorithms in Section 3.2. Additionally, the Voronoi cells take

the shape of unstructured polyhedra, so tracking the photon packets is less intuitive. I

will discuss how this is achieved in Section 3.3.

Finally, for completeness I should point out that there was a recently developed MCRT

algorithm that does not map the SPH data onto a grid but propagates the photon packets

directly through the particles (Lomax and Whitworth (2016)). This is an intriguing new

way of doing things and it is worth considering it for a potential radiation hydrodynamics

approach in the future.

40



3.2. Constructing Delauney triangulation and Voronoi tessellation

3.2 Constructing Delauney triangulation and Voronoi tes-

sellation

Figure 3.1: Delaunay triangulation (left) and Voronoi tessellation (right) of a set of seven gener-
ating sites in 2D.

One of the most common construction methods for a Voronoi tessellation was devel-

oped by Bowyer (1981) and Watson (1981). The Bowyer-Watson algorithm is not, in fact,

focused on building the tessellation itself, but its dual graph, known as Delaunay triangu-

lation (see Figure 3.1). We can get the Delaunay triangulation from a Voronoi tessellation

when we connect with a line the generating sites sharing a Voronoi cell wall. Conversely,

if we have constructed the Delaunay triangulation, we can obtain the Voronoi cell walls by

bisecting each line of the triangulation. Both the Delaunay triangulation and the Voronoi

tessellation for a given set of generating sites are unique, with the exception of some spe-

cial degenerate cases of generating sites arrangement (e.g. if four or more generating sites

are placed on a circle in 2D).

The Delaunay triangulation has the property that none of the circumcircles of its

triangles, or circumspheres of its tetrahedra in 3D, contain any of the generating cites

that are not part of that triangle or tetrahedron (see Figure 3.2). This property is what

various algorithms use in order to construct the triangulation.

For my work I have written my own Fortran implementation of the Bowyer-Watson

algorithm in 2D. This algorithm is incremental, so at each step it adds a new generating site

to an already constructed and valid Delaunay triangulation (see Figure 3.3). The method

starts by creating a super-triangle, which contains the positions of all of the generating

sites and serves as an external boundary. A set of three points can be triangulated in only
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Figure 3.2: Left: the Delaunay triangulation for a set of seven generating sites in 2D. Note
that none of the blue circumcircles contain generating sites external to their triangles. Right:
A di↵erent triangulation of the same seven generating sites. This time two of the circumcircles
contain generating sites (marked in red), which are external to their triangles.

one way, so by definition it is a valid Delaunay triangulation. The generating sites are

then added one by one to the construction, following the steps:

1. Loop over all existing triangles and make a list of those whose circumcircles contain

the newly added generating site.

2. Of all the sides of the triangles that are part of the above list, delete those that are

repeated twice within the list.

3. Connect the generating sites of the removed triangles to the newly added generating

site.

The Bowyer-Watson algorithm can also be performed in 3D, and I have adapted my

own implementation for that accordingly. For further 3D applications, however, I decided

against using my own code in favour of a more thoroughly tested and used, publicly

available library.

An alternative Delaunay triangulation construction method has been proposed where

we start from a triangulation containing all of the generating sites and we perform a series

of triangle flips until we reach the Delaunay triangulation (see an example of triangle

flip in Figure 3.2). This method has been shown to always be able to converge in 2D

(Lawson (1972)), however in 3D only some initial triangulations can be evolved to reach

the Delaunay triangulation (Joe (1991)).

Finally, we could construct the Voronoi tessellation directly without building the De-

launay triangulation first. This approach is adopted by the public C++ library VORO++
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Figure 3.3: Illustration of the incremental Bowyer-Watson algorithm in 2D. Top left: insert a
new generating site and find the circumcircles that contain it. Top right: delete all repeating
sides of triangles whose circumcircles contain the new generating site. Bottom left: connect the
generating sites of these triangles to the new generating site. Bottom right: we now have a new
Delaunay triangulation with one extra generating site.

(Rycroft (2009)). In it each cell is computed individually by starting with a large box,

which is then cut by the planes that bisect the distances to the nearby generating sites.

The library performs the construction algorithm with e�ciency and is easy to parallelise.

This makes it suitable for handling large datasets, such as the outputs of SPH simulations.

For these reasons, I have chosen to use it for my 3D applications.

3.3 MCRT on a Voronoi grid

One way of propagating photon packets through a Voronoi grid is by using the trans-

port algorithm developed for SimpleX (Ritzerveld and Icke (2006)) and adapted in LIME

(Brinch and Hogerheijde (2010)). In their method photon packets are only allowed to

move along the lines of the Delaunay triangulation for the particular Voronoi grid. This

makes the code faster because the paths are fixed and pre-computed, however they need to

correct for path length approximations and the photon packet movements are restrictive.
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The approach adopted for the rest of this thesis is the one presented in Camps et al.

(2013), which allows the photon packets to propagate in all directions, similarly to the

Cartesian grid propagation. I will now review how this is achieved.

Finding the cell in which the photon packet is conained

Finding the cell in which a photon packet is contained is equivalent to finding the nearest

generating site to the photon packet’s location and can be performed in many ways. This

step is only needed when introducing a new photon packet to the simulation, and as such

there is less need for it to be highly computationally optimised. Therefore, we could

compute the distance from the photon packet to all of the generating sites and find the

minimum.

Camps et al. (2013) adopt a method of dividing the Voronoi cells between a set of

cuboidal boxes. For a given photon packet location we can trivially identify its box and

compute the distances to all generating sites in the box, taking the minimum. This is, in

fact, a very simple version of constructing a tree structure consisting of three levels. The

root level is the entire simulation volume, which splits into the individual boxes (branches),

and each box splits into its Voronoi cells (leaves).

This method can be further optimised by using a tree structure with larger number

of levels (such as in Vandenbroucke and Wood (2018)). This optimisation may ultimately

become significant if very large datasets are considered.

Propagating the photon packet through a cell

Let us consider a photon packet located at position x0 in cell i, which is moving in direction

n. The straight line path of the photon packet can be written as

L(s) = x0 + sn, (3.1)

where s is the distance travelled along the path.

The most crucial step in MCRT is finding the value of s that corresponds to a randomly

sampled optical depth ⌧ . Since all physical properties inside of a grid cell are assumed to

be constant, we can make the following guess for s:
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s =
⌧

ai
, (3.2)

where ai is the extinction coe�cient of cell i.

If our guess for s results in the point L(s) being in cell i, then we have successfully

found the distance travelled that covers an optical depth of ⌧ . If, however, the distance s

brings the photon packet across a cell wall, and into a new cell (say, j), we only transport

the photon packet to the cell wall. This will bring the photon packet a distance sij along its

line path, which will correspond to an optical depth of ⌧i = aisij . Once the photon packet

leaves cell i we set x0 = L(sij) and repeat the process with a new guess s = (⌧ � ⌧i)/aj .

This process is repeated until the photon packet exits the simulation volume, or the optical

depth of ⌧ is reached.

In order to execute the above photon transport algorithm, we need to have a quick and

easy way of recognising that we have crossed a cell wall. Let us assume that the positions

of the generating sites of cells i and j are pi and pj respectively. Then the vector from pi

to pj can be written as:

lij = pj � pi. (3.3)

Since a Voronoi cell wall bisects the distance between two neighbouring generating

sites, the point

pij =
pi + pj

2
(3.4)

is located on the cell wall plane. This allows us to write the equation of the cell wall plane

as:

lij · (x� pij) = 0, (3.5)

where x is any point in the plane.

If we then set x = L(sij) = x0 + sijn, we can rearrange and find the following form

for sij :
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sij =
lij · (pij � x

0

)

lij · n
. (3.6)

If sij is positive, then the photon packet is able to cross the plane of the cell wall while

moving in direction n. In order to determine which of the cell walls is crossed first, and

hence which cell the photon packet enters next, it is su�cient to calculate the sij values

for all of the cell walls of i and select the smallest positive distance.

The above algorithm is simple to implement and fast to execute. Additionally, it does

not require any extra information to be stored about the Voronoi cells beyond the positions

of the generating sites and a neighbours list for each cell, which makes it very suitable for

performing MCRT.

3.4 Choosing the generating sites for a Voronoi grid

3.4.1 Resolution issues

The simplest way of choosing the set of generating sites for the construction of a Voronoi

grid is by using the SPH particle positions. This automatically ensures that we will get

more grid cells in the areas that contain more particles and hence we will obtain good

overall resolution. In some cases, however, when large density gradients are present in the

SPH dataset, this approach can be less desirable due to density artifacts.

In SPH, a region of high density consists of more particles, which have short smoothing

lengths. Conversely, in a low density region we have fewer particles with large smoothing

lengths. When two such regions are next to each other (which is a common occurrence

in star formation simulations), we can get a high density, short smoothing length particle

having a Voronoi neighbour which is of low density and large smoothing length. Since the

wall of a Voronoi cell bisects the distance between two neighbouring generating sites, this

can result in the high density particle being placed in a cell which is much larger than

its smoothing length. Overall this results in a fuzziness at the boundary between a low

density and a high density region (see Figure 3.5 and 3.6), as pointed out by Koepferl

et al. (2016).

Not being able to achieve a sharp boundary between high and low density regions can

result in significant numerical noise and even shadowing e↵ects when performing MCRT.
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For this reason I propose an alternative method for choosing the Voronoi grid generating

sites.

3.4.2 Increasing the resolution

Figure 3.4: 2D Delaunay triangulation for a set of data with a large density gradient. We can
notice the elongated triangles in the outskirts of the high density region with sides significantly
longer than the typical distances between the tightly packed generating sites.

In order to improve the resolution of a Voronoi grid when large density gradients are

present in the SPH dataset, I propose a simple algorithm for inserting a small number of

extra generating sites where needed. The algorithm uses the Delaunay triangulation and

follows these steps:

1. Loop over all Delaunay triangles (tetrahedra).

2. For each side (edge) of a triangle (tetrahedron) connecting generating sites i and j,

calculate its length lij .

3. Compare lij to the threshold lengths di and dj associated with i and j.

4. If lij/2 > di add a generating site located on the side (edge) of the triangle (tetra-

hedron) at distance 2di from generating site i. The same applies for generating site j and

the distance dj .

5. Recompute all Voronoi cells a↵ected by the generating site insertion.

The above algorithm ensures that the maximum distance from a Voronoi cell generating
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site to its cell wall is di, which can now be tied to the SPH particle smoothing length hi.

I have implemented the cell insertion algorithm in 2D within my own Voronoi con-

struction algorithm and in 3D by using some of the pre-existing methods of VORO++.

In 2D, steps 4 and 5 are trivial since the construction algorithm is incremental and is

designed to insert a new generating site into an already constructed tessellation. In 3D,

VORO++ also allows for the easy addition of new generating sites since each cell is com-

puted individually every time it is needed. The cell insertion algorithm is quick and easy

to run, with computing time depending roughly linearly on the number of cells.

Figure 3.5: Left: 2D Voronoi grid of the dataset from Figure 3.4. Right: 2D Voronoi grid with
added 12 extra generating sites (in red) by using the cell insertion algorithm described in Section
3.4.2.

In order to test the algorithm in 2D I have generated my own test case consisting of

an arch of 80 tightly placed generating sites and a single generating site positioned away

from them (see Figure 3.4). All of the generating sites were given smoothing length equal

to the distance to their third closest neighbour. This only roughly resembles the way in

which SPH smoothing lengths are calculated, however it is su�cient for a proof of concept

test.

The outcome of the cell insertion algorithm for the 2D test is shown in Figure 3.5. It is

easy to notice that originally the Voronoi cells at the boundary between the arch and the

stand-alone generating site were too elongated, however by employing the algorithm with

di = hi, and inserting only 12 extra generating sites (shown in red) there is a significant

improvement.

A similar test was then performed in 3D, this time on a section of an actual SPH

dataset of a supernova explosion (Lucas et al. (in prep.)). This simulation contains shocks
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and complex density structures at many size scales which makes is a perfect test case. I

have selected a region of large density gradient, containing 42568 particles out of 208155,

and I have again assumed that di = hi.

The outcome of the 3D cell insertion algorithm is shown in Figure 3.6. I have plotted

a slice through the dataset at z = �1 for ease of visualisation, and the cells are colour

coded in terms of their average density. In this case it is even easier to spot the density

fuzziness at the boundary. Once again the cell insertion algorithm significantly improves

the grid resolution by adding only 2202 (or about 5%) extra generating sites.

3.4.3 Using Lloyd’s algorithm

An alternative to the cell-insertion algorithm would be to apply Lloyd’s algorithm to

the Voronoi tesselation built around the SPH particle positions (Lloyd (1982)). This is

an iterative algorithm for regularising the Voronoi cell shapes, which is commonly used

by the moving mesh hydrodynamics codes (see Springel (2010), Du↵ell and MacFadyen

(2011), Vandenbroucke and De Rijcke (2016)). At each iteration of the algorithm we find

the centroid of all Voronoi cells and we move all of the generating sites to the locations of

the centroids of their respective cells. This naturally neutralises the cell elongation at the

regions of high density gradient.

I have applied Lloyd’s algorithm to the same 3D SPH dataset as the one used in Section

3.4.2. I used 5 iterations and the result is presented in Figure 3.7.

We can see that Lloyd’s algorithm has a similar e↵ect of helping to resolve the cloud

boundary as the cell-insertion algorithm. In some ways Lloyd’s algorithm has the advan-

tage of producing cells with potentially fewer walls and vertices, which uses less memory

and can speed up the mapping of SPH density onto the cells (see Chapter 4). An ad-

ditional minor advantage is the fact that we would not need to increase the number of

generating sites. Overall the algorithm is ideal for improving the resolution for the purpose

of post-processing with MCRT.

The main disadvantage of Lloyd’s algorithm is that the Voronoi tessellation needs

to be reconstructed at each iteration. For large datasets this introduces a substantial

extra computational cost, and in the case of performing live radiation hydrodynamics the

Voronoi grid construction is sometimes one of the most time-consuming steps, as will be
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shown in Chapter 5.

Furthermore, it is unclear if using Lloyd’s algorithm would not create blurring of the

parameters (such as temperature and ionisation fraction) that are mapped back to the SPH

particles during live radiation hydrodynamics. Unlike the cell-insertion algorithm which

retains information of the particles’ positions, the application of Lloyd’s algorithm can lose

some of this information and result in some particles having multiple cells that contain

significant fractions of their mass. If as a result of MCRT these cells have vastly di↵erent

temperatures (which is common occurrence in ionisation problems), then the temperature

that is mapped back to the particle will have an in-between value, which might not be

desirable. Further tests are therefore needed in order to establish the applicability of

Lloyd’s algorithm to live radiation hydrodynamics problems.

3.4.4 Using a Radical Voronoi tessellation

Another way of addressing the resolution issues around the high and low density boundaries

is by altering the geometry of the individual Voronoi cells. Instead of bisecting the distance

between neighbouring generating sites, we can instead split the distance with a given ratio.

Simply assigning weights to the generating sites to construct the cell walls at certain

distance ratios is the simplest idea that comes to mind. Unfortunately this results in cells

which are no longer polyhedra, not necessarily convex and may have gaps (Aurenhammer

and Edelsbrunner (1984)), neither of which are desirable.

A better way to achieve a weighted outcome is by using a Radical Voronoi grid (also

called Power diagram). Instead of altering the distance criterion to generating sites multi-

plicatively (i.e. choosing which cell a point in space belongs to by finding the minimum of

the distances to generating sites divided by their weights), a Radical Voronoi grid changes

it additively. This means that each generating site is assigned an individual radius (ri

for cell i), and a point in space belongs to the cell for which d2i � r2i is minimised, where

di is the distance to the generating site (Voronoi (1908)). A grid structure following this

property has polyhedral, non-overlapping cells, similar to those of a regular Voronoi grid

(Aurenhammer (1987)). In fact, the regular Voronoi grid is the special case of a Radical

Voronoi grid for which all ri are equal.

I have tested the output of the Radical Voronoi grid algorithm included in VORO++
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for the same dataset as the one used in Section 3.4.2. I have assumed the radius of each

generating site to be equal to the smoothing length of its corresponding SPH particle, and

the results are shown in Figure 3.8. As we can see, there is a small improvement over

the unaltered, standard Voronoi grid from Figure 3.6, however the improvement is not as

e↵ective as adding extra generating sites. It is worth pointing out that a Radical Voronoi

tessellation does not always have as many cells as the number of generating sites provided,

since some generating sites may not be assigned any points in space. In this particular

case 42530 cells were generated, as opposed to the expected 42568.

Finally, we need to address how an MCRT method could be performed onto a Radical

Voronoi grid. In order to propagate photon packets through this grid structure we can

follow the same procedure as in Section 3.3 with only the following modification in equation

3.4:

pij =
wjpi + wipj

wi + wj
, (3.7)

where wi = l2ij + r2i � r2j and wj = l2ij + r2j � r2i .

The ease with which an MCRT code can be adapted to use a Radical Voronoi grid,

together with the fact that a grid construction algorithm has already been implemented

in the library VORO++ makes this a potentially viable alternative to a regular Voronoi

grid for certain datasets.

3.4.5 Lowering the resolution

While in some cases we find it necessary to locally increase the Voronoi grid resolution,

there may be regions of the simulation where there is no need to resolve each SPH particle.

Decreasing the number of generating sites reduces the computation time, which is always

a limiting factor in numerical simulations.

We may want to lower the number of generating sites if we model radiation and we have

part of the simulation volume which is very far away from the source and is su�ciently

represented by a single cell. In order to locally lower the resolution, we can make use of

the particle tree structure that is typically constructed and maintained in an SPH code,

and employ the opening angle criterion which is used for computing gravitational forces
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(see Clark et al. (2012)). This can allow us to replace a group of neighbouring particles

by the position of their central point, if their combined angular size, as seen from the

radiation source, is smaller than a given value.

Another situation in which we may want to lower the resolution is if we are modelling

ionising radiation and there is a region which is completely shielded by incoming rays. This

is a common occurrence, however, these regions can be di�cult to identify in advance.

Using the techniques described above, we can adjust the Voronoi grid for an optimal

representation of an SPH dataset. As the next step after constructing the grid structure,

we need to consider the question of how to map SPH properties, such as mass density,

onto the grid cells. I have explored this question thoroughly in the following chapter.
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Figure 3.6: Slices through the 3D Voronoi grid representation of a part of an SPH dataset at
z = �1. Top: the Voronoi grid was constructed using one cell per SPH particle. Bottom: the grid
was modified by the cell-insertion algorithm described in Section 3.4.2. The colour corresponds
to cell density with darker blue being higher density. The density was calculated via the method
developed in Chapter 4 (see also Petkova et al. (2018)).
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Figure 3.7: A slice through the 3D Voronoi grid representation of a part of an SPH dataset at
z = �1. The same starting configuration was used as in Figure 3.6, followed by 5 iterations of
Lloyd’s algorithm. The colour corresponds to cell density with darker blue being higher density.
The density was calculated via the method developed in Chapter 4 (see also Petkova et al. (2018)).
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Figure 3.8: A slice through the 3D Radical Voronoi grid representation of a part of an SPH
dataset at z = �1. The cell generating sites were assigned radii equal to the smoothing lengths
of their corresponding SPH particles. Only 42530 cells could be constructed using this setup, as
opposed to the 42568 used in the standard Voronoi grid (see Figure 3.6). The colour corresponds
to cell density with darker blue being higher density. The density was calculated via the method
developed in Chapter 4 (see also Petkova et al. (2018)).
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Chapter 4

Mapping SPH Densities onto a

Voronoi Grid

This chapter will present the methodology of how to map SPH particles onto a Voronoi

grid for the purposes of either post-processing a hydrodynamics simulation with a radiative

transfer code, or running live radiation hydrodynamics. In order to do so, I will explore

the link between the SPH kernel function and the Voronoi cell density, by integrating the

former over the area (in 2D) or volume (in 3D) of the cell. For computational e�ciency,

I will derive analytic expressions for these integrals, as presented in Petkova et al. (2018).

Furthermore, I will perform numerical tests of the derived solution, I will demonstrate

how the results can be tabulated to further improve the performance, and I will discuss

how to expand the applicability of the derivation to a broad range of SPH kernel functions.

4.1 Calculating densities of Voronoi grid cells

4.1.1 The SPH kernel function and Voronoi cell density

SPH uses discrete particles in order to represent the continuous density distribution of a

fluid, as discussed in Chapter 2. The exact reconstruction of this continuous density profile

from the particle positions is a major topic in SPH (Price (2012)). The density estimate

at a given position r is typically determined by the masses and positions of local particles.

Furthermore, particles that are closer to r have a greater e↵ect on the the density ⇢(r),

and this e↵ect is quantified by the SPH kernel function, W , which peaks at a particle’s
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position and decreases as a function of radius from the particle (see Figure 4.1). The

density at r is therefore given by the sum over all (N) particles:

⇢(r) =
NX
j=1

mjW (|r� rj |, hj), (4.1)

where mj is the mass of the j-th particle, rj is its position, and hj is known as the

smoothing length and it indicates a length scale for the density influence of the j-th

particle.

Figure 4.1: The 3D cubic spline kernel function as a function of radius (see equation 4.37).

Typically we would like only particles in the vicinity of r to contribute to the density

estimate, and hence W is chosen to be a function with compact support, i.e. W becomes

zero beyond a certain value of |r � rj |, which is expressed in terms of hj (Price (2012)).

As an example, the cubic spline kernel function shown in Figure 4.1 becomes zero beyond

a radial distance of 2hj .

When constructing a Voronoi grid, we need to assign a density value to each cell, in

order to adequately represent the continuous density distribution contained in an SPH

simulation. So far in the scientific community this task has been done in three di↵erent

ways by:

1. Dividing the mass of an SPH particle by the volume of the cell surrounding it;
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2. Computing the SPH density estimate at the centroid of the cell of interest;

3. Or sampling many points within a cell and averaging their SPH density estimates

(Koepferl et al. (2016)).

Of the above, method 1 conserves the total mass through the density mapping, however

it assumes that a particle is the sole contributor to the density of its associated cell,

which produces di↵erent local density than the SPH estimator, especially since a particle’s

smoothing length and the size of its associated cell are unrelated quantities. This density

inaccuracy has been observed and presented by Koepferl et al. (2016). Furthermore, this

method can only be applied to situations when each SPH particle is mapped to a single

cell, and I have already discussed why this might not be desired in Chapter 3.

Method 2 takes into account the SPH density estimates when approximating the

Voronoi cell density, and hence is likely to produce more accurate local values than method

1. It also has the advantage of being applicable to setup with multiple cells per SPH parti-

cle. However, overall method 2 cannot ensure mass conservation, which a↵ects the results

of radiative transfer performed on the Voronoi grid.

Method 3, on the other hand, can ensure local and global accuracy, as well as enabling

multiple cells per particle, provided that a su�cient number of points are sampled within

each cell. While methods 1 and 2 are computationally quick to apply, method 3 takes a

lot more time and computing power.

In this work I propose and develop a new density mapping approach as an alternative

to all of the above. This approach employs the SPH kernel function and is presented in

Petkova et al. (2018). Here I will go over it again, expanding on some details.

Let us consider the mass contained within the i-th Voronoi cell, Mi. We can obtain

this mass by integrating the density inside the volume of the cell (Vi):
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Mi =

Z
V
i

⇢(r0)dV 0 (4.2)

=

Z
V
i

NX
j=1

mjW (|r0 � rj |, hj)dV 0 (4.3)

=
NX
j=1

mj

Z
V
i

W (|r0 � rj |, hj)dV 0. (4.4)

By rearranging the expression for Mi, as shown above, we can think of the cell mass

as a sum of ”mass contributions” from the neighbouring particles. In order to obtain each

mass contribution, we need to integrate W inside the volume of the cell and multiply it

by the particle’s mass, mj . Once we compute Mi and divide it by Vi, we will have the

average density of the cell.

Therefore the mathematical problem that I will be solving becomes how to integrate

W inside the volume of a random polyhedron.

4.1.2 Ensuring mass conservation with the mapping

Since mass conservation is crucial for the purposes of performing radiative transfer on

SPH data, here I will demonstrate that my proposed density mapping ensures it. The

total mass of the Voronoi cells can be written as the following sum:

N 0X
i=1

Mi =
N 0X
i=1

NX
j=1

mj

Z
V
i

W (|r0 � rj |, hj)dV 0 (4.5)

=
NX
j=1

mj

N 0X
i=1

Z
V
i

W (|r0 � rj |, hj)dV 0, (4.6)

where N 0 is the number of cells.

A fundamental property of the kernel function is that it is normalised when integrated

over all space, which can be expressed as:

Z
V
W (|r0 � rj |, hj)dV 0 = 1. (4.7)
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Since the Voronoi cells are non-overlapping and together they cover the full simulation

volume, we can write that:

N 0X
i=1

Z
V
i

W (|r0 � rj |, hj)dV 0 =

Z
V
W (|r0 � rj |, hj)dV 0 = 1. (4.8)

The above equations imply that
PN 0

i=1

Mi =
PN

j=1

mj , i.e. the sum of all cell masses

equals the sum of all particle masses, and hence mass is conserved.

4.1.3 Setup of the mathematical problem

In order to develop a density mapping method which is both accurate and computationally

fast, I will integrate the SPH kernel function analytically within the polyhedral volume of

a Voronoi cell.

For simplicity let us drop the i and j indices from the previous equations and consider

the case of a single SPH particle mapped onto a grid. Let us also choose a coordinate

system, such that the particle is at the origin. The mathematical problem can then be

expressed as finding IV from:

IV =

Z
V
W (r)dV, (4.9)

where V is the space enclosed by the Voronoi cell of interest. Note that in this general

case the cell may not necessarily contain the origin.

In order to integrate the above expression I have loosely followed the steps outlined

in Mirtich (1996) with some modifications, which I added to account for the spherically

symmetric nature of W and the flatness of the Voronoi cell walls. First, I will apply

the Divergence theorem in order to express the volume integral IV as a sum of surface

integrals integrated over the cell walls. Second, for each surface integral, IS , I will apply

Green’s theorem and write it as a sum of line integrals, following the contour of a wall’s

face. Finally, a line integral, IL, will be integrated once again between the two vertices

that define it to give us the final expression IP , which when evaluated at each vertex of

each edge of the polyhedron, and added up, gives us IV .

For the specific derivation in this chapter I have chosen to use a cubic spline kernel
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function. Its simple to integrate form and its common use within the astronomical com-

munity (Price (2012)) made it the most suitable choice. The same integration, however,

can be performed with a range of di↵erent kernel functions, and I will discuss this further

at the end of the chapter.

4.2 Analytic integration of a 2D cubic spline kernel function

Before tackling the 3D integral of a kernel function, let us first explore the problem in

2D space. Here we also consider a particle at the origin of a coordinate system, but the

Voronoi cell is a polygon instead of a polyhedron, and the problem of interest becomes:

IS =

Z
A
W (r)dA. (4.10)

In the above A is the area of the cell of interest and we can assume that a cell is defined

by the coordinates of its vertices.

The cubic spline kernel function in 2D is given by:

W (r) =
10

7h2⇡

8>>>>><>>>>>:
1� 1.5

�
r
h

�
2

+ 0.75
�
r
h

�
3

, r  h;

0.25
�
2�

�
r
h

��
3

, h  r  2h;

0, r � 2h.

(4.11)

4.2.1 Applying Green’s Theorem

The di�culty in integrating equation 4.10 comes from not being able to set limits for the

integral in any coordinate system due to the unspecified shape of the Voronoi cell. Instead

of trying to perform the integration directly, we will apply Green’s Theorem, which can

be written as:

Z
A
r ·HdA =

Z
@A

H · m̂dl. (4.12)

In the above expression @A is the contour of the area of integration A, and m̂ is the

unit vector normal to that contour.
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The benefit of employing Green’s Theorem is that instead of integrating W over an

area, we will construct a new function which will only need to be integrated along a line.

This way we reduce the problem by one dimension.

The left hand side of equation 4.12 has the same form as the expression in equation

4.10, and hence in order to apply the theorem I will construct a function H, such that

r ·H = W .

For mathematical simplicity, and since W is azimuthally symmetric, I choose a vector

function of the form H = Hrr̂. The kernel function can then be expressed as:

W (r) =
1

r

@(rHr)

@r
. (4.13)

By rearranging and integrating, I obtain the following solution for Hr:

Hr(r) =
1

r

5

7h2⇡

8>>>>><>>>>>:
r2 � 3

4h2 r
4 + 3

10h3 r
5 +D

1

, r  h;

2r2 � 2

hr
3 + 3

4h2 r
4 � 1

10h3 r
5 +D

2

, h  r  2h;

D
3

, r � 2h,

(4.14)

where D
1

, D
2

and D
3

are constants of integration.

In order to determine the values of the constants I will enforce continuity of H at r = h

and r = 2h, which creates the relations:

D
1

= D
2

+
h2

10
; D

2

= D
3

� 4h2

5
. (4.15)

As a final constraint on the constants of integration I will use the normalisation prop-

erty of W . Let us consider a circle of radius rcircle > 2h, which is centred at the origin.

Since W drops to zero for r � 2h, W integrates to 1 within the selected circle, and so does

r ·H by construction. Therefore applying Green’s theorem for the circle, we can write:

Z
A

circle

r ·HdA =

Z
@A

circle

H · m̂dl = 1. (4.16)
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Figure 4.2: Setup for applying Green’s Theorem to an integral inside of a circle with radius
rcircle.

As shown in Figure 4.2, for the case of the circle m̂ = r̂ and dl = rcircled�. Therefore

equation 4.16 becomes:

Z
@A

circle

H · m̂dl =

Z �=2⇡

�=0

Hr(rcircle)rcircled� =

Z �=2⇡

�=0

5

7h2⇡
D

3

d� = 1. (4.17)

By combining equations 4.15 and 4.17 the constants of integration are found to be:

D
1

= 0;D
2

= � 1

10
h2;D

3

=
7

10
h2. (4.18)

4.2.2 Contour integral along a line segment

Let us now return to the area and contour of the polygon of interest. A polygonal cell has

line segments for walls, and hence the contour integral of a cell becomes a sum of integrals

over line segments. For that reason I will focus on demonstrating how to apply Green’s

Theorem for a single line segment, L:

IL =

Z
L
H · m̂dl. (4.19)

Without loss of generality we can rotate the coordinate system so that the cell wall of

interest is perpendicular to the � = 0 ray. Let the orthogonal distance from the origin to

the wall be r
0

(see Figure 4.3).
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r	 m̂

r0	 x	

m̂

O	
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m̂

Figure 4.3: Left : setup for integrating H along a line segment. Right : schematic of the di↵erent
signs of m̂, depending on the orientation of the rest of the polygon.

The vector normal to the line segment can be written as:

m̂ = ±x̂ = ±(cos�r̂� sin��̂), (4.20)

where the sign depends on whether the rest of the cell sits on the left (+) or on the right

(�) of the line segment (see Figure 4.3). Therefore the dot product from Green’s Theorem

becomes:

H · m̂ = ±Hr cos�. (4.21)

In order to express dl, I will use a vector representation given by:

dl = drr̂+ rd��̂. (4.22)

Additionally, we can also write dl as:

dl = dlŷ = dl sin�r̂+ dl cos��̂. (4.23)

By comparing the �̂ terms we have that:

dl =
rd�

cos�
. (4.24)
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Therefore for a line segment we need to integrate the following

H · m̂dl = ±Hrrd�, (4.25)

where

r =
r
0

cos�
, (4.26)

and

Hrr =
5

7h2⇡

8>>>>><>>>>>:

⇣
r0

cos�

⌘
2

� 3

4h2

⇣
r0

cos�

⌘
4

+ 3

10h3

⇣
r0

cos�

⌘
5

, r0
cos�  h;

2
⇣

r0
cos�

⌘
2

� 2

h

⇣
r0

cos�

⌘
3

+ 3

4h2

⇣
r0

cos�

⌘
4

� 1

10h3

⇣
r0

cos�

⌘
5

� 1

10

h2, h  r0
cos�  2h;

7

10

h2, r0
cos� � 2h.

(4.27)

4.2.3 Calculating the line integral analytically

Let us for now only consider the positive sign of equation 4.25. The significance of the

signs will be discussed in more detail later in this section.

We have now established a final integral which needs to be computed between two

values of �. In order to perform this integration, I will use the fact thatHrr is a polynomial

consisting of di↵erent powers of 1

cos� , and hence I will compute the following terms:

Jn =

Z
d�

cosn �
, (4.28)

where n 2 Z, n � 0.

The expression J
0

is trivial and can be written as:

J
0

=

Z
d� = �+ C. (4.29)

For the remaining even powers (n = 2k, k 2 N) we can use the following formula from

Gradshteyn and Ryzhik (2007):
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J
2k =

Z
d�

cos2k �
=

sin�

2k � 1

0@sec2k�1 �+
k�1X
p=1

2p(k � 1)(k � 2)...(k � p)

(2k � 3)(2k � 5)...(2k � 2p� 1)
sec2k�2p�1 �

1A+C.

(4.30)

Applied to the specific powers of interest, the formula leads to:

J
2

= tan�+ C; (4.31)

J
4

=
1

3
tan�

�
sec2 �+ 2

�
+ C. (4.32)

Similarly, the odd powers (n = 2k + 1, k 2 N) can also be expressed with a formula

from Gradshteyn and Ryzhik (2007), namely:

J
2k+1

=

Z
d�

cos2k+1 �
=

sin�

2k

0@sec2k �+
k�1X
p=1

(2k � 1)(2k � 3)...(2k � 2p+ 1)

2p(k � 1)(k � 2)...(k � p)
sec2k�2p �

1A
+

(2k � 1)!!

2kk!
ln tan

✓
⇡

4
+
�

2

◆
+ C. (4.33)

This formula gives us the expressions for n = 3 and n = 5 to be:

J
3

=
1

2
tan� sec�+

1

2
ln tan

✓
⇡

4
+
�

2

◆
+ C; (4.34)

J
5

=
1

4
tan� sec�

✓
sec2 �+

3

2

◆
+

3

8
ln tan

✓
⇡

4
+
�

2

◆
+ C; (4.35)

The final solution is then:
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IP =

Z
Hr(r)rd� =

5r2
0

7h2⇡

8>>>>>>>>>>>><>>>>>>>>>>>>:

J
2

� 3

4

�
r0
h

�
2

J
4

+ 3

10

�
r0
h

�
3

J
5

, cos� � r0
h ;

2J
2

� 2 r0
h J3 +

3

4

�
r0
h

�
2

J
4

� 1

10

�
r0
h

�
3

J
5

� 1

10

�
r0
h

��2

J
0

, r0
2h  cos�  r0

h ;

7

10

�
r0
h

��2

J
0

, cos�  r0
2h .

(4.36)

Note that the Jn expressions all contain constants of integration. Similarly to before

I have enforced continuity of the function when using a computer implementation of this

solution, however the mathematical expressions of the constants of integration are too

lengthy to be included here.

4.2.4 Geometric interpretation of the solution

Let us return to the statement that equation 4.10 is di�cult to integrate due to inability

to define integration limits, and consider what Green’s Theorem does in order to bypass

this issue.

When integratingH along a line segment, the answer we get is equivalent to integrating

W inside the triangle formed by the line segment and the origin (see Figure 4.4). As an

example, the integral of H along AB, as shown in Figure 4.4, is equivalent to integrating

W over the area of AOB. The same is true for all other cell walls of ABCDE, and hence

IS is obtained by dividing the Voronoi cell into triangular segments and integrating them

separately.

Furthermore, evaluating IP at A is equivalent to integrating W over the area of AOP,

thus the final step of our derivation splits the cell into even smaller triangles.

It is worth pointing out that the negative sign of equation 4.25 becomes relevant when

the Voronoi cell does not contain the origin (i.e. the particle). Since m̂ points outwards

from the cell walls, the integral of H along AB and BC in the example in Figure 4.4 is

negative. This is necessary in order for the triangular breakdown of a cell to work in the

general case.

When we integrate H along the segments CD, DE and EA, and add up the results
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A	

B	

C	

D	

E	

O	

P	

r0	

A	

B	

C	

D	

E	

O	

Figure 4.4: Breakdown of the integration area into triangles when the origin is internal (left) or
external (right) to the polygonal cell.

we obtain the equivalent to integrating W over the area of AOCDE. Since the integral

of H along AB and BC is negative, adding these two integrals to the rest is the same as

subtracting the integral of W over AOCB from the integral of W over AOCDE. This gives

us the equivalent of integrating W over the area of ABCDE, as desired.

4.3 Analytic integration of a 3D cubic spline kernel function

Having integrated W in the simpler, 2D case, we can now expand the derivation to 3D.

The expression that we are trying to integrate is the one shown in equation 4.9.

Similarly to before I will use the cubic spline kernel, which in 3D is given by the

following:

W (r) =
1

h3⇡

8>>>>><>>>>>:
1� 1.5

�
r
h

�
2

+ 0.75
�
r
h

�
3

, r  h;

0.25
�
2�

�
r
h

��
3

, h  r  2h;

0, r � 2h.

(4.37)

4.3.1 Reducing the volume integral to a surface integral

As in the 2D case, here once again we can’t perform the integration easily due to the

di�culty in defining the integration limits. In order to progress with the solution first we

will transform equation 4.9 into a surface integral, by using the Divergence Theorem:

Z
V
r · FdV =

Z
@V

F · n̂dS. (4.38)
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In the above n̂ is the unit vector normal to the surface of the volume of integration,

and the surface itself is denoted by @V.

It is easy to notice that the left hand side of equation 4.38 resembles equation 4.9. In

order to apply the theorem, we will construct F, such that r · F = W , as we did in 2D.

This is analogous to the relationship between charge and electric field in electrostatics.

Since W is spherically-symmetric, expressing F in spherical coordinates is the most

suitable choice. Hence for F and its divergence we have:

F = Frr̂+ F✓✓̂+ F��̂; (4.39)

r · F =
1

r2
@(r2Fr)

@r
+

1

r sin ✓

@(F✓ sin ✓)

@✓
+

1

sin ✓

@F�

@�
. (4.40)

Additionally, due to the spherical symmetry of the problem, we consider a function for

which F✓ = F� = 0. This gives us the equation

1

r2
@(r2Fr)

@r
= W (r), (4.41)

which integrates to the following solution:

Fr(r) =
1

r2
1

h3⇡

8>>>>>>>>>>>><>>>>>>>>>>>>:

1

3

r3 � 3

10h2 r
5 + 1

8h3 r
6 + C

1

, r  h;

1

4

�
8

3

r3 � 3

hr
4 + 6

5h2 r
5 � 1

6h3 r
6

�
+ C

2

, h  r  2h;

0 + C
3

, r � 2h,

(4.42)

where C
1

, C
2

and C
3

are constants of integration.

Similarly to the previous section, we enforce continuity of Fr at r = h and r = 2h to

obtain the relationships:
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C
1

=
1

60
h3 + C

2

; C
3

=
4

15
h3 + C

2

. (4.43)

Finally, let us consider a sphere of radius rsphere � 2h and apply the Divergence

Theorem to the integral of W over the volume of the sphere. For this setup we have that

n̂ = r̂, and dS = r2sphere sin ✓d✓d�.

Using the normalisation property of the kernel, and the fact that it is zero for r � 2h,

we can write that:

Z
@V

F · n̂dS =

Z
2⇡

�=0

Z ⇡

✓=0

Fr(rsphere)r
2

sphere sin ✓d✓d� = 1. (4.44)

Equations 4.43 and 4.44 lead to the following solution for the constants of integration:

C
1

= 0; C
2

= � 1

60

h3; C
3

=
1

4
h3. (4.45)

4.3.2 Calculating the surface integral on a plane

We have now transformed IV into the surface integral given by equation 4.38. Since the

surface of a polyhedron is a set of polygons, we will focus on integrating over only one of

them. Namely, we wish to compute the integral

IS =

Z
A
F · n̂dS, (4.46)

where A is the region of space contained in a single polygonal wall.

Without loss of generality, we can choose the spherical coordinate system that F is

defined in, so that the normal of the plane of the desired flat surface coincides with the

✓ = 0 axis. Let the orthogonal distance from the origin to the plane be denoted by r
0

.

We can express any surface element in spherical coordinates as

dS = n̂dS = r2 sin ✓d✓d�r̂+ r sin ✓drd�✓̂+ rdrd✓�̂, (4.47)
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and hence:

F · n̂dS = ±Frr
2 sin ✓d✓d�. (4.48)

In the above equation we have two options for the sign, depending on the orientation of

the polyhedron. This is similar to equation 4.20 and Figure 4.3. For simplicity of notation

we will only consider the positive sign in the derivations that are to follow.

Since we are integrating over ✓ and Fr is a function of r(✓), it would be necessary to

pick a suitable integration variable. From the chosen coordinate system orientation we

have the relationship:

r =
r
0

cos ✓
. (4.49)

Let µ = cos ✓, then r = r0
µ and dµ = � sin ✓d✓. This gives us the following expressions,

which are simpler to work with:

F · n̂dS = �Fr(µ)

✓
µ

r
0

◆�2

dµd�; (4.50)

Fr(µ) =

✓
µ

r
0

◆
2 1

h3⇡

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

1

3

⇣
µ
r0

⌘�3

� 3

10h2

⇣
µ
r0

⌘�5

+ 1

8h3

⇣
µ
r0

⌘�6

, µ � r0
h ;

1

4

✓
8

3

⇣
µ
r0

⌘�3

� 3

h

⇣
µ
r0

⌘�4

+ 6

5h2

⇣
µ
r0

⌘�5

� 1

6h3

⇣
µ
r0

⌘�6

� h3

15

◆
, r0

2h  µ  r0
h ;

h3

4

, µ  r0
2h .

(4.51)

4.3.3 Reducing the surface integral to a contour integral

We have now reduced the problem to integrating a function over the area of a polygon,

which is similar to the 2D kernel integration. In order to represent the surface integral IS

as a contour integral we will once again use Green’s Theorem, given by:
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Z
A
r ·HdA =

Z
@A

H · m̂dl, (4.52)

where m̂ is the unit vector normal to the contour @A of the area of integration A.

In order to apply the theorem, we need to construct function H, such that r ·HdA =

F · n̂dS. While F is defined as a three-dimensional vector function, H should be in two

dimensions, and the spherically-symmetric nature of W suggests that we should define H

in terms of polar coordinates:

H = HRR̂+H��̂; (4.53)

r ·H =
1

R

@(RHR)

@R
+

1

R

@H�

@�
. (4.54)

Let us set H� = 0. The area element can be written as dA = RdRd�, where � is

ensured to be the same as the three-dimensional coordinate used for F by aligning the

coordinate systems’ axes appropriately. This gives us the following expression:

r ·HdA =
@(RHR)

@R
dRd�. (4.55)

From geometrical considerations we can show that R = r sin ✓ = r
0

tan ✓, which leads

to dR = r
0

sec2 ✓d✓. This allows us to rewrite the following:

F · n̂dS = Frr
2 sin ✓d✓d� (4.56)

= Fr
R2

sin2 ✓
sin ✓

dR

r
0

sec2 ✓
d� (4.57)

= Fr
R2

r
0

tan2 ✓
sin ✓dRd� (4.58)

= Frr0 sin ✓dRd�. (4.59)

By combining equations 4.55 and 4.59, we obtain the integral:
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HR =
1

R

Z
Frr0 sin ✓dR. (4.60)

We will now write the above expression in terms of µ, so that we can integrate it

more easily. We can notice that sin ✓dR = r
0

sec2 ✓ sin ✓d✓ = �r
0

µ�2dµ , and with this

modification the solution for HR becomes:

HRR =
r3
0

h3⇡

8>>>>>>>>>>>><>>>>>>>>>>>>:

1

6

µ�2 � 3

40

( r0h )
2µ�4 + 1

40

( r0h )
3µ�5 + B1

r30
, µ � r0

h ;

1

4

(4
3

µ�2 � ( r0h )µ
�3 + 3

10

( r0h )
2µ�4 � 1

30

( r0h )
3µ�5 + 1

15

( r0h )
�3µ) + B2

r30
, r0

2h  µ  r0
h ;

�1

4

( r0h )
�3µ+ B3

r30
, µ  r0

2h .

(4.61)

In the above expression B
1

, B
2

and B
3

are the constants of integration, which can be

functions of r
0

and h.

4.3.4 Deriving expressions for B
1

, B
2

and B
3

Consider integrating F over the area of a circle, extending from µ = 1 to µ = µ
0

. De-

pending on the value of r
0

we would need to use di↵erent parts of the piecewise form of

F. This will result in the constants of integration B
1

, B
2

and B
3

having di↵erent form

depending on r
0

, so that H gives answers consistent with those for F.

In order to find expressions for them, let us start by considering r
0

� 2h. This means

that r0
2h � 1 � µ, and we need to use only the third expression for F, which gives us the

following integral:

IS = 2⇡

Z
1

µ0

Fr(µ)

✓
µ

r
0

◆�2

dµ =
1

2
(1� µ

0

). (4.62)

If we were to apply Green’s theorem and use H, then the following should give us the

same answer for all values of µ
0

:
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IS =

Z
H · m̂dl =

Z
2⇡

0

HRRd� =
2B

3

h3
� 1

2
µ
0

. (4.63)

By comparing the coe�cients of each term of the above polynomials, we get that

B
3

= h3

4

.

Similarly, we then consider the case of h  r
0

 2h. Here, we have that r0
h � 1 � µ,

however, depending on the final integration value of µ
0

, we would either use the second

polynomial of F or a sum of the second and the third one. By calculating the integral in

two di↵erent ways, as shown previously, we can then obtain expressions for the constants.

If µ
0

� r0
2h , then we get an expression for B

2

, and if µ
0

 r0
2h , we can express B

3

.

In the third case, when r
0

 h, we have three possibilities (µ
0

� r0
h ;

r0
2h  µ

0

 r0
h ;

µ
0

 r0
2h), which give rise to expressions for B

1

, B
2

and B
3

respectively.

The final polynomial forms of B
1

, B
2

and B
3

are as follows:

B
1

=
r3
0

4

✓
�2

3
+

3

10

⇣r
0

h

⌘
2

� 1

10

⇣r
0

h

⌘
3

◆
; (4.64)

B
2

=
r3
0

4

8>>>>><>>>>>:
�2

3

+ 3

10

�
r0
h

�
2 � 1

10

�
r0
h

�
3 � 1

5

�
r0
h

��2

, r
0

 h;

�4

3

+
�
r0
h

�
� 3

10

�
r0
h

�
2

+ 1

30

�
r0
h

�
3 � 1

15

�
r0
h

��3

, h  r
0

 2h;

(4.65)

B
3

=
r3
0

4

8>>>>>>>>>>>><>>>>>>>>>>>>:

�2

3

+ 3

10

�
r0
h

�
2 � 1

10

�
r0
h

�
3

+ 7

5

�
r0
h

��2

, r
0

 h;

�4

3

+
�
r0
h

�
� 3

10

�
r0
h

�
2

+ 1

30

�
r0
h

�
3 � 1

15

�
r0
h

��3

+ 8

5

�
r0
h

��2

, h  r
0

 2h;

�
r0
h

��3

, r
0

� 2h.

(4.66)
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4.3.5 Calculating the contour integral on a line

We have now reduced IS to a contour integral, which consists of a sum of line integrals

(i.e. along the edges of the polygonal wall). Similarly to before, we will only consider the

integral of H over a single line segment, L. The integral that we will focus on is given by:

IL =

Z
L
H · m̂dl. (4.67)

Without loss of generality, we can select the orientation of the coordinate system such

that the � = 0 line is perpendicular to the line segment that we are interested in, just as

we did in Section 4.2.2. Let the perpendicular distance to the line from the centre of the

2D polar coordinate system be denoted by R
0

.

We then have the following expressions:

m̂ = ±x̂ = ±(cos�R̂� sin��̂); (4.68)

H · m̂ = ±HR cos�. (4.69)

The above sign has been discussed in detail in Section 4.2.4, and here again we will

assume that it is positive for simplicity of notation. In order to express dl, we will use its

vector form given by:

dl = dRR̂+Rd��̂. (4.70)

Alternatively, we also have that:

dl = dlŷ = dl sin�R̂+ dl cos��̂. (4.71)

By comparing the �̂ terms we can write that:
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dl =
Rd�

cos�
. (4.72)

And hence, for a linear segment, we have that:

H · m̂dl = HRRd�. (4.73)

4.3.6 Calculating the line integral analytically

In order to proceed, we require a kernel function which is integrable, in order to provide

an analytical (or tabulated) form of this expression. Previously, we have expressed HRR

as a function of µ and now we want to integrate it with respect to �. In order to complete

the integration we need to express µ as a function of � or vice versa.

From geometrical considerations we have the following:

R =
R

0

cos�
= r sin ✓. (4.74)

And hence

r =
R

0

sin ✓ cos�
. (4.75)

We also have that:

µ =
r
0

r
=

r
0

sin ✓ cos�

R
0

. (4.76)

By squaring both sides, substituting sin2 ✓ for 1� µ2, and rearranging, we obtain the

relationship:

µ =
r0
R0

cos�r
1 +

r20
R2

0
cos2 �

. (4.77)

Since HRR is a polynomial consisting of di↵erent powers of µ (see equation 4.61), we

need to integrate the following terms and insert them into the polynomial:
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In =

Z
µnd� =

Z 0BB@ r0
R0

cos�r
1 +

r20
R2

0
cos2 �

1CCA
n

d�, (4.78)

where n 2 Z.

We can easily notice that I
0

is trivial and can be expressed as:

I
0

=

Z
d� = �+ C. (4.79)

For the remaining even powers (n = �2k, k 2 N) of µ we can simplify as follows:

I�2k =

Z 0@1 +
1

r20
R2

0
cos2 �

1Ak

d�. (4.80)

Hence,

I�2

= �+

Z
d�

r20
R2

0
cos2 �

(4.81)

= �+

✓
R

0

r
0

◆
2

tan�+ C; (4.82)

I�4

=

Z 0@1 +
2

r20
R2

0
cos2 �

+
1

r40
R4

0
cos4 �

1A d� (4.83)

= �+ 2

✓
R

0

r
0

◆
2

tan�+
1

3

✓
R

0

r
0

◆
4

tan�(sec2 �+ 2) + C. (4.84)

For the odd powers (n = 1; n = �3; n = �5) we will express � in terms of µ, as it

follows from equation 4.78:

d� = �R
0

r
0

dµ

(1� µ2)

r
1�

⇣
1 +

R2
0

r20

⌘
µ2

. (4.85)
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Starting with integrating the expression for n = 1, let ↵ = R0
r0
, and then:

I
1

=

Z �↵µdµ
(1� µ2)

p
1� (1 + ↵2)µ2

(4.86)

Let u =
p
1� (1 + ↵2)µ2. Then du = � (1+↵2

)µdµp
1�(1+↵2

)µ2
, and 1 � µ2 = ↵2

+u2

1+↵2 . This

changes the expression for I
1

to:

I
1

=

Z
↵du

↵2 + u2
= tan�1

⇣u
↵

⌘
+ C. (4.87)

Using the same substitution, the expressions for I�3

and I�5

can be written as follows

(for more details, see Section 4.6):

I�3

=
↵(1 + ↵2)

4

✓
2u

1� u2
+ log(1 + u)� log(1� u)

◆
+
↵

2
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↵

⌘
+ C; (4.88)

I�5

=
↵(1 + ↵2)2

16

✓
10u� 6u3

(1� u2)2
+ 3(log(1 + u)� log(1� u))

◆
+
↵(1 + ↵2)

4

✓
2u

1� u2
+ log(1 + u)� log(1� u)

◆
+
↵

2
(log(1 + u)� log(1� u)) + tan�1

⇣u
↵

⌘
+ C. (4.89)

The final solution is hence given by:
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In the applications of this method boundary conditions are applied to ensure continuity

between the di↵erent regions of the function.

The method can be applied to any piecewise polynomial kernel and I will discuss this

in more detail in Section 4.6 and Appendix A.

Figure 4.5: Geometric representation of IS (top left), IL (top right) and IP (bottom). IS , IL and
IP equal the integral of the kernel function over the volume of each respective pyramid.
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4.3.7 Geometric interpretation of the solution

Similarly to the 2D case, the process of obtaining the 3D integral of the kernel function has

a clear geometric analogy. By applying the Divergence Theorem, we e↵ectively split the

cell volume into wall pyramids (see Figure 4.5). The integral of the kernel function over the

volume of a wall pyramid is given by IS . Furthermore, with the use of Green’s theorem,

we split each wall pyramid into line pyramids, and the integral of the kernel inside each of

them equals IL. Finally, each line pyramid can be broken down into two vertex pyramids,

with the integral of the kernel function over the volume of a vertex pyramid being equal

to IP .

In Section 4.2.4 we discussed the scenario when the particle position was outside the

cell, and we saw that some of the integrals would be included with a negative sign. The

same idea can be generalised to 3D. When the particle position is outside of the polyhedral

cell, some of the wall integrals will have negative signs arising from equation 4.48. This

ensures that when all IS expressions are added up they will give the integral of the kernel

function over the volume of the cell.

4.4 Testing

4.4.1 Accuracy

After completing the analytic derivation of the kernel integral, I have created computer

implementations of the density mapping in 2D and 3D. As a first step in the implementa-

tions, I have considered a single SPH particle mapped onto a Voronoi grid. To calculate

the density of a cell in 3D, I have looped over each side of each wall, and computed r
0

,

R
0

and � for each of the two vertices of the side. This allowed me to calculate the IP

expressions, and add them all up. The sum was then multiplied by the particle mass and

divided by the cell volume in order to produce the average cell density. An analogous

procedure was developed in 2D, and both of these implementations were applied to test

cases (see Figure 4.6 and 4.7).

The results of the test cases in Figure 4.6 and 4.7 match the expected cell density

distribution by visual inspection. Additionally, in both cases the total mass of the cells

equals the mass of the SPH particle, as expected. To test the analytic integrals more
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Figure 4.6: Top left : 2D cubic spline kernel function with h = 1. Dark blue corresponds to higher
density, and the dashed contours are at r = h and r = 2h. The value of the kernel function is zero
outside of the larger circle. Top right : 2D Voronoi grid with 50 randomly selected generating sites.
Bottom: the average density of each Voronoi cell, calculated with the analytic density mapping is
plotted in colour. The same colour scheme is used as in the top left plot, and we can see that we
preserve the SPH density structure. The figure is adapted from Petkova et al. (2018).

rigorously, I have implemented a numerical integration algorithm in 3D and applied it to

the same test case as the one in Figure 4.7. The numerical integration followed Simpson’s

rule, and it showed good agreement with the analytic solution (see Figure 4.8). With this

I have demonstrated the validity of the proposed density mapping method.

4.4.2 Timing

As a next step of the testing, I have applied the analytic density mapping to data taken

from an SPH simulation of a clumpy cloud in 3D (Forgan and Bonnell (in prep.)). The

simulation was produced with Phantom (Price et al. (2017)), and contains 400728 par-

ticles evolved for about 1700 years. In its initial state, the modelled cloud contained high

density cores embedded into a uniform low density medium, and was later perturbed by a

shock. In order to test my density mapping method, I have used the last snapshot of the

simulation and have constructed a single grid cell around the position of each particle.

82



4.4. Testing

Figure 4.7: 3D cubic spline kernel function with h = 0.5 is mapped onto a 3D Voronoi grid
with 50 randomly sampled generating sites. The average density of each cell, computed with the
analytic density mapping, is used as cell transparency, with darker regions corresponding to higher
column density along the line of sight. The result is similar to Figure 4.6, but performed for a 3D
test. The figure is adapted from Petkova et al. (2018).

Figure 4.8: Fractional di↵erence between the numerically calculated and the analytically calcu-
lated cell masses for each cell of the setup in Figure 4.7. The di↵erently coloured lines correspond
to di↵erent number of intervals per smoothing length that were used for the numerical integration.
By increasing the number of intervals, the numerical masses converge to the analytically calculated
ones, demonstrating the validity of the method. The figure is adapted from Petkova et al. (2018).

In order to apply the analytic density mapping to a dataset of multiple SPH particles

and grid cells, I have made changes to the previously mentioned computer implementation

in 3D. Instead of looping over all cells for each particle, which would be slow and ine�cient,

I have considered only the cells which would be reached by the particle’s kernel function.

This was done by creating a simple friends-of-friends type of algorithm, realised with a
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queue structure. The queue structure contains cell indices and it initially starts with only

one element, which is the index of the cell generated around the particle’s location. As

we loop through the queue, we check the location of each wall of the current grid cell. If

a wall is partially or fully within a radius of two smoothing lengths from the particle, we

add the cell on the other side of the wall to the back of the queue, as long as it is not

already in it. This ensures that all cells which receive non-zero mass contributions from a

particle are covered.

I have used the SPH dataset in order to perform timing tests of the density mapping

algorithm. In order to do so, I have selected subsets of the the dataset and timed the

performance of the mapping algorithm for each one of them. Since the number of cells

that receive non-zero mass contribution from a given particle is between about 50 and 100,

for the larger subsets we can treat that number as constant and expect the computing

time to depend roughly linearly on the number of particles in the subset.

If we were to compare full SPH datasets of di↵erent total particle numbers, this linear

dependence might not hold. Zhu et al. (2015) have demonstrated that for the purposes

of numerical convergence, an SPH dataset should have the number of neighbours of each

particle scaling as the square root of the total particle number. If this relationship is

followed, then the computing time would be proportional to the total number of particles

to the power of 1.5 when di↵erent SPH datasets are compared.

Figure 4.9 shows the expected linear dependence of the analytic computing time as a

function of particle numbers. I have repeated the calculation using the numerical integra-

tion with 10 intervals per smoothing length, and once again found a linear dependence.

We can clearly see, however, that the analytic solution is a factor of about 200 faster than

the numerical one, which makes the former much more favourable to use than the latter.

4.4.3 Comparison to other density mapping methods

The previous section demonstrates the validity of the analytic density mapping method,

and now I will compare its results to the approximate density calculations introduced

at the beginning of the chapter. As a reminder, what we have called method 1 is when

a single grid cell is created around each particle’s position, and the density is given by

dividing the particle’s mass by the cell volume. Method 2, on the other hand, computes
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Figure 4.9: Computing time as a function of number of SPH particles for the analytically cal-
culated density structure (blue) and the numerically calculated density structure with 10 intervals
per smoothing length (red). In both cases, there is a linear dependence between computing time
and the number of particles, as expected. The numerical solution is a factor of 200 times slower
than the analytic one. The figure is adapted from Petkova et al. (2018).

the SPH density at the centroid of each cell and uses it as the average cell density. I have

already stated that both method 1 and method 2 are likely to lead to errors, and this is

also evident in Figure 4.10.

Figure 4.10 contains a comparison of method 1 and method 2 with the analytic density

mapping. The methods were applied to four di↵erent datasets — a clumpy cloud, a uniform

density box, a disk galaxy and a cloud a↵ected by a supernova explosion. The clumpy

cloud is the same dataset that was used in the previous section, and the other models

were produced with SPHNG (Bate et al. (1995)). The box consists of 122333 uniformly

sampled particles, with some noise present in the particle positions and densities. For this

test I have used the initial setup of the model without evolving it in time. Similarly, I have

also used the initial setup of the disk galaxy model (Ramón-Fox and Bonnell (2016)). The

galaxy consists of 500000 gas particles, which follow a smooth density power-low without

any features (McMillan and Dehnen (2007)). Finally, the post-supernova cloud represents

a shock wall where many complex structures are present and it contains 208155 particles

(Lucas et al. (in prep.)).

We can see that for all datasets in Figure 4.10 both method 1 and method 2 can

produce significant errors from the analytic density values. Method 2 has broader range

of density deviations from the analytic solution than method 1, however, the bulk of its

particles are concentrated in a narrower region around 0%. In addition to its primary peak,

method 2 has a secondary peak at -100% for three of the four datasets, which corresponds
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Figure 4.10: Histograms showing the accuracy of two commonly used methods for density cal-
culation: particle mass divided by cell volume (method 1) and SPH density at the cell centroid
point (method 2). Method 1 and 2 are compared to the analytically computed density for the
case of a clumpy cloud (top left), uniform density box (top right), disk galaxy (bottom left) and
supernova shock wall (bottom right). The dashed horizontal lines indicate the level of 1% and 10%
respectively of the total number of cells. This is to note the low numbers of cells in the wings
of the distributions. Both method 1 and 2 show significant deviations from the analytic solution,
which can cause inaccuracies when MCRT is performed on SPH data. The figure is adapted from
Petkova et al. (2018).

to cells with zero density in method 2. These cells are located at the outskirts of the data

samples, where there is cell elongation due to the cuboid boundaries. This is why the

dataset without a secondary peak is the one of the uniform density cube.

As previously discussed, method 2 does not ensure mass conservation, however the

mass discrepancy between the SPH particles and the grid cells is small. For each of the

datasets the total mass of all cells with densities obtained by method 2 di↵ers from the

analytic total mass by less than 5%. This leads us to the conclusion that method 2

appears preferable to method 1, especially for datasets without many elongated cells at

the boundaries.

It is unclear how strongly a Monte Carlo Radiative Transfer calculation would be
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a↵ected by the choice of density mapping method, just by looking at the density errors.

Furthermore, even if there is a significant variation in the output of the radiative transfer

calculation depending on the density mapping, it is not trivial to foresee how strongly a

radiation hydrodynamics simulation would be a↵ected. For these reasons further testing

and comparison between the three types of density mapping will be presented in Chapter

5.

4.5 Tabulation

4.5.1 Creating a table of pre-computed values of IP

In order to further boost the computing performance of the density mapping algorithm,

I will pre-compute and tabulate IP in 3D (see equation 4.90) for di↵erent values of the

parameters it contains. In 3D these parameters are r
0

2 [0,1), R
0

2 [0,1) and � 2

[0,⇡/2). The infinite ranges for r
0

and R
0

present a challenge for the tabulation, which

needs to be addressed.

r0	

2h	

Figure 4.11: Demonstration that a cell wall with r0 > 2h contains the same fraction of an SPH
particle (and therefore has the same IP values) as the projected wall at r0 = 2h, provided all of
the angles of the wall pyramids are preserved.

First we can notice that for r
0

� 2h we have a cell wall which does not intersect the

non-zero region of the of the particle’s kernel. This means that for r
0

> 2h the integral of
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the volume of the wall pyramid (Figure 4.5) is the same as that for a wall at r
0

= 2h with

the same angular dimensions (see Figure 4.11). This allows us to only consider the range

of [0, 2h] as possible values of r
0

.

Furthermore, instead of using R
0

, we can consider the parameter µ
0

= cos ✓
0

=

r0p
r20+R2

0

, which is defined in the range of [0, 1]. This way by selecting a value for r
0

and µ
0

we uniquely set a value for R
0

.

Finally, to tabulate the values of IP , I chose 50 equally spaced values of r
0

between 0

and 0.1h, and further 200 equally spaced values between 0.1h and 2h. Additionally, for

both µ
0

and cos� I selected 150 equally spaced values between 0 and 0.98, and further

150 equally spaced values between 0.98 and 1.0. For each combination of these three

parameters, I computed IP .

4.5.2 Obtaining IP from the pre-computed table

Figure 4.12: Absolute error vs relative error of the approximate value of ĨP obtained by pre-
computing and tabulating IP . Potted are values of |ĨP � IP | and |ĨP � IP |/IP for 10000 randomly
generated parameter triplets of r0, R0 and �. The red data points are those for which ĨP is an
overestimate of IP and the blue ones are underestimates.
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Having this table of pre-computed values allows us to quickly approximate IP for any

values of r
0

, R
0

and � by interpolating. Due to the two-part equal spacing between

the tabulated values it is easy and fast to find the location of interest in the table of

pre-computed values.

I have used 3D linear interpolation in order to obtain an approximate value of IP

(from now on referred to as ĨP ) and found that this method produces good agreement

with the exact IP (see Figure 4.12). By comparing 10000 di↵erent values of ĨP to their

IP analogues, we can see that for IP > 10�5 the relative error of the approximate value is

under 1%. For IP < 10�5 the relative error becomes higher, however it is worth recalling

that IP represents a fraction of an SPH particle’s mass. For all practical purposes a mass

fraction under 10�5 is negligible, and therefore we should not be too concerned about

discrepancies between ĨP and IP in that range, as this will not a↵ect the density mapping

significantly.

As an extra accuracy test I have repeated the density mapping for the dataset of a

clumpy cloud presented in Section 4.4.3 by using ĨP . We can see in Figure 4.13 that all

of the Voronoi cells with mapped densities have errors that are less than 0.7%, which is

indeed very small. Note that the other approximate density mapping methods produced

much larger errors for the same dataset (see Figure 4.10).

Additionally, the tabulation and interpolation of IP has decreased the computing time

for the density mapping by about 1.5 times. This is a significant improvement when large

datasets are considered and when the mapping is performed multiple times, such as in the

case of live radiation-hydrodynamics.

4.6 Other kernel functions

From the analytic derivations presented in section 4.2 and 4.3 we can notice that any

polynomial kernel function could be integrated analytically, provided that we can find

expressions for all Jm and In (see equation 4.28 and 4.78). Therefore in this section I will

demonstrate that this is always the case and I will provide solutions to these integrals.

As a reminder, the forms of Jm and In, as given by equation 4.28 and 4.78, are as

follows:
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Figure 4.13: A histogram of density error (in %) for a density mapping obtained by using ĨP as
opposed to IP on an SPH dataset of a clumpy cloud (see Section 4.4.3). The horizontal dashed lines
mark the levels of 1% and 10% of the total number of cells in the dataset. The minor approximation
created by tabulating pre-computed values of IP and then interpolating creates a very small error,
especially compared to the other approximate methods presented in Figure 4.10.

Jm =

Z
d�

cosm �
, (4.91)

In =

Z
µnd� =

Z 0BB@ r0
R0

cos�r
1 +

r20
R2

0
cos2 �

1CCA
n

d�, (4.92)

where n,m 2 Z, m � 0, n  1.

The expressions for Jm were already presented in section 4.2, and here I will reiterate

that for the even and odd powers of m we have respectively (using Gradshteyn and Ryzhik

(2007)):

J
2k =

Z
d�

cos2k �
=

sin�

2k � 1
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and
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I will now continue by finding similar expressions for In. Section 4.3 handles the cases

of n = 0 and n = 1, hence I will focus on the negative values of n.

For the even powers (n = �2k, k 2 N) of µ we can simplify equation 4.92 as follows:

I�2k =

Z 0@1 +
1

r20
R2

0
cos2 �

1Ak

d� (4.95)

=
kX
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k

l

◆
d�
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R2l

0
cos2l �

, (4.96)

where
�
k
l

�
are binomial coe�cients. The above is simply a sum of integrals that have the

same form as J
2k. Hence, by using the expression in equation 4.93, we can obtain all of

the solutions that we need.

For the odd values of n we will use that:

d� = �R
0

r
0

dµ

(1� µ2)

r
1�

⇣
1 +

R2
0

r20

⌘
µ2

. (4.97)

Let ↵ = R0
r0

and n = �2k � 1 (k 2 N). This changes the expression for In to:

I�2k�1
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Z �↵dµ
µ2k+1(1� µ2)

p
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= I
0
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. (4.101)
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The above expression establishes a recurrence relation between I�2k�1

and the previous

odd power I�2k+1

in the series, and we are left to determine I
0
�2k�1

(since the first elements

in the series, I
1

and I�1

, have already been derived in section 4.3).

Let u =
p
1� (1 + ↵2)µ2. Then du = � (1+↵2

)µdµp
1�(1+↵2

)µ2
, and µ2 = 1�u2

1+↵2 . The expression

for I
0
�2k�1

can be written as:

I
0
�2k�1

= ↵(1 + ↵2)k
Z

du

(1� u2)k+1

. (4.102)

From Gradshteyn and Ryzhik (2007) we have that:

Z
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(2k + 1)(2k � 1)...(2k � 2l + 3)
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+
(2k � 1)!!
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(log(1 + u)� log(1� u)) + C. (4.103)

With this I demonstrate how to construct the solution for the general case of a polyno-

mial kernel function. The specific solutions for some of the commonly used kernel functions

are included in Appendix A.

4.7 Broader applicability of the method

After demonstrating that the method presented in this chapter can be applied to any

polynomial kernel function, I would like to point out a few other key expansions to what

was already shown.

First of all, the analytic density mapping method allows us to have a Voronoi cell

distribution which does not need to match the SPH particle positions or numbers. This

was already demonstrated in Figure 4.6 and 4.7, where we had a single SPH particle and

multiple Voronoi cells. As I have already discussed in Chapter 3 there are circumstances

in which we would like to be able to construct the Voronoi grid independently from the

particle positions, in order to avoid poor resolution e↵ects (see also Koepferl et al. (2016)).

Additionally, the focus of this chapter has been the mapping of SPH particles onto

a Voronoi grid, however while performing the integrations we did not use any of the
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properties of a Voronoi tessellation. The density mapping can be therefore used with any

other grid structure that has polyhedral cells, such as a Cartesian or AMR grid, making

the approach a lot more broadly applicable.

Finally, while what I need for my work is the density structure that is described

by the SPH particles, all other SPH properties use smoothing kernels in a way that is

mathematically equivalent to the density (see Chapter 2). This means that the method

presented here can be applied to the mapping of any other SPH quantity onto a range of

grid structures. This can be used for accurate imaging of SPH data (see Figure 4.14) and

enabling direct comparison between SPH, grid and moving mesh codes.
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Figure 4.14: Examples of exact SPH imaging performed by SPLASH (Price (2007)), using the
mapping method of Petkova et al. (2018). The two images have a di↵erent number of pixels but
the same total pixel count. Image source: Price et al. (2017).
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Chapter 5

Radiation Hydrodynamics

In this chapter I will use the work developed in the previous chapters in order to reach the

goal of my thesis, namely, to achieve live radiation hydrodynamics using SPH and MCRT.

I will present the publicly available codes that I have used for modelling the hydrodynamics

(Phantom, Price et al. (2017)) and the radiative transfer (CMacIonize, Vandenbroucke

and Wood (2018)), as well as the modifications which I have implemented to allow me to

run them together.

Furthermore, I will demonstrate the accurate execution of this live radiation hydrody-

namics scheme by applying it to the well studied test problem of D-type expansion of an

H II region. And finally, I will apply the scheme to a more realistic star formation setup,

in which high mass young stars disperse most of the gas of the cloud they are embedded

in via ionising radiation (Dale et al. (2012)).

5.1 Introduction to the codes

5.1.1 Phantom

The SPH code that I used for this work is called Phantom and it was created with a

focus on stellar, planetary and galactic astrophysics (Price et al. (2017)). The code is well

suited for the study of star formation as it is 3-dimensional and it includes the treatment

of self-gravity, sink particles and gas-dust mixtures. Additionally, it can be run as both

ideal and non-ideal MHD.

Phantom has been used widely for variety of problems and contains a broad range of
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functionality, most of which is beyond the scope of this thesis (for a detailed review see

Price et al. (2017)). The features which I have used include self-gravity, the creation of

sink particles and artificial conductivity. The latter is switched on by default and is used

for the correct treatment of shocks and hydrodynamical instabilities.

Phantom is written in Fortran 90 and is parallelised using OpenMP and MPI. The

code is highly modular, allowing for quick and easy modifications.

5.1.2 CMacIonize

The MCRT code that I used for the live radiation hydrodynamics is called CMacIonize

(Vandenbroucke and Wood (2018)). The code models photoionisation on a variety of 3D

grid structures, including Cartesian, AMR and Voronoi grid, and as such was well suited

for this project. CMacIonize contains a live radiation hydrodynamics scheme in itself,

allowing the user to choose between a fixed grid and a moving mesh grid hydrodynamics.

This extra functionality has been demonstrated to work correctly (Vandenbroucke and

Wood (2018)), through comparison with the D-type expansion benchmark, which will be

introduced later in this chapter.

CMacIonize models the photoionisation of hydrogen and helium self-consistently in

the energy range between 13.6 and 54.4 eV. The ionisation states of a number of metal ions

are modelled approximately, as they contribute to the cooling of the gas. Presently there

is no treatment of lower energy photons, dust or radiation pressure (for more information

see Vandenbroucke and Wood (2018)).

CMacIonize is written in C++ and can be run in parallel using a mixture of OpenMP

and MPI. Additionally, the code has a library interface that allows it to be called directly

from C, C++ or Fortran programs.

5.2 Radiation hydrodynamics structure and modifications

5.2.1 Code overview

In order to achieve live radiation hydrodynamics I have established connection between

the two codes by using Phantom’s option for performing live analysis and CMacIonize’s

library functionality. A schematic of the codes’ communication points is shown in Figure
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5.1.

CMI	
parameters	file	

Radia1on	
sources	file	

Genera1ng	
sites	file	

Phantom	
dump	file	

Phantom	 Analysis	
module	

CMI	
Library	

Figure 5.1: A schematic of the relationship between di↵erent code parts involved in the live
radiation hydrodynamics scheme combining Phantom and CMacIonize (shortened to CMI in
the schematic).

Alongside its hydrodynamics calculations, Phantom can execute an analysis module,

which is typically used to post-process the SPH outputs (dump files). There is a ”live

analysis” option, which ensures that the analysis module is executed during Phantom’s

runtime. When the ”live analysis” option is chosen, all of Phantom’s data arrays can be

modified by the analysis module each time a dump file is created. I have included the call

to the CMacIonize library as part of the analysis module, as this was the least intrusive

point of contact for the overall flow of Phantom. In order to establish contact with the

library, the analysis module passes along information about the SPH particle positions,

masses and smoothing lengths, and receives the neutral hydrogen fraction of each particle.

The module then uses the neutral hydrogen fractions in order to modify the internal

energies of the SPH particles in Phantom. Additionally, the analysis module generates

a CMacIonize parameters file necessary for the execution of the MCRT, together with a

file containing the positions and luminosities of the ionising sources and a file containing
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the positions of a set of Voronoi cell generating sites.

This particular way of linking the two codes has some clear advantages and disadvan-

tages. Unfortunately the use of radiative feedback is currently tied to how often Phantom

outputs dump files, which can result in an unnecessarily high output frequency when we

want to perform CMacIonize more often. On the other hand, the simplicity of this setup

reduces the probability of mistakes and inaccuracies, and in principle it can allow for the

radiative transfer to be performed at each hydrodynamics time step.

5.2.2 Code modifications

Both Phantom and CMacIonise are modular, allowing me to modify only small sections

of them in order to achieve the goal of a radiation hydrodynamics scheme. The majority

of the modifications were in CMacIonize and were related to ensuring that the density

mapping from SPH particles onto a Voronoi grid was performed correctly. A detailed

description of the changes that I made to the two codes is listed below.

Phantom

There are three ways in which I have made changes to Phantom. I have modified the

Makefile in order to set some of the simulation parameters and to include the compiler flags

that allow for the CMacIonize library to be called from Phantom. I have also written

setup files in order to create the desired initial conditions for various simulation runs.

Finally, I have written analysis files which realised the connection with CMacIonize.

While the exact details of the first two modifications have limited contribution towards

the clarity of this thesis, I will overview the structure of the analysis file in more depth.

A typical analysis file might create some additional files to enable the use of CMa-

cIonize. As previously mentioned, these are a CMacIonize parameters file, a radiation

sources file and a Voronoi generating sites file. Some of the simulations require the CMa-

cIonize parameters file to be created only once. This file needs to be overwritten by

the Phantom analysis only if the number of Vornoi generating sites has changed from

one dump to the next or if the simulation boundaries have changed. The Voronoi cell

generating sites file is typically overwritten at each dump, since we would like to follow

the motion of the particles. And finally, the radiation sources file is only relevant, and

hence only created, for the simulations in which we have multiple ionising sources (such
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as sink particles) and/or when the sources can change their positions.

After creating the additional files, a typical analysis file passes particle positions,

smoothing lengths and masses to the CMacIonize library and it receives the neutral

fraction of hydrogen for each particle. Using this information, new internal energies for

the SPH particles are computed and assigned. The exact way of computing the energies

di↵ers between simulations and it will be additionally specified later in the chapter.

CMacIonize

The necessary changes to CMacIonize were more substantial and were primarily related

to the way that the density mapping from the SPH particles to the Voronoi grid (or

any other grid) was handled. The default density mapping in CMacIonize is done by

computing the SPH density at the centroid of each cell, and assigning it as the average cell

density. This approach is the one labeled as method 2 in Chapter 4. In order to compute

the SPH density the method first finds all of the SPH particles that overlap with a cell’s

centroid by using a neighbours finding algorithm and an internal octree that CMacIonize

constructs.

As discussed in Chapter 4, method 2 deviates from the true average cell density and

does not conserve the total particle mass through the mapping. Due to these consid-

erations, I have implemented the analytic density mapping presented in Chapter 4 and

Petkova et al. (2018) into CMacIonize. The analytic density mapping finds the total

mass contained in each grid cell, and then divides it by the cell volume in order to obtain

an accurate average density. The cell mass is calculated by integrating the kernel function

of each nearby SPH particle over the volume of the cell. The integrals are broken down

into summation of the expression for IP (see equation 4.90), evaluated for the position of

each cell vertex. The computing time of the density mapping was improved by tabulating

a set of IP values, as described in Section 4.5.

In order to incorporate the analytic density mapping into CMacIonize, I have first

written functions which pre-compute and tabulate IP for a range of parameter values, and

then interpolate IP for any given set of parameters. An additional function sums up these

interpolated values for IP and obtains the accurate cell density. Since the density mapping

method from Chapter 4 requires knowledge of all the particles that overlap with any part
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of the cell, I have adapted the neighbours finding algorithm to account for that. I have

approximated the cell to a sphere with a centre at the centroid of the cell and with radius

equal to the distance from the centroid to the furthest away vertex. I have then modified

the neighbours finding algorithm to search for particles that intersect this sphere. The

above modification ensures that all of the particles that overlap with parts of the cell are

accounted for, and even through some unnecessary particles are detected by the search,

their inclusion does not a↵ect the outcome of the density calculation.

A further implemented change in CMacIonize handles the reverse mapping from the

grid cells to the SPH particles. The default reverse mapping in CMacIonize was looping

over all cells and for each cell it was assigning the cell’s fraction of neutral hydrogen to the

closest SPH particle. This type of reverse mapping does not take into account the SPH

particle distribution, and in some cases it can leave some SPH particles without a neutral

fraction value. Instead of using it, I have implemented a reverse mapping which does the

opposite of the analytic density mapping of Chapter 4. Within the new reverse mapping

method each SPH particle receives ionised material from the cells it has contributed mass

towards. The fractional contribution of ionised material from a cell to a particle is the

same as the fraction of mass that the particle has contributed towards the cell.

Finally, I have also made some minor modifications in the way that the input and the

output of CMacIonize were handled. All of the code changes described in this section

can be found on GitHub1.

5.3 StarBench test

In order to confirm that the radiation hydrodynamics scheme is working correctly I will

apply it to the well studied test problem of the D-type expansion of an H II region. I will

then compare the outcome of my simulations to the results of other numerical schemes,

which were presented in the StarBench paper (Bisbas et al. (2015)).

5.3.1 D-type expansion of an H II region

Bisbas et al. (2015) modelled and measured the radius of the ionisation front during the

D-type expansion of an H II region and compared the numerical results to theoretical

1
https://github.com/mapetkova/CMacIonize
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predictions. Here I will start by overviewing the theoretical framework that they have

used.

We have already discussed in Chapter 1 that the D-type expansion of an H II region

begins when the ionised material has reached the Strömgren radius:

RSt =

 
3Q̇m2

p

4⇡↵B⇢2o
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. (5.1)

The above equation is for pure atomic hydrogen gas, where Q̇ is the number of ionising

photons emitted per unit time, mp is the proton mass, ⇢o is the density of the medium

and ↵B is the recombination coe�cient.

Raga et al. (2012a) have derived that the radius of the ionisation front as a function

of time, RSp(t), evolves following the equation:
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where ci is the sound speed in the ionised medium, µo and µi are the mean molecular

weights of the neutral and the ionised gas, and To and Ti are the neutral and ionised

temperatures respectively. They have obtained the above equation by considering the

pressure balance between the ionised material and the shock, as well as that of the shock

and the neutral medium.

We can argue that typically µ
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can be neglected and then equation 5.2 leads to the Spitzer solution for

the radius of the ionisation front (Spitzer (1978)):

RSp(t) = RSt
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Raga et al. (2012b) improve on the work of Raga et al. (2012a) by including the inertia

of the expanding shock as it propagates through the neutral medium. Their consideration

leads to an expansion equation for the position of the shock, RHI(t), given by:

101



Chapter 5. Radiation Hydrodynamics

1
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Similarly, in early times µ
i

T
o

2µ
o
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can be neglected, which is equivalent to neglecting the

thermal pressure of the neutral gas. Equation 5.4 then leads to the Hosokawa-Inutsuka

solution (Hosokawa and Inutsuka (2006)):

RHI(t) = RSt
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In late times the neglected terms become significant, and eventually the expansion

stagnates at t = tSTAG, characterised by ṘSp(tSTAG) = 0 and ṘHI(tSTAG) = 0 for the

two cases.

Using equations 5.2 and 5.4, we get the following stagnation radii, respectively:

RSTAG,Sp = RSt
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and

RSTAG,HI = RSt
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where co is the sound speed in the neutral gas.

5.3.2 Simulation setup

Following the StarBench paper (Bisbas et al. (2015)), I have used two di↵erent setups in

order to test the simulated H II region expansion. Both of them model the early phase

of the expansion and di↵er only in the size of the simulated region. For these tests I

have arranged the SPH particles in a tightly pack hexagonal grid, filling up a cube with

side Rcl, and total mass Mcl. The total number of particles, N, was chosen so that each

particle would have a mass of mpart ⇡ 10�3 M�, and the initial Strömgren radius would

contain roughly 104 particles (Bisbas et al. (2015)). The source of ionising radiation was

positioned in the centre of the cube.

The parameters used in the two setups are presented in Table 5.1. Additionally, for the
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Parameter Units Large test Small tests

Q̇ s�1 1049 1049

µo 1 1
µi 0.5 0.5
⇢o g cm�3 5.21⇥ 10�21 5.21⇥ 10�21

Ti K 104 104

ci km s�1 12.85 12.85
To K 102 102

co km s�1 0.91 0.91
Mcl M� 1231 317.5
Rcl pc 2.52 1.6
N 1,222,650 324,825
mpart M� 1.01⇥ 10�3 0.98⇥ 10�3

Table 5.1: Simulation parameters for the two models of early D-type expansion of an H II region.

radiative transfer we assumed that the photoionisation cross-section was � = 6.3⇥ 10�18

cm2, and the recombination coe�cient was ↵B = 2.7⇥ 10�13 cm3 s�1, while disregarding

the di↵use field.

CMacIonize was performed with 10 iterations of 106 photon packets, in order to

compute accurate ionic fractions. In the beginning of the first iteration, the radiative

transfer assumed that all cells were fully ionised, then it propagated the photon packets

and it updated the ionic fractions at the end of the iteration, based on the photon packet

trajectories. The same process was repeated during the following iterations with the new

ionic fractions. The use of 10 iterations was demonstrated to ensure good convergence for

a dataset of about 2.6 ⇥ 105 cells by Vandenbroucke and Wood (2018). To ensure that

10 iterations were su�cient for my own simulations, I have performed convergence tests,

which are shown in Section 5.3.4.

For the hydrodynamics we used a fixed time step of about 0.85 ⇥ 10�3 Myr for all

SPH particles and did not include gravity or magnetic fields. The equation of state was

polytropic with � = 1.00011 in order to mimic two-temperature isothermal gas, even

though the exact value of � does not a↵ect the H II region expansion significantly according

to the models included in Bisbas et al. (2015). The initial temperature of all gas particles

was To = 100 K. After each time CMacIonize was called, the particles with ionic fraction

higher than 0.5 had their internal energies set to correspond to a temperature of Ti = 104K

and a mean molecular weight of µi = 0.5.

In the larger simulation the density of the SPH particles was mapped onto a Voronoi
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grid, using the analytic method described in Chapter 4 and Petkova et al. (2018). For

computational e�ciency the values of the integral of the cubic spline kernel function were

pre-computed and used for interpolation. The smaller simulation was performed multiple

times, with three di↵erent types of density mapping (the one from Petkova et al. (2018),

and method 1 and 2 from Chapter 4) in order to test how the density mapping a↵ected

the expansion rate.

5.3.3 Results

0.5 pc 0.5 pc

0.5 pc

-21 -20.5 -20 -19.5
log density [g/cm3]

0.5 pc

Figure 5.2: Density slices at z = 0 of the early D-type expansion of an H II region (large dataset),
computed with Phantom + CMacIonize radiation hydrodynamics scheme. The snapshots are
at t = 0.005 Myr (top, left), t = 0.02 Myr (top, right), t = 0.05 Myr (bottom, left), t = 0.07 Myr
(bottom, right). This figure was created using SPLASH (Price (2007)).
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Figure 5.2 shows density plots of the larger simulation at di↵erent times. We can see

that qualitatively the D-type expansion is working correctly, as an initially spherical region

is expanding rapidly and sweeping up a shell of shocked gas. In order to quantify the rate

of expansion, I have determined the position of the ionisation front by selecting particles

with ionic fractions between 0.45 and 0.55 and averaging their radial distance from the

source. This procedure was repeated for each SPH snapshot and the time evolution of

the ionisation front is presented in Figure 5.3, together with the analytic curves of the

Spitzer and Hosokawa-Initsuka solutions (see equations 5.3 and 5.5), and the average

empirically derived expansion curve from the StarBench paper (Bisbas et al. (2015)).

Additionally, Figure 5.3 contains the relative error of the ionisation front radius compared

to the theoretical solution.

A similar procedure as above was repeated for the smaller dataset (see Figure 5.4).

This time the position of the ionisation front was calculated by averaging the radial dis-

tances from the light source of the particles with ionic fraction between 0.3 and 0.7. This

modification was made in order to improve the uncertainties in determining the ionisation

front (see the small spike at about 0.03 Myr in Figure 5.3).

5.3.4 Discussion

Larger setup

While qualitatively the modelling of the D-type expansion has been successful, it seems like

the Phantom + CMacIonize live radiation hydrodynamics scheme produces a slower

expansion rate than expected, as shown in Figure 5.3. The empiric StarBench solution

is positioned between the Spitzer and the Hosokawa-Inutsuka solution, while the method

of this chapter starts o↵ under the Spitzer curve. A very similar behaviour, however, can

also be seen in SEREN (Hubber et al. (2011)), which is the only SPH code used in the

StarBench study. At very early times SEREN produces an ionisation front radius smaller

than the Spitzer solution, which is then surpassed after about 0.04–0.05 Myr (Bisbas et al.

(2015)). The same can be seen in Figure 5.3, which suggests that this behaviour can be

related to the nature of SPH itself.

Indeed, Bisbas et al. (2015) reported that SEREN produced a thicker shell of shocked

gas relative to the other codes, which was the reason for the slower initial expansion. We

105



Chapter 5. Radiation Hydrodynamics

Figure 5.3: The early D-type expansion of an H II region (large dataset). Top: ionisation front
radius as a function of time. The Spitzer and Hosokawa-Inutsuka solutions are shown in dashed
lines, the averaged 3D StarBench solution is in solid grey and the Phantom + CMacIonize live
radiation hydrodynamics scheme is shown in solid black line and black circles. Bottom: the relative
error of the Phantom + CMacIonize solution compared to the Spitzer (red) and Hosokawa-
Inutsuka (blue) solutions.

can see in Figure 5.5 that our model gives rise to a shock which is broad enough that it

contains the analytically predicted positions of the ionisation front. The higher density

inside the shock results in higher recombination rates, and hence this explains the initial

smaller size of the H II region.

Looking closely at Figure 5.2, we can notice that the ionisation-driven shock is not

exactly circular. There are small artefacts produced by the initial hexagonal arrangement
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Figure 5.4: The early D-type expansion of an H II region (small dataset). Top: ionisation front
radius as a function of time. The Spitzer and Hosokawa-Inutsuka solutions are shown in solid
red and blue lines, and the Phantom + CMacIonize live radiation hydrodynamics scheme is
shown in three black lines of di↵erent styles. The di↵erence between the black lines comes from
the di↵erent types of density mapping from the SPH particles onto a Voronoi grid (see Chapter 4
for more details). Bottom: the relative error of the Phantom + CMacIonize solution compared
to the Spitzer (red) and Hosokawa-Inutsuka (blue) solutions for the three di↵erent types of density
mapping.

of the SPH particles. These small errors can be avoided by using a ’glass’ dataset, as was

done by Bisbas et al. (2015). A glass is a crystalline arrangement, into which the SPH par-

ticles tend to relax, as it minimises their energy (see Price (2012) for more details). Even

with this source of errors in mind, however, we see good agreement between the simulation

performed with Phantom + CMacIonize, and the StarBench test, which indicates that
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Figure 5.5: Density as a function of radial distance from the source of the D-type expansion
model of an H II region, produced with Phantom + CMacIonize. The snapshot was taken at
about 0.02 Myr from the beginning of the simulation. The vertical lines show the positions of
the Spitzer and the Hosokawa-Inutsuka solutions, as well as the position of the ionisation front as
calculated with Phantom + CMacIonize.

the live radiation hydrodynamics scheme of this thesis is performing correctly.

Smaller setup

In Figure 5.4 we can see how the analytic density mapping of Petkova et al. (2018) compares

to method 1 (i.e. particle mass divided by cell volume) and method 2 (i.e. SPH density

at the centroid of a cell) when they are applied to a hydrodynamics problem. We can see

that the expansion rate obtained with method 2 is similar to the expansion produced with

the exact density mapping of Petkova et al. (2018), and it seems to be underestimating

the size of the H II region by a small amount. Method 1, on the other hand, results in a

greater deviation from the expansion curve of the simulation done with the exact density

mapping. These results are not surprising, since in Chapter 4 we saw that method 1

produces larger density errors than method 2.

From Figure 5.4 we can conclude that at least in simple geometries method 2 is a good

approximation for the cell density, when dynamical problems are studied. We need further

tests in order to find out if that remains the case in complex, non-spherically symmetric

systems.
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Figure 5.6: Convergence tests of CMacIonize at di↵erent simulation times for the large simu-
lation setup. Top: ionisation front radius measured at each iteration. Bottom: The incremental
decrease in ionisation front radius at each iteration. The vertical dashed line marks the number of
iterations used for this benchmark simulation.

Convergence

To further confirm the validity of the above results, I have included radiative transfer

convergence tests performed as post-processing of the larger dataset. Since both datasets

have the same particle mass resolution, examining one of them is su�cient. After the larger

simulation was completed, I have selected 5 di↵erent outputs (corresponding to 0 Myr,

0.005 Myr, 0.02 Myr, 0.05 Myr and 0.07 Myr) and for each of them applied CMacIonize

with di↵erent numbers of iterations, ranging from 2 to 20. After each CMacIonize run,

I calculated the ionisation front radius by averaging the radial distances of the particles

with ionic fraction between 0.3 and 0.7. The results of these tests are shown in Figure 5.6.

Figure 5.6 demonstrates that all of the CMacIonize runs initially overestimate the
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Figure 5.7: Radial profile of the neutral gas fraction of the large simulation setup at 0 Myr. The
colours represent di↵erent numbers of iterations of CMacIonize. The gas particles were divided
into radial bins for which the average neutral fraction was calculated. The top plot contains error
bars corresponding to the scatter in each bin. The bottom plot contains the same data on a log
scale without the error bars, for clarity.

value for the radius of the H II region, and this estimate gradually decreases later on. At

earlier simulation times the system takes more iterations to converge to a value for the

radius of the H II region, than at later times. At 10 iterations the decrease in the size of

the H II region is at most 1% for all tested simulation times, which demonstrates su�cient

convergence.

Finally, Figure 5.7 shows the neutral gas fraction as a function of radial distance for a

small number of iterations at 0 Myr. This particular snapshot was selected since it was the

slowest one to converge. As expected, we can see that the central region of the simulation

has a neutral fraction of about 0, which transitions to 1 further away from the source. This

transition region is much larger and more gradual at 2 iterations, and it becomes steeper
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as the number of iterations increases. The expectation is to have nearly a step function

at the ionisation front. Figure 5.7 demonstrates that the di↵erence between 10 and 20

iterations in that regard is minimal, which further comes to show a good convergence.

5.4 Feedback and star formation

5.4.1 Initial conditions

After demonstrating the accurate performance of the Phantom + CMacIonize live

radiation hydrodynamics scheme with a test problem, I will now apply it to a more realistic

star formation scenario. For that I will use some of the data presented in Dale et al. (2012)

as initial conditions for my simulation.

Dale et al. (2012) studied cloud dispersal due to ionising stellar radiation. In their

paper they included star forming clouds spanning a range of initial masses, radii and

velocity dispersions. The clouds were evolved with an SPH code (Bate et al. (1995))

until a su�cient number of sources of ionising radiation were formed, and afterwards

photoionisation was included following a ray-tracing algorithm and a Strömgren volume

technique, as described in Dale et al. (2007) and Dale and Bonnell (2011).

The equation of state that was used was a piecewise barotropic, with P = k⇢� and

� =
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0.75, ⇢  ⇢
1

,

1.0, ⇢
1

 ⇢  ⇢
2

,

1.4, ⇢
2

 ⇢  ⇢
3

,

1.0, ⇢ � ⇢
3

.
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In the above ⇢
1

= 5.5⇥ 10�19 g cm�3, ⇢
2

= 5.5⇥ 10�15 g cm�3 and ⇢
3

= 2.0⇥ 10�13

g cm�3.

This equation of state is meant to mimic the e↵ect of line cooling in the lowest density

range, followed by the isothermal phase of dust cooling at ⇠ 10 K, as the density increases

in the early stages of cloud collapse. The third density range represents the optically thick

phase reached later on in the process of star formation. The final isothermal region is

added for the correct creation of sink particles, and it roughly corresponds to the star
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reaching a hydrostatic state. The critical density criterion for sink creation is within he

second density range, however if some of the other sink creation criteria are not locally

met, a clump of gas can continue to increase its density without becoming a sink. This

process can move the clump into the third density range for �, where the energy and

temperature increase with density. Without the final isothermal region the temperature

of the clump could keep increasing to unphysical values and completely prevent the sink

particle formation.

For my work, I have used the dataset from Dale et al. (2012) corresponding to the cloud

which su↵ered the greatest disruption from feedback. The dataset is labeled as ’Run I’

and has a total mass of 104 M�, an initial radius of 10 pc, and initial velocity dispersion

of 2.1 km s�1. The dataset contains 106 SPH particles, which is a suitable resolution for

the sinks to represent individual stars.

By including ionising radiation in Run I, Dale et al. (2012) found that the gas became

ionised in a roughly bipolar region around the central stellar cluster of the cloud. The mass

fraction of the ionised gas almost immediately reached 0.03 and gradually increased to 0.1

by the end of the simulation, 2.2 Myr after the ionisation was switched on. Even with this

modest ionisation fraction, about 58% of gas/stars were estimated to be unbound, and a

vast cavity was carved out around the ionising sources. Several pillars were positioned at

the outskirts of the cavity, pointed towards the most massive stellar cluster, and containing

newly formed stars at their tips.

5.4.2 Simulation setup

I have used the dataset from Run I evolved to the point where there were already three

sources of ionising radiation (i.e. three sinks of masses � 20 M�) as the initial conditions

for my radiation hydrodynamics scheme. In this thesis, I present a first comparison with

a simplified version of the simulation due to time constraints. There were three ways in

which I have performed simplifications:

1. I only used a subset of Run I, encompassing the densest part of the cloud (see

Figure 5.8). This region contains all (44) of the sinks and 322,532 SPH gas particles, and

has mass of 3526.56 M�, which is approximately 35% of the total cloud mass.

2. I adopted the initial internal energies of the particles from Run I, however, I did
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not continue using the piecewise barotropic equation of state, as this would have required

further modifications of Phantom. I have instead used an adiabatic equation of state

with � ⇡ 1 for the radiation hydrodynamics.

3. I did not use the analytic density mapping of SPH particles on the Voronoi grid.

The cell density was assumed to be the SPH density at the centroid of the cell, and this

type of density mapping was labeled as ’method 2’ in Chapter 4.

The ionising feedback of stars with masses under 20 M� was neglected, just as in Dale

et al. (2012), and the photon fluxes, Q̇, from the most massive stars were calculated using

the formula:

log(Q̇) = 48.1 + 0.02(M? � 20M�). (5.9)

CMacIonize was performed once every 1.5–7.5 ⇥10�3 Myr, and it used 10 iterations

of 106 photon packets each time. The neutral fraction of each particle was used to linearly

interpolate between 7.5 K and 10,000 K and the corresponding new internal energy was

assigned to the particle only if it exceeded the particle’s previous internal energy. This

ensures that neutral particles can become ionised, however, an ionised particle cannot

return to a neutral state.

New sink particles were created by Phantom when the density was above 2.34⇥10�16

g cm�3 and the energy and angular momentum criteria were met. This was set to match

the sink formation process of Dale et al. (2012).

5.4.3 Results

From the moment when the ionising radiation was switched on, small pockets of hot gas

(⇡ 0.02 pc) appeared around the sources and disrupted the accretion disks that had been

formed around the most massive stars. As the ionising sources exited the densest parts of

the cloud, the regions of ionised gas increased in volume, and in number of SPH particles

(see Figure 5.9).

The full ionisation history of the simulation is shown in Figure 5.10. In the figure we

can see a gradual removal of gas (in red), as it becomes accreted by stars (in green). The

mass fraction of ionised particles, as computed by CMacIonize at each SPH snapshot,

113



Chapter 5. Radiation Hydrodynamics

-5 0
log column density [g/cm2]

10 pc

-4 -2 0
log column density [g/cm2]

1 pc

Figure 5.8: Column density plots of the full simulation volume of Run I from Dale et al. (2012)
(top) and the subset used for modelling ionising feedback with Phantom+CMacIonize (bottom).
The sink particles are plotted in white and scale lengths of 10 pc and 1 pc respectively are included
in the plots. This figure was created using SPLASH (Price (2007)).
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5.4. Feedback and star formation

Figure 5.9: Snapshots of the stellar cluster formed in the central region of the simulation at 0
Myr (left), 0.045 Myr (middle) and 0.053 Myr (right) after the ionisation was switched on. The
top panels show the specific internal energy integrated along the z-axis, and the bottom panels
show column density, also obtained by integrating along the z-xis. The white markers indicate the
positions of the sink particles. The figure demonstrates the rapid increase in the size of the ionised
region between two consecutive SPH snapshots, likely due to geometric factors. This figure was
created using SPLASH (Price (2007)).

is shown in blue. We can see that this curve fluctuates rapidly likely due to 3D geometric

factors, however, this behaviour is not reflected within the SPH code, since the particles are

not allowed to recombine. The inability of the SPH particles to recombine and return to

a neutral state after being ionised means that SPH experiences monotonically increasing

amounts of ionised gas. An upper estimate of the amount of ionised gas in the SPH

simulation is given by the dashed curve, labelled as modified gas. The modified gas is a

counter of each instance when the calculated internal energy due to ionisation was greater

than the internal energy of the particle, and the particle’s energy was modified as a result.

This is an upper limit, and not an accurate measure of the number of ionised particles, as

a single particle can have its internal energy increased multiple times.

The star forming cloud was evolved for about 0.4 Myr, out of the intended 2.2 Myr,

due to the time constraints of the project. Within the code’s runtime, the ionisation was

not able to change the cloud morphology, since the ionised gas was being dragged along
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Figure 5.10: Time evolution of the gas depletion (red), star formation e�ciency (green), and
the ionised gas fraction (blue). The dashed line shows the number of instances of the internal
energies of particles being increased due to ionisation, expressed as a gas mass. All quantities are
normalised to the mass of the original cloud, i.e. 104 M�.

by the gravitational collapse2.

The volume occupied by the ionised gas is roughly bipolar in shape, with the dense,

disk-like central region remaining mostly neutral. The accretion on the high mass stars has

been steady despite the ionisation, as evidenced by the steady increase of the luminosity for

most of the simulation. The jump in luminosity at about 0.325 Myr is due to a fourth sink

becoming massive enough to be included as an ionising source. The luminosity increases

from about 1.5 ⇥1049 s�1 to 2.5 ⇥1049 s�1 over the course of the simulation (see Figure

5.11). The highest luminosity value of our simulation already exceeds the total ionising

luminosity reported by Dale et al. (2012) at 2.2 Myr, which indicates that our high mass

stars are accreting more rapidly than in the Dale et al. (2012) simulation.

Most of the new sink particles have been forming in the vicinity of the ionised regions,

although it is unclear if we are witnessing triggered star formation without additional data

and more in-depth analysis. While the total sink mass increases very gradually, we can

see in Figure 5.11 that the creation of sinks sometimes happens in bursts. Additionally,

2
This is illustrated more clearly in the videos provided on the supplementary CD.

116



5.4. Feedback and star formation

Figure 5.11: Time evolution of the number of sinks (green, dashed), total ionising luminosity
(red), and the ionised gas fraction (blue). The dashed black line shows the fraction of the particles
whose internal energies were increased due to ionisation.

the newly formed sink particles preferentially occupy lower mass ranges. In Figure 5.12

we can see that the shape of the IMF changes between the start point and the end point

of the simulation due to the creation of many low mass sinks.

5.4.4 Discussion

The surprising outcome of this simulation is the fact that it did not manage to significantly

alter the cloud morphology. Dale et al. (2012) reported that their method, when applied

to this particular setup, resulted in carved out cavities and pillars containing newborn

stars, as observed around real-life H II regions. Meanwhile, the ionised gas in the above
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Figure 5.12: Stellar mass functions at 0.0 Myr (red) and 0.34 Myr (blue). The Salpeter mass
function (Salpeter (1955)) is plotted in black line.

simulation did not show any signs of expansion, which was unexpected and could be due

to several factors.

First, it could be an inaccuracy in the radiation hydrodynamics implementation. The

StarBench test assured us that the most basic version of the scheme functioned correctly.

There were, however, a few key di↵erences between the benchmark and the star formation

simulation. In addition to the basic functionality of the former, the latter included self-

gravity, sink particles and multiple radiation sources. While the individual performance of

these features has been studied outside the scope of this radiation hydrodynamics scheme

by other authors (see Price et al. (2017) and Vandenbroucke and Wood (2018)), it might

still be beneficial to construct simple tests demonstrating that they function correctly

when combined within the scheme.

Another, more likely, group of reasons for the discrepancy with Dale et al. (2012)

has to do with the way that the radiation hydrodynamics scheme was set up to perform

the star formation simulation. It is possible that the 10 iterations of 106 photon packets

were not su�cient to allow for the convergence of CMacIonize. This could be at least a

partial explanation of the fluctuations of ionised particle numbers shown in Figure 5.10,

although these can also be due to geometric e↵ects. If the ionic fractions are not well

converged, this would a↵ect mostly the ionisation front particles, which are more numerous

in an irregularly-shaped H II region then in a spherical one, making the inaccuracy more
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5.4. Feedback and star formation

pronounced in this simulation. What we learned about numerical convergence of radiative

transfer from Figure 5.7, however, is that the earlier iterations tend to overestimate the

size of the ionised region, which is inconsistent with the fewer ionised particles that we

observed in comparison to Dale et al. (2012).

Another setup issue could be arising from the simplistic choice of generating sites for

the Voronoi grid. As discussed in Chapter 3, taking the SPH particle positions as cell gen-

erating sites can create poor resolution at regions of high density gradient. Such numerical

issues can lead to shadowing e↵ects (Koepferl et al. (2016)), and artificial restrictions to

the size of the HII region, such as the one we believe to be observing here. Unfortunately,

including the cell insertion algorithm from Chapter 3 into the radiation hydrodynamics

scheme was outside the timeframe of this PhD project and it will be attempted in a further

study.

Finally, it is also possible that the discrepancy is at least partially due to the di↵erent

hydrodynamics and radiation treatment between this work and Dale et al. (2012). As pre-

viously discussed, we have used an isothermal equation of state, whereas Dale et al. (2012)

used a complex barotropic one, and this di↵erence might be a↵ecting the hydrodynamics.

On the other hand, the lower ionised mass fraction in our simulation compared to Dale

et al. (2012) might not be purely caused by shadowing, but it could also be a result of

the di↵erent modelling of ionising radiation. If these factors are indeed causing significant

di↵erences to occur, the results of this simulation could be of value to the study of cloud

dispersal due to stellar feedback.

Another important point to address is that there were multiple adjustments to the

simulation during its runtime. Above a certain time step size, the execution of Phantom

would be automatically aborted due to energy conservation errors (see Section 2.2.11 of

Price et al. (2017) for more details). Because of that the time step (also a↵ecting the

frequency of execution of CMacIonize) had to be decreased multiple times during the

simulation. Additionally, at certain occasions the Voronoi grid construction algorithm

had di�culties handling the huge range of particle/cell separations. This led to the forced

removal of grid generating sites, where the local density would exceed a threshold value

of 6.77⇥ 10�13 g cm�3. This modification was establish from about 0.2 Myr onward and

it caused the omission of approximately 100 grid cells at each execution of CMacIonize.
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There are many aspects of this simulation that can be improved upon. Both of the

runtime adjustments, which were mentioned should be implemented from the beginning

of the simulation for consistency. Furthermore, the discrepancy with the outcome of

Dale et al. (2012) should be thoroughly investigated, and di↵erent choices of Voronoi cell

generating sites should be explored. Overall, however, this early stage of live radiation

hydrodynamics application has shown promising first results.

5.5 Computing time

The computing time is one of the main points which need to be addressed when assessing

whether the use of the radiation hydrodynamics scheme is feasible. As discussed in the very

beginning of the thesis, it is the computing cost which has been preventing researchers

from combining SPH and MCRT so far. In the light of that consideration, I will now

examine how the di↵erent parts of the radiation hydrodynamics compare in terms of CPU

time.

In the case of the large D-type expansion test, the simulation is clearly dominated

by the execution of CMacIonize (see Figure 5.13). The most expensive step within

CMacIonize is the density mapping, which is performed twice — once when transitioning

from the SPH particles to the grid, and then when going back from the grid to the particles.

Much less time, in comparison, is required for the construction of the Voronoi grid and

for the execution of the Monte Carlo photon packet propagation. Even though the grid

construction is considered to be an expensive step, the simple geometry of the mostly

evenly spaced particles kept it at a low cost. As the ionised gas expanded and created a

more prominent shock, the computing time for all of the radiative transfer parts increased.

Meanwhile, the simple nature of the hydrodynamics — not considering gravity or other

costly e↵ects — kept the computing time of Phantom at a low number throughout.

Since the exact density mapping of Petkova et al. (2018) requires a substantial amount

of computing time, it is of interest to look at how fast the radiation hydrodynamics

performs when we use approximations for the cell density. The computing cost between

each two consecutive SPH snapshots of the small D-type expansion test is shown in Figure

5.14. We can see that using either method 1 or method 2 reduces the computing time

of CMacIonize substantially, however the reduced computing time is still about 3 times
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5.5. Computing time

Figure 5.13: CPU time between two consecutive outputs (snapshots) of the large D-type expan-
sion test. The total CPU time is split up between CMacIonize and Phantom. The CMacIonize
grid construction and density mapping contributions are also displayed separately. Note that the
CPU time of a single density mapping procedure is displayed, and at each CMacIonize run the
density mapping is performed twice.

longer than the CPU time required by Phantom.

Figure 5.14: CPU time between two consecutive outputs (snapshots) of the small D-type expan-
sion test. The total CPU time is split up between CMacIonize and Phantom. The di↵erent line
styles signify the three di↵erent types of density mapping.

The star formation simulation, on the other hand, exhibits a very di↵erent computing

time breakdown (see Figure 5.15). The inclusion of gravity substantially increased the

time expenditure of Phantom, as compared to CMacIonize. The computational cost of
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the hydrodynamics oscillates, depending on the variable star formation rate and the sink

particle creation. At later times, Phantom clearly dominates the CPU time breakdown.

Meanwhile, CMacIonize is primarily spending time on the Voronoi grid construction

(about 97%), as this appears to be the computational bottleneck of the radiative feedback

algorithm. Figure 5.15 shows a simulation which used the density mapping of method

2, however the total CMacIonize computing time remains within the same order of

magnitude even if the exact density mapping is adopted.

Figure 5.15: CPU time between two consecutive outputs (snapshots) of the star formation with
feedback simulation. The early time outputs (left) are 0.0075 Myr apart, and the late time ones
(right) are separated by half of that time. The total CPU time is split up between CMacIonize
and Phantom. The CMacIonize grid construction and density mapping contributions are also
displayed separately. Note that the CPU time of a single density mapping procedure is displayed,
and at each CMacIonize run the density mapping is performed twice. Additionally, the blue and
green lines are almost indistinguishable since the CMacIonize computing time is dominated by
the grid construction.

Finally, all of the above computing cost observations let us conclude that the relative

performance of the SPH and MCRT codes is highly problem specific. For the scenarios of

great research interest, such as star cluster formation, the ionising feedback does not add

an impossible computational overhead, and therefore the radiation hydrodynamics scheme

proposed in this thesis can be considered as successful and feasible.
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Conclusion and Future Work

Conclusion

In this thesis I have presented the successful combination of a Smoothed Particle Hydro-

dynamics code (Phantom, Price et al. (2017)) with a Monte Carlo Radiative Transfer

method (CMacIonize, Vandenbroucke and Wood (2018)), as a live radiation hydrody-

namics scheme. In order to run the two codes simultaneously, I have used a Voronoi

tessellation as a linking step. At regular time intervals the SPH code would call the

MCRT code for computing the ionisation of the simulated cloud. Whenever this happens,

the SPH densities would be mapped onto a Voronoi grid, which is used for propagating

photon packets by the MCRT. After the ionic fraction is computed for each Voronoi cell, it

is then mapped back onto the SPH particles and used for modifying their internal energies.

As a first step towards achieving the radiation hydrodynamics scheme, I have discussed

the construction of the Voronoi grid, and in particular the choice of a set of generating sites

as seeds for the cell locations. I have demonstrated that using the SPH particle positions as

generating sites does not yield satisfactory results when there are large density gradients

present in the SPH dataset. I have also proposed an algorithm for improving the grid

resolution at regions of high density gradients by strategically adding a small number

of additional cells. This algorithm does not require a lot of computing time to perform

(it depends roughly linearly on the number of SPH particles), however time constraints

with the PhD project has prevented me from incorporating it into the live radiation

hydrodynamics scheme.
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In the following chapter I have addressed the next preliminary step for the success-

ful combination of SPH and MCRT, which was the density mapping from SPH onto the

Voronoi grid. I have developed a novel method for performing this mapping, which cal-

culates the exact average grid cell density and ensures mass conservation (Petkova et al.

(2018)). The method is based on the analytic integration of the SPH kernel function in or-

der to determine what fraction of the mass of each SPH particle contributes to a given cell.

I have derived the integral of a set of selected kernel functions — the first three B-splines

(Schoenberg (1946), Monaghan and Lattanzio (1985)) and the first three of the Wendland

series (Wendland (1995)) — over the area of a random polygon in 2D and a random poly-

hedron in 3D. I have then produced a computer implementation of this density mapping

method, in which I pre-compute the values of the kernel integrals in order to speed up the

calculations. The computer implementation was thoroughly tested against the results of

a numerical integration scheme in order to ensure its correct operation. I compared the

proposed method to commonly used approximate ways of mapping SPH densities onto a

grid, and found that the approximate methods can underestimate or overestimate the cell

densities by up to 50%, depending on the SPH dataset.

Finally, I combined the SPH code Phantom with the photoionisation MCRT code

CMacIonize into a live radiation hydrodynamics (RHD) scheme and tested its perfor-

mance. I have applied the RHD scheme to the well studied problem of D-type expansion

of an H II region and found excellent agreement with other research (Bisbas et al. (2015)).

I have further repeated the same test with three di↵erent types of density mappings — the

one described in Petkova et al. (2018), one in which the cell density is approximated by a

particle’s mass divided by the volume of the cell (method 1), and one where the average

cell density is assumed to be the SPH density at the centroid of the cell (method 2). I

found that unlike method 1, method 2 followed closely the D-type expansion rate that

was produced by the exact density mapping of Petkova et al. (2018). I then proceeded

to run a star formation simulation in which high mass stars in a cluster provided ionising

feedback and were expected to disrupt the structure of the cloud they were embedded

in. For this I have used the initial conditions of ’Run I’ from Dale et al. (2012) and the

density mapping of method 2, as it required less computing time than the exact density

calculation of Petkova et al. (2018). The simulation was evolved for 0.4 Myr out of the

intended 2.2 Myr (used by Dale et al. (2012)) due to time constraints with the project.
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Within that timeframe, the high mass stars ionised a large volume of gas in a roughly

bipolar distribution, in agreement with Dale et al. (2012). There was rapid star formation

in the disk-like structure between the ionised regions, likely enabled by the pressure of the

ionised gas. The newborn stars were preferentially of low mass and had a di↵erent mass

distribution than the one reported by Dale et al. (2012) at 2.2 Myr. Unlike the work of

Dale et al. (2012), the feedback in my simulation did not cause morphological changes of

the star-forming cloud, which is likely due to the choice of Voronoi grid generating sites,

and discrepancies in the hydrodynamics and/or the radiative transfer methods that were

adopted.

Overall we have strong evidence that the basic live radiation hydrodynamics scheme

introduced in this thesis is functioning correctly, although its use in more complex sim-

ulations require further studies. The addition of ionising feedback to the hydrodynamics

creates a reasonable computing overhead when we model realistic astrophysical problems

involving gravity. The radiation hydrodynamics scheme is therefore a promising new tool,

which can be applied to a variety of models where ionisation is a dominant process.

Future work

The end point of this thesis o↵ers many directions in which this work can be continued,

and here I will list a small number of them. The first future work project is to complete

the simulation of star formation with ionising feedback. So far it has only been evolved

for 0.4 Myr, however continuing it until it reaches 2.2 Myr would allow for full comparison

with the results of Dale et al. (2012). Furthermore, I plan to alter some of the parameters,

such as the equation of state and the time step between consecutive ionisation calculations,

and to study how robust the outcomes of the simulation are under these changes. After

examining the performance of the radiation hydrodynamics scheme thoroughly, I intend

to apply it to further problems of astronomical interest where ionisation is a dominant

process, for example the the dispersal of molecular clouds that are internally or externally

illuminated by ionising sources or accretion onto massive stars.

Another future work plan is to continue the development of the radiation hydrody-

namics code by establishing a procedure for selecting a set of Voronoi grid generating sites

to represent a particular SPH dataset. The algorithm presented in Chapter 3 is a great
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starting point, however it requires live radiation hydrodynamics tests in order to establish

how useful it is.

Finally, I plan to incorporate the density mapping method introduced in Chapter 4

and Petkova et al. (2018) into the visualisation tool SPLASH (Price (2007)). There are

two ways in which the mapping method can improve the functionality of SPLASH. The

first one is by including an exact SPH mapping option when rendering images, and it will

ensure that even low resolution images will have accurate pixel counts. The other way is

by improving the SPH-to-grid option, which enables the interpolation of SPH parameter

values onto a Cartesian grid, and can be used for comparing SPH to grid-based simulations.
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Appendix A

Integrals of Other Kernel

Functions

By following the derivation presented in Chapter 4 we can obtain the integral of any

polynomial kernel function inside the volume (in 3D) or area (in 2D) of any polyhedron

or polygon respectively. In this appendix I have included the solutions for six di↵erent

commonly used kernels from two di↵erent families.

Kernel functions and notation

The kernels that I have selected are the first three B-splines (Schoenberg (1946), Monaghan

and Lattanzio (1985)) and the first three of the Wendland series (Wendland (1995)). I

have adopted the notation used in Dehnen and Aly (2012) in order to present the kernels

in a shorter and more consistent way in Table A.1.

The kernel functions have non-zero values up to a radius of H, which corresponds

to the unitless parameter q = 1. In order to construct the functions, the expressions in

the second column of Table A.1 have to be multiplied by A/H2 in 2D and A/H3 in 3D.

Finally, we also use the notation (·)
+

⌘ max{0, ·}.

The cubic spline function is the one that was considered in detail in Chapter 4. To

link between the current notation and the one in the chapter we can write H = 2h and

q = r/H.
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Kernel name Kernel function A in 2D A in 3D

Cubic spline b
4

= (1� q)3
+

� 4(1
2

� q)3
+

80

7⇡
16

⇡

Quartic spline b
5

= (1� q)4
+

� 5(3
5

� q)4
+

+ 10(1
5

� q)4
+

5

6
3

2398⇡
5

6

512⇡

Quintic spline b
6

= (1� q)5
+

� 6(2
3

� q)5
+

+ 15(1
3

� q)5
+

3

7
7

478⇡
3

7

40⇡

Wendland C2  
3,1 = (1� q)4

+

(1 + 4q) 7

⇡
21

2⇡

Wendland C4  
4,2 = (1� q)6

+

(1 + 6q + 35

3

q2) 9

⇡
495

32⇡

Wendland C6  
5,3 = (1� q)8

+

(1 + 8q + 25q2 + 32q3) 78

7⇡
1365

64⇡

Table A.1: A set of commonly used kernel functions and their normalisation constants in 2D and
3D. The first three are B-splines and the other three are Wendland kernels, where the notation
(·)+ ⌘ max{0, ·} (see Dehnen and Aly (2012)).

IP in 2D

Under the new notation, the general form of IP can be written as:

IP = A
nX

i=0

aiJiq
i
0

, (A.1)

where q
0

= r
0

/H.

Therefore, in order to construct any solution IP we need to know the non-zero ai coef-

ficients, which I have listed in Table A.2 and A.3. The general form of the corresponding

Ji expressions has been described in Section 4.6.

IP in 3D

In 3D the form of IP can be written as:

IP = A
1X

i=�n

aiIiq
1�i
0

, (A.2)

where q
0

= r
0

/H.

Once again, in order to construct any solution IP we need to know the non-zero ai

coe�cients, which are listed in Table A.5 and A.7. The Ii expressions have been presented
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in Section 4.6.

Additionally, it is worth pointing out that a
0

2 {B
1

, B
2

, ...}, where:

Bj =
mX
k=0

bkq
k
0

. (A.3)

The non-zero bk coe�cients of each Bj have been listed in Table A.4 and A.6.
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