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Abstract—This paper presents a novel design and implemen-
tation of k-means clustering algorithm targeting the Sunway
TaihuLight supercomputer. We introduce a multi-level parallel
partition approach that not only partitions by dataflow and
centroid, but also by dimension. Our multi-level (nkd) approach
unlocks the potential of the hierarchical parallelism in the
SW26010 heterogeneous many-core processor and the system
architecture of the supercomputer.

Our design is able to process large-scale clustering problems
with up to 196,608 dimensions and over 160,000 targeting cen-
troids, while maintaining high performance and high scalability,
significantly improving the capability of k-means over previous
approaches. The evaluation shows our implementation achieves
performance of less than 18 seconds per iteration for a large-
scale clustering case with 196,608 data dimensions and 2,000
centroids by applying 4,096 nodes (1,064,496 cores) in parallel,
making k-means a more feasible solution for complex scenarios.
Keywords: Supercomputer, Multi/many-core Processors, Clus-
tering, Parallel Computing

I. INTRODUCTION

K-means is a well-known clustering algorithm, used widely
in many AI and data mining applications, such as bio-
informatics [1], [22], image segmentation [7], [21], information
retrieval [35] and remote sensing image analysis [24].

Finding the optimal solution for a general k-means problem
is known to be NP-hard [10]. Thus, current high-end k-
means applications are limited in terms of the number of
dimensions (d), and the number of centroids (k) they can
consider, leading to demand for more parallel k-means
implementations [2], [24]. Our work will allow k-means
data analysis to run at an unprecedented complexity, with
significantly higher dimensionality and centroid number than
before. Our method is applicable to any problem with an
intrinsically high dimensional feature space where traditional
dimensionality reduction techniques are commonly used. A
typical example in the domain of remote sensing data analysis
is shown in section IV, where we manage to process a k-means
problem with 4096 dimensions and 7 centroids using 400 MPI
processes.

This paper presents a novel method to map data and
communication for a multi-level k-means design targeting
Sunway TaihuLight, one of the world’s fastest supercomputers.
This method allows k-means to scale well across a large
number of computation nodes, significantly outperforming
previously proposed techniques. The proposed implementation

is able to process large-scale clustering problems with up to
196,608 dimensions and 160,000 centroids, while maintaining
high performance and scalability – a large improvement on
previous implementations, as described in Table I. Our method
greatly increases the potential scope for k-means applications
to solve previously intractable problems.

The key to our approach is a three-level data partition strategy
based on hierarchical many-core hardware support. Previous
high performance k-means implementations, such as that for
the Trinity supercomputer(NNSA) [2] have used a two-level
memory approach.

Such an approach, implemented in this paper as Level 2,
involves partitioning first the number of clusters centroids k
by the number of cores in a Core Group(CG) as described
in section II, and then by the dataflow n into multiple CGs.
Consequently, both n and k are relatively scalable, however
each centroid, k, is a d-dimensional vector. The maximum
value of k ∗ d is limited by the shared memory of the CG.
There are two main drawbacks to this approach: firstly, only
one of k or d can be scaled to a large number, as shown in
Table I, which details the limits of previous implementations.
Secondly, the performance scaling of Level 2 is shown to be
poor as k or d grows towards the high end of possibility for this
approach. Therefore even if the memory limits were somehow
solved in some other way, the performance scaling would limit
the growth of k or d.

These difficulties show the need for a new approach if larger
values of k and d are to be reasonably handled. The three-
level hierarchical approach proposed in this paper as Level 3,
addresses both issues of independent growth of k and d, and
of scalability.

Level 3 partitions d by the number cores in a CG. The data
is further partitioned into multiple CGs by k. Since d and k
are partitioned at different hardware levels hierarchically, the
total value of k ∗ d is no longer limited by the size of memory
available at this level. The dataflow n is then partitioned into
new structures - Groups of CG, as shown in Figure 2. In this
way, all n, k, d can scale without constraints between each
other.

This work makes two main contributions:
• The proposed design is the first to allow independent and

simultaneous performant variation of dataflow (n), number
of centroids (k) and size of dimension (d), using the
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Table I: Parallel k-means implementations

Approaches Hardware resources Programming model Samples n Clusters k Dimensions d

General Parallel k-means Implementations
Böhm, et al [4] Multi-core Processors MIMD/SIMD 107 40 20
Hadian and Shahrivari [17] Multi-core Processors multi-thread 109 100 68
Zechner and Granitzer [37] GPU CUDA 106 128 200
Li, et al [26] GPU CUDA 107 512 160
Haut, et al [19] Cloud OpenStack 108 8 58
Cui, et al [8] Cluster Hadoop 105 100 9

Supercomputer-Oriented k-means Implementations
Kumar, et al [24] Jaguar, Oak Ridge MPI 1010 1000 30
Cai, et al [6] Gordon, SDSC mclappy (parallel R) 106 8 8
Bender, et al [2] Trinity, NNSA OpenMP 370 18 140,256
Our approach Sunway, Wuxi DMA/MPI 106 160,000 196,608

hierarchical hardware support of the Sunway TaihuLight.
The novel partition method allows us to achieve tractable
scaling of both k and d to a level higher than achieved
before without any interaction constraints. This results
in high performance across a wide variation of k and d,
are demonstrated by experiments on multiple benchmark
workloads with high-dimensional data.

• The proposed three-level partitioning implementation is
the first to achieve a flexible supercomputer-based large-
scale k-means implementation with varying values of k,
d and n. There are no artificial restrictions on small and
regular workloads unlike in previous work [2].

The remainder of this paper is presented as follows: Section
II describes the background and related work which includes
a short description of Sunway supercomputer and the k-
means problem definition, the most popular Lloyd algorithm
and general parallel implementation, and the state-of-the-art
supercomputer-oriented designs in the literature. Section III
discusses the three levels scalable design and implementation
of k-means on Sunway. Our experimental design and results
analysis are given in section IV.

II. BACKGROUND AND RELATED WORK

A. Sunway TaihuLight and SW26010 Many-Core Processor

Sunway TaihuLight is a world-leading supercomputer, which
currently ranks as the second machine in the TOP500 list [28]
and achieves a peak performance of 93 petaflops [15].

The high performance and efficiency of Sunway TaihuLight
is due to its use of the SW26010 many-core processor. The
basic architecture of the SW26010 processor is shown in Figure
1 below. Each processor contains four core groups (CGs). There
are 65 cores in each CG, 64 computing processing element
(CPEs) and a managing processing element (MPE), which
are organized as 8 by 8 mesh. The MPE and CPE are both
complete 64-bit RISC cores, but they are assigned different
tasks while computing. The main function of the MPE is to
support the complete interrupt functions, memory management,
super-scalar and out-of-order issue/execution, and it is designed
for management, task schedule, and data communications.

Figure 1: The general architecture of the SW26010 many-core
processor

The CPE is assigned to maximize the aggregated computing
throughput while minimize the complexity of the micro-
architecture.

The SW26010 design differs significantly from the other
multi-core and many-core processors: (i) for the memory
hierarchy, while the MPE applies a traditional cache hierarchy
(32-KB L1 instruction cache, 32-KB L1 data cache, and a
256-KB L2 cache for both instruction and data), each CPE
only supplies a 16-KB L1 instruction cache, and depends on a
64 KB Local directive Memory (LDM) (also known as Scratch
Pad Memory (SPM)) as a user-controlled fast buffer. The
user-controlled ’cache’ leads to some increasing programming
difficulties for using fast buffer efficiently, at the same time,
providing the opportunity to implement a defined buffering
scheme which is beneficial to improve the whole performance
in certain cases. (ii) As for the internal information of each
CPE mesh, we have a control network, a data transfer network
(connecting the CPEs to the memory interface), 8 column
communication buses, and 8 row communication buses. The 8
column and row communication buses provide possibility for
fast register communication channels to across the 8 by 8 CPE
mesh, so users can attain a significant data sharing capability
at the CPE level.

B. Related Work

In this section, we provide a formal description of the k-
means problem and then present the well-known approach,



Lloyd algorithm. Following is a discussion of the general
parallel implementations and other supercomputer-based ap-
proaches.

1) Problem Definition: The purpose of the k-means clus-
tering algorithm is to find a group of clusters to minimize the
mean distances between samples and their nearest centroids.
Formalized, given n samples X d = {xd

i } ∈ Rd, i ∈ {1 . . . n},
where each sample is a d-dimensional vector xd

i = (xi1,. . . ,
xid) and we use u to index the dimensions: u ∈ {1 . . . d}.
We aim to find k d-dimensional centroids Cd = {cdj} ∈ Rd,
j ∈ {1 . . . k} to minimize the object O(C):

O(C) = 1

n

n∑
i=1

dis(xd
i , c

d
a(i))

end where a(i) is the index of the nearest centroid for sample
xd
i :

a(i) = arg minj∈{1...k}dis(x
d
i , c

d
j )

while dis(xd
i , c

d
j ) is the Euclidean distance between sample

xd
i and centroid cdj :

dis(xd
i , c

d
j ) =

d∑
u=1

(xiu − cju)
2

2) Lloyd Algorithm: It is well-known that k-means problem
is in NP-hard [31]. In the literature, several methods have
been proposed to find efficient solutions [5], [9], [13], [30],
[31], [34]. While the most popular baseline is still the Lloyd
algorithm [29], which is composed by repeating the basic two
steps below:

1. : a(i) = arg minj∈{1...k} dis(x
d
i , c

d
j ) (Assign)

2. : cdj =

∑
arg a(i)=j x

d
i

|arg a(i) = j|
(Update)

Note that those notations here are mainly from previous works
by Hamerly [18], Newling and Fleuret [30]. We will apply
customized notations only when needed. The first step above is
to assign each sample into the nearest centroid according to the
Euclidean distance. The second step is to update the centroids
by moving them to the mean of their assigned samples in the
d-dimensional vector space. Those two steps are repeated until
each cdj is fixed.

3) General Parallel k-means: k-means algorithm has
been widely implemented in parallel architectures with shared
and distributed memory using either SIMD or MIMD model
targeting on multi-core processors [4], [12], [17], GPU-based
heterogeneous systems [26], [36], [37], clusters of computer/-
cloud [8], [19].

In the parallel case, we use l to index the processors
(computing units) P and use m to denote the total number of
processors applied:

P = {Pl}, l ∈ {1 . . .m}

The dataset X d is partitioned uniformly into m processors.
Compared against the basic Lloyd algorithm, each processor

only assigns a subset ( n
m ) of samples from the original set X d

before the Assign step. Then the Assign step is finished in
parallel by m processors. To formalize the steps, we obtain:

1.1 : Pl ← xd
i , i ∈ (1 + (l − 1)

n

m
, l

n

m
)

1.2 : ∀l ∈ (1,m), Pl : a(i) = arg minj∈{1...k} dis(x
d
i , c

d
j )

To facilitate communication between computing units, the
Message Passing Interface (MPI) library is mostly applied
in common multi-core processor environments. Performance
nearly linearly increases with the limited number of processors
as the communication cost between processes can be ignored
in the non-scalable cases, as demonstrated in [12]. Similarly,
the Update steps are finished by m processors in parallel
through MPI as well. Processors Pl should communicate with
each other before the final cdj can be updated. CUDA is
applied for implementing those communications when targeting
on GPU-based systems [37], Hadoop is used in clusters [8]
and OpenStack for cloud architecture [19]. We ignore the
formal description of the general reduce-based parallel updating
process here because it is not applicable to the proposed
methods on our targeted hierarchical many-core processors.

4) Large-scale Parallel k-means on Supercomputers: In
addition to general parallel k-means implementations, other
customized k-means implementation targeting on supercom-
puters are more related to our work here.

Kumar, et al [24] implemented the dataflow-partition based
parallel k-means on the Jaguar, a Cray XT5 supercomputer
at Oak Ridge National Laboratory evaluated by real-world geo-
graphical datasets. Their implementation applys MPI protocols
to achieve broadcasting and reducing and originally scaled the
value of k to more than 1,000s level.

Cai, et al [6] designed a similar parallel approach on Gordon,
a Intel XEON E5 supercomputer at San Diego Supercomputer
Center for grouping game players. They applied a parallel R
function, mclapply, to achieve shared-memory parallelism and
test different degree of parallelism by partitioning the original
data-flow into different numbers of sets. They did not focus
on testing the scalability of their approach but evaluated on
the quality of the cluster.

Bender, et al [2] investigated a novel parallel implementation
proposed for Trinity, the latest National Nuclear Security
Administration supercomputer with Intel Knight’s Landing
processors and their scratchpad two-level memory model.
Their approach is the most state-of-the-art comparable work
against our proposed methods which can not only partition
dataflow, but also partition the number of target clusters k
by their hierarchical two-level memory support - cache
associated with each core and scratchpad for share. Adapted
originally from [16], their partitioning algorithm partitioned
the input dataset into nd

M sets, where M is the size of the
scratchpad, and then reduced k nd

M centroids recursively if
needed. Based on this partition, their approach scaled d into
100,000s level.

A fundamental bottleneck in their approach is that based
on only two-level memory, it is still impossible to partition



Figure 2: Three-level k-means design for data partition and
parallelism on Sunway architecture

and then scale both k and d independently. This leads to the
interaction constraint between k and d as discussed in their
paper:

Z < kd < M

where Z is the size of cache. This partition-based method
is not efficient if all k centroids could fit into one cache. In
practice, this limits the value of k to be less than 18 and d
to be greater than 152,917 in their experiments. We claim
that our proposed approach with underlining data partitioning
methods based on hierarchical many-core processors achieves
the needed multi-level fully nkd partition with architectural
support to thoroughly solve this bottleneck.

We formalize the background work of both general parallel k-
means and supercomputer-oriented implementations as shown
in Table I.

III. MULTI-LEVEL LARGE-SCALE k-means DESIGN

The scalability and performance of parallel k-means algo-
rithm on large-scale heterogeneous systems and supercomputers
are mainly bounded by the memory and bandwidth. To achieve
efficient large-scale k-means on the Sunway supercomputer,
we explore the hierarchical parallelism on our heterogeneous
many-core architecture. We demonstrate the proposed scalable
methods on three parallelism levels by how we partition the
data.

• Level 1 - DataF low Partition: Store a whole sample and
k centroids on single-CPE

• Level 2 - DataF low and Centroids Partition: Store a
whole sample on single-CPE whilst k centroids on multi-
CPE

• Level 3 - DataF low, Centroids and Dimensions
Partition: Store a whole sample on multi-CPE whilst k
centroids on Multi-CG and d dimensions on Multi-CPE

An abstract graph of how we partition the data into multiple
levels is presented in Figure 2.

A. Level 1 - DataFlow Partition

Algorithm 1 Basic Parallel k-means

1: INPUT: Input dataset X = {xi|xi ∈ Rd, i ∈ [1, n]}, and
initial centroid set C = {cj |cj ∈ Rd, j ∈ [1, k]}

2: Pl
load←−−− C, l ∈ {1 . . .m}

3: repeat
4: // Parallel execution on all CPEs:
5: for l = 1 to m do
6: Init a local centroids set Cl = {clj |clj = 0, j ∈ [1, k]}
7: Init a local counter countl = {countlj |countlj =

0, j ∈ [1, k]}
8: for i = (1 + (l − 1) ∗ n

m ) to (l ∗ n
m ) do

9: Pl
load←−−− xi

10: a(i) = arg minj∈{1...k}dis(xi, cj)
11: cla(i) = cla(i) + xi

12: countla(i) = countla(i) + 1
13: for j = 1 to k do
14: AllReduce clj and countlj

15: clj =
clj

countlj

16: until Cl == C
17: OUTPUT: C

In the simple case, we run the first step, Assign, on
each CPE in parallel while using multi-CPE collaboration
to implement the second step, Update. The pseudo code of
this case is shown in Algorithm 1.

The Assign step is implemented similarly to the traditional
parallel k-means algorithm – (1.1) and (1.2) as above. Given n
samples, we partition into multiple CPEs. Each CPE (Pl) firstly
reads one sample xi and finds the minimum distances dis from
itself to all centroids cj to obtain a(i). Then two variables
are accumulated for each cluster centroid cj according to a(i),
shown in line 11 and 12. The first variable stores the vector
sum of all the samples assigned to cj , notated as cla(i). The
second variable counts the total number of samples assigned
to cj , notated as countla(i).

In the Update step, we first accumulate the clj and countlj
of all CPEs by performing two AllReduce operations, so that
all CPEs can obtain the assignment results of the whole input
dataset. We use register communication [14] to implement
intra-CG AllReduce operation and use MPI AllReduce for
inter-CG AllReduce. After the accumulation, the Update step
is performed to calculate new centroids, as shown in line 15.

Analysis: Considering a one-CG task, we analyse the
constraints on scalability in terms of memory limitation of each
CPE. Based on the steps above, one CPE has to accommodate
at least one sample xi, all cluster centroids C, k centroids’



accumulated vector sum Cl and k centroids’ counters countl.
Considering that each CPE has a limited size of LDM, we
obtain the constraint (C1) below:

C1 : d(1 + k + k) + k ≤ LDM

Since both the number of centroids k and the dimension d
for each sample xi should at least be 1, we obtain two more
boundary constraints (C2) and (C3) below, separately:

C2 : 3d+ 1 ≤ LDM

C3 : 3k + 1 ≤ LDM

Now we analyse the performance under bandwidth bounds.
Note that the Assign step of computing a(i) for each sample
xi is completed fully in parallel on the m CPEs. Given the
bandwidth of multi-CPE architecture to be B, the DMA time
of reading data from main memory can be simply formalized
as:

Tread : (
n ∗ d
m

+ k ∗ d)/B

Theoretically, a linear speedup for computing time to at most
n times against the serial implementation can be obtained for
the Assign step if we can apply m = n CPEs in total.

The two AllReduce operations are the bottleneck process in
the Update step. The register communication technique
for internal multi-CPE communication guarantees a high-
performance with a normally 3x to 4x speedup than other on-
chip and Internet communication techniques (such as DMA and
MPI) for this bottleneck process (referring to the experimental
configuration section for detailed quantitative values). Given
the bandwidth of register communication to be R, the time
for the AllReduce process can be formalized as:

Tcomm :
n

m
((1 + k) ∗ d)/R

B. Level 2 - DataFlow and Centroids Partition

To scale the number of k for cluster centroids C, we use
multiple (up to 64) CPEs in one CG to partition the set
of centroids. The number of CPEs grouped to partition the
centroids is denoted by mgroup. For illustration, we use l′ to
index the CPE groups {P}. Then we have:

{P}l′ := {Pl}, l ∈ (1 + (l′ − 1) ∗mgroup, l
′ ∗mgroup)

The pseudo code of this case is shown in Algorithm 2. To
partition k centroids on mgroup CPEs, we need to do a new
sub-step against the previous case as shown in line 2. Then
different from the Assign step in above case, we partition each
data sample xi in each CPE group as shown in line 8. After
that, similar to (1.2), all Pl in each {P}l′ can still compute a
partial value of a(i) (named as a(i)′) fully in parallel without
communication. Note that the domain of j in line 11 is only a
subset of (1, . . . , k) as presented above in line 2, so we need
to do one more step by data communication between CPEs in
each CPE group to obtain the final a(i) as shown in line 10.

Then the Update step is similar to previous case. We just
view one CPE group as one basic computing unit, which

Algorithm 2 Parallel k-means for k-scale

1: INPUT: Input dataset X = {xi|xi ∈ Rd, i ∈ [1, n]}, and
initial centroid set C = {cj |cj ∈ Rd, j ∈ [1, k]}

2: Pl
load←−−− cj j ∈ (1 + mod( l−1

mgroup
) ∗

k
mgroup

, (mod( l−1
mgroup

) + 1) ∗ k
mgroup

)
3: repeat
4: // Parallel execution on each CPE group {P}l′ :
5: for l′ = 1 to m

mgroup
do

6: Init a local centroids set Cl′ and counter countl
′

7: for i = (1 + (l′ − 1)
n∗mgroup

m ) to (l′
n∗mgroup

m ) do
8: {P}l′

load←−−− xi

9: a(i)′ = arg minj dis(xi, cj)
10: a(i) = min. a(i)′

11: cl
′

a(i) = cl
′

a(i) + xi

12: countl
′

a(i) = countl
′

a(i) + 1

13: for j = (1 + mod( l−1
mgroup

) ∗ k
mgroup

) to

((mod( l−1
mgroup

) + 1) ∗ k
mgroup

) do
14: AllReduce cl

′

j and countl
′

j

15: cl
′

j =
cl

′
j

countl
′
j

16: until ∪ Cl′ == C
17: OUTPUT: C

conducts what a CPE did in the previous case. Each CPE only
computes values of subset of centroids C and does not need
further communications in this step as it only needs to store
this subset.

Analysis: To analyse the scalability of k in this case, the
amount of original k centroids distributed in mgroup CPEs
leads to a easier constraint of k against the (C3) above:

C′3 : 3k + 1 ≤ mgroup ∗ LDM (mgroup ≤ 64)

Based on this, we can also easily scale the (C1) as follow:

C′1 : d(1 + k + k) + k ≤ mgroup ∗ LDM (mgroup ≤ 64)

Note that we still need to accommodate at least one d-
dimensional sample in one CPE, so the (C2) should be kept
as before: C′2 := C2

As for performance, since mgroup CPEs in one group should
read the same sample simultaneously, the processors need more
time to read the input data samples than the first case, but only
partial cluster centroids need to be read by each CPE:

T′read : (
n ∗ d ∗mgroup

m
+

k

mgroup
∗ d)/B

As for the data communication needed, there is one more
bottleneck process (line 12) than before. Comparing against the
above cases, multiple CPE groups can be allocated in different
processors. Those communication need to be done through
MPI which is much slower than internal processor multi-CPEs
register communication. Given the bandwidth of network
communication through MPI to be M , we obtain:

T′comm :
k

mgroup
/R+

n ∗mgroup

m
((1 + k) ∗ d))/M



C. Level 3 - DataFlow and Centroids and Dimensions Partition

Algorithm 3 Parallel k-means for k-scale and d-scale

1: INPUT: Input dataset X = {xi|xi ∈ Rd, i ∈ [1, n]}, and
initial centroid set C = {cj |cj ∈ Rd, j ∈ [1, k]}

2: CGl′′
load←−−− cdj , l′′ ∈ {1 . . . m

64}, j ∈ (1 +mod( l′′−1
m′

group
) ∗

k
m′

group
, (mod( l′′−1

m′
group

) + 1) ∗ k
m′

group
)

3: repeat
4: // Parallel execution on each CG group {CG}l′′ :
5: for l′′ = 1 to m

64 do
6: Init a local centroids set Cl′′ and counter countl

′′

7: for i = (1 + (l′′ − 1)
n∗m′

group

m ) to (l′′
n∗m′

group

m ) do
8: for u = (1+mod( l−164 )∗ d

64 to (mod( l−164 )+1)∗ d
64 )

do
9: CGl′′ ← xi (Pl ← xu

i )
10: a(i)′ = arg minj dis(xi, cj)
11: a(i) = min. a(i)′

12: cl
′′

a(i) = cl
′′

a(i) + xi

13: countl
′′

a(i) = countl
′′

a(i) + 1

14: for j = (1 + mod( l′′−1
m′

group
) ∗ k

m′
group

) to

((mod( l′′−1
m′

group
) + 1) ∗ k

m′
group

) do
15: AllReduce cl

′′

j and countl
′′

j

16: cl
′′

j =
cl

′′
j

countl
′′
j

17: until ∪ Cl′′ == C
18: OUTPUT: C

To scale the number of dimension d for each sample xi

and further scale k, we store and partition one d-dimensional
sample by one CG with 64 CPEs and then implement the
algorithm on multiple CGs. The pseudo code of this case is
shown in Algorithm 3.

Recall we use u to index the data dimension: u ∈ (1 . . . d);
Now we use l′′ to index the CGs and m′group to denote the
number of CGs grouped together to partition k centroids.
Consider that we apply m CPEs in total and each CG contains
64 CPEs, then we have l′′ ∈ (1, . . . , m

64 ), m
′
group ≤ m

64 and:

CGl′′ := {Pl}, l ∈ (1 + 64(l′′ − 1), 64l′′)

To partition k centroids on multiple CGs, we obtain an updated
step against the previous case as shown in line 2. To partition
each d-dimensional sample xd

i on 64 CPEs in one CG, we
obtain the following step as shown in line 9.

Similar to the above case, all CGl′′ in each CG group
compute the partial value a(i)′ fully in parallel and then
communicate to obtain the final a(i). Multi-CG communication
in multiple many-core processors (nodes) is implemented
through MPI interface. Then the Update step is also similar
to the previous case. Now we view one CG as one basic
computing unit which conducts what one CPE did before and
we view what a CG group does as what a CPE group did
before.

Analysis: In this case, each CG with 64 CPEs accommodates
one d-dimensional sample xi. Then we can scale the previous
(C2) as follow:

C′′2 : 3d+ 1 ≤ 64 ∗ LDM

Consider we use totally m′group CGs to accommodate k
centroids in this case, then (C3) will scale as follow:

C′′3 : 3k + 1 ≤ m′group ∗ 64 ∗ LDM

Note that the domain of m′group seems limited by the total
number of CPEs applied, m. But in fact, this number can be
large-scale as we target on the supercomputer with tens of
millions of cores. Finally, (C1) will scale as follow:

C′′1 : d(1 + k + k) + k ≤ 64 ∗m′group ∗ LDM

which is equal to:

C′′1 : d(1 + k + k) + k ≤ m ∗ LDM

C′′1 is the breakthrough contribution over other state-of-the-art
work [2]: the total amount of d∗k is not limited by a single or
shared memory size any more. It is fully scalable by the total
number of processors applied (m). In a modern supercomputer,
this value can be large-scaled up-to tens of millions when
needed.

Considering performance, note that m′group CGs (64 CPEs in
each) in one group should read the same sample simultaneously.
In another aspect, each CPE only needs to read a partial of
the given d-dimension of original data sample together with
a partial of k centroids similarly as before, then we obtain a
similar reading time:

T′′read : (
n ∗ d ∗m′group

m
+

k

m′group
∗ d

64
)/B

Comparing against the above cases, multiple CGs in CG
groups allocated in different many-core processors need commu-
nication to update centroids through MPI. Given the bandwidth
of network communication through MPI to be M , the cost
between multiple CG groups can be formalized as:

T′′comm : (
k

m′group
+

n ∗m′group
m

((1 + k) ∗ d))/M

The network architecture of Sunway TaihuLight is a two-
level fat tree. 256 computing nodes are connected via a
customized inter-connection board, forming a super-node. All
super-nodes are connected with a central routing server. The
intra super-node communication is more efficient than the inter
super-node communication. Therefore, in order to improve the
overall communication efficiency of our design, we should
make a CG group located within a super-node if possible.

D. Impact of Multi-level Large-scale Design

As described in the background section, Level 1 is based
on the well-researched parallel k-means deign using dataflow
partition (n-partition) which has been implemented on other
supercomputers including Jaguar [24] and Gordon [6] to
process regular big dataset with up to 1,000s centroids and small



Table II: Benchmarks from UCI and ImgNet

Data Set n k d

Kegg Network 6.5E4 256 28
Road Network 4.3E5 10,000 4
US Census 1990 2.5E6 10,000 68

ILSVRC2012
(ImgNet)

1.3E6 160,000 196,608

number of dimensions. Level 2 provides similar functionality to
Bender et al. [2] approach targeting on Trinity, implementing
both dataflow and centroids partition (nk-partition) to success-
fully handle big dataset with large-scale dimensions. Level 3 is
our original first ever approach to finally achieve all dataflow,
centroids and data samples (nkd-partition) simultaneously to
successfully handle big dataset with both large-scale dimensions
and large-scale centroids achieving high performance.

The multi-level large-scale approaches together also give
us the needed flexibility to handle both high dimensional and
low dimensional dataset efficiently on supercomputer, which
also breaks the limitation in current state-of-the-art design by
Bender et al. [2] which claims only efficient for dataset with
larger than 100,000 dimensions.

IV. EXPERIMENTAL EVALUATION

We describe our experimental evaluation in this section.
We run our proposed methods on Sunway TaihuLight, with
a hierarchical SW26010 many-core processor as the main
processor. architecture.

This section is structured as follows: we first describe the
datasets applied and then discuss the experimental metrics. The
experimental strategy is presented followed by the results on
the three scalable levels, a comparison between partitioning
strategies, and analysis.

A. Experimental Datasets

The datasets we applied in experiments come from well-
known benchmark suites including UCI Machine Learning
Repository [32] and ImgNet [20]. We briefly present the
datasets in Table II, where the first three normal size bench-
marks (Kegg Network, Road Network, US Census 1990)
are from UCI and the final high-dimensional benchmarks
(ILSVRC2012) are from ImgNet.

We do not describe the more detailed technical and back-
ground descriptions of those benchmarks as they are well-
known and commonly applied in the literature.

B. Experimental Design and Metrics

The experiments have been conducted to demonstrate
scalability, high performance and flexibility by increasing the
number of centroids k and number of dimensions d on multiple
benchmarks with vary data size n. The three-level designs
are tested targeting different sizes and types of benchmarks.
Different hardware setup will be provided for testing different
scalable levels:
• Level 1 - One SW26010 many-core processor is applied,

which contains 256 64-bit RISC CPEs running at 1.45
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Figure 3: Level 1 - dataflow partition

GHz, grouped in 4 CGs in total. As 64 KB LDM buffer is
associated with each CPE and 32 GB DDR3 memory is
shared for the 4 CGs, we setup 16 MB LDM and 32 GB
DDR3 memory support in total. The theoretical memory
bandwidth for register communication is 46.4 GB/s and
for DMA is 32 GB/s.

• Level 2 - Up-to 256 SW26010 many-core processors
are applied, which contains 65,536 64-bit RISC CPEs
running at 1.45 GHz, grouped in 1,024 CGs in total.
We setup 4 GB LDM and 8 TB DDR3 memory support
in total. The theoretical memory bandwidth for register
communication is 46.4 GB/s and for DMA is 32 GB/s.
The bidirectional peak bandwidth of the network between
multiple processors is 16 GB/s.

• Level 3 - Up-to 4,096 SW26010 many-core processors
are applied, which contains 1,064,496 64-bit RISC cores
running at 1.45 GHz, grouped in 16,384 CGs in total. In
this setup, 64 GB LDM and 128 TB DDR3 memory are
supported in total. The bidirectional peak bandwidth of
the network between multiple processors is 16 GB/s.

The main performance metric we are concerned with here is
one iteration completion time. Note that the total number of
iterations needed and the quality of the solution (precision) are
not considered in our experiments as our work does not relate
to the optimization of the underlining Lloyd algorithm or the
solution of k-means algorithm.

C. Experimental Results and Analysis

We report the results of three different partition strategies:
Level 1 – a baseline single-level partition strategy, Level 2 – an
implementation of a state-of-the-art two-level partition strategy
used in recent supercomputer implementations [2], and Level
3 – our novel three-level partition strategy.

Since each partitioning strategy is only able to run suc-
cessfully at certain ranges of k and d, it is not possible to
compare them directly across the whole range benchmarks
as the benchmarks have limits in terms of dataset size. For
this reason, we first evaluate each strategy independently on
the most suitable benchmarks for the strategy in question to
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Figure 4: Level 2 - dataflow and centroids partition

show how each performs in the range for which they are most
suited. The second part of our evaluation compares the partition
strategies directly on benchmarks where the possible range of
k and d overlap. This shows how our proposed Level 3 strategy
scales significantly better than Level 2 over varying k, d, and
number of computational nodes.

1) Level 1 - dataflow partition: The Level 1 (n-partition)
parallel design is applied to three UCI datasets (US Census
1990, Road Network, Kegg Network) with their original
sizes (n = 2,458,285, 434,874 and 65,554 separately) and
data dimensions (d = 68, 4 and 28) for cross number of
target centroids (k). The purpose of these experiments is to
demonstrate the efficiency and flexibility of this approach
on datasets with relatively low size, dimensions and centroid
values. Figure 3 shows the one iteration completion time for
those datasets over increasing number of clusters, k. As the
number of k increases, the completion time on this approach
grows linearly.

2) Level 2 - dataflow and centroids partition: The level
2 (nk-partition) parallel design is applied to same three UCI
datasets as above, but for a large range of target centroids
(k). The purpose of these experiments is to demonstrate the
efficiency and flexibility of the proposed approaches on datasets
with large-scale target centroids (less than 100,000). Figure 4
shows the one iteration completion time of the three datasets of
increasing number of clusters, k. As the number of k increasing,
the completion time from this approach grows linearly. We
conclude that this approach works well when one dimension
is varied up to the limits previously published.

3) Level 3 - dataflow, centroids and dimensions partition:
The Level 3 (nkd-partition) parallel design is applied to a
subset of ImgNet datasets (ILSVRC2012) with its original
size (n = 1,265,723). The results are presented with varying
number of target centroids (k) and data dimension size (d)
with an extremely large domain. We also test the scalability
varying the number of computational nodes. The purpose of
these experiments is to demonstrate the high performance and
scalability of the proposed approaches on datasets with large
size, extremely high dimensions and target centroids. Figure 5

Figure 5: Level 3 - dataflow, centroids and data-sample partition

shows the completion time of the dataset of increasing number
of clusters, k = 128, 256, 512, 1024 and 2,048 with increasing
number of dimensions, d = 3,072 (32*32*3), 12,288 (64*64*3)
and 196,608 (256*256*3).

To further investigate the scalability of our approach, we
test two more cases by either further scaling centroids by
certain number of data dimensions (d = 3,072) and number
of nodes (nodes = 128) or further scaling nodes applied by
certain number of data dimensions (d = 196,608) and number
of centroids (k = 2,000). The results of those two tests are
shown in Figure 6.

As both k and d increase, the completion time from our
approach continues to scale well, demonstrating our claimed
high performance and breakthrough large scalability.

4) Comparison of partition levels: In this section we
experimentally compare the Level 2 approach with our Level
3 approach.

Figure 7 shows how one iteration completion time grows
as the number of dimensions increases. The Level 2 approach
outperforms Level 3 when the number of dimensions is rela-
tively small. However, the Level 3 approach scales significantly
better with growing dimensionality, outperforming Level 2 for
all d greater than 2560. The Level 2 approach cannot run
with d greater than 4096 in this scenario due to memory
constraints. However, it is clear that, even if this problem were
solved, the poor scaling would still limit this approach. The
completion time for Level 2 falls twice unexpectedly between
1536 and 2048, and between 2560 and 3072. This is due to
the crossing of communication boundaries in the architecture
of the supercomputer – the trend remains clear however.

Figure 8 shows how the one iteration completion time grows
as the number of centroids, k increases. Since the number



Figure 6: Level 3 - large-scale on centroids and nodes
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Figure 7: Comparison: varying d with 2,000 centroids and
1,265,723 data samples tested on 128 nodes
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and 1,265,723 data samples tested on 128 nodes
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Figure 9: Comparison test: varying number of nodes used with
a fixed 4,096 dimension, 2,000 centroids and 1,265,723 data
samples

of d is fixed at 4096, the Level 3 approach actually always
outperforms Level 2, with the gap increasing as k increases.
This scaling trend is replicated at lower levels of d too, though
Level 2 initially outperforming Level 3 at lower values of k.

Figure 9 shows how both Level 2 and Level 3 scale across
an increasing number of computation nodes. Level 3 clearly
outperforms Level 2 in all scenarios. The values of k and d
are fixed, as described in the graph caption, at levels which
Level 2 can operate. The performance gap narrows as more
nodes are added, but remains significant. Clearly the exact
performance numbers will vary with other values k and d, as
can be inferred from other results, but the main conclusion we
draw here is that Level 3 generally scales well.

5) Comparison with other architectures: As discussed in the
background section, state-of-the-art supercomputing-oriented
approaches are tested either on their specific datasets [6], [24]
or publish only their relative speedups [2] instead of execution
times. It is not possible to compare our actual execution
time with these supercomputing-oriented approaches directly.
Additionally, wallclock execution times are problematic to
compare across vastly differing architectures with different
budgets.

To give some insight into the performance we obtain,
we compare execution time with other architectures directly
where this is possible. We present five comparable results
from published literature in Table III. Based on the differing
workload sizes presented in these papers, we adjust the
hardware configuration for Sunway TaihuLight, changing the
number of nodes utilized. This is determined by the size of
the task in terms of k and d where no further performance
gains are possible by adding more nodes. The number of nodes
varies from just one node for a single processing unit [23],
[27] to 128 nodes in [33].

We report results against a heterogeneous node based
approach running a custom implementation of parallel k-
means on ten heterogeneous nodes, each node consisting of an
NVIDIA Tesla K20M GPU with two Intel Xeon E5-2620
CPUs [33]. Further, we compare against two GPU based
implementations running on an NVIDIA Tesla K20M GPU



Table III: Execution time comparison with other architectures

Approaches Hardware Resources n k d Execution time per
iteration (sec.)

Execution time per iteration by
Sunway TaihuLight (sec.)

Speedup

Rossbach, et al [33] 10x NVIDIA Tesla K20M
+ 20x Intel Xeon E5-2620

1.0E9 120 40 49.4 0.468635 (128 nodes) 105x

Bhimani, et al [3] NVIDIA Tesla K20M 1.4E6 240 5 1.77 0.025336 (4 nodes) 70x
Jin, et al [23] NVIDIA Tesla K20c 1.4E5 500 90 5.407 0.110191 (1 node) 49x
Li, et al [27] Xilinx ZC706 2.1E6 4 4 0.0085 0.002839 (1 node) 3x
Ding, et al [13] Intel i7-3770K 2.5E6 10,000 68 75.976 2.424517 (16 nodes) 31x

Figure 10: Remote Sensing Image Classification: The left hand
side is the result from baseline approach provided by [11], the
middle is the corresponding original image and the right hand
side is our classification result. We apply different colors to
identify different region classes as used in [11].

and an NVIDIA Tesla K20c GPU respectively [3], [23], an
FPGA based approach running a custom parallel k-means
implementation on Xilinx ZC706 FPGA [27], and a multi-core
processor based approach running a custom implementation of
parallel k-means on 8-core Intel i7-3770k processor [13].

The proposed approach running on the Sunway TaihuLight
supercomputer achieves more than 100x speedup over the high-
performance heterogeneous nodes based approach, between
50x-70x speedup than those single GPU based approaches, and
31x speedup over multi-core CPU based approach on their
largest solvable workload sizes.

Although we are able to show substantial improvement
against these architectures, the approach presented in this
paper is principally designed for, and performs best on higher
dimensionality and higher numbers of centroids than is possible
on such small systems.

D. Impact on Applications

As a widely used clustering algorithm, a highly efficient
and scalable k-means implementation is important to support
applications with increasingly large problem sizes and data
processing requirements. To demonstrate the efficacy of our
design on a real application, we report results for the land
cover classification application. This is a popular remote
sensing problem, requiring unsupervised methods to handle
high numbers of unlabeled remote sensing images [25].

K-means has already been used for regional land cover
classification with small number of targeted classes. For

example, Figure 10 shows our result of classifying a remote
sensing image (from a public dataset called Deep Globe 2018
[11]) into 7 classes, representing the urban, the agriculture,
the rangeland, the forest, the water, the barren and unknown.
There are 803 images in the Deep Globe 2018 dataset, and
each image has about 2k × 2k pixels. The resolution of the
image is 50cm/pixel. In this problem definition, we cluster on
one image, where n is 5838480, k is 7 and d is 4096, which
can be done with 400 SW26010 many-core processors. Our
Level 3 design can process the clustering dataset efficiently.
In recent years, high-resolution remote sensing images have
become more common in land cover classification problems.
The problem definition on high-resolution images is more
complex as the classification sample can be a block of pixels
instead of one pixel, which means the d can be even larger.

Real world research of high-resolution land cover classifi-
cation and other similar problems are currently in progress
on the Sunway TaihuLight supercomputer, using the method
proposed in this paper. Further significant applications with
intrinsic high dimensionality are potentially supported.

V. CONCLUSIONS

This paper presents the first ever fully data partitioned (nkd-
partition) approach for parallel k-means implementation to
achieve scalability and high performance at large numbers of
centroids and high data dimensionality simultaneously. Running
on the Sunway TaihuLight supercomputer, it breaks previous
limitations for high performance parallel k-means, allowing
data scientists a new powerful tool with great potential.

The proposed multi-level approach also achieves greater
flexibility on general workloads with varying data size, tar-
get centroids and data dimensions compared with previous
supercomputer-specific approaches. The novel design unlocks
the potential of hierarchical hardware support of the Sunway
TaihuLight for k-means, and shows how to optimize this and
potentially similar algorithms for a cutting edge heterogeneous
many-core supercomputer design.
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