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Abstract

A semigroup is simply a set with an associative binary operation; computational semigroup

theory is the branch of mathematics concerned with developing techniques for computing with

semigroups, as well as investigating semigroups with the help of computers. This thesis explores

both sides of computational semigroup theory, across several topics, especially in the finite case.

The central focus of this thesis is computing and describing maximal subsemigroups of finite

semigroups. A maximal subsemigroup of a semigroup is a proper subsemigroup that is contained

in no other proper subsemigroup. We present novel and useful algorithms for computing the

maximal subsemigroups of an arbitrary finite semigroup, building on the paper of Graham,

Graham, and Rhodes from 1968. In certain cases, the algorithms reduce to computing maximal

subgroups of finite groups, and analysing graphs that capture information about the regular

J -classes of a semigroup. We use the framework underpinning these algorithms to describe the

maximal subsemigroups of many families of finite transformation and diagram monoids. This

reproduces and greatly extends a large amount of existing work in the literature, and allows us

to easily see the common features between these maximal subsemigroups.

This thesis is also concerned with direct products of semigroups, and with a special class of

semigroups known as Rees 0-matrix semigroups. We extend known results concerning the gen-

erating sets of direct products of semigroups; in doing so, we propose techniques for computing

relatively small generating sets for certain kinds of direct products. Additionally, we charac-

terise several features of Rees 0-matrix semigroups in terms of their underlying semigroups and

matrices, such as their Green’s relations and generating sets, and whether they are inverse. In

doing so, we suggest new methods for computing Rees 0-matrix semigroups.

7



8



Contents

Preface 15

1 Introduction 19

1.1 Sets, relations, and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Graphs and digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Groups and semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.1 Subsemigroups, ideals, and generation . . . . . . . . . . . . . . . . . . . . 24

1.3.2 Rees 0-matrix semigroups and completely 0-simple semigroups . . . . . . 25

1.3.3 Green’s relations and regularity . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.4 Group theory and group actions . . . . . . . . . . . . . . . . . . . . . . . 29

1.3.5 Semigroups of partial transformations . . . . . . . . . . . . . . . . . . . . 30

1.4 Computational semigroup theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4.1 Algorithms and complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4.2 Data structures for semigroups . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4.3 Finite semigroups specified by generating sets . . . . . . . . . . . . . . . . 34

2 Generating sets for direct products of semigroups 39

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Decomposable and indecomposable elements . . . . . . . . . . . . . . . . . . . . . 42

2.3 Computing indecomposable elements and non-trivial factorizations . . . . . . . . 43

2.3.1 Corresponding features in the Semigroups package for GAP . . . . . . . 47

2.4 Arbitrary direct products of semigroups . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Two finitely generated surjective semigroups . . . . . . . . . . . . . . . . . . . . . 54

3 Rees 0-matrix semigroups over a semigroup 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Isomorphisms and normalizations of Rees 0-matrix semigroups . . . . . . 61

3.2.2 The idempotent generated subsemigroup of a Rees 0-matrix semigroup . . 64

3.3 The Green’s structure of a Rees 0-matrix semigroup . . . . . . . . . . . . . . . . 68

3.3.1 Rees 0-matrix semigroups with row- or column-regular matrices . . . . . . 70

3.4 Generating sets for Rees 0-matrix semigroups . . . . . . . . . . . . . . . . . . . . 76

3.4.1 Decomposable and indecomposable elements . . . . . . . . . . . . . . . . 78

3.4.2 Rees 0-matrix semigroups over monoids . . . . . . . . . . . . . . . . . . . 79

3.4.3 Rees 0-matrix semigroups with row- or column-regular matrices . . . . . . 80

3.5 Special kinds of Rees 0-matrix semigroups . . . . . . . . . . . . . . . . . . . . . . 81

3.5.1 Regular Rees 0-matrix semigroups . . . . . . . . . . . . . . . . . . . . . . 81

3.5.2 Rees 0-matrix monoids and inverse monoids . . . . . . . . . . . . . . . . . 83

3.5.3 Inverse Rees 0-matrix semigroups . . . . . . . . . . . . . . . . . . . . . . . 84

4 Computing maximal subsemigroups of a finite semigroup 91

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 The form of a maximal subsemigroup . . . . . . . . . . . . . . . . . . . . . . . . 93

9



4.3 Finite regular Rees 0-matrix semigroups over groups . . . . . . . . . . . . . . . . 96

4.3.1 Maximal subsemigroups of types (R1) and (R2) . . . . . . . . . . . . . . . 98

4.3.2 Maximal subsemigroups of types (R3) and (R4) . . . . . . . . . . . . . . . 98

4.3.3 Maximal subsemigroups of type (R5) . . . . . . . . . . . . . . . . . . . . . 100

4.3.4 Maximal subsemigroups of type (R6) . . . . . . . . . . . . . . . . . . . . . 101

4.3.5 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3.6 Maximal subsemigroups of type (R6) that contain a given set . . . . . . . 110

4.4 Arbitrary finite semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4.1 Maximal subsemigroups that intersect every H -class: (M1) . . . . . . . . 115

4.4.2 Graphs and digraphs for regular J -classes . . . . . . . . . . . . . . . . . 118

4.4.3 Maximal subsemigroups that are unions of L - and R-classes: (M2) . . . 122

4.4.4 Maximal subsemigroups that are unions of L - or R-classes: (M3)–(M4) . 125

4.4.5 Maximal subsemigroups by removing a J -class: (M5) . . . . . . . . . . . 127

4.5 Arbitrary finite monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.5.1 Maximal subsemigroups from the group of units . . . . . . . . . . . . . . 129

4.5.2 Maximal subsemigroups from a J -class covered by the group of units . . 130

4.6 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.6.1 Relevant functionality in the Semigroups package for GAP . . . . . . . 137

4.6.2 Performance measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5 Maximal subsemigroups of finite transformation and diagram monoids 145

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.1.1 Maximal subgroups of cyclic, dihedral, and symmetric groups . . . . . . . 146

5.2 Partial transformation monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.2.3 PTn, Tn, and In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.2.4 POn and PODn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.2.5 On and ODn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.2.6 POIn and PODIn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.2.7 POPn, PORn, OPn, and ORn . . . . . . . . . . . . . . . . . . . . . . . . 161

5.2.8 POPIn and PORIn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.3 Diagram monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.3.3 The partition monoid Pn . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.3.4 The Brauer monoid Bn and the uniform block bijection monoid Fn . . . . 170

5.3.5 The partial Brauer monoid PBn . . . . . . . . . . . . . . . . . . . . . . . 171

5.3.6 The dual symmetric inverse monoid I∗n . . . . . . . . . . . . . . . . . . . . 172

5.3.7 The Jones monoid Jn and the annular Jones monoid AJn . . . . . . . . . 173

5.3.8 The Motzkin monoid Mn . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.4 Table of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A Open problems 181

Bibliography 183

Table of notation 191

Index 195

10



List of algorithms

1.17 Test membership in a list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.21 Naively compute the right Cayley digraph of a finite semigroup . . . . . . . . . . 36

2.11 Indecomposable elements in a finite semigroup via the Green’s structure . . . . . 44

2.12 Non-trivial factorizations and indecomposable elements from a Cayley digraph . 45

2.13 Non-trivial factorizations and indecomposable elements using techniques from [37] 46

3.12 Compute the idempotent generated subsemigroup of M 0[G; I, Λ; P ] . . . . . . . 67

3.31 Compute whether a finite Rees 0-matrix semigroup has a row-regular matrix . . 74

3.67 Compute whether a finite Rees 0-matrix semigroup is inverse . . . . . . . . . . . 87

4.16 Maximal subsemigroups of a regular Rees 0-matrix semigroup that have type (R3)100

4.32 Maximal subsemigroups of a regular Rees 0-matrix semigroup that have type (R6)107

4.44 Maximal subsemigroups of type (R6) that contain a given set . . . . . . . . . . . 113

4.86 Maximal subsemigroups of an arbitrary finite semigroup . . . . . . . . . . . . . . 136

11



List of figures

1.1 An example of a graph with 7 vertices and 6 edges . . . . . . . . . . . . . . . . . 21

1.2 An example of a digraph with 7 vertices and 10 edges . . . . . . . . . . . . . . . 21

1.9 Containment of the Green’s relations on a semigroup . . . . . . . . . . . . . . . . 27

1.20 A right Cayley digraph of the semigroup with four elements defined in Table 1.19 35

3.10 The Graham-Houghton graph and spanning forest from Example 3.9 . . . . . . . 66

4.15 The Graham-Houghton graph from Example 4.14 . . . . . . . . . . . . . . . . . . 99

4.37 The Graham-Houghton graph of the semigroup from Section 4.3.5 . . . . . . . . 109

4.53 The digraphs ΓL (S, J) and ΓR(S, J) from Example 4.52 . . . . . . . . . . . . . . 119

4.54 The graph ∆(S, J) from Example 4.52 . . . . . . . . . . . . . . . . . . . . . . . . 120

4.55 The graph Θ(S, J) from Example 4.52 . . . . . . . . . . . . . . . . . . . . . . . . 120

4.89 Experiment: computing the maximal subsemigroups of Tn . . . . . . . . . . . . . 140

4.90 Experiment: computing the maximal subsemigroups of PORIn . . . . . . . . . . 141

4.91 Experiment: computing the maximal subsemigroups of Jn . . . . . . . . . . . . 142

4.92 Experiment: computing maximal subsemigroups of random subsemigroups of T9 143

4.93 Experiment: computing maximal subsemigroups of Rees 0-matrix semigroups . . 144

5.9 The graph ∆(PTn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.10 The graph ∆(Tn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.11 The graph ∆(In) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.15 The graph ∆(POn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.16 The graph ∆(PODn), when n is odd . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.17 The graph ∆(PODn), when n is even . . . . . . . . . . . . . . . . . . . . . . . . 154

5.20 The graph ∆(On) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.21 The graph ∆(ODn), when n is odd . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.22 The graph ∆(ODn), when n is even . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.41 Containment of the diagram monoids from Section 5.3 . . . . . . . . . . . . . . . 167

5.46 The graph ∆(Pn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.52 The graph ∆(Jn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

12



List of tables

1.19 The multiplication table of a semigroup with four elements . . . . . . . . . . . . 33

4.88 Information about 100 subsemigroups of T9 analysed in Figure 4.92 . . . . . . . . 139

5.3 Composition of order/orientation-preserving/reversing partial transformations . . 147

5.8 The numbers of maximal subsemigroups of PTn, Tn, and In . . . . . . . . . . . . 151

5.14 The numbers of maximal subsemigroups of POn and PODn . . . . . . . . . . . . 154

5.28 The numbers of maximal subsemigroups of On and ODn . . . . . . . . . . . . . . 159

5.31 The numbers of maximal subsemigroups of POIn and PODIn . . . . . . . . . . 160

5.34 The numbers of maximal subsemigroups of POPn, OPn, PORn, and ORn . . . 163

5.37 The numbers of maximal subsemigroups of POPIn and PORIn . . . . . . . . . 164

5.51 The numbers of maximal subsemigroups of Pn, PBn, Bn, Fn, and I∗n . . . . . . . 172

5.59 The numbers of maximal subsemigroups of Jn and AJn . . . . . . . . . . . . . . 176

5.61 The number of maximal subsemigroups of Mn . . . . . . . . . . . . . . . . . . . 177

5.62 A selection of the results of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . 179

13



14



Preface

The overarching theme of this thesis is computational semigroup theory , which includes both

the study of semigroups via computers, and the development of the theoretical results and tools

that facilitate this study. These aspects reinforce each other: the development of better tools

enables a more diverse range of computations, whilst experimentation with computers assists

the identification of further advances in semigroup theory. This thesis contains elements of both

of these aspects of computational semigroup theory.

The use of computers is well-established in many branches of mathematics, especially in ap-

plied mathematics and statistics. Software can be employed to solve equations, model systems,

perform simulations, and analyse data. This should not be surprising, since computers are

inherently mathematical machines. The fundamental utility of computers is that they perform

calculations that are far too difficult or time-consuming for a human to perform. Moreover,

given correct programming, computers are essentially guaranteed to give correct results.

In addition, computers are increasingly being used for pure mathematical research, in areas

such as semigroup theory. For example, the Semigroups [101] and Digraphs [10] packages

for GAP [58] can be used to visualise particular features of a finite semigroup, such as the

egg-box diagram of a D-class, the Hasse diagram of its partial order of J -classes, or a picture

of its Cayley digraphs. For those researchers, teachers, or students who ‘think in pictures’, as

in [64, p. xii], these kinds of visualisations are especially valuable.

Crucially, mathematical software for semigroups allows a researcher to construct and anal-

yse examples of semigroups in far greater number, and of far greater complexity, than would

be possible to consider otherwise. Software can be used in this way to produce instructive

examples to include in a paper or talk, for instance, or to demonstrate concepts to a collab-

orator or student. By performing computational experiments on a wide range of examples, a

mathematician can learn about the properties of various semigroups, and perhaps spot patterns

and develop conjectures, or find counterexamples to pre-existing conjectures. Several results

in Chapter 5 were first observed in this way. This kind of computational experimentation is

particularly powerful when conducted in combination with pre-computed libraries of data. For

example, the Smallsemi [32] package for GAP contains information about every semigroup

(up to isomorphism and anti-isomorphism) containing at most 8 elements, and can be used

to exhaustively search through these semigroups. Similar applications exist in many other

branches of pure mathematics.

When computing with semigroups, there is often an ‘obvious’ way of computing a prop-

erty, but this is rarely the most appropriate way. Roughly speaking, one of the main aims of

theoretical research in computational semigroup theory is to exploit the structural properties

of a semigroup to reformulate a certain problem in terms of features that are more feasible

to compute. As a very straightforward example, consider the problem of deciding whether a

finite semigroup is commutative. By definition, a semigroup S is commutative if and only if

xy = yx for all x, y ∈ S. It follows that an algorithm that directly applies the definition to

test the commutativity of a finite semigroup S would perform |S|(|S| − 1) multiplications in

the worst case. However, a semigroup is commutative if and only if its generators commute,

and a semigroup S is often defined by a generating set X that contains far fewer elements than

S. In such cases, the commutativity of S can be tested by performing at most |X|(|X| − 1)

15



16 Computational techniques in finite semigroup theory

multiplications, which can be accomplished much more quickly.

Computational semigroup theory is closely related to computational group theory , which

is defined analogously. This is a much more mature area of research: many books have been

published on the topic of computational group theory in the last few decades [73, 118, 119],

whereas there are none, as yet, on the topic of computational semigroup theory. Since every

group is a semigroup, it might appear on first glance that computational semigroup theory

encompasses computational group theory. However, as with the more general branches of

group theory and semigroup theory themselves, these topics are distinct, although linked. In

semigroup theory, we consider a particular problem to be solved if it can be reduced to a problem

in group theory. However, many other problems in semigroup theory turn out to be solved via

a reduction to a combinatorial problem, or to a graph-theoretic problem. We take the same

approach when computing with semigroups: for example, the techniques that we present in

Chapter 4 for computing maximal subsemigroups reduce, in some cases, to computing maximal

subgroups in groups, or to computing maximal cliques in graphs. In this thesis, we regard

algorithms in computational group theory as being given, and we do not concern ourselves with

their inner workings.

Some of the earliest research on the topic of computing with semigroups was that of

Forsythe [53], who enumerated the 126 semigroups of order 4 with the help of a computer,

followed by that of Cannon [18, 19] and Perrot [106]. In the subsequent decades, researchers

have continued to study semigroups with the use of computers and study techniques for com-

puting with semigroups. This has led to the development and publication of a range of soft-

ware, with diverse approaches and foci. There are numerous stand-alone pieces of software

for computing with semigroups, such as AUTOMATE [21]; Semigroupe [107] (which imple-

ments the techniques described in [54]); libsemigroups [102]; and SgpWin [99]. The major

computer algebra systems, like GAP [58], Magma [13], and SageMath [122], include some

functionality for semigroups, which is supplemented by specialised packages such as the Nu-

mericalSgps [24], kbmag [72], Smallsemi [32], and Semigroups [101] packages for GAP,

for instance. Computer code implementing some of the ideas of the second, third, and fourth

chapters of this thesis is available in the current version, or in an upcoming version, of the

Semigroups package for GAP; most of the examples contained in this thesis were constructed

by the use of the Semigroups package; and many of the ideas presented herein arose through

experimentation with this software.

We briefly summarise the contents of this thesis. In Chapter 1, we give the necessary

definitions, notions, and preliminary results that are required in the thesis.

In Chapter 2, we consider generating sets for direct products of semigroups from the per-

spective of computation, building on several results from the literature. More specifically, we

describe generating sets, for arbitrary direct products of semigroups, that do not necessarily

contain every element of the direct product. We also discuss techniques for directly computing

generating sets of this kind in the case that the direct product is finitely generated and the

factors are either finite or finitely presented. The crucial step in this procedure is an algorithm

to find a non-trivial factorization of an element over some generating set, or to prove that none

exists. The main ideas presented in this chapter, in the case of direct products of finite semi-

groups, have been implemented in the development version of the Semigroups [101] package

for GAP [58], and will be included in an upcoming released version.

In Chapter 3, we present results relating to the computation of Rees 0-matrix semigroups,

particularly those that are finite. There are well-established techniques for computing with

finite regular Rees 0-matrix semigroups over groups. However, a Rees 0-matrix semigroup may

be defined over an arbitrary semigroup, and there is far less research on the topic of computing

with Rees 0-matrix semigroups over semigroups that are not groups. We characterise certain
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features and properties Rees 0-matrix semigroups in terms of their matrices and underlying

semigroups. Given the ability to compute with the underlying semigroups, we discuss how

these characterisations may be used to compute whether a Rees 0-matrix semigroup is inverse

or regular, or to determine generating sets or the Green’s structure in certain cases.

We focus on maximal subsemigroups of finite semigroups in the remainder of the thesis.

Much of the research detailed in these chapters has been published in two research papers [35,45]

in Journal of Algebra, in collaboration with several co-authors, but is more fully exposited here.

In Chapter 4, we put forth an algorithm for computing maximal subsemigroups in an arbi-

trary finite semigroup, building on the description of maximal subsemigroups given by Graham,

Graham, and Rhodes in [61]. In order to do so, we first describe algorithms for computing max-

imal subsemigroups of an arbitrary finite regular Rees 0-matrix semigroup over a group. The

algorithms described in this chapter are fully implemented in the Semigroups package for

GAP. We also deduce theoretical results from the general solution that allow us to describe

certain maximal subsemigroups of finite monoids.

In Chapter 5, we exploit the techniques described in Chapter 4 in order to describe and count

the maximal subsemigroups of a wide range of families of finite transformation and diagram

monoids. In particular, we describe the maximal subsemigroups of many monoids of order- or

orientation-preserving or -reversing partial transformations, along with the maximal subsemi-

groups of the Motzkin, Brauer, Jones and partition monoids, and several further monoids. This

work unifies and greatly extends many results in the literature concerning the maximal subsemi-

groups of particular transformation semigroups. Many of the results presented in Chapter 5

arose through experimentation with the Semigroups package for GAP.

Several open problems are posed throughout the main text of this thesis; they are collected

in Appendix A for easy reference. In order to aid the reader, a table of notation is included

at the end of this thesis on page 191, along with an index on page 195. In the original digital

version of this document, many instances of notation serve as hyperlinks to their corresponding

entries in the table of notation.
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Chapter 1

Introduction

The purpose of this chapter is to introduce the standard ideas, definitions, and results that are

used throughout this thesis. We introduce additional and more specialised notions in situ when

it is more appropriate to do so.

1.1 Sets, relations, and functions

A partition P of a set X is a set of non-empty pairwise-disjoint subsets of X, called parts,

whose union is X. If P is a partition of a set X, then a transversal of P is a subset of X that

contains exactly one element from each part of P.

The Cartesian product of an ordered list of sets X1, X2, . . . , Xn is the set of n-tuples

X1 ×X2 × · · · ×Xn =
{

(x1, x2, . . . , xn) : xi ∈ Xi for all i ∈ {1, . . . , n}
}
.

A relation is just a subset of the Cartesian product X×Y , for some sets X and Y . Let ρ ⊆ X×Y
be a relation. If x ∈ X and y ∈ Y , then we often write x ρ y to denote that (x, y) ∈ ρ; this

is particularly common for partial orders, and for the Green’s relations on a semigroup, which

are defined later. The inverse of ρ, denoted ρ−1, is the relation
{

(y, x) : (x, y) ∈ ρ
}
⊆ Y ×X.

If τ ⊆ Y × Z is a relation, then the composition of ρ and τ is the relation

ρ ◦ τ =
{

(x, z) ∈ X × Z : (x, y) ∈ ρ and (y, z) ∈ τ for some y ∈ Y
}
.

A relation on a set X is a subset of X ×X. Let X be a set and let ρ be a relation on X.

Then ρ is reflexive if {(x, x) : x ∈ X} ⊆ ρ, ρ is symmetric if ρ = ρ−1, ρ is antisymmetric if

ρ ∩ ρ−1 ⊆ {(x, x) : x ∈ X}, and ρ is transitive if ρ ◦ ρ ⊆ ρ.

An equivalence relation, or an equivalence, is a relation on a set that is reflexive, symmetric,

and transitive. If ρ is an equivalence on the set X, then the equivalence class of a point x ∈ X
is the set {y ∈ X : (x, y) ∈ ρ}. The equivalence classes of an equivalence relation on a set form

a partition of that set. If Y ⊆ X is a union of equivalence classes of some equivalence ρ on X,

then we denote the set of these classes by Y/ρ.

A partial order on a set is a relation on the set that is reflexive, antisymmetric, and transitive.

A partially-ordered set is a set with a partial order; unless otherwise specified, the partial order

is denoted by ≤. When using the symbol ≤ for a partial order, as usual we write x < y to

denote that x ≤ y and x 6= y. Let X be a partially-ordered set, and let x, y ∈ X. We say that

x is less than y, and that y is greater than x, if x < y. A point x ∈ X is maximal if x ≤ y

implies that x = y, for all y ∈ X, and x is minimal if y ≤ x implies that x = y, for all y ∈ X.

A partially-ordered set may contain multiple maximal or minimal elements, or, when the set is

infinite, possibly none. If x < y and there is no element z ∈ X such that x < z < y, then we

say that x is covered by y in the partial order.

19
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In this thesis, |X| denotes the cardinality of the set X, and ∅ denotes the empty set; Z
denotes the integers, N = {1, 2, 3, . . .} is the set of natural numbers, and N0 is the set of

non-negative integers N ∪ {0} = {0, 1, 2, 3, . . .}. For a real number x, dxe denotes the least

integer greater than or equal to x, and bxc denotes the greatest integer less than or equal to x.

Let X and Y be sets. A partial function f : X −→ Y is a subset of the Cartesian product

X × Y where, for any x ∈ X, there is at most one y ∈ Y such that (x, y) ∈ f . In particular, a

partial function is a relation. The domain of a partial function f : X −→ Y is the set

dom(f) =
{
x ∈ X : (x, y) ∈ f for some y ∈ Y

}
⊆ X.

If x ∈ dom(f), then the image of x under f is the unique y ∈ Y such that (x, y) ∈ f . We most

commonly write a partial function to the right of its arguments, so that (x)f , or simply xf ,

denotes the image of x under f . The image of f is the set

im(f) =
{
xf : x ∈ dom(f)

}
⊆ Y,

and the kernel of f is the equivalence on dom(f) given by

ker(f) =
{

(x1, x2) ∈ dom(f)× dom(f) : x1f = x2f
}
.

A partial function f : X −→ Y is injective if its inverse relation f−1 defines a partial

function Y −→ X, which we call the inverse of f . A partial function f : X −→ Y is surjective

if im(f) = Y , and f is a function if dom(f) = X. Another name for a function is an operation.

A function is bijective, and is called a bijection, when it is both injective and surjective.

Let f : X −→ Y and g : Y −→ Z be partial functions. The composition of f and g, denoted

f ◦ g, or more usually fg, is the partial function X −→ Z given by the composition of f and g

as relations. In particular, if f and g are functions and x ∈ X, then (x)fg = (xf)g. Note that

we compose functions from left to right.

A partial transformation is a partial function {1, . . . , n} −→ {1, . . . , n}, for some n ∈ N.

The degree of a partial transformation {1, . . . , n} −→ {1, . . . , n} is n. If α is a partial trans-

formation of degree n, then we define rank(α), the rank of α, to be |im(α)|. A transformation

is a partial transformation that is a function, and a permutation is a bijective transformation.

A partial permutation is an injective partial transformation.

We may write a partial transformation of degree n in two-line notation. This uses a 2× n
matrix, where the ith entry in the first row contains the number i, and the ith entry in the

second row contains if when i ∈ dom(f), otherwise it contains a dash. For example, if f is

the partial transformation of degree 8 whose domain is {2, 4, 6, 8}, and where if = i/2 for any

i ∈ dom(f), then f is written in two-line notation as

f =

(
1 2 3 4 5 6 7 8

− 1 − 2 − 3 − 4

)
.

Furthermore, we often write permutations in disjoint cycle notation; see [77, Chapter 1] for a

definition of this notation, and for the standard terminology relating to permutations.

1.2 Graphs and digraphs

A graph is a pair (V, E), where V is any set of vertices, and E is a set of 2-subsets of V , called

edges. Let Γ = (V, E) be a graph, and let u, v ∈ V be distinct vertices of Γ. We say that u

is adjacent to v, and vice versa, and that u and v are adjacent , when {u, v} ∈ E. A vertex u
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is a neighbour of a vertex v if u and v are adjacent. The degree of a vertex is the number of

neighbours that it has; a vertex in a graph with degree 0 is isolated .

A clique of a graph is a set of mutually adjacent vertices, and an independent subset is a set

of mutually non-adjacent vertices. The cliques of a graph are partially-ordered by inclusion, as

are the independent subsets. Thus a clique of a graph is maximal if it is properly contained in no

clique of the graph and, similarly, an independent subset is maximal if it is properly contained

in no independent subset of the graph. A graph is bipartite if its vertices can be partitioned

into two independent subsets. A graph (V, E) is a complete bipartite graph if {U ′, V ′} is a

partition of V , and E =
{
{u, v} : u ∈ U ′ and v ∈ V ′

}
.

1

2

34
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6

7

Figure 1.1: Let V = {1, . . . , 7}, and let E = {{1, 2}, {2, 7}, {3, 7}, {5, 6}, {5, 7}, {6, 7}}.
This figure gives a visualisation of the graph (V, E), which has seven vertices and six edges. The

set of neighbours of the vertex 7 is {2, 3, 5, 6}, and so it has degree 4. The vertex 4 is isolated.

The pair {5, 6} is a clique, however it is not a maximal clique, since it is properly contained in

the maximal clique {5, 6, 7}. The set {1, 3, 4, 5} is a maximal independent subset.

A digraph is a pair (V, E), consisting of a set of vertices V , and a set of edges E ⊆ V × V .

In other words, the set of edges of a digraph is a relation on the set of vertices. Let (u, v) be an

edge of a digraph. Then v is an out-neighbour of u, and u is an in-neighbour of v, and the edge

is a loop if u = v. A sink is a vertex in a digraph with no out-neighbours, and a source is a

vertex in a digraph with no in-neighbours. A colouring of a graph or digraph (V, E) is simply

a function V −→ Z.
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Figure 1.2: Let E = {(1, 6), (2, 2), (2, 7), (2, 4), (4, 7), (5, 6), (5, 7), (6, 1), (6, 7), (7, 1)},
and let Γ = ({1, . . . , 7}, E). Then Γ is a digraph with seven vertices and ten edges. The

in-neighbours of the vertex 6 are 1 and 5, and the out-neighbours are 1 and 7. The vertices

3, 4, and 5 are sources of Γ, and 3 is the only sink. There is a single loop in Γ, at vertex 2.

A path in a graph (V, E) is a finite non-trivial sequence (v0, . . . , vn), for some n ∈ N, where

vi ∈ V for all i ∈ {0, 1, . . . , n}, and {vi−1, vi} ∈ E for all i ∈ {1, . . . , n}. A path in a digraph

is defined analogously. If (v0, . . . , vn) is a path in a graph or digraph, then the path is said
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to be a path from v0 to vn. A vertex v is reachable from a vertex u in a graph or digraph Γ if

either u = v, or there exists a path from u to v in Γ. A cycle is a path from a vertex to itself.

The length of the path or cycle (v0, . . . , vn) is n.

Two vertices of a graph are contained in the same connected component of the graph if one

is reachable from the other, and two vertices of a digraph are contained in the same strongly

connected component if one is reachable from the other, and vice versa. The vertex set of the

graph or digraph is partitioned by its connected components or strongly connected components,

respectively. A graph is connected if its vertices form a single connected component, and a

digraph is strongly connected if it has a single strongly connected component. A graph without

cycles is called a forest , and a connected forest is called a tree. A digraph without cycles is

acyclic. Let Γ = (V, E) be a graph. A spanning forest of Γ is any forest Γ′ = (V, E′), such that

E′ ⊆ E and such that the connected components of Γ′ coincide with those of Γ. Any spanning

forest of Γ has |V |−n edges, where n is the number of connected components of Γ. A spanning

tree is a spanning forest of a connected graph.

Example 1.3. Let Γ = (V, E) be the graph defined in Figure 1.1. Then (1, 2, 7, 5, 6) is a

path from 1 to 6 in Γ, and the path (5, 6, 7, 5) is a cycle in Γ. No vertex other than 4 itself

is reachable from the vertex 4. The two connected components of Γ are {4} and V \ {4}. If

E′ = E \ {{5, 6}}, then the graph (V, E′) is a spanning forest of Γ.

Example 1.4. Let ∆ = (V, E) be the digraph defined in Figure 1.2. Then (4, 2, 7, 1, 6) is a

path in ∆ from 4 to 6, and so 6 is reachable from 4 in ∆. However, 4 is not reachable from 6,

and so 4 and 6 are contained in different strongly connected components of ∆. The strongly

connected components of ∆ are {1, 6, 7}, and the singletons {2}, {3}, {4}, and {5}. The paths

(2, 2) and (1, 6, 1) are cycles, and so ∆ is not acyclic.

Let Γ = (V, E) be a graph. The complement of Γ is the graph with vertices V and edges{
{u, v} : u, v ∈ V, u 6= v, and {u, v} /∈ E

}
.

Thus a clique of a graph is an independent subset of the complement, and an independent

subset is a clique of the complement. If V ′ ⊆ V , then the induced subgraph of Γ on V ′ is the

graph
(
V ′,

{
{u, v} ∈ E : u, v ∈ V ′

})
. If P is a partition of V , then the quotient of Γ by P is

the graph with vertex set P, where two distinct parts A,B ∈ P are adjacent in the quotient

if and only if there exists u ∈ A and v ∈ B such that {u, v} ∈ E. An isomorphism from a

graph (V, E) to a graph (V ′, E′) is a bijection φ : V −→ V ′, where {u, v} ∈ E if and only

if {uφ, vφ} ∈ E′, for all u, v ∈ V . The complement , induced subdigraph, and quotient of a

digraph, and isomorphisms between digraphs, are defined analogously.

1.3 Groups and semigroups

In this section, we introduce the notation, definitions, and terminology from semigroup theory

and group theory that we require in this thesis. We predominantly follow the notation of [76],

which is prevalent in the literature. Throughout this thesis, we tend to refer the reader to [76,

110] for proofs of standard results, although there are many other well-regarded introductory

books on semigroup theory, such as [22,67,71].

A semigroup is a set S with an associative operation S×S −→ S. The order of a semigroup

is its cardinality. Examples of semigroups include the real numbers R with their usual multipli-

cation, the set of all n×n (for some n ∈ N) matrices over a semiring with matrix multiplication,

and the set of all relations on a set with composition of relations.
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Unless otherwise stated, the associative operation is denoted by juxtaposition; more pre-

cisely, for elements x, y ∈ S, the juxtaposition xy of x and y denotes the image of the pair

(x, y) under the operation. We often use the terminology of multiplication for such images. For

example, xy is often referred to as the product of the elements x and y, and a subset A of S is

closed under multiplication if ab ∈ A for all a, b ∈ A. A semigroup S is commutative if xy = yx

for all x, y ∈ S. Associativity is the property that

(xy)z = x(yz) for all x, y, z ∈ S.

Because a semigroup is associative, we may unambiguously form the product of any finite

number of elements in a semigroup. If x ∈ S and k ∈ N, then xk denotes the product x · · ·x︸ ︷︷ ︸
k times

.

A homomorphism between semigroups S and T is a function S −→ T that preserves the

multiplication of S. In other words, a homomorphism is a function φ : S −→ T that satisfies

(xy)φ = (xφ)(yφ) for all x, y ∈ S. An anti-homomorphism is a function that reverses the

multiplication of S. An isomorphism of semigroups is a bijective homomorphism, and two

semigroups S and T are isomorphic if there is an isomorphism between them; in this case, we

write S ∼= T . An anti-isomorphism is a bijective anti-homomorphism. Isomorphic semigroups

have the same semigroup-theoretic properties; anti-isomorphic semigroups are left-right duals

of each other. An injective homomorphism is called an embedding ; if S and T and semigroups

and φ : S −→ T is an embedding, then S ∼= imφ.

An equivalence ρ on a semigroup S is a left congruence if it is compatible with left multipli-

cation (i.e. (sx, sy) ∈ ρ for all (x, y) ∈ ρ and s ∈ S), a right congruence if it is compatible with

right multiplication, and a congruence if it is both a left congruence and a right congruence.

Given a semigroup S and a congruence ρ on S, we may form the quotient semigroup S/ρ of

S by ρ. This consists of the equivalence classes of ρ, where the product of A,B ∈ S/ρ is the

equivalence class that contains ab, where a ∈ A and b ∈ B are arbitrary.

Let X be any set. The free semigroup over X, denoted X+, is the semigroup consisting of

all non-empty sequences over X with the operation of concatenation. A semigroup presentation

is a pair 〈X |R〉, where X is a set of generators, and R is a subset of X+×X+, called relations.

The semigroup defined by a presentation 〈X |R〉 is the quotient X+/ρ, where ρ is the least

congruence on X+ (with respect to containment) that contains R. When X and R are both

finite, the semigroup defined by 〈X |R〉 is called a finitely presented semigroup.

We name many kinds of semigroups and semigroup elements; see [104] for a comprehensive

description of special kinds of semigroup. An element x of a semigroup is idempotent , and is

called an idempotent, if x2 = x (that is, idempotent is both an adjective and a noun). Every

finite semigroup contains an idempotent, but the natural numbers with addition is an example

of an infinite semigroup that contains no idempotents. The set of idempotents contained in a

subset X of a semigroup is denoted by E(X). A semigroup in which every element is idempotent

is called a band .

A multiplicative zero of a semigroup S, often just called a zero of S, is an element 0 ∈ S
such that 0x = 0 = x0 for all x ∈ S. We use the notation 0S to denote the multiplicative zero

of the semigroup S, provided that it has one. A zero semigroup is a semigroup S with zero such

that xy = 0S for all x, y ∈ S. A left identity of a semigroup S is an element e ∈ S such that

ex = x for all x ∈ S, and a right identity of S is defined analogously. A semigroup in which

every element is a left identity is called a right zero semigroup, and a semigroup in which every

element is a right identity is called a left zero semigroup. An identity is an element that is both

a left identity and a right identity. Note that multiplicative zeroes, and left and right identities,

are idempotent, and that a semigroup contains at most one zero and at most one identity. Let

S be a semigroup and let x ∈ S. If s ∈ S satisfies sx = x, then s is a relative left identity for x,
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and if xs = x, then s is a relative right identity for x. Such an element need not be idempotent.

If S is a semigroup, then we denote by S0 the semigroup S ∪ {0}, where 0 is a new element

not contained in S, and the multiplication on S is extended to a multiplication on S0 by defining

0x = 0 = x0 for all x ∈ S0. In other words, 0 is a multiplicative zero for S0. We call S0 the

semigroup formed by adjoining a zero to S.

A semigroup that contains an identity is called a monoid . To any semigroup S we associate

the monoid S1. If S is itself a monoid, then we define S1 = S. On the other hand, if S does

not contain an identity, then we adjoin a new element 1S , and we extend the multiplication on

S to a multiplication on S1 = S ∪ {1S} by defining 1Sx = x = x1S for all x ∈ S1. For any

semigroup S, we write 1S to denote the identity of the monoid S1. Let S be a monoid. An

element u ∈ S is a unit of S if there exists some (necessarily unique) inverse element u−1 ∈ S
such that uu−1 = 1S = u−1u. A monoid in which every element is a unit is called a group. The

subset of units in a monoid is a group, and is called the group of units of the monoid.

1.3.1 Subsemigroups, ideals, and generation

Let S be a semigroup, and let A and B be subsets of S. We denote the set product of A

and B by AB = {ab : a ∈ A and b ∈ B}. If x ∈ S, then xA denotes {x}A and Ax denotes

A{x}. This notation can be extended to the product of an arbitrary finite number of sets and

elements in an obvious way. For example, if A,B ⊆ S and x ∈ S, then AxB denotes the set

{axb : a ∈ A, b ∈ B}. In this thesis, we say that a semigroup is surjective if S = S2.

A subsemigroup of a semigroup is a subset that is closed under the same multiplication, i.e.

a subset T such that T 2 ⊆ T . If U and V are subsets of a semigroup, then we write U ≤ V to

denote that U is a subsemigroup of V . A submonoid of a semigroup is a subsemigroup that is

itself a monoid, and a subgroup of a semigroup is any subsemigroup that is itself a group.

Let X be any subset of a semigroup S. The subsemigroup of S generated by X, denoted

〈X〉, is the intersection of all subsemigroups of S that contain X. Equivalently, 〈X〉 is the least

subsemigroup of S, with respect to the partial order defined by containment, that contains X,

and it consists of all finite products of elements in X. The set X is said to be a generating

set for 〈X〉. If X1, X2, . . . , Xm is any collection of subsets of S, and x1, x2, . . . , xn is any

collection of elements of S, then we use the notation 〈X1, X2, . . . , Xm, x1, x2, . . . , xn〉, or

some rearrangement of this, for the subsemigroup of S generated by the union

X1 ∪X2 ∪ · · · ∪Xm ∪ {x1, x2, . . . , xn}.

The generating sets of a semigroup are partially ordered by containment, and the cardinalities

of the generating sets are also naturally ordered. A generating set is minimal with respect to

containment if it does not properly contain another generating set, and minimal with respect

to cardinality if its cardinality is least possible. The rank of a semigroup S, denoted rank(S),

is the least cardinality of a generating set for S, and a semigroup S is finitely generated if it

has a finite generating set, or equivalently, if rank(S) ∈ N0. A semigroup is monogenic if it has

rank 1.

Let S be a semigroup and letX ⊆ S. We write F (X) for the subsemigroup 〈E(X)〉 generated

by the idempotents in X. In particular, F (S) is the idempotent generated subsemigroup of S.

Let I be a subset of a semigroup S. Then I is a left ideal if SI ⊆ I, a right ideal if IS ⊆ I,

and a two-sided ideal , more usually called simply an ideal , if it is both a left ideal and a right

ideal. Certainly any kind of ideal is a subsemigroup. Let x ∈ S be arbitrary. The principal left

ideal generated by x is the left ideal S1x = Sx ∪ {x}, and the principal right ideal generated by

x is the right ideal xS1 = xS ∪ {x}. The principal ideal generated by x is the ideal S1xS1. If

X ⊆ S, then the ideal of S generated by X is the intersection of all ideals of S that contain X; it
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is the union of the principal ideals
{
S1xS1 : x ∈ X

}
. The left and right ideals of a semigroup

generated by a subset are defined analogously.

A subsemigroup or ideal of a semigroup is proper if it is not equal to the semigroup.

At various points throughout this thesis, we are concerned with describing generating sets

for certain semigroups, and finding upper bounds on their ranks. The following lemma, and its

subsequent corollary, will be useful in some of these cases.

Lemma 1.5. Let S be a semigroup and let X ⊆ S0. The following hold:

(i) X generates S0 if and only if X = X ′ ∪ {0}, for some generating set X ′ of S.

Moreover, if X generates S0, then

(ii) with respect to cardinality, X generates S0 minimally if and only if X \ {0} generates S

minimally; and

(iii) with respect to containment, X generates S0 minimally if and only if X \ {0} generates

S minimally.

Proof. Suppose that X generates S0, and let x ∈ S. Then x ∈ S0 = 〈X〉, and since x 6= 0, it

follows that x ∈ 〈X \ {0}〉. Therefore S = 〈X \ {0}〉, and certainly 0 ∈ X, since a product of

non-zero elements of S0 is contained in the subsemigroup S. Conversely, if S = 〈X ′〉, then

S � 〈X ′ ∪ {0}〉 ≤ S0 = S ∪ {0},

and so X ′ ∪ {0} generates S0. Therefore (i) holds.

By (i), the generating sets of S are in an inclusion-preserving one-to-one correspondence

with the generating sets of S0, via the addition or removal of 0. Therefore, it is clear that

the minimality of generating sets is preserved under this correspondence, and so (ii) and (iii)

hold.

Corollary 1.6. Let S be any semigroup. Then rank(S0) = rank(S) + 1.

1.3.2 Rees 0-matrix semigroups and completely 0-simple semigroups

A semigroup with no proper ideals is called simple, and a semigroup S is completely simple if

it is simple and there exists an idempotent e ∈ E(S) such that ef = fe = f ⇒ e = f for all

f ∈ E(S). A non-trivial semigroup with zero S is 0-simple if it is not a zero semigroup of order

2, and its only ideals are {0S} and S. A semigroup is completely 0-simple if it is 0-simple, and

there exists a non-zero idempotent e ∈ S such that, for all f ∈ E(S),

ef = fe = f 6= 0⇒ e = f.

Every finite simple semigroup is completely simple, and every finite 0-simple semigroup is

completely 0-simple, but in general these concepts are distinct.

Completely simple and completely 0-simple semigroups can be constructed as Rees matrix

and Rees 0-matrix semigroups, respectively. Let T be any semigroup, let I and Λ be non-

empty sets, and let P = (pλ,i)λ∈Λ,i∈I be a Λ× I matrix with entries in T . Then the I ×Λ Rees

matrix semigroup over T with matrix P is the semigroup M [T ; I, Λ; P ] = (I × T × Λ), with

multiplication defined by

(i, t, λ) (j, u, µ) = (i, tpλ,ju, µ) for all (i, t, λ), (j, u, µ) ∈ I × T × Λ. (1.7)
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If we instead permit the matrix P to contain entries of T 0 (i.e. P can also contain 0 as an entry),

then the I×Λ Rees 0-matrix semigroup over T with matrix P is the semigroup M [T ; I, Λ; P ] =

(I × T × Λ) ∪ {0}, with multiplication defined by

(i, t, λ) (j, u, µ) =

{
0 if pλ,j = 0,

(i, tpλ,ju, µ) if pλ,j 6= 0,

and (i, t, λ) 0 = 0 (i, t, λ) = 02 = 0,

(1.8)

for all (i, t, λ), (j, u, µ) ∈ I × T × Λ. Clearly, Rees matrix and Rees 0-matrix semigroups

are closely related; indeed, one may regard a Rees matrix semigroup M [T ; I, Λ; P ] as the

subsemigroup (I × T × Λ) of the Rees 0-matrix semigroup M 0[T ; I, Λ; P ]. This similarity

allows many results concerning Rees matrix semigroups to be deduced from corresponding

results for Rees 0-matrix semigroups.

A Rees matrix or 0-matrix semigroup M [T ; I, Λ; P ] or M 0[T ; I, Λ; P ] is finite if and only

if the underlying semigroup T and the sets I and Λ are finite. Note that the nature of the

elements of I and Λ is not relevant to the multiplication of the semigroup; I and Λ merely act

as indexing sets. Therefore we may assume without loss of generality that I ∩ Λ = ∅.

Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup. We define the Graham-Houghton

graph of S, introduced in [62,75], to be the bipartite graph
(
I ∪ Λ,

{
{i, λ} : pλ,i 6= 0

})
.

The original interest in Rees matrix and 0-matrix semigroups stems from their connection

with completely simple and completely 0-simple semigroups. By the Rees-Suschkewitsch The-

orem [76, Theorem 3.3.1], a semigroup is completely simple if and only if it is isomorphic to a

Rees matrix semigroup M [G; I, Λ; P ], where G is a group, and by the Rees Theorem [76, The-

orem 3.2.3], a semigroup is completely 0-simple if and only if it is isomorphic to a Rees 0-matrix

semigroup M 0[G; I, Λ; P ], where G is a group and P contains a non-zero entry in each row

and each column. In this thesis, when we define M 0[G; I, Λ; P ] to be a regular Rees 0-matrix

semigroup over a group, we require that G be a group and that P be a Λ × I matrix over

G0 that contains at least one non-zero entry in each of its rows and columns. We study Rees

0-matrix semigroups over arbitrary semigroups in Chapter 3.

1.3.3 Green’s relations and regularity

One of the most fundamental ways of understanding a semigroup is by analysing its Green’s

relations [66]. These are five equivalences that can be defined on any semigroup. Let S be

a semigroup. Green’s L -relation on S is defined by x L y if and only if S1x = S1y for all

x, y ∈ S. Green’s L -relation is a right congruence. Green’s R-relation is the dual of L , and

is a left congruence. Green’s H -relation is the intersection L ∩ R, and Green’s D-relation

is the composition L ◦ R, which is equal to the composition R ◦ L [76, Proposition 2.1.3].

Green’s J -relation is defined by x J y if and only if S1xS1 = S1yS1 for all x, y ∈ S. On

many kinds of semigroups, including finite semigroups, Green’s D- and J -relations are equal;

see for instance [110, Corollary A.2.5] and [76, Proposition 2.1.4]. Indeed, the Green’s relations

on any group G are all equal to G × G, and all of the Green’s relations on any commutative

semigroup coincide. Figure 1.9 shows the containment of the Green’s relations on a semigroup.

The following lemma, concerning finite semigroups, is used repeatedly in this thesis.

Lemma 1.10 ([110, Theorem A.2.4]). Let S be a finite semigroup and let x, y ∈ S1. Then

x J yx if and only if x L yx, and x J xy if and only if x R xy.

In other words, every finite semigroup is stable, in the sense of [110, Definition A.2.1].
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Figure 1.9: A Hasse diagram displaying the containment of the Green’s relations on any

semigroup. The inclusions shown here are not necessarily strict: for example, D = J on any

finite semigroup, and all of the Green’s relations on any commutative semigroup are equal.

Certainly L ⊆ J for any semigroup; by Lemma 1.10, in a finite semigroup, when a left

multiple of an element is J -related to that element, then it is also L -related. The analogous

statement holds for right multiples and Green’s R-relation.

Let S be a semigroup and let K ∈ {H , L , R, D , J } be one of Green’s relations on S.

When it is necessary to emphasise that K is defined the semigroup S, we write K S instead

of K . The semigroup S is said to be K -trivial if K is the equality relation on S, i.e. if

K = {(x, x) : x ∈ S}. Let x, y ∈ S. We say that x and y are K -related if x K y. The

K -class of x is the equivalence class of x in K . This is denoted by Kx, or occasionally by KS
x

in order to emphasise the semigroup S on which K is defined. We refer to equivalence classes

of Green’s relations as Green’s classes.

The following result, known as Green’s Lemma, is fundamental to the study of semigroups.

Lemma 1.11 (Green’s Lemma [76, Lemmas 2.2.1, 2.2.2]). Let S be a semigroup, and x, y ∈ S.

(i) If x L y, and u, v ∈ S1 satisfy ux = y and vy = x, then the functions λu : Rx −→ S and

λv : Ry −→ S, defined by aλu = ua and bλv = vb, give mutually inverse bijections from

Rx to Ry, and Ry to Rx, respectively, that preserve Green’s L -relation.

(ii) If x R y, and s, t ∈ S1 satisfy xs = y and yt = x, then the functions ρs : Lx −→ S and

ρt : Ly −→ S, defined by aρs = as and bρt = bt, give mutually inverse bijections from Lx
to Ly, and Ly to Lx, respectively, that preserve Green’s R-relation.

Let S be a semigroup. We define partial orders on the L -, R-, or J -classes of S, in terms

of containment of the corresponding left, right, or two-sided ideals. More specifically, for any

x, y ∈ S, Lx ≤ Ly if and only if S1x ⊆ S1y; Rx ≤ Ry if and only if xS1 ⊆ yS1; and Jx ≤ Jy
if and only if S1xS1 ⊆ S1yS1. The group of units of a monoid is an H -class, and in a finite

monoid the group of units is also the unique maximal J -class in the partial order of J -classes

of the monoid. We require the following lemma, which relates the partial orders of Green’s

classes of a semigroup with multiplication.

Lemma 1.12. Let S be a semigroup, and let x1, x2, . . . , xn ∈ S for some n ∈ N.

(i) If i ∈ {1, . . . , n}, then Lx1···xn ≤ Lxi···xn .

(ii) If i ∈ {1, . . . , n}, then Rx1···xn
≤ Rx1···xi

.

(iii) If i, j ∈ {1, . . . , n} and i ≤ j, then Jx1···xn
≤ Jxi···xj

.

Proof. The statements (i) and (ii) are dual, so we prove only (i) and (iii).
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(i). Let i ∈ {1, . . . , n}. Then

S1(x1 · · ·xn) = S1(x1 · · ·xi−1)(xi · · ·xn)

=
(
S1(x1 · · ·xi−1)

)
(xi · · ·xn)

⊆ S1(xi · · ·xn),

and so Lx1···xn
≤ Lxi···xn

by definition of the partial order of L -classes of S.

(iii). Let i, j ∈ {1, . . . , n} with i ≤ j. Then

S1(x1 · · ·xn)S1 = S1(x1 · · ·xi−1)(xi · · ·xj)(xj+1 · · ·xn)S1

=
(
S1(x1 · · ·xi−1)

)
(xi · · ·xj)

(
(xj+1 · · ·xn)S1

)
⊆ S1(xi · · ·xj)S1,

and the result follows by the definition of the partial order of J -classes of S.

A notion intimately connected to Green’s relations is that of regularity. An element x in

a semigroup S is regular if there exists an element y ∈ S such that xyx = x. If additionally

yxy = y, then x and y are mutually inverse. A semigroup that contains only regular elements

is called a regular semigroup. Every regular element has an inverse [76, Section 2.3]; a regular

element is D-related to all of its inverses. Any D-class, and hence any L -, R-, or H -class, of

a semigroup S contains either no regular elements, and is called non-regular , or contains only

regular elements, and is said to be regular [76, Proposition 2.3.1].

If J is a J -class of a semigroup, then the principal factor of J is the semigroup J∗ = J∪{0},
where 0 /∈ J and the multiplication ∗ on J∗ is given by

x ∗ y =

{
xy if xy ∈ J,
0 if xy /∈ J,

and 0 ∗ x = x ∗ 0 = 0 ∗ 0 = 0,

(1.13)

for all x, y ∈ J . By [76, Theorem 3.1.6], the principal factor of a J -class either is a zero

semigroup, or is 0-simple. In particular, if S is a finite semigroup and J is a J -class of S, then

either J is a non-regular D-class and J∗ is a zero semigroup, or J is a regular D-class and J∗

is isomorphic to a regular Rees 0-matrix semigroup over a group.

A regular L -class contains some idempotents [76, Propositions 2.3.1], which are relative

right identities for any of its elements, and similarly a regular R-class contains some idempo-

tents, which are relative left identities for the element of the R-class [76, Propositions 2.3.2 &

2.3.3]. An H -class that contains an idempotent is a subgroup [76, Corollary 2.2.6]; otherwise,

an H -class H satisfies H2 ∩ H = ∅ [76, Theorem 2.2.5]. In semigroup theory, a maximal

subgroup of a semigroup is an H -class of the semigroup that is a subgroup. However, this is

inconsistent with the notion of a maximal subgroup from group theory: in this context, a maxi-

mal subgroup of a group is a proper subgroup that is contained in no other proper subgroup of

the group. In this thesis, we exclusively use the term maximal subgroup in the group-theoretic

sense; we call an H -class of a semigroup that is a subgroup a group H -class.

We use the following lemma repeatedly in this thesis.

Lemma 1.14. Let T be a finite subsemigroup of a semigroup S that has non-empty intersection

with each H -class of S. Then T contains every idempotent of S.

Proof. Let e ∈ E(S), and let x ∈ T ∩HS
e be arbitrary. Since HS

e is a subgroup of S and T is

finite, it follows that x has finite order in HS
e , or in other words, e = xk ∈ T for some k ∈ N.
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Multiplication within a D-class is particularly systematic, as shown in the following results.

Lemma 1.15 ([76, Proposition 2.3.7]). Let S be a semigroup and let (x, y) ∈ DS. Then

xy ∈ Rx ∩ Ly if and only if Lx ∩Ry is a group.

Corollary 1.16. Let x and y be elements of a finite semigroup.

(i) Suppose that x R y. Then xy ∈ Rx = Ry if and only if Hx is a group.

(ii) Suppose that x L y. Then xy ∈ Lx = Ly if and only if Hy is a group.

Proof. If x R y, then Rx = Ry, and so Lemma 1.15 becomes xy ∈ Ry ∩ Ly if and only if Hx is

a group. Thus, it remains to prove that xy ∈ Ly whenever xy ∈ Ry. If xy ∈ Ry, then xy J y,

and so xy L y by Lemma 1.10. This proves (i); the proof of (ii) is dual.

Whenever an element x ∈ S has a unique inverse y, we define x−1 = y to be the inverse of x.

This notation is consistent with the notation u−1 introduced earlier for a unit u of a monoid. An

inverse semigroup is a semigroup in which each element has a unique inverse. In particular, any

group is an inverse semigroup. There are many other characterisations of inverse semigroups;

for instance, a semigroup is inverse if and only if it is regular and its idempotents commute;

which occurs if and only if each of its L -classes and each of its R-classes contains exactly one

idempotent [76, Theorem 5.1.1]. See [85] for a thorough treatment of inverse semigroups.

A regular ∗-semigroup, as introduced in [105], is a semigroup S with an operation ∗ : S −→ S

that satisfies (x∗)
∗

= x, (xy)
∗

= y∗x∗, and x = xx∗x for all x, y ∈ S. In particular, the ∗
operation is an anti-isomorphism. A regular ∗-monoid is simply a regular ∗-semigroup that is

a monoid. In Chapter 5, we describe the maximal subsemigroups of several families of finite

regular ∗-monoids. Any regular ∗-semigroup is a regular semigroup, since x∗ is an inverse of

the element x. An idempotent x of a regular ∗-semigroup is called a projection if x∗ = x. In a

regular ∗-semigroup, the R-class of an element x contains the unique projection xx∗, and the

L -class of x contains the unique projection x∗x. Since a regular ∗-semigroup is anti-isomorphic

to itself via the ∗ operation, this gives a correspondence between left multiplication and right

multiplication. In particular, if S is a regular ∗-semigroup, and x, y ∈ S, then x L y if and

only if x∗ R y∗. Since x D x∗, the number of L -classes is equal to the number of R-classes in

any D-class of a regular ∗-semigroup. Any inverse semigroup S can be thought of as a regular

∗-semigroup in which every idempotent is a projection, by defining x∗ = x−1 for all x ∈ S.

Conversely, any regular ∗-semigroup in which every idempotent is a projection is inverse.

1.3.4 Group theory and group actions

A group is a monoid consisting of units. In this thesis we require several group-theoretic notions.

If G is a group, and V is a subgroup of G, and g ∈ G, then the right coset of V in G defined by

g is the set V g. Two right cosets V g and V h of V in G are equal if and only if gh−1 ∈ V . The

right cosets of V in G,
{
V g : g ∈ G

}
, form a partition of G, and the index of V in G, denoted

[G : V ], is the number of cosets of V in G, if there are finitely many, or ∞.

Another important concept in group theory is that of conjugation. Two subgroups U and V

of a group G are conjugate if there exists g ∈ G such that g−1Ug = V . Conjugate subgroups are

isomorphic, and the collection of subgroups of a group is partitioned by its conjugacy classes.

A normal subgroup of a group is a subgroup that is closed under conjugation, i.e. a subgroup

whose conjugacy class is trivial. In any group G, the group G itself and the trivial subgroup

{1G} are normal subgroups. The normalizer of a subgroup V in a group G, denoted NG(V ),

is the least normal subgroup of G, with respect to containment, that contains V .
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If G is a group and X is a set, then a right action of G on X is a function ψ : X ×G −→ X

where (x, 1G)ψ = x and ((x, g)ψ, h)ψ = (x, gh)ψ for all x ∈ X and g, h ∈ G. We usually

write x · g instead of (x, g)ψ, when the right action ψ is clear from the context. The relation ∼
on X defined by x ∼ y if and only if x · g = y for some g ∈ G is an equivalence, since x · 1G = x,

x · g = y if and only if y · g−1 = x, and x · g = y and y · h = z implies that x · gh = z, for all

x, y, z ∈ X and g, h ∈ G. The equivalence classes of this equivalence are called orbits, and so

a right action of a group on a set partitions that set into orbits. When a right action has only

one orbit, we say that the action is transitive, and we say that the group acts transitively. A

left action of a group on a set, and its orbits, are defined analogously.

1.3.5 Semigroups of partial transformations

Composition of relations is associative, and therefore, so is composition of partial functions. It

follows that we may create semigroups from relations or partial functions on a set. Let n ∈ N.

We define PTn, the partial transformation monoid of degree n, to be the monoid consisting of

all partial transformations of degree n, with composition of partial functions. We also define

the following submonoids of PTn:

• Tn = {α ∈ PTn : dom(α) = {1, . . . , n}}, the full transformation monoid of degree n;

• In = {α ∈ PTn : |im(α)| = |dom(α)|}, the symmetric inverse monoid of degree n; and

• Sn = {α ∈ PTn : im(α) = {1, . . . , n}}, the symmetric group of degree n.

In other words, Tn consists of all transformations of degree n, In consists of all partial permu-

tations of degree n, and Sn consists of all permutations of degree n. Note that the symmetric

group Sn is the group of units of PTn, Tn, and In. We define idn, the identity permutation of

degree n, to be the identity of each of these monoids; idn fixes each point i ∈ {1, . . . , n}. Full

transformation monoids, symmetric inverse monoids, and symmetric groups can also be defined

on arbitrary sets, including on infinite sets, however these will not be required in this thesis.

By Cayley’s theorem, every group is isomorphic to a subgroup of some symmetric group;

moreover, every finite group G is isomorphic to a subgroup of S |G|. Thus, in a sense, the

study of permutation groups is the study of all groups. Semigroups of partial transformations,

especially semigroups of transformations, are similarly foundational in semigroup theory. By

an analogue of Cayley’s theorem for groups, every semigroup is isomorphic to a subsemigroup

of some full transformation monoid [76, Theorem 1.1.2]; indeed, any finite semigroup S is

isomorphic to a subsemigroup of T |S|+1. Symmetric inverse monoids play the analogous role

for inverse semigroups, by the Vagner-Preston theorem [76, Theorem 5.1.7]. In particular, any

finite semigroup can be realised by transformations of degree n, for some n ∈ N, and similarly

any finite inverse semigroup can be realised by partial permutations of some degree m. See [57]

for a detailed study of finite semigroups of partial transformations.

1.4 Computational semigroup theory

We end this chapter by introducing several additional concepts from computational semigroup

theory, in order to provide the context in which the mathematical results of this thesis are

presented. To reiterate, computational semigroup theory is both the investigation of semigroups

with the help of computers, and the development of the tools that facilitate this study. In this

section, we informally discuss the notions of algorithms, which we use to define and communicate

techniques in computation, and computational complexity, which we use to classify the efficiency
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of an algorithm. We also briefly explain some of the main paradigms used for computing with

semigroups, their aims, and their relative advantages and disadvantages.

1.4.1 Algorithms and complexity

In a casual sense, an algorithm is a method, or procedure, that describes how to solve any

instance of a particular collection of problems in a finite number of steps. In other words, an

algorithm describes a solution to a computational problem. See, for example, Algorithm 1.17,

which uses pseudocode to define an algorithm for determining whether a given number is con-

tained in a given list of numbers. A computer program is a specific implementation of an

algorithm in some programming language.

A Turing machine [126] is one of the earliest abstract models of computation. Although the

definition of a Turing machine is not important for the purposes of this thesis, this abstraction

is crucial to the foundations of computer science. According to the widely-accepted Church-

Turing thesis, Turing machines are ‘universal’ for computation: a problem that can be solved by

some computer can also be solved by a Turing machine. Viewed in this context, an algorithm

is a specification for defining a Turing machine that solves a particular problem, in such a way

that given any instance of the problem, the Turing machine will terminate with the correct

solution after a finite number of steps.

Algorithm 1.17 A simple algorithm for testing membership in a list of natural numbers.

Input: A finite list L consisting of natural numbers, and a natural number x ∈ N.

Output: true if x is an entry of L; else false.

1: for n ∈ L do

2: if n = x then

3: return true.

4: return false.

For some computational problems, numerous diverse algorithms have been developed to

solve the problem. For instance, bubble sort, insertion sort, quick sort, and merge sort are

well-known and significantly different algorithms for sorting a list into ascending order.

The execution of a computer program requires time and space (the memory used to store

intermediate results). The resources of any given computer are finite, and different algorithms

typically require differing amounts of these resources when implemented and executed: the

amount of time required by an algorithm is called its time complexity , and the amount of space

required is the space complexity. We therefore require strategies for comparing algorithms and

analysing their resource requirements. This helps us to choose the most suitable algorithm for

a particular computation, and to determine whether a new algorithm is better than an existing

one. In this thesis, we focus on the time complexity of algorithms. See [59, 128] for a much

more thorough discussion of algorithms and their complexities than the one that follows.

An obvious way to study the performance of an implementation of an algorithm is to execute

the algorithm on a carefully chosen range on inputs, and to measure the resources required to

produce the output. There are good reasons to study algorithms in this way: it is easy to do,

and it often demonstrates the real-life behaviour that a user might find in practice. Indeed,

this is the approach we take in Chapter 4 for analysing the performance of algorithms for

computing maximal subsemigroups of finite semigroups. Furthermore, by executing the same

examples with competing algorithms, it is possible to fairly compare the performance of these

algorithms on the same inputs.

However, there are problems with this approach. Perhaps, by some fluke, the algorithms
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demonstrate atypical performance on the range of examples that we choose to examine. For

many computational tasks, there are an infinite number of possible inputs, and so it is impossible

to test them all. Additionally, the specific implementation of the algorithm being tested may

be poor, leading to unsatisfactory performance that obscures the potential of the algorithm.

We therefore desire a more systematic and mathematical way of measuring and comparing

the resource requirements of algorithms. An algorithm defines a sequence of steps, each of

which has some basic time cost. Therefore, if we can calculate the number of steps that are

required for a given input, then we can use the known costs to describe the time requirements

of the algorithm in terms of its input. However, this is hard to do exactly, and so we generally

attempt to give upper bounds on the resource requirements of an algorithm, given the input.

We use big O notation [128, Chapter 1] to relate the resource requirements of an algorithm

to its inputs, and thereby to describe its time complexity. Let X be a set of elements with

some notion of size, and let f and g be functions X −→ R. We say that the function f is

O(g) if there exists a positive constant c such that 0 ≤ (x)f ≤ c · (x)g for all sufficiently large

x ∈ X. If X is the set of possible inputs to some algorithm, and g : X −→ R is a function, then

we say that the time complexity of the algorithm is O(g) if we can show that the theoretical

function f : X −→ R, describing the time required to run the algorithm on the input X, on

some computer and in some unit of measurement, is O(g). Note that we may ignore the details

of the specific computer used and the specific units of time, since big O notation disregards

constant factors. See Example 1.18 for an analysis of the time complexity of Algorithm 1.17.

Example 1.18. Let L be a finite list of natural numbers, and let x ∈ N. Suppose that it takes

some constant length of time c (in some units) to test the equality of two natural numbers.

Consider using the algorithm described in Algorithm 1.17 to test whether x is an entry of L.

In the best case, the first element of L is equal to x, and the algorithm terminates with the

correct answer after only one comparison. However, if x does not appear until the final entry of

L, or if x is not an entry of L, then the algorithm does not determine this until every entry of L

has been compared against x. It follows that, in the worst, case Algorithm 1.17 requires c · |L|
units of time in order to produce its output. We can therefore say that the time complexity of

Algorithm 1.17 is O(|L|), or O(n), where n = |L|.

Analysing time complexity in this way is often difficult, but it provides a useful way of

comparing the requirements of different algorithms, and of understanding how the requirements

of an algorithm grow as the input grows. If the time complexity of one algorithm is O(n), and

the time complexity of a competing algorithm is O(1), then roughly speaking, we can expect

that doubling the size of the input will double the length of time taken to compute with the

first algorithm, but we can expect that it will not affect the time taken to compute with the

second algorithm. We may therefore consider the second algorithm to be more time-efficient.

More concretely, sorting a finite list L using the merge sort algorithm has time complexity

O(|L| log |L|), whereas sorting L using the insertion sort algorithm has time complexity O
(
|L|2

)
,

which suggests that the merge sort algorithm is more time-efficient.

In this thesis, we do not formally describe the algorithms that we present with big O nota-

tion, however we use this notion of complexity in order to provide some background information

and context to the problems that we approach. Algorithms in computational semigroup theory

tend to have high time complexity, at least in comparison with algorithms in computational

group theory. Despite this, we still find that it is possible to execute algorithms in computational

semigroup theory on a wide range of interesting and useful examples.
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1.4.2 Data structures for semigroups

In order to compute with a given semigroup, it is first necessary to store the definition of the

semigroup on a computer in some way. In other words, we must choose a structure for defining

the semigroup to a computer. A semigroup is a set with an associative binary operation, and so

to specify a semigroup, it is necessary to unambiguously and clearly define its set of elements

and a way of calculating the product of any two elements in the set.

One of the simplest ways of specifying a finite semigroup to a computer is by a multiplication

table. If S is a finite semigroup of order n, then the multiplication table of S is an n× n array

whose rows and columns are labelled by the elements of S; if x, y ∈ S, then the entry in

the row labelled by x and the column labelled by y is the product of x and y in S. Thus

the multiplication table encodes both the elements and the operation of the semigroup. See

Table 1.19 for an example of a multiplication table that defines a semigroup with four elements.

◦ x y z t

x x y z t

y y x z t

z z t z t

t t z z t

Table 1.19: The multiplication table of a semigroup isomorphic to the full transformation

monoid of degree 2 (see Section 1.3.5), which contains four elements, including an identity.

Multiplication tables provide a useful data structure in many respects. Given sufficient

space, any finite semigroup can be given by a multiplication table. Furthermore, the multipli-

cation table of a semigroup contains the elements of the semigroup and complete information

about their products. Therefore, producing the set of elements and multiplying elements is

simply a case of looking up the information in whatever data structure it is stored. The

Smallsemi [32] package for GAP [58], which is a library containing every semigroup of order

8 or less, stores its semigroups via multiplication tables.

The most significant downside of giving a semigroup by its multiplication table is that

storing a multiplication table requires a relatively large amount of memory, which can easily

exceed the capabilities of a computer. Let S be a finite semigroup with n elements. In order

to be able to distinguish between the elements of S on a computer, it is necessary to use at

least k bits to identify each element, where 2k ≥ n. In other words, we must choose k ≥ log n.

It follows that storing the multiplication table of S on a computer, without using compression

techniques, requires at least n2 log n bits. At present, the memory on a personal computer is

typically about 16 gigabytes, which is exceeded by the amount of memory required to store

the multiplication table of a semigroup with just 100,000 elements. We wish to compute with

finite semigroups that contain far more elements than this, and sometimes even with infinite

semigroups, and a multiplication table is not appropriate for these cases.

All finite semigroups and many infinite semigroups may be given as the semigroup defined

by a finite presentation 〈X |R〉. In certain cases, it is possible to develop techniques that

directly manipulate the generators X and the relations R in order to compute properties of

the semigroup that the presentation defines. We briefly describe a method for computing non-

trivial factorizations of elements in a finitely presented semigroup in Chapter 2, however finitely

presented semigroups are not the focus of this thesis. Computing with these kinds of semigroups

involves many difficulties, not least because it has been shown that for many semigroup-theoretic

properties, there exists no algorithm for determining whether that property holds in an arbitrary
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finitely presented semigroup; see [95,108].

We can often define a semigroup by the way in which it relates to some other known

semigroup. For example, a finite Rees 0-matrix semigroup can be specified to a computer by its

underlying semigroup, in some form, and its matrix. A more general-purpose technique along

these lines is to specify a semigroup as the subsemigroup of some other semigroup defined by a

finite set of generators: the elements are the products of the generators, and the product of two

elements is the same as the product in the parent semigroup. The parent semigroup may be

given explicitly: for example, a semigroup could be defined as the subsemigroup of some Rees

0-matrix semigroup generated by a particular set of elements. On the other hand, the parent

semigroup may be given implicitly: a semigroup could be given as the subsemigroup generated

by a particular set of transformations of degree n, and the semigroup may be understood to be

a subsemigroup of the full transformation monoid of degree n. The algorithms that we present

in Chapter 4 for computing the maximal subsemigroups of an arbitrary finite semigroup require

a semigroup defined by a generating set.

For some semigroups, such as left- or right-zero semigroups, the set of all elements of the

semigroup is the only generating set. For some other semigroups, such as direct products, it is

not immediately apparent how to specify any generating set other than the set of all elements.

On the other hand, a generating set for a semigroup may be readily available and may be

much smaller than the order of the semigroup, and thereby permit a compact way of storing

the semigroup. For example, the full transformation monoid of degree n is generated by two

permutations and any transformation of rank n− 1, and many infinite semigroups are finitely

generated, such as the natural numbers N under addition. The NumericalSgps [24] package

for GAP [58] enables the creation and computation of finitely generated subsemigroups of N,

known as numerical semigroups.

1.4.3 Finite semigroups specified by generating sets

In this thesis, we predominantly focus on the computation of finite semigroups specified by

generating sets. For a typical algorithm that requires a semigroup given in this fashion, the

time complexity of the algorithm is given in terms of the number of generators that define the

semigroup, amongst other factors, such as, perhaps, the order of the semigroup and the specific

type of elements by which it is given. Therefore, from a computational perspective, we desire a

generating set for any given semigroup that is as small as is reasonably practicable. Driven by

this motivation, a significant portion of the research in this thesis is dedicated to the problem

of describing relatively small generating sets for certain kinds of semigroups.

A fundamental prerequisite of many algorithms in computational semigroup theory, includ-

ing the algorithms presented in Chapter 4, is the ability to compute the Green’s structure of a

finite semigroup from its generating set. Broadly speaking, there are two main approaches to

computing with a finite semigroup defined by generating set, and thereby describing its Green’s

structure. There are those techniques that involve exhaustively enumerating the semigroup,

i.e. producing and storing every element of the semigroup in some useful data structure, and

there are those that produce a data structure describing the Green’s structure of the semigroup

without necessarily enumerating the semigroup. We briefly describe these approaches below.

Exhaustive enumeration

The most well-known techniques for exhaustively enumerating a semigroup are those that con-

struct the left or right Cayley digraphs of the semigroup. Let S be a finite semigroup with a
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generating set X. The left Cayley digraph of S with respect to X is the digraph (S, E), where

E =
{

(s, xs) : s ∈ S, x ∈ X
}
,

and the right Cayley digraph of S with respect to X is the digraph (S, {(s, sx) : s ∈ S, x ∈ X}).
When constructing a Cayley digraph, we label an edge with the set of generators corresponding

to that edge. In this way, the left and right Cayley digraphs of a semigroup encode left and

right multiplication in that semigroup. See Figure 1.20 for an example.

x y

z t

Figure 1.20: A picture of the right Cayley digraph of the semigroup defined by the mul-

tiplication table in Table 1.19, with respect to its generating set {y, z}. The dashed edges

correspond to the generator y; the solid edges correspond to the generator z; and the dotted

edge corresponds to both generators. The strongly connected components of this right Cayley

digraph are {x, y} and {z, t}, and so these are the R-classes of the associated semigroup.

It is straightforward to see that the strongly connected components of a left Cayley digraph

of S are the L -classes of S, and the strongly connected components of a right Cayley digraph

of S are its R-classes. Furthermore, if (S, E) and (S, E′) are left and right Cayley digraphs of

S with respect to some generating set, then the strongly connected components of the digraph

(S, E ∪ E′) are the J -classes of S, and the partial orders of the L -, R-, and J -classes of S are

given by the quotients of these digraphs by their strongly connected components, respectively.

There are several well-known algorithms, such as those of Tarjan [121] and Gabow [55], for

finding the strongly connected components of a digraph. See [80] and the references therein for

more information about Cayley digraphs of semigroups.

A naive algorithm for computing the right Cayley digraph of a semigroup S with respect to

a generating set X is given in Algorithm 1.21. This algorithm has time complexity O(|S||X|).
Note that the left Cayley digraph of S with respect to X can be deduced from the right Cayley

digraph of S with respect to X, and vice versa: if x ∈ X and s ∈ S, then there exist generators

y1, . . . , yn ∈ X such that s = y1 · · · yn, and xs = (xy1 · · · yn−1) · yn, turning left multiplication

by a generator into right multiplication.

The most famous and sophisticated algorithm for exhaustively enumerating a semigroup S

defined by a generating set X, and obtaining the left and right Cayley digraphs of S with respect

to X, is the Froidure-Pin Algorithm [54], which has time complexity O(|S||X|). Although

the Froidure-Pin Algorithm has the same time complexity as Algorithm 1.21, in practice it

is much quicker to use the Froidure-Pin Algorithm to compute a Cayley digraph, since it

deduces many of the edges of the digraph from previous calculations, and thereby avoids many

unnecessary multiplications. The Froidure-Pin Algorithm was originally implemented by Pin in

Semigroupe [107]. More recently, the algorithm has been extended in various ways, including

by the development of a parallel version [79], which is implemented in libsemigroups [102].

The methods in libsemigroups [102] can be applied to a wide range of semigroups defined

generating sets, including semigroups of transformations or partial permutations, semigroups

of partitioned binary relations [96], and semigroups of boolean matrices.
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Algorithm 1.21 A basic algorithm to compute the right Cayley digraph of a finite semigroup.

Input: A finite generating set X for a finite semigroup.

Output: The right Cayley digraph (V, E) of that semigroup with respect to X.

1: V ← X

2: E ← ∅
3: for s ∈ V , x ∈ X do

4: if sx /∈ V then

5: V ← V ∪ {sx}
6: E ← E ∪ {(s, sx)}
7: Add x to the label of the edge (s, sx)

8: return (V, E).

A major limitation to algorithms that involve exhaustively enumerating a semigroup is

memory. Consider a semigroup that consists of transformations of degree n. A straightforward

approach to storing a transformation, as a list of images of each point, requires at least nk bits,

where k ≥ log n. Therefore, fully enumerating and storing the elements of a transformation

semigroup S of degree n in this simple way therefore requires at least |S| · n log n bits: to illus-

trate, the full transformation monoid of degree 10 requires at least 38 gigabytes of memory with

this approach. In order to compute large semigroups, we therefore require different techniques.

Techniques that are not necessarily exhaustive

There are a number of algorithms given in the literature, and implemented in software, that

produce a data structure describing the Green’s relations of a finite semigroup defined by a gen-

erating set without necessarily enumerating the whole semigroup. Lallement and McFadden [83]

developed such an algorithm for computing with transformation semigroups; this was adapted

by Konieczny [81] for semigroups of boolean matrices. Further techniques for computing with

transformation semigroups were developed and implemented in the Monoid [89] package by

Linton and co-authors [90, 91]. More recently, these approaches have been significantly ex-

tended and generalised by Mitchell and co-authors in [37]; this work applies to subsemigroups

of arbitrary finite regular semigroups. The techniques in [37] have been fully implemented in

the Semigroups [101] package for GAP [58], which allows for the non-exhaustive computation

of semigroups given by a wide range of generating sets, including semigroups of matrices over

finite fields, subsemigroups of regular Rees 0-matrix semigroups over groups, and semigroups

given by generating sets consisting of transformations, partial permutations, or partitions (in

the sense of Section 5.3.1), amongst other types.

The unifying approach of the above techniques is that they exploit certain actions of a semi-

group (defined analogously to group actions) that are inherent when the semigroup is given

in a particular form; these actions are connected to the Green’s relations of the semigroup.

These techniques construct groups from these actions, related to the group H -classes of the

semigroup, that allow certain computations about the semigroup to be reduced to computa-

tions about these groups. In doing so, these algorithms can take advantage of mature and

efficient non-exhaustive algorithms from computational group theory, such as the Schreier-Sims

algorithm [73, Section 4.4.2].

The above algorithms describe the Green’s structure of a semigroup, in part, by enumerating

representatives of the L - and R-classes of a semigroup, rather than by enumerating the L -

and R-classes themselves. Therefore, for a semigroup with relatively large J -classes (and with

small numbers of L - and R-classes in comparison to the number of elements), the Green’s
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structure can be determined without storing every element of the semigroup in memory. For

example, it takes 15 seconds to compute the number of R-classes of the full transformation

monoid of degree 11 using the Semigroups package for GAP on a 2.66 GHz Intel Core i7

processor with 8GB of RAM, even though it would be difficult to store all 1111 transformations

of degree 11 on a computer with such little memory. On the other hand, this means that

computing J -trivial semigroups with these methods involves exhaustive enumeration, in a

fashion that is far less efficient than the Froidure-Pin Algorithm.

While there are non-exhaustive techniques for computing with many types of finite semi-

groups given by generating sets, they do not currently apply to all such semigroups.

At various points in this thesis, we require the ability to compute the Green’s structure

of a given finite semigroup. In these instances, the details of how this is achieved, whether

exhaustively or otherwise, are not important, and we do not concern ourselves with this problem

further.
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Chapter 2

Generating sets for direct

products of semigroups

2.1 Introduction

The direct product of a finite list of semigroups S1, . . . , Sn is the semigroup consisting of the

Cartesian product S1 × · · · × Sn with component-wise multiplication. In other words, the

multiplication on S1 × · · · × Sn is given by

(s1, . . . , sn) (t1, . . . , tn) = (s1t1, . . . , sntn) (2.1)

for all (s1, . . . , sn), (t1, . . . , tn) ∈ S1 × · · · × Sn. The semigroups S1, . . . , Sn are called the

factors of the direct product S1 × · · · × Sn. Direct products of many other kinds of algebraic

structures are defined analogously.

In this chapter, we build on the results of [2, Chapter 3] and [112,113] to describe generating

sets for direct products of arbitrary semigroups which do not necessarily contain every element

of the semigroup. These works predominantly concern the finite generation and presentability

of direct products of semigroups, and describing generating sets for (and thereby finding upper

bounds on the ranks of) certain kinds of direct products. Here, we particularly focus on com-

puting relatively small generating sets for direct products of finite semigroups. The research

detailed in this chapter was motivated by a desire to improve the performance of the Semi-

groups package [101] for GAP [58]. In version 3.0.0 of this software, creating a direct product

of semigroups that are not all monoids required a brute-force search for a generating set, which

had disappointing performance. For example, constructing a generating set for the direct prod-

uct (T4 \S4)×(T4 \S4) took roughly 6 seconds on a 2.66 GHz Intel Core i7 processor with 8GB

of RAM, while constructing a generating set for the direct product (T5 \S5)× (T5 \S5) did not

terminate after several minutes. In the current development version of the Semigroups pack-

age, which implements some of the techniques described in this chapter, this latter computation

takes roughly 10 milliseconds on the same hardware.

In certain instances, computing with a direct product can be reduced to performing in-

dependent computations in each of the factors. For example, the order of the direct prod-

uct S1 × · · · × Sn is equal to |S1| · · · |Sn|, and the set of idempotents of S1 × · · · × Sn is

E(S1) × · · · × E(Sn). Furthermore, a direct product is regular, or inverse, or commutative

if and only if each of its factors is regular, or inverse, or commutative, respectively. Similar

statements hold for many other semigroup-theoretic properties.

Computing independently in the factors rather than in the direct product itself is advanta-

geous for several reasons. For finite semigroups, the factors of a direct product are often much

smaller than the direct product itself, and consequently they are much cheaper to compute with.

To illustrate this, note that it is typically easier to enumerate three semigroups of order 1000

39
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than it is to enumerate their direct product, which contains a billion elements. Additionally,

the independence of the computations in the factors allows them to be carried out in parallel,

which potentially saves time.

On the other hand, for some other questions, it is not immediately apparent how or whether

any reduction to the factors can be achieved. For example, it is not necessarily the case that

the Green’s classes of a direct product are products of the Green’s classes of the factors; any

direct product involving N is J -trivial, for instance.

Open Problem 2.2. Develop techniques for computing the Green’s structure of a direct

product of finite semigroups in terms of the Green’s structures and other semigroup-theoretic

properties of the factors.

Similarly, the maximal subsemigroups of a direct product do not necessarily correspond in

an obvious way to maximal subsemigroups of the factors; see Example 2.4 for a demonstration of

this. The maximal subgroups of direct products of groups can be given in terms of the maximal

subgroups and the maximal normal subgroups of the factors (see for example [123, Lemma 1.3])

but an analogous characterisation for semigroups has not yet been found.

Open Problem 2.3. Investigate how the maximal subsemigroups of a direct product of finite

semigroups relate to the maximal subsemigroups of the factors.

Example 2.4. Let T2 denote the full transformation monoid of degree 2. The maximal sub-

semigroups of T2 are its group of units S2 and the set T2\{(1 2)}, where (1 2) is the non-identity

permutation of degree 2; see Theorem 5.7. However, there are five maximal subsemigroups of

the direct product T2 × T2, three of which correspond to maximal subgroups of its group of

units, which is the Klein four-group S2 × S2, along with the sets

(T2 × T2) \ ((T2 \ S2)× S2) and (T2 × T2) \ (S2 × (T2 \ S2)).

These computations were performed with the Semigroups [101] package, which uses the algo-

rithms presented in Chapter 4. Note that the maximal subsemigroups of T2×T2 are not direct

products of maximal subsemigroups of T2. A correspondence between the maximal subsemi-

groups of T2 and the maximal subsemigroups of T2 × T2 is not immediately apparent.

When it is possible to compute independently in the factors, this fact still has to be observed,

and proven, and the corresponding algorithm has to be implemented, before it can be exploited

in a computational algebra system. Where there do not exist specialised computational methods

for direct products of semigroups, either because such algorithms are not known, or are simply

not implemented, we instead rely on more general-purpose methods.

As discussed in Section 1.4, many algorithms for computing with semigroups require a

semigroup defined by a finite generating set. Therefore, in order to compute effectively with

finitely generated direct products, we require the ability to construct finite generating sets for

them, which is anyway inherently interesting.

The only generating set given by the definition of a direct product is the set of all elements.

This presents a problem, especially when the direct product is infinite, because it is impossible to

store an infinite set of elements. When the direct product is finite, using the set of all elements is

still undesirable: as discussed in Section 1.4.3, the time complexities of algorithms that require

a generating set are typically given in terms of the size of the generating set, amongst other

factors. For example, using the Froidure-Pin algorithm to compute the right Cayley digraph

of a finite semigroup S with respect to a generating set X has time complexity O(|S||X|).
Roughly speaking, this means that the larger the generating set for a given semigroup, the

more time that is required to compute with the semigroup. Furthermore, the cardinality of a
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direct product is the product of the cardinalities of the factors. Even if the factors themselves

are finite and relatively small, storing in memory the set of all elements in the product can easily

exceed the capabilities of a computer. In the finite case, when possible, we aim to compute

generating sets that are significantly smaller than the set of all elements.

For monoids defined by generating sets, it requires no calculation to specify a generating

set for the direct product that is typically much smaller than the order of the direct product.

In more detail, let n ∈ N, and for each i ∈ {1, . . . , n}, let Si be a monoid with generating set

Xi. It is straightforward to see that the direct product S1 × · · · × Sn is generated by the set

n⋃
i=1

{(
1S1

, . . . , 1Si−1
, x, 1Si+1

, . . . , 1Sn

)
: x ∈ Xi

}
,

which contains at most |X1|+ · · ·+ |Xn| elements. By choosing the generating sets Xi to have

minimal cardinality amongst the generating sets for Si, and noting that for each i, the monoid

Si is a homomorphic image of S1 × · · · × Sn, it follows that

max{rank(S1), . . . , rank(Sn)} ≤ rank(S1 × · · · × Sn) ≤ rank(S1) + · · ·+ rank(Sn). (2.5)

The bounds given in (2.5) are tight. If p1, . . . , pn are distinct primes and Si is a cyclic group of

order pi for each i, then the direct product S1 × · · · × Sn is cyclic. Therefore, the lower bound

in (2.5) can be obtained. On the other hand, if each Si is a cyclic group of some common order

k > 1, then rank(S1 × · · · × Sn) = n, and so the upper bound can also be obtained. It follows

by (2.5) that a direct product of monoids is finitely generated if and only if each of its factors

is finitely generated.

The same is not true for semigroups in general, however. Let N denote the semigroup

consisting of the natural numbers with addition. This semigroup is monogenic, since N = 〈1〉;
indeed, N is the unique infinite monogenic semigroup, up to isomorphism. Despite this, the

direct product N × N is not finitely generated. To see this, let X be an arbitrary generating

set for N × N, and let n ∈ N be arbitrary. By definition, there exists a sequence of generators

(x1, y1) , . . . , (xm, ym) ∈ X such that

(1, n) = (x1, y1) + · · ·+ (xm, ym)

= (x1 + · · ·+ xm, y1 + · · · ym).

In particular, 1 = x1 + · · · + xm. But 1 cannot be written as the sum of two or more natural

numbers. It follows that m = 1, and so (1, n) ∈ X. Since X and n were arbitrary, we

conclude that any generating set for N × N contains an infinite number of elements. Indeed,

Corollary 2.20 implies that
{

(1, n), (n, 1) : n ∈ N
}

is the unique minimal generating set for

N× N, with respect to containment.

The lower bound in (2.5) holds for direct products of semigroups in general, since each

factor is a homomorphic image of the direct product. Therefore, if a direct product is finitely

generated, then its factors are finitely generated. However, we have seen that the converse does

not necessarily hold. The problem of determining when the direct product of two semigroups is

finitely generated was solved in [113]. This work was extended to the direct product of any finite

number of semigroups by Araújo [2, Theorem 3.39]; we restate this in the following proposition.

Recall that a semigroup S is surjective if S2 = S.

Proposition 2.6 ([2, Theorem 3.39]; see [113, Remark 2.6]). Let S1, . . . , Sn be semigroups.

The direct product S1× · · · ×Sn is finitely generated if and only if each semigroup Si is finitely

generated, and either:

(i) Si is surjective for all i; or
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(ii) Si is finite for all i; or

(iii) Si is infinite for some i, and Sj is finite and surjective for all j 6= i.

In [113, Proposition 2.5] and [2, Chapter 3.1], the authors describe generating sets for the

direct product of two surjective semigroups; in doing so, they obtain upper bounds on the

ranks of direct products of this kind. Moreover, the bound rank(S × T ) ≤ 2rank(S)rank(T )

for arbitrary surjective semigroups S and T , given in [2, Corollary 3.6], is tight. As mentioned

in [113, Remark 2.6], and as we discuss later, these results can be used to construct finite

generating sets of the first kind described in Proposition 2.6. However, the authors do not

directly address the problem of finding generating sets for direct products of the second or

third kinds given in Proposition 2.6.

The main result of this chapter is Theorem 2.17, which describes a generating set for an

arbitrary direct product of semigroups which does not, in general, contain every element of the

direct product. Moreover, when the factors are defined by finite generating sets and the direct

product is finitely generated, then the generating set given in Theorem 2.17 is finite. We discuss

techniques for constructing the generating set described by Theorem 2.17 in certain cases.

This chapter is organised as follows. In Section 2.2, we introduce the concepts of decom-

posable and indecomposable elements in a semigroup. These notions prove to be important

when constructing generating sets for direct products. In Section 2.3, we discuss methods for

computing the indecomposable elements in certain kinds of semigroup, and for obtaining non-

trivial factorizations of decomposable elements. We present the main results of this chapter in

Section 2.4. In Section 2.5, we restrict our attention to describing generating sets for direct

products of two finitely generated surjective semigroups. In some cases, these generating sets

can be smaller than the generating sets described by the more general results of Section 2.4.

2.2 Decomposable and indecomposable elements

In this section, we introduce the concepts of decomposable and indecomposable elements in a

semigroup, as in [113], which are closely linked to the generation of direct products. We present

several results concerning these kinds of elements which are important for the later parts of this

chapter. In Section 2.3, we discuss how to compute the indecomposable elements in a finite

or finitely presented semigroup, and we discuss how to obtain non-trivial factorizations of the

decomposable elements in such semigroups.

Let S be a semigroup, and let s ∈ S be arbitrary. We say that the element s is decomposable

if there exist elements u, v ∈ S such that s = uv, or equivalently, if s ∈ S2. The element s is

indecomposable if it is not decomposable. Therefore, an indecomposable element of a semigroup

is one that cannot be written as a product of two elements in the semigroup. The set of

decomposable elements in S is S2, and so the set of indecomposable elements in S is S \ S2.

Note that a surjective semigroup is one in which each of its elements is decomposable.

Any monoid S is surjective, since S = 1SS ⊆ S2, as is any regular or idempotent generated

semigroup. Conversely, non-trivial zero semigroups are not surjective: if x is a non-zero element

in a zero semigroup S, then uv = 0S 6= x for all u, v ∈ S. Other examples of semigroups that

are not surjective are free semigroups, and monogenic semigroups that are not groups.

As discussed in [78, Section 6] and [113, Section 2], any generating set for a semigroup S

contains the set of indecomposable elements S \S2, since an indecomposable element cannot be

written as a product of other elements. It follows that the set of indecomposable elements in a

finitely generated semigroup is finite. By the same token, if the set of indecomposable elements

in a semigroup is infinite, then the semigroup is not finitely generated. It is for this reason that

the conditions relating to surjective semigroups appear in Proposition 2.6.
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Let S1, . . . , Sn be semigroups. If an element (s1, . . . , sn) ∈ S1 × · · · × Sn is decomposable,

then, by definition, there exist elements (x1, . . . , xn), (y1, . . . , yn) in the direct product such

that

(s1, . . . , sn) = (x1, . . . , xn)(y1, . . . , yn).

In particular, si = xiyi for each i, and so each si is decomposable. It is clear that the converse

also holds. To summarise, an element of a direct product is decomposable if and only if each of

its components is decomposable, and so a direct product is surjective if and only if each of its

factors is surjective. Therefore, computing whether a direct product is surjective, and computing

the decomposable elements in a direct product, can be reduced to computing independently in

the factors.

It follows that an element (s1, . . . , sn) is indecomposable if and only if si is indecomposable

for some i. Since a generating set for a semigroup contains the indecomposable elements, we

conclude that every generating set for the direct product S1 × · · · × Sn contains the set of all

indecomposable elements

n⋃
i=1

(
S1 × · · · × Si−1 × (Si \ S2

i )× Si+1 × · · · × Sn
)
. (2.7)

The cardinality of this set gives a lower bound on the rank of the direct product. If the sets

in this union are finite, then the cardinality of the union may be found with the principle of

inclusion-exclusion. In N × N, the set of indecomposable elements ({1} × N) ∪ (N × {1}) is

infinite, and so the semigroup is not finitely generated, as shown above.

The notions of decomposable and indecomposable semigroup elements are closely related

to factorizations. A factorization of an element s over a set A is a sequence of elements of A

whose product is s, and a factorization is non-trivial if the sequence consists of two or more

elements. Let S be a semigroup with a generating set X, and let s ∈ S be arbitrary. If s = uv

for some u, v ∈ S, then a non-trivial factorization of s over X can be obtained by concatenating

a factorization of u over X with a factorization of v over X. On the other hand, if s has a

non-trivial factorization over X, i.e. if s = x1 · · ·xm for some x1, . . . , xm ∈ X with m ≥ 2, then

s = x1(x2 · · ·xm) ∈ S2. Therefore, an element s ∈ S is decomposable in S if and only if there

exists a non-trivial factorization of s over X.

Another connection between factorizations and decomposable elements is given by the fol-

lowing lemma, which we use repeatedly in later results.

Lemma 2.8. Let S be a semigroup generated by a set X, and let s ∈ S. Then there exist

arbitrary long factorizations of s over S2 ∩ X, or s can be expressed as a product in X that

includes an indecomposable element.

Proof. Assume that if s = x1 · · ·xm for any x1, . . . , xm ∈ X, then x1, . . . , xm ∈ S2 ∩ X. Let

x1, . . . , xm ∈ X be such that s = x1 · · ·xm. Then since xm is decomposable, there exist elements

y1, . . . , yn ∈ X, n ≥ 2, such that xm = y1 · · · yn, and hence s = x1 · · ·xm−1y1 · · · yn is a strictly

longer factorization of s over S2 ∩X.

2.3 Computing indecomposable elements and non-trivial

factorizations

In this section, we discuss techniques for computing the indecomposable elements of a semi-

group, and for computing non-trivial factorizations of decomposable elements, in finite and
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finitely presented semigroups. These steps are required to construct the generating sets de-

scribed in the main theorem of this chapter. In particular, to apply the results of Theorem 2.17

to direct products involving a semigroup S = 〈X〉, we require the ability, for each decom-

posable generator s ∈ S2 ∩ X, to construct elements a, b ∈ S such that s ∈ aX ∩ Xb. Such

elements can be constructed from any non-trivial factorization x1 · · ·xm of s over X, by defining

a = x1 · · ·xm−1 and b = x2 · · ·xm. The indecomposable elements of S are those elements in X

for which there does not exist a non-trivial factorization over X.

The indecomposable elements of a semigroup can also be described in terms of the partial

order of J -classes of the semigroup, as is done in the following lemma.

Lemma 2.9. Let S be a semigroup and let s ∈ S be arbitrary. Then s is indecomposable if and

only if {s} is a maximal J -class of S and s2 6= s.

Proof. (⇒) Suppose that s is indecomposable. Certainly s2 6= s. Suppose that Js ≤ Jt for

some t ∈ S. Then s = utv for some u, v ∈ S1, and since s is indecomposable, it follows that

u = v = 1S , and s = t. Thus Js = {s} is a maximal J -class of S.

(⇐) Suppose that s is decomposable and that Js is a maximal J -class of S. Then s = uv

for some u, v ∈ S, and Js ≤ Ju and Js ≤ Jv by Lemma 1.12. By the maximality of Js = {s},
it follows that Ju = Jv = {s}. In particular, s = u = v, and s is idempotent.

In a finite semigroup, Green’s D- and J -relations coincide [76, Proposition 2.1.4]. A maxi-

mal J -class in a finite semigroup is hence either a regular D-class or a non-regular D-class con-

sisting of a single non-idempotent element. Thus we obtain the following corollary to Lemma 2.9.

Corollary 2.10 (cf. Lemma 2.2 in [112]). Let S be a finite semigroup. Then S is surjective if

and only if every maximal J -class of S is regular.

Hence, to determine whether a finite semigroup is surjective, or to find the indecomposable

elements in a finite semigroup, it suffices to find its partial order of J -classes, to find the maxi-

mal elements in this partial order, and to test which of them consists of a single non-idempotent;

see Algorithm 2.11. If S is a finite semigroup to which the techniques of [37] apply, then the

partial order of J -classes of S can be found by the algorithm described in [37, Algorithm 14],

which does not necessarily exhaustively enumerate the elements of the semigroup. The partial

order of J -classes of a finite semigroup can also be constructed from the quotient of the union

of the left and right Cayley digraphs by its strongly connected components.

Algorithm 2.11 Compute the indecomposable elements in a finite semigroup using the partial

order of J -classes.

Input: A finite semigroup S with a generating set.

Output: The set A of indecomposable elements in S.

1: A← ∅
2: J← the maximal J -classes of S . [37, Algorithm 14], or via the Cayley digraphs of S

3: for Jx ∈ J do

4: if |Jx| = 1 and x2 6= x then

5: A← A ∪ {x}
6: return A.

However, when computing with the Cayley digraphs of a semigroup, there are more straight-

forward ways of finding indecomposable elements; see Algorithm 2.12. We formulate the fol-

lowing in terms of right Cayley digraphs, however analogous statements hold concerning left

Cayley digraphs. Let S be a finite semigroup with a generating set X, and let Γ be the right
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Cayley digraph of S with respect to X. If s = x1 · · ·xn is a non-trivial factorization of s over

X, then (x1, x1x2, · · · , x1 · · ·xn = s) is a path in Γ, of length at least 1, from a generator to

s. In particular, s has an in-neighbour in Γ. Therefore, if s has no in-neighbour in Γ, then

there exists no non-trivial factorization of s, and s is indecomposable. Conversely, if s has an

in-neighbour u in Γ, then there exists a generator x ∈ X that corresponds to the edge (u, s),

i.e. s = ux. Therefore, a non-trivial factorization of s over X can be found by appending x to

any factorization of u over X. It follows that the indecomposable elements of a semigroup are

the sources in its right Cayley digraph, with respect to any generating set.

A factorization of an element u ∈ S over X can be calculated from Γ by searching for a path

in Γ from a generator to u. Finding such a path can be achieved by performing a breadth- or

depth-first search in Γ, starting at the vertex of each generator. The factorization is then given

by the relevant generator, followed by the generators corresponding to the edges in the path.

Note that a path may have length 0, which gives a trivial factorization.

Algorithm 2.12 Compute a non-trivial factorization for an element in a finite semigroup, or

determine that the element is indecomposable, by using the right Cayley digraph.

Input: A finite semigroup S with a generating set X, and an element s ∈ S.

Output: A non-trivial factorization of s over X, if one exists, else fail.

1: Γ← the right Cayley digraph of S with respect to X . [54]; Algorithm 1.21

2: if s is a source of Γ then

3: return fail.

4: u← an in-neighbour of s in Γ

5: x← a generator in X corresponding to the edge (u, s)

6: [x1, . . . , xn]← a (possibly trivial) factorization of u over X . See main text

7: return [x1, . . . , xn, x].

For a finite semigroup S = 〈X〉 to which the techniques of [37] apply, we can obtain non-

trivial factorizations of decomposable elements over X without constructing either the left

or right Cayley digraphs of S, and without necessarily enumerating the semigroup. We briefly

outline a method for doing so below; see Algorithm 2.13 for pseudocode describing this method.

Algorithm 13 in [37] gives a method for factorizing an arbitrary element of S over X.

However, when x ∈ X, this algorithm may return the trivial factorization.

Let x ∈ X be arbitrary. If x has a relative right identity, then a relative right identity for x

can be constructed from the data structure used in [37]. This step is complicated to describe,

and we do not include details here, however we note that this step has been implemented in

an upcoming version of the Semigroups package [101] for GAP [58], by the author. Given

a relative right identity f for x, it follows that x = xx1 · · ·xn, where f = x1 · · ·xn is any

factorization of f over X. If x has a relative left identity, then a non-trivial factorization of x

over X may be obtained analogously.

Suppose that x has neither a relative left identity nor a relative right identity in S. If

y ∈ Rx \ {x}, then there exist elements u, v ∈ S such that y = xu and x = yv; in particular,

x = yv = x(uv), and x has a relative right identity. Therefore Rx = {x}, and similarly

Lx = {x}. We conclude that Rx = Lx = Jx = {x}. It follows that x is contained in any

transversal of the set of R-classes of S. Therefore, in the data structure returned by [37,

Algorithm 11], either we find a generator x′ ∈ X and a representative r of an R-class of S

such that x = x′r, or we determine that Rx is a maximal R-class of S. In the first case, we

obtain a non-trivial factorization of x over X by first factorizing r over X. In the second case,

it is straightforward to show that {x} is also a maximal L -class of S, and therefore a maximal

J -class of S, too. It follows by Lemma 2.9 that x is indecomposable, or equivalently, that
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there exists no non-trivial factorization of x over X.

Algorithm 2.13 Compute a non-trivial factorization for an element in a finite semigroup, or

determine that the element is indecomposable, by using the data structure described in [37].

Input: A finite semigroup S with a generating set X, and an element s ∈ S.

Output: A non-trivial factorization of s over X, if one exists, else fail.

1: [x1, . . . , xn]← a factorization of s over X . [37, Algorithm 13]

2: if n > 1 then . If n = 1, then s ∈ X
3: return [x1, . . . , xn].

4: else if s has a relative left identity then

5: e← a relative left identity for s

6: [y1, . . . , ym]← a factorization of e over X

7: return [y1, . . . , ym, s].

8: else if s has a relative right identity then

9: f ← a relative right identity for s

10: [y1, . . . , ym]← a factorization of f over X

11: return [s, y1, . . . , ym].

12: R← a set of R-class representatives for S . [37, Algorithm 11]

13: for x ∈ X, r ∈ R do

14: if s = xr then

15: [y1, . . . , ym]← a factorization of r over X

16: return [x, y1, . . . , ym].

17: return fail.

Of course, it is not possible to construct an algorithm to enumerate the indecomposable

elements of an arbitrary semigroup, since an infinite semigroup (for example, an infinite zero

semigroup) may contain an infinite number of indecomposable elements. However, as mentioned

above, the set of indecomposable elements of a semigroup is contained in any generating set. It

follows that the problem of enumerating the indecomposable elements in a semigroup defined

by a finite generating set is a more appropriate problem to attempt to solve.

One way of specifying an infinite semigroup is by a semigroup presentation. The elements

of a semigroup defined by a presentation are equivalence classes of finite sequences over the

generators. The sequences in an equivalence class give the factorizations of the element over

the generators. Therefore, an element has a non-trivial factorization if and only if its equivalence

class contains a non-trivial sequence. It follows that a generator has a non-trivial factorization

in the semigroup if and only if the presentation relates that generator to a non-trivial sequence.

We clarify this observation in the following lemma.

Lemma 2.14. Let S be the semigroup defined by the presentation 〈X |R〉, and suppose that R

contains no relations of the form x = y, for any x, y ∈ X. Then for each x ∈ X, the generator

of S corresponding to x is decomposable if and only if x = w or w = x belongs to R, for some

w ∈ X+. Moreover, w gives a non-trivial factorization of x over X.

It follows that if S is a semigroup defined by a finite presentation of the kind described in

Lemma 2.14, then the indecomposable generators, and non-trivial factorizations of the decom-

posable generators, can be obtained by searching the relations according to Lemma 2.14. Note

that relations of the form x = y, for generators x and y, can be easily removed from any finite

presentation to yield an equivalent presentation.
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2.3.1 Corresponding features in the Semigroups package for GAP

The techniques described in this section have been implemented by the author in the develop-

ment version of the Semigroups package [101] for GAP [58].

If S is a finite semigroup, or a semigroup defined by a finite presentation, then the com-

mand IndecomposableElements(S); returns a list of the indecomposable elements in S. If

S is already known to be a surjective semigroup (because it is known to be a monoid or a

regular semigroup, for example), then IndecomposableElements returns an empty list. Other-

wise, if S is defined by a finite presentation, then the function IndecomposableElements uses

Lemma 2.14 to compute the indecomposable elements. Otherwise, IndecomposableElements

uses Lemma 2.9 to compute the indecomposable elements via the partial order of J -classes of S.

The command IsSurjectiveSemigroup(S); returns true if IndecomposableElements(S);

returns an empty list, and false otherwise.

If S is a finite semigroup, X is the generating set of S given by GeneratorsOfSemigroup(S);

and s ∈ S, then NonTrivialFactorization(S, s); returns a list defining a non-trivial fac-

torization of s over X, if one exists, else it returns fail. If s ∈ S \X, then any factorization

of s over X is non-trivial. In this case, the function NonTrivialFactorization delegates

to the pre-existing Semigroups package function Factorization. Otherwise, the function

NonTrivialFactorization executes a version of either Algorithm 2.12 or Algorithm 2.13, as

appropriate. Suppose that NonTrivialFactorization(S, s); returns a list L of length n > 1.

Then the non-trivial factorization of s over X is given by

s = X[L[1]] ·X[L[2]] · · ·X[L[n]].

2.4 Arbitrary direct products of semigroups

As proved by Araújo [2, Theorem 3.39] and repeated in Proposition 2.6, the direct product

of semigroups S1 × · · · × Sn is finitely generated if and only if each semigroup Si is finitely

generated, and either:

(i) Si is surjective for all i; or

(ii) Si is finite for all i; or

(iii) Si is infinite for some i, and Sj is finite and surjective for all j 6= i.

Given an arbitrary collection of semigroups whose direct product is finitely generated, the proof

of this result could, in principle, be used to obtain a finite generating set for the direct product.

However, it appears that this result was not proven with the aim of computing such finite

generating sets. In this section, we build on this work by directly describing finite generating

sets for any finitely generated direct product, with the aim of computing generating sets that

are, in some sense, relatively small.

The following result of Araújo, which was an improvement to [113, Proposition 2.5 and

Corollary 2.7], describes a generating set for the direct product of two surjective semigroups.

The main theorem of this section was inspired by this result and its proof.

Proposition 2.15 ([2, Proposition 3.5 and Corollary 3.6]). Let S = 〈X〉 and T = 〈Y 〉 be

surjective semigroups. For each x ∈ X, choose bx ∈ S such that x ∈ Xbx, and for each y ∈ Y ,

choose ay ∈ T such that y ∈ ayY . Define A =
{
ay : y ∈ Y

}
and B =

{
bx : x ∈ X

}
. Then the

set (X ×A) ∪ (B × Y ) generates S × T . In particular, rank(S × T ) ≤ 2rank(S)rank(T ).
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Proof. Let (s, t) ∈ S × T be arbitrary, and let s = x1 · · ·xm−1xm and t = y1y2 · · · yn be non-

trivial factorizations of s and t over X and Y , respectively. We may iteratively replace the

generator that follows xm−1 in the factorization of s by a product xb, for some x ∈ X and

b ∈ B. Similarly, we may replace the generator in y1y2 · · · yn that precedes y2 by a product ay,

for some a ∈ A and y ∈ Y . In particular, if we repeat this process n and m times, respectively,

we conclude that

s = x1 · · ·xm−1x
′b1b2 · · · bn and t = a1 · · · am−1amy

′y2 · · · yn

for some x′ ∈ X and b1, . . . , bn ∈ B, and for some y′ ∈ Y and a1, . . . , am ∈ A. Therefore

(s, t) = (x1, a1) · · · (xm−1, am−1) (x′, am) (b1, y
′) (b2, y2) · · · (bn, yn)

∈ (X ×A)
m

(B × Y )
n
,

and so (X × A) ∪ (B × Y ) generates S × T . Since |A| ≤ |Y | and |B| ≤ |X| by construction, it

follows that |(X × A) ∪ (B × Y )| ≤ 2|X||Y |. The upper bound on rank(S × T ) is obtained by

choosing generating sets X and Y of minimal cardinality.

The example in [113, Example 2.8] presents a pair of surjective semigroups, of arbitrary

finite ranks, whose direct product reaches the upper bound given in Proposition 2.15. In this

sense, the bound given in Proposition 2.15 is optimal.

As noted in [113, Remark 2.6], since a direct product is surjective if and only if each of

its factors is surjective, we may use Proposition 2.15 to describe generating sets for arbitrary

direct products of surjective semigroups, i.e. for any direct product of type (i) from Proposi-

tion 2.6. More specifically, given surjective semigroups S1, . . . , Sn defined by finite generating

sets, we may find a finite generating set for S1 × · · · × Sn by first using Proposition 2.15 to

construct a finite generating set for S1×S2, which is itself surjective. We may then use Propo-

sition 2.15 again to construct a finite generating set for (S1 × S2) × S3, and so on, iterating

in this way until complete. We may use this observation in an inductive argument to obtain

2n−1 · rank(S1) · · · rank(Sn) as an upper bound for the rank of the direct product of any col-

lection of surjective semigroups S1, . . . , Sn. However, for n > 2, this bound is not tight; we

improve on this bound in Corollary 2.18.

Any direct product of type (ii) is finite, and so from the point of view of finite generation

there is nothing to be solved, since the semigroup itself defines a finite generating set. However,

for the purposes of computation, smaller generating sets are usually better. Using the set of all

elements for computation is not satisfactory, in general. Indeed, the rank of a direct product of

finite semigroups may be much smaller than its cardinality, even when the semigroups are not

all surjective; see Example 2.16.

Example 2.16. Let n ∈ N, n ≥ 2, let S = 〈x〉 be a monogenic semigroup of order n that is not

a group, and let I1 be the symmetric inverse monoid of degree 1. Note that S is not surjective,

and that I1 is an inverse monoid of order 2 with identity element id1. Therefore, the order of

S × I1 is 2n. If (xm, y) ∈ S × I1, then (xm, y) = (x, y) (x, id1)
m−1

. It follows that {x} × I1 is

a generating set for S × I1 that contains only two elements.

As far as we are aware, there are no results in the literature directly describing finite gen-

erating sets for direct products of type (iii).

The main result of this section is the following, which describes a generating set for an

arbitrary direct product of semigroups. This theorem can be used, in combination with the

techniques described in Section 2.3, to construct a generating set for a finitely generated direct

product of finite or finitely presented semigroups. The proof of this theorem, which appears

towards the end of this section, relies on several forthcoming lemmas.
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Theorem 2.17. Let n ∈ N. For each i ∈ {1, . . . , n}, let Si be a semigroup generated by a

set Xi, and for each x ∈ S2
i ∩ Xi, choose ax, bx ∈ Si such that x ∈ axXi ∩ Xibx, and define

Ai = {ax : x ∈ S2
i ∩Xi} and Bi = {bx : x ∈ S2

i ∩Xi}. Let

Γ =

n⋃
i=1

( (
B1 × · · · ×Bi−1 × (S2

i ∩Xi)×Ai+1 × · · · ×An
)

∪
(
S1 × · · · × Si−1 × (Si \ S2

i )× Si+1 × · · · × Sn
) )
.

Then the direct product S1 × · · · × Sn is generated by Γ.

Suppose that the generating sets Xi in the statement of Theorem 2.17 are finite. For each

i ∈ {1, . . . , n}, the sets

B1 × · · · ×Bi−1 × (S2
i ∩Xi)×Ai+1 × · · · ×An

contain at most |X1| · · · |Xn| elements, since |Ai| ≤ |Xi| and |Bi| ≤ |Xi| by construction. In

particular, these sets are finite when the generating sets Xi are finite. Furthermore, the sets

S1 × · · · × Si−1 × (Si \ S2
i )× Si+1 × · · · × Sn

comprise the indecomposable elements of the direct product, and are therefore contained in

any generating set for the direct product. Hence these sets are finite when the direct product

is finitely generated. In particular, Γ is finite when the generating sets Xi are finite and the

direct product is finitely generated. In the worst case, the generating set Γ from the statement

of Theorem 2.17 contains at most n · |X1| · · · |Xn| redundant elements; see Corollary 2.18.

When n = 2 and S1 and S2 are surjective, Theorem 2.17 implies that S1 × S2 is generated

by (X1 ×A2) ∪ (B1 ×X2). Therefore, Proposition 2.15 is a special case of Theorem 2.17.

Let S1, . . . , Sn be a collection of finitely generated semigroups whose direct product is finitely

generated, and suppose that each semigroup Si is defined by a finite generating set Xi. By

Theorem 2.17, in order to construct a generating for the direct product S1×· · ·×Sn, it suffices

to determine, for each i ∈ {1, . . . , n}, which generators in Xi are decomposable and which

are indecomposable, and for each decomposable generator x, to find elements ax, bx ∈ Si such

that x ∈ axXi ∩ Xibx. In order to reduce the size of the sets {ax : x ∈ S2
i ∩ Xi} and

{bx : x ∈ S2
i ∩ Xi}, and hence to reduce the size of the corresponding generating set, the

elements ax and bx should be chosen carefully. For example, if Si has a left identity e, then it

would be sensible to choose ax = e for all x ∈ S2
i ∩Xi. More generally, the elements ax and bx

can be constructed from non-trivial factorizations, as discussed in Section 2.3.

Note that the sets A1 and Bn are not required by the generating set described in Theo-

rem 2.17, and therefore they are not required to be constructed in any algorithm which imple-

ments the result given in Theorem 2.17.

Methods for computing a generating set for the direct product of an arbitrary collection of

finite semigroups, based on Theorem 2.17, have been implemented by the author in the develop-

ment version of the Semigroups package [101] for GAP [58]. These methods will be included

in a future release of this software. With these new methods, the function DirectProduct

may be applied to any collection of finite semigroups to produce a semigroup that is isomor-

phic to their direct product. If the arguments are all semigroups of partial permutations, then

their direct product is returned as a semigroup of partial permutation; similarly, if the factors

are all semigroups of partitions (in the sense of Section 5.3.1), or if the factors are all semi-

groups of partitioned binary relations (defined in [96]), then their direct product is returned

as a semigroup of the same kind. Otherwise, the direct product is returned as a transforma-

tion semigroup. Given a direct product P of the factors S1, . . . , Sn and some i ∈ {1, . . . , n},
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the command Embedding(P, i); returns an embedding of the ith factor Si into P , and the

command Projection(P, i); returns a projection of P onto its ith factor Si.

We may use Theorem 2.17 to describe bounds on the ranks of arbitrary direct products.

Corollary 2.18. Let S1, . . . , Sn be semigroups, and let m denote the cardinality of

n⋃
i=1

(
S1 × · · · × Si−1 × (Si \ S2

i )× Si+1 × · · · × Sn
)
.

Then

m ≤ rank(S1 × · · · × Sn) ≤ m+ n · rank(S1) · · · rank(Sn).

In particular, if each semigroup Si is surjective, then

rank(S1 × · · · × Sn) ≤ n · rank(S1) · · · rank(Sn).

Proof. Note that m is the number of indecomposable elements of the direct product S1×· · ·×Sn.

Therefore, the first inequality holds. The second inequality can be shown to hold by counting

the size of the generating set given in Theorem 2.17. For each i ∈ {1, . . . , n}, choose Xi to be

a generating set for Si of minimal cardinality, and define sets Ai and Bi as in Theorem 2.17.

Then the generating set is the union of (2.7), which contains the m indecomposable elements,

along with the set
n⋃
i=1

(B1 × · · · ×Bi−1 ×Xi ×Ai+1 × · · · ×An).

Since |Ai| ≤ |Xi| and |Bi| ≤ |Xi| for each i by construction, it follows that

|B1 × · · · ×Bi−1 ×Xi ×Ai+1 × · · · ×An| ≤ |X1| · · · |Xn| = rank(S1) · · · rank(Sn),

for all i ∈ {1, . . . , n}. Therefore, the second inequality holds. If each semigroup Si is surjective,

then m = 0, and so the final inequality follows from the second.

By adapting the example used in [113, Example 2.8], we may show that the upper bound

given by Corollary 2.18 for the rank of a direct product of surjective semigroups is tight.

Example 2.19 (cf. [113, Example 2.8]). Let n ∈ N. For each i ∈ {1, . . . , n}, let mi ∈ N, and

define a semigroup

Si =

{
Ci,1 if mi = 1,

Ci,1 ∪ · · · ∪ Ci,mi
∪ {0} if mi > 1,

where each Ci,j is a cyclic group of order 2, and the product of elements within distinct groups,

or involving 0, is defined to be 0. It is straightforward to see that Si is a commutative inverse

semigroup, and that the unique minimal generating set of Si consists of the non-identity element

of each Ci,j . In particular, Si is surjective and rank(Si) = mi. It follows by Corollary 2.18 that

rank(S1 × · · · × Sn) ≤ n · rank(S1) · · · rank(Sn) = n ·m1 · · ·mn.

For each i ∈ {1, . . . , n}, choose ji ∈ {1, . . . , mi} arbitrarily. Note that C1,j1 × · · · × Cn,jn
is a direct product of n cyclic groups of order 2, and so

rank(C1,j1 × · · · × Cn,jn) = n.

But (S1 × · · · × Sn) \ (C1,j1 × · · · × Cn,jn) is an ideal of S1 × · · · × Sn, which implies that any

generating set for S1 × · · · × Sn contains a generating set for C1,j1 × · · · × Cn,jn . Since there

are mi choices for each ji, it follows that any generating set for S1 × · · · × Sn contains at least

n ·m1 · · ·mn elements. Therefore

rank(S1 × · · · × Sn) = n · rank(S1) · · · rank(Sn).
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We also deduce the following corollary to Theorem 2.17.

Corollary 2.20. Let S be a semigroup and suppose that S = 〈S \ S2〉. Then, with respect to

containment, any direct product involving S has a unique minimal generating set, which consists

of the indecomposable elements in the direct product. In particular, S \S2 is the unique minimal

generating set for S, with respect to containment.

Proof. By applying Theorem 2.17 to a collection of semigroups involving S with its generating

set S \ S2, we deduce that any direct product involving S is generated by its indecomposable

elements. On the other hand, any generating set contains the indecomposable elements.

It follows by Corollary 2.20 that the generating set for the semigroup S × I1 described in

Example 2.16 is the unique minimal generating set of S × I1, with respect to containment.

In order to prove Theorem 2.17, we first prove the following two technical lemmas. We note

that the set Γ from the statement of the theorem contains B1×· · ·×Bi−1×Xi×Ai+1×· · ·×An
for each i, since Xi = (S2

i ∩Xi) ∪ (Si \ S2
i ). We use this observation in the following proofs.

Lemma 2.21. For all i ∈ {1, . . . , n− 1} and k ∈ N0,

S1 × · · · × Si−1 ×
((
Si \ S2

i

)
Bi · · ·Bi︸ ︷︷ ︸
k times

)
× Si+1 × · · · × Sn ⊆ 〈Γ〉. (2.22)

Proof. Let i ∈ {1, . . . , n−1} be arbitrary. Note that if Si is surjective, then the set Si \S2
i , and

consequently the product of sets in (2.22), is empty and so there is nothing to prove. Otherwise,

we prove by induction that (2.22) holds for all k ∈ N0. Certainly (2.22) holds when k = 0, since

Γ contains the indecomposable elements of S1 × · · · × Sn. Suppose that (2.22) holds for some

k = l, where l ∈ N0, and let

s = (s1, . . . , si−1, sibi,1 · · · bi,l+1, si+1, . . . , sn)

∈ S1 × · · · × Si−1 ×
((
Si \ S2

i

)
Bi · · ·Bi︸ ︷︷ ︸
l+1 times

)
× Si+1 × · · · × Sn

be arbitrary. We aim to show that s ∈ 〈Γ〉.
If sj is indecomposable for any j 6= i, then s is indecomposable, and s ∈ Γ. Suppose instead

that sj is decomposable for each j 6= i. Thus we may decompose sj as a product ujxj , for some

uj ∈ Sj and xj ∈ Xj . Since we have assumed that (2.22) holds for k = l, it follows that

u = (u1, . . . , ui−1, sibi,1 · · · bi,l, ui+1, . . . , un) ⊆ 〈Γ〉.

If xj is indecomposable for any j 6= i, then x = (x1, . . . , xi−1, bi,l+1, xi+1, . . . , xn) is inde-

composable. Therefore x ∈ Γ, and so s = ux ∈ 〈Γ〉, as required. Otherwise, xj is decomposable,

and is therefore contained in AjXj∩XjBj , for each j 6= i. Hence for each j ∈ {1, . . . , n−1}\{i},
we may express xj as a product x′jbj , for some x′j ∈ Xj and bj ∈ Bj , and we may express xn
as a product anx

′
n, for some x′n ∈ Xn and an ∈ An. Since we have assumed that (2.22) holds

for k = l, it follows that

v =
(
u1x
′
1, . . . , ui−1x

′
i−1, sibi,1 · · · bi,l, ui+1x

′
i+1, . . . , un−1x

′
n−1, unan

)
⊆ 〈Γ〉,

and by definition,

b = (b1, . . . , bi−1, bi,l+1, bi+1, . . . , bn−1, x
′
n) ∈ B1 × · · · ×Bn−1 ×Xn ⊆ Γ.

Therefore s = vb ∈ 〈Γ〉. Since s was arbitrary, it follows that (2.22) holds for k = l + 1. By

induction, (2.22) holds for all k ∈ N0.
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Lemma 2.23. X1 × · · · ×Xn ⊆ 〈Γ〉.

Proof. If n = 1, then X1 = Γ, and so we assume for the remainder of this proof that n > 1.

Let x = (x1, . . . , xn) ∈ X1 × · · · ×Xn be arbitrary. It suffices to show that x ∈ 〈Γ〉. If xi is

indecomposable for some i, then x is itself indecomposable, and we are done. Otherwise, xi
is decomposable for each i, i.e. xi ∈ S2

i ∩ Xi. In order to show that x ∈ 〈Γ〉 in this case, we

introduce the following sets, which are defined in terms of the sets Xi, Ai, and Bi from the

statement of Theorem 2.17. For each i ∈ {1, . . . , n} and k ≥ 2, we define

Ui,k =


X1B

k−1
1 if i = 1,

Ak−1
i Xi if k ≤ i,

Ai−1
i XiB

k−i
i if 1 < i < k,

and Ci = B1 × · · · ×Bi−1 ×Xi ×Ai+1 × · · · ×An ⊆ Γ.

Note that U1,k × · · · × Un,k = C1 · · ·Ck−1 ·
(
B1 × · · · ×Bk−1 ×Xk × · · · ×Xn

)
for 2 ≤ k < n,

and that U1,n × · · · × Un,n = C1 · · ·Cn. By finding values of k for which xi ∈ Ui,k for all i, we

aim to show that x is contained in a product of subsets of Γ, including those of the form Ci.

Note that U1,2 = X1B1 and Ui,2 = AiXi for all i ≥ 2. Since we have assumed that xi is

decomposable for each i, and since S2
i ∩Xi ⊆ (AiXi ∩XiBi) by construction of the sets Ai and

Bi, it follows that xi ∈ Ui,2 for all i. However, it is not necessary that xi ∈ Ui,k for all k > 2.

Let i be arbitrary. By definition, xi ∈ Ui,k for some k if and only if xi can be expressed

as a product of length k consisting of min{i, k} − 1 elements of Ai, followed by a generator

in Xi, followed by k − min{i, k} elements of Bi. Suppose that xi ∈ Ui,k for some k, and

let a1 · · · amx′b1 · · · bq be a corresponding expression of length k. If x′ is decomposable, then

x′ ∈ AiXi∩XiBi. In this case, by expressing x′ as a product of length 2 in either AiXi or XiBi,

as appropriate, it follows that xi can be expressed as a product of length k + 1 consisting of

min{i, k+1}−1 elements of Ai, followed by a generator in Xi, followed by (k+1)−min{i, k+1}
elements of Bi. In other words, xi ∈ Ui,k+1. Hence if xi ∈ Ui,k \ Ui,k+1 for some k, and

a1 · · · amx′b1 · · · bq is a corresponding expression for xi of length k, then x′ ∈ Si \ S2
i .

We define a function f : {1, . . . , n} −→ {1, . . . , n} by

f(i) = min ({n} ∪ {k ∈ N : xi /∈ Ui,k+1}) .

Note that f(i) ∈ {2, . . . , n} for all i. The above argument implies that, for any i ∈ {1, . . . , n}
with f(i) < n,

xi ∈


(S1 \ S2

1)B
f(1)−1
1 if i = 1,

A
f(i)−1
i (Si \ S2

i ) if f(i) ≤ i,
Ai−1
i (Si \ S2

i )B
f(i)−i
i if 1 < i < f(i).

(2.24)

Fix j ∈ {1, . . . , n} such that f(j) = min
{
f(i) : i ∈ {1, . . . , n}

}
. It follows that

xi ∈ Ui,k for all i ∈ {1, . . . , n} and 2 ≤ k ≤ f(j). (2.25)

The remainder of the proof is split into four cases, according to the values of j and f(j).

Case 1: f(j) = n. By (2.25), xi ∈ Ui,n for all i. It follows that

x ∈ U1,n × · · · × Un,n = C1 · · ·Cn ⊆ 〈Γ〉.

Case 2: f(j) ≤ j and f(j) < n. By (2.24) and (2.25), it follows that xj ∈ Af(j)−1
j (Sj \ S2

j )

and xi ∈ Ui,f(j) for all i ∈ {1, . . . , n}. Therefore

x ∈ U1,f(j) × · · · × Uj−1,f(j) ×
(
A
f(j)−1
j (Sj \ S2

j )
)
× Uj+1,f(j) × · · · × Un,f(j)

⊆ C1 · · ·Cf(j)−1 ·
(
S1 × · · · × Sj−1 × (Sj \ S2

j )× Sj+1 × · · · × Sn
)
⊆ 〈Γ〉.
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Case 3: j = 1 and f(j) < n. By (2.24), x1 ∈ (S1 \ S2
1)B

f(1)−1
1 . Therefore, by Lemma 2.21,

x ∈
(
(S1 \ S2

1)B
f(1)−1
1

)
× S2 × · · · × Sn ⊆ 〈Γ〉.

Case 4: 1 < j < f(j) < n. By (2.24) and (2.25), it follows that xj ∈ Aj−1
j (Sj \S2

j )B
f(j)−j
j and

xi ∈ Ui,j for all i ∈ {1, . . . , n}. Therefore

x ∈ U1,j × · · · × Uj−1,j ×
(
Aj−1
j (Sj \ S2

j )B
f(j)−j
j

)
× Uj+1,j × · · · × Un,j

= C1 · · ·Cj−1 ·
(
B1 × · · · ×Bj−1 × (Sj \ S2

j )B
f(j)−j
j ×Xj+1 × · · · ×Xn

)
⊆ C1 · · ·Cj−1 ·

(
S1 × · · · × Sj−1 × (Sj \ S2

j )B
f(j)−j
j × Sj+1 × · · · × Sn

)
⊆ 〈Γ〉,

by Lemma 2.21.

In all cases, x ∈ 〈Γ〉. Since x was arbitrary, it follows that X1 × · · · ×Xn ⊆ 〈Γ〉.

We may now prove Theorem 2.17, using Lemmas 2.21 and 2.23.

Proof of Theorem 2.17. The statement is clearly true when n = 1, so suppose that n > 1.

Certainly 〈Γ〉 ≤ S1 × · · · × Sn. Therefore it remains to prove that the reverse inclusion holds,

so let (s1, . . . , sn) ∈ S1 × · · · × Sn be arbitrary. We split into two cases.

In the first case, assume that, for all i ∈ {1, . . . , n}, every expression for si in Si includes

only decomposable elements. For each index i ∈ {1, . . . , n}, by Lemma 2.8, si can be expressed

as an arbitrarily long product in S2
i ∩ Xi. Choose any such expression that is non-trivial,

and define l(i) > 1 to be the length of this expression. Let i ∈ {1, . . . , n} be arbitrary.

Then si = x1x2 · · ·xl(i) for some decomposable generators x1, x2, . . . , xl(i) ∈ S2
i ∩ Xi. Since

(S2
i ∩ Xi) ⊆ AiXi, we may replace x1 by ay, for some a ∈ Ai and y ∈ Xi, which gives a

new expression ayx2 . . . xl(i) for si. It follows by assumption that y is decomposable. We may

then replace y by a′y′, for some a′ ∈ Ai and y′ ∈ S2
i ∩Xi, and we may continue in this fashion

indefinitely. In this way, we can obtain an expression for si consisting of any number of elements

of Ai, followed by l(i) elements of S2
i ∩Xi. Additionally or alternatively, we may replace xl(i)

by zb, for some z ∈ S2
i ∩Xi and b ∈ Bi, and we may then replace z by z′b′, for some z′ ∈ S2

i ∩Xi

and b′ ∈ Bi, and so on. It follows that, for any i ∈ {1, . . . , n} and k,m ∈ N, we may express

si as an element of the sets

Aki (S2
i ∩Xi)

l(i)
, (S2

i ∩Xi)
l(i)
Bmi , and Aki (S2

i ∩Xi)
l(i)
Bmi .

In particular, if Ci =
(
B1 × · · · ×Bi−1 × (S2

i ∩Xi)×Ai+1 × · · · ×An
)l(i)

for each i, then

(s1, . . . , sn) ∈ C1 · · ·Cn ⊆ 〈Γ〉.

For the final case, assume that, for some i ∈ {1, . . . , n}, there exists an expression for si
that includes an indecomposable element. For each index i ∈ {1, . . . , n} where this is the case,

we may choose an expression for si in Xi that includes an element of (Si \ S2
i ). Choose j from

these indices such that the expression for sj has minimal length amongst these expressions. By

Lemma 2.8, for the indices i ∈ {1, . . . , n} for which we have not already chosen an expression,

we may express si as a product in S2
i ∩ Xi that is strictly longer than the expression for sj .

For i ∈ {1, . . . , n}, let l(i) be the length of the expression for si. Note that, by construction,

l(j) = min
{
l(i) : i ∈ {1, . . . , n}

}
. For each i ∈ {1, . . . , n} and p ∈ {1, . . . , l(i)}, let xpi ∈ Xi

denote the pth term in the expression for si, i.e. si = x1
ix

2
i · · ·x

l(i)
i . Choose any k ∈ {1, . . . , l(j)}
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such that xkj is indecomposable, and define r = l(j)− k. Then for any i ∈ {1, . . . , n},

si = x1
i · · ·xk−1

i

l(i)−r∏
ν=k

xνi

x
l(i)−r+1
i · · ·xl(i)i .

In particular, this gives an expression for si as a product of l(j) elements of Si, where each

term, except for possibly the kth term, is contained in Xi. We use these expressions to give

(s1, . . . , sn) as a product of length l(j) in 〈Γ〉:

(s1, . . . , sn) =
(
x1

1, . . . , x
1
j−1, x

1
j , x

1
j+1, . . . , x

1
n

)
. . .(
xk−1

1 , . . . , xk−1
j−1 , x

k−1
j , xk−1

j+1 , . . . , x
k−1
n

)l(1)−r∏
ν=k

xν1 , . . . ,

l(j−1)−r∏
ν=k

xνj−1, x
k
j ,

l(j+1)−r∏
ν=k

xνj+1, . . . ,

l(n)−r∏
ν=k

xνn


(
x
l(1)−r+1
1 , . . . , x

l(j−1)−r+1
j−1 , xk+1

j , x
l(j+1)−r+1
j+1 , . . . , xl(n)−r+1

n

)
. . .(
x
l(1)
1 , . . . , x

l(j−1)
j−1 , x

l(j)
j , x

l(j+1)
j+1 , . . . , xl(n)

n

)
.

Each term in this product, except for possibly the kth term, is contained in X1 × · · · × Xn,

which is a subset of 〈Γ〉 by Lemma 2.23. Finally, the kth terml(1)−r∏
ν=k

xν1 , . . . ,

l(j−1)−r∏
ν=k

xνj−1, x
k
j ,

l(j+1)−r∏
ν=k

xνj+1, . . . ,

l(n)−r∏
ν=k

xνn


is contained in S1 × · · · × Sj−1 × (Sj \ S2

j ) × Sj+1 × · · · × Sn ⊆ Γ, since we have chosen k so

that xkj is indecomposable. Therefore (s1, s2, . . . , sn) ∈ 〈Γ〉, as required.

2.5 Two finitely generated surjective semigroups

In the final section of this chapter, we restrict our attention to describing generating sets for

direct products of pairs of finitely generated surjective semigroups. Generating sets for direct

products of this kind are given in Proposition 2.15, and generating sets for direct products

involving an arbitrary finite number of surjective semigroups are given in Theorem 2.17. More-

over, the generating sets given by these results have minimal cardinality in certain instances;

see Example 2.19. Nonetheless, a generating set for a direct product that is specified by Propo-

sition 2.15 or Theorem 2.17 may be significantly larger than necessary; see Example 2.26. This

suggests that it may be possible to improve upon Proposition 2.15 and Theorem 2.17 in some

cases.

Example 2.26. Let m,n ∈ N be arbitrary, let S be a right zero semigroup of order m, and let

T be a left zero semigroup of order n. Note that S and T are finite surjective semigroups that

have no proper generating subsets. Using the notation of Proposition 2.15, we find that the only

choices for the sets B and A are the semigroups S and T themselves, respectively. Therefore,

the only generating set for S × T that can be directly obtained from Proposition 2.15 is set
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of all elements, which has cardinality mn. However, S × T is an n × m rectangular band

(see [76, Theorem 1.1.3]), and so the minimal cardinality of a generating set for S × T is

max{m, n}. Note that max{m, n} ≤ mn, and indeed max{m, n} < mn when m,n > 1.

Let S = 〈X〉 and T = 〈Y 〉 be surjective semigroups. Roughly speaking, the fundamental

idea behind Proposition 2.15 is to extend the generating sets X and Y to generating sets X ∪B
and Y ∪ A in such a way that, given any pair (s, t) ∈ S × T , s and t can be systematically

expressed as equal-length products over X ∪ B and A ∪ Y , respectively. By doing so, it is

possible to describe a generating set for S × T in terms of the sets X ×A and B × Y .

In the main result of this section, Theorem 2.31, we present an alternative approach (in the

case that the generating sets X and Y are finite) to extending X and Y . We do so by taking

into account the Green’s structure of the semigroups. More specifically, the set A requires

either one or two elements per maximal R-class of T , and the set B requires requires either

one or two elements per maximal L -class of S. This allows us to give an upper bound on

rank(S × T ) that involves the ranks of S and T as well as the Green’s structure of S and T ;

see Corollary 2.33. For certain semigroups, a generating set described by Theorem 2.31 may be

smaller than a generating set described by Proposition 2.15; see Example 2.32.

Our approach also suggests a direction for further improvements to Theorem 2.17, and,

consequently, improved methods for computing direct products. However, in this section, we

do not address the problem of constructing generating sets computationally.

In order to prove the main result of this section, we require the following lemmas, which we

use when describing the Green’s structure of a finitely generated surjective semigroup.

Lemma 2.27. Let S be a semigroup generated by a set X, and let K ∈ {L , R, J }. If K is

a maximal K -class of S, then K ∩ X 6= ∅. In particular, if S is finitely generated, then the

number of maximal K -classes of S is finite.

Proof. We prove the result for L ; the proof for R is dual, and the proof for J is similar.

Suppose that L is a maximal L -class of S, let x ∈ L be arbitrary, and let x = x1 · · ·xn be a

factorization of x over X. It follows that L ≤ Lxn
by Lemma 1.12(i), and so xn ∈ L by the

maximality of L.

Lemma 2.28. Let S be a semigroup with a finite generating set X, and let K ∈ {L , R, J }.
For every K -class K of S, there exists a maximal K -class K ′ of S such that K ≤ K ′.

Proof. Again, we prove only the result concerning L . Let L ∈ S/L and x ∈ L be arbitrary,

and let x = x1 · · ·xn be a factorization of x over X. It follows that L ≤ Lxn by Lemma 1.12(i).

If Lxn
is maximal, then we are done. Otherwise, there exists an L -class L′ ∈ S/L such that

Lxn
< L′, and again, L′ ≤ Lx′ for some generator x′ ∈ X. Therefore Lxn

< Lx′ , which implies

that x 6= xn. Continuing in this way, either we find a maximal L -class Ly for some y ∈ X such

that L ≤ Ly, or we obtain an arbitrarily long strictly ascending chain of L -classes of S, each

of which contains a distinct element of X. Since X is finite, the latter is not possible.

In the following lemma, we show that every element in a finitely generated surjective semi-

group can be written as a left multiple of an element of a maximal L -class, and as a right

multiple of an element of a maximal R-class.

Lemma 2.29. Let S be a surjective semigroup with finite generating set X, and let Λ and Ω

be transversals of the sets{
L ∩X : L is a maximal L -class of S

}
and

{
R ∩X : R is a maximal R-class of S

}
,

respectively. Then S = SΛ = ΩS.
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Proof. Certainly SΛ ⊆ S and ΩS ⊆ S. We prove that S ⊆ SΛ; the proof that S ⊆ ΩS is dual.

Let s ∈ S be arbitrary. Then s = ux for some u ∈ S and x ∈ X, since s is decomposable. By

Lemmas 2.27 and 2.28, there exists a maximal L -class Lx′ of S, for some x′ ∈ X, such that

Lx ≤ Lx′ . By construction, there exists some y ∈ Lx′ ∩ Λ. Therefore Lx ≤ Ly, i.e. x ∈ S1y. In

particular, s = ux ∈ SS1Λ = SΛ.

In the main theorem of this section, we require relative left or right identities of the elements

of the sets Λ and Ω from Lemma 2.29. Certainly any regular element x has both a relative left

identity and a relative right identity, since if x′ is an inverse of x, then x = (xx′)x = x(x′x).

In the following lemma, we show that elements of maximal L -classes and elements of maximal

R-classes of a surjective semigroup have relative left and right identities, respectively, regardless

of regularity.

Lemma 2.30. Let S be a surjective semigroup. Then every element in a maximal L -class of

S has a relative left identity, and every element in a maximal R-class of S has a relative right

identity.

Proof. Let L be a maximal L -class of S, and let l ∈ L. Since S is surjective, there exist elements

a, b ∈ S such that l = ab. It follows by Lemma 1.12(i) that L ≤ Lb, and so the maximality of

L implies that b ∈ L. Therefore b = ul for some u ∈ S1. It follows that l = ab = (au)l, i.e. au

is a relative left identity for l. The statement concerning R is dual.

We may now state and prove the main result of this section.

Theorem 2.31. Let S and T be surjective semigroups with finite generating sets X and Y ,

respectively. Let Λ be a transversal of
{
L ∩X : L is a maximal L -class of S

}
, and let Ω be

a transversal of
{
R ∩ Y : R is a maximal R-class of T

}
. For each regular l ∈ Λ, choose a

relative right identity el for l, and for each non-regular l ∈ Λ, choose a relative left identity fl
for l. Similarly, for each regular r ∈ Ω, choose a relative left identity ur for r, and for each

non-regular r ∈ Ω, choose a relative right identity vr for r. Define

B = {el : l ∈ Λ and l is regular} ∪ {fl, l : l ∈ Λ and l is non-regular}

and

A = {ur : r ∈ Ω and r is regular} ∪ {vr, r : r ∈ Ω and r is non-regular}.

Then S × T is generated by the set Ψ = (X ×A) ∪ (B × Y ).

Proof. That the sets Λ ⊆ X and Ω ⊆ Y are finite and non-empty follows by Lemmas 2.27

and 2.28; the relative left and right identities exist by Lemma 2.30 and the preceding discussion.

It suffices to show that S×T ⊆ 〈Ψ〉. Let (s, t) ∈ S×T . By Lemma 2.29, s ∈ SΛ and t ∈ TΩ.

Therefore, s = x1 · · ·xml for some x1, . . . , xm ∈ X and l ∈ Λ, and similarly t = ry1 · · · yn for

some y1, . . . , yn ∈ Y and r ∈ Ω. Since S and T are surjective semigroups, we may assume

without loss of generality that m,n > 1. The proof that (s, t) ∈ 〈Ψ〉 concludes with four cases,

according to the regularity of l and r.

Case 1: l and r are regular.

(s, t) =
(
x1 · · ·xmlen+1

l , um+1
r ry1 · · · yn

)
= (x1, ur) · · · (xm, ur) (l, ur) (el, r) (el, y1) · · · (el, yn) ∈ 〈Ψ〉.

Case 2: l is regular but r is not.

(s, t) = (x1 · · ·xmlenl , rvmr y1 · · · yn)

= (x1, r) (x2, vr) · · · (xm, vr) (l, vr) (el, y1) · · · (e1, yn) ∈ 〈Ψ〉.
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Case 3: r is regular but l is not.

(s, t) = (x1 · · ·xmfnl l, umr ry1 · · · yn)

= (x1, ur) · · · (xm, ur) (fl, r) (fl, y1) · · · (fl, yn−1) (l, yn) ∈ 〈Ψ〉.

Case 4: neither l nor r is regular.

(s, t) =
(
x1 · · ·xmfn−1

l l, rvm−1
r y1 · · · yn

)
= (x1, r) (x2, vr) · · · (xm, vr) (fl, y1) · · · (fl, yn−1) (l, yn) ∈ 〈Ψ〉.

Example 2.32. Let n ∈ N, n ≥ 2, be arbitrary. We define S = Tn \ Sn to be the semigroup

consisting of all transformations of degree n that are not permutations, and let X be the

generating set for S consisting of all n(n − 1) idempotents of rank n − 1. We also define T

to be a 2 × n rectangular band, generated by a set Y consisting of n elements. Note that

S and T are finite regular semigroups; S has n maximal L -classes, and T has 2 maximal

R-classes. Therefore, a generating set for S × T specified by Theorem 2.31 contains at most

2|X|+ n|Y | = 2n(n− 1) + n2 = n(3n− 2) elements. On the other hand, choosing A = Y and

B = X, it follows by Proposition 2.15 that (X ×A) ∪ (B × Y ) = X × Y is a generating set for

S × T ; this set contains n2(n− 1) elements. It follows that, at least for n ≥ 4, a generating set

given by Proposition 2.15 can be larger than the largest generating set given by Theorem 2.31.

Although it is possible to construct smaller generating sets for S × T with Proposition 2.15, it

is not clear from the statement of the proposition that this is the case.

By applying Theorem 2.31 to finitely generated surjective semigroups defined by generating

sets of minimal cardinality, we obtain the following corollary.

Corollary 2.33. Let S and T be finitely generated surjective semigroups. Define l to be the

number of maximal L -classes of S that are regular, and l′ to be the number of maximal L -

classes of S that are not. Similarly, define r to be the number of maximal R-classes of T that

are regular, and r′ to be the number of maximal R-classes of T that are not. Then

rank(S × T ) ≤ rank(S) · (r + 2r′) + (l + 2l′) · rank(T ).

In particular, if every maximal L -class of S and every maximal R-class of T is regular, then

rank(S × T ) ≤ rank(S) · r + l · rank(T ).

A finite semigroup contains at least one maximal J -class, and a maximal J -class in a

finite surjective semigroup is a regular D-class by Corollary 2.10; such a D-class consists of

regular maximal L - and R-classes. It follows that, in a finite surjective semigroup, there exists

at least one regular maximal L -class and at least one regular maximal R-class.

Let S be a finitely generated semigroup. By Lemma 2.27, the number of maximal L -, R-,

or J -classes of S is at most rank(S). Therefore, if S is a finitely generated semigroup each of

whose l maximal L -classes is regular, and T is a finitely generated semigroup each of whose

r maximal R-classes is regular, then (since S and T are surjective) the upper bound on the

rank of S × T given by Corollary 2.33 is no worse than the bound given by Corollary 2.18

and [2, Corollary 3.6]. More specifically,

rank(S × T ) ≤ rank(S) · r + l · rank(T ) ≤ 2rank(S)rank(T ).

There are obvious analogues to Theorem 2.31 and Corollary 2.33 that involve the maximal

R-classes of S and the maximal L -classes of T , rather than the maximal L -classes of S and

the maximal R-classes of T , where S and T are finitely generated surjective semigroups.
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Open Problem 2.34. Generalise Theorem 2.31 and Corollary 2.33 for direct products of an

arbitrary number of finitely generated surjective semigroups. In particular, develop an upper

bound for the rank of such a direct product that involves the ranks and the numbers of maximal

L - and R-classes of the factors.

We end this chapter by posing the following easy-to-state problem concerning direct products

of semigroups. As far as we are aware, this problem has not yet been considered in the literature.

Open Problem 2.35. Let S be an arbitrary finite semigroup. Develop practical methods for

computing whether there exist non-trivial semigroups T and U such that S ∼= T × U ; given

this, develop methods for finding such semigroups T and U when they exist.



Chapter 3

Rees 0-matrix semigroups over a

semigroup

3.1 Introduction

Given a semigroup T , non-empty sets I and Λ, and a Λ×I matrix P with entries in T 0 = T∪{0},
the Rees 0-matrix semigroup M 0[T ; I, Λ; P ] is the set (I × T × Λ) ∪ {0} with multiplication

defined, as in (1.8), by

(i, t, λ) (j, u, µ) =

{
0 if pλ,j = 0,

(i, tpλ,ju, µ) if pλ,j 6= 0,

and (i, t, λ) 0 = 0 (i, t, λ) = 02 = 0,

for all (i, t, λ), (j, u, µ) ∈ I×T×Λ. In this chapter, we investigate various semigroup-theoretic

properties of Rees 0-matrix semigroups defined over arbitrary semigroups, with a particular

emphasis on developing methods for computing with these kinds of semigroups.

The original interest in Rees 0-matrix semigroups stems from their deep association with

the completely 0-simple semigroups. By the Rees Theorem [76, Theorem 3.2.3], a semigroup

is completely 0-simple if and only if it is isomorphic to a regular Rees 0-matrix semigroup

M 0[G; I, Λ; P ], where G is a group. The principal factor of a J -class in any finite semigroup

is either a zero semigroup, or is a completely 0-simple semigroup [76, Theorem 3.1.6]. In

essence, therefore, completely 0-simple semigroups, and correspondingly regular Rees 0-matrix

semigroups over groups, can be thought of as the building blocks of finite semigroups. Because

of this connection, many problems in finite semigroup theory reduce to, or at least involve,

problems with Rees 0-matrix semigroups. For example, as noted in [65], any minimal generating

set for a finite semigroup necessarily contains minimal generating sets for the principal factors of

each of its maximal J -classes. Therefore, in order to develop techniques for describing minimal

generating sets of an arbitrary finite semigroup, we first require this problem to be solved for

finite regular Rees 0-matrix semigroups over groups; this topic has been extensively researched,

principally by Gray and Ruškuc, see [63,65,114] for more information. Rees 0-matrix semigroups

are also central to the problem of computing maximal subsemigroups of finite semigroups, which

is the topic of the next chapter. More precisely, the algorithm presented in the next chapter

for computing maximal subsemigroups of an arbitrary semigroup relies, amongst other things,

on an algorithm for computing the maximal subsemigroups of a finite regular Rees 0-matrix

semigroup over a group. Indeed, the main purpose of Section 3.2 is to provide some necessary

background information and results about these kinds of Rees 0-matrix semigroups.

Since regular Rees 0-matrix semigroups over groups are so well-understood, and of such

importance to finite semigroup theory, there are well-developed methods for computing with

59
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these kinds of semigroups in the computational algebra system GAP [58]. Moreover, in GAP,

if it is possible to construct a semigroup T and a Λ× I matrix P with entries in T 0, then it is

possible the construct the Rees 0-matrix semigroup M 0[T ; I, Λ; P ] in GAP, even when T is

not a group. This naturally leads one to experiment computationally with Rees 0-matrix semi-

groups over semigroups that are not groups, many of which turn out to exhibit a rich structure.

However, since there is very little research on the topic of computing with Rees 0-matrix semi-

groups over semigroups that are not groups, there are few specialised methods for computing

with them. Instead, GAP uses generic methods from computational semigroup theory, which

often perform much more slowly than one might expect. The research in this chapter arose

from performing experiments with Rees 0-matrix semigroups in GAP, and identifying areas

where the theory, and associated computational methods, could be improved.

As with a direct product of semigroups, a Rees 0-matrix semigroup is defined in terms of

its elements. This brings certain advantages for computation: for example, it allows us to

easily perform membership checking by computing in the underlying semigroup and index sets,

since an arbitrary triple (a, b, c) is contained in the Rees 0-matrix semigroup M 0[T ; I, Λ; P ]

if and only if a ∈ I, b ∈ T , and c ∈ Λ. Moreover, the order of a Rees 0-matrix semigroup

M 0[T ; I, Λ; P ] is |I| · |T | · |Λ| + 1. On the other hand, a Rees 0-matrix semigroup does not

necessarily come with a proper generating subset. In the current version of GAP, unless the

underlying semigroup is a group, the default method for computing a generating set of a Rees 0-

matrix semigroup returns the set of all elements or all non-zero elements, depending on whether

the matrix contains zero. This is obviously undesirable. In Section 3.4, we address this difficulty

by describing relatively small generating sets for certain Rees 0-matrix semigroups.

When computing with a Rees 0-matrix semigroup M 0[T ; I, Λ; P ], we aim to formulate the

relevant problem in terms of the underlying semigroup T , the index sets I and Λ, and the

matrix P . In other words, wherever possible, we wish to make use of the representation of

the Rees 0-matrix semigroup in question. Since all of the information about the Rees 0-matrix

semigroup M 0[T ; I, Λ; P ] is encoded in T , I, Λ, and P , this goal seems sensible, provided

that it is feasible to compute with these components. Perhaps most importantly, we wish to

avoid having to exhaustively enumerate every element of a Rees 0-matrix semigroup, especially

since we can represent and compute with Rees 0-matrix semigroups that are far too large to

exhaustively enumerate and store in memory, such as those defined over large groups. This is

because representing a Rees 0-matrix semigroup M 0[T ; I, Λ; P ] on a computer only requires

representing the underlying semigroup T , and storing a matrix that contains |I| · |Λ| elements.

In particular, we can represent certain infinite Rees 0-matrix semigroups, whereas the elements

of an infinite semigroup can never be enumerated by a computer.

As a general rule of thumb, if it is not feasible to compute with a semigroup T , then it is

not reasonable to expect to perform a related computation with a Rees 0-matrix semigroup

whose underlying semigroup is T . Therefore, throughout this chapter, when we consider a

computation with a Rees 0-matrix semigroup, we implicitly assume that its components are

such that they may be readily computed.

This chapter is structured as follows.

In Section 3.2, we introduce several concepts and results that are required in later parts

of this chapter, and the next. In particular, we discuss isomorphisms and normalizations of

Rees 0-matrix semigroups, and we describe an algorithm for computing a generating set for the

idempotent generated subsemigroup of a finite Rees 0-matrix semigroup over a group.

In Section 3.3, we consider the Green’s structure of Rees 0-matrix semigroups over arbitrary

semigroups. In our attempt to classify those Rees 0-matrix semigroups whose Green’s structure

can be deduced from the index sets and the Green’s structure of the underlying semigroup, we

introduce the notions of row-regular and column-regular matrices. These notions prove to be
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important for the whole of this chapter.

In Section 3.4, we prove results concerning generating sets of Rees 0-matrix semigroups.

We give relatively small generating sets for certain kinds of Rees 0-matrix semigroups over

monoids, and we give generating sets for Rees 0-matrix semigroups with row-regular or column-

regular matrices. We also characterise some of the indecomposable elements of a Rees 0-matrix

semigroup, in terms of the matrix and the indecomposable elements of the underlying semigroup.

Finally, in Section 3.5, we completely classify when an arbitrary Rees 0-matrix semigroup is

regular, inverse, or a monoid, and we discuss the properties of such Rees 0-matrix semigroups.

Although the topic of this chapter is Rees 0-matrix semigroups, Rees matrix semigroups

(without the zero) are not forgotten. Many results concerning Rees matrix semigroups can be

deduced from results concerning Rees 0-matrix semigroups. For example, the obvious analogues

of the results of Section 3.3 hold for Rees matrix semigroups. Furthermore, if S = M [T ; I, Λ; P ]

is a Rees matrix semigroup, then the corresponding Rees 0-matrix semigroup M 0[T ; I, Λ; P ] is

isomorphic to S0, and so by Lemma 1.5, the generating sets of S are in an inclusion-preserving

one-to-one correspondence with the generating sets of M 0[T ; I, Λ; P ]. This observation allows

the results of Section 3.4 to be adapted for Rees matrix semigroups, for instance.

3.2 Preliminaries

In this section, we present some results about Rees 0-matrix semigroups that will be useful in

later parts of this thesis. In Section 3.2.1, we discuss isomorphisms of Rees 0-matrix semigroups

over groups and monoids. This topic allows us to introduce the notion of normalizations of

such Rees 0-matrix semigroups. This is a vital concept required for the algorithms presented

in Section 4.3, which concern the maximal subsemigroups of finite regular Rees 0-matrix semi-

groups over groups. In Section 3.2.2, we describe an algorithm for computing a small generating

set for the idempotent generated subsemigroup a finite Rees 0-matrix semigroup over a group.

This has inherent interest, and is again useful for the algorithms presented in Section 4.3.

3.2.1 Isomorphisms and normalizations of Rees 0-matrix semigroups

In general, it is not straightforward to determine whether two arbitrary Rees 0-matrix semi-

groups are isomorphic, or to construct isomorphisms between isomorphic Rees 0-matrix semi-

groups. For example, consider the Rees 0-matrix semigroups

S1 = M 0[T1; {1′, 2′}, {1, 2}; P ] and S2 = M 0[T2; {1′}, {1}; Q],

where Tn denotes the full transformation monoid of degree n (see Section 1.3.5), and P and Q

are 2×2 and 1×1 matrices, respectively, that consist entirely of zeroes. Then S1 and S2 are zero

semigroups of order 5, and are therefore isomorphic. However, this is perhaps counter-intuitive,

since the underlying semigroups T1 and T2 are non-isomorphic, and their index sets have

different cardinalities. Describing isomorphisms between arbitrary Rees 0-matrix semigroups

is beyond the scope of this thesis; in this section, we restrict our attention to isomorphisms of

Rees 0-matrix semigroups over groups or monoids.

Rees 0-matrix semigroups over groups

As shown in the following result, the difference between isomorphic regular Rees 0-matrix semi-

groups over groups is much smaller than the general case: their underlying groups are required

to be isomorphic, and their respective index sets are necessarily in bijective correspondence.

There is, however, significant possible variation between their matrices.
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Proposition 3.1 ([76, Theorem 3.4.1]). Let S = M 0[G; I, Λ; P ] and S′ = M 0[H; J, M ; Q]

be regular Rees 0-matrix semigroups over groups. Then S ∼= S′ if and only if there exists an

isomorphism of groups θ : G −→ H, bijections ψ : I −→ J and χ : Λ −→M such that pλ,i 6= 0

whenever qλχ,iψ 6= 0, and elements ui, vλ ∈ H such that

pλ,i 6= 0 ⇒ pλ,iθ = vλ · qλχ,iψ · ui

for all i ∈ I and λ ∈ Λ.

This characterisation can be used, for instance, to help enumerate the completely 0-simple

semigroups of a given order up to isomorphism. For our purposes, this classification is partic-

ularly useful since it suggests the possibility of normalizing a regular Rees 0-matrix semigroup

over a group. In essence, every such Rees 0-matrix semigroup is isomorphic to a Rees 0-matrix

semigroup where the entries of the matrix satisfy certain convenient properties. This idea

was first explored by Graham; indeed, some authors say that a Rees 0-matrix semigroup has

Graham normal form if its matrix satisfies the properties described by Graham in [62, Sec-

tion 4]. The topic has subsequently been considered by several authors, including in [76, Sec-

tion 3.4], [64, Theorem 2.58], and [110, Theorem 4.13.34]; we refer the interested reader to these

works for a more thorough treatment of the topic than the one given here. The results given

in the following proposition are sufficient for our purposes. Recall from Section 1.3.2 that the

Graham-Houghton graph of the Rees 0-matrix semigroup M 0[T ; I, Λ; P ], where (pλ,i)λ∈Λ,i∈I ,

is the graph
(
I ∪ Λ,

{
{i, λ} : pλ,i 6= 0

})
; we assume that I ∩ Λ = ∅.

Proposition 3.2 ([62, Section 4]). Let S′ = M 0[G; I, Λ; Q] be a finite regular Rees 0-matrix

semigroup over a group G, and let {I1, . . . , In} and {Λ1, . . . , Λn} be partitions of I and Λ,

respectively, such that Ik ∪ Λk is a connected component of the Graham-Houghton graph of S′

for each k. Then there exists a matrix P : Λ × I −→ G0 such that S′ ∼= S = M 0[G; I, Λ; P ]

and the following hold for each k:

(i) there exist indices ik ∈ Ik and λk ∈ Λk such that pλk,ik = 1G;

(ii) the non-zero entries of the sub-matrix Pk : Λk × Ik −→ G0 of P generate the group

Gk =
{
g ∈ G : (ik, g, λk) ∈ F (S)

}
.

We refer to a finite regular Rees 0-matrix semigroup S = M 0[G; I, Λ; P ], over a group

G, whose matrix that satisfies properties (i) and (ii) in Proposition 3.2 as being normalized ,

and a normalization of a Rees 0-matrix semigroup is an isomorphism to a normalized Rees

0-matrix semigroup. If S is normalized, then by [62, Theorem 2], each connected component of

the Graham-Houghton graph of S corresponds to a regular Rees 0-matrix semigroup

M 0[Gk; Ik, Λk; Pk] = (Ik ×Gk × Λk) ∪ {0}, (3.3)

and the idempotent generated subsemigroup of S is the union of these subsemigroups

F (S) = {0} ∪
n⋃
k=1

(Ik ×Gk × Λk) . (3.4)

In Section 4.3, we simplify the task of describing the maximal subsemigroups of a finite

regular Rees 0-matrix semigroup over a group by assuming (without loss of generality, according

to Proposition 3.2) that the semigroup is normalized. Therefore, in order to implement the

algorithms described in Chapter 4, we require the ability to compute a normalization of an

arbitrary finite regular Rees 0-matrix semigroup S = M 0[G; I, Λ; P ], where G is a group.

This can be done in a straightforward manner; we briefly and roughly describe the method
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that has been implemented in the Semigroups package [101] for GAP [58], by the author. A

normalization of the Rees 0-matrix semigroup S can be found with the Semigroups package

by applying the function Normalization to S.

First, it is necessary to calculate the connected components of the Graham-Houghton graph

of S; in doing so, we obtain the sets Ik and Λk from the statement of Proposition 3.2. Finding

the connected components of a graph is a classical problem in graph theory, and can be solved

with a standard depth- or breath-first search algorithm; see [117, Section 4.1]. For a graph

(V, E), an algorithm of this kind typically has time complexity O(|V |+ |E|), and so for the

Graham-Houghton of S, this is at most O(|I| · |Λ|).
The remaining step consists of multiplying the entries in each row of P by the inverse of the

first non-zero entry in that row, and multiplying the entries in each column of P by the inverse

of the first non-zero entry in that column; this step can be accomplished with time complexity

O(|I| · |Λ|). It is not especially difficult to see that, by choosing the rows and columns in a

suitable order, the first non-zero entry in each row and column of the resulting normalized

matrix is 1G. In particular, Proposition 3.2(i) holds. Furthermore, when the first non-zero

entry in each row and column of the matrix is 1G, it can be shown that Proposition 3.2 also

holds; proving this is difficult, and is the main result of [62, Section 4].

Rees 0-matrix semigroups over monoids

The classification of isomorphisms between regular Rees 0-matrix semigroups over groups given

in Proposition 3.1 exploits the fact that the elements of the matrix are units. Since a monoid

contains units, this suggests the possibility of partially generalising this proposition to include

Rees 0-matrix semigroups over monoids that are not necessarily groups. We present and prove

a generalisation of the converse implication of Proposition 3.1 below. In later parts of this

chapter, we use Proposition 3.5 to introduce the notion of normalizing certain Rees 0-matrix

semigroups over monoids; see Sections 3.4.2 and 3.5.3.

Proposition 3.5 (cf. [76, Theorem 3.4.1]). Let S = M 0[T ; I, Λ; P ] and S′ = M 0[U ; J, M ; Q]

be Rees 0-matrix semigroups, where T and U are monoids, and P = (pλ,i)λ∈Λ,i∈I and Q =

(qµ,j)µ∈M,j∈J . If there exists an isomorphism θ : T −→ U , bijections ψ : I −→ J and χ : Λ −→
M such that pλ,i 6= 0 whenever qλχ,iψ 6= 0, and units ui, vλ ∈ U such that

pλ,i 6= 0 ⇒ pλ,iθ = vλ · qλχ,iψ · ui

for all i ∈ I and λ ∈ Λ, then the function φ : S −→ S′ defined by

0φ = 0 and (i, t, λ)φ = (iψ, ui(tθ)vλ, λχ)

for all (i, t, λ) ∈ I × T × Λ is an isomorphism, and in particular, S ∼= S′.

Proof. To show that φ is an homomorphism, let x, y ∈ S be arbitrary. If x = 0 or y = 0, then

(xy)φ = 0φ = 0 = (xφ)(yφ). Suppose that x = (i, t, λ), y = (j, s, µ) ∈ S \ {0}. If pλ,j = 0,

then also qλχ,jψ = 0, and so again (xy)φ = 0φ = 0 = (xφ)(yφ). Otherwise,

(xφ)(yφ) = (iψ, ui(tθ)vλ, λχ) (jψ, uj(sθ)vµ, µχ)

= (iψ, ui(tθ)vλqλχ,jψuj(sθ)vµ, µχ)

= (iψ, ui(tθ)(pλ,jθ)(sθ)vµ, µχ)

= (iψ, ui(tpλ,js)θvµ, µχ)

= (i, tpλ,js, µ)φ

= (xy)φ,
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and so φ is a homomorphism.

If (i, t, λ)φ = (j, s, µ)φ, then in particular iψ = jψ and λχ = µχ. Since the functions ψ

and χ are bijective, it follows that i = j and λ = µ. In addition, ui(tθ)vλ = ui(sθ)vλ. Using the

fact that ui and vλ are units in U , we deduce that tθ = sθ. But θ is also bijective, which implies

that t = s, and so φ is injective. Let (i, t, λ) ∈ S′ \ {0} be an arbitrary non-zero element, and

define j = iψ−1 and µ = λχ−1. Then(
j, u−1

j (tθ−1)v−1
µ , µ

)
φ = (i, t, λ) ,

and so φ is surjective, and therefore bijective. In conclusion, φ is an isomorphism.

In modern computer algebra systems such as GAP [58] and Magma [13], there are well-

developed and practical methods for testing whether arbitrary finite groups are isomorphic,

and for finding isomorphisms between isomorphic finite groups, see [20], for example. We do

not concern ourselves with the details of how these tools function; however, because these tools

exist, it is feasible to implement methods that build on Proposition 3.1 to test whether arbitrary

finite regular Rees 0-matrix semigroups over groups are isomorphic, and to find isomorphisms

between those semigroups that are isomorphic. Indeed, such functionality is available in the

Semigroups [101] package for GAP. However, there do not currently exist practical methods

for testing whether arbitrary finite monoids are isomorphic, or for finding isomorphisms between

them. Because of this, Proposition 3.5 does not currently suggest a practical approach to

computing isomorphisms between Rees 0-matrix semigroups over monoids.

3.2.2 The idempotent generated subsemigroup of a Rees 0-matrix

semigroup

In this section, we consider the problem of quickly computing a small generating set for the

idempotent generated subsemigroup of a finite Rees 0-matrix semigroup over a group. It appears

to be difficult to find generating sets of minimal cardinality, see [64, Theorem 3.27], but doing

so is not our goal. The generating set that we describe is small, in the sense that it does

not necessarily include every idempotent of the semigroup, and it contains at most twice the

minimal number of generators. The main result of this section is Proposition 3.7.

The work in this section was motivated by the algorithms presented in Chapter 4. In partic-

ular, in Algorithm 4.32, we describe a procedure for computing the maximal subsemigroups of

an arbitrary finite regular Rees 0-matrix semigroup S over a group that intersect every H -class

of S non-trivially. The maximal subsemigroups that are returned by this algorithm are defined

by generating sets. Crucially, for the purposes of this section, each of these sets includes a

generating set for the idempotent generated subsemigroup of S.

As discussed in Section 1.4, the time complexities of many algorithms in computational

semigroup theory are given in terms of the size of the generating set of the semigroup in

question. Roughly speaking, this means that, given a semigroup S defined by a generating set,

the smaller the generating set for S, the faster it is to compute with S. Therefore, in order to

facilitate speedy computation with the maximal subsemigroups returned by Algorithm 4.32, it

is desirable for these maximal subsemigroups to be defined by generating sets that are as small

as is reasonably possible. One way to address this problem is to endeavour to produce a small

generating set for the corresponding idempotent generated subsemigroup.

An obvious choice of a generating set for the idempotent generated subsemigroup of a finite

Rees 0-matrix semigroup over a group is the set of all idempotents in the semigroup. However,

the number of generators that are actually required can be smaller than this; see Example 3.6

for a very simple demonstration of this fact.
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Example 3.6. Let S = M 0[G; I, Λ; P ] be a Rees 0-matrix semigroup, where G is the trivial

group, I = {1′, 2′}, Λ = {1, 2}, and

P =

(
1G 1G
1G 0

)
.

There are four idempotents in S, and (2′, 1G, 2) is the unique non-idempotent element. Since

(2′, 1G, 2) = (2′, 1G, 1) (1′, 1G, 2), it is clear that the idempotent generated subsemigroup of

S is S itself. However, the pair of idempotents {(1′, 1G, 2) , (2′, 1G, 1)} generates S.

In the proof of [64, Proposition 3.13], Gray observes that, for a finite idempotent generated

Rees 0-matrix semigroup S over a group, a spanning tree of the Graham-Houghton graph of S

corresponds to a generating set for S that consists of idempotents. Given (3.4), it is clear that a

normalized finite Rees 0-matrix semigroup over a group G is idempotent generated if and only

if its Graham-Houghton graph is connected, and its non-zero matrix entries generate the group

G. Indeed, this result is stated in [64, Theorem 3.1]. Furthermore, in [64, Theorem 2.13], Gray

proves that the minimal cardinality of a generating set for a finite idempotent generated Rees

0-matrix semigroup M 0[G; I, Λ; P ], where G is a group, is max{|I|, |Λ|}.
However, in Algorithm 4.32, we require a generating set for the idempotent generated sub-

semigroup of any finite regular Rees 0-matrix semigroup over a group, i.e. not only those that

are idempotent generated. In Proposition 3.7, we generalise Gray’s ideas concerning spanning

trees in order to solve this problem.

Proposition 3.7. Let S = M 0[G; I, Λ; P ] be a finite Rees 0-matrix semigroup over a group

G, and let (I ∪ Λ, E) be a spanning forest for the Graham-Houghton graph of S. Then the set

X =
{(
i, p−1

λ,i, λ
)

: {i, λ} ∈ E
}
∪ {0}.

generates F (S), the idempotent generated subsemigroup of S. In particular, the smallest cardi-

nality of a generating set of idempotents for F (S) is at most |I| + |Λ| − n + 1, where n is the

number of connected components of the Graham-Houghton graph of S.

Proof. Note that, since E is a subset of the edges of the Graham-Houghton graph of S, if

{i, λ} ∈ E, then pλ,i 6= 0. Hence the set X is well-defined. Furthermore, since X consists of

idempotents, it follows that 〈X〉 ≤ F (S). Therefore, to show that X generates F (S), it suffices

to show that 〈X〉 contains every idempotent of S.

Certainly X contains 0. The non-zero idempotents of S are the elements
(
i, p−1

λ,i, λ
)
, for each

non-zero matrix entry pλ,i, so let pλ,i be any such entry. If {i, λ} ∈ E, then
(
i, p−1

λ,i, λ
)
∈ X

and we are done, so suppose otherwise. Since {i, λ} is an edge in the Graham-Houghton graph

of S, in particular the vertices i and λ are in the same connected component. Therefore, they

are connected in the spanning forest, and so there exists a path

(i, µ1, j1, µ2, . . . , jn, λ)

in the spanning forest from i to λ, for some n ∈ N, µ1, . . . , µn ∈ Λ, and j1, . . . , jn ∈ I.

Consider the product of elements

x =
(
i, p−1

µ1,i
, µ1

)(
j1, p

−1
µ2,j1

, µ2

)
· · ·
(
jn, p

−1
λ,jn

, λ
)
. (3.8)

Since (i, µ1, j1 . . . , jn, λ) is a path in the spanning forest, it follows that each factor in (3.8)

is contained in X, and the product itself is non-zero. In particular,

x =
(
i, p−1

µ1,i
pµ1,j1p

−1
µ2,j2

· · · pµn,λnp
−1
λ,jn

, λ
)
∈ 〈X〉.
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Each power of x has the form (i, g, λ), for some g ∈ G. However, S is finite, and so some power

xk of x is idempotent. In particular,
(
i, p−1

λ,i, λ
)

= xk ∈ 〈X〉, and so X generates F (S).

If n is the number of connected components of the Graham-Houghton graph of S, then

any spanning tree for the Graham-Houghton graph contains |I|+ |Λ| − n edges. Therefore the

generating set X consists of |I|+ |Λ| −n+ 1 idempotents. It follows that a minimal generating

set of idempotents for F (S) contains at most this many elements.

Note that Proposition 3.7 applies to any finite Rees 0-matrix semigroup over a group, in-

cluding those that are not regular, and to those where the Graham-Houghton graph is not

connected, as can be seen in the following example.

Example 3.9. Let S = M 0[S3; I, Λ; P ] be a Rees 0-matrix semigroup over the symmetric

group of degree 3, where I = {1′, 2′, 3′, 4′} and Λ = {1, 2, 3, 4, 5}, and P is given by

P =


(1 3) 0 0 0

0 0 0 0

0 (2 3) (1 2) (1 2)

0 (1 3 2) 0 (2 3)

0 (1 3) (1 2) (1 2 3)

 .

The Graham-Houghton graph of S, and a spanning forest, is shown in Figure 3.10. Since the

Graham-Houghton graph has three connected components, there are |I|+ |Λ| − 3 = 6 edges in

any spanning forest, and so any generating set for F (S) obtained with Proposition 3.7 contains

seven elements. The generating set corresponding to the spanning forest Figure 3.10 is{
0, (1′, (1 3), 1) , (2′, (2 3), 3) , (3′, (1 2), 3) , (4′, (1 2), 3) , (4′, (2 3), 4) , (4′, (1 3 2), 5)

}
.

In total, there are ten idempotents in S. It is easy to see that, in this case, 0 can be expressed

as a product of the non-zero generators, and is therefore redundant.

1′ 2′ 3′ 4′

1 2 3 4 5

1′ 2′ 3′ 4′

1 2 3 4 5

Figure 3.10: The graphs of the Rees 0-matrix semigroup S described in Example 3.9. On the

left is the Graham-Houghton graph of S, with its vertices corresponding to I on the top row,

and its vertices corresponding to Λ on the bottom. On the right is a spanning forest of the

Graham-Houghton graph.

Let S = M 0[G; I, Λ; P ] be a finite Rees 0-matrix semigroup over a group G. We may

compare the generating set X for F (S) described by Proposition 3.7 with the set of all idem-

potents of S. Let k and n be the number of edges and the number of connected components

of the Graham-Houghton graph of S, respectively. As noted in the proof of Proposition 3.7,

any spanning tree for the Graham-Houghton graph of S contains |I| + |Λ| − n edges, which,

by definition, is less than or equal to k. Therefore |X| = |I| + |Λ| − n + 1 ≤ k + 1, and k + 1

is the number of idempotents of S. Note that the maximum possible value of k is |I| · |Λ|,
which occurs when P contains only non-zero entries. It follows that k + 1 can be much larger

than |X|, and so in some cases, the generating set X may contain relatively few idempotents

in comparison to the total number of idempotents of S.
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In [64, Chapter 3], Gray is principally concerned with describing idempotent generating sets

of minimal cardinality for certain kinds of finite regular Rees 0-matrix semigroups over groups;

see especially [64, Theorem 3.27]. However, the relevant criteria for computing such minimal

generating sets do not lend themselves well to computation. As is often the case, finding an

optimal solution is significantly more difficult than finding a solution that is nearly optimal.

The generating set given by Proposition 3.7 does not necessarily give a generating set of

smallest cardinality; nor does it necessarily even give an idempotent generating set of smallest

cardinality; see Example 3.11, for instance. However, in a certain sense, the generating set

described by Proposition 3.7 is close to being optimal, which we now discuss.

Let S = M 0[G; I, Λ; P ] be a finite Rees 0-matrix semigroup where G is a group, let I ′

be the subset of indices i ∈ I such that pλ,i 6= 0 for some λ ∈ Λ, and let Λ′ ⊆ Λ be defined

analogously. Clearly, any generating set for F (S) contains at least one generator for each i ∈ I ′,
and at least one generator for each λ ∈ Λ′. In particular, any generating set for F (S) contains

at least max{|I ′|, |Λ′|} elements (see also [114, Lemma 3.1]). On the other hand, the number of

vertices of the Graham-Houghton graph that are contained in non-trivial connected components

is |I ′| + |Λ′|, and so the number of edges in any spanning forest is |I ′| + |Λ′| −m, where m is

the number of non-trivial connected components. If m = 0, then the only idempotent of S is 0,

and the generating set {0} given in Proposition 3.7 is minimal. Otherwise m > 0; in this case

the number of elements in the generating set given in Proposition 3.7 is |I ′|+ |Λ′| −m+ 1, and

|I ′|+ |Λ′| −m+ 1 ≤ |I ′|+ |Λ′| ≤ 2 ·max{|I ′|, |Λ′|}.

In particular, the generating set contains at most two times as many elements as is necessary.

Example 3.11. Let S be the Rees 0-matrix semigroup defined in Example 3.6. The generating

set given in Example 3.6 contains two elements, which are idempotents. However, the Graham-

Houghton graph of S is itself a tree, and so the generating set described in Proposition 3.7

contains four elements. Therefore, this generating set is not minimal.

Importantly, as well as being reasonably small, the generating set described in Proposi-

tion 3.7 can be computed quickly; a simple description of an algorithm that implements this

result is given in Algorithm 3.12.

Algorithm 3.12 Compute a generating set for the idempotent generated subsemigroup of a

finite Rees 0-matrix semigroup over a group.

Input: A finite Rees 0-matrix semigroup S = M 0[G; I, Λ; P ] over a group G.

Output: A generating set for the idempotent generated subsemigroup of S.

1: X ← ∅
2: Γ← the Graham-Houghton graph of S

3: E ← the edges of a spanning forest of Γ

4: for each edge {i, λ} ∈ E do

5: X ← X ∪
{(
i, p−1

λ,i, λ
)}

6: if the induced subgraph of Γ on its non-isolated vertices is empty or complete bipartite

then

7: X ← X ∪ {0}
8: return X.

Computationally, the only non-trivial step required by Algorithm 3.12 is the construction

of a spanning forest for the Graham-Houghton graph of S. As with finding the connected com-

ponents of a graph, which was discussed in Section 3.2.1, this can be done by using a standard
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depth- or breath-first search. Such algorithms have worst-case time complexity O(|I| · |Λ|),
since |I| · |Λ| is the maximum number of edges in the Graham-Houghton graph of S.

The final part of Algorithm 3.12, on line 6, tests whether the induced subgraph of the

Graham-Houghton graph of S on its non-isolated vertices is empty or is a complete bipartite

graph. If this induced subgraph is empty, then S has no non-zero idempotents, and so certainly

0 is required in any generating set. Similarly, if the induced subgraph is complete bipartite,

then the product of any number of non-zero idempotents is non-zero, and again 0 is required

to be an element of the generating set. On the other hand, suppose that the induced subgraph

is neither empty nor a complete bipartite graph. In this case, there exist non-isolated vertices

i ∈ I and λ ∈ Λ such that {i, λ} is not an edge of the Graham-Houghton graph, and there exist

non-zero idempotents
(
j, p−1

λ,j , λ
)

and
(
i, p−1

µ,i, µ
)

in S whose product is 0. In particular, 0 is

generated by the non-zero idempotents of S, and so 0 need not be a member of the generating set

created by Algorithm 3.12. For example, given the Rees 0-matrix semigroup from Example 3.9,

Algorithm 3.12 returns a generating set with six elements that does not contain 0.

Algorithm 3.12 has been implemented in the Semigroups package [101] for GAP [58] by the

author. The idempotent generated subsemigroup of a finite Rees matrix or 0-matrix semigroup

over a group can be computed with the function IdempotentGeneratedSubsemigroup.

For a finite Rees 0-matrix semigroup over an arbitrary semigroup, it is not clear how to

develop algorithms for computing the idempotents, or a relatively small generating set for the

idempotent generated subsemigroup, in terms of the underlying semigroup and the Graham-

Houghton graph. We therefore end this section by posing the following problems.

Open Problem 3.13. Let S be a finite Rees 0-matrix semigroup over an arbitrary finite

semigroup T , and assume that any necessary semigroup-theoretic properties of T are known a

priori. Give algorithms for counting and listing the idempotents of S, using the properties of

T and the Graham-Houghton graph of S.

Open Problem 3.14. Let S be a finite Rees 0-matrix semigroup over an arbitrary finite

semigroup T , and assume that any necessary semigroup-theoretic properties of T are known a

priori. Give an algorithm for constructing a generating set for F (S) that contains at most a

constant multiple of rank(F (S)) elements.

3.3 The Green’s structure of a Rees 0-matrix semigroup

As discussed in Chapter 1, one of the most important strategies for studying a semigroup is to

analyse its Green’s relations. Moreover, computing the Green’s structure of a semigroup is a

prerequisite for many further algorithms in computational semigroup theory, such as computing

its maximal subsemigroups; see Chapter 4. Therefore, we wish to develop a framework for

computing the Green’s structure of an arbitrary Rees 0-matrix semigroup.

Of course, for any finite Rees 0-matrix semigroup S = M 0[T ; I, Λ; P ], the Green’s structure

on S can be computed by constructing and analysing the left and right Cayley digraphs of S,

given sufficient time and memory. However, the order of S is |I| · |T | · |Λ| + 1, which may be

significantly larger than the cardinality of any of I, T , or Λ. In particular, even when I, T , and

Λ are relatively small, it may not be possible to store the elements of S in memory, which is

required when constructing Cayley digraphs.

Furthermore, since S is defined by its underlying semigroup, index sets, and matrix, the

structure of S is surely encoded in these components. Computing the Cayley digraphs of S

ignores this; it would be sensible to attempt to take as much of this information into account

as possible. In particular, we aim to be able to test for the Green’s equivalence of elements
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of a Rees 0-matrix semigroup by analysing the underlying semigroup, the index sets, and the

matrix, and without having to enumerate every element of the semigroup.

In any semigroup-with-zero S, the multiplicative zero 0S forms a J -class of S; it is the

unique minimal element in the partial order of J -classes of S. In particular, the Green’s classes

of 0 in a Rees 0-matrix semigroup are given immediately, and require no further computation.

Therefore, it remains to describe the Green’s relations on the non-zero elements of a Rees

0-matrix semigroup. For a regular Rees 0-matrix semigroup over a group, this is especially

straightforward, and is stated in the following result.

Lemma 3.15. Let S = M 0[G; I, Λ; P ] be a regular Rees 0-matrix semigroup over a group G,

and let x = (i, g, λ), y = (j, h, µ) ∈ S \{0} be arbitrary non-zero elements. The following hold:

(i) x L S y if and only if λ = µ;

(ii) x RS y if and only if i = j;

(iii) x H S y if and only if i = j and λ = µ; and

(iv) x DS y.

Thus the Green’s relations of a regular Rees 0-matrix semigroup S = M 0[G; I, Λ; P ], where

G is a group, are defined very simply in terms of its index sets. The non-zero L -classes of S

are the sets I ×G× {λ} for each λ ∈ Λ, the non-zero R-classes of S are the sets {i} ×G× Λ

for each i ∈ I, the non-zero H -classes of S are the sets {i}×G×{λ} for each i ∈ I and λ ∈ Λ,

and the D-classes of S are {0} and S \{0}. However, this is not true in general for an arbitrary

Rees 0-matrix semigroup over a group, let alone for an arbitrary Rees 0-matrix semigroup, as

demonstrated by the following example.

Example 3.16. Let S = M 0[G; I, Λ; P ] be a Rees 0-matrix semigroup over a group G, and

suppose there exists i ∈ I such that pµ,i = 0 for all µ ∈ Λ. Then x · (i, g, λ) = 0 for all x ∈ S,

g ∈ G, and λ ∈ Λ. In particular, the L -class of any element of {i} ×G× Λ is trivial.

The following lemma and its immediate corollary show a broad connection between the

Green’s relations on a Rees 0-matrix semigroup, its index sets, and the Green’s relations on its

underlying semigroup.

Lemma 3.17. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup, and let x = (i, t, λ), y =

(j, u, µ) ∈ S \ {0} be arbitrary non-zero elements. The following hold;

(i) if x L S y, then t L T u and λ = µ;

(ii) if x RS y, then t RT u and i = j;

(iii) if x H S y, then t H T u, i = j, and λ = µ; and

(iv) if x DS y, then t DT u.

Proof. If x = y, then certainly t L T u and λ = µ. Therefore, to prove (i), suppose that x L S y

but that x 6= y. By definition, there exist α = (k, v, ν), β = (l, w, η) ∈ S such that x = βy

and y = αx. Thus (i, t, λ) = (l, wpη,ju, µ) and (j, u, µ) = (k, vpν,it, λ). In particular, λ = µ,

and t = (wpη,j)u and u = (vpν,i)t – i.e. t L T u.

Note that (ii) is the dual of (i), and (iii) follows from (i) and (ii) since H = L ∩R.

To prove (iv), recall that D = L ◦R. Therefore, if x DS y, then there exists an element

z = (k, v, ν) ∈ S such that x L S z RS y. Then t L T v by (i), and v RT u by (ii). Thus

t DT u, as required.
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Corollary 3.18. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup. The following hold:

(i) |S/L | ≥ |T/L | · |Λ|+ 1;

(ii) |S/R| ≥ |T/R| · |I|+ 1;

(iii) |S/H | ≥ |T/H | · |I| · |Λ|+ 1; and

(iv) |S/D | ≥ |T/D |+ 1.

Note that the additional Green’s class counted in Corollary 3.18 in each instance is {0}.
Given two elements of an arbitrary Rees 0-matrix semigroup, Lemma 3.17 can be used to

rule out the Green’s equivalence of these elements, in certain cases. For example, a pair of

elements with different first components are not R-related, and a pair of elements are not

D-related if their middle components are not D-related.

Ideally, we wish to produce an analogue of Lemma 3.15 that holds for an arbitrary finite

semigroup, and which classifies the Green’s equivalence of elements precisely in terms of separate

conditions on the components of the elements. In full generality, the converse statements of

Lemma 3.15 do not necessarily hold; see Example 3.19. In general, therefore, such an approach

cannot simply involve only the underlying semigroup and the index sets; consideration must

also be taken of the matrix.

Example 3.19. Let T2 denote the full transformation monoid of degree 2 (see Section 1.3.5),

let f ∈ T2 be the constant transformation with im(f) = {1}, and let P be a matrix whose sole

entry is f . Define S = M 0[T2; {i}, {λ}; P ]. Since 1T2
and f are not D-related in T2, it follows

by Lemma 3.17 that
(
i, 1T2 , λ

)
and

(
i, f, λ

)
are not D-related in S. On the other hand, 1T2

and (1 2) are R-related in T2, where (1 2) is the non-identity permutation of degree 2 written in

disjoint cycle notation, but
(
i, 1T2

, λ
)

and
(
i, (1 2), λ

)
are not R-related in S. This is because

any product involving f is a constant transformation, and so if t ∈ T2 is arbitrary, then(
i, 1T2

, λ
)(
i, t, λ

)
=
(
i, ft, λ

)
6=
(
i, (1 2), λ

)
.

Therefore, any characterisation of the Green’s relations on S requires detailed reference to P .

The characterisation of the Green’s relations on a regular Rees 0-matrix semigroup over a

group stated in Lemma 3.15, which is given in terms of its index sets, relies on the fact that the

matrix of the Rees 0-matrix semigroup contains a non-zero entry in each row and column. As

shown in Example 3.16, without this assumption, the characterisation does not necessarily hold.

The matrix of the Rees 0-matrix semigroup considered in Example 3.19 contains a non-zero

entry in each row and column, but nevertheless, Green’s R-relation on the semigroup is not

classified by Lemma 3.17(ii) and its converse. In order to obtain a more general classification

of Green’s relations on certain Rees 0-matrix semigroups, that is analogous to Lemma 3.15, we

need to impose more complicated conditions on the matrix than simply requiring the existence

of non-zero entries. Finding appropriate conditions is the topic of the next section.

3.3.1 Rees 0-matrix semigroups with row- or column-regular

matrices

In this section, we aim to develop conditions to impose on the matrix of an arbitrary Rees

0-matrix semigroup, so that its Green’s relations may be simply characterised in terms of its

index sets and in terms of the Green’s relations on its underlying semigroup. Moreover, these

conditions on the matrix should be readily computable, as should the resultant characterisation

of the Green’s relations. With this in mind, we introduce the concept of row-regular and
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column-regular matrices. The reason for this choice of terminology will become apparent in

Section 3.5.1, where we prove that a Rees 0-matrix semigroup over an arbitrary semigroup is

regular if and only if its underlying semigroup is regular, and its matrix is both row-regular

and column-regular. Let s be an element of a semigroup S. Recall that a relative left identity

for s is an element e ∈ S such that es = s; a relative right identity for s is defined analogously.

Definition 3.20 (Row-regular matrix). Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup.

The matrix P is row-regular if, for all λ ∈ Λ and t ∈ T , there exists i ∈ I such that pλ,iT contains

a relative right identity for t.

Definition 3.21 (Column-regular matrix). Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semi-

group. The matrix P is column-regular if, for all i ∈ I and t ∈ T , there exists λ ∈ Λ such that

Tpλ,i contains a relative left identity for t.

In order for the notions of row- and column-regularity to be useful for our purposes, it must

be practical to check whether or not a given matrix is row- or column-regular. Given only the

definition, it is not immediately clear how to do this – on the face of it, testing whether the

matrix P of a Rees 0-matrix semigroup M 0[T ; I, Λ; P ] is row-regular entails, for each t ∈ T
and λ ∈ Λ, searching for a relative right identity for t in as many as |I| right ideals of T .

In order to provide more useful reformulations of row-regularity, we prove the following

lemma, which holds for any Rees 0-matrix semigroup over a finite semigroup.

Lemma 3.22. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup, where T is finite. The

following are equivalent:

(i) The matrix P is row-regular.

(ii) If λ ∈ Λ and L is a maximal L-class of T, then there exists i ∈ I such that E(L∩pλ,iT ) 6= ∅.

(iii) If λ ∈ Λ and L is any maximal L -class of T , then the right ideal of T generated by the

non-zero entries of P in row λ contains an idempotent of L.

Proof. (i) ⇒ (ii). Let λ ∈ Λ, and let Lx be a maximal L -class of T with representative x ∈ L.

By assumption, there exists i ∈ I such that pλ,iT contains a relative right identity s for x. In

other words, xs = x, and so xsk = x for all k ∈ N. Note that sk ∈ pλ,iT , since pλ,iT is a right

ideal of T and is therefore a subsemigroup.

Since T is finite, there exists n ∈ N such that sn is idempotent. It follows by Lemma 1.12(i)

that Lx = Lxsn ≤ Lsn . Since Lx is a maximal L -class of T , we conclude that Lx = Lsn , and

hence that sn ∈ E(Lx ∩ pλ,iT ), as required.

(ii) ⇒ (iii). Let λ ∈ Λ, let L be a maximal L -class of T , and let K be the right ideal of T

generated by the non-zero entries of P in row λ. By assumption, there exists i ∈ I such that

E(L ∩ pλ,iT ) 6= ∅. Therefore pλ,i 6= 0, which implies that pλ,i ∈ K. Since K is a right ideal,

pλ,iT ⊆ K, and so E(L ∩K) 6= ∅, i.e. K contains an idempotent from L, as required.

(iii) ⇒ (i). Let λ ∈ Λ and let t ∈ T . Since T is finite, there exists a maximal L -class L

of T such that Lt ≤ L. By assumption, the right ideal K of T generated by the set {pλ,i :

i ∈ I, pλ,i 6= 0} contains an idempotent e of L. Since Lt ≤ L = Le, it follows that t = ue

for some u ∈ T 1. Thus te = ue2 = ue, and e is a relative right identity for t. It remains to

prove that there exists i ∈ I such that e ∈ pλ,iT . The ideal K is equal to the union of the

principal right ideals pλ,iT
1, for each i ∈ I with pλ,i 6= 0. Thus there exists i ∈ I such that

e ∈ pλ,iT 1 = pλ,iT ∪ {pλ,i}. If e = pλ,i, then e = e2 = p2
λ,i ∈ pλ,iT , as required. Otherwise, if

e 6= pλ,i, then there is nothing to prove.

The following lemma is a direct analogue of Lemma 3.22, and is stated without proof.
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Lemma 3.23. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup, where T is finite. The

following are equivalent.

(i) The matrix P is column-regular.

(ii) If i ∈ I and R is a maximal R-class of T, then there exists λ ∈ Λ such that E(R∩Tpλ,i) 6= ∅.

(iii) If i ∈ I and R is any maximal R-class of T , then the left ideal of T generated by the

non-zero entries of P in column i contains an idempotent of R.

For a Rees 0-matrix semigroup over a monoid, the conditions for row-regularity and column-

regularity can be reformulated as follows. Note that, unlike Lemmas 3.22 and 3.23, the following

result applies to infinite Rees 0-matrix semigroups as well as those that are finite.

Lemma 3.24. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup over a monoid T . Then:

(i) the matrix P is row-regular if and only if each row of P contains an element from the

RT-class of 1T ; and

(ii) the matrix P is column-regular if and only if each column of P contains an element from

the L T-class of 1T .

Proof. We prove only (i), since (ii) is dual.

(⇒) Let λ ∈ Λ. Since P is row-regular and 1T ∈ T , there exist i ∈ I and u ∈ T such

that 1T pλ,iu = 1T . But 1T is the identity of T , which implies that 1T pλ,iu = pλ,iu. Therefore

pλ,i · u = 1T and 1T · pλ,i = pλ,i, i.e. pλ,i RT 1T .

(⇐) Let λ ∈ Λ and t ∈ T be arbitrary. By assumption, there exists i ∈ I such that

pλ,i RT 1T . Thus there exists u ∈ T such that pλ,iu = 1T . In particular, pλ,iu ∈ pλ,iT is a

relative right identity for t.

Corollary 3.25. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup, where T is a finite

monoid. Then:

(i) the matrix P is row-regular if and only if each row of P contains a unit in T ; and

(ii) the matrix P is column-regular if and only if each column of P contains a unit in T .

Proof. In a finite monoid T , the group of units is the unique maximal J -class in the partial

order of J -classes of T . Therefore, an element is R-related to 1T if and only if it is L -related

to 1T if and only if it is a unit.

If a matrix is both row-regular and column-regular, then we simply say that it is regular .

Traditionally, the matrix of a Rees 0-matrix semigroup over a group is said to be regular if it

contains a non-zero entry in every row and every column; a Rees 0-matrix semigroup over a

group is regular if and only if its matrix is regular. By Lemma 3.24, the notion of regularity

given in Definition 3.26 extends this traditional meaning. More specifically, the matrix of a Rees

0-matrix semigroup over a group is row-regular and column-regular if and only if it contains a

non-zero entry in every row and every column.

Definition 3.26 (Regular matrix). Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup.

The matrix P is regular if it is both row-regular and column-regular.

Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup, and let x = (i, t, λ) ∈ S \ {0} be

arbitrary. By definition, if P is row-regular, then t has a relative right identity pλ,ju for some

j ∈ I and u ∈ T ; thus the element (j, u, λ) is a relative right identity for x. The analogous

statements hold when P is column-regular. In other words, the following lemma holds.
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Lemma 3.27. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup. The following hold:

(i) if P is row-regular, then each element of S and T has a relative right identity; and

(ii) if P is column-regular, then each element of S and T has a relative left identity.

In particular, if P is row- or column-regular, then S and T are surjective semigroups.

A particular consequence of the previous lemma is that if T is an arbitrary semigroup, then

it is not necessarily possible to construct a row- or column-regular matrix over T 0. For example,

if T is not surjective, then it is not possible to construct a row- or column-regular matrix over

T 0.

In Algorithm 3.31, we make use of the following observation. Let M 0[T ; I, Λ; P ] be a Rees

0-matrix semigroup, where T is finite. If P is row-regular, then Lemma 3.22(ii) implies that

each maximal L -class of T contains an idempotent; similarly, if P is column-regular, then

Lemma 3.23(ii) implies that each maximal R-class of T contains an idempotent. Since an L -

or R-class of a semigroup contains an idempotent if and only if it is regular, we obtain the

following corollary to Lemmas 3.22 and 3.23.

Corollary 3.28. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup, where T is finite.

(i) If the matrix P is row-regular, then every maximal L -class of T is regular.

(ii) If the matrix P is column-regular, then every maximal R-class of T is regular.

On the other hand, the underlying semigroup of a Rees 0-matrix semigroup M 0[T ; I, Λ; P ]

is not itself required to be regular in order for the matrix to be row- or column-regular: if T

is a non-regular monoid and every row or column of P contains a unit of T , then P is row- or

column-regular, respectively, by Lemma 3.24.

In Algorithm 3.31, we use the formulation of row-regularity given by Lemma 3.22(iii) to

present an algorithm for determining whether the matrix of a finite Rees 0-matrix semigroup is

row-regular. This algorithm assumes the ability to compute the maximal L -classes of a finite

semigroup (the sources in the quotient of the left Cayley digraph by its strongly connected

components), the ability to test these L -classes for regularity and to find their idempotents [37,

Section 5.4]; and the ability to compute a right ideal of a finite semigroup. The right ideal

generated by a set consists of the vertices in the right Cayley digraph of the semigroup that

are reachable from the generators of the ideal. Therefore, the right ideal can be constructed by

performing a depth- or breadth-first search in the Cayley digraph from each of these generators.

There do not currently exist well-developed methods for computing left or right ideals, or the

partial orders of L - and R-classes, of finite semigroups without computing Cayley digraphs.

Open Problem 3.29. Let S be a finite semigroup to which the techniques of [37] apply.

Building on the results of [37], develop methods for computing the Green’s structure of an

arbitrary left or right ideal of S that do not necessarily exhaustively enumerate the ideal.

Open Problem 3.30. Let S be a finite semigroup to which the techniques of [37] apply.

Building on the results of [37], develop methods for computing the partial orders of L - and

R-classes of S without necessarily exhaustively enumerating S.

In the following proposition, we characterise the Green’s relations of a Rees 0-matrix semi-

group with a row- or column-regular matrix in terms of its index sets, and in terms of the

Green’s relations on its underlying semigroup. In particular, Proposition 3.32 states that the

Green’s relations on a Rees 0-matrix semigroup with a regular matrix are characterised by the

statements of Lemma 3.17 and their converses. Corollary 3.33 follows immediately from this.
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Algorithm 3.31 Compute whether a finite Rees 0-matrix semigroup has a row-regular matrix.

Input: A finite Rees 0-matrix semigroup M 0[T ; I, Λ; P ], where P = (pλ,i)λ∈Λ,i∈I .

Output: true if P is row-regular; else false.

1: L← the maximal L -classes of T

2: if some L -class in L is not regular then

3: return false . Corollary 3.28.

4: for λ ∈ Λ do

5: A← {pλ,i : i ∈ I, pλ,i 6= 0} . The non-zero entries of P in row λ.

6: U ← the right ideal of T generated by A

7: for L ∈ L do

8: if U ∩ E(L) = ∅ then

9: return false

10: return true

Proposition 3.32. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup, and let x = (i, t, λ)

and y = (j, u, µ) be arbitrary non-zero elements of S. The following hold:

(i) if P is column-regular, then x L S y if and only if t L T u and λ = µ;

(ii) if P is row-regular, then x RS y if and only if t RT u and i = j;

(iii) if P is regular, then x H S y if and only if t H T u, i = j, and λ = µ; and x DS y if and

only if t DT u.

Proof. By Lemma 3.17, it remains to prove the converse implication of each part.

Suppose that the matrix P is column-regular, and that λ = µ and t L T u. By the definition

of Green’s L -relation, there exists a ∈ S1 such that at = u. Since P is column-regular, there

exists ν ∈ Λ such that Tpν,i contains a relative left identity for t. In particular, there exists

v ∈ T such that vpν,it = t. Therefore (j, av, ν) ∈ S, and

(j, av, ν)x = (j, avpν,it, λ)

= (j, at, λ)

= (j, u, λ) = y.

A symmetric argument shows that zy = x for some z ∈ S. Therefore x L S y, and (i) holds.

Note (ii) is dual to (i), and since H = L∩R, the statement concerning H in (iii) holds by (i)

and (ii). Suppose that P is regular, and that t DT u. Since D = L ◦R, there exists an element

v ∈ T such that t L T v RT u. Thus, by (i) and (ii), x = (i, t, λ) L S (j, v, λ) RS (j, u, µ) = y.

That is, x DS y, and (iii) holds.

Corollary 3.33. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup. The following hold:

(i) if P is column-regular, then |S/L | = |T/L | · |Λ|+ 1;

(ii) if P is row-regular, then |S/R| = |T/R| · |I|+ 1; and

(iii) if P is regular, then |S/H | = |T/H | · |I| · |Λ|+ 1 and |S/D | = |T/D |+ 1.

Let S be a Rees 0-matrix semigroup with a row-regular matrix. By using Proposition 3.32

and Corollary 3.33, if we may easily compute Green’s R-relation on T , then we may easily test

for R-equivalence of elements of S, and count the number of R-classes of S. If S instead has a
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column-regular matrix, then this is true for Green’s L -relation; and if S has a regular matrix,

then this is also true for Green’s H - and D-relations.

It is natural to consider whether there are Rees 0-matrix semigroups that have neither row-

regular nor column-regular matrices, but whose Green’s relations are nevertheless characterised

by the statements of Lemma 3.17 and their converses. In Example 3.35, we provide such a semi-

group. Furthermore, by Lemma 3.34, Green’s H -relation on any Rees 0-matrix semigroup over

an H -trivial semigroup is characterised as in the statement of Proposition 3.32(iii). Therefore,

the most general converse of Proposition 3.32 does not hold.

Lemma 3.34. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup, where T is H -trivial,

and let x = (i, t, λ) and y = (j, u, µ) be arbitrary non-zero elements of S. Then x H S y if

and only if t H T u and i = j and λ = µ.

Proof. The direct implication holds by Lemma 3.17. On the other hand, since T is H -trivial,

if t H T u and i = j and λ = µ, then in fact x = y, so certainly x H S y.

Example 3.35. Let S = M 0[T ; I, Λ; P ], where T is any J -trivial semigroup, |I| = |Λ| = 1,

and the sole entry of P is 0. Then S is a zero semigroup, since the product of any two elements

in S is 0. In particular, S is J -trivial. Let K ∈ {H , L , R, D , J } be any Green’s relation,

and let x = (i, t, λ), y = (j, u, µ) ∈ S \ {0} be arbitrary non-zero elements. Then

x K S y ⇔ (i, t, λ) K S (j, u, µ)

⇔ (i, t, λ) = (j, u, µ) since S is J -trivial

⇔ t = u since |I| = |Λ| = 1

⇔ t K T u since T is J -trivial.

In particular, since |I| = |Λ| = 1, it follows that x L S y if and only if t L T u and λ = µ; that

x RS y if and only if t RT u and i = j; that x H S y if and only if t H T u, i = j, and λ = µ;

and that x DS y if and only if t DT u. Therefore, the Green’s relations on S are characterised

by the statements of Lemma 3.17 and their converses, but the matrix P is neither row-regular

nor column-regular.

Rees 0-matrix semigroups over H -trivial semigroups, and the Rees 0-matrix semigroups

that were considered in Example 3.35, are somewhat atypical. Indeed, in Proposition 3.36,

we provide a partial converse to Proposition 3.32, which applies to Rees 0-matrix semigroups

with non-trivial index sets. Since one could argue that a ‘typical’ Rees 0-matrix semigroup

has non-trivial index sets, Proposition 3.36 suggests that row-regularity and column-regularity

are suitable conditions to require, if one desires to consider Rees 0-matrix semigroups whose

Green’s structure may be readily computed. This opinion is further reinforced in Section 3.5.1,

where we prove that a Rees 0-matrix semigroup is regular if and only if its underlying semigroup

is regular, and its matrix is row-regular and column-regular.

Proposition 3.36. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup. The following hold:

(i) if |I| > 1, and Green’s L -relation on S is characterised by

x L S y if and only if t L T u and λ = µ,

for all non-zero elements x = (i, t, λ) and y = (j, u, µ) in S, then P is column-regular;
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(ii) if |Λ| > 1, and Green’s R-relation on S is characterised by

x RS y if and only if t RT u and i = j,

for all non-zero elements x = (i, t, λ) and y = (j, u, µ) in S, then P is row-regular; and

(iii) if |I| > 1 and |Λ| > 1, and Green’s D-relation on S is characterised by

x DS y if and only if t DT u,

for all non-zero elements x = (i, t, λ) and y = (j, u, µ) in S, then P is regular.

Proof. (i). Let (i, t, λ) be an arbitrary non-zero element of S. Since |I| > 1, there exists an

index j ∈ I \ {i} that is different from i. By assumption (i, t, λ) L S (j, t, λ). Therefore, there

exist µ ∈ Λ and u ∈ T such that

(j, u, µ) (i, t, λ) = (j, t, λ) .

In particular, upµ,it = t, and so Tpµ,i contains a relative left identity for t. Since i ∈ I and

t ∈ T were chosen arbitrarily, it follows that P is column-regular.

The proof of (ii) is dual to the proof of (i), and is therefore omitted.

(iii). Let (i, t, λ) be an arbitrary non-zero element of S. Since |I| > 1 and |Λ| > 1, there

exist indices j ∈ I\{i} and µ ∈ Λ\{λ}. By assumption, (i, t, λ) DS (j, t, µ), and so there exists

an element x ∈ S \ {0} such that (i, t, λ) L S x RS (j, t, µ). By Lemma 3.17, x = (j, u, λ)

for some u ∈ T . Since (i, t, λ) L S (j, u, λ), there exist indices γ, δ ∈ Λ and elements v, w ∈ T
such that

(j, v, γ) (i, t, λ) = (j, u, λ) and (i, w, δ) (j, u, λ) = (i, t, λ) .

By multiplying, we find that vpγ,it = u and wpδ,ju = t, and so

(wpδ,jv)pγ,it = t.

In particular, Tpγ,i contains a relative left identity for t. It follows that P is column-regular.

The proof that P is row-regular follows similarly from the fact that (j, t, µ) RS (j, u, λ).

Therefore P is regular.

3.4 Generating sets for Rees 0-matrix semigroups

As with direct products of semigroups, which were the topic of Chapter 2, a Rees 0-matrix

semigroup is defined only in terms of its elements, and so it does not naturally come with a

proper generating subset. Of course, if the matrix of a Rees 0-matrix semigroup S contains

0 as an entry, then it is obvious that S \ {0} is a proper generating subset of S. Beyond

this, however, it is not immediately apparent how to describe any smaller generating set for

S. Sometimes this is not possible: any Rees 0-matrix semigroup with a matrix containing only

0 is a zero semigroup, and so for any such semigroup, the set of all non-zero elements is the

only proper generating subset. However, for many Rees 0-matrix semigroups, it is possible to

find generating sets that contain relatively few elements in comparison with the order of the

semigroup: see Example 3.37 for an example of a Rees 0-matrix semigroup over a non-group,

with thirteen elements, that has a minimal-cardinality generating set with only five elements.

Example 3.37. Let T be the semigroup {1, 2, 3}, with the operation of greatest common

divisor. Clearly T is a commutative band. Let I = {1′, 2′}, Λ = {1, 2}, and

P =

(
2 3

3 2

)
,
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and define S to be the Rees 0-matrix semigroup M 0[T ; I, Λ; P ]. Then S contains 13 elements.

It may be verified computationally that the setX = {0, (1′, 2, 2) , (1′, 3, 1) , (2′, 2, 1) , (2′, 3, 2)}
is the unique minimal generating set of S. In particular, rank(S) = 5.

In this section, we describe relatively small generating sets for several kinds of Rees 0-matrix

semigroups. The motivation for proving such results is the same as that behind Chapter 2. To

repeat: many, perhaps most, algorithms in computational semigroup theory require a generating

set, and so to compute most efficiently with a Rees 0-matrix semigroup, we require a generating

set. As a rule of thumb, the smaller the generating set for a given semigroup, the faster it is to

compute with that semigroup. Therefore, when it is possible and reasonably practical, we would

like to describe and compute generating sets that contain relatively few elements in comparison

with the order of the semigroup.

The finitely generated and presented Rees 0-matrix semigroups were classified by Ayik and

Ruškuc in [5]: the Rees 0-matrix semigroup M 0[T ; I, Λ; P ] is finitely generated if and only if

T is finitely generated and the sets I, Λ, and T \ K are all finite, where K is the ideal of T

generated by the non-zero entries of P .

Significant attention has been given to the problem of describing small and minimal gener-

ating sets of Rees 0-matrix semigroups over groups, particularly by Gray and Ruškuc; indeed,

this topic featured in each of their PhD theses [64,115]. In [115, Chapter 4, Theorem 2.1], given

a minimal generating set for the group G, Ruškuc describes a generating set for a regular Rees

0-matrix semigroup M 0[G; I, Λ; P ], where G is a group, that contains rank(G) + |I|+ |Λ| − 1

elements. In [114, Theorems 3.9 and 4.6] Ruškuc gives a formula for the rank of a finite regular

Rees 0-matrix semigroup over a group whose Graham-Houghton graph is connected. Gray and

Ruškuc describe a formula for the rank of an arbitrary regular Rees 0-matrix semigroup over

a group in [63, Theorems 7.1], and in [64, Thereom 2.68], Gray gives the rank of an arbitrary

finite (not necessarily regular) Rees 0-matrix semigroup over a group.

Our focus is not on finding generating sets that are minimal. Describing generating sets for

Rees 0-matrix semigroups whose underlying semigroups are not groups has not been considered

in the literature. Currently, with the computational algebra system GAP [58], it is possible to

construct the Rees 0-matrix semigroup S = M 0[T ; I, Λ; P ], given a semigroup T and a matrix

P : Λ × I −→ T 0. However, unless T is a group, GAP uses the set of all non-zero elements

of S as the generating set of S whenever one is required, or the set of all elements, when the

matrix P contains only non-zero entries. For an infinite Rees 0-matrix semigroup, therefore, it

is not currently possible to compute a generating set in GAP, even though the semigroup may

be finitely generated. When S is finite, it is theoretically possible to enumerate the set of all

elements, given sufficient time and space, but doing so is clearly undesirable in general.

In Section 3.4.1, we present some results concerning the decomposable and indecomposable

elements of Rees 0-matrix semigroups. Since a generating set of a semigroup contains its

indecomposable elements, this allows us to provide lower bounds on the ranks of certain Rees

0-matrix semigroups. In Section 3.4.2, we provide a generating set for any Rees 0-matrix

semigroup M 0[T ; I, Λ; P ], where T is a monoid and P contains a unit. This generating set

contains |I| + |Λ| − 1 more elements than a given generating set for T . In Section 3.4.3, we

present results concerning generating sets of Rees 0-matrix semigroups with row-regular or

column-regular matrices.

Before we proceed, we first note that the following inequality holds for any Rees 0-matrix

semigroup M 0[T ; I, Λ; P ]. This is because, by the definition of multiplication in a Rees 0-

matrix semigroup, any generating set contains at least one member of {i} × T × Λ, for each

i ∈ I, and at least one member of I × T × {λ}, for each λ ∈ Λ.

Lemma 3.38. For any Rees 0-matrix semigroup S = M 0[T ; I, Λ; P ], rank(S) ≥ max{|I|, |Λ|}.
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3.4.1 Decomposable and indecomposable elements

As discussed in Section 2.2, an element s in a semigroup S is decomposable if s ∈ S2, and

indecomposable if s /∈ S2. By Lemma 2.9, the indecomposable elements of a semigroup are

those elements of maximal J -classes (in the partial order of J -classes) that consist of a single

non-idempotent element. The relevance of decomposable and indecomposable elements to this

section is due to the observation that any generating set for a semigroup S contains its set of

indecomposable elements S \ S2. Therefore, by describing the indecomposable elements of a

Rees 0-matrix semigroup S, we find elements that are contained in any generating set for S; in

doing so, we deduce a lower bound on rank(S).

By Lemma 3.27, a Rees 0-matrix semigroup with a row- or column-regular matrix is surjec-

tive. However, as explored in the following lemma, an arbitrary Rees 0-matrix semigroup may

contain a large number of indecomposable elements.

Lemma 3.39. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup, let K be the ideal of T

generated by the non-zero elements of P , and let (i, t, λ) ∈ S \ {0} be an arbitrary non-zero

element. The following hold:

(i) if (i, t, λ) is a decomposable element of S, then t ∈ K;

(ii) if (i, t, λ) is a decomposable element of S, then t is a decomposable element of T ;

(iii) if every non-zero entry of P has a relative left identity and a relative right identity in T ,

then (i, t, λ) is decomposable if and only if t ∈ K.

Proof. (i). If x = (i, t, λ) is decomposable, then there exist α = (j, u, µ) , β = (k, v, ν) ∈ S
such that x = αβ. In particular, pµ,k 6= 0, and by equating the middle components, we find

that t = upµ,kv ∈ Tpµ,kT ⊆ K.

(ii). As shown in the proof of (i), if x = (i, t, λ) is decomposable, then there exist u, v ∈ T
and a non-zero matrix entry pµ,k ∈ P such that t = upµ,kv. In particular, t is decomposable.

(iii). By (i), it remains to prove the converse implication. Suppose that t ∈ K. Since

K is generated as an ideal by the non-zero elements of P , there exist j ∈ I and µ ∈ Λ such

that pµ,j 6= 0 and t ∈ T 1pµ,jT
1. Thus t = apµ,jb for some a, b ∈ T 1 = T ∪ {1T }. By

assumption, pµ,j has a relative left identity l ∈ T and a relative right identity r ∈ T . Thus

t = (al)pµ,j(rb) ∈ Tpµ,jT . Define α = (i, al, µ) ∈ S and β = (j, rb, λ) ∈ S. Then x = αβ, and

x is decomposable.

Note that Lemma 3.39(i) implies that the number of elements in T \K is finite when S is

finitely generated (using the notation of the lemma). This was previously shown in [5, Main

Theorem], which classifies the finitely generated Rees 0-matrix semigroups.

We obtain the following immediate corollary from the contrapositive of Lemma 3.39(ii).

This gives a lower bound on the number of indecomposable elements, and hence the rank, of

any Rees 0-matrix semigroup.

Corollary 3.40. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup. The number of

indecomposable elements of S, and also rank(S), is at least |I| · |T \ T 2| · |Λ|.

Example 3.41. Let S = M 0[N; I, Λ; P ] be any Rees 0-matrix semigroup over the natural

numbers with addition. Since 1 is an indecomposable element of N, it follows by Lemma 3.39(ii)

that I × {1} × Λ is a set of indecomposable elements of S.

Lemma 3.39(iii) classifies the decomposable and indecomposable elements of any Rees 0-

matrix semigroup where each non-zero entry of the matrix has a relative left identity and
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a relative right identity. Therefore, for any such Rees 0-matrix semigroup, we may provide a

formula for the number of indecomposable elements. This applies, for instance, to Rees 0-matrix

semigroups over regular semigroups, and Rees 0-matrix semigroups over monoids.

Corollary 3.42. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup where every non-zero

entry of P has a relative left identity and a relative right identity in T , let A be the set of

non-zero entries of P , and define

J =
{
J ∈ S/J : J 6≤ Jx for any x ∈ A

}
.

Then the number of indecomposable elements of S is

|I| · |Λ| ·
∑
J∈J

|J |.

In particular, rank(S) is at least this number.

Proof. Let K be the ideal of T generated by A. By Lemma 3.39(iii), an element (i, t, λ) is

indecomposable if and only if t /∈ K. Since K is generated as an ideal by A, t /∈ K if and only if

t /∈ T 1xT 1 for any x ∈ A, which, by definition of the partial order of J -classes of a semigroup,

is true if and only if Jt 6≤ Jx for any x ∈ A. To summarise, (i, t, λ) is indecomposable if and only

if Jt ∈ J. Note that the multiplicative zero of a Rees 0-matrix semigroup is decomposable.

Example 3.43. Let n ∈ N, let S = M 0[Tn; I, Λ; P ] be a Rees 0-matrix semigroup over the full

transformation monoid Tn of degree n, and suppose that P contains a transformation of rank

n− 1, but no permutations. Since Tn is a monoid, every non-zero entry of P has a relative left

and right identity in Tn. Every ideal of Tn is principal, and the ideals form a chain, described

by Tn x Tn ⊆ Tn y Tn if and only if rank(x) ≤ rank(y), for all x, y ∈ Tn. Therefore the ideal of

Tn generated by the non-zero elements of P is the set Tn \ Sn of all transformations with rank

at most n− 1. By Lemma 3.39(iii), the set of indecomposable elements of S is given by

S \ S2 = I × Sn × Λ.

3.4.2 Rees 0-matrix semigroups over monoids

Given that the ranks of Rees 0-matrix semigroups over groups have been described by Gray and

Ruškuc, a natural extension is to consider the ranks, and minimal generating sets, in the case

that the underlying semigroup is a monoid. In this short section, we present results relating

the generating sets, and thereby the ranks, of certain Rees 0-matrix semigroups over monoids

to those of the monoids themselves.

Lemma 3.44 (cf. [115, Chapter 4, Theorem 2.1]). Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix

semigroup, where T is a monoid and P contains a unit in T . Let X be any generating set for

T , and fix i ∈ I and λ ∈ Λ such that pλ,i is a unit in T . Then S is generated by the set

Y =
{(
i, xp−1

λ,i, λ
)

: x ∈ X
}
∪
{(
i, 1T , µ

)
: µ ∈ Λ \ {λ}

}
∪
{(
j, 1T , λ

)
: j ∈ I \ {i}

}
∪ {0}.

Proof. Certainly 〈Y 〉 ⊆ S, so it remains to prove the converse inclusion. Let t ∈ T be arbitrary.

Since X generates T and tpλ,i ∈ T , there exists a sequence x1, x2, . . . , xn of elements of X

such that x1x2 · · ·xn = tpλ,i. Therefore

(
i, x1p

−1
λ,i, λ

)(
i, x2p

−1
λ,i, λ

)
· · ·
(
i, xnp

−1
λ,i, λ

)
=
(
i, x1(p−1

λ,ipλ,i)x2(p−1
λ,ipλ,i) · · ·xnp

−1
λ,i, λ

)
=
(
i, x1x2 · · ·xnp−1

λ,i, λ
)

=
(
i, tpλ,ip

−1
λ,i, λ

)
=
(
i, t, λ

)
.
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In particular,
(
i, t, λ

)
∈ 〈Y 〉, and since t ∈ T was arbitrary, it follows that {i}×T ×{λ} ⊆ 〈Y 〉.

In particular, note that
(
i, 1T , λ

)
∈ 〈Y 〉. Let

(
j, t, µ

)
∈ S \ {0} be an arbitrary non-zero

element of S. By the previous arguments,
(
i, p−1

λ,itp
−1
λ,i, λ

)
∈ 〈Y 〉, and so(

j, 1T , λ
)(
i, p−1

λ,itp
−1
λ,i, λ

)(
i, 1T , µ

)
=
(
j, 1T (pλ,ip

−1
λ,i)t(p

−1
λ,ipλ,i)1T , µ

)
=
(
j, t, µ

)
.

In particular,
(
j, t, µ

)
∈ 〈Y 〉. Since 0 ∈ Y by definition, the result follows.

By choosing the generating set X in the statement of Lemma 3.44 to be a generating set of

least cardinality, and by using Lemma 3.38, we deduce the following corollary to Lemma 3.44.

Corollary 3.45 (cf. [115, Chapter 4, Corollary 2.3]). Let S = M 0[T ; I, Λ; P ] be a Rees 0-

matrix semigroup, where T is a monoid and P contains a unit. Then

max{|I|, |Λ|} ≤ rank(S) ≤ rank(T ) + |I|+ |Λ| − 1.

Although the problem of providing a formula for the rank of an arbitrary Rees 0-matrix

semigroup seems rather intractable, we pose the following problem, whose solution could be a

next step in the generalisation of the work of Gray and Ruškuc.

Open Problem 3.46. Let S = M 0[T ; I, Λ; P ] be an arbitary finite Rees 0-matrix semigroup

where T is a monoid and P contains a unit. Give a formula that describes rank(S) in terms of

rank(T ), the semigroup-theoretic properties of T , and the matrix P .

3.4.3 Rees 0-matrix semigroups with row- or column-regular

matrices

In Section 3.3.1, we defined row- and column-regular matrices of Rees 0-matrix semigroups.

We showed that, in essence, the Green’s structure of a Rees 0-matrix semigroup with a row-

regular or column-regular matrix can be calculated in terms of the index sets of the matrix

and the Green’s structure on the underlying semigroup. This suggests that such semigroups

are an important class of Rees 0-matrix semigroups, a viewpoint that will be bolstered by

Section 3.5.1, which concerns regular Rees 0-matrix semigroups. In the following results, we

describe generating sets for these kinds of semigroups.

Proposition 3.47. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup where P is row-

regular, and let X be a generating set for T . Fix µ ∈ Λ, and for each x ∈ X, choose ix ∈ I and

tx ∈ T such that pµ,ixtx is a relative right identity for x. Then S is generated by the set:

Γ =
{

(i, x, µ) : i ∈ I, x ∈ X
}
∪
{

(ix, txx, λ) : x ∈ X, λ ∈ Λ
}
∪ {0}.

Proof. Note that, for each x ∈ X, the index ix ∈ I and the element tx ∈ T exist since P is

assumed to be row-regular; to reiterate, xpµ,ixtx = x for each x ∈ X. Certainly Γ ⊆ S and

0 ∈ Γ, so it remains to prove that S \ {0} ⊆ 〈Γ〉.
Let s = (i, t, λ) ∈ S \ {0} be an arbitrary non-zero element of S. Since t ∈ T and T is

generated by X, we can write t as a product in the generators X. Indeed, since S is surjective

by Lemma 3.27, it follows by Lemma 2.8 that there exist generators x1, x2, . . . , xn ∈ X, with

n ≥ 4, such that t = x1 · · ·xn. Thus xjpµ,ixj
txj = xj for all j ∈ {1, . . . , n}. It follows that

s = (i, t, λ) = (i, x1x2 · · ·xn−1xn, λ)

=
(
i, x1(pµ,ix1

tx1) · x2(pµ,ix2
tx2) · · ·xn−1(pµ,ixn−1

txn−1) · xn, λ
)

=
(
i, x1, µ

)(
ix1
, tx1

x2, µ
)
· · ·
(
ixn−2

, txn−2
xn−1, µ

)(
ixn−1

, txn−1
xn, λ

)
∈ 〈Γ〉.
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Example 3.48. Let S = M 0[T ; I, Λ; P ] be the Rees 0-matrix semigroup defined in Exam-

ple 3.37, where T is the set {1, 2, 3} with the operation of greatest common divisor, I = {1′, 2′},
Λ = {1, 2}, and

P =

(
2 3

3 2

)
.

The right ideal of T generated by the non-zero entries {2, 3} of each row of P is T itself. Since

every element of T is idempotent, it follows that this ideal contains an idempotent of each

maximal L -class of T . In particular, P is row-regular by Lemma 3.22(iii). Therefore, we may

use Proposition 3.47 to describe a generating set for S. Let X = {2, 3}. Then X is a generating

set for T . Fix µ = 1. Since each element of T is idempotent, it follows that pµ,1′2 is a relative

right identity for 2, and pµ,2′3 is a relative right identity for 3. In other words, if we define

i2 = 1′ and t2 = 2, and i3 = 2′ and t3 = 3, it follows by Proposition 3.47 that S is generated by{
0, (1′, 2, 1), (1′, 3, 1), (2′, 2, 1), (2′, 3, 1), (1′, 2, 2), (2′, 3, 2)

}
,

which contains seven elements. As noted in Example 3.37, rank(S) = 5.

There is an obvious result that is dual to Proposition 3.47, which concerns generating sets of

Rees 0-matrix semigroups with column-regular matrices. We state this result for completeness.

Proposition 3.49. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup where P is column-

regular, and let X be a generating set for T . Fix j ∈ I, and for each x ∈ X, choose λx ∈ Λ and

tx ∈ T such that txpλx,j is a relative left identity for x. Then S is generated by the set:

Γ =
{

(j, x, λ) : x ∈ X, λ ∈ Λ
}
∪
{

(i, xtx, λx) : i ∈ I, x ∈ X
}
∪ {0}.

By choosing a generating set X for T of minimal cardinality, we may use Propositions 3.47

and 3.49 to obtain an upper bound on the rank of a Rees 0-matrix semigroup with a row- or

column-regular matrix. In combination with Lemma 3.38, we obtain the following corollary.

Corollary 3.50. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup where P is row- or

column-regular. Then

max{|I|, |Λ|} ≤ rank(S) ≤ rank(T )(|Λ|+ |I|) + 1.

3.5 Special kinds of Rees 0-matrix semigroups

In the final section of this chapter, we present results that allow us to characterise several

properties of Rees 0-matrix semigroups. In particular, we classify the Rees 0-matrix semigroups

that are regular, are inverse, or are monoids. Moreover, these classifications are given in terms

of the underlying semigroup and the matrix of the Rees 0-matrix semigroup, which may be

readily computed.

3.5.1 Regular Rees 0-matrix semigroups

In this section, we show that the regular Rees 0-matrix semigroups are those with regular

matrices constructed from regular semigroups. As stated in the following lemma, the underlying

semigroup of a regular Rees 0-matrix semigroup is regular.

Lemma 3.51. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup. If S is a regular

semigroup, then T is a regular semigroup.
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Proof. Let t ∈ T , i ∈ I, and λ ∈ Λ be arbitrary, and define x = (i, t, λ). Since S is a regular

semigroup, there exists a non-zero element y = (j, u, µ) ∈ S \ {0} such that x = xyx. By

equating the middle components of x and xyx, we find that t = t(pλ,jupµ,i)t, and so t is a

regular element of T . Since t was arbitrary, the semigroup T is regular.

However, the converse of Lemma 3.51 does not hold, in general; for example, any Rees

0-matrix semigroup whose matrix consists of zeroes is a non-trivial zero semigroup, and is not

regular, irrespective of the regularity of the underlying semigroup.

In Section 3.3.1, we introduced the notions of row-regular and column-regular matrices, in

an attempt to classify those Rees 0-matrix semigroups whose Green’s structure can be ‘read

off’ from the index sets and the Green’s structure of the underlying semigroup. In the following

theorem, which is the main result of this section, we show that the regularity of a Rees 0-matrix

semigroup is closely related to the row- and column-regularity of its matrix.

Theorem 3.52. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup. Then S is a regular

semigroup if and only if T is a regular semigroup and the matrix P is regular.

Proof. (⇒) By Lemma 3.51, it remains to prove that the matrix P is both row-regular and

column-regular. We prove that P is row-regular; the proof that P is column-regular is dual.

Let λ ∈ Λ and t ∈ T be arbitrary. Fix j ∈ I, and define x = (j, t, λ) ∈ S. Since S is regular,

there exists y = (i, u, µ) ∈ S such that x = xyx, and so t = tpλ,iupµ,jt. Thus pλ,iupµ,jt is a

relative right identity for t, and pλ,i(upµ,jt) ∈ pλ,iT , as required.

(⇐) Certainly 0 is a regular element, so let x = (i, t, λ) ∈ S \ {0} be an arbitrary non-zero

element of S. Since P is row-regular, there exist j ∈ I and a ∈ T such that pλ,ja is a relative

right identity for t; since P is column-regular, there exist µ ∈ Λ and b ∈ T such that bpµ,i is a

relative left identity for t. By assumption, T is a regular semigroup, and so there exists u ∈ T
such that t = tut. Define y = (j, aub, µ) ∈ S. Then

xyx =
(
i, t, λ

)(
j, aub, µ

)(
i, t, λ

)
=
(
i, (tpλ,ja)u(bpµ,it), λ

)
=
(
i, tut, λ

)
=
(
i, t, λ

)
= x.

In other words, x is a regular element of S, and so S is regular.

Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup. By Theorem 3.52, we can determine

whether S is regular solely by determining whether its underlying semigroup and matrix are

regular. For a finite Rees 0-matrix semigroup, row-regularity of the matrix can be tested with

Algorithm 3.31, and an analogous algorithm can be used to test for column regularity.

Throughout this chapter, we have often referred to the fact that a Rees 0-matrix semigroup

over a group is regular if and only if each row and column of its matrix contains a non-zero

element. This is easy to verify directly; it also follows from Theorem 3.52 and Lemma 3.24.

When the underlying semigroup of a Rees 0-matrix semigroup is a finite monoid, we may

reformulate Theorem 3.52 in the following way.

Corollary 3.53. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup, where T is a finite

monoid. Then S is regular if and only if T is regular and every row and every column of P

contains a unit of T .

Proof. By Corollary 3.25, the matrix P is regular if and only if each row and each column of

P contains a unit in T . The result follows by Theorem 3.52.
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Example 3.54. Let T be the semigroup {−1, 1} with the operation of min. Then T is a

monoid with identity element 1 and multiplicative zero −1. Let I and Λ be index sets with

|I| = 3 and |Λ| = 2, and let

P =

(
1 −1 −1

−1 0 1

)
and Q =

(
−1 1 0

1 0 1

)
.

By Corollary 3.53, the Rees 0-matrix semigroup M 0[T ; I, Λ; P ] is not a regular semigroup,

since the second column of P does not contain a unit. On the other hand, M 0[T ; I, Λ; Q] is

a regular semigroup, since T is regular and each row and column of Q contains the identity

element 1.

3.5.2 Rees 0-matrix monoids and inverse monoids

In this section, we prove that a Rees 0-matrix semigroup S over a semigroup T is a monoid if

and only if T is a monoid and S is isomorphic to T 0. Since not every monoid has a multiplicative

zero, and certainly not every monoid is isomorphic to a monoid with zero adjoined, it follows

that not all monoids can be represented as Rees 0-matrix semigroups. Moreover, we find that

the only possible way to construct a Rees 0-matrix monoid is rather trivial. We also find that

analogous statements hold for inverse Rees 0-matrix monoids.

We first prove the main result concerning Rees 0-matrix monoids.

Proposition 3.55. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup. Then S is a monoid

if and only if |I| = |Λ| = 1, T is a monoid, and the sole entry of P is a unit in T .

Proof. (⇒) Any Rees 0-matrix semigroup has a non-zero element by definition, and so

0 6= 1S = (i, t, λ) ∈ (I × T × Λ).

Let x = (j, u, µ) ∈ (I × T × Λ) be arbitrary. Then

(j, u, µ) = 1Sx

= (i, t, λ)(j, u, µ)

= (i, tpλ,ju, µ) ,

and so i = j. Since j was arbitrary, it follows that I = {i}. Similarly, the equation x1S = x

implies that Λ = {λ}. The sole matrix entry pλ,i is non-zero, since 1S is idempotent. In

particular, pλ,i ∈ T . Let u ∈ T be arbitrary. Then 1S (i, u, λ) = (i, u, λ) = (i, u, λ) 1S , which

implies that (tpλ,i)u = u = u(pλ,it). Therefore tpλ,i is a left identity for T , and pλ,it is a right

identity for T , and so T is a monoid with identity tpλ,i = pλ,it = 1T . Furthermore, pλ,i is a

unit, with inverse p−1
λ,i = t.

(⇐) Suppose that I = {i} and Λ = {λ}. Define e =
(
i, p−1

λ,i, λ
)
∈ S, and let x ∈ S be

arbitrary. If x = 0, then certainly ex = x = xe. Otherwise, x = (i, t, λ) for some t ∈ T , and

ex =
(
i, p−1

λ,i, λ
)(
i, t, λ

)
=
(
i, p−1

λ,ipλ,it, λ
)

=
(
i, 1T t, λ

)
= x.

Similarly, xe = x. It follows that e is the identity element of S.

Note that by Lemma 3.24, a Rees 0-matrix monoid has a regular matrix.

According to the following lemma, we may normalize a Rees 0-matrix semigroup over a

monoid; that is, we may assume up to isomorphism that its matrix entry is the identity element

of its underlying monoid.



84 Computational techniques in finite semigroup theory

Corollary 3.56. Let S = M 0[T ; {i}, {λ}; P ] be a Rees 0-matrix monoid, and let Q be the

{λ} × {i} matrix with unique entry 1T . Then S ∼= M 0[T ; {i}, {λ}; Q].

Proof. In Proposition 3.5, choose θ, ψ, and χ to be identity functions, and choose ui = pλ,i and

vλ = 1T . The result follows.

For a normalized Rees 0-matrix monoid S = M 0[T ; I, Λ; P ], the function φ : S −→ T 0

given by 0φ = 0 and (i, t, λ)φ = t for all (i, t, λ) ∈ S\{0} is clearly an isomorphism. Therefore,

we deduce the following result from Corollary 3.56.

Corollary 3.57. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup. Then S is a monoid

if and only if T is a monoid and S ∼= T 0.

Given the preceding results concerning Rees 0-matrix monoids, it should perhaps not be sur-

prising that the analogous results hold for inverse Rees 0-matrix monoids. Thus we present the

following proposition and corollary, which are analogous to Proposition 3.55 and Corollary 3.57.

Proposition 3.58. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup. Then S is an

inverse monoid if and only if |I| = |Λ| = 1, T is an inverse monoid, and the entry of P is a

unit in T .

Proof. (⇒) By Proposition 3.55, it remains to prove that T is inverse. By Corollary 3.57,

S ∼= T 0, and so T 0 is an inverse monoid, i.e. every element of T 0 has a unique inverse. The sole

inverse of any multiplicative zero is itself, and so every element of T has a unique inverse in T .

Thus T is an inverse subsemigroup of T 0.

(⇐) By Corollary 3.57, S ∼= T 0. Since T is an inverse monoid, so too are T 0 and S.

Corollary 3.59. A Rees 0-matrix semigroup S = M 0[T ; I, Λ; P ] is an inverse monoid if and

only if T is an inverse monoid and S ∼= T 0.

We end this section about monoids by considering the rank of a Rees 0-matrix monoid,

which represents an initial step towards addressing Open Problem 3.46.

Lemma 3.60. Let S = M 0[T ; {i}, {λ}; P ] be a Rees 0-matrix monoid, and let X be a gener-

ating set for T . Then the set

Y =
{(
i, xp−1

λ,i, λ
)

: x ∈ X
}
∪ {0}.

is a generating set for S. Furthermore, with respect to cardinality or containment, Y is a

minimal generating set for S if and only if X is a minimal semigroup generating set for T . In

particular, rank(S) = rank(T ) + 1.

Proof. The fact that Y generates S follows by Lemma 3.44. Since S ∼= T 0, the statements

concerning minimality follows by Lemma 1.5, and the statement concerning rank(S) holds by

Corollary 1.6.

3.5.3 Inverse Rees 0-matrix semigroups

In Section 3.5.2, we learned that constructing an inverse Rees 0-matrix monoid is essentially

the same as adjoining a zero to an inverse monoid. In this section, we consider inverse Rees 0-

matrix semigroups more generally, and find that their classification is somewhat richer than the

classification of inverse Rees 0-matrix monoids. We also describe an algorithm for computing

whether a finite Rees 0-matrix semigroup is inverse, and we describe and count the idempotents

of an inverse Rees 0-matrix semigroup.
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First we give the well-known classification of inverse Rees 0-matrix semigroups over groups.

Let G be a group, and let I be any non-empty set. The I × I Brandt semigroup over G,

denoted B(G, I), is the Rees 0-matrix semigroup M 0[G; I, I; P ], where P = (pi,j)i,j∈I is the

I×I matrix such that pi,i = 1G and pi,j = 0 when i 6= j. When I = {1, . . . , n} for some n ∈ N,

we denote the Brandt semigroup B(G, I) by B(G, n), which we call the n×n Brandt semigroup

over G. By Proposition 3.1, two Brandt semigroups B(G, I) and B(H, J) are isomorphic is

and only if G ∼= H and |I| = |J |. In particular, if I is a finite set, then B(G, I) ∼= B(G, |I|).
The importance of Brandt semigroups is that they characterise the inverse completely 0-

simple semigroups, as shown in the following result.

Proposition 3.61 ([76, Theorem 5.1.8]). Let S be any semigroup. Then S is completely 0-

simple and inverse if and only if S is isomorphic to the Brandt semigroup B(G, I), for some

group G and some non-empty set I.

In particular, the principal factor of a J -class of a finite inverse semigroup is isomorphic

to the Brandt semigroup B(G, n), for some group G and some n ∈ N.

Given the description of isomorphisms of regular Rees 0-matrix semigroups over groups from

Proposition 3.1, we may reformulate Proposition 3.61 in the following way.

Corollary 3.62. Let S = M 0[G; I, Λ; P ] be a Rees 0-matrix semigroup over a group G. Then

S is inverse if and only if the matrix P contains exactly one non-zero entry in each row and

each column.

The following theorem, which is the main result of this section, generalises Corollary 3.62

to Rees 0-matrix semigroups over arbitrary semigroups, rather than just groups. The proof of

the converse implication of Theorem 3.63 relies on the following property of inverse semigroups:

if T is an inverse semigroup, and x, y ∈ T are elements such that x = xyx, then x = ey−1

for some idempotent e ∈ E(T ) [76, Proposition 5.2.1]. Indeed, if x = xyx, then x−1x and

yx are clearly L -related (and hence equal) idempotents. Idempotents are self-inverse, and so

x−1x = x−1y−1, which implies that

x = x(x−1x) = x(x−1y−1) = ey−1,

where e = xx−1 is an idempotent.

Theorem 3.63. Let S = M 0[T ; I, Λ; P ] be a Rees 0-matrix semigroup. Then S is inverse if

and only if T is an inverse monoid, the matrix P contains exactly one non-zero entry in each

row and each column, and the non-zero matrix entries are units in T .

Proof. (⇒) Since an inverse semigroup is regular, it follows by Theorem 3.52 that T is regular,

and that the matrix P is regular. In particular, each row and column of P contains at least one

non-zero entry. Let i ∈ I be arbitrary, and let λ, µ ∈ Λ be indices such that pλ,i and pµ,i are

non-zero. By the regularity of T , there exist inverses u, v ∈ T of pλ,i and pµ,i respectively. The

elements (i, u, λ) and (i, v, µ) are idempotent, and so they commute, because S is inverse. In

particular, λ = µ, and so there exists a unique index λ ∈ Λ such that pλ,i 6= 0. An analogous

argument shows that any row of P contains exactly one non-zero entry. Therefore, without

loss of generality, we may assume that I = Λ, and that the matrix P is diagonal, i.e. that the

non-zero entries of P are the entries pi,i for each i ∈ I.

We aim to show that T is a monoid, and that the non-zero entries of P are units in T ; to

do this, we first show that these entries are DT -related, and then that they are H T -related.

Let i ∈ I and t ∈ T be arbitrary. Since P is row-regular, pi,iT contains a relative right

identity for t, and since P is column-regular, Tpi,i contains a relative left identity for t. In other
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words, there exist elements a, b ∈ T such that api,it = t and tpi,ib = t. In particular, t L T pi,it

and t RT tpi,i. Since this holds for all i ∈ I and t ∈ T , it follows that

pi,i RT pi,ipj,j L T pj,j RT pj,jpi,i L T pi,i (3.64)

for all i, j ∈ I. In particular, the non-zero matrix entries of P are DT -related.

By Lemma 1.15, the element pi,ipj,j is contained in a group H T -class for all i, j ∈ I.

Moreover, by choosing i = j in (3.64), we find that pi,i H T p2
i,i for all i ∈ I, and so the

H T -class of each non-zero matrix entry is a group. Let i, j ∈ I be arbitrary, let e be the

idempotent such that e H T pi,i and let f be the idempotent such that f H T pi,ipj,j . Since e

and f are RT -related idempotents, it follows that each is a relative left identity for the other,

i.e. ef = f and fe = e. Let u be the group-theoretic inverse of pi,i in its H T -class. Note that

e is an identity for both pi,i and u, and that pi,iu = e = upi,i. Since e RT f and R is a left

congruence, it follows that u = ue RT uf . By Proposition 3.32, (i, u, i) RS (i, uf, i). But

these elements are idempotents, and since S is an inverse semigroup, which contains a unique

idempotent in each R-class, it follows that u = uf . Multiplying on the left by pi,i, we deduce

that e = f , and so in fact pi,i H T pi,ipj,j . By an analogous argument, pj,j H T pi,ipj,j , and

so pi,i H T pj,j . Since i and j were chosen arbitrary, it follows that non-zero entries of P are

H T -related, and that their H T -class is a group, whose idempotent we name e.

To show that e is the identity of T , let t ∈ T , i ∈ I be arbitrary, and define x = (i, t, i) ∈ S.

Then x−1 = (i, u, i) ∈ S for some u ∈ T . Certainly x is an inverse of x−1, but so too is

y = (i, te, i), since

x−1yx−1 = (i, upi,itepi,iu, i)

= (i, upi,itpi,iu, i)

= x−1xx−1 = x−1,

and similarly yx−1y = y. In addition, z = (i, et, i) is an inverse of x−1. Since x−1 has a unique

inverse, it follows that y = x = z, and so te = t = et. Thus T is a monoid with identity e, and

the non-zero entries of P are units in T .

Finally, to show that T is inverse, it suffices to show that the idempotents of T commute.

Let e, f ∈ E(T ) and i ∈ I be arbitrary, and let x =
(
i, ep−1

i,i , i
)
, y =

(
i, fp−1

i,i , i
)
∈ S. Then x

and y are idempotents of S, which is an inverse semigroup, and so they commute. Therefore

xy = yx, which implies that efp−1
i,i = fep−1

i,i , and so ef = fe.

(⇐) It follows by Theorem 3.52 that S is regular, and so it remains to show that the

idempotents of S commute. The multiplicative zero of S is an idempotent that commutes with

every element of the semigroup. Since the matrix P contains precisely one non-zero entry in

each row and column, we may assume without loss of generality that I = Λ, and that P is

diagonal. Therefore, a non-zero element (i, t, k) ∈ I × T × I is idempotent if and only if i = k

and t = tpi,it. It follows by the discussion preceding the statement of the theorem that t = tpi,it

if and only if t = ep−1
i,i for some idempotent e ∈ E(T ). Thus, any non-zero idempotent of S

can be written as
(
i, ep−1

i,i , i
)
, for some i ∈ I and e ∈ E(T ). On the other hand, any element

of this form is idempotent. It follows that

E(S) =
{(
i, ep−1

i,i , i
)

: i ∈ I, e ∈ E(T )
}
∪ {0}.

Let x =
(
i, ep−1

i,i , i
)

and y =
(
j, fp−1

j,j , j
)

be arbitrary non-zero idempotents of S. If i = j, then

xy =
(
i, efp−1

i,i , i
)

=
(
i, fep−1

i,i , i
)

= yx,

since pi,i is a unit and the idempotents of T commute. Otherwise, xy = yx = 0.
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Remark 3.65. Let S = M 0[T ; I, Λ; P ] be an inverse Rees 0-matrix semigroup, and let x =

(i, t, λ) ∈ S be an arbitrary non-zero element. Define j ∈ I to be the unique index such that

pλ,j 6= 0, and define µ ∈ Λ to be the unique index such that pµ,i 6= 0. Then

x−1 =
(
j, p−1

λ,jt
−1p−1

µ,i, µ
)
.

As we did with Proposition 3.55 and Rees 0-matrix monoids, we may use Theorem 3.63 in

conjunction with Proposition 3.5 to describe normalized inverse Rees 0-matrix semigroups.

Corollary 3.66. Let S = M 0[T ; I, Λ; P ] be an inverse Rees 0-matrix semigroup, and let Q

be a I × I matrix with 1T on its leading diagonal, and 0 elsewhere. Then S ∼= M 0[T ; I, I; Q].

Proof. In Proposition 3.5, choose θ to be the identity isomorphism on T , choose appropriate

bijections ψ : I −→ I and χ : Λ −→ I to diagonalise P , and choose ui = pλ,i and vλ = 1T for

all i ∈ I and λ ∈ Λ. The result follows.

In Algorithm 3.67, we use Theorem 3.63 to describe a procedure for computing whether an

arbitrary finite Rees 0-matrix semigroup is inverse. This assumes the ability to test whether

the underlying semigroup is an inverse monoid, to compute its group of units, and to test

membership in the group of units. This algorithm is used in the Semigroups package [101] for

GAP [58], when the function IsInverseSemigroup is given a Rees 0-matrix semigroup.

Algorithm 3.67 Compute whether a finite Rees 0-matrix semigroup is inverse.

Input: A finite Rees 0-matrix semigroup M 0[T ; I, Λ; P ].

Output: true if M 0[T ; I, Λ; P ] is inverse; else false.

1: if T is not an inverse monoid or |I| 6= |Λ| then

2: return false

3: G← the group of units of T

4: for λ ∈ Λ and i ∈ I do

5: seen I[i]← false . seen I[i]⇔ a non-zero matrix entry pµ,i has been found.

6: seen Λ[λ]← false . seen Λ[λ]⇔ a non-zero matrix entry pλ,j has been found.

7: for λ ∈ Λ do

8: for i ∈ I do

9: if pλ,i 6= 0 then

10: if pλ,i /∈ G or seen I[i] or seen Λ[λ] then

11: return false

12: seen I[i]← true

13: seen Λ[λ]← true

14: if not seen Λ[λ] then

15: return false

16: return true

Proof of Algorithm 3.67. Let S = M 0[T ; I, Λ; P ] be a finite Rees 0-matrix semigroup, where P

is a Λ× I matrix over T 0. By Theorem 3.63, S is inverse if and only if T is an inverse monoid,

and each row and each column of P contains exactly one non-zero entry, which is a unit in

T . Thus the matrix of an inverse Rees 0-matrix semigroup is square. Clearly Algorithm 3.67

returns true when the input S is inverse, and so it remains to show that Algorithm 3.67 returns

false when the input S is inverse, that is, when one of the following holds:

1. T is not an inverse monoid, or
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2. P contains any non-zero entry that is not a unit in T , or

3. P contains two or more non-zero entries in the same row or column, or

4. P contains only 0 in some row or column.

If T is not an inverse monoid, then the algorithm returns false on line 1. If P has any

non-zero non-unit entries, or if P contains two or more non-zero entries in some row or column,

then this is detected on line 10. If P contains any row that consists entirely of zeroes, then this

is detected on line 14. Finally, suppose that P has some column consisting entirely of zeroes.

We may assume that no row or column of P contains two or more non-zero entries since this will

be checked independently, as already discussed. Therefore, the number of non-zero entries of P

is strictly fewer than |I|. If |I| 6= |Λ|, then the algorithm returns false on line 2; if |I| = |Λ|,
then it follows that some row of P also consists entirely of zeroes, and the algorithm returns

false on line 15, provided that it has not already done so.

The proof of the converse implication of Theorem 3.63 involved a description of the idempo-

tents of an inverse Rees 0-matrix semigroup. We state this description as the following lemma

for the sake of completeness.

Lemma 3.68. Let S = M 0[T ; I, Λ; P ] be an inverse Rees 0-matrix semigroup, and let σ :

I −→ Λ be the unique bijection such that piσ,i 6= 0 for each i ∈ I. Then the set of idempotents

of S is given by

F (S) = E(S) =
{(
i, ep−1

iσ,i, iσ
)

: i ∈ I, e ∈ E(T )
}
∪ {0}.

In particular, S contains 1 + |I| · |E(T )| idempotents.

Proof. Given the proof of Theorem 3.63, it remains to count the idempotents of S. If two

non-zero idempotents x =
(
i, ep−1

iσ,i, iσ
)

and y =
(
j, fp−1

jσ,j , jσ
)

of S are equal, then certainly

i = j, and ep−1
iσ,i = fp−1

iσ,i. But the non-zero matrix entries of P are units, and so

e = ep−1
iσ,ipiσ,i = fp−1

iσ,ipiσ,i = f.

Therefore, there are |I| · |E(T )| non-zero idempotents of S, along with the zero.

In the Semigroups [101] package, the functions Idempotents and NrIdempotents use the

characterisation given in Lemma 3.68 to compute the idempotents, and the number of idempo-

tents, respectively, of an inverse Rees 0-matrix semigroup.

On any inverse semigroup S may be defined a natural partial order . If a, b ∈ S, then a ≤ b
in the natural partial order on S if and only if there exists e ∈ E(S) such that a = eb. See [76,

Section 5.2] for more information about the natural partial order on an inverse semigroup. In

the following lemma, we use the description of the idempotents of an inverse Rees 0-matrix

semigroup given by Lemma 3.68 to describe the natural partial order on such a semigroup.

Lemma 3.69. Let S = M 0[T ; I, Λ; P ] be an inverse Rees 0-matrix semigroup, and let x =

(i, t, λ) and y = (j, u, µ) be arbitrary non-zero elements of S. Then x ≤ y in the natural partial

order on S if and only if i = j, λ = µ, and t ≤ u in the natural partial order on T .

Proof. As in Lemma 3.68, let σ : I −→ Λ be the bijection such that piσ,i 6= 0 for all i ∈ I.

(⇒) Since x ≤ y, it follows by Lemma 3.68 that there exists k ∈ I and e ∈ E(T ) such that

(i, t, λ) = (k, ep−1
kσ,k, kσ)(j, u, µ).
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In particular, pkσ,j 6= 0, which implies that k = j. Therefore (i, t, λ) = (j, ep−1
jσ,jpjσ,ju, µ),

which implies that i = j, λ = µ, and t = eu, i.e. t ≤ u in the natural partial order on T .

(⇐) By assumption, there exists e ∈ E(T ) such that t = eu. By Lemma 3.68, z =(
i, ep−1

iσ,i, iσ
)
∈ E(S), and it is easy to verify that x = zy. Therefore x ≤ y.
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Chapter 4

Computing maximal

subsemigroups of a finite

semigroup

4.1 Introduction

A maximal subsemigroup of a semigroup S is a proper subsemigroup of S that is not contained

in any other proper subsemigroup of S. The main purpose of this chapter is to present practical

algorithms for computing the maximal subsemigroups of an arbitrary finite semigroup. These

algorithms are based on the paper from 1968 of Graham, Graham, and Rhodes [61], and are

implemented in the Semigroups package [101] for GAP [58]. Part of the research described

in this chapter was conducted in collaboration with Casey R. Donoven and James D. Mitchell,

and is published in [35]. Additionally, some of the results in this chapter, particularly most of

those in Section 4.5, have been published in [45], in collaboration with Jitender Kumar, James

East, and James D. Mitchell.

A closely related notion is that of a maximal subgroup of a group. We first address a

potential source of confusion, since the term maximal subgroup has different and conflicting

meanings in semigroup theory and group theory. In semigroup theory, maximal subgroup is a

term meaning group H -class. However, in this thesis, we exclusively use the meaning from

group theory, where a maximal subgroup of a group G is a proper subgroup of G that is contained

in no other proper subgroup of G.

Maximal subgroups of both finite and infinite groups have been extensively investigated

in the literature. In part, this is because of the importance of maximal subgroups to other

aspects of group theory. For example, the Frattini subgroup of a group is the intersection of

its maximal subgroups, and gives information about the generating sets of the group. Maximal

subgroups are also closely related to primitive permutation representations. If G is a group

acting primitively on some set, then the stabilizer of any point is a maximal subgroup; on the

other hand, if H is a maximal subgroup of a group G, then G acts primitively on the set of

cosets of H in G. The maximal subgroups of the finite symmetric groups are described, in some

sense, by the O’Nan-Scott Theorem [109,116], given the Classification of Finite Simple Groups.

See [6–8, 11, 14, 23, 92, 93, 100, 111] and the references therein for research concerning maximal

subgroups of infinite groups.

If G is a finite group, then the subgroups of G are the non-empty subsemigroups of G.

Therefore, except for the trivial group, the maximal subsemigroups of a finite group are its

maximal subgroups, and so the notions of maximal subgroups and maximal subsemigroups

are not really distinct in this case. The same does not hold in general for infinite groups; see

Example 4.1. It follows that computing the maximal subgroups of a finite group is a special

91
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case of the problem we consider here. Indeed, in the algorithms that we present, certain cases

reduce to the computation of maximal subgroups of particular group H -classes of the given

semigroup, even for semigroups that are not groups. There are well-developed techniques for

finding the maximal subgroups of a finite group, such as those of Cannon and Holt [17] which

are implemented in Magma [13], and those of Eick and Hulpke [47], which are implemented in

GAP [58]; see also [3]. Therefore, in this thesis, we will suppose that it is possible to compute

the maximal subgroups of any given finite group.

Example 4.1. Let Z denote the group of integers under addition. It is clear that N0 is a

subsemigroup of Z that is not a group, as is N. Indeed, N0 is a maximal subsemigroup of Z,

since if x an arbitrary negative integer, then 〈N0, x〉 = Z. Furthermore, since N ≤ N0 and

N0 \ N = {0}, it follows that N is a maximal subsemigroup of N0; see Lemma 4.3.

There are many papers in the literature relating to maximal subsemigroups of semigroups

that are not groups. Maximal subsemigroups of infinite semigroups, as with maximal subgroups

of infinite groups, are very different from their finite counterparts. Every non-empty finite semi-

group has at least one maximal subsemigroup, and every proper subsemigroup of a finite semi-

group is contained in a maximal subsemigroup of that semigroup. However, the same is not true

in general for infinite semigroups: there exist infinite semigroups with proper subsemigroups

that are contained in no maximal subsemigroups, and infinite semigroups with no maximal

subsemigroups at all; see Example 4.2. Analogous statements hold for groups. See [38, 74, 86]

and the references therein for information about maximal subsemigroups of infinite semigroups.

There are also numerous papers in the literature about finding maximal subsemigroups of par-

ticular classes of finite semigroups; see for example [25–30,68,69,82,124,129–131]. In Chapter 5,

we classify the maximal subsemigroups of various families of finite transformation and diagram

monoids, using the techniques presented in this chapter.

Example 4.2. Let S = (1, ∞) be the semigroup consisting of the real numbers greater than

1 whose operation is the usual multiplication of real numbers. Certainly (x, ∞) is a proper

subsemigroup of S for any x ∈ S. Let T be any proper subsemigroup of S. There exist elements

a, b ∈ S\T with a < b. Let U be the union of T with the ideal of S consisting of all real numbers

greater than or equal to b. Then U is a proper subsemigroup of S (since a /∈ U) that properly

contains T (since T ⊆ U and b ∈ U \ T ). It follows that every proper subsemigroup is properly

contained in a proper subsemigroup of S, and so there are no maximal subsemigroups of S.

The most important paper on the topic of maximal subsemigroups of finite semigroups

is arguably that of Graham, Graham, and Rhodes [61]. In this paper, the authors prove that

every maximal subsemigroup of a finite semigroup has certain features, and that every maximal

subsemigroup has one of a small number of types. This paper appears to have been overlooked

for many years, and special cases of the results it contains have been repeatedly reproved. While

the paper describes the possible forms of a maximal subsemigroup, it does not classify which

forms arise in a given finite semigroup. Determining this is difficult, and until the publication

of our paper [35], no practical mechanism for doing so had appeared in the literature.

The naive algorithm for computing the maximal subsemigroups of an arbitrary finite semi-

group is to construct all proper subsemigroups of the semigroup, to find their partial order in-

duced by containment, and then to find the maximal elements in that partial order. Computing

every subsemigroup of a finite semigroup S could be accomplished by finding the subsemigroup

generated by each subset of S. Alternatively, the subsemigroups of S can be found by first con-

structing each 1-generated subsemigroup 〈x〉, for x ∈ S, and then iteratively and systematically

finding the subsemigroup generated by each distinct pair of subsemigroups, until all have been

found. In general, given a finite semigroup S, the time complexity of such algorithms is at least



Chapter 4: Computing maximal subsemigroups of a finite semigroup 93

O
(
2|S|
)
, since there exist finite semigroups in which every subset is a subsemigroup. Finding

all the subsemigroups of a semigroup is a difficult problem, which has been considered in the

literature in some natural cases. To illustrate, there are 132 069 776 subsemigroups of the full

transformation monoid of degree 4 up to conjugacy, and 3 161 965 550 in total [41, Table 2]

(note that T4 contains only 256 elements). The exact values are not known for Tn when n ≥ 5,

although a large lower bound has been proven [16, Theorem 9.1]. This suggests that finding all

subsemigroups is not a feasible general-purpose approach to finding maximal subsemigroups.

In this chapter, we present algorithms for computing the maximal subsemigroups of an arbi-

trary finite semigroup using the results of Graham, Graham, and Rhodes [61]. In order to solve

this problem in general, we first develop algorithms for computing the maximal subsemigroups

of an arbitrary finite regular Rees 0-matrix semigroup over a group. Certain aspects of the

general solution reduce to other well-known computational problems, such as finding all maxi-

mal cliques in a graph, finding strongly connected components in a digraph, and, as mentioned

above, computing the maximal subgroups of a group.

The algorithms that we present for computing the maximal subsemigroups of an arbitrary

finite semigroup S require a description of the Green’s structure of S. Throughout this chapter,

we assume that we are able to compute the Green’s structure of any finite semigroup; see

Section 1.4 for more information about this problem. Therefore, if computing the Green’s

structure of S is not practical, perhaps because it requires too much time, or memory, then

the algorithms presented here cannot be used to find the maximal subsemigroups of S. In

many examples, we find that if it is practical to compute the Green’s structure of S from its

given generating set, then it is also practical to find the maximal subsemigroups of S using the

algorithms we present. In such examples, the time taken to determine the Green’s structure of

S is roughly comparable to that taken to find its maximal subsemigroups, given the Green’s

structure. Further details can be found in Section 4.6.2.

This chapter is organised as follows. In Section 4.2, we provide some preliminary results

concerning the form of a maximal subsemigroup of a finite semigroup, and we state the main

results of Graham, Graham, and Rhodes [61] in Proposition 4.10. In Section 4.3, we describe

algorithms for finding maximal subsemigroups in any finite regular Rees 0-matrix semigroup

over a group. In Section 4.4, we build on these results by developing algorithms for finding

the maximal subsemigroups of an arbitrary finite semigroup defined by a generating set. In

Section 4.5, we present special cases of some of these techniques for finite monoids. These results

are particularly useful for Chapter 5. In Section 4.6, we state the overall algorithm for computing

maximal subsemigroups of finite semigroups, and analyse its performance experimentally. Note

that we do not formally analyse the time complexities of the algorithms that we present.

4.2 The form of a maximal subsemigroup

In this section, we present some results concerning the form of a maximal subsemigroup of a fi-

nite semigroup. In particular, we restate the main proposition of Graham, Graham, and Rhodes

from their 1968 paper [61]. We use these results when developing algorithms for arbitrary semi-

groups in the later parts of this chapter, and when describing the maximal subsemigroups of

specific finite monoids in the next.

Lemma 4.3. Let S be a semigroup and let M be a subsemigroup of S such that |S \M | = 1.

Then M is a maximal subsemigroup of S.

Proof. Any proper subsemigroup of S lacks at least one element of S. Therefore, M is the only

proper subsemigroups of S that contains M .
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Example 4.4. Let S be a non-empty left-zero semigroup. It is clear that any subset of S is a

subsemigroup. In particular, the subset S \ {x} is a subsemigroup of S for each x ∈ S, and is

therefore a maximal subsemigroup by Lemma 4.3. Any other proper subsemigroup is properly

contained in such a semigroup, and is therefore not maximal.

We find that the indecomposable elements of a semigroup give rise to maximal subsemi-

groups of the kind described in Lemma 4.3. Recall that an element x of a semigroup S is

decomposable if x ∈ S2, and indecomposable if not; see Section 2.2 for more details.

Lemma 4.5. Let S be a semigroup, and let x ∈ S \ S2 be an indecomposable element of S.

Then S \ {x} is a maximal subsemigroup of S. Moreover, if S = 〈S \ S2〉, then these are the

only maximal subsemigroups of S.

Proof. Suppose that x ∈ S \ S2. Certainly x /∈ 〈S \ {x}〉, since x cannot be written as a

non-trivial product of elements in S. Therefore S \ {x} is a subsemigroup of S; it is maximal

by Lemma 4.3.

Suppose that S is generated by its indecomposable elements, and let M be a maximal

subsemigroup of S. Since M is a proper subsemigroup, there exists an indecomposable element

x ∈ S \M . In particular, M ⊆ S \ {x}. But S \ {x} is a maximal subsemigroup containing M ,

which implies that M = S \ {x}.

Example 4.6. The number 1 is the only indecomposable element of the natural numbers N
under addition. Moreover, N = 〈1〉. By Lemma 4.5, the unique maximal subsemigroup of N is

N \ {1} = {2, 3, 4, . . .}.

As shown in Lemma 2.9, if an element x in a semigroup S is indecomposable, then {x} is

a maximal J -class of S. Therefore, a maximal subsemigroup M of S of the kind described

in Lemma 4.5 is formed by removing a J -class of S. In particular, M contains all other J -

classes of S. In the following lemma, we prove that a maximal subsemigroup of any semigroup

S contains every J -class of S, except for one. This result was stated and proved for finite

semigroups in [61, Proposition (1)]. It follows that if S is J -trivial, then every maximal

subsemigroup of S is found by removing a J -class, and has the form described in Lemma 4.3.

Lemma 4.7 (cf. [61, Proposition (1)]). Let S be an arbitrary semigroup and let M be a

maximal subsemigroup of S. There exists a J -class of S such that S \M ⊆ J .

Proof. Let x, y ∈ S \M be arbitrary. Since M is a maximal subsemigroup of S, it follows that

S = 〈M, x〉. Therefore y ∈ 〈M, x〉 \M , which implies that y can be expressed as a product in

M ∪ {x} that involves x. In particular, y = axb for some a, b ∈ S1. By a symmetric argument,

there exist elements s, t ∈ S1 such that x = syt. Hence xJ y.

In this thesis, we call a maximal subsemigroup whose complement is contained in a J -class

J a maximal subsemigroup arising from J . Note that if U is a subset of a semigroup S, and

J ∈ S/J , then S \ U ⊆ J if and only if S \ J ⊆ U . By Lemma 4.7, the problem of computing

every maximal subsemigroup in a semigroup can be approached by determining the maximal

subsemigroups that arise from each of its J -classes in turn, or indeed in parallel.

In the following lemma, we classify the maximal subsemigroups arising from a J -class

of a semigroup S in terms of the generating sets of S. This result is useful in this thesis

when describing the maximal subsemigroups of a semigroup whose generating sets are well-

understood. In particular, Lemma 4.8 is used in the proofs of Theorems 5.7, 5.49, and 5.60.

Lemma 4.8. Let S be a semigroup, and let J be a J -class of S. Suppose there exists an

indexing set I and subsets Xi ⊆ J for i ∈ I. Further suppose that no set Xi is contained in a
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different set Xj, and that S = 〈S \ J, A〉 if and only if A ∩ Xi 6= ∅ for all i ∈ I. Then the

maximal subsemigroups of S arising from J are precisely the sets S \Xi for each i ∈ I.

Proof. Let i ∈ I be arbitrary. We show that S \ Xi is a subsemigroup of S; its maximality

is then obvious. Let x, y ∈ S \ Xi. Since S \ Xi does not generate S, but it contains S \ J
and an element xj ∈ Xj for each j ∈ I \ {i}, it follows that xy /∈ Xi. Conversely, let M be

a maximal subsemigroup of S arising from J . If M ∩Xi 6= ∅ for each i then, by assumption,

S = 〈M〉 = M , a contradiction. Thus M ∩Xi = ∅ for some i. In other words, M ⊆ S \Xi.

By the maximality of M in S, it follows that M = S \Xi.

In the remainder of this section, we restrict our attention to finite semigroups. By [61], a

maximal subsemigroup of a finite semigroup S is either a union of H -classes S, or it intersects

every H -class of S non-trivially; see Lemma 4.9. It is not known whether this statement holds

more generally for infinite semigroups. The techniques that we develop for finding maximal

subsemigroups of a finite semigroup differ significantly according to whether the desired max-

imal subsemigroup is a union of H -class of the semigroup, or intersects each H -class of the

semigroup non-trivially.

Lemma 4.9 ([61, Proposition (2)]). A maximal subsemigroup of a finite semigroup S either

intersects every H -class of S non-trivially, or is a union of H -classes of S.

Proof. Let M be a maximal subsemigroup of S. We will show that

T =
⋃
x∈M

HS
x

is a subsemigroup of S. Since M is maximal, it then follows that either T = M , and M is a

union of H -classes of S, or that T = S, and M intersects every H -class of S non-trivially.

Let s, t ∈ T be arbitrary. Certainly S \ J ⊆ M by Lemma 4.7, and M ⊆ T by definition.

Therefore, to show that T is a subsemigroup, it suffices to show that st ∈ T whenever st ∈ J .

So assume that st ∈ J , and that s ∈ J or t ∈ J . In the first case, suppose that s ∈ J and

t ∈M . Since s ∈ J ∩ T , and a J -class is a union of H -classes, there exists by definition some

x ∈M ∩J such that sH Sx. By Lemma 1.10, s R st, and so by Green’s Lemma (Lemma 1.11),

right multiplication by t defines an H -class preserving bijection from LSs to LSst. In particular,

stH Sxt ∈ M , and so st ∈ T . A dual argument shows that st ∈ T when s ∈ M and t ∈ J .

Finally, suppose that s, t ∈ J . Define x as above, and choose any y ∈M ∩ J such that tH Sy.

By Lemma 1.10, s R st L t. By Lemma 1.15, HS
s H

S
t ⊆ HS

st. In particular, xyH Sst, and since

xy ∈M , it follows that st ∈ T .

The main result of Graham, Graham, and Rhodes [61] describes, in the finite case, the

possible intersections of a maximal subsemigroup with the J -class from which it arises. In

Proposition 4.10, we include a slightly reformulated version of this main result. The principal

difference is that the isomorphism φ in Proposition 4.10 is arbitrary, whereas the result in Gra-

ham, Graham, and Rhodes specifies only that there exists some isomorphism with the required

properties. Proposition 4.10 follows from the proof in [61]. Proposition 4.10(a) is part (3) of

the main proposition [61], and Proposition 4.10(b) is Case 1 of part (4). Proposition 4.10(c)

is adapted from Case 2 of part (4) of the main proposition of [61], in order to render the

statements (i)–(iv) mutually-exclusive.

Proposition 4.10 (Propositions (3) and (4) in [61]). Let S be a finite semigroup, let M be

a maximal subsemigroup of S, and let J denote the J -class of S that contains S \M . If J is

regular, define φ : J∗ −→M 0[G; I, Λ; P ] to be any isomorphism from the principal factor of J

to a regular Rees 0-matrix semigroup over a group G. Then exactly one of the following holds:
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(a) J is non-regular and M ∩ J = ∅;

(b) J is regular and

(M ∩ J)φ ∪ {0} ∼= M 0[H; I, Λ; Q],

where H is a maximal subgroup of G and Q is a Λ× I matrix over H0.

In this case, (M ∩ J)φ ∪ {0} is a maximal subsemigroup of M 0[G; I, Λ; P ];

(c) J is regular and (M ∩ J)φ is equal to one of the following:

(i) (I ×G× Λ) \ (I ′ ×G× Λ′) for some proper non-empty subsets I ′ ( I and Λ′ ( Λ.

In this case, (M ∩ J)φ ∪ {0} is a maximal subsemigroup of M 0[G; I, Λ; P ];

(ii) I ×G× Λ′ for some proper non-empty subset Λ′ of Λ;

(iii) I ′ ×G× Λ for some proper non-empty subset I ′ of I;

(iv) ∅.

In the remainder of this chapter, we develop effective methods for determining the maximal

subsemigroups of each possible form that arise in a finite semigroup, given its Green’s structure.

In order to be able to easily refer to these possible forms, we introduce the labels (M1)–(M5)

as follows. Let S be any finite semigroup, and let M be a maximal subsemigroup of S. By

Lemma 4.7, there exists a J -class J of S such that S \M ⊆ J . By Proposition 4.10, if M ∩ J
is non-empty, then J is regular and precisely one of the following holds:

(M1) M ∩ J has non-empty intersection with every H -class in J (Proposition 4.10(b));

(M2) M ∩ J =
⋃
A∈L∪RA, where L and R are non-empty sets of L - and R-classes of J ,

respectively (Proposition 4.10(c)(i));

(M3) M ∩ J is a non-empty union of L -classes in J (Proposition 4.10(c)(ii));

(M4) M ∩ J is a non-empty union of R-classes in J (Proposition 4.10(c)(iii));

(M5) M = S \ J (Proposition 4.10(a) and (c)(iv)).

A maximal subsemigroup of type (M1) intersects every H -class of S non-trivially, whereas

maximal subsemigroups of types (M2)–(M5) are unions of H -classes of S; see Lemma 4.9.

Note that a maximal subsemigroup of type (M5) can arise from either a regular or a non-regular

J -class; maximal subsemigroups of types (M1)–(M4) only arise from a regular J -class.

In general, the collection of maximal subsemigroups arising from a particular regular J -

class J can have any combination of types (M1)–(M4). However, if S \ J is a maximal sub-

semigroup of S, then it is the only maximal subsemigroup to arise from J , since a maximal

subsemigroup of type (M1)–(M4) properly contains S \ J . In other words, there is at most one

maximal subsemigroup of type (M5) arising from J , and its existence precludes the occurrence

of maximal subsemigroups of types (M1)–(M4).

4.3 Finite regular Rees 0-matrix semigroups over groups

In this section, we describe techniques for computing the maximal subsemigroups of an arbitrary

finite regular Rees 0-matrix semigroup over a group. This topic has inherent interest. As

discussed in Section 3.1, a finite semigroup is 0-simple if and only if it is isomorphic to a regular

Rees 0-matrix semigroup over a group, and in some sense, finite 0-simple semigroups are the

building blocks of finite semigroups. Furthermore, we use the algorithms for finite regular Rees
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0-matrix semigroups over groups when computing the maximal subsemigroups of an arbitrary

finite semigroup, which is the topic of Section 4.4.

The following result, which classifies the maximal subsemigroups of a finite regular Rees

0-matrix semigroup over a group, is central to the algorithms presented in this section. This

proposition is a slight reformulation of [61, Remark 1] and [62, Theorem 4].

Proposition 4.11 (cf. [62, Theorem 4] and [61, Remark 1]). Let S = M 0[G; I, Λ; P ] be a

finite regular Rees 0-matrix semigroup over a group, and let M be any subset of S. Then M is

a maximal subsemigroup of S if and only if one of the following conditions holds:

(R1) M = {0} and |G| = |I| = |Λ| = 1;

(R2) M = I ×G× Λ and every entry of P is non-zero;

(R3) |Λ| > 1, M = S\(I ×G× {λ}) for some λ ∈ Λ, and for each i ∈ I there exists µ ∈ Λ\{λ}
such that pµ,i 6= 0;

(R4) |I| > 1, M = S \ ({i} ×G× Λ) for some i ∈ I, and for each λ ∈ Λ there exists j ∈ I \ {i}
such that pλ,j 6= 0;

(R5) M = S \
(
(I \X)×G×(Λ\Y )

)
, where X and Y are proper non-empty subsets of I and Λ,

respectively, and X ∪ Y is a maximal independent subset of the Graham-Houghton graph

of S;

(R6) M is a subsemigroup of S isomorphic to a regular Rees 0-matrix semigroup of the form

M 0[H; I, Λ; Q], where H is a maximal subgroup of G and Q is a Λ× I matrix over H0.

In [62, Theorem 4] and [61, Remark 1], the characterisation of the maximal subsemigroups

of type (R1) is incorrectly stated. In more detail, if S = M 0[G; I, Λ; P ] is a finite regular

Rees 0-matrix semigroup where G is a group, then these results claim that {0} is a maximal

subsemigroup of S if and only if |I| = |Λ| = 1 and G is a simple cyclic group. However, if I = {i}
and Λ = {λ} and G is non-trivial, then the set {0, (i, p−1

λ,i, λ)} is a proper subsemigroup of S

that properly contains {0}, and so {0} is not a maximal subsemigroup of S.

By Lemma 4.9, a maximal subsemigroup of a finite semigroup is either a union of H -classes

of the semigroup, or it intersects every H -class of the semigroup non-trivially. Maximal sub-

semigroups of types (R1)–(R5) are subsemigroups that are unions of H -classes, while maximal

subsemigroups of type (R6) intersect every H -class. The maximal subsemigroups of type (R6)

are the most complicated to describe.

In Sections 4.3.1–4.3.4, we describe how to compute maximal subsemigroups of an arbitrary

finite regular Rees 0-matrix semigroup over a group that have types (R1)–(R6). In each case,

we also describe how to specify generating sets for these maximal subsemigroups. Often, this

requires the construction of generating sets for related regular Rees 0-matrix semigroups over

groups; as discussed in Section 3.4, constructing such generating sets is well-understood and

straightforward. Although finding minimal generating sets for these kinds of semigroups is

well-studied [63,114], we do not claim that the generating sets in this section are minimal.

In Section 4.3.5, we demonstrate many of the results of Sections 4.3.1–4.3.4 by finding the

maximal subsemigroups of a specific Rees 0-matrix semigroup.

Finally, in Section 4.3.6 we describe how to compute the maximal subsemigroups of any

finite regular Rees 0-matrix semigroup that have type (R6) and that contain a particular sub-

set of elements; see Algorithm 4.44. This is required by Algorithm 4.86 from Section 4.4,

which describes a procedure for computing the maximal subsemigroups of an arbitrary finite

semigroup.
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4.3.1 Maximal subsemigroups of types (R1) and (R2)

Let S = M 0[G; I, Λ; P ] be an arbitrary finite regular Rees 0-matrix semigroup over a group

G. It is trivial to determine whether there exists a maximal subsemigroup of S of type (R1) or

type (R2). For the former, we test whether G, I, and Λ are trivial, and if they are, then {0} is

a maximal subsemigroup of S. For the latter, we simply check whether 0 appears as an entry

in the matrix P , and if it does not, then S \ {0} = I ×G×Λ is a maximal subsemigroup of S.

Example 4.12. Let S2 denote the symmetric group of degree 2, let I and Λ be index sets with

two elements, and define

P =

(
id2 0

0 (1 2)

)
and Q =

(
id2 (1 2)

(1 2) id2

)
.

If S = M 0[S2; I, Λ; P ], then S has no maximal subsemigroup of type (R2), since the matrix P

contains 0. However, every entry of Q is non-zero, so if T = M 0[S2; I, Λ; Q], then T \{0} is the

unique maximal subsemigroup of T of type (R2). Neither S nor T has a maximal subsemigroup

of type (R1), since their underlying groups and index sets are non-trivial.

It is not complicated to describe generating sets for maximal subsemigroups of types (R1)

and (R2). The subset {0} is a trivial subsemigroup of S, and so its unique generating is {0}
itself. If S \ {0} is a maximal subsemigroup of S, then by Lemma 1.5(i), a subset X of S

generates S if and only if X \ {0} generates S \ {0}. Therefore, a generating set for S \ {0}
can be obtained from any generating set for S by removing the zero element. See Section 3.4

for more information about finding generating sets for finite regular Rees 0-matrix semigroups

over groups.

4.3.2 Maximal subsemigroups of types (R3) and (R4)

Let S = M 0[G; I, Λ; P ] be an arbitrary finite regular Rees 0-matrix semigroup over a group

G. In Proposition 4.11, the existence of maximal subsemigroups of types (R3) and (R4) is char-

acterised in terms of the existence of certain non-zero entries in the matrix P . It is possible to

test these conditions directly. However, for computational purposes, it is simpler to reformulate

these conditions in terms of the Graham-Houghton graph of S.

Lemma 4.13. Let S = M 0[G; I, Λ; P ] be a finite regular Rees 0-matrix semigroup over a

group G. The following hold:

(i) If |Λ| > 1 and λ ∈ Λ, then S \ (I ×G× {λ}) is a maximal subsemigroup of S if and only

if λ is not adjacent to a vertex of degree one in the Graham-Houghton graph of S.

(ii) If |I| > 1 and i ∈ I, then S \ ({i} ×G× Λ) is a maximal subsemigroup of S if and only

if i is not adjacent to a vertex of degree one in the Graham-Houghton graph of S.

Proof. We prove only (i), since (ii) is dual. Suppose that |Λ| > 1 and let λ ∈ Λ.

If S \ (I ×G× {λ}) is a maximal subsemigroup of R, then it certainly has type (R3).

Therefore, for each i ∈ I, there exists µ ∈ Λ \ {λ} such that pµ,i 6= 0. In other words, every

vertex i ∈ I in the Graham-Houghton graph of S that is adjacent to λ is also adjacent to some

other vertex, and therefore has degree at least 2.

Conversely, suppose that every vertex i ∈ I that is adjacent to λ in the Graham-Houghton

graph of S has degree at least 2. Therefore, each such vertex is adjacent to some vertex µ 6= λ.

In other words, for each i ∈ I there exists µ ∈ Λ \ {λ} such that pµ,i 6= 0. Therefore, by

Proposition 4.11, the set S \ (I ×G× {λ}) is a maximal subsemigroup of S of type (R3).
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Example 4.14. Define S = M 0[S3; I, Λ; P ], where S3 denotes the symmetric group of degree

3, I = {1′, 2′, 3′} and Λ = {1, 2, 3}, and

P =

 id3 (1 3 2) (1 2)

(1 3) (2 3) 0

0 id3 0

.
See Figure 4.15 for a picture of the Graham-Houghton graph of S. Note that |I| > 1 and |Λ| > 1.

As discussed in the caption of Figure 4.15, 1 and 2′ are the only vertices in the Graham-Houghton

graph of S that are adjacent to vertices of degree one. Therefore, by Lemma 4.13, the sets

S \ (I ×G× {2}) and S \ (I ×G× {3}),

are the maximal subsemigroups of type (R3), and the maximal subsemigroups of type (R4) are

S \ ({1′} ×G× Λ) and S \ ({3′} ×G× Λ).

1′ 2′ 3′

1 2 3

Figure 4.15: The Graham-Houghton graph of the Rees 0-matrix semigroup S =

M 0[S3; I, Λ; P ] from Example 4.14, where I = {1′, 2′, 3′} and Λ = {1, 2, 3}. The only vertices

of degree 1 in this graph are 3 and 3′, which are adjacent to the vertices 2′ and 1, respectively.

There are four maximal independent subsets of the Graham-Houghton graph of S: {1, 2, 3},
{1′, 2′, 3′}, {1′, 3′, 3}, and {3′, 2, 3}. Therefore, by Lemma 4.13, there is one maximal sub-

semigroup of type (R3) and one maximal subsemigroup of type (R4), and by Proposition 4.11,

there are two maximal subsemigroups of S of type (R5).

A method that uses Lemma 4.13 to compute the maximal subsemigroups of S that have

type (R3) is given in Algorithm 4.16. One of the steps involved is the construction of the

Graham-Houghton graph of S, which requires only the identification of the non-zero entries

of the matrix P . The only other substantive calculation involved in this algorithm occurs in

line 7, which tests whether the vertex i ∈ I has a unique neighbour λ ∈ Λ. Finding the

neighbours of a vertex in a graph is a task that is fundamental to almost every algorithm

in graph theory. Therefore, given any useful representation of the Graham-Houghton graph,

finding the neighbours of i is trivially easy. Indeed, a graph is often represented on a computer

by storing the set of neighbours of each vertex.

There is an obvious analogue of Algorithm 4.16 that describes a method for computing

the maximal subsemigroups of a finite regular Rees 0-matrix semigroup over a group that

have type (R4). Given the preceding discussion, therefore, it is easy to find the maximal

subsemigroups of S of types (R3) and (R4).

If T = S \ (I × G × {λ}) is a maximal subsemigroup of S of type (R3), for some λ ∈ Λ,

then we may regard T as the regular Rees 0-matrix semigroup M 0[G; I, Λ \ {λ}; Q], where

Q = (pµ,i)µ∈Λ\{λ},i∈I is the submatrix of P formed by removing row λ. Similarly, we can

view a maximal subsemigroup of S of type (R4) as the regular Rees 0-matrix semigroup

M 0[G; I \ {i}, Λ; Q′], for some i ∈ I and for some submatrix Q′ of P . There are well-developed

techniques for finding generating sets of Rees 0-matrix semigroups over groups; see Section 3.4

for a discussion of this topic. In this way, by finding a generating set for a corresponding

Rees 0-matrix semigroup, it is straightforward to construct a generating set for a maximal

subsemigroup of type (R3) or (R4).
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Algorithm 4.16 Maximal subsemigroups of a finite regular Rees 0-matrix semigroup over a

group that have type (R3).

Input: A finite regular Rees 0-matrix semigroup S = M 0[G; I, Λ; P ], where G is a group.

Output: The set M of maximal subsemigroups of S of type (R3).

1: M← ∅
2: if |Λ| = 1 then

3: return M.

4: Γ← the Graham-Houghton graph of S

5: forbidden← ∅
6: for each i ∈ I do

7: if some λ ∈ Λ is the unique neighbour of i then

8: forbidden← forbidden ∪ {λ}
9: for each λ ∈ Λ \ forbidden do

10: M←M ∪
{
S \ (I ×G× {λ})

}
. Lemma 4.13

11: return M.

4.3.3 Maximal subsemigroups of type (R5)

In this section, we discuss how to compute the maximal subsemigroups of an arbitrary finite

regular Rees 0-matrix semigroup S = M 0[G; I, Λ; P ], where G is a group, that have type (R5).

Certainly, the subsets I and Λ of the Graham-Houghton graph of S are maximal independent

subsets. By Proposition 4.11, the remaining maximal independent subsets are in one-to-one

correspondence with the maximal subsemigroups of type (R5). Therefore, computing these

maximal subsemigroups is equivalent to computing the maximal cliques in the complement

of the Graham-Houghton graph of S. This is a well-understood but computationally hard

problem; see [15,103,125] for more information.

The methods in the Semigroups package [101] for GAP [58] for computing maximal sub-

semigroups of type (R5) use the clique-finding methods from the Digraphs package [10], which

were written by the author. These clique-finding methods are based on the Bron-Kerbosch Al-

gorithm [15], and use the automorphism group of the graph to break the symmetry of the search

space. In many cases, it seems that the majority of the time taken to compute the maximal

subsemigroups of a finite regular Rees 0-matrix semigroup over a group is spent calculating

the maximal independent subsets of the Graham-Houghton graph. See Section 4.6.2, especially

Figure 4.93, for more information about the performance of the methods that are implemented

in Semigroups.

Example 4.17. Let S = M 0[S3; I, Λ; P ] be defined as in Example 4.14; see Figure 4.15 for

a picture of the Graham-Houghton graph of S. Two of the maximal independent subsets of

the Graham-Houghton graph are I and Λ; the remaining maximal independent subsets are

{1′, 3′, 3} = (I \ {2′}) ∪ (Λ \ {1, 2}) and {3′, 2, 3} = (I \ {1′, 2′}) ∪ (Λ \ {1}). Therefore, by

Proposition 4.11, the maximal subsemigroup of S of type (R5) are the sets

S \
(
{2′} ×G× {1, 2}

)
and S \

(
{1′, 2′} ×G× {1}

)
.

An efficient way to specify a maximal subsemigroups of S that has type (R5) is by a

generating set. Let X and Y be proper non-empty subsets of I and Λ, respectively, such that

X ∪ Y is a maximal independent subset of the Graham-Houghton graph of S. The maximal
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subsemigroup T of S corresponding to this maximal independent subset is given by

T = S \ ((I \X)×G× (Λ \ Y ))

= (X ×G× Y ) ∪ (I ×G× (Λ \ Y )) ∪ ((I \X)×G× Λ) ∪ {0}.

Let Q = (pλ,i)λ∈Λ\Y,i∈I and Q′ = (pλ,i)λ∈Λ,i∈I\X . We may regard (I ×G× (Λ \ Y ))∪{0} as a

regular Rees 0-matrix semigroup M 0[G; I, Λ \ Y ; Q], and we may regard ((I \X)×G× Λ) ∪
{0} as the regular Rees 0-matrix semigroup M 0[G; I \X, Λ; Q′]. As discussed in Section 3.4,

it is straightforward to construct a small generating set for a regular Rees 0-matrix semigroup

over a group.

Let A be any subset of T that contains generating sets for (I ×G× (Λ \ Y )) ∪ {0} and

((I \X)×G× Λ)∪{0}, and that contains any element of X×G×Y . Let (i, g, λ) ∈ X×G×Y
be arbitrary, and let (k, h, γ) be the unique element of A ∩ (X ×G × Y ). Since k ∈ X, there

exists µ ∈ Λ \ Y such that pµ,k 6= 0, and since γ ∈ Y , there exists j ∈ I \X such that pγ,j 6= 0.

Noting that(
i, gp−1

µ,i, µ
)
∈ (I ×G× (Λ \ Y )) ⊆ 〈A〉, and

(
j, p−1

γ,jh
−1, λ

)
∈ ((I \X)×G× Λ) ⊆ 〈A〉,

it follows that (
i, g, λ

)
=
(
i, gp−1

µ,i, µ
)(
k, h, γ

)(
j, p−1

γ,jh
−1, λ

)
∈ 〈A〉.

Therefore, A also contains a generating set for (X ×G× Y ) ∪ {0}. In particular, T = 〈A〉.
In conclusion, to specify a generating set for T , it suffices to find a generating set for the two

corresponding Rees 0-matrix semigroups described above, along with any element of X×G×Y .

4.3.4 Maximal subsemigroups of type (R6)

In this section, we develop an algorithm for computing the maximal subsemigroups of an ar-

bitrary finite regular Rees 0-matrix semigroup over a group that have type (R6); these are the

maximal subsemigroups that intersect every H -class of the semigroup non-trivially. In this

section, we assume that we are able to compute the maximal subgroups of any finite group.

As shown in Proposition 3.2, every finite regular Rees 0-matrix semigroup over a group

can be normalized. See Section 3.2.1 for a discussion about computing normalizations of finite

regular Rees 0-matrix semigroups over groups. Thus, without loss of generality, we assume

throughout this section that S = M 0[G; I, Λ; P ] is a normalized finite regular Rees 0-matrix

semigroup over a group G. We fix the following notation, as used in Proposition 3.2. Let

I1 ∪ Λ1, . . . , In ∪ Λn be the distinct connected components of the Graham-Houghton graph of

S, where Ik ⊆ I and Λk ⊆ Λ for each k, and for each k ∈ {1, . . . , n}, fix ik ∈ Ik and λk ∈ Λk
such that pλk,ik = 1G, and define Gk =

{
g ∈ G : (ik, g, λk) ∈ F (S)

}
.

By Proposition 4.11, a maximal subsemigroup of a finite regular Rees 0-matrix semigroup

M 0[G; I, Λ; P ] over a group G that has type (R6) is isomorphic to some regular Rees 0-matrix

semigroup M 0[H; I, Λ; Q], where H is a maximal subgroup of G. More specifically, in [62,

Theorems 3–4], Graham proves that if V is a maximal subgroup of G and there exist elements

g1, . . . , gn ∈ G such that Gk ≤ g−1
k V gk for all k, then there exists a maximal subsemigroup of

S that is isomorphic to M 0[V ; I, Λ; Q], where Q is a matrix over V 0 that can be constructed

from P . In this section, we develop these ideas in a way that allows us to describe and count, in

an explicit and systematic way, the specific maximal subsemigroups of S that can be obtained

from each maximal subgroup of G. We extend these techniques in Section 4.3.6, where we

present an algorithm for computing the maximal subsemigroups of an arbitrary finite regular

Rees 0-matrix semigroup over a group that have type (R6) and contain a given set.

In order to describe the Green’s relations on a maximal subsemigroup of S of type (R6), we

require the following lemma, which shows that any such subsemigroup is regular.
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Lemma 4.18. Let T be a subsemigroup of S that intersects every H -class of S non-trivially.

Then T is regular.

Proof. Certainly 0 is a regular element, so let x = (i, g, λ) ∈ T \ {0} be an arbitrary non-zero

element of T . Since P contains a non-zero entry in every row and column, there exist indices

j ∈ I and µ ∈ Λ such that pλ,j 6= 0 6= pµ,i. Let e = (j, p−1
λ,j , λ) ∈ E(S). Then e ∈ T by

Lemma 1.14. Certainly xe = x. Furthermore, if y ∈ T is an arbitrary element of the H S-class

{j}×G×{µ}, then yx ∈ {j}×G×{λ}. Therefore, (yx)
k

= e for some k ∈ N, by the finiteness

of S. In particular, xL T e. It follows that T is regular.

Let T be a subsemigroup of S. If T is a regular subsemigroup of S, then Green’s L -, R-,

and H -relations on T are inherited from S [76, Proposition 2.4.2]. In particular, if T intersects

every H -class of S non-trivially, then by Lemmas 3.15 and 4.18, the following hold for all

non-zero elements x = (i, g, λ) and y = (j, h, µ) in T :

(i) x L T y if and only if λ = µ;

(ii) x RT y if and only if i = j; and

(iii) x H T y if and only if i = j and λ = µ.

In particular, this characterises the Green’s relations on any maximal subsemigroup of type (R6).

Arbitrary subsemigroups that intersect every H -class non-trivially

In order to be able to easily specify the subsemigroups of S that intersect every H -class of S

non-trivially, we introduce the following notation. For any subgroup V ≤ G and any elements

g1, g2, . . . , gn ∈ G, we define the following subset of S:

sub
(
V, g1, g2, . . . , gn

)
=
⋃

k,l∈{1, ..., n}

(Ik × g−1
k V gl × Λl) ∪ {0}. (4.19)

Note that sub
(
V, g1, g2, . . . , gn

)
contains |V | elements from each non-zero H -class of S, since

|g−1V h| = |V | for all g, h ∈ G; see Corollary 4.24. Furthermore, we may assume without loss

of generality that g1 = 1G; this observation is stated in the following lemma.

Lemma 4.20. sub
(
V, g1, g2, . . . , gn

)
= sub

(
g−1

1 V g1, 1G, g
−1
1 g2, . . . , g

−1
1 gn

)
.

In the following proposition, we show that any subsemigroup of S that intersects each

H -class of S non-trivially has the form sub
(
V, 1G, g2, . . . , gn

)
, for some subgroup V of G

and elements g2, . . . , gn ∈ G. It follows, therefore, that any maximal subsemigroup of S of

type (R6) has such a form. In subsequent results, we classify the containment and equality of

such semigroups, and we provide generating sets for them.

Proposition 4.21. Let T be a subset of S that intersects each H -class of S non-trivially. Then

T is a subsemigroup of S if and only if there exists a subgroup V of G containing G1, and for each

k ∈ {2, . . . , n} there exists gk ∈ G such that Gk ≤ g−1
k V gk, and T = sub

(
V, 1G, g2, . . . , gn

)
.

Proof. (⇒) For each j ∈ I and µ ∈ Λ, define Hj,µ to be the set T ∩ ({j} ×G× {µ}), which is

non-empty because {j} ×G × {µ} is an H S-class of S. Since T is regular by Lemma 4.18, it

follows that Hj,µ is an H T -class of T . Since pλk,ik = 1G for all k ∈ {1, . . . , n}, it follows by

Green’s Lemma (Lemma 1.11) that

Hj,µ = Hj,λk
(ik, h, µ) = (j, h′, λk)Hik,µ, and so Hj,λk

Hik,µ = Hj,µ (4.22)
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for all j ∈ I, µ ∈ Λ, and for all h, h′ ∈ G such that (ik, h, µ), (j, h′, λk) ∈ T . These equations

are used repeatedly throughout this proof.

We first define the subgroup V of G and the elements g2, . . . , gn required by the proposition.

Since pλ1,i1 = 1G, the H T -class Hλ1,i1 is a group, and the function φ : Hλ1,i1 −→ G given by

(i1, g, λ1) 7→ g is an embedding. In particular, Hλ1,i1 = {i1} × V × {λ1}, where V = (Hλ1,i1)φ

is a subgroup of G. Additionally, since T intersects each H S-class non-trivially, for each

k ∈ {2, . . . , n} there exists some gk ∈ G such that (i1, gk, λk) ∈ Hi1,λk
. For convenience, we

define g1 = 1G.

We next show that Gk ≤ g−1
k V gk for all k. Let k ∈ {1, . . . , n} be arbitrary. By (4.22),

Hi1,λk
= Hi1,λ1

(i1, gk, λk) = {i1} × V gk × {λk},

and similarly, Hik,λ1
= {ik}×Uk×{λ1} for some non-empty subset Uk ⊆ G. Again using (4.22),

it follows that

Hi1,λ1
= (i1, gk, λk)Hik,λ1

= {i1} × gkUk × {λ1},

but we have already shown that Hi1,λ1
= {i1}×V ×{λ1}. Therefore Uk = g−1

k V , and by (4.22),

Hik,λk
= Hik,λ1Hi1,λk

= {ik} × g−1
k V gk × {λk}. (4.23)

By Lemma 1.14, T contains E(S), and so F (S) = 〈E(S)〉 ≤ T . It follows that

Gk =
{
g ∈ G : (ik, g, λk) ∈ F (S)

}
by definition; see Proposition 3.2(ii)

≤
{
g ∈ G : (ik, g, λk) ∈ T

}
= g−1

k V gk, by (4.23)

as required.

Finally, since 0 ∈ T , to show that T = sub
(
V, 1G, g2, . . . , gn

)
, it suffices to show that if

j ∈ Ik and µ ∈ Λl for some k, l ∈ {1, . . . , n}, then Hj,µ = {j} × g−1
k V gl × {µ}.

Let k ∈ {1, . . . , n} and j ∈ Ik be arbitrary. Since j and λk are contained in the same

connected component of the Graham-Houghton graph of S, there exists a path in this graph

from j to λk. Specifically, there exists an alternating sequence (j = a1, b1, . . . , am, bm = λk)

of indices from Ik and Λk, respectively, such that pbl,al 6= 0 and pbl,al+1
6= 0 for all possible l.

Therefore x =
∏m
l=1

(
al, p

−1
bl,al

, bl
)
∈ F (S) ≤ T . Indeed by Proposition 3.2(ii), pbl,al ∈ Gk and

pbl,al+1
∈ Gk for all possible l, and so x = (j, h, λk) for some h ∈ Gk ≤ g−1

k V gk. By (4.22),

Hj,λk
= x ·Hik,λk

= {j} × h · (g−1
k V gk)× {λk}

= {j} × g−1
k V gk × {λk}.

It follows similarly that Hik,µ = {ik} × g−1
k V gk × {µ} for all µ ∈ Λk.

Let j ∈ I and µ ∈ Λ be arbitrary, and let k, l ∈ {1, . . . , n} be the unique indices such that

j ∈ Ik and µ ∈ Λl. Then by applying the previous results with (4.22), we deduce that

Hj,µ = Hj,λk
Hik,λ1Hi1,λl

Hil,µ

= ({j} × g−1
k V gk × {λk})({ik} × g−1

k V × {λ1})({i1} × V gl × {λl})({il} × g−1
l V gl × {µ})

= {j} × (g−1
k V gk) · (g−1

k V ) · (V gl) · (g−1
l V gl)× {µ}

= {j} × g−1
k V gl × {µ}.

(⇐) Let x = (a, f, µ) and y = (b, h, γ) be arbitrary non-zero elements of T . If pµ,b = 0, then

certainly xy = 0 ∈ T . Otherwise, b and µ are contained in the same connected component of the

Graham-Houghton graph of S, and so b ∈ Ik and µ ∈ Λk for some k ∈ {1, . . . , n}. Furthermore,
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since T = sub
(
V, g1 = 1G, g2, . . . , gn

)
and x, y ∈ T , there exist l,m ∈ {1, . . . , n} such that

a ∈ Il, f ∈ g−1
l V gk, h ∈ g−1

k V gm, and γ ∈ Λm. By Proposition 3.2(ii) pµ,b ∈ Gk, and by

assumption, Gk ≤ g−1
k V gk. Therefore,

f · pµ,b · h ∈ (g−1
l V gk) ·Gk · (g−1

k V gm)

⊆ (g−1
l V gk) · (g−1

k V gk) · (g−1
k V gm)

= g−1
l V 3gm

= g−1
l V gm.

It follows that

xy = (a, fpµ,bh, γ)

∈ {a} × g−1
l V gm × {γ}

⊆ Il × g−1
l V gm × Λm

⊆ sub
(
V, 1G, g2, . . . , gn

)
= T,

as required, and so T is a subsemigroup of S.

By Proposition 4.21, if T is a subsemigroup of S that intersects every H -class of S non-

trivially, then the set V =
{
g ∈ G : (i1, g, λk) ∈ T

}
is a subgroup of V , and T has the form

sub
(
V, 1G, g2, . . . , gn

)
for some elements g2, . . . , gn ∈ G. We call a semigroup of the form

sub
(
V, 1G, g2, . . . , gn

)
a subsemigroup of S arising from V . The order of a subsemigroup of

S arising from V is given in the following corollary to to Proposition 4.21, which is required in

the proof of Theorem 4.28. The corollary holds since |g−1V h| = |V | for all g, h ∈ G.

Corollary 4.24. Let T be a subsemigroup of S arising from V . Then every non-zero H -class

of T contains |V | elements. In particular, |T | = |I| · |V | · |Λ|+ 1, and if T contains a non-zero

H -class of S, then T = S.

For the purposes of computation, it is useful to specify a semigroup by a generating set. Let

V be a subgroup of G. By Proposition 4.21, any subsemigroup of S arising from V is equal to

sub
(
V, 1G, g2, . . . , gn

)
, for some elements g2, . . . , gn ∈ G. The subset sub

(
V, 1G, g2, . . . , gn

)
is defined in (4.19) in terms of its elements, but it takes only the group V and the elements

g2, . . . , gn to uniquely determine sub
(
V, 1G, g2, . . . , gn

)
. In the following lemma, we define a

generating set for sub
(
V, 1G, g2, . . . , gn

)
in terms of V , g2, . . . , gn, and the idempotents of S.

Lemma 4.25. Let V be a subgroup of G that contains G1, and suppose there exist elements

g2, . . . , gn ∈ G such that Gk ≤ g−1
k V gk for all k ∈ {2, . . . , n}. For each k ∈ {2, . . . , n},

define xk =
(
i1, gk, λk

)
and yk =

(
ik, g

−1
k , λ1

)
. Let E be a generating set for the idempotent

generated subsemigroup of S, and let Y be a generating set for V . Then the set{
E, {i1} × Y × {λ1}, x2, . . . , xn, y2, . . . , yn

}
generates sub

(
V, 1G, g2, . . . , gn

)
.

Proof. Let X denote the set defined in the lemma, and let T = sub
(
V, 1G, g2, . . . , gn

)
.

We first show that X ⊆ T . By the definition of T in (4.19), it is clear that T contains

{i1}×Y ×{λ1} and the elements xk and yk for each k. By Proposition 4.21, T is a subsemigroup

of S that intersects every H -class of S non-trivially, and so T contains every idempotent of

S by Lemma 1.14. Therefore T contains the idempotent generated subsemigroup of S, which

contains E.

Next, we show that T ⊆ 〈X〉. Certainly 0 ∈ X. Define x1 = y1 = (i1, 1G, λ1) ∈ X and

g1 = 1G. By Proposition 4.21, T is a subsemigroup of S that intersects every H -class of S
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non-trivially, and the non-zero H -classes of T are the sets Hj,µ = {j}× g−1
k V gl×{µ} for each

k, l ∈ {1, . . . , n} and j ∈ Ik and µ ∈ Λl. Note that Hi1,λ1
= 〈{i1} × Y × {λ1}〉 ⊆ 〈X〉.

Let k,m ∈ {1, . . . , n}, j ∈ Ik, and µ ∈ Λm be arbitrary. It remains to prove thatHj,µ ∈ 〈X〉.
By (4.22),

Hik,λk
= yk ·Hi1,λ1 · xk ⊆ 〈X〉,

and similarly Him,λm ∈ 〈X〉. Furthermore, the elements (j, 1G, λk) and (im, 1G, µ) are idem-

potent generated by (3.4), and F (S) = 〈E〉 ≤ 〈X〉. Therefore, by repeatedly applying (4.22),

Hj,µ = Hj,λk
Hik,λ1Hi1,λmHim,µ

=
(

(j, 1G, λk) ·Hik,λk

)(
yk ·Hi1,λ1

)(
Hi1,λ1

· xm
)(
Him,λm

· (im, 1G, µ)
)

⊆ 〈X〉.

See Section 3.2.2, especially Algorithm 3.12, for information about computing a small gen-

erating set for the idempotent generated subsemigroup of a finite Rees 0-matrix semigroup over

a group. Such a generating set can be created easily from a spanning forest of the Graham-

Houghton graph.

In the following results, we classify the containment, and therefore the equality, of two

subsets sub
(
U, 1G, h2, . . . , hn

)
and sub

(
V, 1G, g2, . . . , gn

)
of S, in terms of the subgroups U

and V , and the elements h2, . . . , hn, and g2, . . . , gn.

Lemma 4.26. Let U and V be subgroups of G, and let h2, . . . , hn, g2, . . . , gn ∈ G be arbitrary.

Then sub
(
U, 1G, h2, . . . , hn

)
⊆ sub

(
V, 1G, g2, . . . , gn

)
if and only if U ≤ V and Uhk ⊆ V gk

for all k ∈ {2, . . . , n}.

Proof. For convenience, we define g1 = h1 = 1G. By Proposition 4.21,

sub
(
U, 1G, h2, . . . , hn

)
⊆ sub

(
V, 1G, g2, . . . , gn

)
⇔

(
Ik × h−1

k Uhl × Λl
)
⊆
(
Ik × g−1

k V gl × Λl
)

for all k, l ∈ {1, . . . , n}
⇔ h−1

k Uhl ⊆ g−1
k V gl for all k, l ∈ {1, . . . , n}

⇔ Uhl ⊆ V gl for all k ∈ {1, . . . , n}
⇔ U ≤ V and Uhl ⊆ V gl for all k ∈ {2, . . . , n}.

Corollary 4.27. Let U and V be subgroups of G, and let h2, . . . , hn, g2, . . . , gn ∈ G be arbitrary.

Then sub
(
U, 1G, h2, . . . , hn

)
= sub

(
V, 1G, g2, . . . , gn

)
if and only if U = V and V hk = V gk

for all k ∈ {2, . . . , n}.

Maximal subsemigroups that intersect every H -class non-trivially

To find the maximal subsemigroups of S = M 0[G; I, Λ; P ] that have type (R6), it suffices

to find the maximal subsemigroups of S arising from each subgroup of G. As shown in the

following theorem, which is the main result of this section, the maximal subsemigroups of S of

type (R6) are precisely those subsemigroups of S that arise from maximal subgroups of G.

Theorem 4.28 (Maximal subsemigroups of type (R6)). Let S = M 0[G; I, Λ; P ] be a nor-

malized finite regular Rees 0-matrix semigroup where G is a group, let n ∈ N denote the

number of connected components of the Graham-Houghton graph of S, and let I1, . . . , In and

i1 ∈ I1, . . . , in ∈ In, Λ1, . . . ,Λn and λ1 ∈ Λ1, . . . , λn ∈ Λn, and G1, . . . , Gn be defined as in

Proposition 3.2. Let T be any subset of S that intersects every H -class of S non-trivially.

Then T is a maximal subsemigroup of S if and only if there exists a maximal subgroup V of G

and elements g1 = 1G, g2, . . . , gn ∈ G such that Gk ≤ g−1
k V gk for all k, and

T =
⋃

k,l∈{1, ..., n}

(Ik × g−1
k V gl × Λl) ∪ {0}.
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Proof. (⇒) By Proposition 4.21, T = sub
(
V, 1G, g2, . . . , gn

)
has the required form, and so it

remains to prove that the subgroup V is maximal in G. Let K be any subgroup of G with

V ≤ K ≤ G. Then U = sub
(
K, 1G, g2, . . . , gn

)
is a subsemigroup of S that contains T by

Proposition 4.21 and Lemma 4.26. Since T is maximal, either U = T or U = S. In the first

case, Corollary 4.27 implies that K = V . Noting that S = sub
(
G, 1G, g2, . . . , gn

)
, in the

second case Corollary 4.27 implies that K = G. Therefore V is a maximal subgroup of G.

(⇐) By Proposition 4.21, it remains to prove that the semigroup T = sub
(
V, 1G, g2, . . . , gn

)
is maximal in S. Let U be any subsemigroup of S that properly contains T . Then U intersects

every H -class of S non-trivially, and so by Proposition 4.21, U = sub
(
K, 1G, h2, . . . , hn

)
for

some subgroup K of G, and for some elements h2, . . . , hn ∈ G. By Lemma 4.26, V ≤ K, but

since |T | < |U |, it follows by Corollary 4.24 that |V | < |K|. Since V is a maximal subgroup of

G, we deduce that K = G. Corollary 4.24 implies that U = S, and so T is maximal in S.

Given these results, we discuss how to compute the subsemigroups of S, and therefore the

maximal subsemigroups of S, that arise from a given subgroup of G. Suppose that V is a

subgroup of G that contains G1. By Proposition 4.21 and Corollary 4.27, in order to find the

subsemigroups of S that arise from V , it suffices to find an arbitrary transversal T of the right

cosets of V in G, and to find the sets{
g ∈ T : Gk ≤ g−1V g

}
for all k ≥ 2. More explicitly, given any transversal T of the right cosets of V in G, the

subsemigroups of S arising from V are in one-to-one correspondence with the Cartesian product

n∏
k=2

{
g ∈ T : Gk ≤ g−1V g

}
. (4.29)

Note that for a normal subgroup V of G, g−1V g = V for all g ∈ G. Therefore, if V is

normal in G, T is a transversal of the right cosets of V in G, and k ≥ 2, then

{
g ∈ T : Gk ≤ g−1V g

}
=

{
T if Gk ≤ V,
∅ otherwise.

(4.30)

Thus the sets
{
g ∈ T : Gk ≤ g−1V g

}
are particularly easy to compute when V is normal in G.

Moreover, if V is an arbitrary subgroup of G (not necessarily containing G1), and there

exists t ∈ G such that t−1V t is a conjugate of V containing G1, then we may use the set

in (4.29) to find the subsemigroups of S that arise from t−1V t. In more detail, as argued above,

if U is an arbitrary transversal of the right cosets of t−1V t in G, then the subsemigroups of S

that arise from t−1V t are in one-to-one correspondence with the Cartesian product

n∏
k=2

{
g ∈ U : Gk ≤ g−1

(
t−1V t

)
g
}

However, if T is a transversal of the right cosets of V in G, then the set
{
t−1g : g ∈ T

}
is

a transversal of the right cosets of t−1V t in G. In particular, given any transversal T of the

right cosets of V in G, the collection of all subsemigroups that arise from t−1V t is in one-to-one

correspondence with the Cartesian product

n∏
k=2

{
t−1g : g ∈ T and Gk ≤ (t−1g)

−1(
t−1V t

)
(t−1g)

}
=

n∏
k=2

{
t−1g : g ∈ T and Gk ≤ g−1V g

}
.

Let V be a representative of any conjugacy class of subgroups of G. By the previous

arguments, to find all subsemigroups in S that arise from conjugates of V , it suffices to compute
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the set in (4.29), and to find the conjugates of V that contain G1. Of course, if V is normal in

G, then the only conjugate of V is V itself. In full generality, two conjugates g−1V g and t−1V t

of V are equal if and only if g and t are representatives of the same right coset of NG(V ) in G,

where NG(V ) is the normalizer of G in V . Therefore, to find the conjugates of V that contain

G1, we require any transversal U of the right cosets of NG(V ) in G; given U, the set{
t ∈ U : G1 ≤ t−1V t

}
(4.31)

specifies the required conjugates. In particular, if G is a transversal of the conjugacy classes

of maximal subgroups of G, then by by finding the transversals T and U and the sets (4.29)

and (4.31) for each representative V ∈ G, we find all maximal subsemigroups of S of type (R6).

A method for finding the maximal subsemigroups of a finite regular Rees 0-matrix semigroup

over a group that have type (R6), using the results presented in this section, is given in Algo-

rithm 4.32.

Algorithm 4.32 Maximal subsemigroups of a finite regular Rees 0-matrix semigroup over a

group that have type (R6).

Input: S = M 0[G; I, Λ; P ′], a finite regular Rees 0-matrix semigroup over a group G.

Output: Generating sets for the maximal subsemigroups of S that have type (R6).

1: find the connected components I1 ∪ Λ1, . . . , In ∪ Λn of the Graham-Houghton graph of S

2: compute a normalization Ψ : S −→M 0[G; I, Λ; P ] . Section 3.2.1 and [62, Section 4]

3: for each k, fix ik ∈ Ik and λk ∈ Λk such that pλk,ik = 1G . Proposition 3.2(i)

4: Gk ←
〈{
pλ,i : i ∈ Ik, λ ∈ Λk, pλ,i 6= 0

}〉
for all k . Proposition 3.2(ii)

5: E ← generators for the idempotent generated subsemigroup of S . Algorithm 3.12

6: C ← a transversal of the conjugacy classes of maximal subgroups of G . [17, 47]

7: M← ∅
8: for V ∈ C do

9: Y ← a generating set for V

10: T← a transversal of the right cosets of V in G

11: U← a transversal of the right cosets of NG(V ) in G

12: T1 ← {t ∈ U : G1 ≤ t−1V t}
13: for k ∈ {2, . . . , n} do

14: Tk ← {t ∈ T : Gk ≤ t−1V t}
15: for t ∈ T1, g2 ∈ T2, . . . , gn ∈ Tn do

16: X1 ← {i1} × t−1Y t× {λ1}
17: X2 ←

{(
i1, t

−1g2, λ2

)
, . . . ,

(
i1, t

−1gn, λn
)
,
(
i2, g

−1
2 t, λ1

)
, . . . ,

(
in, g

−1
n t, λ1

)}
18: M←M ∪

{
E ∪X1Ψ−1 ∪X2Ψ−1

}
. Lemma 4.25

19: return M

By the foregoing discussion and (4.30), we may count the subsemigroups of S that arise

from conjugates of a given subgroup of V , without having to construct the subsemigroups of S

themselves; we may also obtain upper bounds on their number.

Lemma 4.33. Let V be an arbitrary subgroup of G, let T be an arbitrary transversal of the

right cosets of G in V , and let U be an arbitrary transversal of the right cosets of the normalizer

NG(V ) of V in G. Then the number of subsemigroups of S that arise from conjugates of V is

m =
∣∣{t ∈ U : G1 ≤ t−1V t

}∣∣ · n∏
k=2

∣∣{g ∈ T : Gk ≤ g−1V g
}∣∣ .

In particular, m ≤ [G : NG(V )] · [G : V ]n−1. If V is normal in G, then m ∈
{

0, [G : V ]
n−1}

.
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We may simplify the bounds from Lemma 4.33 in the case that V is a maximal subgroup of

G. Since NG(V ) is subgroup of G containing V , either NG(V ) = V and [G : NG(V )] = [G : V ],

or NG(V ) = G and [G : NG(V )] = 1. We use this observation in combination with (4.30) to

state Corollary 4.34. The bounds given in this corollary are tight; see Examples 4.35 and 4.36.

Corollary 4.34. Let V be a maximal subgroup of G. If V is normal in G, then there are

either 0 or [G : V ]n−1 maximal subsemigroups of S arising from V . Otherwise, there are at

most [G : V ]n maximal subsemigroups of S arising from conjugates of V .

Example 4.35. Let n ∈ N be arbitrary, and let S = B(S3, n) denote the n × n Brandt

semigroup over S3; see Section 3.5.3 for the definition. Let A3 = 〈(1 2 3)〉 denote the alternating

group of degree 3, which consists of all even permutations in S3, and let C2 = 〈(1 2)〉. Then

A3 is a maximal subgroup of S3 that is normal, and C2 is a maximal subgroup of S3 with

three conjugates. Since the subgroup Gk of S3 is trivial for each k ∈ {1, . . . , n}, it follows by

Lemma 4.33 that the number of maximal subsemigroups of S arising from conjugates of A3 is

[S3 : A3]
n−1

= 2n−1, and the number of maximal subsemigroups of S arising from conjugates

of C2 is [S3 : C2]
n

= 3n.

Example 4.36. Let S = M 0[S2; I, Λ; P ], where S2 is the symmetric group of degree 2, I and

Λ are any sets with two elements, and P is the Λ× I matrix given by(
id2 id2

id2 (1 2)

)
.

Then S is a normalized finite regular Rees 0-matrix semigroup over a group whose Graham-

Houghton graph has a single connected component. Therefore the entries of P generate the

subgroup G1 of S2; see Proposition 3.2. But G1 = S2, and no maximal subgroup of S2 contains

S2. Therefore, by Lemma 4.33, no maximal subsemigroups of S have type (R6).

4.3.5 An example

In this section, we construct a specific Rees 0-matrix semigroup, and then demonstrate how the

techniques of Sections 4.3.1–4.3.4 can be applied to calculate its maximal subsemigroups.

Let S = M 0[S5; I, Λ; P ], where S5 is the symmetric group of degree 5, I = {1′, . . . , 6′},
Λ = {1, . . . , 5}, and P is the Λ× I matrix

(1 2)(4 5) 0 0 0 0 0

0 (1 5 4 2 3) (3 5) 0 0 0

0 (1 4 5)(2 3) (2 5 3) 0 0 0

0 0 0 (1 5 2 3 4) (1 2 5 3 4) (1 2)(4 5)

0 0 0 (1 2)(3 5 4) 0 (1 3 2)(4 5)

.

Certainly S5 is a group, and S is regular since P contains a non-zero entry in each of its rows

and columns. A diagram of the Graham-Houghton graph of S is shown in Figure 4.37.

We use the ideas discussed in Section 4.3.1 to find the maximal subsemigroups of S that

have types (R1) or (R2). There is no maximal subsemigroup of type (R1), since the group S5

and the sets I and Λ are not all trivial – indeed, they are all non-trivial. In other words, {0}
is not a maximal subsemigroup of S. Since the matrix P contains 0, the subset S \ {0} is not

a subsemigroup of S, and so there is no maximal subsemigroup of S of type (R2).

We use Lemma 4.13 from Section 4.3.2 to find the maximal subsemigroups of S that have

types (R3) or (R4). As discussed in Figure 4.37, the vertices in the Graham-Houghton graph

of S that are adjacent to vertices of degree one are 1, 4 ∈ Λ and 1′ ∈ I. By Lemma 4.13(i),
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1′ 2′ 3′ 4′ 5′ 6′

1 2 3 4 5

Figure 4.37: A diagram of the Graham-Houghton graph of S, whose three connected compo-

nents are {1′, 1}, {2′, 3′, 2, 3}, and {4′, 5′, 6′, 4, 5}. The vertices of degree one in the graph

are 1, 1′, and 5′, which are adjacent to the vertices 1′, 1, and 4, respectively. There are twelve

maximal independent subsets, including I, Λ, {5′, 1, 2, 3, 5} and {1′, 4′, 5′, 6′, 2, 3}.

the maximal subsemigroups of S of type (R3) are the sets S \ (I × S3 × {λ}) for each λ ∈
Λ \ {1, 4}, and by Lemma 4.13(ii), the maximal subsemigroups of S of type (R4) are the sets

S \ ({i} × S3 × Λ) for each i ∈ I \ {i′}. In particular, there are three maximal subsemigroups

of S that have type (R3), and five that have type (R4).

The maximal independent subsets of the Graham-Houghton graph of S are the index sets

I and Λ, along with the sets:

{1′, 4′, 5′, 6′, 2, 3}, {4′, 5′, 6′, 1, 2, 3}, {2′, 3′, 5′, 1, 5}, {5′, 1, 2, 3, 5}, {1′, 5′, 2, 3, 5},
{2′, 3′, 4′, 5′, 6′, 1}, {1′, 2′, 3′, 5′, 5}, {1′, 2′, 3′, 4, 5}, {1′, 2, 3, 4, 5}, {2′, 3′, 1, 4, 5}.

By the discussion in Section 4.3.3, these ten sets are in one-to-one correspondence with the

maximal subsemigroups of 6 that have type (R5). If U is one of these sets, then the cor-

responding maximal subsemigroup of S is S \
(
(I \ U) × G × (Λ \ U)

)
. For example, if

U = {1′, 5′, 2, 3, 5}, then the maximal subsemigroup of S of type (R5) that corresponds to U

is S \
(
{2′, 3′, 4′, 6′} × G × {1, 4}

)
. In particular, there are ten maximal subsemigroups of S

that have type (R5).

It remains to calculate the maximal subsemigroups of S that have type (R6). For this, we

use the techniques described in Section 4.3.4. First, it is necessary to find a normalization of

S, which is an isomorphism from S to a normalized Rees 0-matrix semigroup; see Section 3.2.1

for more detail about this step. One normalized Rees 0-matrix semigroup that is isomorphic to

S is T = M 0[S5; I, Λ; Q], where

Q =


id5 0 0 0 0 0

0 id5 id5 0 0 0

0 id5 (1 4 2 3 5) 0 0 0

0 0 0 id5 id5 id5

0 0 0 id5 0 (2 4)(3 5)

.

The Graham-Houghton graph of T is equal to the Graham-Houghton graph of S, which is

shown in Figure 4.37. It is clear by inspection that the three connected components of this

graph are the sets I1 ∪ Λ1 = {1′, 1}, I2 ∪ Λ2 = {2′, 3′, 2, 3}, and I3 ∪ Λ3 = {4′, 5′, 6′, 4, 5}.
To find the maximal subsemigroups of T that have type (R6), for each k ∈ {1, 2, 3} we require

the group Gk corresponding to the kth connected component Ik ∪Λk of the Graham-Houghton

graph of S. Each such group is generated by the non-zero matrix entries of Q corresponding to

the relevant connected component. Therefore,

G1 = {id5}, G2 = 〈(1 4 2 3 5)〉, and G3 = 〈(2 4)(3 5)〉.

For each maximal subgroup V of S5, we must find the maximal subsemigroups of T that

arise from V . Up to conjugacy, the maximal subgroups of S5 are: the alternating group A5

consisting of all even permutations in S5; the symmetric group S4 consisting of all permutations
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in S5 that fix the point 5; a dihedral group 〈(2 3), (1 2 3)(4 5)〉 of order 12; and the group

〈(1 2 3 5 4), (2 3 4 5)〉. For each such maximal subgroup V , we require a transversal U of the

right cosets of NG(V ) in G, a transversal T of the right cosets of V in G, and the sets

{g ∈ U : G1 ≤ g−1V g} and {g ∈ T : Gk ≤ g−1V g}, for all k ∈ {2, 3}.

Case 1: A5. Note that A5 is a normal subgroup of S5 that contains the subgroups G1,

G2, and G3. In other words, every conjugate of A5 contains G1, G2, and G3, and so by

Corollary 4.34, there are four maximal subsemigroups of T (and hence S) that arise from A5.

Case 2: S4. Since G2 contains a five-cycle, but there are no five-cycles in S4, it follows

that G2 6≤ g−1S4g for any g ∈ G. Therefore there are no maximal subsemigroups of T or S

arising from conjugates of S4.

Case 3: 〈(2 3), (1 2 3)(4 5)〉. Since the group 〈(2 3), (1 2 3)(4 5)〉 contains no five-cycles,

it follows that there are no maximal subsemigroups arising from its conjugates.

Case 4: V = 〈(1 2 3 5 4), (2 3 4 5)〉. Since V is not normal in S5, the normalizer NS5
(V )

is V itself. We choose the following transversal of the right cosets of V in S5:

T = U = {id5, (4 5), (3 4), (3 5), (3 4 5), (3 5 4)}.

Certainly, all six conjugates of V contain G1, which is the trivial subgroup of S5. The only

conjugate of V that contains G2 is (3 5 4)
−1
V (3 5 4), and the two conjugates of V that contain

G3 are V itself and (3 5)
−1
V (3 5). Therefore, there are twelve (= 6·1·2) maximal subsemigroups

of T arising from conjugates of V , and twelve corresponding maximal subsemigroups of S.

Overall, there are 34 maximal subsemigroups of S: 3 of type (R3), 5 of type (R4), 10 of

type (R5), and 16 of type (R6). Finding and constructing these maximal subsemigroups using

the Semigroups package [101] for GAP [58], on a 2.66 GHz Intel Core i7 processor with 8GB

of RAM, takes roughly 10 milliseconds.

4.3.6 Maximal subsemigroups of type (R6) that contain a given set

The culmination of this chapter is Algorithm 4.86, which describes a method for computing

the maximal subsemigroups of an arbitrary finite semigroup. On line 20 of this algorithm, we

require the maximal subsemigroups of the principal factor of a regular J -class that contain a

given set and intersect every H -class of the principal factor non-trivially. Therefore, in order

to use Algorithm 4.86, we require the ability to compute these kinds of maximal subsemigroups

in the principal factor. It is straightforward to construct an isomorphism from the principal

factor of a finite regular J -class to some regular Rees 0-matrix semigroup over a group. Hence

it suffices to describe an algorithm for computing the maximal subsemigroups of a finite regular

Rees 0-matrix semigroup over a group that have type (R6), and that contain a given set, which

is the topic of this section. We present an algorithm to solve this problem in Algorithm 4.44.

Throughout, we continue to use the notation and terminology from Section 4.3.4. More

specifically, let S = M 0[G; I, Λ; P ] denote a normalized finite regular Rees 0-matrix semi-

group over a group G, let n ∈ N denote the number of connected components of the Graham-

Houghton graph of S, and for each k ∈ {1, . . . , n}, let Ik, Λk, ik, λk, and Gk be defined as in

Proposition 3.2. For a subgroup V of G and elements g1, . . . , gn ∈ G, we again define the set

sub
(
V, g1, g2, . . . , gn

)
as in (4.19).

Let A be any subset of S. Note that any subsemigroup of S that intersects every H -

class of S non-trivially necessary contains 0, which is the unique element of the H S-class {0}.
Therefore, we only concern ourselves with the non-zero elements of A.

One way to find the maximal subsemigroups of S of type (R6) that contain A is to use

Algorithm 4.32 to construct every maximal subsemigroups of S that has type (R6), and then
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to use standard membership checking algorithms from computational semigroup theory to dis-

card those maximal subsemigroups that do not contain A. However, such an approach is to

be avoided when possible. By Corollary 4.34, the upper bound on the number of maximal

subsemigroups arising from a given maximal subgroup of G is exponential in n. Therefore, the

maximal subsemigroups of type (R6) can easily be far too numerous to construct, even when

very few of them contain the set A. A more suitable solution would involve computing the

desired maximal subsemigroups directly.

Let T = sub
(
V, g1 = 1G, g2, . . . , gn

)
be any subsemigroup of S that intersects every H -

class of S non-trivially; see Proposition 4.21. Observe that the elements of T are given in terms

of the subgroup V of G and the group elements g2, . . . , gn ∈ G; see (4.19). This suggests that

we may also characterise whether T contains A in terms of these parameters. To that end, let

j, k, l ∈ {1, . . . , n} with k < l, and define the sets

Uj =
{
g : (i, g, λ) ∈ A for some i ∈ Ij and λ ∈ Λj

}
, and (4.38)

U{k, l} =
{
g : (i, g, λ) ∈ A for some i ∈ Ik and λ ∈ Λl

}
(4.39)

∪
{
g−1 : (i, g, λ) ∈ A for some i ∈ Il and λ ∈ Λk

}
.

These sets are required in the following lemma.

Lemma 4.40. Let T be a subset of S that intersects each H -class of S non-trivially. Then T

is a (maximal) subsemigroup of S containing A if and only if there exists a (maximal) subgroup

V of G and elements g1 = 1G, g2, . . . , gn ∈ G such that T = sub
(
V, 1G, g2, . . . , gn

)
, and:

(i) for all k ∈ {1, . . . , n}, (Gk ∪ Uk) ⊆ g−1
k V gk; and

(ii) for all k, l ∈ {1, . . . , n} with k < l, U{k, l} ⊆ g−1
k V gl.

Proof. By Proposition 4.21 and Theorem 4.28, T is a (maximal) subsemigroup of S if and only

if there exists a (maximal) subgroup V of G and elements g1 = 1G, g2, . . . , gn ∈ G such that

Gk ≤ g−1
k V gk for all k ∈ {1, . . . , n} and such that T = sub

(
V, g1, g2, . . . , gn

)
. It remains to

prove that the remaining conditions hold in each case.

(⇒) Let k ∈ {1, . . . , n} and let g ∈ Uk. Then (i, g, λ) ∈ A ∩ (Ik ×G× Λk) for some i ∈ Ik
and λ ∈ Λk. But T contains A, and so (i, g, λ) ∈ T ∩ (Ik ×G × Λk) = Ik × g−1

k V gk × Λk. In

particular, g ∈ g−1
k V gk. Since g ∈ G was arbitrary, it follows that Uk ⊆ g−1

k V gk.

Let k, l ∈ {1, . . . , n} with k < l, and let g ∈ U{k, l}. It suffices to show that g ∈ g−1
k V gl.

Either (i, g, λ) ∈ A∩ (Ik×G×Λl) or (i, g−1, λ) ∈ A∩ (Il×G×Λk), for some i ∈ I and λ ∈ Λ.

In the first case, since A ⊆ T , it follows that g ∈ g−1
k V gl, and we are done. In the second case,

it follows that g−1 ∈ g−1
l V gk and, by inversion, that g ∈ g−1

k V gl.

(⇐) Let x = (i, g, λ) ∈ A, and fix k, l ∈ {1, . . . , n} such that i ∈ Ik and λ ∈ Λl. It suffices

to show that g ∈ g−1
k V gl. If k = l, then g ∈ Uk, and by assumption, Uk ⊆ g−1

k V gk. If k < l,

then g ∈ U{k, l}, and by assumption, U{k, l} ⊆ g−1
k V gl. Finally, if k > l, then g−1 ∈ U{k, l}, and

by assumption, U{k, l} ⊆ g−1
l V gk. Therefore, g ∈ (g−1

l V gk)
−1

= g−1
k V gl.

Throughout the rest of this section, let V be a subgroup of G, let U be a transversal of the

right cosets ofNG(V ) inG, and let T be a transversal of the right cosets of V inG. Suppose there

exist elements g1, . . . , gn ∈ G such that conditions (i) and (ii) of Lemma 4.40 hold. Then by

Lemma 4.40, sub
(
g−1

1 V g1, 1G, g
−1
1 g2, . . . , g

−1
1 gn

)
is a subsemigroup of S that contains A and

arises from g−1
1 V g1. Conversely, suppose that sub

(
t−1V t, 1G, h2, . . . , hn

)
is a subsemigroup

of S that contains A and arises from some conjugate of V , where t, h2, . . . , hn ∈ G. Define

g1 = t, g2 = t · h2, . . . , gn = t · hn. Then conditions (i) and (ii) of Lemma 4.40 hold.
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By this observation and by Corollary 4.27, to compute all subsemigroups of S that contain

A and arise from conjugates of V , it suffices to test each selection of elements g1 ∈ U and

g2, . . . , gn ∈ T against the conditions in Lemma 4.40. Therefore, an algorithm for computing

the maximal subsemigroups of S that contain A and have type (R6) can be created from

Algorithm 4.32 by adding a test for these conditions after line 15. However, this approach

leaves room for improvement, since it ignores the links between the elements g1, . . . , gn that are

implied by Lemma 4.40(ii).

In order to take advantage of this information, we define the graph

Γ =
(
{1, . . . , n},

{
{k, l} : Uk,l 6= ∅

})
. (4.41)

Let {D1, . . . , Dm} be the set of connected components of Γ, numbered so that 1 ∈ D1. We

reformulate Lemma 4.40 in the following corollary, which shows that the search for subsemi-

groups of S that contain A and arise from conjugates of V can be broken down into smaller

independent searches that correspond to the connected components of Γ.

Corollary 4.42. Let g1 ∈ U and g2, . . . , gn ∈ T. Then sub
(
g−1

1 V g1, 1G, g
−1
1 g2, . . . , g

−1
1 gn

)
is

a subsemigroup of S containing A if and only if for each i ∈ {1, . . . , m}, the following hold:

(i) for all k ∈ Di, (Gk ∪ Uk) ⊆ g−1
k V gk; and

(ii) for all k, l ∈ Di with k < l, U{k, l} ⊆ g−1
k V gl.

Indeed, the connected components of Γ have further utility for our purposes. Let g1 ∈ U

and g2, . . . , gn ∈ T, and suppose that sub
(
g−1

1 V g1, 1G, g
−1
1 g2, . . . , g

−1
1 gn

)
is a subsemigroup

of S that contains A. In the following lemma, we show that the choice of g1 ∈ U determines

the value of gk, for each k ∈ D1 \ {1}, and that for j ∈ {2, . . . , m}, the choice of gmin(Dj) ∈ T

determines the value of gk, for each k ∈ Dj \ {min(Dj)}.

Lemma 4.43. Let g1 ∈ U and g2, . . . , gn ∈ T be chosen arbitrarily, and suppose that the subset

sub
(
g−1

1 V g1, 1G, g
−1
1 g2, . . . , g

−1
1 gn

)
is a subsemigroup of S containing A. The following hold.

(i) If u ∈ U{k, l}, then gl ∈ T is the coset representative determined by gku (when k < l) or

gku
−1 (when k > l).

(ii) For all i ∈ {1, . . . , m} and k ∈ Di, the value of gk is determined by gmin(Di).

Proof. (i). Suppose that k < l. By Lemma 4.40(ii), U{k, l} ⊆ g−1
k V gl, and so gku ∈ V gl.

Suppose that k > l. Then U{k, l} ⊆ g−1
l V gk by Lemma 4.40(ii), and so gku

−1 ∈ V gl.

(ii). If k = min(Di) there is nothing to prove, so suppose that k > min(Di). Since min(Di) and

k are connected in Γ, we may choose some path (min(Di) = a1, a2, . . . , aq = k) in Γ from

min(Di) to k. By (i), ga2 ∈ T is the coset representative determined by gmin(Di)u2, where

u2 ∈ U{min(Di), a2} is arbitrary. By (i), ga3 ∈ T is the coset representative determined by

ga2u3, where u3 ∈ U{a2, a3} (if a2 < a3) or u−1
3 ∈ U{a2, a3} (if a2 > a3) is arbitrary. But

ga2 is determined by gmin(Di)u2, and so ga3 is determined by gmin(Di)u2u3. Continuing

in this way, we may choose a sequence of elements u2, . . . , uq, where either uj or u−1
j is

contained in U{aj−1, aj} for each j, such that gk ∈ T is the unique coset representative of

V in G determined by gmin(Di) · u2 · · ·uq.

A method for finding the maximal subsemigroups of a normalized finite regular Rees 0-

matrix semigroup over a group that have type (R6) and that contain a certain set is given in

Algorithm 4.32. This algorithm relies on the preceding results, especially Corollary 4.42 and
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Algorithm 4.44 Maximal subsemigroups of type (R6) that contain a given set.

Input: S = M 0[G; I, Λ; P ], a normalized finite regular Rees 0-matrix semigroup over a group,

and a subset A of S.

Output: M, the maximal subsemigroups of S that have type (R6) and contain A.

1: n← the number of connected components of the Graham-Houghton graph of S

2: for each k ∈ {1, . . . , n}, compute Gk as in Algorithm 4.32.

3: for each j, k, l ∈ {1, . . . , n} with k < l, construct Uj and U{k, l} . (4.38) and (4.39)

4: C ← a transversal of the conjugacy classes of maximal subgroups of G . [17, 47]

5: Γ←
(
{1, . . . , n},

{
{k, l} : U{k, l} 6= ∅

})
. The graph from (4.41)

6: find the connected components D1, . . . , Dm of Γ, with 1 ∈ D1

7: M← ∅
8: for V ∈ C do

9: Ti ← ∅ for all i ∈ {1, . . . , m}
10: T← a transversal of the right cosets of V in G

11: U← a transversal of the right cosets of NG(V ) in G

12: for (i, g) ∈ ({1} × U) ∪ ({2, . . . , m} × T) do

13: gmin(Di) ← g

14: for each k ∈ Di \ {min(Di)}, fix gk ∈ T as determined by gmin(Di) . Lemma 4.43

15: if (Gj ∪ Uj) ⊆ g−1
j V gj and U{k, l} ⊆ g−1

k V gl for all j, k, l ∈ Di with k < l then

16: Ti ← Ti ∪
{
{(k, gk) : k ∈ Di}

}
. Ti contains functions Di −→ G

17: for σ1 ∈ T1, . . . , σm ∈ Tm do

18: σ ← σ1 ∪ · · · ∪ σm . σ defines a function {1, . . . , n} −→ G

19: M←M ∪
{
sub

(
(1σ)

−1
V (1σ), 1G, (1σ)

−1
(2σ), . . . , (1σ)

−1
(nσ)

)}
. Corollary 4.42

20: return M.

Lemma 4.43. In Example 4.45, we demonstrate the application of Algorithm 4.44 to a small

Rees 0-matrix semigroup.

Although we do not include the following optimisations in Algorithm 4.44, it is possi-

ble to use Lemma 4.43 to further prune the search space of subsemigroups of S that con-

tain A and arise from conjugates of V . These techniques are implemented in the Semi-

groups [101] package. Let {k, l} be any edge in Γ with 1 < k < l. By Lemma 4.43(i),

if sub
(
g−1

1 V g1, 1G, g
−1
1 g2, . . . , g

−1
1 gn

)
is a subsemigroup of S that contains A, then for any

u ∈ U{k, l}, the right cosets V gku and V gl coincide. In particular, for all u, v ∈ U{k, l}, it follows

that V gku = V gkv, and so (g−1
k V gk)u = (g−1

k V gk)v. In other words, gk is required to be chosen

so that every element of U{k, l} defines the same right coset of g−1
k V gk in G. Moreover, if V is

normal in G, then every element of U{k, l} defines the same right coset of V in G. It follows

that, if V is a normal subgroup of G and the elements of some subset U{k, l} (with k < l) do

not define the same right coset of V in G, then there are no subsemigroups of S that contain

A and arise from V .

Example 4.45. Let S = M 0[S4; I, Λ; P ], where S4 is the symmetric group of degree 4,

I = {1′, . . . , 6′}, Λ = {1, . . . , 6}, and P is the Λ× I matrix

id4 id4 0 0 0 0

id4 (1 2)(3 4) 0 0 0 0

0 0 id4 0 0 0

0 0 0 id4 id4 0

0 0 0 id4 (1 2 3 4) 0

0 0 0 0 0 id4


.
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Let A = {0, (3′, (1 3 2 4), 3) , (1, (1 4)(2 3), 3′) , (6′, (2 4 3), 4) , (6′, id4, 6)}. In this example,

we demonstrate how to compute the maximal subsemigroups of S that contain A and that have

type (R6). The method that we use is essentially that described in Algorithm 4.44.

Notice that S is already normalized. The four connected components of the Graham-

Houghton graph of S are I1∪Λ1 = {1′, 2′, 1, 2}, I2∪Λ2 = {3′, 3′}, I3∪Λ3 = {4′, 5′, 4, 5}, and

I4 ∪Λ4 = {6′, 6}. For each k ∈ {1, 2, 3, 4}, we require the group Gk generated by the non-zero

entries of P corresponding to the kth connected component. These groups are

G1 = 〈(1 2)(3 4)〉, G2 = G4 = {id4}, and G3 = 〈(1 2 3 4)〉.

We also require the sets of the form Uj and U{k, l}, defined in (4.38) and (4.39). The only

non-empty sets of these kinds are

U2 = {(1 3 2 4)}, U4 = {id4}, U{1, 2} = {(1 4)(2 3)}, and U{3, 4} = {(2 3 4)}.

Therefore, the connected components of the graph Γ from (4.41) are {1, 2} and {3, 4}.
Finding the maximal subsemigroups of S that contain A and have type (R6) is equivalent

to finding the maximal subsemigroups of S that contain A and that arise from conjugates

of maximal subgroups of S4. Up to conjugacy, there are three maximal subgroups of S4:

the alternating group A4 consisting of all even permutations in S4; the symmetric group S3

consisting of all permutations in S4 that fix the point 4; and D4 = 〈(1 2 3 4), (1 2)(3 4)〉, a

dihedral group of order 8. By using the techniques in Section 4.3.4, it is possible to show that

there are no maximal subsemigroups of S that arise from conjugates of A4 or S3, and that there

are 27 maximal subsemigroups of S that arise from conjugates of D4. Therefore, it remains to

find the maximal subsemigroups of S that contain A and arise from D4.

Since D4 is not a normal subgroup of S4, we choose

U = T = {id4, (3 4), (2 3)}

to be a transversal of the right cosets ofD4 in S4. This transversal was computed with GAP [58].

We begin by considering the possible choices for g1 and g2, which correspond to the first

connected component of Γ. By Lemma 4.43(ii), the choice of g2 is determined by g1. More

specifically, by Lemma 4.43(i), g2 is the representative in T determined by g1 ·(1 4)(2 3). In each

case, g1 = g2. The only conjugate of D4 that contains G2 ∪ U2 = 〈(1 3 2 4)〉 is (2 3)
−1D4(2 3),

and so the remaining possible choice is g1 = g2 = (2 3). Since (2 3)
−1
V (2 3) contains both

G1 ∪ U1 and U{1, 2}, it follows by Corollary 4.42 that g1 = g2 = (2 3) is the only valid choice

corresponding to the first connected component of Γ.

Finally, we consider the possible choices for g3 and g4. The only conjugate of D4 that

contains G3 ∪U3 = 〈(1 2 3 4)〉 is D4 itself. Therefore id4 is the only possible choice for g3, and

by Lemma 4.43(i), this determines that (3 4) is the only possibility for g4. Since (3 4)
−1D4(3 4)

contains G4 ∪ U4 = {id4} and U{3, 4} ⊆ id−1
4 D4(3 4), it follows that the selection of g3 = id4

and g4 = (3 4) is the unique possibility corresponding to the second connected component of Γ.

In conclusion, by Corollary 4.42, sub
(
(2 3)

−1D4(2 3), 1G, 1G, (2 3), (2 4 3)
)

is the unique

maximal subsemigroup of S that contains A and has type (R6). A generating set for this

maximal subsemigroup can be constructed using Lemma 4.25.

Finding this solution with the Semigroups package [101] for GAP [58], which uses a version

of Algorithm 4.44, takes roughly 10 milliseconds on a 2.66 GHz Intel Core i7 processor with

8GB of RAM. On the other hand, using Semigroups to find every maximal subsemigroup of

S of type (R6), and discarding those that do not contain A, takes roughly 50 milliseconds.
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4.4 Arbitrary finite semigroups

In this section, we develop a framework for computing the maximal subsemigroups of an arbi-

trary finite semigroup, building on the results of Section 4.3. We consider each of the possible

kinds of maximal subsemigroups (M1)–(M5) separately in Sections 4.4.1–4.4.5, with the excep-

tion of maximal subsemigroups of types (M3) and (M4). Maximal subsemigroups of types (M3)

and (M4) are dual, and are considered jointly in Section 4.4.4.

In the framework that we put forth, the calculation of maximal subsemigroups of types (M3)

and (M4) requires the prior calculation of the maximal subsemigroups of type (M2), and for

a regular J -class, the calculation of maximal subsemigroups of types (M5) requires the prior

calculation of the maximal subsemigroups of types (M1)–(M4).

Throughout Section 4.4, S denotes an arbitrary finite semigroup with a generating set X,

J denotes an arbitrary J -class of S whose principal factor is J∗ = J ∪ {0}, and X ′ denotes

the set of generators x ∈ X such that Jx > J in the partial order of J -classes on S.

We use the following lemma repeatedly to prove the forthcoming results. This lemma gives

necessary and sufficient conditions for a subset T of S containing S \ J to be a subsemigroup

of S. Condition (i) requires that T ∩ J contain the elements of J that are generated by S \ J ;

condition (ii) requires that (T ∩J)∪{0} define a subsemigroup of J∗; and condition (iii) requires

that T ∩ J be stabilized under left and right multiplication by S \ J , in some sense.

Lemma 4.46. Let T be a subset of S such that S \ T ⊆ J . Then T is a subsemigroup of S if

and only if

(i) 〈X ′〉 ⊆ T ;

(ii) if x, y ∈ T ∩ J , then xy ∈ J implies that xy ∈ T ; and

(iii) if x ∈ T ∩ J and y ∈ 〈X ′〉, then xy ∈ J implies that xy ∈ T , and yx ∈ J implies that

yx ∈ T .

Proof. (⇒) The conditions hold since T is a subsemigroup of S that contains X ′.

(⇐) Let x, y ∈ T be arbitrary. Since T contains S \ J , it suffices to show that xy ∈ T

whenever xy ∈ J , so suppose that xy ∈ J . We first prove that x, y ∈ J ∪ 〈X ′〉. Since X

generates S, x = x1 · · ·xn, for some n ∈ N and xi ∈ X. Note that xi ∈ J ∪ X ′ for each i by

Lemma 1.12. If xi ∈ X ′ for each i, then x ∈ 〈X ′〉. Otherwise, xi ∈ J for some i; by Lemma 1.12,

J = Jxy ≤ Jx ≤ Jxi
= J , and x ∈ J . Similarly, y ∈ J∪〈X ′〉. If x, y ∈ 〈X ′〉, then xy ∈ 〈X ′〉 ⊆ T

by (i). If x, y ∈ J , then xy ∈ T by (ii). For the remaining cases, xy ∈ T by (iii).

4.4.1 Maximal subsemigroups that intersect every H -class: (M1)

In this section, we consider those maximal subsemigroups of the finite semigroup S that arise

from the exclusion of elements in a regular J -class, and that intersect every H -class of S non-

trivially. In other words, we are considering maximal subsemigroups of type (M1). Throughout

this section, we suppose that J is a regular J -class of S.

By Proposition 4.10(b), ifM is a maximal subsemigroup of S of type (M1) that arises from J ,

then (M∩J)∪{0} is a maximal subsemigroup of the principal factor J∗. Recall that the principal

factor J∗ of a regular J -class is a 0-simple semigroup; let M 0[G; I, Λ; P ] be a regular Rees 0-

matrix semigroup over a group that is isomorphic to J∗. It follows that a maximal subsemigroup

of S that arises from J and has type (M1) gives a maximal subsemigroup of M 0[G; I, Λ; P ]

that has type (R6). The converse does not necessarily hold in general; in this section, we

develop necessary and sufficient criteria to characterise the circumstances in which it does hold.
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In particular, in Proposition 4.48 we characterise the maximal subsemigroups of type (M1) in

terms of the maximal subsemigroups of J∗ that have type (R6) and that contain a particular

set. Computing such maximal subsemigroups was the topic of Section 4.3.6 and Algorithm 4.44.

We use this algorithm in Algorithm 4.86 when computing maximal subsemigroups of type (M1)

We first describe the subsemigroups of S that contain S \ J and intersect every H -class of

J non-trivially, before considering those that are maximal.

Lemma 4.47. Let T be a subset of S containing S \ J , and suppose that T intersects every

H -class of S non-trivially. Let E be a set consisting of one idempotent from each L -class of

J . Then T is a subsemigroup of S if and only if

(i) EX ′ ∩ J ⊆ T ;

(ii) if x, y ∈ T ∩ J , then xy ∈ J implies xy ∈ T (i.e. Lemma 4.46(ii) holds).

Proof. (⇒) Since T is a subsemigroup, Lemma 4.46(ii) holds. Since T is finite and intersects ev-

ery H -class of S non-trivially, T contains every idempotent of S by Lemma 1.14. By definition,

T contains S \ J , which contains X ′, and so EX ′ ⊆ T . In particular, EX ′ ∩ J ⊆ T .

(⇐) It suffices to show that the remaining conditions of Lemma 4.46 hold. In order to

do this, we first show that the intersection E〈X ′〉 ∩ J of the set product E〈X ′〉 with J is

contained in T . Let x ∈ E〈X ′〉 ∩ J . By definition, there exist an idempotent e1 ∈ E and a

sequence of generators x1, . . . , xn ∈ X ′ such that x = e1x1 · · ·xn. Since e1 and the product

e1x1 · · ·xn are both members of J , it follows by Lemma 1.12 that the intermediate product

e1x1 · · ·xk is a member of J for every k ∈ {1, . . . , n}. Hence, by definition of E, for each

k < n there exists an idempotent ek+1 ∈ E such that ek+1 L e1x1 · · ·xk. In particular,

(e1x1 · · ·xk)ek+1 = e1x1 · · ·xk for each k < n, since an idempotent is a right identity for its

L -class. Therefore x =
∏n
k=1 ekxk. Furthermore, for each k ∈ {1, . . . , n} the element ekxk is

contained in J since

J = Jek ≥ Jekxk
≥ Jx = J.

Therefore ekxk ∈ EX ′ ∩ J ⊆ T By repeated application of condition (ii), it follows that

x =
∏n
k=1 ekxk ∈ T ∩ J . Since x ∈ E〈X ′〉 ∩ J was arbitrary, it follows that E〈X ′〉 ⊆ T .

Note that condition (ii) is equivalent to the statement that (T ∩ J)∪ {0} is a subsemigroup

of the principal factor J∗. Since (T ∩ J) ∪ {0} intersects every H -class of J∗ and J∗ is finite,

it follows by Lemma 1.14 that T contains every idempotent of J .

To prove that condition (i) of Lemma 4.46 holds, let x ∈ 〈X ′〉∩J . There exists an idempotent

f ∈ T ∩ J in the RS-class of x, and so fx = x. By definition of E, there exists an idempotent

e ∈ E such that e L f , and so x = fx = (fe)x = f(ex). Certainly ex ∈ J by Lemma 1.12, and

since E〈X ′〉∩J ⊆ T , it follows that ex ∈ T ∩J . By assumption, (T ∩J)∪{0} is a subsemigroup

of J∗, and so x = f(ex) ∈ T .

To prove that condition (iii) of Lemma 4.46 holds, let x ∈ T ∩J and y ∈ 〈X ′〉. First suppose

that xy ∈ J . By assumption, there exists an idempotent e ∈ E such that x = xe. Since

xy = x(ey) ∈ J it follows that

J = Je ≥ Jey ≥ Jx(ey) = Jxy = J

by Lemma 1.12, and so ey ∈ J . Furthermore, ey ∈ E〈X ′〉 ∩ J ⊆ T . Since x, ey ∈ T ∩ J ,

xy ∈ J , and (T ∩ J) ∪ {0} is a subsemigroup of J∗, it follows that xy = x(ey) ∈ T ∩ J . Finally

suppose that yx ∈ J . Since J is a regular J -class, there exists an idempotent f ∈ T ∩ J
such that f(yx) = yx. By definition of E, there exists e ∈ E such that fe = f , and so

yx = f(yx) = (fe)yx = f(ey)x. Note that ey ∈ J since

J = Je ≥ Jey ≥ Jfeyx = Jyx = J,
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and ey ∈ T since E〈X ′〉 ∩ J ⊆ T . Finally, f, ey, x ∈ T ∩ J and (T ∩ J)∪ {0} is a subsemigroup

of J∗, and so yx = f(ey)x ∈ T .

Given a description of the subsemigroups of S that contain S\J and intersect every H -class

of J non-trivially, it is straightforward to classify those subsemigroups that are maximal. We

do this in the following proposition, which is the main result of this section.

Proposition 4.48 (Maximal subsemigroups of type (M1)). Let S be a finite semigroup with

generating set X, let J be a regular J -class of S, and let X ′ = {x ∈ X : J < Jx}. Let T be

any subset of S that intersects every H -class of S non-trivially and contains S \J , and let E be

a set consisting of one idempotent from each L -class of J . Then T is a maximal subsemigroup

of S if and only if (T ∩ J) ∪ {0} is a maximal subsemigroup of J∗ containing EX ′ ∩ J .

Proof. (⇒) Let U be a subset of J such that U∪{0} is a maximal subsemigroup of J∗ containing

(T ∩ J) ∪ {0}. Then by Lemma 4.47, the set M = (S \ J) ∪ U is a proper subsemigroup of S

containing T . Since T is maximal, it follows that T = M , and U = T ∩ J .

(⇐) Let M be a maximal subsemigroup of S containing T . By Lemma 4.47, (M∩J)∪{0} is a

proper subsemigroup of J∗ containing (T ∩J)∪{0}. Since the latter is a maximal subsemigroup

of J∗, it follows that T ∩ J = M ∩ J , and hence T = M .

Note that results dual to Lemma 4.47 and Proposition 4.48 hold if we replace EX ′ by X ′F ,

where F is a set consisting of one idempotent from each R-class of J .

We may use Proposition 4.48 to describe an algorithm to calculate the maximal subsemi-

groups of type (M1) arising from J . We first compute the set EX ′ ∩ J and a normalization

Ψ : J∗ −→ M 0[G; I, Λ; P ] of the principal factor of J to some regular Rees 0-matrix semi-

group over a group; see Section 3.2.1. We then search for the maximal subsemigroups of

M 0[G; I, Λ; P ] that contain (EX ′ ∩ J)Ψ and have type (R6). Finding such maximal subsemi-

groups was the topic of Section 4.3.6 and Algorithm 4.44. Therefore, Algorithm 4.44 can be

used to compute the maximal subsemigroups of S that arise from J and have type (M1).

A generating set for any such maximal subsemigroup is given by a generating set for

〈S \ J〉, along with the preimage under Ψ of a generating set for the corresponding maxi-

mal subsemigroup of M 0[G; I, Λ; P ] that has type (R6) (minus the element 0, if present). A

generating set for 〈S \ J〉 is given by the union of X \ J with a generating set for the ideal

{x ∈ S : Jx < J}. Generating sets for maximal subsemigroups of type (R6) can be constructed

by using Lemma 4.25.

In Chapter 5, we describe the maximal subsemigroups of some particular families of finite

monoids. In several of these cases, the most difficult step is the calculation of the maximal sub-

semigroups that have type (M1). We present results tailored to these monoids in Section 4.5.2.

However, in many instances in Chapter 5, the following lemma can be used to show that no

maximal subsemigroups of type (M1) arise. Given the Green’s structure of a semigroup, it is

straightforward to check whether a given J -class is H -trivial. Therefore, part (a) of the lemma

can be also be used more widely when searching for maximal subsemigroups of type (M1), in

order to avoid unnecessary computation.

Lemma 4.49. Let S be a finite semigroup, let J be a J -class of S. If

(a) each H -class of J is trivial, or

(b) J ⊆ 〈(S \ J) ∪ E(J)〉,

then there are no maximal subsemigroups of S of type (M1) that arise from J .
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Proof. Let T be an arbitrary subsemigroup of S that contains S \ J and intersects each H -

class of J non-trivially. If T is a maximal subsemigroup, then in particular, T is a proper

subsemigroup. Thus, it suffices in each case to prove that T contains J . By definition, T

contains an element from each H -class of J . If each such H -class is trivial, then T contains J ,

proving part (a). By Lemma 1.14, T contains every idempotent of S, and so T contains E(J).

Therefore, if 〈(S \ J) ∪ E(J)〉 contains J , then T contains J , proving part (b).

4.4.2 Graphs and digraphs for regular J -classes

In this section, we introduce two graphs and two digraphs that can be constructed from any

regular J -class in a finite semigroup. Throughout this section, we suppose that J is a regular

J -class of the finite semigroup S = 〈X〉. Recall that X ′ ⊆ X consists of those generators x ∈ X
such that Jx > J . We use the graphs associated with J to characterise the subsemigroups of S

that arise from the exclusion of elements in J , and are unions of H -classes of S.

In Sections 4.4.3–4.4.5, we build on this characterisation to give necessary and sufficient

conditions, in terms of the properties of the associated graphs, for a subset of S containing

S \ J to be a maximal subsemigroup of type (M2), (M3), (M4), or (M5). This formulation in

terms of graphs makes the problem of computing maximal subsemigroups of these types more

tractable. In particular, we can take advantage of several well-known and mature algorithms

from graph theory, such as those for computing strongly connected components in a digraph

(see [55,121] or [117, Section 4.2]) and finding all maximal cliques in a graph [15,103,125].

The following digraphs are central to the results in the forthcoming sections. We define

ΓL (S, J) to be digraph formed by removing the loops from the quotient of the digraph(
J/L ,

{
(La, Lb) ∈ J/L × J/L : Lax = Lb for some x ∈ X ′

})
(4.50)

by its strongly connected components. Note in particular that ΓL (S, J) is an acyclic digraph.

We define a colouring π of ΓL (S, J) so that any vertex V containing an L -class that has

non-empty intersection with 〈X ′〉 has π(V ) = 1, and every other vertex U in ΓL (S, J) has

π(U) = 0. The digraph ΓR(S, J) is defined dually.

Open Problem 4.51. If AL and AR are arbitrary finite acyclic digraphs, does there exist a

finite semigroup S with a regular J -class J such that ΓL (S, J) ∼= AL and ΓR(S, J) ∼= AR?

We require two additional graphs. The first graph, ∆(S, J), is isomorphic to a quotient of

the Graham-Houghton graph of the principal factor of J . We define ∆(S, J) to have vertex set

equal to the disjoint union of the vertices of ΓL (S, J) and ΓR(S, J). In the special case that J

consists of a single H -class, we follow the convention that the strongly connected component

of L -classes {J} and the strongly connected component of R-classes {J} are distinct, so that

∆(S, J) contains two vertices. The edges of ∆(S, J) are defined as follows. If U is a vertex in

ΓL (S, J) and V is a vertex in ΓR(S, J), then {U, V } is an edge of ∆(S, J) if and only if the

intersection of some L -class in U with an R-class in V is a group H -class.

The second graph, Θ(S, J), has the same vertex set as ∆(S, J), and it contains the edge

{U, V } if and only if there is an element of 〈X ′〉 in the intersection of some L -class in U with an

R-class in V , or vice versa. Note that the colourings of ΓL (S, J) and ΓR(S, J) can be deduced

from the edges of Θ(S, J). The graphs ∆(S, J) and Θ(S, J) are bipartite, since the vertices in

ΓL (S, J) and the vertices in ΓR(S, J) form maximal independent subsets whose union is the

whole vertex set.
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Example 4.52. Define S to be the transformation semigroup of degree 7 generated by the set

X, which consists of the following transformations:

x1 =

(
1 2 3 4 5 6 7

1 3 4 1 5 5 5

)
, x2 =

(
1 2 3 4 5 6 7

1 4 1 3 5 5 5

)
,

x3 =

(
1 2 3 4 5 6 7

3 3 1 2 5 5 5

)
, x4 =

(
1 2 3 4 5 6 7

4 4 2 3 5 5 5

)
,

x5 =

(
1 2 3 4 5 6 7

1 1 3 4 5 5 6

)
, x6 =

(
1 2 3 4 5 6 7

1 2 2 4 5 6 7

)
,

x7 =

(
1 2 3 4 5 6 7

1 4 3 4 5 6 7

)
, x8 =

(
1 2 3 4 5 6 7

1 2 4 4 5 6 7

)
.

Let J denote the J -class Jx1
. The following calculations were performed with the GAP [58]

package Semigroups [101]. The J -class J is regular, and contains the generators x1, x2, x3,

and x4. The remaining generators are contained in J -classes that are greater than J in the

J -class partial order, and so X ′ = {x5, x6, x7, x8}. The sets of L - and R-classes of J are

J/L = {Lx1
, Lx3

, Lx4
, Lx1x6

} and J/R = {Rx1
, Rx2

, Rx3
, Rx8x2

, Rx6x2
, Rx7x3

}.

There are four strongly connected components of L -classes in J , each of which consists of a

single L -class. Hence the digraph ΓL (S, J) has four vertices, one for each strongly connected

component. There are also four strongly connected components of R-classes, two of which are

singletons, and two of which are not; these strongly connected components form the vertices of

ΓR(S, J). See Figure 4.53 for a description of the edges of ΓL (S, J) and ΓR(S, J).

{Lx4
}{Lx3

}

{Lx1
}

{Lx1x6
}

{Rx1
}

{Rx2
}

{Rx8x2
, Rx6x2

}

{Rx3
, Rx7x3

}

Figure 4.53: The digraphs ΓL (S, J), left, and ΓR(S, J), right, from Example 4.52.

Since ΓL (S, J) and ΓR(S, J) each have four vertices, it follows that the bipartite graphs

∆(S, J) and Θ(S, J) each have eight vertices. These graphs are shown in Figures 4.54 and 4.55.

The set of edges of ∆(S, J) was determined by computation of the idempotents in J . There

are four elements in 〈X ′〉∩J : x2
5 ∈ Lx1

∩Rx3
, x4x1x6 ∈ Lx1x6

∩Rx3
, x7x4x1x6 ∈ Lx1x6

∩Rx7x3
,

and x7x4x1 ∈ Lx1 ∩Rx7x3 . The L - and R-classes of these elements determine the edges in the

graph Θ(S, J), along with the colours of the vertices in ΓL (S, J) and ΓR(S, J). The vertices of

ΓL (S, J) with colour 1 are {Lx1
} and {Lx1x6

}, whilst the only vertex of ΓR(S, J) with colour

1 is {Rx3
, Rx7x3

}.

When the semigroup S and the J -class J is obvious from the surrounding context, we

abbreviate the names of the digraphs ΓL (S, J) and ΓR(S, J), and the graphs ∆(S, J) and

Θ(S, J), to ΓL , ΓR, ∆, and Θ, respectively.
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{Lx1
} {Lx3

} {Lx4
} {Lx1x6

}

{Rx1} {Rx2} {Rx8x2 , Rx6x2} {Rx3 , Rx7x3}

Figure 4.54: The graph ∆(S, J) from Example 4.52.

{Lx1} {Lx3} {Lx4} {Lx1x6}

{Rx1
} {Rx2

} {Rx8x2
, Rx6x2

} {Rx3
, Rx7x3

}

Figure 4.55: The graph Θ(S, J) from Example 4.52.

The digraphs ΓL and ΓR and the graphs ∆ and Θ can be constructed by applying graph

algorithms to the left and right Cayley digraphs of S, with respect to its generating set X. The

time complexity of finding ΓL , ΓR, ∆, and Θ by using the Cayley digraphs of S is O(|S||X|). As

discussed in Section 1.4, this is the same as the time complexity of determining the left and right

Cayley digraphs of S themselves using the Froidure-Pin Algorithm [54]. However, in practice,

finding ΓL , ΓR, ∆, and Θ using the Cayley digraphs of S is much quicker than determining the

Cayley digraphs themselves. For certain types of semigroups, such as a semigroup generated

by a set of transformations, the J -class itself and the vertices and edges of ΓL , ΓR, and ∆ can

be determined without finding the Cayley digraphs of S and without necessarily exhaustively

enumerating the semigroup; see [37] and see Section 1.4.3 for further details. In what follows,

we assume that ΓL , ΓR, ∆, and Θ, and the colourings of ΓL and ΓR, are known a priori.

Note that the definitions of ΓL and ΓR are given in terms of the subset X ′ of the generating

set X. This suggests that the descriptions of these digraphs vary according to the chosen

generating set for S. However, for our purposes, these variations are irrelevant.

By Green’s Lemma [Lemma 1.11] and Lemma 1.10, if La and Lb are distinct L -classes in

J , then Lb is reachable from La in the digraph in (4.50) if and only if sx ∈ Lb for some s ∈ La
and x ∈ 〈S \ J〉; see Lemma 4.56 for the proof of a closely related statement. In particular, it

follows that the strongly connected components of the digraph in (4.50) do not depend on the

chosen generating set for S, and so neither does the description of the vertices of ΓL . Similarly,

the description of the vertices of ΓR does not depend on X, and consequently the same is true

of ∆ and Θ. The definition of the edges of ∆ is certainly independent of the generating set.

Since 〈S \J〉∩J = 〈X ′〉∩J , it follows that the description of the edges of Θ, and the colourings

of ΓL and ΓR, are independent of X, too.

On the other hand, in general, the descriptions of the edges of ΓL and ΓR depend on X.

However, in the forthcoming results, we are only concerned with whether a certain vertex is

reachable from another in ΓL or ΓR, and in particular, whether certain vertices are sources or

sinks. The following lemma shows that this is independent of the chosen generating set.
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Lemma 4.56. The following hold.

(i) The vertex containing Lb ∈ J/L in ΓL (S, J) is reachable from the vertex containing La
if and only if La = Lb, or there exists s ∈ La and x ∈ 〈S \ J〉 such that sx ∈ Lb.

(ii) The vertex containing Rb ∈ J/R in ΓR(S, J) is reachable from the vertex containing Ra
if and only if Ra = Rb, or there exists s ∈ Ra and x ∈ 〈S \ J〉 such that xs ∈ Rb.

Proof. We prove only (i), since (ii) is dual.

(⇒) Suppose that La 6= Lb. It follows that Lb is reachable from La in the digraph (4.50).

Therefore, there exists a path (La = L1, . . . , Ln = Lb) in this digraph from La to Lb. By defini-

tion of (4.50), there exists a sequence of generators x1, . . . , xn−1 ∈ X ′ such that Lax1 · · ·xn−1 =

Lb. In particular, if s ∈ La is arbitrary and x = x1 · · ·xn−1 ∈ 〈S \ J〉, then sx ∈ Lb.
(⇐) If La = Lb, then there is nothing to prove. Suppose there exists s ∈ La and x ∈ 〈S \J〉

such that sx ∈ Lb. Let x = x1 · · ·xn be a factorization of x over S \ J . Note that

J = Jsx ≤ Jx ≤ Jxi
for each i ∈ {1, . . . , n}

by Lemma 1.12, and xi /∈ J . In particular, xi ∈ X ′ for each i. By Lemma 1.10, s R sx1 · · ·xi
for each i ∈ {1, . . . , n}, and by Green’s Lemma,

(La, Lax1, · · · , Lax1 · · ·xn = Lb)

is a path in (4.50) from La to Lb. The result follows.

We may use the digraphs ΓL and ΓR to understand the subsemigroups of S that contain

S \ J and that are unions of H -classes of S. By Green’s Lemma and Lemma 1.10, if T is a

subsemigroup of S that contains S \ J , then T ∩ J contains an L -class L if and only if T ∩ J
contains every L -class in every vertex of ΓL that is reachable from the vertex containing L.

The analogous statement holds for R-classes. Furthermore, T ∩ J contains an H -class H if

and only if T ∩ J contains every H -class that is the intersection of an L -class and an R-class

that are contained in vertices that are reachable from the vertices containing the L -classes and

R-classes containing H in ΓL and ΓR, respectively. This observation is fundamental to the

forthcoming results, and is demonstrated in the following example.

Example 4.57. Let S and J be the semigroup and the J -class, respectively, from Exam-

ple 4.52. Suppose that T is a subsemigroup of S such that S \T ⊆ J . By analysing the digraph

ΓL , depicted in Figure 4.53, we see that if T contains the L -class Lx4 , then T also contains

the L -classes Lx1 and Lx1x6 , since the vertices containing these L -classes are reachable in

the digraph from the vertex {Lx4
}. Likewise, if T contains the R-class Rx8x2

, then by con-

sidering the digraph ΓR, depicted in Figure 4.53, we see that T also contains the R-classes

Rx6x2
, Rx3

, and Rx7x3
. If we consider these digraphs together, then we see that T contains the

H -class Lx1 ∩Rx3 if and only if T also contains the H -classes Lx1 ∩Rx7x3 , Lx1x6 ∩Rx3 , and

Lx1x6
∩Rx7x3

.

Suppose that T is a subset of S that contains S \ J , and suppose that there exist proper

subsets A ( J/L and B ( J/R such that T ∩J is the union of the Green’s classes in A and in

B. In other words, T ∩ J is a possibly empty union of L -classes and/or R-classes of J . In the

following proposition, we give necessary and sufficient conditions for T to be a subsemigroup of

S, in terms of the graphs and digraphs from this section.

Proposition 4.58. Let S be a finite semigroup, and let T be a proper subset of S such that

S \ T is contained in a regular J -class J of S. Suppose there exist proper subsets A ( J/L

and B ( J/R such that T ∩ J is the union of the Green’s classes in A and B. Then T is a

subsemigroup of S if and only if the following hold:
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(i) A and B are unions of vertices of ∆(S, J);

(ii) if U ⊆ A is a vertex of ΓL (S, J) and V is an out-neighbour of U , then V ⊆ A;

(iii) if U ⊆ B is a vertex of ΓR(S, J) and V is an out-neighbour of U , then V ⊆ B;

(iv) if {U, V } is an edge in Θ(S, J), then U ⊆ A ∪B or V ⊆ A ∪B;

(v) the vertices contained in A ∪B form an independent subset of ∆(S, J).

Proof. (⇒) As mentioned after Lemma 4.56, if T ∩ J contains an L -class L, then T ∩ J
contains every L -class in every vertex of ΓL that is reachable from the vertex containing L.

An analogous statement holds for R-classes and ΓR. Parts (i), (ii), and (iii) follow immediately

from these observations.

If {U, V } is an edge in Θ, then by definition, there exists an element x ∈ 〈X ′〉 in the

intersection of some L -class Lx in U and some R-class Rx in V . By Lemma 4.46, since T is

a subsemigroup, x ∈ T and so either Lx ∈ A and U is contained in A; or Rx ∈ B and V is

contained in B. Therefore part (iv) holds.

If A = ∅ or B = ∅, then part (v) holds by the definition of ∆, so suppose otherwise. In

order to reach a contradiction, suppose that A ∪B does not form an independent subset of ∆.

Therefore, there exists an L -class L ∈ A and an R-class R ∈ B such that L ∩ R is a group.

Since A and B are proper subsets of Green’s classes of J , we may choose x ∈ L such that

Rx /∈ B, and we may choose y ∈ R such that Ly /∈ A. Note that x, y ∈ T . By Lemma 1.15,

xy ∈ Rx ∩ Ly. But Lxy = Ly /∈ A and Rxy = Rx /∈ B, and so xy /∈ T , contradicting the

assumption that T is a subsemigroup. Therefore (v) holds.

(⇐) It suffices to show that T satisfies the conditions (i), (ii), and (iii) of Lemma 4.46.

To verify that condition (i) of Lemma 4.46 holds, let x ∈ 〈X ′〉∩J . Then there exists an edge

in Θ between the vertex U containing Lx and the vertex V containing Rx. By assumption (iv)

of the proposition, either U ⊆ A or V ⊆ B (or both). In either case, it follows that x ∈ T .

For condition (ii), suppose that x, y ∈ T ∩J and xy ∈ J . By Lemma 1.10, xy ∈ Rx∩Ly, and

so the H -class Lx ∩Ry is a group by Lemma 1.15. By assumption (v), the vertices contained

in A ∪ B form an independent subset of ∆. Hence either Lx /∈ A or Ry /∈ B. If Ry /∈ B, then,

since T ∩ J is a union of L - and R-classes of J and y ∈ T ∩ J , we conclude that Ly ∈ A. By

Lemma 1.10, Lxy = Ly ∈ A, and xy ∈ T . If Lx /∈ A, then the proof is analogous.

To show that the final condition of Lemma 4.46 holds, let x ∈ T ∩ J and y ∈ 〈X ′〉. Since

x ∈ T ∩ J , either Lx ∈ A or Rx ∈ B. Suppose that xy ∈ J . In this case, note that Green’s

Lemma and Lemma 1.10 imply that Lxy = Lyx, and Lemma 1.10 implies that Rxy = Rx. If

Lx ∈ A, then the vertex containing Lxy is reachable in ΓL from the vertex containing Lx, and

so Lxy ∈ A and xy ∈ T . Otherwise, Rx ∈ B, and so Rxy = Rx ∈ B and xy ∈ T . The proof

that yx ∈ J implies yx ∈ T is similar.

Note that if the subset T from the statement of Proposition 4.58 is a maximal subsemigroup

of S, then T has type (M2) when A 6= ∅ and B 6= ∅; T has type (M3) when A 6= ∅ and

B = ∅; T has type (M4) when A = ∅ and B 6= ∅; and T has type (M5) when A = ∅
and B = ∅. We use Proposition 4.58 in the subsequent sections to obtain descriptions of the

maximal subsemigroups of S that have types (M2)–(M5).

4.4.3 Maximal subsemigroups that are unions of L - and

R-classes: (M2)

In this section, we discuss how to compute maximal subsemigroups that have type (M2), build-

ing on the work of Section 4.4.2. Throughout this section, we assume that J is a regular J -class
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of the finite semigroup S. The following proposition, which is a slight adaptation of Proposi-

tion 4.58, gives necessary and sufficient conditions for the existence of a maximal subsemigroup

of type (M2).

Proposition 4.59 (Maximal subsemigroups of type (M2)). Let S be a finite semigroup, and

let T be a proper subset of S such that S \T is contained in a regular J -class J of S. Suppose

that there exist proper non-empty subsets A ( J/L and B ( J/R such that T ∩ J is the union

of the Green’s classes in A and B. Then T is a maximal subsemigroup of S if and only if

conditions (i)–(v) of Proposition 4.58 hold, and the independent subset of ∆(S, J) formed by

the vertices contained in A ∪B is maximal in ∆(S, J).

Proof. (⇒) Let φ : J∗ −→ M 0[G; I, Λ; P ] be an isomorphism from the principal factor of J

to a Rees 0-matrix semigroup over a group. We may assume without loss of generality that

I = J/R and Λ = J/L , and that Lφ = I ×G× {L} and Rφ = {R} ×G× Λ for any L -class

L in J and for any R-class R in J . Therefore

(M ∩ J)φ = (B ×G× Λ) ∪ (I ×G×A) = (I ×G× Λ) \ ((I \B)×G× (Λ \A)).

By Proposition 4.10, T is a maximal subsemigroup of type (M2), and (M ∩ J)φ ∪ {0} is a

maximal subsemigroup of M 0[G; I, Λ; P ] that has type (R5). By Proposition 4.11, A ∪ B is

a maximal independent subset of the Graham-Houghton graph of M 0[G; I, Λ; P ]. Recall that

∆ is a quotient of this graph. Therefore, the vertices of ∆ contained in A ∪B form a maximal

independent subset of ∆, as required. The remaining conditions hold by Proposition 4.58.

(⇐) By Proposition 4.58, it remains to prove that the subsemigroup T is maximal in S. Let

M be a maximal subsemigroup of S that contains T . By the assumption that T ∩ J is a union

of non-empty sets of L - and R-classes, M has type (M2). Let A′ and B′ be the sets of L - and

R-classes of J , respectively, that are contained in M . Note that A ⊆ A′ and B ⊆ B′ since M

contains T , and so A ∪ B ⊆ A′ ∪ B′. By the forward implication, the vertices of ∆ in A′ ∪ B′
form a maximal independent subset of ∆. But the vertices of ∆ in A ∪ B form a maximal

independent subset of ∆ by assumption. Therefore A = A′ and B = B′, and so T = M , and T

is maximal in S.

We use Proposition 4.59 to describe an algorithm for computing the maximal subsemigroups

of S that have type (M2) and that arise from J .

The first step is to determine the maximal independent subsets of the bipartite graph ∆. As

discussed in Section 4.3.3, this is equivalent to finding the maximal cliques in the complement of

∆. The Bron-Kerbosch Algorithm [15], which is implemented by the author in the Digraphs

package [10] for GAP [58], is a recursive algorithm for finding the maximal cliques in any

finite graph. Roughly speaking, the algorithm begins with a singleton clique, and recursively

attempts to extend the given clique to a larger clique by adding another vertex.

We may use Proposition 4.58 to help to guide this recursion. By Proposition 4.58(ii) and (iii),

we are only interested in those cliques K with following property: if U ∈ K and V is an out-

neighbour of U in ΓL or ΓR, then V ∈ K. As such, the search tree can be pruned to exclude any

branch starting at a clique containing a vertex U whose out-neighbours in ΓL and ΓR do not

extend the given clique, or where we have already discovered every maximal clique containing

one of these out-neighbours. By executing the Bron-Kerbosch Algorithm in this modified way,

we produce the maximal independent subsets of ∆, each of which corresponds to sets of Green’s

classes A ⊆ J/L and B ⊆ J/R that satisfy Proposition 4.58(i)–(iii) and (v).

The second step is then to check which of these sets A and B satisfy part (iv) of Proposi-

tion 4.58, which is routine. Given proper non-empty sets A and B satisfying all the conditions

in Proposition 4.58, the final step is to specify a generating set for the corresponding maximal

subsemigroup; see Proposition 4.61 for more details about this step.
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Example 4.60. Let S be the transformation semigroup of degree 7, and let J be the J -class

of S, defined in Example 4.52. Consider the graph ∆, which is shown in Figure 4.54.

There are seven maximal independent subsets of ∆ in total. Two of these correspond to

all of the vertices of ΓL and all of the vertices of ΓR, respectively. Three further maximal

independent subsets correspond to sets A and B of L -classes and R-classes that either do not

satisfy Proposition 4.58(ii) or do not satisfy Proposition 4.58(iii). For example, the maximal

independent subset Q = {{Lx1}, {Rx1}, {Rx2}} does not satisfy Proposition 4.58(ii), since

{Lx1x6
} is an out-neighbour of {Lx1

} in ΓL , but {Lx1x6
} /∈ Q; see Figure 4.53. Furthermore,

Q does not satisfy Proposition 4.58(iii), since {Rx8x2
, Rx6x2

} is an out-neighbour of {Rx2
} in

ΓR that is not contained in Q.

The remaining two maximal independent subsets of ∆ correspond to non-empty sets A and

B that satisfy Proposition 4.58(i)–(iii). The first of these is {{Lx1
}, {Lx1x6

}, {Rx1
}}, which

corresponds to the sets A1 = {Lx1 , Lx1x6} ⊆ J/L and B1 = {Rx1} ⊆ J/R; the second

corresponds to the sets A2 = {Lx1x6} and B2 = {Rx1 , Rx3 , Rx7x3}.
It remains to test whether these subsets satisfy Proposition 4.58(iv). There are two edges

in the graph Θ, as shown in Figure 4.55:

{{Lx1
}, {Rx3

, Rx7x3
}}, and {{Lx1x6

}, {Rx3
, Rx7x3

}}.

For the first edge, {Lx1
} ⊆ A1 and {Rx3

, Rx7x3
} ⊆ B2; for the second edge, {Lx1x6

} ⊆ A1

and {Rx3 , Rx7x3} ⊆ B2. In other words, the sets A1 and B1, and the sets A2 and B2, satisfy

Proposition 4.58(iv). Therefore, there are two maximal subsemigroups of S of type (M2) arising

from J : the set consisting of S \ J along with the union of the L -classes in A1 and the union

of the R-classes in B1, and the set consisting of S \ J along with the union of the L -classes in

A2 and the union of the R-classes in B2.

Proposition 4.61. Let T be a proper subsemigroup of a finite semigroup S = 〈X〉 that arises

from a regular J -class J of S. Suppose that there exist non-empty proper subsets A ( J/L

and B ( J/R such that T ∩ J is the union of the Green’s classes in A and in B. Then T is

generated by any set consisting of:

(i) X \ J ;

(ii) a semigroup generating set for the ideal {x ∈ S : Jx < J} of S;

(iii) for each source U in ΓL (S, J) contained in A, an element t such that Rt ∈ B and Lt ∈ U ;

(iv) a generating set for a group H -class Hx, where Lx ∈ A;

(v) for each source V in the induced subdigraph of ΓR(S, J) on the complement of B, an

element z ∈ Lx such that Rz ∈ V ; and

(vi) for each source U in the induced subdigraph of ΓL (S, J) on A, an element y ∈ Rx such

that Ly ∈ U ;

(vii) a generating set for a group H -class Hx′ , where Rx′ ∈ B;

(viii) for each source U ′ in the induced subdigraph of ΓR(S, J) on B, an element y′ ∈ Lx′ such

that Ry′ ∈ U ′;

(ix) for each source V ′ in the induced subdigraph of ΓL (S, J) on the complement of A, an

element z′ ∈ Rx′ such that Lz′ ∈ V ′.
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Proof. Let Y be a set of the kind described in the proposition. Clearly every element of Y is

contained in T , and so 〈Y 〉 is a subsemigroup of T . Furthermore, the inclusion of the generators

in (i) and (ii) implies that 〈Y 〉 contains S \ J . To show that T ≤ 〈Y 〉, let a ∈ T ∩ J . By the

definition of T , either La ∈ A or Ra ∈ B.

First suppose that La ∈ A and Ra /∈ B. The vertex of ΓL containing La is reachable from

some vertex U that is a source of the induced subdigraph of ΓL on A. Hence there exists an

element y ∈ Y of type (vi) such that Ly ∈ U and y R x, where x is an element in the group

H -class from part (iv). By Lemma 4.56, either La = Ly, or there exists r′ ∈ 〈S \ J〉 ⊆ 〈Y 〉
such that yr′ ∈ La and, by Lemma 1.10, yr′ ∈ Ry = Rx. In either case, there exists an element

r ∈ 〈Y 〉 such that r R x and rL a. Likewise, by using a generator of type (v), there exists an

element s ∈ 〈Y 〉 such that s L x and s R a. Since Hx is a group, it follows by Green’s Lemma

that a ∈ Ha = sHxr ⊆ 〈Y 〉. If La /∈ A and Ra ∈ B, then the proof that a ∈ 〈Y 〉 is similar.

For the final case, suppose that La ∈ A and Ra ∈ B. The vertex of ΓL containing La is

reachable from some vertex U that is a source of ΓL . If U ⊆ A, then by (iii) there exists an

element t ∈ Y such that Rt ∈ B and Lt ∈ U . If U 6⊆ A, then by the previous paragraph, every

element t′ such that Rt′ ∈ B and Lt′ /∈ A is contained in 〈Y 〉. In either case, there exists an

element t ∈ 〈Y 〉 such that Rt ∈ B and Lt ∈ U .

If a L t, then t ∈ La ∩ Rt. Otherwise, by Lemmas 4.56 and 1.10, there exists an element

r′ ∈ 〈S \ J〉 ⊆ 〈Y 〉 such that tr′ ∈ La ∩ Rt. In either case, there exists r ∈ 〈Y 〉 such that

r ∈ La ∩Rt. By the regularity of J , there exists an idempotent e ∈ Rt, and since Re = Rt ∈ B
and A∪B corresponds to an independent subset of ∆, it follows that Le /∈ A. By the arguments

of the second paragraph, the H -classes He and Hs = Le∩Ra are both contained in 〈Y 〉. Since

He is a group, it follows by Green’s Lemma and Lemma 1.15 that a ∈ Ha = sHer ⊆ 〈Y 〉.
Note that if La ∈ A and Ra ∈ B, and there exists an idempotent e ∈ J such that Le /∈ A

and Re /∈ B, then a ∈ Ha = (La∩Re)(Le∩Ra). Therefore the generators in (iii) are redundant

in this case, which occurs if and only if the complement of A∪B in (J/L )∪ (J/R) corresponds

to a non-independent subset of ∆.

4.4.4 Maximal subsemigroups that are unions of L - or

R-classes: (M3)–(M4)

In this section, we build on the results of Sections 4.4.2 and 4.4.3 in order to describe the

subsemigroups, and therefore the maximal subsemigroups, that can be obtained by the removal

of either L -classes or R-classes from a regular J -class of a finite semigroup. In other words,

we describe how to compute maximal subsemigroups of types (M3) and (M4).

Consider Proposition 4.58. If the set of R-classes B in the statement of this proposition is

empty, then the subset T is a union of L -classes of the semigroup, and the criteria for T to be

a subsemigroup can be simplified. In more detail, conditions (iii) and (v) of Proposition 4.58

are immediately satisfied, as is the second part of condition (i). Furthermore, the reference to

the set B in condition (iv) can be removed. By performing these simplifications, we obtain the

following corollary to Proposition 4.58.

Corollary 4.62. Let S be a finite semigroup with a regular J -class J , and let T be a subset

of S that contains S \ J . Suppose there exists a proper subset A ⊆ J/L such that T ∩ J is the

union of the L -classes in A. Then T is a subsemigroup of S if and only if A is a union of

vertices of ΓL (S, J), including every vertex with colour 1, and Proposition 4.58(ii) holds.

We use this corollary in the proof of the following proposition.

Proposition 4.63 (Maximal subsemigroups of type (M3)). Let S be a finite semigroup with a

regular J -class J , and let T be a subset of S that contains S \J . Suppose there exists a proper



126 Computational techniques in finite semigroup theory

non-empty subset A ( J/L such that T ∩ J is the union of the L -classes in A. Then T is

a maximal subsemigroup of S if and only if the complement of A is a source of ΓL (S, J) with

colour 0, and there is no maximal subsemigroup of S of type (M2) whose corresponding subset

of J/L is A.

Proof. (⇒) By Corollary 4.62, A is a union of vertices of ΓL . Since ΓL is finite and acyclic, it

follows that any induced subdigraph of ΓL is finite and acyclic. Therefore, there exists a sink

in the induced subdigraph of ΓL on the vertices not contained in A. Note that this vertex is

not necessarily a sink in ΓL itself. Let A′ be the subset of J/L formed from the union of A

with the set of L -classes contained in this sink, and define T ′ to be the subset of S such that

S \ T ′ ⊆ J and T ′ ∩ J is the union of the L -classes in A′. Then either A′ = J/L , or, by

Corollary 4.62, T ′ is a proper subsemigroup of S that properly contains T . Since T is maximal,

it follows that A′ = J/L , and so the complement of A forms a single vertex of ΓL . This vertex

is a source of ΓL by condition (ii) of Proposition 4.58, and has colour 0 by Corollary 4.62.

Since T is a maximal subsemigroup of S of type (M3), it is not contained in a maximal

subsemigroup of S of type (M2).

(⇐) Let M be a maximal subsemigroup of S that contains T . Since T contains a union

of L -classes of J , M has type (M2) or (M3). In either case, it follows that M contains the

L -classes in A. However, A lacks only one vertex of ΓL , and since a maximal subsemigroup

is a proper subsemigroup, it follows that M contains no additional L -classes. Such a maximal

subsemigroup of type (M2) does not exist by assumption, and so M = T has type (M3).

Analogues of Corollary 4.62 and Proposition 4.63 hold which concern subsemigroups that

are unions of R-classes of a finite semigroup. For completeness, we state the analogue of

Proposition 4.63, which describes the maximal subsemigroups of type (M4).

Proposition 4.64 (Maximal subsemigroups of type (M4)). Let S be a finite semigroup with a

regular J -class J , and let T be a subset of S that contains S \J . Suppose there exists a proper

non-empty subset B ( J/R such that T ∩ J is the union of the R-classes in B. Then T is a

maximal subsemigroup of S if and only if the complement of B is a source of ΓR(S, J) with

colour 0, and there is no maximal subsemigroup of S of type (M2) whose corresponding subset

of J/R is B.

We describe an algorithm that uses Proposition 4.63 to compute the maximal subsemigroups

of type (M3) arising from a regular J -class J of a finite semigroup S. An analogous algorithm,

using Proposition 4.64, permits the computation of maximal subsemigroups of type (M4). The

first step is to compute the maximal subsemigroups of S of type (M2) that arise from J , as

described in Section 4.4.3. In doing so, we record the sets of L -classes and R-classes of J that

correspond to each maximal subsemigroup of type (M2). The second step is to search for the

sources of the digraph ΓL (S, J) with colour 0. For each source, we test whether its complement

occurs as the set of L -classes of some maximal subsemigroup of type (M2), and discard if so. By

Proposition 4.63, the complements of the remaining sources define the maximal subsemigroups

of S that arise from J and have type (M3). The final step is to specify a generating set for each

such maximal subsemigroup; these generating sets can be constructed by using Proposition 4.66.

Example 4.65. Let S and J be the transformation semigroup and the J -class, respectively,

from Example 4.52. The digraph ΓL , depicted in Figure 4.53, contains two sources with colour

0, {Lx3
} and {Lx4

}. The complements of these vertices in J/L are A1 = {Lx1
, Lx4

, Lx1x6
}

and A2 = {Lx1
, Lx3

, Lx1x6
}, respectively. In Example 4.60, we found that there is no maximal

subsemigroup of S of type (M2) whose set of L -classes is equal toA1 orA2. By Proposition 4.63,

there are two maximal subsemigroups of S of type (M3) arising from J : the set consisting of



Chapter 4: Computing maximal subsemigroups of a finite semigroup 127

S \J and the union of the L -classes in A1, and the set consisting of S \J and the union of the

L -classes in A2.

In ΓR, the sources are {Rx1
} and {Rx2

}, and they have colour 0. In Example 4.60, we found

that there is no maximal subsemigroup of S of type (M2) whose set of R-classes is equal to

the complement of either of these sources. By Proposition 4.64, S \ Rx1 and S \ Rx2 are the

maximal subsemigroups of S of type (M4) that arise from J .

The following proposition can be used to describe generating sets for maximal subsemi-

groups of type (M3). Generating sets for maximal subsemigroups of type (M4) are obtained

analogously. The proof of Proposition 4.66 is similar to, but simpler than, the proof of Propo-

sition 4.61, and is omitted.

Proposition 4.66. Let T be a subsemigroup of a finite semigroup S = 〈X〉 such that S \ T
is contained in a regular J -class J of S. Suppose that there exists a non-empty proper subset

A ( J/L such that T ∩ J is the union of the L -classes in A. Then T is generated by any set

consisting of:

(i) X \ J ;

(ii) a semigroup generating set for the ideal {x ∈ S : Jx < J} of S;

(iii) a generating set for a group H -class Hx, where Lx ∈ A;

(iv) for each source U in the induced subdigraph of ΓL (S, J) on A, an element y ∈ Rx such

that Ly ∈ U ; and

(v) for every source V in ΓR(S, J), an element z ∈ Lx such that Rz ∈ V .

4.4.5 Maximal subsemigroups by removing a J -class: (M5)

In this section, we discuss how to compute maximal subsemigroups of type (M5), which are

formed by removing a J -class from a finite semigroup. Recall that J is an arbitrary J -class

of the finite semigroup S = 〈X〉, and that X ′ = {x ∈ X : J < Jx}.
If the set of L -classes A and the set of R-classes B in the statement of Proposition 4.58 are

both empty, then conditions (i)–(iii) and (v) of Proposition 4.58 are vacuously satisfied, which

leaves only condition (iv). Thereby, we obtain the following corollary.

Corollary 4.67. Suppose that J is regular. Then the subset S \ J is a subsemigroup of S if

and only if the graph Θ(S, J) has no edges.

As mentioned previously, the existence of a maximal subsemigroup of type (M5) arising

from J precludes the existence of maximal subsemigroups of types (M1)–(M4) arising from J ,

since any of these kinds of maximal subsemigroups properly contains the set S \ J . Therefore,

S \ J is a maximal subsemigroup of S if and only if S \ J is a subsemigroup, and no maximal

subsemigroups of types (M1)–(M4) arise from J . Alternatively, S\J is a maximal subsemigroup

if and only if at least one maximal subsemigroup arises from J , but no maximal subsemigroups

of types (M1)–(M4) arise from J . We use the following lemma to determine whether at least

one maximal subsemigroup arises from J .

Lemma 4.68. The following are equivalent:

(i) Some proper subsemigroup of S contains S \ J .

(ii) Some maximal subsemigroup of S arises from J .
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(iii) Every generating set for S has non-empty intersection with J .

(iv) 〈S \ J〉 6= S.

(v) J ∩X 6⊆ 〈X ′〉.

Proof. (i) ⇒ (ii) Let T be a proper subsemigroup of S that contains S \ J . Since J is finite,

T is contained in a maximal subsemigroup of S, which arises from J .

(ii) ⇒ (iii) Let M be a maximal subsemigroup of S arising from J , and let A be any subset of

S that is disjoint from J . Then 〈A〉 ≤ 〈S \ J〉 ≤M 6= S, and so A does not generate S.

(iii) ⇒ (iv) Since S \ J is disjoint from J , it follows that 〈S \ J〉 6= S.

(iv) ⇒ (v) (Contrapositive). Certainly S\J contains X\J , and X ′ in particular. Therefore, if

J ∩X ⊆ 〈X ′〉, then 〈S \J〉 contains X, which is a generating set for S, and so 〈S \J〉 = S.

(v) ⇒ (i) Since 〈S \ J〉 ∩ J = 〈X ′〉 ∩ J , it follows that 〈S \ J〉 does not contain J ∩ X. In

particular, 〈S \ J〉 is a proper subsemigroup of S that contains S \ J .

Note that when the generating set X is minimal with respect to containment, J ∩X ⊆ 〈X ′〉
if and only if J ∩X = ∅. Therefore condition (v) can be tested more easily in this case.

We use the following proposition, which is the main result of this section, when computing

maximal subsemigroups of type (M5).

Proposition 4.69 (Maximal subsemigroups of type (M5)). Let S = 〈X〉 be a finite semigroup,

let J be a J -class of S with representative x, let X ′ = {s ∈ X : J < Js}, and suppose that no

maximal subsemigroups of types (M1)–(M4) arise from J . The following are equivalent:

(i) S \ J is a maximal subsemigroup of S;

(ii) any of the conditions in Lemma 4.68 holds; and

(iii) x /∈ 〈X ′〉.

Furthermore, if J is regular, then the following is also equivalent to the above conditions:

(iv) the graph Θ(S, J) has no edges.

Proof. The equivalence of (i), (ii), and (iv) has been established by the above discussion and

Corollary 4.67. It remains to prove the equivalence of (iii).

(i) ⇒ (iii) Since X ′ ⊆ S \ J , it follows that 〈X ′〉 ≤ 〈S \ J〉 = S \ J . In particular, x /∈ 〈X ′〉.

(iii) ⇒ (ii) Since 〈X ′〉 ∩ J = 〈S \ J〉 ∩ J , it follows that x /∈ 〈S \ J〉. Therefore 〈S \ J〉 6= S,

i.e. Lemma 4.68(iv) holds.

By Proposition 4.10, a maximal subsemigroup arising from a non-regular J -class has

type (M5). Therefore, if J is non-regular, then the assumption concerning maximal subsemi-

groups of types (M1)–(M4) in the statement of Proposition 4.69 can be ignored.

In Algorithm 4.86, we use Proposition 4.69(ii) in combination with Lemma 4.68(v) to com-

pute the maximal subsemigroups of type (M5) that arise from a regular non-maximal J -class;

see lines 17 and 27. For a non-regular non-maximal J -class, we simply test whether Proposi-

tion 4.69(iii) holds. If S \ J is a subsemigroup of S, then a generating set for S \ J is given by

the union of X \ J with a semigroup generating set for the ideal {x ∈ S : Jx < J} of S.
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Maximal subsemigroups and minimal generating sets

Before continuing, we briefly elucidate a few connections between the minimal generating sets

of a semigroup and the maximal subsemigroups that are formed by removing a J -class.

Lemma 4.70. Let S = 〈X〉 be a semigroup, suppose that S \ J is a maximal subsemigroup of

S for some J ∈ S/J , and let x ∈ J be arbitrary. Then (X \ J) ∪ {x} generates S.

Proof. Let J ′ be an arbitrary J -class of S. If J ′ 6≤ J , then, by the contrapositive of

Lemma 1.12(iii), the elements of J ′ cannot be expressed involving elements of X ∩ J . In

other words, J ′ ⊆ 〈X \ J〉. Let I = {s ∈ S : Js < J}. Since I is an ideal of S, the union

〈(X \J)∪{x}〉∪ I is a subsemigroup of S that contains every J -class of S, except for possibly

J . Hence

T = 〈(X \ J) ∪ {x}〉 ∪ I = 〈(X \ J) ∪ {x}〉 ∪ (S \ J).

Since T properly contains the maximal subsemigroup S \J , it follows that T = S. In particular,

T ∩ J = J . But T ∩ J = 〈(X \ J) ∪ {x}〉 ∩ J . Therefore 〈(X \ J) ∪ {x}〉 contains J , and hence

contains the generating set X.

Corollary 4.71. Let S be a semigroup that has a minimal generating set X with respect to

containment, let J be a J -class of S, and suppose that S \ J is a maximal subsemigroup of S.

Then |J ∩X| = 1.

Since a finite semigroup has minimal generating sets, we may use these results to describe the

minimal generating sets of a finite semigroup whose maximal subsemigroups have type (M5).

The result implies that a finite J -trivial semigroup has a unique minimal generating set [36].

Corollary 4.72 (cf. [36]). Let S be a finite semigroup whose maximal subsemigroups have

type (M5), and let J =
{
J ∈ S/J : S \ J is a maximal subsemigroup of S

}
. Then the mini-

mal generating sets of S (with respect to both cardinality and containment) are the transversals

of J. In particular, rank(S) = |J|.

Proof. In a finite semigroup, a generating set that is minimal with respect to cardinality is

necessarily minimal with respect to containment. The generating sets in the statement have

common cardinality |J|. Therefore, if they comprise all generating sets that are minimal with

respect to containment, then the two notions of minimality are equivalent in this case. By

assumption and by Lemma 4.68, a minimal generating set for S (with respect to containment)

contains only elements of J -classes in J. By Lemma 4.70, the result follows.

4.5 Arbitrary finite monoids

In Chapter 5, we describe and count the maximal subsemigroups of several families of particular

finite monoids. For almost all of these monoids, the maximal subsemigroups arise either from

the group of units, or from a J -class that is covered (in the partial order of J -classes) by the

group of units. While the techniques of the previous section certainly apply to finite monoids,

many of the cases that they treat do not arise for these kinds of J -classes. Thus, the purpose

of this section is to simplify some of the results of Section 4.4, under the assumption that the

J -class in question is either equal to, or is covered by, the group of units of a monoid.

4.5.1 Maximal subsemigroups from the group of units

The maximal subsemigroups of a finite monoid that are the easiest to describe are those that

arise from its group of units. Such maximal subsemigroups exist by Lemma 4.68, since the
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non-units in a finite monoid form an ideal, and so every generating set of the monoid contains a

unit. As shown in the following lemma, maximal subsemigroups of this kind can be calculated

from the group of units in isolation, without reference to the remainder of the monoid.

Lemma 4.73. Let S be a finite monoid with group of units G. Then the maximal subsemigroups

of S arising from G are the sets (S \G)∪U , for each maximal subsemigroup U of G. In other

words, if G is trivial, then the unique maximal subsemigroup of S arising from G is S \ G,

which has type (M5); if G is non-trivial, then the maximal subsemigroups of S arising from G

are the sets (S \G) ∪ U , for each maximal subgroup U of G, which have type (M1).

Proof. Since S \ G is an ideal of S, it follows that, for a subset U of G, (S \ G) ∪ U is a

subsemigroup of S if and only if U is a subsemigroup of G. Since this correspondence between

subsemigroups of S containing S \ G and subsemigroups of G preserves inclusion, the result

follows. Note that a subsemigroup of a finite group is a subgroup, unless it is empty; the only

group to possess the empty semigroup as a maximal subsemigroup is the trivial group.

4.5.2 Maximal subsemigroups from a J -class covered by the group

of units

Before presenting the main results of this section, we first state the following corollary to

Lemma 4.8. This corollary is used several times in Chapter 5 to describe the maximal subsemi-

groups that arise from a J -class covered by the group of units of a monoid.

Corollary 4.74. Let S be a finite monoid with group of units G, and suppose there exists a

non-empty subset A of S \G with the property that S = 〈G, x〉 if and only if x ∈ A. Then the

maximal subsemigroups of S are those that arise from the group of units and S \A.

Proof. It remains to describe the maximal subsemigroups that do not arise from the group of

units. Let x ∈ A. Since S = 〈G, x〉 and G is closed under multiplication, the principal ideal

of S generated by x is S \ G. Since x was arbitrary, every element of A generates the same

principal ideal, and so A is contained in some J -class J of S. By Lemma 4.68, the remaining

maximal subsemigroups of S arise from J . By applying Lemma 4.8 with k = 1 and X1 = A,

we find that the unique maximal subsemigroup in this case is S \A.

In the remainder of this section, we let S denote a finite monoid with generating set X, let

G denote the group of units of S, and let J be a J -class of S that is covered by the group of

units; that is, if J ′ ∈ S/J and J < J ′, then J ′ = G. Define

X ′ = {x ∈ X : J < Jx} = G ∩X.

The problem of finding the maximal subsemigroups of S that arise from J is simpler than the

general case. This is because elements of J -classes that are strictly greater than J are units,

which generate no elements within J , and because, roughly speaking, the action of units on J

by multiplication is easier to understand than the action of arbitrary elements.

Maximal subsemigroups of type (M5)

We first show that at least one maximal subsemigroup of S arises from a J -class covered by

the group of units. Since X ′ = {x ∈ X : J < Jx} ⊆ G, it follows that 〈X ′〉 ∩ J ⊆ G ∩ J = ∅,

and so we may obtain the following corollary to Proposition 4.69.

Corollary 4.75 (Maximal subsemigroups of type (M5)). Let S be a finite monoid with group of

units G, and let J be a J -class of S that is covered by G. Then S\J is a maximal subsemigroup

of S if and only if no maximal subsemigroups of types (M1)–(M4) arise from J .
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Maximal subsemigroups of types (M2)–(M4)

Suppose that J is regular, and that the generating set X contains the group of units G. There-

fore X ′ = G. The digraphs ΓL (S, J) and ΓR(S, J) and the graphs ∆(S, J) and Θ(S, J) were

introduced in Section 4.4.2 in order to classify the maximal subsemigroups that arise from J

and have types (M2)–(M5). In the present case, when J is a regular J -class covered by the

group of units, these graphs and digraphs have particularly straightforward descriptions.

By (4.50), ΓL (S, J) is the digraph formed by removing the loops from the quotient of(
J/L ,

{
(Lx, Ly) ∈ J/L × J/L : Lxg = Ly for some g ∈ G

})
(4.76)

by its strongly connected components. Let L ∈ J/L , x ∈ L, and g ∈ G be arbitrary. Since

xg R x, it follows by Green’s Lemma [Lemma 1.11] that Lxg = Lxg. Furthermore, L is a right

congruence, and so Lx = Ly implies that Lxg = Lyg. Therefore, the function (J/L × G) −→
J/L defined by L · g = Lg for all L ∈ J/L and g ∈ G, where x ∈ L is arbitrary, gives a

well-defined right action of G on J/L . In other words, G acts on the L -classes of J by right

multiplication.

The strongly connected components of the digraph in (4.76) are simply the orbits of G under

its right action on J/L . Therefore, the digraph ΓL (S, J) has no edges, and its vertices are the

orbits of the right action of G on J/L by right multiplication. Analogously, the vertices of the

digraph ΓR(S, J) are the orbits of the left action of G on J/R by left multiplication, and the

digraph has no edges. As before, the vertices of ∆(S, J) and Θ(S, J) are the disjoint union of

the vertices of ΓL (S, J) and ΓR(S, J). Since 〈X ′〉 ∩ J = G ∩ J = ∅, it follows that Θ(S, J)

has no edges, and that every vertex in ΓL (S, J) and ΓR(S, J) has colour 0.

The results in Section 4.4 concerning the existence of maximal subsemigroups of types (M2)–

(M4) are formulated in terms of the vertices and edges of the graphs and digraphs mentioned

above. In the present case, when J is a regular J -class of a finite monoid covered by the

units, the conditions that concern the edges or the colour of vertices in ΓL (S, J), ΓR(S, J), or

Θ(S, J) are vacuously satisfied; the remaining conditions on these graphs and digraphs can be

reformulated in terms of ∆(S, J).

We begin by reformulating Proposition 4.59, which concerns maximal subsemigroups of

type (M2). This reformulation follows from the statement of Proposition 4.59, since the condi-

tions in Proposition 4.58(ii)–(iv) concern only the edges of ΓL (S, J), ΓR(S, J), and Θ(S, J),

and can therefore be ignored.

Proposition 4.77 (Maximal subsemigroups of type (M2)). Let S be a finite monoid, let J be

a regular J -class of S covered by the group of units, and let T be a subset of S that contains

S \ J . Suppose there exist proper non-empty subsets A ( J/L and B ( J/R such that T ∩ J
is the union of the Green’s classes in A and B. Then T is a maximal subsemigroup of S if and

only if A and B are unions of vertices that form a maximal independent subset of ∆(S, J).

By Proposition 4.77, the maximal subsemigroups of S of type (M2) arising from J are in

one-to-one correspondence with the maximal independent subsets of ∆(S, J), excluding the set

of all orbits of L -classes, and the set of all orbits of R-classes. We deduce the following.

Corollary 4.78. The number of maximal subsemigroups of S of type (M2) arising from J is

two less than the number of maximal independent subsets of ∆(S, J).

We reformulate Proposition 4.63 as follows.

Proposition 4.79 (Maximal subsemigroups of type (M3)). Let S be a finite monoid, let J be

a regular J -class of S covered by the group of units of S, and let T be a subset of S such that
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contains S \J . Suppose there exists a proper non-empty subset A ( J/L such that T ∩J is the

union of the L -classes in A. Then T is a maximal subsemigroup of S if and only if (J/L ) \A
is a vertex in ∆(S, J) that is not adjacent to a vertex of degree one.

Proof. (⇒) By Proposition 4.63, (J/L ) \ A is a vertex in ∆(S, J). Suppose that (J/L ) \ A
is adjacent to a vertex B′ ⊆ J/R of degree one. The vertices in A ∪ B′ form an independent

subset of ∆(S, J). This independent subset is contained in a maximal independent subset

corresponding to A ∪ B, for some non-empty proper subset B ( J/R that contains B′. By

Proposition 4.77, a maximal subsemigroup of S corresponding to the maximal independent

subset A ∪B properly contains T . Therefore no such vertex B′ exists.

(⇐) Every vertex in ΓL (S, J) is a source with colour 0, and so by Proposition 4.63 it

suffices to show that no maximal subsemigroup of type (M2) contains T . Equivalently, by

Proposition 4.77, if suffices to show that there exists no non-empty proper subset B ( J/R

such that A ∪ B forms a maximal independent subset of ∆(S, J). Let B′ ⊆ J/R be a vertex

of ∆(S, J). Since J is regular, B′ is adjacent to some orbit of L -classes. If B′ is adjacent to

(J/L ) \ A, then by assumption, B′ is also adjacent to some vertex in A. In any case, B′ is

adjacent to some vertex in A, and so A ∪B′ does not form an independent subset of ∆(S, J).

In particular, there exists no subset B ( J/R such that A ∪ B forms a maximal independent

subset of ∆(S, J).

There is a natural dual to this proposition, which characterises the maximal subsemigroups

of S that arise from J and that have type (M4) in terms of the orbits of R-classes in ∆(S, J)

that are not adjacent to vertices of degree one.

By the regularity of J , every vertex in ∆(S, J) has degree at least one. Therefore, by

Proposition 4.79, the number of maximal subsemigroups of S of type (M3) is the number of

orbits of L -classes that are adjacent in ∆(S, J) only to orbits of R-classes with degree at least

two. In the case that every orbit of R-classes has degree two or more in ∆(S, J), then the

number of maximal subsemigroups of type (M3) is simply the number of orbits of L -classes.

The analogous statements hold for maximal subsemigroups of type (M4). By the same token,

the existence of maximal subsemigroups is restricted when there is a single orbit of L -classes

or a single orbit of R-classes (i.e. when the group acts transitively).

Lemma 4.80. If G acts transitively on the L -classes of J , then no maximal subsemigroups of

types (M2) or (M3) arise from J . Similarly, if G acts transitively on the R-classes of J , then

no maximal subsemigroups of types (M2) or (M4) arise from J .

Proof. Suppose that G acts transitively on the L -classes of J . Since J is regular, for every

L -class L of J there exists an R-class R of J such that L ∩ R is a group, and vice versa.

Therefore there are no isolated vertices in ∆(S, J), and so each vertex of R-classes is adjacent

only to the unique vertex of L -classes. It follows that the set of all L -classes and the set of all

R-classes are the only maximal independent subsets of ∆(S, J). By Corollary 4.78, there are

no maximal subsemigroups of type (M2) arising from J , and by Proposition 4.79, there are no

maximal subsemigroups of type (M3). The proof of the second statement is dual.

When S is a regular ∗-monoid, the L -classes and R-classes of a J -class are in bijective

correspondence via the ∗ anti-isomorphism, and so the graph ∆(S, J) is particularly easy to

describe in this case.

Lemma 4.81. Let S be a regular ∗-monoid and let J be a J -class covered by the group of

units G of S. A collection of L -classes {Lx1
, . . . , Lxn

} is a vertex of ∆(S, J) if and only if the

collection of R-classes {Rx∗1 , . . . , Rx∗n} is a vertex of ∆(S, J), and any pair of such vertices is

adjacent in ∆(S, J).
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Proof. If Lx and Ly are L -classes of J in the same vertex of ∆(S, J), then there exists g ∈ G
such that Lxg = Ly. Therefore

g∗Rx∗ = g∗L∗x = (Lxg)
∗

= L∗y = Ry∗ ,

and so Rx∗ and Ry∗ belong to the same vertex of ∆(S, J). By an analogous argument, it follows

that the first statement holds. The second statement holds since, for any element x ∈ J , the

H -class Lx ∩ Rx∗ contains the projection x∗x, and is therefore a group. In particular, the

vertex of ∆(S, J) containing Lx is adjacent to the vertex of ∆(S, J) that contains Rx∗ .

The situation is further simplified when every idempotent of J is a projection, which occurs,

for instance, when S is inverse.

Corollary 4.82. Let S be a finite regular ∗-monoid with group of units G, and let J be a

J -class of S that is covered by G and whose only idempotents are projections. Suppose that

{O1, . . . , On} are the orbits of the right action of G on the L -classes of J by right multiplication

Then the maximal subsemigroups of S arising from J have types (M1), (M2), or (M5). A

maximal subsemigroup of type (M2) is the union of S \ J and the union of the Green’s classes{
L : L ∈ Oi, i ∈ A

}
∪
{
L∗ : L ∈ Oi, i /∈ A

}
,

where A is any proper non-empty subset of {1, . . . , n}. In particular, there are 2n− 2 maximal

subsemigroups of type (M2), and no maximal subsemigroups of types (M3) or (M4).

Proof. By definition of ∆(S, J), the vertices of L -classes of ∆(S, J) are {O1, . . . , On}, and so

by Lemma 4.81, the vertices of R-classes are
{
{L∗ : L ∈ Oi} : i ∈ {1, . . . , n}

}
. Since every

idempotent of J is a projection, for each L -class Lx of J , the only group H -class contained in

Lx is Lx ∩Rx∗ , and so the vertex containing Lx is only adjacent to the vertex containing Rx∗ .

Therefore the edges of ∆(S, J) are {Oi, {L∗ : L ∈ Oi}} for each i ∈ {1, . . . , n}. In particular,

each vertex of ∆(S, J) has degree one, and it follows from Proposition 4.79 and its dual that no

maximal subsemigroups of types (M3) or (M4) arise from J . Furthermore, given the description

of ∆(S, J), it is clear that a maximal independent subset of ∆(S, J) is formed by choosing any

one vertex from each of the n edges, and so there are 2n maximal independent subsets. The

description and number of maximal subsemigroups of type (M2) follows by Proposition 4.77

and Corollary 4.78.

Maximal subsemigroups of type (M1)

A few of the monoids that we consider in Chapter 5 exhibit maximal subsemigroups of type (M1)

that arise from a regular J -class covered by the group of units. The results in Section 4.4.1

neatly characterise the existence of maximal subsemigroups of type (M1) in terms of certain

maximal subsemigroups of the relevant principal factor. However, while this is very useful in

general, especially from the point of view of computation, we desire more specialised tools to

easily describe the maximal subsemigroups that arise in the particular examples included in

Chapter 5. In Proposition 4.85, we present a result that will be useful for these cases. To prove

this proposition, we require the following definition.

Definition 4.83. Let S be a finite regular ∗-monoid with group of units G, and let A ⊆ S.

Then the setwise stabilizer of A in G, StabG(A), is the subgroup {g ∈ G : Ag = A} of G.

Let S and G be defined as in Definition 4.83, and let A ⊆ S. Note that StabG(A) is defined

to be the set of elements of G that stabilize A on the right. However, with A∗ = {a∗ : a ∈ A},
the set of elements of G that stabilize A on the left is equal to StabG(A∗), since{

g ∈ G : gA = A
}

=
{
g ∈ G : A∗g∗ = A∗

}
= StabG(A∗)

∗
= StabG(A∗)

−1
= StabG(A∗).
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Thus, for a subset A of S that satisfies A∗ = A, such as for the H -class of a projection,

StabG(A) = {g ∈ G : Ag = A = gA}.

In Proposition 4.85, we require the set eStabG(He) =
{
es : s ∈ StabG(He)

}
, where e is a

projection of the regular ∗-monoid S, and the J -class Je is covered by G. Any submonoid

of S that contains both e and G also contains eStabG(He). In particular, every maximal

subsemigroup of type (M1) arising from Je contains G and all idempotents in Je by Lemma 1.14,

and hence contains eStabG(He). A stronger result, necessary for the proof of Proposition 4.85,

is given by the following lemma.

Lemma 4.84. Let S be a finite monoid with group of units G, let e ∈ E(S), and let T be a

submonoid of S that contains both e and G. Then the set eStabG(HS
e ) is a subgroup of HT

e .

Proof. Since e is an idempotent, HT
e = T ∩ HS

e . Clearly eStabG(HS
e ) ⊆ eG ⊆ T . Let g ∈

StabG(HS
e ). Then eg ∈ HS

e by definition, and so eStabG(HS
e ) ⊆ HS

e . Thus eStabG(HS
e ) ⊆

T ∩HS
e = HT

e , and the subset is non-empty since e = e1S ∈ eStabG(HS
e ). Since S is finite, it

remains to show that eStabG(HS
e ) is closed under multiplication. Let g, g′ ∈ StabG(HS

e ). Since

eg ∈ HS
e and e is the identity of HS

e , it follows that (eg)e = eg. Thus

(eg)(eg′) = (ege)g′ = (eg)g′ = e(gg′) ∈ eStabG(HS
e ).

We use these notions and results to state and prove the following proposition.

Proposition 4.85. Let S be a finite regular ∗-monoid with group of units G, let J be a J -class

of S that is covered by G, and let HS
e be the H -class of a projection e ∈ J . Suppose that G

acts transitively on the R-classes or the L -classes of J , and that J contains one idempotent

per L -class and one idempotent per R-class (i.e. every idempotent of J is a projection). Then

the maximal subsemigroups of S arising from J are either:

(a) (S\J)∪GUG = 〈S\J, U〉, for each maximal subgroup U of HS
e that contains eStabG(HS

e )

(type (M1)), or

(b) S \ J , if no maximal subsemigroups of type (M1) exist (type (M5)).

Proof. Since S is a regular ∗-monoid, G acts transitively on the L -classes of J if and only

if G acts transitively on the R-classes of J . Hence there are no maximal subsemigroups of

types (M2), (M3), or (M4) arising from J , by Lemma 4.80. By Corollary 4.75, it remains to

describe the maximal subsemigroups of type (M1).

Let U be a maximal subgroup of HS
e that contains eStabG(HS

e ), and define MU = (S \J)∪
GUG. To prove that MU is a maximal subsemigroup of S, we first show that MU is a proper

subset of S, then that it is a subsemigroup, and finally that it is maximal in S. Since G acts

transitively on the L - and R-classes of J and MU contains S \ J , it follows that the set MU

intersects every H -class of S non-trivially. Once we have shown that MU is a subsemigroup,

it will obviously follows that MU is generated by (S \ J) ∪ U , since G ⊆ S \ J .

To prove that MU is a proper subset of S, it suffices to show that GUG ∩ HS
e ⊆ U . Let

x ∈ GUG ∩HS
e . Since x ∈ GUG, we may write x = αuβ for some α, β ∈ G and u ∈ U . Since

u, αuβ ∈ HS
e , it is straightforward to show that αu, uβ ∈ HS

e . Thus

αHS
e = α(uHS

e ) = (αu)HS
e = HS

e , and HS
e β = (HS

e u)β = HS
e (uβ) = HS

e .

In other words, α and β stabilize HS
e on the left and right, respectively. Thus α, β ∈ StabG(HS

e ),

and

x = ex = eαuβ = eαueβ ∈
(
eStabG(HS

e )
)
U
(
eStabG(HS

e )
)
⊆ U3 = U.
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In order to show that MU is a subsemigroup, it suffices to show that xy ∈ MU whenever

x, y ∈ G ∪ GUG, because S \ (G ∪ J) is an ideal of S. If x ∈ G and y ∈ G, then certainly

xy ∈ G. If x ∈ G and y ∈ GUG, then xy ∈ G2UG = GUG and yx ∈ GUG2 = GUG. For the

final case, assume that x, y ∈ GUG and that xy ∈ J . By definition, x = αuβ and y = σvτ for

some α, β, σ, τ ∈ G and u, v ∈ U . It suffices to show that βσ ∈ StabG(HS
e ), because then

xy = (αuβ)(σvτ) = α(ue)βσvτ = αu(eβσ)vτ ∈ GU
(
eStabG(HS

e )
)
UG

⊆ GU3G = GUG.

Since HS
e is a group containing u and v, it follows that u∗u = vv∗ = e. Thus

eβσe = u∗uβσvv∗ = u∗α−1(αuβσvτ)τ−1v∗ = u∗α−1(xy)τ−1v∗.

Together with xy = αu(eβσe)vτ , it follows that eβσe ∈ J . By Lemma 1.10, eβσe ∈ RSe . Since

the elements eβσ and e, and their product eβσe, are all contained in RSe , Corollary 1.16 implies

that HS
eβσ is a group. By assumption, RSe contains only one group H -class, which is HS

e . Thus

eβσ ∈ HS
e , and so HS

e βσ = (HS
e e)βσ = HS

e (eβσ) = HS
e , i.e. βσ ∈ StabG(HS

e ), as required.

Let M be a maximal subsemigroup of S that contains MU . By Proposition 4.10, M ∩HS
e

is a maximal subgroup of HS
e , and the intersection of M with any H -class of J contains

exactly |M ∩HS
e | elements. Since M ∩HS

e contains U , the maximality of U in HS
e implies that

U = M∩HS
e . Since the group G acts transitively on the L - and R-classes of J , the intersection

of GUG with any H -class of J contains |U | elements. Thus |M | ≤ |MU |, and M = MU .

Conversely, suppose that M is a maximal subsemigroup of S of type (M1) arising from

J . By Proposition 4.10, U = M ∩ HS
e = HM

e is a maximal subgroup of HS
e , and U contains

eStabG(HS
e ) by Lemma 4.84. Since M contains G, U , and S \ J , it contains the maximal

subsemigroup MU = (S \ J) ∪GUG. But M is a proper subsemigroup, and so M = MU .

4.6 The algorithm

In this section, we describe the overall algorithm for computing the maximal subsemigroups of

any given finite semigroup S represented by a generating set X. This algorithm is composed

of the procedures described in Sections 4.3 and 4.4 and is fully implemented in the Semi-

groups package [101] for GAP [58]; the underlying algorithms for graphs and digraphs are

implemented in the Digraphs [10] package for GAP. Pseudocode is given in Algorithm 4.86.

We describe the corresponding functionality of the Semigroups package in Section 4.6.1, and

we analyse the performance of these functions on a range of examples in Section 4.6.2.

We first compute the J -classes of S that contain an element of X. If a particular J -class

J has empty intersection with X, then by Lemma 4.68(iv), there is no maximal subsemigroup

of S arising from J . A J -class of S that intersects X non-trivially does not necessarily give

rise to maximal subsemigroups. However, as discussed after the proof of Lemma 4.68, if the

generating set X is minimal, with respect to containment, then a maximal subsemigroup arises

from a J -class if and only if that J -class has non-empty intersection with X.

Maximal and non-maximal J -classes are treated separately.

Suppose that J is a maximal J -class. Note that every maximal J -class J intersects X non-

trivially, since the subset S \J is an ideal of S. If |J | = 1, then by Lemma 4.3, the only maximal

subsemigroup to arise from J is S \ J , which has type (M5). Suppose that |J | > 1. If follows

that J is necessarily regular, and so the principal factor J∗ = J ∪ {0} is a 0-simple semigroup.

We may therefore compute a normalization Ψ from J∗ to a regular Rees 0-matrix semigroup

over a group M 0[G; I, Λ; P ]; see Section 3.2.1. Since S \ J is an ideal, it is straightforward to

see that a maximal subsemigroup of S arising from J has the form (S \ J) ∪ U , where U ⊆ J
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Algorithm 4.86 Maximal subsemigroups of a finite semigroup defined by generating set.

Input: S = 〈X〉, a finite semigroup with generating set X.

Output: M, the maximal subsemigroups of S.

1: M← ∅
2: if S = ∅ then

3: return M.

4: for Jx ∈
{
J ∈ S/J : J ∩X 6= ∅

}
do

5: X ′ ←
{
y ∈ X : Jy > Jx

}
6: if X ′ = ∅ then . Jx is a maximal J -class of S

7: if |Jx| = 1 then

8: M←M ∪
{
S \ {x}

}
. Lemma 4.3

9: else . Jx is necessarily regular

10: compute a normalization Ψ : J∗x −→M 0[G; I, Λ; P ] . Section 3.2.1

11: X← maximal subsemigroups of (J∗x)Ψ of types (R3)–(R6) . Sections 4.3.3–4.3.4

12: for M ∈ X do

13: M←M ∪
{

(S \ Jx) ∪ (M \ {0})Ψ−1
}

14: else . Jx is a non-maximal J -class

15: if Jx is non-regular and x /∈ 〈X ′〉 then

16: M←M ∪ {S \ Jx} . Type (M5), Proposition 4.69(iii)

17: else if Jx is regular and Jx ∩X 6⊆ 〈X ′〉 then . Lemma 4.68(v)

18: compute a normalization Ψ : J∗x −→M 0[G; I, Λ; P ] . Section 3.2.1

19: E←{one idempotent from each L -class of Jx}
20: X←maximal subsemigroups of (J∗x)Ψ of type (R6) containing (EX ′)Ψ .Alg. 4.44

21: for M ∈ X do

22: M←M ∪
{

(S \ Jx) ∪ (M \ {0})Ψ−1
}

. Type (M1), Proposition 4.48

23: compute ΓL (S, Jx), ΓR(S, Jx), ∆(S, Jx), and Θ(S, Jx) . Section 4.4.2

24: M←M ∪ maximal subsemigroups of type (M2) . Section 4.4.3

25: M←M ∪ maximal subsemigroups of types (M3) and (M4) . Section 4.4.4

26: if no maximal subsemigroups of types (M1)–(M4) arise from Jx then

27: M←M ∪ {S \ Jx} . Type (M5), Proposition 4.69(ii)

28: return M.

and U ∪ {0} is a maximal subsemigroup of J∗. In other words, M is a maximal subsemigroup

of S arising from J if and only if (M ∩J)Ψ∪{0} is a maximal subsemigroup of M 0[G; I, Λ; P ]

of type (R3), (R4), (R5), or (R6). Therefore, it suffices to compute the maximal subsemigroups

of M 0[G; I, Λ; P ] of these kinds, using the techniques of Section 4.3.

Suppose that J is a non-maximal J -class of S that intersects X non-trivially. We first

compute the set X ′ = {x ∈ X : J < Jx}. If J is non-regular, then by Proposition 4.69(iii), S\J
is a maximal subsemigroup of type (M5) if and only if x /∈ 〈X ′〉, where x is an arbitrary element

of J . No other kinds of maximal subsemigroup arise from a non-regular J -class. If J is regular,

then by Lemma 4.68, maximal subsemigroups of S arise from J if and only if J ∩ X 6⊆ 〈X ′〉.
If this condition holds, then we compute the maximal subsemigroups of types (M1)–(M4), as

discussed in Sections 4.4.1, 4.4.3, and 4.4.4. If no such maximal subsemigroups exist, then by

Proposition 4.69(ii), S \ J is a maximal subsemigroup of S of type (M5).

Open Problem 4.87. Develop tools for computing subsemigroups that are maximal with

respect to some property, such as maximal commutative or maximal regular subsemigroups of

a finite semigroup; or maximal inverse subsemigroups of a finite inverse semigroup.
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4.6.1 Relevant functionality in the Semigroups package for GAP

The techniques described in this chapter for computing maximal subsemigroups of a finite semi-

group have been implemented by the author in the Semigroups package [101] for GAP [58].

The functions in the Semigroups package can be applied to any non-empty finite semigroup

that can be constructed in GAP, subject to the time and space constraints of the computer.

There are technical difficulties in GAP that arise when computing with an empty semigroup.

For this reason, the Semigroups package finds only non-empty maximal subsemigroups. Note

that only a semigroup of order 1 has the empty semigroup as a maximal subsemigroup.

Let S to be a non-empty finite semigroup. The command MaximalSubsemigroups(S);

returns a list of the non-empty maximal subsemigroups of S. The behaviour of the function

MaximalSubsemigroups may be customised by providing, as an additional argument, a record

opts that describes these customisations via its components. The following independent cus-

tomisations are available, and may be used together in any combination:

• If opts.number is true, then MaximalSubsemigroups(S, opts); returns the number of

maximal subsemigroups of S that it finds, rather than constructing the maximal sub-

semigroups. It can be computationally expensive to find a generating set for a maximal

subsemigroup (see Propositions 4.61 and 4.66). Therefore, in many cases, it can be much

quicker to count the maximal subsemigroups of S directly than it is to construct them.

Note that the command NrMaximalSubsemigroups(S); is equivalent to the command

MaximalSubsemigroups(S, rec(number := true));

• If opts.contain is a subset of S, then the command MaximalSubsemigroups(S, opts);

returns the maximal subsemigroups of S that contain this set of elements. Note that this

is often much more efficient that computing all maximal subsemigroups of S and then

retaining only those that contain the desired set. In particular, a version of Algorithm 4.44

is used in this instance when S is a regular Rees 0-matrix semigroup over a group.

• If opts.D is a D-class of S (or, equivalently, a J -class of S, since S is finite), then

MaximalSubsemigroups(S, opts); finds the maximal subsemigroups of S that arise

from D. Since Algorithm 4.86 independently searches for the maximal subsemigroups

arising from each D-class, the maximal subsemigroups that arise from D can be com-

puted without finding maximal subsemigroups that arise from any other D-class.

• If S is a regular Rees matrix or Rees 0-matrix semigroup over a group, and opts.types is

a subset of [1 .. 6], then MaximalSubsemigroups(S, opts); finds only those maximal

subsemigroups of S of the types amongst (R1)–(R6) that correspond to opts.types. For

instance, if opts.contain is [1, 3, 4, 6], then MaximalSubsemigroups(S, opts);

finds the maximal subsemigroups of S that have types types (R1), (R3), (R4), or (R6).

The following GAP code demonstrates how to perform a custom maximal subsemigroups

computation with the Semigroups package. This code produces the answer 24, which is the

number of maximal subsemigroups of S that arise from Dx and contain the set {x, y}.

S := SingularTransformationMonoid(5);

x := Transformation([2, 2, 3, 4, 5]);

y := Transformation([5, 4, 1, 2, 1]);

opts := rec(number := true, contain := [x, y], D := DClass(S, x));

MaximalSubsemigroups(S, opts);

Further details and examples are included in the manual of the Semigroups [101] package.
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4.6.2 Performance measurements

In this section, we experimentally investigate the performance of the algorithms presented in

this chapter. The computations described in this section were run using the Semigroups pack-

age [101] for GAP [58], on a 2.66 GHz Intel Core i7 processor with 8GB of RAM.

Given a semigroup S represented by a set of generators, we compare the time taken to

compute the Green’s structure of S with that taken to find the maximal subsemigroups of

S, given the Green’s structure. As argued previously, if it is not possible to compute the

Green’s structure of a given semigroup within the limitations of the hardware, then there is

little of significance that can be computed about that semigroup. Therefore, this comparison

is appropriate. Additionally, we include the length of time that was spent finding maximal

cliques or maximal subgroups of group H -classes during the computation of the maximal

subsemigroups, when these times are not negligible. We analyse the performance of computing

the maximal subsemigroups of the following semigroups.

• For each n ∈ {2, . . . , 11}, we compute the maximal subsemigroups of the full transfor-

mation monoid Tn, as defined in Section 1.3.5. There are nn elements and n J -classes

in Tn, and rank(Tn) = 3 when n > 2. See Section 5.2.3 for a description of the maximal

subsemigroups of Tn in general, and see Table 5.8 for their number.

• For each n ∈ {11, . . . , 20}, we calculate the maximal subsemigroups of the inverse monoid

PORIn, which consists of all partial permutations of degree n that preserve or reverse

the cyclic orientation of {1, . . . , n}; see Section 5.2.1 for a precise definition. There are

1 + n

(
2n

n

)
− n2(n2 − 2n+ 3)

2

elements and n + 1 J -classes in PORIn, and rank(PORIn) = 3 when n > 2. See

Section 5.2.8 and Table 5.37 for the maximal subsemigroups of PORIn.

• We compute the maximal subsemigroups of the Jones monoid Jn, as defined in Sec-

tion 5.3.1, for each n ∈ {6, . . . , 20}. If n > 1, then rank(Jn) = n− 1, and the order of Jn
is the nth Catalan number [43, Section 9], 1

n+1

(
2n
n

)
. The number of J -classes in Jn is

dn/2e. See Section 5.3.7 and Table 5.59 for the maximal subsemigroups of Jn, in general.

• We compute the maximal subsemigroups of 100 transformation semigroups of degree 9,

each generated by 9 transformations chosen uniformly at random from T9. See Table 4.88

for some data about these semigroups.

We chose to analyse the performance of the algorithms with Tn, PORIn, and Jn because

these monoids are well-studied in the literature, because their internal representations in the

Semigroups package are different, and because the methods implemented in the Semigroups

package exhibit different behaviour for these monoids. In Figures 4.89, 4.90, and 4.91, we

compare the time taken to compute the partial order of the J -classes of these monoids with

the time taken to find the maximal subsemigroups, given the partial order of J -classes. The

partial order of J -classes of a semigroup is a fundamental part of its Green’s structure, and

was computed with the method described in [37, Algorithm 14], which is implemented in the

Semigroups package. In each case, the largest value of n considered was the largest for which

the Green’s structure could be computed within the limitations of the given hardware.1

For S ∈ {Tn, PORIn}, the time taken to compute the maximal subsemigroups of S is

dominated neither by the time taken to compute maximal cliques, nor by the time taken

1Note that |T11| = 285 311 670 611, |PORI20| = 2 756 930 503 801, and |J 20| = 6 564 120 420.
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to compute maximal subgroups; rather, the majority of the time is spent constructing and

processing the digraphs ΓL (S, J) and ΓR(S, J) and the graphs ∆(S, J) and Θ(S, J) from

Section 4.4, where J is the J -class of S consisting of elements of rank n − 1. For these

monoids, the graphs ∆(S, J) have 2 vertices, and so it can be immediately deduced that there

are no maximal cliques from which maximal subsemigroups may arise. On the other hand, for

the Jones monoids, the majority of the time in the computation of maximal subsemigroups is

spent searching for maximal cliques, as is shown in Figure 4.91.

The monoids Tn, PORIn, and Jn are atypical examples of semigroups: for instance, they

are all regular monoids, and each of their ideals is principal. Because of this, we opted to

include some data relating to ‘random’ semigroups in order to demonstrate what is perhaps

more typical behaviour of the algorithms for computing maximal subsemigroups. It is not clear

what constitutes a reasonable notion of randomness, however, we believe that the notions used

here are somewhat meaningful for the discussion here. The random semigroups were chosen to

be generated by nine transformations of degree nine, because semigroups of this kind approach

the limit of what is possible to compute with the given hardware.

Standard

Min Max Mean Median deviation

Size 125333 85014449 5657333 2484319 9865603

Number of J -classes 8 89858 5336 2550 10187

Number of maximal subsemigroups 9 640 25 13 65

Time for maximal subsemigroups (ms) 8 272132 15998 5003 37944

Table 4.88: Information about the 100 transformation semigroups of degree 9 that we consider,

each of which was generated by by 9 transformations that were chosen uniformly at random.

Figure 4.92 compares the time taken to compute the maximal subsemigroups of the 100

random transformation semigroups described above with the time taken to compute their partial

orders of J -classes. Each point on the horizontal axis of this graph corresponds to one of these

semigroups. The points are sorted along the horizontal axis in increasing order, according

to the ratio of the time taken to compute the maximal subsemigroups to the time taken to

compute the partial order of its J -classes. While there are some instances where computing

the maximal subsemigroups is several orders of magnitude slower than computing the Green’s

structure, for the majority, the times taken are roughly comparable.

For each n ∈ {1, . . . , 20}, we also analysed the performance of computing the maximal

subsemigroups of 100 regular Rees 0-matrix semigroups M 0[G; I, Λ; P ], where in each instance,

|I| = |Λ| = n, G was a permutation group chosen uniformly at random from the representatives

of conjugacy classes of subgroups of S10, the number of connected components of the Graham-

Houghton graph was chosen uniformly from {1, . . . , n}, and the entries of the matrix P were

chosen randomly, subject to this constraint. The entries of P were not chosen uniformly, nor do

we claim that these Rees 0-matrix semigroups represent a uniform sample of such semigroups.

The algorithms presented in Section 4.3, as implemented in the Semigroups [101] package,

were used to compute these maximal subsemigroups.

The Green’s structure of a regular Rees 0-matrix semigroup over a group can be deter-

mined immediately from its definition, and so the time taken to determine this was not used for

comparison. In Figure 4.93, for each dimension considered, the mean time taken to compute

the maximal subsemigroups of the 100 semigroups is shown alongside the mean time spent

computing maximal cliques as part of the calculation. For the Rees 0-matrix semigroups we

considered, it appears that the time taken to compute maximal cliques approaches the time
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taken to compute maximal subsemigroups, as the dimension increases; maximal cliques cor-

respond to maximal subsemigroups of type (R5). The mean time spent computing maximal

subgroups, which is a step in the computation of maximal subsemigroups of type (M1) was

negligible in these examples.
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Figure 4.89: For n ∈ {2, . . . , 11}, this graph compares the time taken to compute the partial

order of J -classes of Tn with both the time taken to compute its maximal subsemigroups, and

the time spent during this finding the maximal subgroups of group H -classes in Tn.
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Figure 4.90: For n ∈ {10, . . . , 20}, this graph compares the time taken to compute the

partial order of J -classes of PORIn with both the total time taken to compute its maximal

subsemigroups, and the amount of time that was spent as part of this finding maximal subgroups

of group H -classes in PORIn. As n increases, it appears that the time taken to compute the

partial order of J -classes of PORIn increases much more rapidly than the time taken to

compute the maximal subsemigroups of PORIn, given the partial order of J -classes.
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Figure 4.91: For n ∈ {10, . . . , 20}, this graph compares the time taken to compute the partial

order of J -classes of Jn with the total time taken to compute its maximal subsemigroups, and

the time spent as part of this in computing maximal cliques. It appears that, as n increases,

the length of time spent computing maximal cliques approaches the total time taken.
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Figure 4.92: A graph showing, for 100 random 9-generated subsemigroups of T9, the ratio

of the time taken to compute the maximal subsemigroups with the time taken to compute

the partial order of J -classes. Each cross represents a semigroup. If a cross sits above the

horizontal line, then more time was spent computing the maximal subsemigroups of the cor-

responding semigroup than was spent computing its partial order of J -classes. For most of

these semigroups, the times taken for both steps was roughly comparable.
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Figure 4.93: For each matrix dimension |I| = |Λ| ∈ {1, . . . , 20}, this graph compares the

mean time taken to compute the maximal subsemigroups of 100 random regular Rees 0-matrix

semigroups M 0[G; I, Λ; P ] with the mean time taken to compute the maximal cliques in the

duals of their Graham-Houghton graphs. As the matrix dimension increases, it seems that the

time spent computing maximal cliques approaches the total time for maximal subsemigroups.



Chapter 5

Maximal subsemigroups of finite

transformation and diagram

monoids

5.1 Introduction

In this chapter, we describe and count the maximal subsemigroups of several families of well-

known finite transformation monoids and diagram monoids, using the tools provided in Chap-

ter 4. The research underpinning this chapter was conducted in collaboration with James East,

Jitender Kumar, and James D. Mitchell. A paper containing the results of this chapter is avail-

able on arXiv [44]; a shorter version of that paper, containing the most significant subset of

these results, is published in the Journal of Algebra [45]. The research presented in this chapter

is included with the permission of the co-authors.

Having obtained various theoretical results in Chapter 4 that concern the maximal subsemi-

groups of an arbitrary finite semigroup or monoid, a natural continuation of this work is to apply

these results and techniques to study the maximal subsemigroups of particular semigroups.

The problem of describing or counting the maximal subsemigroups of certain transformation

semigroups and monoids has been studied extensively in the literature. Much of this research has

been led by I. Dimitrova, V. H. Fernandes, and co-authors; see [25–31,56,69], and the references

therein. The techniques used to prove these results were typically rather disparate, and did

not lend themselves well to generalisation. However, we can use the framework described in

Chapter 4 in order to recover these results in a unified way, and moreover, to prove new results.

Our strategy also allows us to clearly see the common features in the maximal subsemigroups of

similar monoids. We especially make use of the tools of Section 4.5, which concern the maximal

subsemigroups of an arbitrary finite monoid.

The same techniques can also be applied to describe the maximal subsemigroups of many

other finite semigroups and monoids. To further demonstrate the utility of this framework,

we describe the maximal subsemigroups of various families of diagram monoids. Diagram

monoids are submonoids of the partition monoid, and they are currently well-studied in the

literature; see [34, 39, 40, 42, 43, 46, 51, 70, 94, 98]. However, with the exception of those of the

dual symmetric inverse monoid [94], the maximal subsemigroups of these diagram monoids had

not been described in the literature.

Some of the results in this chapter were obtained with the help of the Semigroups pack-

age [101] for GAP [58], using the tools for computing maximal subsemigroups described in

Section 4.6.1. More specifically, by applying the function MaximalSubsemigroups to several

finite monoids from a particular family, it was often straightforward to analyse the results and

make a conjecture about their general description.
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This chapter is structured as follows. In Section 5.1.1, we present some preliminary results

concerning the maximal subgroups of the groups of units of the monoids that appear in the later

sections. In Section 5.2, we study partial transformation monoids. We define various families

of monoids that consist of order- and orientation-preserving and -reversing partial transforma-

tions in Section 5.2.1, and we provide some prerequisite information about them in Section 5.2.2.

We describe the maximal subsemigroups of these monoids in Sections 5.2.3–5.2.8. We study

monoids of partitions in Section 5.3. This section is structured similarly: in Sections 5.3.1

and 5.3.2, we define and present prerequisite results about the diagram monoids whose maxi-

mal subsemigroups we subsequently classify in Sections 5.3.3–5.3.7. In particular, we classify

the maximal subsemigroups of the partition, Jones, Motzkin, and Brauer monoids, and several

related monoids. In Section 5.4, we present Table 5.62. This table gives a summary of the infor-

mation in this chapter. More specifically, for each of the families of monoids considered in this

chapter, the table lists the corresponding sequence of the numbers of maximal subsemigroups,

with references to the theorems where the maximal subsemigroups are described.

5.1.1 Maximal subgroups of cyclic, dihedral, and symmetric groups

It follows by Lemma 4.73 that, in order to classify the maximal subsemigroups of the monoids

in this chapter, we require a description of the maximal subgroups of their groups of units. The

groups of units that appear in this chapter are cyclic, dihedral, and symmetric groups. The

conjugacy classes of maximal subgroups of the finite symmetric groups are described in [87] and

counted in [88]; see [120, A066115] for the sequence of their number. In general, however, there

is no known simple formula for the number of all maximal subgroups of a finite symmetric

group. Throughout this chapter, we use the notation sk to denote the number of maximal

subsemigroups of the symmetric group of degree k [120, A290138]. For the maximal subgroups

of the cyclic and dihedral groups, we present the following well-known results. The proofs of

these results require descriptions of the subgroups of the cyclic and dihedral groups. These

descriptions are straightforward to prove.

Lemma 5.1. Let n ∈ N, n ≥ 2, and let G = 〈α〉 be a cyclic group of order n. The maximal

subgroups of G are the subgroups 〈αp〉, for each prime divisor p of n. In particular, the total

number of maximal subgroups G is the number of prime divisors of n.

Proof. The subgroups of G are 〈αd〉, for each positive divisor d of n, and 〈αd〉 ≤ 〈αd′〉 if and

only if d′ divides d. Therefore, the maximal subgroups of G are the subgroups 〈αd〉, where

d > 1 is a divisor of n whose positive divisors are 1 and d: these are the prime divisors of n.

Some of the families of transformation monoids considered in this chapter have trivial groups

of units, or groups of units of order 2. In the first case, by Lemma 4.73, no further work is

required. In the second case, since a group of order 2 is cyclic, it follows by Lemma 5.1 that its

unique maximal subgroup is trivial, consisting of the identity element of the group.

The following lemma was stated incorrectly in [45, Lemma 2.5], but appears correctly below.

Lemma 5.2. Let n ∈ N, n ≥ 3, and let G = 〈σ, ρ〉 be a dihedral group of order 2n, where σ

has order 2, ρ has order n, and σρ = ρ−1σ. The maximal subgroups of G are the subgroups 〈ρ〉
and 〈ρp, σρi〉, for each prime divisor p of n and each integer i ∈ {0, . . . , p− 1}. In particular,

the number of maximal subgroups of G is one more than the sum of the prime divisors of n.

Proof. The subgroups of G are 〈σd〉 and 〈σd, σρi〉, for each positive divisor d of n and each

integer i ∈ {0, . . . , d−1}. Any subgroup of the form 〈ρd〉 is contained in 〈ρ〉, which is maximal

since its index in G is 2. The subgroup 〈ρd, σρi〉 is not contained in 〈ρ〉, and is contained in

http://oeis.org/A066115
http://oeis.org/A290138
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〈ρd′ , σρi′〉 if and only if d′ divides d and i = i′. Therefore, the maximal subgroups of G in this

second form are the subgroups 〈ρd, σρi〉, where d is a prime divisor of n and 0 ≤ i ≤ d− 1.

5.2 Partial transformation monoids

In this section, we describe and count the maximal subsemigroups of several well-known families

of partial transformation monoids. We define these monoids in Section 5.2.1, and present

some prerequisite results and background information about them in Section 5.2.2; the main

results are given in Sections 5.2.3–5.2.8. For certain families, the descriptions of their maximal

subsemigroups, and the corresponding proofs, are alike. In such cases, we collect the results

concerning these families, in order to highlight their similarities.

5.2.1 Definitions

As defined in Section 1.3.5, PTn is the monoid of all partial transformations of degree n under

composition of partial functions; its submonoid Tn consists of all transformations of degree n,

and its inverse submonoid In consists of all partial permutations of degree n. In Sections 5.2.3–

5.2.8, we describe and count the maximal subsemigroups of these monoids, as well as those of

a collection of other submonoids of PTn, which we define here. These other monoids consist of

partial transformations that preserve or reverse the usual order, or orientation, of {1, . . . , n}.
Let n ∈ N, and let α be a partial transformation of degree n. Clearly, there is a unique way

to write dom(α) = {i1, . . . , ik}, where ij ∈ {1, . . . , n} for each j, and i1 < · · · < ik. We say

that α is order-preserving if i1α ≤ · · · ≤ ikα, and order-reversing if i1α ≥ · · · ≥ ikα. Similarly,

we say that α is orientation-preserving if there exists at most one l ∈ {1, . . . , k − 1} such

that ilα > il+1α, and α is orientation-reversing if there exists at most one l ∈ {1, . . . , k − 1}
such that ilα < il+1α. In a certain informal sense, an orientation-preserving or -reversing

partial transformations preserves or reverses the ‘cyclic ordering’ of its domain. Note that

an order-preserving partial transformation is orientation-preserving, and similarly, an order-

reversing partial transformation is orientation-reversing. Rules for the composition of such

partial transformations are shown in Table 5.3.

◦ Order-preserving Order-reversing

Order-preserving Order-preserving Order-reversing

Order-reversing Order-reversing Order-preserving

◦ Orientation-preserving Orientation-reversing

Orientation-preserving Orientation-preserving Orientation-reversing

Orientation-reversing Orientation-reversing Orientation-preserving

Table 5.3: Rules describing the composition of order-preserving/-reversing partial transfor-

mations, and the composition of orientation-preserving/-reversing partial transformations. It

follows that we may create subsemigroups of PTn that consist of such partial transformations.

Given these notions, and the rules described in Table 5.3, it is natural to define the largest

submonoids of PTn that consist of such elements. These monoids are:

• POn =
{
α ∈ PTn : α is order-preserving

}
,

• PODn =
{
α ∈ PTn : α is order-preserving or -reversing

}
,
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• POPn =
{
α ∈ PTn : α is orientation-preserving

}
, and

• PORn =
{
α ∈ PTn : α is orientation-preserving or -reversing

}
.

We also define their largest submonoids consisting of transformations, and their largest inverse

submonoids consisting of partial permutations. That is, we define their intersections with Tn:

• On = POn ∩ Tn,

• ODn = PODn ∩ Tn,

• OPn = POPn ∩ Tn, and

• ORn = PORn ∩ Tn;

and we define their intersections with In:

• POIn = POn ∩ In,

• PODIn = PODn ∩ In,

• POPIn = POPn ∩ In, and

• PORIn = PORn ∩ In.

These monoids have been studied extensively in the literature; see for example [28, 31], and

the references therein, where the notation that we use for these monoids was introduced. In

Sections 5.2.4–5.2.8, we classify the maximal subsemigroups of these monoids.

We may easily describe the permutations, and therefore the largest subgroups of Sn, that

satisfy each of these properties. Recall that the symmetric group Sn is the group consisting of all

permutations of degree n; Sn is the group of units of PTn, Tn, and In. The identity permutation

of degree n, idn, is the unique order-preserving permutation of degree n; it is the identity element

of each of the monoids that we define above. There is also a unique order-reversing permutation

of degree n, which we write in disjoint cycle notation as (1 n)(2 n−1) · · · (b(n+1)/2c d(n+1)/2e).
A permutation is orientation-preserving if and only if it is a power of the n-cycle (1 2 . . . n), and

an orientation-reversing permutation is the product of an orientation-preserving permutation

with the unique order-reversing permutation. We define

Cn = 〈(1 2 . . . n)〉 (5.4)

to be the subgroup of Sn consisting of all orientation-preserving permutations; it is cyclic of

order n, and so its maximal subgroups are given by Lemma 5.1. We also define

Dn = 〈(1 2 . . . n), (1 n)(2 n− 1) · · · (b(n+ 1)/2c d(n+ 1)/2e)〉. (5.5)

to be the group of orientation-preserving or -reversing permutations of degree n. When n ≥ 3,

Dn is dihedral of order 2n, and so its maximal subgroups are given by Lemma 5.2. Note that

C2 = D2 = 〈(1 2)〉.
Thus we may describe the groups of units of the monoids that we have defined. The groups

of units of POn, On, and POIn are the trivial group {idn}; the groups of units of PODn, ODn,

and PODIn are 〈(1 n)(2 n − 1) · · · (b(n + 1)/2c d(n + 1)/2e)〉; the groups of units of POPn,

OPn, and POPIn are Cn; and the groups of units of PORn, ORn, and PORIn are Dn.

The maximal subsemigroups of several of these monoids have previously been described in

the literature, including those of OPn [28, Theorem 1.6], ORn [28, Theorem 2.6], POIn [56,

Theorem 2], and PODIn [29, Theorem 4]. The maximal subsemigroups of PTn, Tn, and In are
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well-known folklore. Furthermore, the maximal subsemigroups of the singular ideal On \ {idn}
of On were described in [25, Theorem 2], and those of the singular ideal POn\{idn} of POn were

described in in [31, Theorem 1]. Additionally, the maximal subsemigroups of the singular ideal

of ODn were found in [69, Theorem 2], but since the group of units of ODn is non-trivial, this is

a fundamentally different problem than finding the maximal subsemigroups of ODn itself. Until

the publication of the research detailed in this section (in [45]), the maximal subsemigroups of

ODn, PODn, POPn, POPIn, PORn, and PORIn remained open problems.

Nevertheless, we describe the maximal subsemigroups of all the monoids from this section.

The purpose of reproving the known results is to demonstrate that they may all be obtained in

a largely unified manner, using the tools described in Chapter 4. Furthermore, the descriptions

of the maximal subsemigroups of some of these monoids, such as those of POn and PODn, and

those of On and ODn, are closely linked, and so it is instructive to present them together.

5.2.2 Preliminaries

Let n ∈ N, n ≥ 2. In order to describe the maximal subsemigroups of the submonoids of PTn
from Section 5.2.1, we require some additional facts and notation. We first require a description

of the Green’s relations on PTn. These are given by:

• α L β if and only if im(α) = im(β),

• α R β if and only if ker(α) = ker(β), and

• α J β if and only if rank(α) = rank(β),

for α, β ∈ PTn; see [57, Theorem 4.5.1] for a proof. Note that ker(α) = ker(β) implies that

dom(α) = dom(β), since the kernel of a partial transformation is defined to be an equivalence

on its domain. Each of the submonoids of PTn defined in Section 5.2.1 is regular, and so it

follows easily that the Green’s relations on these monoids are characterised in the same way.

By Lemma 4.68, we also require generating sets for these monoids. Any order-reversing

partial transformation α is the product of some order-preserving partial transformation and

the permutation σ = (1 n)(2 n− 1) · · · (b(n+ 1)/2c d(n+ 1)/2e), since α = (ασ−1)σ, and ασ−1

is order-preserving. Similarly, any orientation-preserving partial transformation is the product

of some order-preserving partial transformation with some permutation in Cn. The analogous

statement holds for orientation-reversing partial transformations. Therefore, if S is any of

the monoids of order- or orientation-preserving or -reversing partial transformations defined in

Section 5.2.1, then S is generated by its units and its order-preserving elements. However, On
is generated by idn and its idempotents of rank n − 1 [1], and POIn is generated by idn and

its elements of rank n − 1 [48, Lemma 2.7]. It follows that S is generated by its units and its

order-preserving elements of rank n − 1. The monoids PTn, Tn, and In are generated by Sn
and their elements of rank n− 1 [57, Theorems 3.1.3–3.1.5].

Therefore, by Lemma 4.68, in order to describe the maximal subsemigroups of any of the

monoids from Section 5.2.1, we must find those maximal subsemigroups that arise from the

group of units, and those that arise from the J -class containing elements of rank n− 1. The

results of Section 4.5.1 apply in the former case, those of Section 4.5.2 apply in the latter case.

To describe the maximal subsemigroups arising from the J -class consisting of elements of

rank n− 1, we require the following notation for the Green’s classes of this J -class. We define

Jn−1 =
{
α ∈ PTn : rank(α) = n− 1

}
to be the J -class of PTn that consists of all partial transformations of rank n − 1. A partial

transformation of rank n − 1 lacks exactly one element from its image, and is either a partial
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permutation that also lacks exactly one element from its domain, or is a transformation with

a unique non-trivial kernel class, which contains two points. Thus for distinct points i, j ∈
{1, . . . , n}, we define the Green’s L - and R-classes of Jn−1:

• Li =
{
α ∈ Jn−1 : i /∈ im(α)

}
, which is an L -class of Jn−1;

• Ri =
{
α ∈ Jn−1 : i /∈ dom(α)

}
, which is an R-class of Jn−1 of partial permutations; and

• R{i, j} = {α ∈ Jn−1 : (i, j) ∈ ker(α)}, which is an R-class of Jn−1 of transformations.

An H -class of the form Li ∩ Rj is a group if and only if i = j, and an H -class of the form

Li ∩R{j, k} is a group if and only if i ∈ {j, k} [57, Theorem 2.7.2].

We observe that the non-trivial kernel class of an order-preserving or -reversing transforma-

tion of rank n− 1 has the form {i, i+ 1} for some i ∈ {1, . . . , n− 1}, and that the non-trivial

kernel class of an orientation-preserving or -reversing transformation of rank n−1 has the same

form, or is equal to {1, n}. Any non-empty subset of {1, . . . , n} appears as the image of some

partial transformation in each of the monoids defined in Section 5.2.1.

Let S be one of the submonoids of PTn defined in Section 5.2.1. By the preceding discussion,

it follows that the set Jn−1 ∩ S is a regular J -class of S, that the L -classes of Jn−1 ∩ S are

the sets of the form Li ∩S, and that the R-classes of Jn−1 ∩S are those non-empty sets of the

forms Ri ∩ S and R{i, j} ∩ S, for distinct i, j ∈ {1, . . . , n}.
Often, the principal obstacle to describing the maximal subsemigroups of S that arise from

Jn−1∩S is to determine the maximal independent subsets of the graph ∆(S, Jn−1 ∩ S), which

was introduced in Section 4.4.2; see also Section 4.5.2 for more information. In every case in

this section, the relevant J -class is Jn−1∩S, and so we henceforth refer to this graph as simply

∆(S). Whenever we present a picture of ∆(S), such as in Figure 5.16, we label an L -class as

Li, rather than as Li ∩S, and so on, in order to avoid cluttering the image. This approach also

has the advantage of highlighting the similarities between the graphs of related monoids, and

allows us to more easily see that some graphs may be obtained as induced subgraphs of others.

To describe ∆(S), we must calculate the left and right actions of the group of units G of S

on the R-classes and on the L -classes of Jn−1 ∩ S, respectively. The following lemma shows

that these actions correspond to natural right actions of G on points and pairs in {1, . . . , n}.

Lemma 5.6. Let S be one of the submonoids of PTn defined in Section 5.2.1, and let G be its

group of units.

(a) Let Ω ⊆ {1, . . . , n}. Then Ω is an orbit of G on {1, . . . , n} if and only if
{
Li ∩ S : i ∈ Ω

}
is an orbit of the right action of G on (Jn−1 ∩ S)/L .

(b) Let Ω ⊆ X =
{
i : Ri ∩ S 6= ∅

}
. Then Ω is an orbit of G on X if and only if

{
Ri ∩ S :

i ∈ Ω
}

is an orbit of the left action of G on the R-classes of Jn−1∩S that contain partial

permutations.

(c) Let Ω ⊆ Y =
{
{i, j} : i 6= j, R{i, j} ∩ S 6= ∅

}
. Then Ω is an orbit of G on Y if and only

if
{
R{i, j} : {i, j} ∈ Ω

}
is an orbit of the left action of G on the R-classes of Jn−1 ∩ S

that contain transformations.

Proof. To prove part (a), let i, j ∈ {1, . . . , n} and let α ∈ Li ∩ S. Then, with respect to the

right action of G on {1, . . . , n},

i and j lie in the same orbit ⇔ iσ = j for some σ ∈ G
⇔ j /∈ im(ασ) for some σ ∈ G
⇔ ασ ∈ Lj ∩ S for some σ ∈ G
⇔ (Li ∩ S)σ = Lj ∩ S for some σ ∈ G.
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The proof of part (b) is similar to the proof of part (a). To prove part (c), let {i, j}, {k, l} ∈ Y
be arbitrary, and let α ∈ R{i, j} ∩ S. Then, with respect to the right action of G on Y ,

{i, j} and {k, l} lie in the same orbit ⇔ {kσ, lσ} = {i, j} for some σ ∈ G
⇔ kσα = lσα for some σ ∈ G
⇔ σα ∈ R{k, l} ∩ S for some σ ∈ G
⇔ σ(R{i, j} ∩ S) = R{k, l} ∩ S for some σ ∈ G.

The right actions of the groups {idn}, 〈(1 n)(2 n− 1) · · · (b(n+ 1)/2c d(n+ 1)/2e)〉, Cn, Dn,

and Sn (as defined in Section 5.2.1) on the points, and pairs of points in {1, . . . , n}, are easy

to understand, since a permutation of degree n is defined in terms of its action on {1, . . . , n}.
Therefore, if S is one of the monoids mentioned in Section 5.2.1, then the actions of its group

of units on the R- and L -classes of Jn−1 ∩ S may be readily understood via Lemma 5.6.

5.2.3 PTn, Tn, and In
To start, we describe and count the maximal subsemigroups of PTn, Tn, and In. Of course,

the maximal subsemigroups of the these monoids are well-known folklore, and so the following

result is by no means novel. However, we include this theorem and the subsequent discussion

for completeness, and to begin to show the utility of the results presented in Chapter 4.

Theorem 5.7. Let n ∈ N, n ≥ 2, be arbitrary. The following hold.

(a) The maximal subsemigroups of PTn are the sets:

(i) (PTn \ Sn) ∪ U , where U is a maximal subgroup of Sn (type (M1));

(ii) PTn \ {α ∈ Tn : rank(α) = n− 1} (type (M4)); and

(iii) PTn \ {α ∈ In : rank(α) = n− 1} (type (M4)).

(b) The maximal subsemigroups of Tn are the sets:

(i) (Tn \ Sn) ∪ U , where U is a maximal subgroup of Sn (type (M1)); and

(ii) Tn \ {α ∈ Tn : rank(α) = n− 1} (type (M5)).

(c) The maximal subsemigroups of In are the sets:

(i) (In \ Sn) ∪ U , where U is a maximal subgroup of Sn (type (M1)); and

(ii) In \ {α ∈ In : rank(α) = n− 1} (type (M5)).

In particular, for n ≥ 2, there are sn + 2 maximal subsemigroups of PTn, and sn + 1 maximal

subsemigroups of both Tn and In.

2 3 4 5 6 7 8 9 10 11 12 n

PTn 3 6 10 24 55 186 355 1378 3979 363906 396500 sn + 2

Tn, In 2 5 9 23 54 185 354 1377 3978 363905 396499 sn + 1

Table 5.8: The numbers of maximal subsemigroups of the monoids PTn, Tn, and In, for

n = 2, . . . , 12, along with the general formulae. Recall that sn denotes the number of maximal

subgroups of the symmetric group Sn [120, A290138]. See Theorem 5.7 for a description of the

maximal subsemigroups of these monoids.

http://oeis.org/A290138
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In the proof of this theorem, we make use of the following well-known facts [57, Theo-

rems 3.1.3–3.1.5]. A subset of Tn or In is a generating set if and only if the subset contains

a generating set for Sn, and any transformation or partial permutation, respectively, of rank

n − 1. In addition, a subset of PTn is a generating set for PTn if and only if it contains a

generating set for Tn and a generating set for In.

Proof. Since Sn is the group of units of PTn, Tn, and In, it follows by Lemma 4.73 that, in

each case, the maximal subsemigroups arising from the group of units are those described in the

statement of the theorem, and that there are sn of them. It remains to describe the maximal

subsemigroups of each monoid that arise from the J -class of rank n − 1. By Corollary 4.74,

the unique maximal subsemigroup of Tn or In to arise from its J -class of rank n − 1 has

type (M5). By using Lemma 4.8 with k = 2, X1 = Jn−1 ∩ Tn, and X2 = Jn−1 ∩ In, we find

that the two maximal subsemigroups of PTn arising from Jn−1 are those described.

For each of these monoids, the descriptions of the maximal subsemigroups that arise from the

J -class of rank n− 1 can also be obtained with the techniques and results from Section 4.5.2.

Certainly, these monoids are each generated by their units and their idempotents of rank n−1,

and so by Lemma 4.49(b), no maximal subsemigroups of type (M1) arise from this J -class.

The right action of Sn on the L -classes of Jn−1 given by right multiplication is transitive. On

the other hand, there are two orbits under the left action of Sn on the R-classes of Jn−1: one of

these contains the R-classes of transformations, and the other contains the R-classes of partial

permutations. Thus we may deduce the definitions of ∆(PTn), ∆(Tn), and ∆(In); pictures of

these graphs are given in Figures 5.9, 5.10, and 5.11, respectively.

{
Li : i ∈ {1, . . . , n}

}
{
Ri : i ∈ {1, . . . , n}

} {
R{i, j} : i, j ∈ {1, . . . , n}, i 6= j

}

Figure 5.9: The graph ∆(PTn). The group of units Sn acts transitively on the L -classes of

Jn−1, and so there is a single vertex corresponding to this orbit. However, Sn has two orbits

under its action on the R-classes of Jn−1, and so there are two vertices that contain R-classes.

{
Li : i ∈ {1, . . . , n}

}
{
R{i, j} : i, j ∈ {1, . . . , n}, i 6= j

}

Figure 5.10: The graph ∆(Tn). Note that this graph may be obtained as the induced subgraph

of ∆(PTn) on its orbits of Green’s classes that contain transformations.

{
Li : i ∈ {1, . . . , n}

}
{
Ri : i ∈ {1, . . . , n}

}

Figure 5.11: The graph ∆(In). Note that this graph may be obtained as the induced subgraph

of ∆(PTn) on its orbits of Green’s classes that contain partial permutations.
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By Lemma 4.80, there are no maximal subsemigroups of any of these monoids of types (M2)

or (M3), and there are no maximal subsemigroups of Tn or In of type (M4). Therefore, by

Corollary 4.75, the only maximal subsemigroup of Tn or In to arise from the J -class of rank

n − 1 has type (M5). However, by the dual of Proposition 4.79, there are two maximal sub-

semigroups of PTn of type (M4) that arise from Jn−1, which are formed by removing either

the partial permutations, or the transformations, of degree n− 1.

5.2.4 POn and PODn

The maximal subsemigroups of POn were described in [31, Theorem 1]. The maximal subsemi-

groups of PODn had not been described in the literature prior to [45]. Using our approach, we

find that the maximal subsemigroups of PODn are closely linked to those of POn.

The main results of this section are the following theorems; to state them, we first reiterate

the notation and background information given in Section 5.2.2. Let n ∈ N, n ≥ 2, be arbitrary,

and let S ∈ {POn, PODn}. Then Jn−1 ∩ S is a regular J -class of S, the L -classes of

Jn−1 ∩ S are the sets
{
Li ∩ S : i ∈ {1, . . . , n}

}
, and the R-classes are the sets

{
Ri ∩ S :

i ∈ {1, . . . , n}
}

and
{
R{i, i+1} ∩ S : i ∈ {1, . . . , n− 1}

}
. We also use the fact that POn is

idempotent generated [60, Theorem 3.13], and that PODn is generated by POn and the order-

reversing permutation (1 n)(2 n− 1) · · · (b(n+ 1)/2c d(n+ 1)/2e).

Theorem 5.12. Let n ∈ N, n ≥ 2, be arbitrary. The maximal subsemigroups of POn are:

(a) POn \ {idn} (type (M5));

(b) the union of POn \ Jn−1 and the union of the sets in{
Li ∩ POn : i ∈ A

}
∪
{
Ri ∩ POn : i /∈ A

}
∪
{
R{i, i+1} ∩ POn : i, i+ 1 /∈ A

}
,

where A is any non-empty proper subset of {1, . . . , n} (type (M2)) and;

(c) POn \R, where R is any R-class in Jn−1 ∩ POn (type (M4)).

In particular, for n ∈ N, there are 2n + 2n− 2 maximal subsemigroups of POn.

Theorem 5.13. Let n ∈ N, n ≥ 2, be arbitrary. The maximal subsemigroups of PODn are:

(a) PODn \ {(1 n)(2 n− 1) · · · (b(n+ 1)/2c d(n+ 1)/2e)} (type (M1));

(b) the union of PODn \ Jn−1 and the union of the sets in{
(Li ∪ Ln−i+1) ∩ PODn : i ∈ A

}
∪
{

(Ri ∪Rn−i+1) ∩ PODn : i /∈ A
}

∪
{

(R{i, i+1} ∪R{n−i, n−i+1}) ∩ PODn : i, i+ 1 /∈ A
}
,

where A is any non-empty proper subset of {1, . . . , dn/2e} (type (M2));

(c) PODn \ (Ri ∪Rn−i+1), for i ∈ {1, . . . , dn/2e} (type (M4)); and

(d) PODn \ (R{i, i+1} ∪R{n−i,n−i+1}), for i ∈ {1, . . . , bn/2c} (type (M4)).

In particular, for n ∈ N, there are 2dn/2e + n− 1 maximal subsemigroups of PODn.

The most substantial step involved in the proofs of these theorems is the description of the

maximal independent subsets of ∆(POn) and ∆(PODn).

Since POn has a trivial group of units, the orbits of L -classes and R-classes of Jn−1∩POn
are singletons, and ∆(POn) is isomorphic to the Graham-Houghton graph of the principal

factor of Jn−1 ∩ POn. A picture of ∆(POn) is shown in Figure 5.15.
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1 2 3 4 5 6 7 8 9 10 11 12 n

POn 2 6 12 22 40 74 140 270 528 1042 2068 4118 2n + 2n− 2

PODn 2 3 6 7 12 13 22 23 40 41 74 75 2dn/2e + n− 1

Table 5.14: The numbers of maximal subsemigroups of the monoids POn and PODn, for n =

1, . . . , 12, along with the general formulae. Note that the number of maximal subsemigroups of

POn equals the number of maximal subsemigroups of POD2n−1. See Theorems 5.12 and 5.13

for descriptions of the maximal subsemigroups of POn and PODn, respectively.

{L1} {L2} {Ln−1} {Ln}

{R1} {R2} {Rn−1} {Rn}

{R{1, 2}} {R{2, 3}} {R{n−1, n}}

. . .

Figure 5.15: A visualisation of the graph ∆(POn). The group of units of POn is trivial, and

so ∆(POn) is isomorphic to the Graham-Houghton graph of the principal factor of POn∩Jn−1.

The vertices of degree 1 in ∆(POn) are those orbits whose R-classes are composed of partial

permutations.

{L1, Ln} {L2, Ln−1} {L(n+1)/2}

{R1, Rn} {R2, Rn−1} {R(n+1)/2}

{R{1, 2}, R{n−1, n}} {R{2, 3}, R{n−2, n−1}} {R{(n−1)/2,(n+1)/2}, R{(n+1)/2,(n+3)/2}}

. . .

Figure 5.16: The graph ∆(PODn), when n is odd. Note that the orbits {L(n+1)/2} and

{R(n+1)/2} are singeltons, and that ∆(PODn) ∼= ∆
(
PO(n+1)/2

)
; see Figure 5.15. The vertices of

degree 1 in the graph are those orbits that contain R-classes composed of partial permutations.

{L1, Ln} {L2, Ln−1} {Ln/2, Ln/2+1}

{R1, Rn} {R2, Rn−1} {Rn/2, Rn/2+1}

{R{1, 2}, R{n−1, n}} {R{2, 3}, R{n−2, n−1}} {R{n/2−1, n/2}, R{n/2+1, n/2+2}} {R{n/2, n/2+1}}

. . .

Figure 5.17: The graph ∆(PODn), when n is even. Note that the orbit {R{n/2, n/2+1}} is

a singleton; this orbit and the orbits of R-classes of partial permutations are the vertices of

degree 1 in the graph.

The group of units of PODn is generated by (1 n)(2 n− 1) · · · (b(n+ 1)/2c d(n+ 1)/2e), the

unique order-reversing permutation. Since 〈(1 n)(2 n−1) · · · (b(n+1)/2c d(n+1)/2e)〉 has dn/2e
orbits on the set {1, . . . , n}, it follows by Lemma 5.6 that there are dn/2e corresponding orbits of

L -classes and dn/2e orbits of R-classes of partial permutations. Furthermore, there are bn/2c
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orbits of 〈(1 n)(2 n−1) · · · (b(n+1)/2c d(n+1)/2e)〉 on the set
{
{i, i+ 1} : i ∈ {1, . . . , n− 1}

}
,

and these orbits correspond to bn/2c orbits of R-classes of transformations. Due to the division

by 2 in each case, the properties of ∆(PODn) depend on the parity of n. A picture of ∆(PODn)

is shown in Figure 5.16 for odd n, and in Figure 5.17 for even n; see these pictures for a

description of the edges of this graph. When n is odd, the graph ∆(PODn) is isomorphic to

∆
(
POdn/2e

)
.

Given descriptions of ∆(POn) and ∆(PODn), we establish the following lemmas.

Lemma 5.18. Let K be any subset of then vertices of the graph ∆(POn). Then K is a maximal

independent subset of ∆(POn) if and only if

K =
{
{Li ∩ POn} : i ∈ A

}
∪
{
{Ri ∩ POn} : i /∈ A

}
∪
{
{R{i, i+1} ∩ POn} : i, i+ 1 /∈ A

}
for some subset A of {1, . . . , n}.

Proof. (⇒) Suppose that K is a maximal independent subset of ∆(POn). There exists a

subset A ⊆ {1, . . . , n} of indices such that
{
{Li ∩ POn} : i ∈ A

}
is the collection of L -class

vertices in K. Since a vertex of the form {Ri ∩POn} is adjacent in ∆(POn) only to the vertex

{Li ∩ POn}, it follows by the maximality of K that {Ri ∩ POn} ∈ K if and only if i /∈ A.

Similarly, since an orbit of the form {R{i, i+1}∩POn} is adjacent in ∆(POn) only to the orbits

{Li ∩ POn} and {Li+1 ∩ POn}, it follows that {R{i, i+1} ∩ POn} ∈ K if and only if i /∈ A and

i+ 1 /∈ A. We have considered all vertices of ∆(POn), and so K has the required form.

(⇐) It is easy to verify that K is a maximal independent subset of ∆(POn).

The following lemma is very similar to Lemma 5.18, and is therefore stated without proof.

Lemma 5.19. Let K be any collection of vertices of the graph ∆(PODn). Then K is a maximal

independent subset of ∆(PODn) if and only if K is equal to

{
{Li ∩ PODn, Ln−i+1 ∩ PODn} : i ∈ A

}
∪
{
{Ri ∩ PODn, Rn−i+1 ∩ PODn} : i /∈ A

}
∪
{
{R{i, i+1} ∩ PODn, R{n−i, n−i+1} ∩ PODn} : i, i+ 1 /∈ A

}
,

for some subset A of {1, . . . , dn/2e}.

We may now prove the main results of this section.

Proof of Theorems 5.12 and 5.13. The group of units of POn is trivial, and the group of units

of PODn has order 2. By Lemma 4.73, the maximal subsemigroup that arises from the group

of units in each instance is the one described.

Let S ∈ {POn, PODn}. Since PODn is generated by POn and the order-reversing permu-

tation, and since POn is idempotent generated, it follows by Lemma 4.49(b) that there are no

maximal subsemigroups of type (M1) arising from Jn−1 ∩ S. It follows directly from Proposi-

tion 4.77, and Lemmas 5.18 and 5.19, that the maximal subsemigroups of type (M2) are those

described in the theorem. There exist vertices of degree 1 in ∆(S): these are orbits of R-classes,

and each orbit of L -classes is adjacent to a vertex of degree 1. Thus by Proposition 4.79 and

its dual, there are no maximal subsemigroups of type (M3) arising from S, but each orbit of

R-classes can be removed to provide a maximal subsemigroup of type (M4). There are 2n− 1

maximal subsemigroups of this type for POn, and there are n of this type for PODn. By

Corollary 4.75, there is no maximal subsemigroup of S of type (M5).
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5.2.5 On and ODn

The maximal subsemigroups of the singular idealOn\{idn} ofOn were incorrectly described and

counted in [130]: the formula n2 − 2n+ 2 presented for the number of maximal subsemigroups

is correct for 2 ≤ n ≤ 5, but gives only a lower bound when n ≥ 6; see Table 5.28. A

correct description, although no formula for the sequence of the numbers, was later given

in [25, Theorem 2]. Since the group of units of On is trivial, the maximal subsemigroups of its

singular ideal correspond in an obvious way to the maximal subsemigroups of On. Furthermore,

the maximal subsemigroups of the singular idealODn\〈(1 n)(2 n−1) · · · (b(n+1)/2c d(n+1)/2e)〉
of ODn were described in [69, Theorem 2]. However, the group of units of ODn acts on ODn
non-trivially, and so the correspondence between the maximal subsemigroups of the singular

ideal and the maximal subsemigroups of ODn itself is lost. Thus [69] solves an essentially

different problem than the description of the maximal subsemigroups of ODn.

We summarise the information aboutOn andODn from Section 5.2.2. Let n ∈ N, n ≥ 2, and

let S ∈ {On, ODn}. Then S is a regular monoid, the set Jn−1∩S is a regular J -class of S, the

set of L -classes of Jn−1∩S is
{
Li ∩ S : i ∈ {1, . . . , n}

}
, and the set of R-classes of Jn−1∩S is{

R{i, i+1} ∩ S : i ∈ {1, . . . , n− 1}
}

. Additionally, On is generated by its idempotents of rank

n− 1 [1], and ODn is generated by On and the order-reversing permutation [49].

Since On = POn ∩ Tn, we may identify a Green’s class of Jn−1 ∩On with the Green’s class

of Jn−1 ∩POn that contains it, so that Li ∩On corresponds with Li ∩POn, and R{i, i+1} ∩On
corresponds with R{i, i+1} ∩ POn. In this way, we obtain ∆(On) as the induced subgraph of

∆(POn) on those orbits of Green’s classes that contain transformations. In other words, the

definition of ∆(On) is contained in that of ∆(POn). The graph ∆(On) contains n singleton

orbits of L -classes, and n− 1 singleton orbits of R-classes; see Figure 5.20 for a picture.

In a similar way, ∆(ODn) may be obtained as the induced subgraph of ∆(PODn) on its

orbits of Green’s classes that contain transformations. This graph contains n vertices; a picture

of ∆(ODn) is shown in Figure 5.21 for odd n, and in Figure 5.17 for even n.

{L1} {L2} {Ln−1} {Ln}

{R{1, 2}} {R{2, 3}} {R{n−1, n}}
. . .

Figure 5.20: The graph ∆(On), which is a path graph of order 2n − 1. Since the group of

units of On is trivial, ∆(On) is isomorphic to the Graham-Houghton graph of the principal

factor of Jn−1 ∩ On. Note that ∆(On) may be obtained as the induced subgraph of ∆(POn)

on its orbits of Green’s classes that contain transformations; see Figure 5.15. The vertices of

degree 1 in ∆(On) are {L1} and {Ln}.

{L1, Ln} {L2, Ln−1} {L(n−1)/2, L(n+3)/2} {L(n+1)/2}

{R{1, 2}, R{n−1, n}} {R{2, 3}, R{n−2, n−1}} {R{(n−1)/2,(n+1)/2}, R{(n+1)/2,(n+3)/2}}

. . .

Figure 5.21: The graph ∆(ODn), when n is odd. This is a path graph of order n. Note

that ∆(ODn) ∼= ∆
(
On+1/2

)
, and that ∆(ODn) may be obtained as the induced subgraph of

∆(PODn) on its orbits of Green’s classes that contain transformations; see Figure 5.16. The

vertices of degree 1 in ∆(ODn) are {L1, Ln} and {L(n+1)/2}.
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{L1, Ln} {L2, Ln−1} {Ln/2, Ln/2+1}

{R{1, 2}, R{n−1, n}} {R{2, 3}, R{n−2, n−1}} {R{n/2−1, n/2}, R{n/2+1, n/2+2}} {R{n/2, n/2+1}}

. . .

Figure 5.22: The graph ∆(ODn), when n is even. This is a path graph of order n. Note

that ∆(ODn) may be obtained as the induced subgraph of ∆(PODn) on its orbits of Green’s

classes that contain transformations; see Figure 5.17. The vertices of degree 1 in ∆(ODn) are

{L1, Ln} and {R{n/2, n/2+1}}.

For k ∈ N, define the path graph of order k to be the graph with vertex set {1, . . . , k}, and

edge set {
{i, i+ 1} : i ∈ {1, . . . , k − 1}

}
.

The vertices of degree 1 in the path graph of order k are the end-points, 1 and k. It is easy

to see that ∆(On) is isomorphic to the path graph of order 2n − 1, via the isomorphism that

maps the orbit {Li ∩ On} to the vertex 2i − 1, and maps the orbit {R{i, i+1} ∩ On} to the

vertex 2i. Similarly, ∆(ODn) is isomorphic to the path graph of order n. We can describe and

count the number of maximal independent subsets of a path graph, and therefore the maximal

independent subsets of ∆(On) and ∆(ODn), by using the following results.

Lemma 5.23. Let n ∈ N, n ≥ 2, be arbitrary, let Γ be the path graph of order n, and let U be

a subset of the vertices of Γ. Then U is a maximal independent subset of Γ if and only if the

following conditions hold:

(a) the least vertex in U is either 1 or 2; and

(b) for each i ∈ U ∩ {1, . . . , n− 1}, i+ 1 /∈ U ; and

(c) for each i ∈ U ∩ {1, . . . , n− 2}, exactly one of i+ 2 and i+ 3 is contained in U .

Proof. Since vertices in Γ are adjacent if and only if they are consecutive, U is an independent

subset of Γ if and only if (b) holds. It is easy to verify that an independent subset U of Γ is

maximal when conditions (a) and (c) hold. Conversely, if U satisfies (b) but contains neither

1 nor 2, then U ∪ {1} is an independent subset properly containing U , and U is not maximal.

Similarly, suppose that U satisfies (b) and contains some i ∈ {1, . . . , n − 2}, but contains

neither i+ 2 nor i+ 3. Then since U also does not contain i+ 1, it follows that U ∪ {i+ 2} is

an independent subset properly containing U , and U is not maximal. Thus, if U is a maximal

independent subset of Γ, then conditions (a) and (c) hold.

There are two special maximal independent subsets of a path graph: the subset of all even

vertices, and the subset of all odd vertices. These maximal independent subsets correspond to

the subset of all orbits of L -classes, and the subset of all orbits of R-classes, of ∆(On) and

∆(ODn). These are the unique maximal independent subsets that do not give rise to maximal

subsemigroups of On and ODn of type (M2): see Proposition 4.77 and Corollary 4.78.

Corollary 5.24. The number of maximal independent subsets of the path graph is counted by

the sequence (An)n∈N, defined by

A1 = 1, A2 = A3 = 2, and An = An−2 +An−3 for n ≥ 4. (5.25)

Note that An is the (n+ 6)th term of the Padovan sequence [120, A000931], which satisfies

the same recurrence, with different initial values.

http://oeis.org/A000931
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Proof. For n ∈ N, define Γn to be the path graph of order n, and let f(n) denote the number

of maximal independent subsets of Γn. It is straightforward to verify that f(1) = 1, and

f(2) = f(3) = 2, so suppose that n ≥ 4. By Lemma 5.23, if U is a maximal independent

subset of Γn−3, then U ∪{n− 1} is a maximal independent subset of Γn, and if U is a maximal

independent subset of Γn−2, then U ∪{n} is a maximal independent subset of Γn. Thus distinct

maximal independent subsets of Γn−3 and Γn−2 give rise to distinct maximal independent

subsets of Γn, and f(n) ≥ f(n − 2) + f(n − 3). Conversely, if U is a maximal independent

subset of Γn, then by Lemma 5.23, U contains either n− 1 or n. If n− 1 ∈ U , then n− 2 /∈ U ,

which implies that U \ {n− 1} is a maximal independent subset of Γn−3. Otherwise, U \ {n} is

a maximal independent subset of Γn−2. Thus f(n) ≤ f(n−2)+f(n−3), and f(n) = A(n).

We may now describe and count the maximal subsemigroups of On and ODn.

Theorem 5.26. Let n ∈ N, n ≥ 2, be arbitrary. The maximal subsemigroups of On are:

(a) On \ {idn} (type (M5));

(b) the union of On \ Jn−1 and the union of the Green’s classes in{
L(i+1)/2 ∩ On : i ∈ A, i is odd

}
∪
{
R{i/2, (i/2)+1} ∩ On : i ∈ A, i is even

}
,

where A is a maximal independent subset of the path graph of order 2n− 1 that contains

both odd and even numbers, as described in Lemma 5.23 (type (M2));

(c) On \ L, where L is any L -class in Jn−1 ∩ On (type (M3)); and

(d) On \R{i, i+1}, where i ∈ {2, . . . , n− 2} (type (M4)).

In particular, for n ≥ 3 there are A2n−1 + 2n− 4 maximal subsemigroups of On, where A2n−1

is as defined in (5.25).

Theorem 5.27. Let n ∈ N, n ≥ 3, be arbitrary. The maximal subsemigroups of ODn are:

(a) ODn \ {(1 n)(2 n− 1) · · · (b(n+ 1)/2c d(n+ 1)/2e)} (type (M1));

(b) the union of ODn \ Jn−1 and the union of the sets in

{
(L(i+1)/2 ∪ Ln+1−(i+1)/2) ∩ ODn : i ∈ A, i is odd

}
∪
{

(R{i/2, (i/2)+1} ∪R{n−(i/2),n+1−(i/2)}) ∩ ODn : i ∈ A, i is even
}
,

where A is a maximal independent subset of the path graph of order n that contains both

odd and even numbers, as described in Lemma 5.23 (type (M2));

(c) ODn \ (Li ∪ Ln−i+1), where

{
i ∈ {1, . . . , (n+ 1)/2} if n is odd,

i ∈ {1, . . . , n/2− 1} if n is even
(type (M3)); and

(d) ODn\(R{i, i+1}∪R{n−i,n−i+1}), where

{
i ∈ {2, . . . , (n− 3)/2} if n is odd,

i ∈ {2, . . . , n/2} if n is even
(type (M4)).

In particular, for n ≥ 4, there are An + n− 3 maximal subsemigroups of ODn, where An is as

defined in (5.25).
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1 2 3 4 5 6 7 8 9 10 11 12 n

On 1 3 6 11 18 29 47 77 128 216 369 636 A2n−1 + 2n− 4

ODn 1 2 3 4 6 8 11 14 18 23 29 37 An + n− 3

Table 5.28: The numbers of maximal subsemigroups of the monoids On and ODn, for n =

1, . . . , 12, along with the general formulae. The sequence (An)n∈N is defined in (5.25). Note

that the number of maximal subsemigroups of On equals the number of maximal subsemigroups

of OD2n−1. See Theorems 5.26 and 5.27 for descriptions of the maximal subsemigroups of On
and ODn, respectively.

Proof of Theorems 5.26 and 5.27. The group of units of On is trivial, and the group of units

of ODn has order 2. By Lemma 4.73, the maximal subsemigroup that arises from the group of

units in each instance is the one described.

Since On is generated by idn and its idempotents of rank n− 1, and since ODn is generated

by these idempotents and its non-identity permutation, it follows by Lemma 4.49(b) that there

are no maximal subsemigroups of type (M1) arising from the J -class consisting of elements of

rank n− 1. Since ∆(On) and ∆(ODn) are path graphs of length 2n− 1 and n, respectively, it

follows by Proposition 4.77 and Lemma 5.23 that the maximal subsemigroups of type (M2) are

those described in the theorems. By Corollary 4.78 and Corollary 5.24, the number of maximal

subsemigroups of type (M2) is A2n−1 − 2 for On, and An − 2 for ODn.

Let S ∈ {On, ODn}. By Corollary 4.75, and since n ≥ 4, there is no maximal subsemigroup

of S of type (M5). To describe the maximal subsemigroups of types (M3) and (M4), it suffices

to identify the two vertices of ∆(S) that are adjacent to the end-points of ∆(S). From this, the

description of the maximal subsemigroups of types (M3) and (M4) follows from Proposition 4.79

and its dual. In particular, the total number of both types of maximal subsemigroups is two

less than the number of vertices of ∆(S).

5.2.6 POIn and PODIn
The maximal subsemigroups of POIn are described and counted in [56, Theorem 2], and those of

PODIn are described and counted in [29, Theorem 4]. Extensive additional information about

POIn may be found in [48,56]. We reprove these results in this section, for completeness.

We recall the following information from Section 5.2.2. Let n ∈ N, n ≥ 2, be arbitrary, and

let S ∈ {POIn, PODIn}. Then S is an inverse monoid, and Jn−1 ∩S is a J -class of S. Since

POIn is generated by idn and its elements of rank n− 1 [48, Lemma 2.7], and since PODIn is

generated by POIn and the permutation (1 n)(2 n− 1) · · · (b(n+ 1)/2c d(n+ 1)/2e), it follows

by Lemma 4.68 that the maximal subsemigroups of S arise from its group of units and from its

J -class Jn−1 ∩S. By definition, POIn = POn ∩In, and PODIn = PODn ∩In, and so given

the description of the Green’s classes of POn and PODn from Section 5.2.4, it follows that

(Jn−1 ∩ S)/L =
{
Li ∩ S : i ∈ {1, . . . , n}

}
, and (Jn−1 ∩ S)/R =

{
Ri ∩ S : i ∈ {1, . . . , n}

}
.

In Theorems 5.29 and 5.30, we describe the maximal subsemigroups of these inverse monoids.

Theorem 5.29. Let n ∈ N, n ≥ 2, be arbitrary. The maximal subsemigroups of POIn are:

(a) POIn \ {idn} (type (M5)); and

(b) the union of POIn \ Jn−1 and the union of{
Li ∩ POIn : i ∈ A

}
∪
{
Ri ∩ POIn : i /∈ A

}
,
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where A is any non-empty proper subset of {1, . . . , n} (type (M2)).

In particular, for n ≥ 2, there are 2n − 1 maximal subsemigroups of POIn.

Proof. The inverse monoid POIn is H -trivial, and so by Lemma 4.49(a) there are no maximal

subsemigroups of type (M1), and by Lemma 4.73, the unique maximal subsemigroup arising

from the group of units is formed by removing idn. Since the group of units of POIn is trivial,

its action on the L -classes of Jn−1 ∩ POIn is also trivial. Therefore, there are n singleton

orbits. The R-class Ri ∩ POIn is equal to (Li ∩ POIn)
−1

, and so by Corollary 4.82, the

maximal subsemigroups of POIn arising from Jn−1 ∩ POIn are those of type (M2) described

in the theorem.

Theorem 5.30. Let n ∈ N, n ≥ 3, be arbitrary. For i, j ∈ {1, . . . , n}, define αi,j to be the

order-preserving partial permutation with domain {1, . . . , n} \ {i} and image {1, . . . , n} \ {j},
and define βi,j to be the order-reversing partial permutation with this domain and image. The

maximal subsemigroups of PODIn are:

(a) PODIn \ {(1 n)(2 n− 1) · · · (b(n+ 1)/2c d(n+ 1)/2e)} (type (M1));

(b) (PODIn \ Jn−1) ∪ IA, where n is even,

IA =
{
αi,j , βi,n−j+1, βn−i+1,j , αn−i+1,n−j+1 : i, j ∈ A or i, j /∈ A

}
∪
{
βi,j , αi,n−j+1, αn−i+1,j , βn−i+1,n−j+1 : i ∈ A, j /∈ A or i /∈ A, j ∈ A

}
,

and A is any subset of {2, . . . , n/2} (type (M1)); and

(c) the union of PODIn \ Jn−1 and the union of the sets in{
(Li ∪ Ln−i+1) ∩ PODIn : i ∈ A

}
∪
{

(Ri ∪Rn−i+1) ∩ PODIn : i /∈ A
}
,

where A is any non-empty proper subset of {1, . . . , dn/2e} (type (M2)).

In particular, for n ≥ 3 there are 3 · 2(n/2)−1 − 1 maximal subsemigroups of PODIn when n is

even, and 2(n+1)/2 − 1 when n is odd.

1 2 3 4 5 6 7 8 9 10 n

POIn 2 3 7 15 31 63 127 255 511 1023 2n − 1

PODIn 2 2 3 5 7 11 15 23 31 47

{
3 · 2(n/2)−1 − 1 even n

2(n+1)/2 − 1 odd n

Table 5.31: The numbers of maximal subsemigroups of the monoids POIn and PODIn,

for n = 1, . . . , 10, along with the general formulae. Note that the number of maximal sub-

semigroups of POIn equals the number of maximal subsemigroups of PODI2n−1. See The-

orems 5.29 and 5.30 for descriptions of the maximal subsemigroups of POIn and PODIn,

respectively.

Proof. Since the group of units of PODIn is generated by the permutation (1 n)(2 n −
1) · · · (b(n+ 1)/2c d(n+ 1)/2e), which has order two, it follows by Lemma 4.73 that the unique

maximal subsemigroup arising from the group of units of PODIn is formed by removing this

non-identity permutation.
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The graph ∆(PODIn) may be obtained as the induced subgraph of ∆(PODn) on those

orbits of Green’s classes that contain partial permutations. In particular, the orbits of the

group of units 〈(1 n)(2 n− 1) · · · (b(n+ 1)/2c d(n+ 1)/2e)〉 on the L -classes of Jn−1 ∩PODIn
are the sets {Li ∩PODIn, Ln−i+1 ∩PODIn}, for each i ∈ {1, . . . , dn/2e}. By Corollary 4.82,

the maximal subsemigroups of PODIn that arise from Jn−1 ∩ PODIn are those 2dn/2e − 2

maximal subsemigroups of type (M2) described in the statement of the theorem, as well as any

maximal subsemigroups of type (M1).

It remains to describe the maximal subsemigroups of PODIn that arise from Jn−1∩PODIn
and that have type (M1); suppose that M is such a maximal subsemigroup. By Proposi-

tion 4.10(b), the intersection of M with each H -class of Jn−1 ∩ PODIn is non-empty, and

each of these intersections has some common size, q ≥ 1. Since an H -class in Jn−1 ∩ PODIn
contains two elements, and M is a proper subsemigroup of PODIn that lacks only elements

from Jn−1 ∩ PODIn, it follows that q = 1. In other words, the intersection of M with each

H -class of Jn−1 ∩ PODIn contains a single element. For i, j ∈ {1, . . . , n}, let δi,j denote the

unique element of M that is contained in the H -class PODIn ∩ (Li ∩ Rj) = {αi,j , βi,j} of

PODIn. In other words, M ∩ (Li ∩Rj) = {δi,j}.
Since M contains γ, it follows that δi,j ∈ M if and only if δi,j · γ ∈ M , γ · δi,j ∈ M , and

γ ·δi,j ·γ ∈M . In particular, αi,j ∈M if and only if αi,j , βi,n−j+1, βn−i+1,j , αn−i+1,n−j+1 ∈M ,

and βi,j ∈M if and only if βi,j , αi,n−j+1, αn−i+1,j , βn−i+1,n−j+1 ∈M . For odd n, this leads

to the statement that α(n+1)/2,(n+1)/2 ∈ M if and only if β(n+1)/2,(n+1)/2 ∈ M , contradicting

the fact that M contains exactly 1 element in each H -class of Jn−1∩PODIn. Hence n is even.

Given these observations, in order to describe M , it suffices to specify δi,j for each i, j ∈
{1, . . . , n/2}. Indeed, our description can be even more concise. We observe that δi,i = αi,i,

since M contains every idempotent of PODIn. This implies that δi,j · δj,i = δi,i = αi,i,

and so δi,j = αi,j if and only if δj,i = αj,i. Furthermore, δi,j = δi,1δ1,j . Thus, to specify

δi,j for each i, j ∈ {1, . . . , n}, it suffices to specify δ1,i for each i ∈ {2, . . . , n/2}. Let A ={
i ∈ {2, . . . , n/2} : δ1,i = β1,j

}
. A routine calculation shows that M = (PODIn \ Jn−1)∪ IA,

where IA is the set defined in the statement of the theorem.

Conversely, for an even number n ≥ 4 and a subset A ⊆ {2, . . . , n/2}, it is tedious, but

routine, to verify that (PODIn \ Jn−1) ∪ IA is a subsemigroup of PODIn; by construction, it

intersects every H -class of PODIn non-trivially. Any maximal subsemigroup of PODIn that

contains (PODIn \ Jn−1)∪ IA has type (M1), and so by the preceding arguments, we see that

it is equal to (PODIn \ Jn−1)∪ IA. Thus (PODIn \ Jn−1)∪ IA is a maximal subsemigroup of

PODIn of type (M1).

For two subsets A,A′ ⊆ {2, . . . , n/2}, it is clear from the definitions that IA = IA′ if and

only if A = A′. Thus there are 2(n/2)−1 maximal subsemigroups of type (M1) when n is even,

and none when n is odd.

5.2.7 POPn, PORn, OPn, and ORn

The maximal subsemigroups of OPn were described in [28, Theorem 1.6], and the maximal

subsemigroups of ORn were described in [28, Theorem 2.6]. Prior to the publication of [45], no

description of the maximal subsemigroups of POPn and PORn had appeared in the literature.

To state the results of this section, we require the following notation and information from

Section 5.2.2. Let n ∈ N, n ≥ 2, be arbitrary, and let S ∈ {POPn, PORn, OPn, ORn}. Then

Jn−1 ∩ S is a regular J -class of S. Since On and POn are each generated by {idn} and their

idempotents of rank n − 1 [60], it follows that S is generated by its units and idempotents of

rank n− 1.

The L -classes contained in Jn−1∩S are the intersections Li∩S, for each i ∈ {1, . . . , n}. If
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S ∈ {POPn, PORn}, then the R-classes of Jn−1∩S are the sets Ri∩S, for each i ∈ {1, . . . , n},
and R{i, i+1}∩S, for each i ∈ {1, . . . , n−1}, along with the set R{1, n}∩S. If S ∈ {OPn, ORn},
then S ≤ Tn, and so the R-classes of Jn−1∩S are the sets R{i, i+1}∩S for each i ∈ {1, . . . , n−1}
and R{1, n} ∩ S. The group of units of POPn and OPn is Cn, defined in (5.4), and the group

of units of PORn and ORn is Dn, defined in (5.5).

The following theorems are the main results of this section.

Theorem 5.32. Let n ∈ N, n ≥ 3, be arbitrary, let S ∈ {POPn, PORn}, and let G be the

group of units of S. The maximal subsemigroups of S are:

(a) (S \G) ∪ U , where U is a maximal subgroup of G (type (M1)); and

(b) S \
{
α ∈ S ∩ Tn : rank(α) = n− 1

}
(type (M4)); and

(c) S \ {α ∈ S ∩ In : rank(α) = n− 1} (type (M4)).

In particular, for n ≥ 3, there are |Pn|+ 2 maximal subsemigroups of POPn, and 3 +
∑
p∈Pn

p

maximal subsemigroups of PORn, where Pn is the set of primes that divide n.

Proof. By Lemmas 4.73, 5.1, and 5.2, the maximal subsemigroups that arise from the group

of units are those described in the statement of the theorem; there are |Pn| such maximal

subsemigroups of POPn, and 1 +
∑
p∈Pn

p such maximal subsemigroups of PORn.

Let S ∈ {POPn, PORn}, and let G be the group of units of S. Since POn is idempo-

tent generated, and S = 〈POn, G〉, it follows by Lemma 4.49(b) that there are no maximal

subsemigroups of type (M1) arising from Jn−1 ∩ S.

The remainder of the proof is similar to the discussion in Section 5.2.3 after the proof of

Theorem 5.7. The group of units G of S acts transitively on the L -classes of Jn−1 ∩ S, and

so there are no maximal subsemigroups of types (M2) and (M3) by Lemma 4.80. On the other

hand, G has two orbits on the set of R-classes of Jn−1∩S: it transitively permutes the R-classes

of transformations, and it transitively permutes the R-classes of partial permutations. By the

dual of Proposition 4.79, the two maximal subsemigroups of S of type (M4) are found by remov-

ing either the partial permutations, or the transformations, of rank n − 1. By Corollary 4.75,

there is no maximal subsemigroup of type (M5).

Theorem 5.33. Let n ∈ N, n ≥ 3, be arbitrary, let S ∈ {OPn, ORn}, and let G be the group

of units of S. The maximal subsemigroups of S are:

(a) (S \G) ∪ U , where U is a maximal subgroup of G (type (M1)); and

(b) S \ {α ∈ S : rank(α) = n− 1} (type (M5)).

In particular, for n ≥ 3, there are |Pn| + 1 maximal subsemigroups of OPn, and 2 +
∑
p∈Pn

p

maximal subsemigroups of ORn, where Pn is the set of primes that divide n.

Proof. Let S ∈ {OPn, ORn}, and let G be the group of units of S. The description and number

of the maximal subsemigroups arising from G follows by the same arguments that were used in

the proof of Theorem 5.32. Let α ∈ Jn−1∩S be arbitrary, and let ε be an arbitrary idempotent

of On of rank n− 1. Since G acts transitively on the L - and R-classes of Jn−1 ∩S, there exist

permutations σ, τ ∈ G such that σατ ∈ HS
ε . Therefore ε = (σατ)

k
for some k ∈ N. Since ε was

chosen arbitrarily, it follows that 〈G, α〉 contains every idempotent of S of rank n− 1. But S

is generated by its units and idempotents of rank n− 1, and so S = 〈G, α〉. The description of

the remaining maximal subsemigroup follows by Corollary 4.74.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 n

POPn 2 3 3 3 3 4 3 3 3 4 3 4 3 4 4 |Pn|+ 2

OPn 1 2 2 2 2 3 2 2 2 3 2 3 2 3 3 |Pn|+ 1

PORn 2 3 6 5 8 8 10 5 6 10 14 8 16 12 11 3 +
∑
p∈Pn

p

ORn 1 2 5 4 7 7 9 4 5 9 13 7 15 11 10 2 +
∑
p∈Pn

p

Table 5.34: The numbers of maximal subsemigroups of the monoids POPn, OPn, PORn,

and ORn, for n = 1, . . . , 15, along with the general formulae. Recall that Pn denotes the set of

primes that divide n. See Theorems 5.32 and 5.33 for descriptions of the maximal subsemigroups

of these monoids.

5.2.8 POPIn and PORIn
The maximal subsemigroups of the inverse monoids POPIn and PORIn exhibit maximal

subsemigroups of type (M1) arising from a J -class covered by the group of units, and to which

we can apply Proposition 4.85.

Let n ∈ N, n ≥ 2, be arbitrary, and let S ∈ {POPIn, PORIn}. Then Jn−1 ∩S is a regular

J -class of S consisting of partial permutations, and S is generated by its units and its elements

of this J -class. By definition, POPIn = POPn ∩ In and PORIn = PORn ∩ In. Therefore,

the group of units of POPIn is Cn and the group of units of PORIn is Dn, and it follows from

Section 5.2.7 that the L -classes and R-classes of Jn−1 ∩ S are
{
Li ∩ S : i ∈ {1, . . . , n}

}
and{

Ri ∩ S : i ∈ {1, . . . , n}
}

, respectively.

We describe the maximal subsemigroups of POPIn and PORIn in the following theorems.

Theorem 5.35. Let n ∈ N, n ≥ 3, be arbitrary, and define the partial permutation of degree n

ζn =

(
1 2 · · · n− 2 n− 1 n

2 3 · · · n− 1 1 −

)
.

For k ∈ N, let Pk denote the set of all primes that divide k. Then the maximal subsemigroups

of POPIn are the sets:

(a) (POPIn \ Cn) ∪ U , where U is a maximal subgroup of Cn (type (M1)); and

(b) 〈POPIn \ Jn−1, ζ
p
n〉, for each p ∈ Pn−1 (type (M1)).

In particular, for n ≥ 3, there are |Pn|+ |Pn−1| maximal subsemigroups of POPIn.

Proof. By Lemmas 4.73 and 5.1, the |Pn|maximal subsemigroups arising from the group of units

Cn are those stated in the theorem. Since POPIn is inverse, its idempotents are projections,

and certainly Cn acts transitively on the L -classes and R-classes of Jn−1 ∩ POPIn. Define

H = HPOPInζn
=
{
α ∈ POPIn : dom(α) = im(α) = {1, . . . , n− 1}

}
.

Then H is a group H -class in the J -class Jn−1∩POPIn. Note that H is a cyclic group of or-

der n−1, generated by the partial permutation ζn, with identity e = ζn−1
n . Since the conditions

of Proposition 4.85 are satisfied, we may apply its conclusions. Therefore, the maximal sub-

semigroups that arise from Jn−1∩POPIn are the subsemigroups 〈POPIn \Jn−1, U〉, for each

maximal subgroup U of H that contains e · StabCn(H) (see Definition 4.83), or POPIn \ Jn−1,

if no such maximal subgroups exist. The setwise stabilizer StabCn(H) is equal to the pointwise

stabilizer {σ ∈ Cn : nσ = n} of n in Cn, which is trivial. Therefore, any maximal subgroup of

H gives rise to a maximal subsemigroup of POPIn; by Lemma 5.1, the maximal subgroups of

H are 〈ζpn〉 for each p ∈ Pn−1, and as n ≥ 3, the result follows.
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Theorem 5.36. Let n ∈ N, n ≥ 4, be arbitrary, and define the partial permutations

ζn =

(
1 2 · · · n− 2 n− 1 n

2 3 · · · n− 1 1 −

)
, and τn =

(
1 2 · · · n− 1 n

n− 1 n− 2 · · · 1 −

)
.

For k ∈ N, let Pk denote the set of all primes that divide k. Then the maximal subsemigroups

of PORIn are the sets:

(a) (PORIn \ Dn) ∪ U , where U is a maximal subgroup of Dn (type ((M1))); and

(b) 〈PORIn \ Jn−1, ζ
p
n, τn〉, for each p ∈ Pn−1 (type (M1)).

In particular, for n ≥ 4, there are 1 + |Pn−1|+
∑
p∈Pn

p maximal subsemigroups of PORIn.

Proof. By Lemmas 4.73 and 5.2, and since n ≥ 4, the description of the maximal subsemigroups

arising from the group of units Dn is as stated in the theorem, and there are
∑
p∈Pn

p+ 1 such

maximal subsemigroups.

Since PORIn is inverse, each of its idempotents is a projection, and Dn acts transitively

on the L -classes and R-classes of Jn−1 ∩ PORIn. Therefore we may use Proposition 4.85 to

describe the maximal subsemigroups of PORIn that arise from Jn−1 ∩ PORIn. Define e to

be the idempotent partial permutation with domain and image {1, . . . , n− 1}, and define

H = HPORIne =
{
α ∈ PORIn : dom(α) = im(α) = {1, . . . , n− 1}

}
.

Then H is a group H -class of PORIn contained in Jn−1 ∩ PORIn. Note that since n ≥ 4,

H is a dihedral group of order 2(n− 1), and it is generated by the partial permutations ζn and

τn. An element of Dn belongs to the setwise stabilizer StabDn
(H) if and only if it fixes the

point n. Thus StabDn
(H) contains only the identity permutation idn, which fixes every point

in {1, . . . , n}, and the permutation (1 n−1)(2 n−2) · · · (bn/2c dn/2e) that fixes n and reverses

the order of {1, . . . , n− 1}. In particular,

e · StabDn(H) =
{
e · h : h ∈ StabDn(H)

}
= {e, τn}.

Since any subgroup of H contains e, it follows from Proposition 4.85 that the maximal subsemi-

groups arising from PORIn ∩ Jn−1 are 〈PORIn \ Jn−1, U〉, for each maximal subgroup U of

H that contains τn. By Lemma 5.2, the maximal subgroups of H are 〈ζn〉 and the subgroups

〈ζpn, τnζin〉, where p ∈ Pn−1 and 0 ≤ i ≤ p− 1. Thus the maximal subgroups of H that contain

τn are those in the latter form where i = 0. It follows that the maximal subsemigroups arising

from PORIn ∩ Jn−1 are those stated in the theorem, and that there are |Pn−1| such maximal

subsemigroups.

1 2 3 4 5 6 7 8 9 10 11 12 n

POPIn 2 2 2 2 2 3 3 2 2 3 3 3 |Pn|+ |Pn−1|
PORIn 2 2 5 4 7 7 10 4 5 9 14 7 1 + |Pn−1|+

∑
p∈Pn

p

Table 5.37: The numbers of maximal subsemigroups of the monoids POPIn and PORIn,

for n = 1, . . . , 12, along with the general formulae. Note that Pn denotes the set of primes

that divide n. See Theorems 5.35 and 5.36 for descriptions of the maximal subsemigroups of

POPIn and PORIn, respectively.
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5.3 Diagram monoids

In this section, we describe and count the maximal subsemigroups of the partition monoid,

and several of its submonoids. We define these monoids in Section 5.3.1, and provide some

additional necessary information about them in Section 5.3.2. We then classify the maximal

subsemigroups of these monoids in Sections 5.3.3–5.3.7.

5.3.1 Definitions

Recall from Section 1.1 that an equivalence is a reflexive, symmetric, and transitive relation on

a set, and recall that a partition of a set is a collection of non-empty disjoint subsets of that set

whose union is the whole set. Since the equivalence classes of an equivalence form a partition,

and vice versa, we may consider these notions to be interchangeable.

Let n ∈ N be arbitrary. A partition of degree n is an equivalence on the set

{1, . . . , n} ∪ {1′, . . . , n′}.

The equivalence classes of a partition of degree n are called blocks, and a block is called trans-

verse if it contains points from both {1, . . . , n} and {1′, . . . , n′}. A block bijection is a partition

of some degree whose blocks are all transverse, and a block bijection of degree n is uniform if

each of its blocks contains an equal number of points of {1, . . . , n} and {1′, . . . , n′}.

Example 5.38. Define partitions γ and δ of degree 5 by

γ = {{1, 1′}, {2, 2′, 4′}, {3}, {3′, 5′}, {4, 5}}, and δ = {{1, 2, 2′, 3′, 5′}, {3, 1′}, {4, 5, 4′}}.

There are five blocks in γ, only two of which are transverse, and δ has three blocks, which are

all transverse. Therefore δ is a block bijection, but γ is not. However, δ is not a uniform block

bijection, since, for example, its block {4, 5, 4′} contains two points from {1, . . . , 5}, but only

one point from {1′, . . . , 5′}.

The topic of this thesis is semigroup theory, and so of course we require an associative

operation on partitions of the same degree. Let n ∈ N be arbitrary, and let α and β be partitions

of degree n. Calculating the product αβ involves several steps, and requires three auxiliary

partitions, each one being a partition of a different set. From α, we create a partition α∨ of the

set {1, . . . , n}∪{1′′, . . . , n′′}, by replacing every occurrence of each i′ in α by i′′. Similarly, by

replacing each i in β by i′′, we obtain from β a partition β∧ of {1′′, . . . , n′′}∪{1′, . . . , n′}. We

define (αβ)
�

to be the smallest equivalence on {1, . . . , n} ∪ {1′, . . . , n′} ∪ {1′′, . . . , n′′} that

contains the relation α∨ ∪ β∧. In other words, since α∨ ∪ β∧ is reflexive and symmetric, (αβ)
�

is the least transitive relation that contains α∨∪β∧. Finally, the product αβ is the intersection

of (αβ)
�

with ({1, . . . , n} ∪ {1′, . . . , n′})× ({1, . . . , n} ∪ {1′, . . . , n′}). See [70, Section 1] for

a different approach to defining this multiplication.

This operation may be shown to be associative, and so the set Pn of all partitions of degree n

forms a semigroup under this operation. The partition
{
{i, i′} : i ∈ {1, . . . , n}

}
is the identity

element of this semigroup. We call this element the identity partition of degree n. Therefore

Pn is a monoid, named the partition monoid of degree n. A diagram monoid is the name given

to any submonoid of a partition monoid.

Example 5.39. Let γ and δ be the partitions of degree 5 defined in Example 5.38. We form

the product δγ as follows. First, we create the partitions

δ∨ = {{1, 2, 2′′, 3′′, 5′′}, {3, 1′′}, {4, 5, 4′′}}, and

γ∧ = {{1′′, 1′}, {2′′, 2′, 4′}, {3′′}, {3′, 5′}, {4′′, 5′′}}.
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The least equivalence on {1, . . . , 5} ∪ {1′, . . . , 5′} ∪ {1′′, . . . , 5′′} that contains δ∨ ∪ γ∧ is

(δγ)
�

= {{1, 2, 4, 5, 2, 2′, 4′, 2′′, 3′′, 4′′, 5′′}, {3, 1′, 1′′}, {3′, 5′}, {3′′}};

its intersection with {1, . . . , 5} ∪ {1′, . . . , 5′} is the product

δγ = {{1, 2, 4, 5, 2′, 4′}, {3, 1′}, {3′, 5′}}.

Let n ∈ N and α ∈ Pn. We define α∗ to be the partition of degree n created from α by

replacing the point i by i′ in the block in which it appears, and by replacing the point i′ by i,

for all i ∈ {1, . . . , n}. For example, if α = {{1, 3′}, {3}, {2, 1′, 2′}}, a partition of degree 3,

then α∗ = {{1′, 3}, {3′}, {2′, 1, 2}}. For arbitrary partitions α, β ∈ Pn, the following hold:

(α∗)
∗

= α, αα∗α = α, and (αβ)
∗

= β∗α∗.

In particular, Pn is a regular ∗-monoid, as defined in Section 1.3.3.

There is a canonical embedding ψ : Sn −→ Pn, where a permutation α ∈ Sn is mapped

to the partition
{
{i, (iα)′} : i ∈ {1, . . . , n}

}
. It is easy to verify that the units of Pn are

those partitions whose blocks have the form {i, j′}, for some i, j ∈ {1, . . . , n}. It follows that

the image of ψ is the group of units of Pn. Therefore, throughout this section, we identify

the permutation group Sn with the group of units of Pn. In particular, we use disjoint cycle

notation to refer to units in Pn, and we use idn to denote the identity element of Pn.

In order to introduce the notions of planar and annular partitions, which are necessary to

define some of the monoids whose maximal subsemigroups we classify, we define a canonical

ordering

n′ < (n− 1)′ < · · · < 1′ < 1 < 2 < · · · < n (5.40)

on the set {1, . . . , n} ∪ {1′, . . . , n′}. A partition α ∈ Pn is planar if there do not exist distinct

blocks A and X of α, and points a, b ∈ A and x, y ∈ X, such that a < x < b < y. More

generally, if ρn = (1 2 . . . n), then a partition α ∈ Pn is said to be annular if α = ρkn ·β · ρln for

some planar partition β ∈ Pn and for some indices k, l ∈ N0. A partition may be represented

graphically; planar and annular partitions have special representations in this context. For

more information about this, see [4, 70].

Let n ∈ N be arbitrary. In Sections 5.3.3–5.3.7, we classify the maximal subsemigroups of

Pn, and the following submonoids:

• PBn = {α ∈ Pn : each block of α contains 1 or 2 points}, the partial Brauer monoid of

degree n, introduced in [97];

• Bn = {α ∈ Pn : each block of α contains 2 points}, the Brauer monoid of degree n,

introduced in [97];

• I∗n = {α ∈ Pn : α is a block bijection}, the dual symmetric inverse monoid of degree n,

introduced in [52];

• Fn = {α ∈ Pn : α is a uniform block bijection}, the uniform block bijection monoid

of degree n, also known as the factorisable dual symmetric inverse monoid of degree n,

see [50] for more details;

• PPn = {α ∈ Pn : α is planar}, the planar partition monoid of degree n, introduced

in [70];

• Mn = {α ∈ PBn : α is planar}, the Motzkin monoid of degree n, see [9] for more details;
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• Jn = {α ∈ Bn : α is planar}, the Jones monoid of degree n, also known as the Temperley-

Lieb monoid, introduced in [84]; and

• AJn = {α ∈ Bn : α is annular}, the annular Jones monoid of degree n, introduced in [4].

Each of these diagram monoids is closed under the ∗ operation, and is therefore a regular ∗-
semigroup. Furthermore, the monoids I∗n and Fn, which consist of block bijections, are inverse.

The groups of units of PBn, Bn, I∗n, and Fn are the symmetric group Sn; the group of units of

AJn is the cyclic group Cn, as defined in (5.4); and the groups of units of PPn, Mn, and Jn
are the trivial group {idn}. See Figure 5.41 for a diagram showing the containment of these

submonoids of Pn, and their groups of units.

By [70], the planar partition monoid PPn is isomorphic to the Jones monoid J2n. Therefore,

we will not separately determine the maximal subsemigroups of PPn, since their descriptions

can be deduced from the results in Section 5.3.7. The maximal subsemigroups of I∗n were

described in [94, Theorem 19], but we reprove this result for completeness. The maximal

subsemigroups of the remaining monoids had not been classified until the publication of [45].

{idn}

Jn

Mn

PPn

Pn

Bn

PBn

AJn

I∗n

Fn

Sn

Cn

Figure 5.41: A Hasse diagram showing the containment of the diagram monoids defined in

Section 5.3.1, along with their groups of units. We classify the maximal subsemigroups of these

monoids in Sections 5.3.3–5.3.7.

5.3.2 Preliminaries

In order to prove the descriptions of the maximal subsemigroups of the diagram monoids de-

fined in Section 5.3.1, we require some additional information about these monoids, which we

introduce in this section.

Let n ∈ N be arbitrary. Define the function φ : PTn −→ Pn such that if α ∈ PTn, then the

non-singleton blocks of αφ are {i′}∪iα−1, for each i ∈ im(α). It is clear that φ is injective, since

a partial transformation α is uniquely determined by its image and the pre-image iα−1 of each

point i in im(α). The restriction of φ to Tn gives an embedding, as does the restriction of φ to In.

However, φ is not a homomorphism in general. Nevertheless, this injective function gives us a

means of regarding partitions as generalisations of partial transformations. Furthermore, planar

and annular partitions generalise order- and orientation-preserving partial transformations: for

any α ∈ PTn, α is order-preserving if and only if αφ is planar, and α is orientation-preserving

if and only if αφ is annular.
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Let α ∈ Pn be arbitrary. We require the following notions. The rank of α is the number of

transverse blocks that it contains, and is denoted by rank(α). The kernel of α, ker(α), is the

restriction of the equivalence α to {1, . . . , n}. We also define dom(α), the domain of α, to be

the subset of {1, . . . , n} consisting of those points that are contained in a transverse block of α.

Given these definitions, we define coker(α) = ker(α∗) and codom(α) = dom(α∗), the cokernel

and codomain of α, respectively.

Example 5.42. Let ξ be the partition of degree 5 given by

ξ = {{1, 3}, {2, 4, 2′}, {5, 1′, 3′, 4′}, {5′}}.

Then the rank of ξ is two, since it contains two transverse blocks. The equivalence classes

of the kernel of ξ are {{1, 3}, {2, 4}, {5}}, and the domain of ξ is {2, 4, 5}. Furthermore,

codom(ξ) = {1, 2, 3, 4}, and the equivalence classes of coker(ξ) are {{1, 3, 4}, {2}, {5}}.

For the majority of the monoids defined in Section 5.3.1, their Green’s relations are com-

pletely determined by domain, kernel, and rank, as shown in the following lemma.

Lemma 5.43. Let n ∈ N, let S ∈ {Pn, PBn, Bn, I∗n,Mn, Jn}, and let α, β ∈ S. Then:

(a) α R β if and only if dom(α) = dom(β) and ker(α) = ker(β);

(b) α L β if and only if codom(α) = codom(β) and coker(α) = coker(β); and

(c) α J β if and only if rank(α) = rank(β).

See [97], [127, Theorem 17], and [33, Theorem 2.4] for the proof of this lemma. For n ∈ N
and k ∈ {0, 1, . . . , n}, we define

Jk = {α ∈ Pn : rank(α) = k}

to be the J -class of Pn that comprises the partitions of rank k.

If S is a regular ∗-semigroup and x, y ∈ S, then x L y if and only if x∗ R y∗, and so

parts (a) and (b) of Lemma 5.43 are equivalent. For the uniform block bijection monoid Fn,

parts (a) and (b) certainly hold, since Fn is a regular submonoid of Pn [76, Proposition 2.4.2]

(indeed, it is inverse). However, while part (c) does not hold for Fn in general, it does hold for

uniform block bijections of ranks n or n− 1 [52, Section 3]. The description also holds for the

annular Jones monoid AJn.

It follows that, in general, if S is any of the diagram monoids defined in Section 5.3.1, then

S has a unique J -class J that is covered by the group of units of S. In the case that S is either

the partition monoid or the Jones monoid, in order to determine the maximal subsemigroups

of S that arise from this J -class J , we require the graph ∆(S, J), as defined in Section 4.4.2

and further discussed in Section 4.5. Given a description of the L -classes and R-classes of J ,

to describe ∆(S, J), it remains to describe the left action of the group of units on the R-classes

of J by left multiplication. Since S is a regular ∗-monoid, a description of the right action of

the group of units on the L -classes of J by right multiplication is obtained as a consequence.

If α ∈ Pn and σ ∈ Sn, then the blocks are σα are

(A ∩ {1, . . . , n})σ−1 ∪ (A ∩ {1′, . . . , n′}),

for each block A of α. Therefore,

dom(σα) =
{
iσ−1 : i ∈ dom(α)

}
and ker(σα) =

{(
iσ−1, jσ−1

)
: (i, j) ∈ ker(α)

}
. (5.44)

Given this description and Lemma 5.43, the left action of a subgroup of Sn on the R-classes of

a particular J -class is straightforward to determine.
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5.3.3 The partition monoid Pn

Let n ∈ N, n ≥ 2, be arbitrary. In this section, we classify the maximal subsemigroups of the

partition monoid of degree n. To do so, we require the following information about the Green’s

classes of Pn contained in its J -class Jn−1. Let α ∈ Jn−1. By definition, α contains n − 1

transverse blocks. Since each transverse block contains at least two points, and since there

are only 2n points in {1, . . . , n} ∪ {1′, . . . , n′}, there are few possible combinations for the

kernel and domain for α. In particular, either ker(α) is trivial and dom(α) = {1, . . . , n} \ {i}
for some i ∈ {1, . . . , n}, or dom(α) = {1, . . . , n} and {i, j} is the unique non-trivial kernel

class of α, for some distinct point i, j ∈ {1, . . . , n}. By Lemma 5.43, these properties describe

the R-classes of Jn−1. Since the L -classes and R-classes of a regular ∗-semigroup correspond

via the ∗ operation, this also gives a description of the L -classes of Jn−1. Thus, for distinct

i, j ∈ {1, . . . , n}, we make the following definitions:

• Ri =
{
α ∈ Jn−1 : dom(α) = {1, . . . , n} \ {i}

}
, which is an R-class of Jn−1;

• R{i, j} =
{
α ∈ Jn−1 : (i, j) ∈ ker(α)

}
, which is an R-class of Jn−1;

• Li = R∗i =
{
α ∈ Jn−1 : codom(α) = {1, . . . , n} \ {i}

}
, which is an L -class of Jn−1;

• L{i, j} = R∗{i, j} =
{
α ∈ Jn−1 : (i, j) ∈ coker(α)

}
, which is an L -class of Jn−1.

In general, it is slightly complicated to describe the group H -classes of Pn in terms of ker-

nels, domains, cokernels, and codomains. However, in the J -class Jn−1, it is straightforward.

An H -class of the form Li∩Rj is a group if and only if i = j, an H -class of the form Li∩R{j, k}
or Ri ∩ L{j, k} is a group if and only if i ∈ {j, k}, and an H -class of the form L{i, j} ∩ R{k, l}
is a group if and only if {i, j} = {k, l}.

The main result of this section is the following theorem. In the proof, we use the fact that

the ideal Pn \ Sn is generated by its idempotents of rank n− 1 [40, Section 6],

Theorem 5.45. Let n ∈ N, n ≥ 2, be arbitrary. The maximal subsemigroups of Pn are:

(a) (Pn \ Sn) ∪ U , where U is a maximal subgroup of Sn (type (M1));

(b) Pn \
{
α ∈ Pn : rank(α) = n− 1 and ker(α) is trivial

}
(type (M4));

(c) Pn \
{
α ∈ Pn : rank(α) = n− 1 and dom(α) = {1, . . . , n}

}
(type (M4));

(d) Pn \
{
α ∈ Pn : rank(α) = n− 1 and coker(α) is trivial

}
(type (M3)); and

(e) Pn \
{
α ∈ Pn : rank(α) = n− 1 and codom(α) = {1, . . . , n}

}
(type (M3)).

In particular, for n ≥ 2, there are sn + 4 maximal subsemigroups of Pn.

{
Li : i ∈ {1, . . . , n}

} {
L{i, j} : i, j ∈ {1, . . . , n}, i 6= j

}
{
Ri : i ∈ {1, . . . , n}

} {
R{i, j} : i, j ∈ {1, . . . , n}, i 6= j

}

Figure 5.46: The graph ∆(Pn, Jn−1), which is a complete bipartite graph with four vertices.

The two maximal independent subsets are the set of orbits of L -classes, and the set of orbits

of R-classes. Each vertex in the graph has degree two.
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Proof. Since J -equivalence in Pn is determined by rank, and Pn is generated by its units and

idempotents of rank n−1, it follows by Lemma 4.68 that the maximal subsemigroups of Pn arise

from its group of units and its J -class Jn−1. By Lemma 4.73, the sn maximal subsemigroups

that arise from the group of units are those stated in the theorem with type (M1).

By Lemma 4.49(b), there are no maximal subsemigroups of Pn arising from Jn−1 with

type (M1). Given (5.44), it is clear that Sn transitively permutes the R-classes of Jn−1 with

trivial kernel, and it transitively permutes the R-classes of Jn−1 with domain {1, . . . , n}. Hence

there are two orbits of R-classes under this right action, and so there are two orbits of L -classes

under the corresponding left action. We may therefore deduce the description of ∆(Pn) =

∆(Pn, Jn−1); see Figure 5.46. Since ∆(Pn) is a complete bipartite graph, with only two

maximal independent subsets, Corollary 4.78 implies that there are no maximal subsemigroups

of type (M2). Each vertex of ∆(Pn) has degree 2, and so by Proposition 4.79, there are two

maximal subsemigroups of type (M3), formed by removing each orbit of L -classes in turn.

Similarly, there are two maximal subsemigroups of type (M4).

5.3.4 The Brauer monoid Bn and the uniform block bijection

monoid Fn

Let n ∈ N, n ≥ 2. In this section, we describe and count the maximal subsemigroups of Bn
and Fn. The main results of this section are the following theorems. In the proofs of these

theorems, we exploit the following results. By [4], Bn is generated by its group of units Sn and

any projection of rank n − 2, and by [94, Section 5], Fn is generated by it groups of units Sn
and any projection of rank n− 1.

Theorem 5.47. Let n ∈ N, n ≥ 2, be arbitrary. The maximal subsemigroups of Bn are:

(a) (Bn \ Sn) ∪ U , where U is a maximal subgroup of Sn (type (M1)); and

(b) Bn \
{
α ∈ Bn : rank(α) = n− 2

}
(type (M5)).

In particular, for n ≥ 2, there are sn + 1 maximal subsemigroups of Bn.

Theorem 5.48. Let n ∈ N, n ≥ 2, be arbitrary. The maximal subsemigroups of Fn are:

(a) (Fn \ Sn) ∪ U , where U is a maximal subgroup of Sn (type (M1)); and

(b) Fn \
{
α ∈ Fn : rank(α) = n− 1

}
(type (M5)).

In particular, for n ≥ 2, there are sn + 1 maximal subsemigroups of Fn.

Proof of Theorems 5.47 and 5.48. By Lemma 4.68, the maximal subsemigroups of Bn arise

from its group of units and its J -class Jn−2 ∩Bn, and the maximal subsemigroups of Fn arise

from its group of units and from its J -class Jn−1 ∩ Fn. In both cases, by Lemma 4.73, there

is one maximal subsemigroup corresponding to each maximal subgroup of Sn, as stated in the

theorem, and so there are sn such maximal subsemigroups.

To describe the remaining maximal subsemigroups of Bn, let α ∈ Jn−2 ∩ Bn. The non-

transverse blocks of α are {i, j} and {k′, l′} for some i, j, k, l ∈ {1, . . . , n} with i 6= j and

k 6= l. Let τ ∈ Sn be a permutation that contains the blocks {k, i′} and {l, j′}. Therefore the

non-transverse blocks of ατ are {i, j} and {i′, j′}, and so (ατ)
m

is a projection of rank n − 2

for some m ∈ N. Thus 〈Sn, α〉 ⊇ 〈Sn, (ατ)
m〉 = Bn, since Bn is generated by Sn and any

projection of rank n − 2, and so Bn = 〈Sn, α〉. By a very similar argument, Fn = 〈Sn, β〉
for any uniform block bijection of rank n − 1. By Corollary 4.74, in each case, the remaining

maximal subsemigroups are those stated in the theorems.
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5.3.5 The partial Brauer monoid PBn
Let n ∈ N, n ≥ 2. Recall that In, the symmetric inverse monoid, is the monoid consisting of all

partial permutations of degree n. The restriction to In of the injective map φ : PTn −→ Pn,

defined at the start of Section 5.3.2, is an embedding of In into Pn. In particular, Inφ is a

submonoid of PBn isomorphic to In. Therefore, in this section, we will identify In with its

image under φ, and regard In as a submonoid of PBn.

By [33, Proposition 3.16], PBn is generated by its elements with rank at least n − 2, and

any generating set contains elements of ranks n, n−1, and n−2. Therefore, by Lemma 4.68, in

order to describe the maximal subsemigroups of PBn, we require a description of the elements

of PBn with these ranks. Partitions of degree n and rank n are units, and the group of units

of PBn is Sn.

Let α ∈ Jn−1 ∩ PBn. By definition, α contains n − 1 transverse blocks, which contain

a point of {1, . . . , n} and a point of {1′, . . . , n′}. Therefore, the remaining blocks of α are

the singletons {i} and {j′}, for some i, j ∈ {1, . . . , n}. In other words, α is the image of some

partial permutation of rank n−1 under the embedding φ. Since α was arbitrary, and In ⊆ PBn,

it follows that Jn−1 ∩ PBn = Jn−1 ∩ In.

Let α ∈ Jn−2 ∩ PBn. Then α contains n − 2 transverse blocks, and so a pair of points of

{1, . . . , n} and a pair of points of {1′, . . . , n′} are not contained in transverse blocks. Each

one of these pairs forms either a block of size 2, or two singleton blocks. In particular, dom(α)

lacks two points i and j, and either ker(α) is trivial, or {i, j} is the unique non-trivial kernel

class of α. A similar statement holds for the codomain and cokernel of α.

By [33, Proposition 3.15], PBn = 〈Sn, Jn−1 ∩ In, Jn−2 ∩ Bn〉. As stated in the proof of

Theorem 5.7, In is generated by Sn and any partial permutation of rank n− 1, and as stated

in the proof of Theorem 5.47, Bn is generated by Sn and any of its elements of rank n − 2.

Therefore, PBn = 〈Sn, α, β〉, for any α ∈ Jn−1 ∩ In and β ∈ Jn−2 ∩ Bn.

Theorem 5.49. Let n ∈ N, n ≥ 2, be arbitrary. The maximal subsemigroups of PBn are:

(a) (PBn \ Sn) ∪ U , where U is a maximal subgroup of Sn (type (M1));

(b) PBn \ {α ∈ PBn : rank(α) = n− 1} (type (M5));

(c) PBn \ {α ∈ PBn : rank(α) = n− 2 and coker(α) is non-trivial} (type (M3)); and

(d) PBn \ {α ∈ PBn : rank(α) = n− 2 and ker(α) is non-trivial} (type (M4)).

In particular, for n ∈ N, there are sn + 3 maximal subsemigroups of PBn.

Proof. By Lemma 5.43, Green’s J -relation in PBn is determined by rank. Given the descrip-

tion of the generating sets of PBn, it follows by Lemma 4.68 that the J -classes of PBn from

which there arise maximal subsemigroups are the group of units, Jn−1∩PBn, and Jn−2∩PBn.

The group of units of PBn is the symmetric group Sn, and so by Lemma 4.73, the sn maximal

subsemigroups that arise in this case are those described.

Since the J -class Jn−1 ∩PBn = Jn−1 ∩In is covered by the group of units, PBn \ Jn−1 is

a subsemigroup of PBn. However, as stated above, PBn = 〈Sn, α, β〉, for any α ∈ Jn−1 ∩ In
and β ∈ Jn−2 ∩ Bn. In particular, 〈PBn \ Jn−1, α〉 = PBn if and only if α ∈ Jn−1 ∩ PBn. By

Lemma 4.8, the only maximal subsemigroup of PBn to arise from this J -class has type (M5).

In order to determine the maximal subsemigroups of PBn that arise from its J -class of

rank n− 2, we define the subsets

X = {α ∈ PBn : rank(α) = n− 2 and ker(α) is non-trivial}, and

X∗ = {α∗ : α ∈ X} = {α ∈ PBn : rank(α) = n− 2 and coker(α) is non-trivial}.
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Note that X is a union of R-classes of Jn−2∩PBn, and X∗ is a union of L -classes of Jn−2∩PBn.

Let A be any subset of Jn−2 ∩PBn such that (PBn \ Jn−2)∪A generates PBn, and let α ∈ X
be arbitrary. Then α can the written as a product α = β1 · · ·βk of some of these generators.

The generators β1, . . . , βk all have rank at least n− 2 by Lemma 1.12. Every element in PBn
of rank n and n − 1 has a trivial kernel, and the subset of partitions with trivial kernel in Pn
forms a subsemigroup. Thus, there exists some r ∈ {1, . . . , k} such that rank(βr) = n− 2 and

ker(βr) is non-trivial – in other words, βr ∈ X. A dual argument shows that A ∩X∗ 6= ∅.

Conversely, let A be any subset of Jn−2 ∩ PBn that intersects X and X∗ non-trivially,

and fix elements α ∈ A ∩ X and β ∈ A ∩ X∗. It is straightforward to see that there exists

some permutation σ ∈ Sn such that ασβ has non-trivial kernel and cokernel, and has rank

n − 2. In particular, ασβ ∈ Jn−2 ∩ Bn. Since PBn = 〈Sn, α, β〉, for any α ∈ Jn−1 ∩ In
and β ∈ Jn−2 ∩ Bn, it follows that 〈PBn \ Jn−2, A〉 = PBn. By Lemma 4.8, the maximal

subsemigroups of PBn arising from Jn−2 ∩ PBn are PBn \ X∗ and PBn \ X; these maximal

subsemigroups have types (M3) and (M4), respectively.

5.3.6 The dual symmetric inverse monoid I∗n
The maximal subsemigroups of the dual symmetric inverse monoid were first described by

Maltcev [94, Theorem 19]. We reprove this result in the following theorem. See the same paper

for much more information about I∗n, including the fact that for n ≥ 3, I∗n = 〈Sn, α〉 if and

only if α ∈ Jn−1 ∩ (I∗n \ Fn) [94, Proposition 16].

Theorem 5.50. Let n ∈ N, n ≥ 3, be arbitrary. The maximal subsemigroups of I∗n are:

(a) (I∗n \ Sn) ∪ U , where U is a maximal subgroup of Sn (type (M1)); and

(b) I∗n \ {α ∈ I∗n : rank(α) = n− 1 and α is not uniform} (type (M1)).

In particular, for n ≥ 3 there are sn + 1 maximal subsemigroups of I∗n.

Proof. By Lemma 4.68, the maximal subsemigroups of I∗n arise from its group of units and

it’s J -class Jn−1 ∩ I∗n. The group of units of I∗n is Sn, and so by Lemma 4.73, the maximal

subsemigroups arising from the group of units are those described. Using Corollary 4.74 with

X = Jn−1 ∩ (I∗n \ Fn), we find the description of the remaining maximal subsemigroup. Note

that I∗n is the monoid of all block bijections, and Fn is the monoid of all uniform block bijections,

and so the set X consists of the block bijections of rank n− 1 that are not uniform.

The maximal subsemigroup of I∗n that arises from its J -class Jn−1 ∩ I∗n can also be found

by using Proposition 4.85, since Sn acts transitively on the R-classes of Jn−1 ∩I∗n, and each of

the idempotents in this J -class is a projection.

1 2 3 4 5 6 7 8 9 10 11 12 n

Pn 2 5 8 12 26 57 188 357 1380 3981 363908 396502 sn + 4

PBn 2 4 7 11 25 56 187 356 1379 3980 363907 396501 sn + 3

Bn, Fn, I∗n 1 2 5 9 23 54 185 354 1377 3978 363905 396499 sn + 1

Table 5.51: The numbers of maximal subsemigroups of the monoids Pn, PBn, Bn, Fn, and

I∗n, for n = 1, . . . , 12, along with the general formulae. Recall that sn denotes the number of

maximal subgroups of the symmetric group Sn [120, A290138]. See Theorems 5.45–5.50 for the

descriptions of the maximal subsemigroups of these monoids; see also Table 5.8.

http://oeis.org/A290138
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5.3.7 The Jones monoid Jn and the annular Jones monoid AJn

Let n ∈ N be arbitrary. In this section, we classify the maximal subsemigroups of the Jones

and annular Jones monoids Jn and AJn. Recall that Jn consists of all planar partitions in

the Brauer monoid Bn, and AJn consists of all annular partitions in Bn; therefore Jn is a

submonoid of AJn. Since the planar partition monoid PPn is isomorphic to J 2n [70], by

determining the maximal subsemigroups of the Jones monoids, we also find those of the planar

partition monoids.

First, we classify the maximal subsemigroups of Jn. Suppose that n ≥ 2. The Green’s

relations on Jn are given by Lemma 5.43, and it was proved in [12] that Jn is generated by

{idn} and its projections of rank n−2. Therefore, by Lemma 4.68, the maximal subsemigroups

of Jn arise from its group of units, and from its J -class Jn−2∩Jn. Since there are no elements

of rank n − 1 in Jn, this J -class is covered by the group of units, and so we may apply the

results of Section 4.5.2 to describe the maximal subsemigroups that arise in this case.

To construct the graph ∆(Jn) = ∆(Jn, Jn−2 ∩ Jn), we require a description of the Green’s

classes of Jn−2 ∩Jn. Let α ∈ Jn−2 ∩Jn be arbitrary. Then α has n− 2 transverse blocks, and

these contain two points, and by planarity, the non-transverse blocks have the form {i, i + 1}
and {j′, (j+1)′} for some i, j ∈ {1, . . . , n−1}. By Lemma 5.43, the J -class contains contains

n− 1 R-classes, and n− 1 L -classes; the planarity of Jn implies that Jn is H -trivial.

For i ∈ {1, . . . , n− 1}, we define

• Ri =
{
α ∈ Jn : rank(α) = n− 2 and {i, i+ 1} is a block of α

}
, which is an R-class; and

• Li =
{
α ∈ Jn : rank(α) = n− 2 and {i′, (i+ 1)′} is a block of α

}
, which is an L -class.

The intersection of the L -class Li and the R-class Rj is a group if and only if |i− j| ≤ 1. Since

the group of units of Jn is trivial, its actions on the Green’s classes of Jn−2 ∩ Jn are trivial.

A picture of ∆(Jn) is shown in Figure 5.52. The maximal independent subsets of ∆(Jn) are

described in Lemma 5.53, and counted in Corollary 5.55.

{L1} {L2} {L3} {L4} {Ln−2} {Ln−1}

{R1} {R2} {R3} {R4} {Rn−2} {Rn−1}

· · ·

Figure 5.52: The graph ∆(Jn, Jn ∩ Jn−2). Since the group of units of Jn is trivial, its actions

on its L -classes and R-classes are trivial, and so its orbits are singletons.

Lemma 5.53. Let n ∈ N, n ≥ 2, be arbitrary, and let U be a subset of the vertices of ∆(Jn).

Then U is a maximal independent subset of ∆(Jn) if and only if all of the following hold:

(a) U contains exactly one of {L1} and {R1}; and

(b) U contains exactly one of {Ln−1} and {Rn−1}; and

(c) if {Li} ∈ U for some i ∈ {1, . . . , n − 2}, then the vertex in U \
{
{Li}

}
with the least

index greater than or equal to i is either {Li+1} or {Ri+2}; and

(d) if {Ri} ∈ U for some i ∈ {1, . . . , n − 2}, then the vertex in U \
{
{Ri}

}
with the least

index greater than or equal to i is either {Ri+1} or {Li+2}.
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Proof. Suppose that U is a maximal independent subset of ∆(Jn). We first show that con-

dition (a) holds; the proof that condition (b) holds is analogous. Since {L1} and {R1} are

adjacent in ∆(Jn), they are not both contained in U ; the same is true of {L2} and {R2}. If

{L2} /∈ U , then either {L1} ∈ U , or {L1} /∈ U , and the maximality of U implies that {R1} ∈ U .

If instead {R2} /∈ U , then it follows similarly that {L1} ∈ U or {R1} ∈ U .

To prove that condition (c) holds, let i ∈ {1, . . . , n − 2} be arbitrary, and suppose that

{Li} ∈ U . Consider the vertex in U \
{
{Li}

}
with least index greater than or equal to i;

some such vertex exists, since U contains either {Ln−1} or {Rn−1}, by (b). Certainly this

vertex is neither {Ri} nor {Ri+1}, since these are neighbours of {Li} in ∆(Jn). If additionally

{Ri+2} /∈ U , then the maximality of U implies that {Li+1} ∈ U . Noting that U does not

contain both {Li+2} and {Ri+2}, it follows that the vertex in U \
{
{Li}

}
with smallest index

greater than or equal to i is either {Li+1} or {Ri+2}, as required. Condition (d) holds by an

analogous argument.

Conversely, if U satisfies conditions (a)–(d) of the lemma, then it is straightforward to verify

that U is an independent subset, and that it is maximal.

In order to count the maximal subsemigroups of ∆(Jn), we introduce the famous Fibonacci

sequence [120, A000045], (Fn)n∈N, which is defined by

F 1 = F 2 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 3. (5.54)

In [43, Theorem 9.9], it was shown that the ideal Jn\{idn} of Jn has exactly Fn minimal idem-

potent generating sets. In the following corollary to Lemma 5.53, we show that the Fibonacci

numbers also count the maximal independent subsets of ∆(Jn).

Corollary 5.55. Let n ≥ 2. The number of maximal independent subsets of ∆(Jn) is 2Fn−1.

Proof. The result may be verified directly for n ∈ {2, 3}, so suppose that n ≥ 4. By the sym-

metry of ∆(Jn), the maximal independent subsets that contain {L1} are in one-to-one corre-

spondence with the maximal independent subsets that contain {R1}. Therefore, we count a(n),

the number of maximal independent subsets of ∆(Jn) that contain {L1}; by Lemma 5.53(a),

the total number of maximal independent subsets of ∆(Jn) is 2a(n).

For i ∈ {1, 2}, define Λn−i be the induced subgraph of ∆(Jn) on the vertices

{{Li+1}, . . . , {Ln−1}, {Ri+1}, . . . , {Rn−1}}.

In other words, Λn−1 is the graph formed from ∆(Jn) be removing the vertices {L1} and

{R1}, and Λn−2 is formed from Λn−1 by additionally removing the vertices {L2} and {R2}. It

is obvious that Λn−i is isomorphic to ∆(J n−i), and so the number of maximal independent

subsets of Λn−1 that contain {L2} is a(n−1), and the number of maximal independent subsets

of Λn−2 that contain {R3} is a(n− 2).

Let U be a maximal independent subset of ∆(Jn) that contains {L1}. By Lemma 5.53, U

contains either {L2} or {R3}, but not both. If U contains {L2}, then U \
{
{L1}

}
is a maximal

independent subset of Λn−1 that contains {L2}, while if U contains {R3}, then U \
{
{L1}

}
is

a maximal independent subset of Λn−2 that contains {R3}. Hence a(n) ≤ a(n− 1) + a(n− 2).

Conversely, each maximal independent subset of Λn−1 that contains {L2}, and each maximal

independent subset of Λn−2 that contains {R3}, gives rise to a unique maximal independent

subset of ∆(Jn) containing {L1}, by the addition of {L1}. Hence a(n) = a(n− 1) + a(n− 2).

Since a(2) = F 1 and a(3) = F 2, we deduce that a(n) = Fn−1.

Note that the sets
{
{L1}, . . . , {Ln−1}

}
and

{
{R1}, . . . , {Rn−1}

}
are the only maximal

independent subsets of ∆(Jn) that do not contain both orbits of L -classes and orbits of R-

http://oeis.org/A000045
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classes. By Proposition 4.77, these are the two maximal independent subsets of ∆(Jn) that do

not give rise to maximal subsemigroups of Jn of type (M2).

Theorem 5.56. Let n ∈ N, n ≥ 3, be arbitrary. The maximal subsemigroups of Jn are:

(a) Jn \ {idn} (type (M5));

(b) The union of Jn \ Jn−2 and the union of the Green’s classes in a maximal independent

subset of ∆(Jn) that contains both L -classes and R-classes (type (M2));

(c) Jn \L, where L is any L -class in Jn containing elements of rank n−2 (type (M3)); and

(d) Jn \R, where R is any R-class in Jn containing elements of rank n− 2 (type (M4)).

In particular, for n ≥ 3, there are 2Fn−1 + 2n− 3 maximal subsemigroups of Jn, where Fn−1

is the (n− 1)th term of the Fibonacci sequence, as defined in (5.54).

Proof. The group of units of Jn is the trivial group {idn}, and so by Lemma 4.73, the unique

maximal subsemigroup that arises from the group of units is formed by removing it.

It remains to describe the maximal subsemigroups that arise from the J -class Jn−2 ∩ Jn.

The Jones monoid Jn is H -trivial, and so by Lemma 4.49(a), Jn has no maximal subsemigroups

of type (M1). The description of the maximal subsemigroups of type (M2) follows directly from

Proposition 4.77 and Lemma 5.53, and their number 2Fn−1 − 2 follows by Corollaries 4.78

and 5.55. Since n ≥ 3, each vertex of ∆(Jn) has degree 2 or 3, and so by Proposition 4.79,

any L -class of rank n − 2 can be removed to form a maximal subsemigroup of type (M3),

and similarly, any R-class of rank n − 2 can be removed to form a maximal subsemigroup of

type (M4). Hence there are n − 1 maximal subsemigroups of each type. By Corollary 4.75,

there is no maximal subsemigroup of type (M5).

In the second part of this section, we classify the maximal subsemigroups of the annular

Jones monoid AJn. In order to do so, we require an understanding of its generating sets. Let

n ∈ N, n ≥ 2, and define ρn to be the n-cycle (1 2 . . . n). Recall from Section 5.3.1 that

Cn = 〈ρn〉 is the group of units of AJn, and that a partition α ∈ Pn is annular if α = ρknβρ
l
n,

for some planar partition β ∈ PPn and for some k, l ∈ N0. The elements of AJn are the annular

partitions of degree n whose blocks contain two points.

Let α = ρknβρ
l
n ∈ AJn be arbitrary, where β is planar and k, l ∈ N0. Since ρkn and ρln are

units, it follows that β = ρ−kn · α · ρ−ln ∈ AJn, and so the blocks of β have size two. In other

words, β ∈ Jn. Therefore

AJn =
{
ρknβρ

l
n : β ∈ Jn and k, l ∈ {1, . . . , n}

}
= 〈Jn, ρn〉. (5.57)

For each i ∈ {1, . . . , n− 1}, define ξi to be the projection in AJn of rank n− 2 whose non-

transverse blocks are {i, i+1} and {i′, (i+1)′}, and define ξn to be the remaining projection of

rank n− 2 in AJn; its non-transverse blocks are {1, n} and {1′, n′}. For all i, j ∈ {1, . . . , n},
it is straightforward to verify that ξi = ρj−in ξjρ

i−j
n . Since Jn is generated by idn and its

projections of rank n − 2 [12], it follows by this discussion and by (5.57) that AJn = 〈ρn, ξi〉
for any i ∈ {1, . . . , n}.

We proceed with the same technique that was used in the proof of Theorems 5.47 and 5.48.

Let α ∈ Jn−2 ∩AJn be arbitrary. Working modulo n, there exist indices i, j ∈ {1, . . . , n} such

that for all k ∈ N0, the non-transverse blocks of αρkn are {i, i+1} and {(jρkn)′, (jρkn+1)′}. Thus

we may fix k ∈ N0 such that the non-transverse blocks of αρkn are {i, i+ 1} and {i′, (i+ 1)′}.
Since AJn is finite, some power of αρkn is equal to the projection ξi. Therefore

AJn ≥ 〈ρn, α〉 ≥ 〈ρn, αρkn〉 ≥ 〈ρn, ξi〉 = AJn,
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and so 〈ρn, α〉 = 〈Cn, α〉 = AJn. Since AJn contains no elements of rank n−1, any generating

set for AJn contains elements of rank n − 2. Therefore, it follows that 〈Cn, α〉 if and only if

α ∈ Jn−2 ∩ AJn. This result is required in the proof of the following theorem.

Theorem 5.58. Let n ∈ N, n ≥ 2, be arbitrary. The maximal subsemigroups of AJn are:

(a) (AJn \ Cn) ∪ U , where U is a maximal subgroup of Cn (type (M1)); and

(b) AJn \ {α ∈ AJn : rank(α) = n− 2} (type (M5)).

In particular, for n ≥ 2, there are |Pn| + 1 maximal subsemigroups of AJn, where Pn denotes

the set of primes that divide n.

Proof. The group of units of AJn is Cn, and so the description and number of the maximal

subsemigroups that arise from the group of units follows Lemmas 5.1 and 4.73. Since AJn =

〈Cn, α〉 if and only if α ∈ Jn−2 ∩ AJn, it follows by Corollary 4.74 that the sole remaining

maximal subsemigroup is AJn \ Jn−2.

1 2 3 4 5 6 7 8 9 10 11 12 13 n

Jn 1 2 5 9 13 19 27 39 57 85 129 199 311 2Fn−1 + 2n− 3

AJn 1 2 2 2 2 3 2 2 2 3 2 3 2 |Pn|+ 1

Table 5.59: The numbers of maximal subsemigroups of the Jones and annular Jones monoids

Jn and AJn, for n = 1, . . . , 13, along with the general formulae. The sequence (Fn)n∈N is the

Fibonacci sequence, defined in (5.54), and Pn is the set of all primes dividing n. See Theo-

rems 5.56 and 5.58 for descriptions of the maximal subsemigroups of Jn and AJn, respectively.

5.3.8 The Motzkin monoid Mn

In the final section of this chapter, we classify the maximal subsemigroups of the Motzkin

monoid,Mn, which consists of all planar partitions in PBn. We first present some prerequisite

information about this monoid.

By Lemma 4.68, in order to describe the maximal subsemigroups of Mn, it is necessary to

find the J -classes that intersect every generating set of Mn non-trivially. Let n ∈ N, n ≥ 2,

be arbitrary. By [33, Proposition 4.2], the Motzkin monoid is generated by its elements of

rank at least n − 2, and any generating set for Mn contains elements of ranks n, n − 1, and

n− 2. By Lemma 5.43, Green’s J -relation onMn is determined by rank, and so the maximal

subsemigroups of Mn arise from the three J -classes of Mn that correspond to these ranks.

We therefore require a description of the elements ofMn that have rank at least n−2. The

unique element of rank n in Mn is idn. An arbitrary element of rank n− 1 in Mn has trivial

kernel and cokernel, and is determined by the unique point that it lacks from its domain and

the unique point that it lacks from its codomain. By Lemma 5.43, this describes the L - and

R-classes of the J -class Jn−1 ∩Mn. More specifically, two elements of rank n− 1 in Mn are

R-related if they lack the same point from their domains, and L -related if they lack the same

point from their codomains. Furthermore, every idempotent in Jn−1 ∩Mn is a projection: an

element of rank n− 1 in Mn is idempotent if and only if its domain and codomain are equal,

and so every idempotent in Jn−1 ∩Mn is fixed by the ∗ operation. Therefore, we may use

Corollary 4.82 to describe the maximal subsemigroups that arise from this J -class.

We use Lemma 4.8 to describe the maximal subsemigroups of Mn that arise from the J -

class Jn−2∩Mn. To apply this lemma, we require [33, Lemma 4.11]. In the case that r = n−1,
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this lemma states that one generating set forMn consists of idn, the elements of rank n−1, and

the projections of rank n−2 that contain no singleton blocks. We also require [33, Lemmas 4.3

and 4.4], which states that the elements of rank n− 1 in Mn generate those elements of rank

n− 2 whose non-transverse blocks are singletons.

Theorem 5.60. Let n ∈ N, n ≥ 2, be arbitrary. The maximal subsemigroups of Mn are:

(a) Mn \ {idn} (type (M5));

(b) The union(
Mn \ Jn−1

)
∪
⋃
i∈A

{
α ∈Mn : rank(α) = n− 1 and {i} is a block of α

}
∪
⋃
i/∈A

{
α ∈Mn : rank(α) = n− 1 and {i′} is a block of α

}
,

where A is any non-empty proper subset of {1, . . . , n} (type (M2));

(c) Mn \
{
α ∈ Jn−2 : {i′, (i+ 1)′} is a block of α

}
for i ∈ {1, . . . , n− 1} (type (M3)); and

(d) Mn \
{
α ∈ Jn−2 : {i, i+ 1} is a block of α

}
for i ∈ {1, . . . , n− 1} (type (M4)).

In particular, for n ≥ 2, there are 2n + 2n− 3 maximal subsemigroups of Mn.

1 2 3 4 5 6 7 8 9 10 11 12 n

Mn 2 5 11 21 39 73 139 269 527 1041 2067 4117 2n + 2n− 3

Table 5.61: The number of maximal subsemigroups of the Motzkin monoid Mn, for n =

1, . . . , 12, along with the general formula. See Theorem 5.60 for a description of the maximal

subsemigroups of Mn.

Proof. The group of units ofMn is the trivial group {idn}, and so by Lemma 4.73,Mn \{idn}
is the unique maximal subsemigroup to arise from the group of units.

Since the Motzkin monoid consists of planar partitions, it is H -trivial. By Lemma 4.49(a),

there are no maximal subsemigroups of Mn of type (M1). Given the earlier description of the

L - and R-classes in Jn−1 ∩Mn, it follows by Corollary 4.82 that the maximal subsemigroups

that arise from the J -class of rank n − 1 elements are those described in the theorem of

type (M2), and that there are 2n − 2 of them.

It remains to describe the maximal subsemigroups that arise from the J -class that consists

of rank n− 2 elements. For i ∈ {1, . . . , n− 1}, define the subsets

Xi = {α ∈Mn : rank(α) = n− 2 and {i, i+ 1} is a block of α}, and

X∗i = {α∗ : α ∈ Xi} = {α ∈Mn : rank(α) = n− 2 and {i′, (i+ 1)′} is a block of α}

of the J -class Jn−2 ∩Mn. Note that Xi is an R-class of Mn, and X∗i is an L -class of Mn.

Let A be any subset of Jn−2 ∩ Mn such that (Mn \ Jn−2) ∪ A generates Mn, and let

i ∈ {1, . . . , n− 1} and α ∈ Xi be arbitrary. Then α can be written as a product α = β1 · · ·βk
of the generators in (Mn\Jn−2)∪A; moreover, we may assume that rank(βj) ∈ {n−1, n−2} for

each βj ; see Lemma 1.12. If rank(β1) = n−1, then β1, and therefore each of its right multiples,

contains the singleton block {j} for some j ∈ {1, . . . , n}. However, α is a right multiple of β1,

and α contains no such block. Hence rank(β1) = n−2 = rank(α). Lemmas 1.10 and 5.43 imply

that ker(α) = ker(β1), i.e. β1 ∈ A ∩Xi. A dual argument shows that A ∩X∗i 6= ∅.
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Conversely, let A be any subset of Jn−2 ∩Mn that intersects Xi and X∗i non-trivially for

all i ∈ {1, . . . , n− 1}. Let i ∈ {1, . . . , n− 1} be arbitrary, and define ξi to be the projection of

rank n− 2 inMn whose non-transverse blocks are {i, i+ 1} and {i′, (i+ 1)′}. We aim to show

that ξi ∈ 〈Mn \ Jn−2, A〉. Fix α ∈ Xi ∩ A and β ∈ X∗i ∩ A. Since α and β have rank n − 2,

codom(α) =
{
j′1 > j′2 > · · · > j′n−2

}
and dom(β) =

{
k1 < k2 < · · · < kn−2

}
, for some points

j1, . . . , jn−2 and k1, . . . , kn−2 ∈ {1, . . . , n}, and using the canonical ordering defined in (5.40).

Define γ to be the partition of degree n whose transverse blocks are {j1, k′1}, . . . , {jn−2, k
′
n−2},

and whose non-transverse blocks are singletons. Then γ has rank n − 2 and is planar. The

non-transverse blocks of γ are singletons, and so by the earlier discussion, it follows that γ is a

product of elements of rank n− 1 inMn. In particular, γ ∈ 〈Mn \ Jn−2, A〉, and since clearly

ξi = αγβ, it follows that xi ∈ 〈Mn \ Jn−2, A〉. Since i ∈ {1, . . . , n − 1} was arbitrary, we

deduce that 〈Mn \Jn−2, A〉 contains every projection in Jn−2∩Mn that contains no singleton

blocks. Since Mn is generated by these projections and its elements of ranks n − 1 and n, it

follows thatMn = 〈Mn \Jn−2, A〉. By Lemma 4.8, the maximal subsemigroups ofMn arising

from its J -class of rank n−2 are the setsMn\Xi andMn\X∗i for each i ∈ {1, . . . , n−1}.
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5.4 Table of results

Monoid Group Number of maximal OEIS [120] Result Compare with

of units subsemigroups

POIn Trivial 2n − 1 A000225 Theorem 5.29 [56, Theorem 2]

POn 2n + 2n− 2 A131520 Theorem 5.12 [31, Theorem 1]

Mn 2n + 2n− 3 A131898 Theorem 5.60 —

On A2n−1 + 2n− 4 A000931 Theorem 5.26 [25, Theorem 2]

Jn 2Fn−1 + 2n− 3 A290140 Theorem 5.56 —

PPn 2F 2n−1 + 4n− 3 A290140 Theorem 5.56 —

PODI2n Order 2 3 · 2n−1 − 1 A052955 Theorem 5.30 [29, Theorem 4]

PODI2n−1 2n − 1 A052955 Theorem 5.30 [29, Theorem 4]

PODn 2dn/2e + n− 1 A016116 Theorem 5.13 —

ODn An + n− 3 A000931 Theorem 5.27 [68, Theorem 2]

POPIn Cn |Pn|+ |Pn−1| A059957 Theorem 5.35 —

POPn |Pn|+ 2 A083399 Theorem 5.32 —

AJn |Pn|+ 1 A083399 Theorem 5.58 —

OPn |Pn|+ 1 A083399 Theorem 5.33 [28, Theorem 1.6]

PORIn Dn 1 + |Pn−1|+
∑
p∈Pn

p A290289 Theorem 5.36 —

PORn 3 +
∑
p∈Pn

p A008472 Theorem 5.32 —

ORn 2 +
∑
p∈Pn

p A008472 Theorem 5.33 [28, Theorem 2.6]

Tn Sn sn + 1 A290138 Theorem 5.7 —

In sn + 1 A290138 Theorem 5.7 —

I∗n sn + 1 A290138 Theorem 5.50 [94, Theorem 19]

Fn sn + 1 A290138 Theorem 5.48 —

Bn sn + 1 A290138 Theorem 5.47 —

PTn sn + 2 A290138 Theorem 5.7 —

PBn sn + 3 A290138 Theorem 5.49 —

Pn sn + 4 A290138 Theorem 5.45 —

Table 5.62: Information about the maximal subsemigroups of the monoids considered in this

chapter, where n ∈ N is sufficiently large (usually n ≥ 2 or n ≥ 3; see the relevant theorem

for the precise value). The maximal subsemigroups themeselves are described in the referenced

theorems. For k ∈ N, Pk is the set of primes that divide k; Ak is the kth term of the sequence

defined in (5.25); Fk is the kth Fibonacci number, defined in (5.54) with F1 = F2 = 1; and sk
is the number of maximal subgroups of Sk, the symmetric group of degree k.

For small values of n, these numbers of maximal subsemigroups may be verified by applying

the function NrMaximalSubsemigroups (which is described in Section 4.6.1) from the Semi-

groups package [101] for GAP [58] to the appropriate monoid. For example, by executing

List([1 .. 10], n -> NrMaximalSubsemigroups(PORI(n)));

List([1 .. 10], n -> NrMaximalSubsemigroups(JonesMonoid(n))); or

List([1 .. 10], n -> NrMaximalSubsemigroups(PartialTransformationMonoid(n)));

one can produce a list of the number of non-empty maximal subsemigroups of PORIn, Jn, or

PTn, respectively, for n = 1, . . . , 10.

http://oeis.org/A000225
http://oeis.org/A131520
http://oeis.org/A131898
http://oeis.org/A000931
http://oeis.org/A290140
http://oeis.org/A290140
http://oeis.org/A052955
http://oeis.org/A052955
http://oeis.org/A016116
http://oeis.org/A000931
http://oeis.org/A059957
http://oeis.org/A083399
http://oeis.org/A083399
http://oeis.org/A083399
http://oeis.org/A290289
http://oeis.org/A008472
http://oeis.org/A008472
http://oeis.org/A290138
http://oeis.org/A290138
http://oeis.org/A290138
http://oeis.org/A290138
http://oeis.org/A290138
http://oeis.org/A290138
http://oeis.org/A290138
http://oeis.org/A290138
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Appendix A

Open problems

In this appendix, we collate the open problems that we posed elsewhere in the text.

Open Problem 2.2 (Page 40). Develop techniques for computing the Green’s structure of

a direct product of finite semigroups in terms of the Green’s structures and other semigroup-

theoretic properties of the factors.

Open Problem 2.3 (Page 40). Investigate how the maximal subsemigroups of a direct

product of finite semigroups relate to the maximal subsemigroups of the factors.

Open Problem 2.34 (Page 58). Generalise Theorem 2.31 and Corollary 2.33 for direct prod-

ucts of an arbitrary number of finitely generated surjective semigroups. In particular, develop

an upper bound for the rank of such a direct product that involves the ranks and the numbers

of maximal L - and R-classes of the factors.

Open Problem 2.35 (Page 58). Let S be an arbitrary finite semigroup. Develop prac-

tical methods for computing whether there exist non-trivial semigroups T and U such that

S ∼= T ×U ; given this, develop methods for finding such semigroups T and U when they exist.

Open Problem 3.13 (Page 68). Let S be a finite Rees 0-matrix semigroup over an arbi-

trary finite semigroup T , and assume that any necessary semigroup-theoretic properties of T

are known a priori. Give algorithms for counting and listing the idempotents of S, using the

properties of T and the Graham-Houghton graph of S.

Open Problem 3.14 (Page 68). Let S be a finite Rees 0-matrix semigroup over an arbi-

trary finite semigroup T , and assume that any necessary semigroup-theoretic properties of T

are known a priori. Give an algorithm for constructing a generating set for F (S) that contains

at most a constant multiple of rank(F (S)) elements.

Open Problem 3.29 (Page 73). Let S be a finite semigroup to which the techniques of [37]

apply. Building on the results of [37], develop methods for computing the Green’s structure of

an arbitrary left or right ideal of S that do not necessarily exhaustively enumerate the ideal.

Open Problem 3.30 (Page 73). Let S be a finite semigroup to which the techniques of [37]

apply. Building on the results of [37], develop methods for computing the partial orders of L -

and R-classes of S without necessarily exhaustively enumerating S.

Open Problem 3.46 (Page 80). Let S = M 0[T ; I, Λ; P ] be an arbitary finite Rees 0-matrix

semigroup where T is a monoid and P contains a unit. Give a formula that describes rank(S)
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in terms of rank(T ), the semigroup-theoretic properties of T , and the matrix P .

Open Problem 4.51 (Page 118). If AL and AR are arbitrary finite acyclic digraphs, does

there exist a finite semigroup S with a regular J -class J such that ΓL (S, J) ∼= AL and

ΓR(S, J) ∼= AR?

Open Problem 4.87 (Page 136). Develop tools for computing subsemigroups that are

maximal with respect to some property, such as maximal commutative or maximal regular sub-

semigroups of a finite semigroup; or maximal inverse subsemigroups of a finite inverse semigroup.
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Theory Ramifications, 11(2):127–143, 2002.

[13] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The

user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and

number theory (London, 1993).

[14] Marcus Brazil, Jacinta Covington, Tim Penttila, Cheryl E. Praeger, and Alan R. Woods.

Maximal subgroups of infinite symmetric groups. Proc. London Math. Soc. (3), 68(1):77–

111, 1994.

[15] Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected graph.

Comm. ACM, 16(9):575–577, 1973.

183



184 Computational techniques in finite semigroup theory

[16] Peter J. Cameron, Maximilien Gadouleau, James D. Mitchell, and Yann Péresse. Chains
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generating sets for direct powers of semigroups. Semigroup Forum, 84(1):116–130, 2012.
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formation semigroups. Math. Z., 228(3):435–450, 1998.

[91] S. A. Linton, G. Pfeiffer, E. F. Robertson, and N. Ruškuc. Computing transformation
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[112] E. F. Robertson, N. Ruškuc, and M. R. Thomson. On finite generation and other finiteness

conditions for wreath products of semigroups. Comm. Algebra, 30(8):3851–3873, 2002.
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This table lists some of the mathematical notation that is used in this thesis. In any row, the

first column gives an example of some notation, the second column gives a brief description of

what the notation represents, and the third column gives the page number where the notation

is defined or first used in the main text. In the original digital version of this document, many

instances of such notation are hyperlinks to their corresponding entries in this table.

0S The multiplicative zero of the semigroup-with-zero S. 23

1S The identity element of the monoid S1. 24

∅ The empty set. 20

|X| The cardinality of the set X. 20

X+ The free semigroup over the set X. 23

〈X〉 The subsemigroup of a semigroup generated by its subset X. 24

〈X |R〉 The semigroup presentation with generators X and relations R. 23

dxe The least integer greater than or equal to the real number x. 20

bxc The greatest integer less than or equal to the real number x. 20

x∗ The image of x under the ∗ operation of a regular ∗-semigroup. 29

x−1 The unique inverse of an element x in a semigroup. 29

xn The element xx · · ·x︸ ︷︷ ︸
n times

. 23

AJn The annular Jones monoid of degree n. 167

An The alternating group, consisting of all even permutations of degree n. 108

(An)n∈N The sequence A1 = 1, A2 = A3 = 2, and An = An−2 +An−3 for n > 3. 157

B(G, I) The I × I Brandt semigroup over the group G. 85

B(G, n) The n× n Brandt semigroup B(G, {1, . . . , n}). 85

Bn The Brauer monoid of degree n. 166

Cn The cyclic group of order n generated by the n-cycle (1 2 . . . n). 148

codom(α) The codomain of the partition α. 168

coker(α) The cokernel of the partition α. 168

D Green’s D-relation. 26

Dn The permutation group 〈(1 2 . . . n), (1 n)(2 n− 1) · · · (bn/2c dn/2e)〉,
which is a dihedral group of order 2n when n ≥ 3.

148

dom(α) The domain of the partial transformation, or partition, α. 20

∆ = ∆(S, J) The graph defined in §4.4.2, where S is a semigroup and J ∈ S/J . 118

∆(S) The graph ∆(S, J), where S is a monoid with a unique J -class J

covered by its group of units.

150

E(X) The set of idempotents contained in a subset X of a semigroup. 23

191
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(Fn)n∈N The Fibonacci sequence [120, A000045] with F 1 = F 2 = 1. 174

Fn The uniform block bijection monoid of degree n. 166

F (X) The subsemigroup 〈E(X)〉 generated by the idempotents of X. 24

ΓL = ΓL (S, J) A digraph representing the action of S \ J on the L -classes of J . 118

ΓR = ΓR(S, J) A digraph representing the action of S \ J on the R-classes of J . 118

[G : V ] The index of the subgroup V in the group G. 29

H Green’s H -relation. 26

idn The identity permutation of degree n. 30

im(α) The image of the partial function α. 20

In The symmetric inverse monoid of degree n. 30

I∗n The dual symmetric inverse monoid of degree n. 166

J∗ The principal factor of the Green’s J -class J . 28

J Green’s J -relation. 26

Jk The J -class of PTn or Pn consisting of all elements of rank k. 149

Jn The Jones monoid of degree n. 138

ker(α) The kernel of the partial function, or partition, α. 20

K S Green’s K -relation on the semigroup S, for K ∈ {H , L , R, D , J }. 27

Kx The Green’s K -class of x in some semigroup. 27

KS
x The Green’s K -class of x in the semigroup S. 27

L Green’s L -relation. 26

M [T ; I, Λ; P ] The I × Λ Rees matrix semigroup over T with matrix P . 25

M 0[T ; I, Λ; P ] The I × Λ Rees 0-matrix semigroup over T with matrix P . 26

Mn The Motzkin monoid of degree n. 166

N The natural numbers {1, 2, 3, . . .}. 20

N0 The non-negative integers {0, 1, 2, 3, . . .}. 20

NG(V ) The normalizer of the subgroup V in the group G. 29

O
(
n2
)

Big O notation, used to describe the complexity of an algorithm. 32

ODn All order-preserving or -reversing transformations of degree n. 148

On All order-preserving transformations of degree n. 148

OPn All orientation-preserving transformations of degree n. 148

ORn All orientation-preserving or -reversing transformations of degree n. 148

PBn The partial Brauer monoid of degree n. 166

Pn The partition monoid of degree n. 165

Pn The set of primes that divide n ∈ N. 162

PODIn All order-preserving or -reversing partial permutations of degree n. 148

PODn All order-preserving or -reversing partial transformations of degree n. 147

POIn All order-preserving partial permutations of degree n. 148

POn All order-preserving partial transformations of degree n. 147
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POPIn All orientation-preserving partial permutations of degree n. 148

POPn All orientation-preserving partial transformations of degree n. 148

PORIn All orientation-preserving or -reversing partial permutations of degree n. 138

PORn All orientation-preserving or -reversing partial transformations in PTn. 148

PPn The planar partition monoid of degree n. 166

PTn The partial transformation monoid of degree n. 30

R Green’s R-relation. 26

R The real numbers. 22

rank(α) The rank of the semigroup element α. 20

rank(S) The least cardinality of a generating set for the semigroup S. 24

S0 The semigroup formed by adjoining a zero to the semigroup S. 24

S1 For a semigroup S, if S is a monoid, then S1 = S, else S1 is the

monoid formed by adjoining the identity element 1S to S.

24

Sn The symmetric group of degree n. 30

sn The number of maximal subgroups of Sn [120, A290138]. 146

StabG(A) The setwise stabilizer {g ∈ G : Ag = A} of A in the group G. 133

sub(V, g1, . . . , gn) The subset of a normalized finite 0-simple semigroup defined in (4.19). 102

Tn The full transformation monoid of degree n. 30

Θ = Θ(S, J) The graph defined in §4.4.2, where S is a semigroup and J ∈ S/J . 118

Z The integers. 20
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0-simple semigroup, 25

acyclic digraph, 22

algorithm, 31

annular partition, 166

anti-homomorphism, 23

anti-isomorphism, 23

associativity, 23

band, 23

big O notation, 32

bijection, 20

bipartite graph, 21

complete bipartite, 21

block, 165

block bijection, 165

Brandt semigroup, 85

clique, 21

maximal clique, 21

closed (under multiplication), 23

codomain, 168

cokernel, 168

colouring, 21

column-regular matrix, 71

commutative semigroup, 23

complement

of a digraph, 22

of a graph, 22

completely 0-simple semigroup, 25

completely simple semigroup, 25

complexity, 31

composition

of partial functions, 20

of relations, 19

computational group theory, 16

computational semigroup theory, 15

congruence, 23

conjugacy class of a subgroup, 29

conjugation, 29

connected

component, 22

graph, 22

covered (in a partial order), 19

cycle

in a digraph, 22

in a graph, 22

decomposable element, 42, 78, 94

degree

of a partial transformation, 20

of a vertex, 21

digraph, 21

disjoint cycle notation, 20

domain

of a function, 20

of a partition, 168

edge

of a digraph, 21

of a graph, 20

embedding, 23

equivalence, 19

class, 19

relation, 19

factor (of a direct product), 39

factorization, 43

non-trivial, 43

Fibonacci sequence, 174

finitely generated semigroup, 24

finitely presented semigroup, 23

forest, 22

free semigroup, 23

function, 20

bijective, 20

domain, 20

image, 20

injective, 20

kernel, 20

partial, 20

surjective, 20

generating set, 24

Graham normal form, 62

graph, 20

Green’s class, 27

partial order of, 27
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Green’s relations, 26

Green’s D-relation, 26

Green’s H -relation, 26

Green’s J -relation, 26

Green’s L -relation, 26

Green’s R-relation, 26

group, 24, 29

group of units, 24

normal subgroup, 29

homomorphism, 23

ideal, 24

left, 24

principal, 24

proper, 25

right, 24

two-sided, 24

idempotent, 23

idempotent generated subsemigroup, 24

identity, 23

left identity, 23

right identity, 23

identity partition, 165

identity permutation, 30

image

of a function, 20

of a point under a function, 20

indecomposable element, 42, 78

independent subset, 21

maximal independent subset, 21

index of a subgroup in a group, 29

induced

subdigraph, 22

subgraph, 22

inverse

of a partial function, 20

of a relation, 19

of an element, 29

semigroup, 29

isomorphism

of digraphs, 22

of graphs, 22

of semigroups, 23

kernel

of a function, 20

of a partition, 168

left Cayley digraph, 35

left congruence, 23

left ideal, principal left ideal, 24

left identity, 23

left zero semigroup, 23

loop (in a digraph), 21

maximal

in a partial order, 19

subgroup, 28, 91

subsemigroup, 91

arising from J , 94

minimal

generating set, 24

in a partial order, 19

monogenic semigroup, 24

monoid, 24

multiplication table, 33

multiplicative zero, 23

natural partial order, 88

neighbour, 21

in-neighbour, 21

out-neighbour, 21

non-regular Green’s class, 28

normalization, 62

normalized, 62

normalizer, 107

orbit, 30

order

-preserving, 147

-reversing, 147

of a semigroup, 22

orientation

-preserving, 147

-reversing, 147

partial

function, 20

permutation, 20

partial order, 19

greater than, 19

less than, 19

of Green’s J -classes, 27

of Green’s L -classes, 27

of Green’s R-classes, 27

partially ordered set, 19

partition

of a set, 19

of degree n, 165



Index 197

part of a partition, 19

path

in a digraph, 21

in a graph, 21

path graph, 157

permutation, 20

planar partition, 166

principal factor, 28

product

Cartesian, 19

direct, 39

of semigroup elements, 23

set product, 24

projection (in a regular ∗-semigroup), 29

proper, 25

pseudocode, 31

quotient

of a digraph, 22

of a graph, 22

of a semigroup, 23

rank

of a partial transformation, 20

of a partition, 168

of a semigroup, 24

reachable, 22

Rees 0-matrix semigroup, 26

Rees matrix semigroup, 25

regular

∗-semigroup, 29

Green’s class, 28

matrix, 72

semigroup, 28

semigroup element, 28

relation, 19

antisymmetric, 19

composition of relations, 19

equivalence, 19

on a set, 19

reflexive, 19

symmetric, 19

transitive, 19

relations (in a presentation), 23

relative left identity, 23

relative right identity, 24

right action of a group, 30

right Cayley digraph, 35

right congruence, 23

right coset, 29

right ideal, principal right ideal, 24

right identity, 23

right zero semigroup, 23

row-regular matrix, 71

semigroup, 22

semigroup presentation, 23

setwise stabilizer, 133

simple semigroup, 25

sink (in a digraph), 21

source (in a digraph), 21

spanning

forest, 22

tree, 22

strongly connected

component, 22

digraph, 22

subgroup, 24

submonoid, 24

subsemigroup, 24

proper subsemigroup, 25

surjective semigroup, 24, 41

time complexity, 31

transformation, 20

partial transformation, 20

transitive

group action, 30

relation, 19

transversal, 19, 106

transverse block, 165

tree, 22

two-line notation, 20

uniform block bijection, 165

unit, 24

vertex

adjacent vertices, 20

isolated vertex, 21

of a digraph, 21

of a graph, 20

zero (of a semigroup), 23

zero semigroup, 23


	Preface
	Introduction
	Sets, relations, and functions
	Graphs and digraphs
	Groups and semigroups
	Subsemigroups, ideals, and generation
	Rees 0-matrix semigroups and completely 0-simple semigroups
	Green's relations and regularity
	Group theory and group actions
	Semigroups of partial transformations

	Computational semigroup theory
	Algorithms and complexity
	Data structures for semigroups
	Finite semigroups specified by generating sets


	Generating sets for direct products of semigroups
	Introduction
	Decomposable and indecomposable elements
	Computing indecomposable elements and non-trivial factorizations
	Corresponding features in the Semigroups package for GAP

	Arbitrary direct products of semigroups
	Two finitely generated surjective semigroups

	Rees 0-matrix semigroups over a semigroup
	Introduction
	Preliminaries
	Isomorphisms and normalizations of Rees 0-matrix semigroups
	The idempotent generated subsemigroup of a Rees 0-matrix semigroup

	The Green's structure of a Rees 0-matrix semigroup
	Rees 0-matrix semigroups with row- or column-regular matrices

	Generating sets for Rees 0-matrix semigroups
	Decomposable and indecomposable elements
	Rees 0-matrix semigroups over monoids
	Rees 0-matrix semigroups with row- or column-regular matrices

	Special kinds of Rees 0-matrix semigroups
	Regular Rees 0-matrix semigroups
	Rees 0-matrix monoids and inverse monoids
	Inverse Rees 0-matrix semigroups


	Computing maximal subsemigroups of a finite semigroup
	Introduction
	The form of a maximal subsemigroup
	Finite regular Rees 0-matrix semigroups over groups
	Maximal subsemigroups of types (R1) and (R2)
	Maximal subsemigroups of types (R3) and (R4)
	Maximal subsemigroups of type (R5)
	Maximal subsemigroups of type (R6)
	An example
	Maximal subsemigroups of type (R6) that contain a given set

	Arbitrary finite semigroups
	Maximal subsemigroups that intersect every H-class: (M1)
	Graphs and digraphs for regular J-classes
	Maximal subsemigroups that are unions of L- and R-classes: (M2)
	Maximal subsemigroups that are unions of L- or R-classes: (M3)–(M4)
	Maximal subsemigroups by removing a J-class: (M5)

	Arbitrary finite monoids
	Maximal subsemigroups from the group of units
	Maximal subsemigroups from a J-class covered by the group of units

	The algorithm
	Relevant functionality in the Semigroups package for GAP
	Performance measurements


	Maximal subsemigroups of finite transformation and diagram monoids
	Introduction
	Maximal subgroups of cyclic, dihedral, and symmetric groups

	Partial transformation monoids
	Definitions
	Preliminaries
	PTn, Tn, and In
	POn and PODn
	On and ODn
	POIn and PODIn
	POPn, PORn, OPn, and ORn
	POPIn and PORIn

	Diagram monoids
	Definitions
	Preliminaries
	The partition monoid Pn
	The Brauer monoid Bn and the uniform block bijection monoid Fn
	The partial Brauer monoid PBn
	The dual symmetric inverse monoid In*
	The Jones monoid Jn and the annular Jones monoid AJn
	The Motzkin monoid Mn

	Table of results

	Open problems
	Bibliography
	Table of notation
	Index

