

Maejo Int. J. Sci. Technol. 2016, 10(03), 272-283

Maejo International
Journal of Science and Technology

ISSN 1905-7873
Available online at www.mijst.mju.ac.th

Full Paper

Tool support for transforming Unified Modelling Language
sequence diagram to coloured Petri nets

Dulani Meedeniya
1, *, Indika Perera

1 and Juliana Bowles
2

1 Department of Computer Science and Engineering, University of Moratuwa, Moratuwa, Sri Lanka
2 School of Computer Science, University of St Andrews, St Andrews, United Kingdom

* Corresponding author, e-mail: dulanim@cse.mrt.ac.lk

Received: 13 October 2015 / Accepted: 12 October 2016 / Published: 19 October 2016

Abstract: Modern software systems are expected to be dependable and the development of

such systems requires strong modelling and analysis methods. Model-Driven Development is

becoming a mainstream practice in software development to cater for that need. Models help

to cope with the large scale and complexity of software systems by specifying the structural

and behavioural aspects of the system and providing a means of communication between

domain experts, analysts, designers and developers. Consequently, there is an increasing

need for being able to combine the benefits of popular design approaches and formal models

to contribute to better software products. Sequence Diagram-to-Coloured Petri Net

(SD2CPN) is a scenario-based model transformation tool with analysis capabilities. It

captures scenarios using Unified Modelling Language sequence diagrams and transforms

them into coloured Petri nets that enable reliable analysis of the system models. The model

transformations are based on the strongly consistent model-to-model transformation rules

that are formally defined previously as part of this research. This paper presents the design,

implementation, main features and usage of SD2CPN tool.

Keywords: SD2CPN, coloured Petri net, model-driven development, model transformation,

Unified Modelling Language sequence diagram

__

INTRODUCTION

Model-Driven Development (MDD) is a popular software engineering practice that

addresses the complexity issues of a software system [1-3]. The complexity of a software system is

a generic norm within large scale systems. Often the domain specific complexities are associated

with the solution architecture, making the management of the design architecture a challenge. A

common approach to overcoming such complexities is using multiple models, each of which

provides a unique viewpoint of the solution architecture. This is based on the divide-and-conquer

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/161932252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Maejo Int. J. Sci. Technol. 2016, 10(03), 272-283

273

software design principle and often brings a new challenge of relating and maintaining the

consistency of these multiple models. Moreover, these models may require to be transformed into

different models in which each has unique views for further analysis. The manual practice of

referring to multiple models in a design and transforming them can be a tedious task for the

software engineers. Without automated techniques, generating model transformations manually is

deemed to be unrealistic and compromises the design quality factors such as model efficiency, cost

and risk management.

In order to ensure that software systems behave as intended, formal verification can be used

if the design models are of well-defined semantics. Unified Modelling Language (UML) sequence

diagram (SD) is a widely used graphical modelling language for capturing inter-object behaviours,

although it lacks formal semantics that is required for the formal verification [5, 6]. On the other

hand, coloured Petri net (CPN) [7, 8] is a formal model that can represent a system behaviour, both

graphically and mathematically, and enables different analyses of a wide range of systems [7, 9].

Model transformations with tool support mediate the discrepancies between different models

by making them consistent with each other while supporting model simulation and/or formal

verification [4]. Thus, modelling and transformations are considered as key processes in MDD. As a

result, there is a growing demand to explore methods and practices of transforming models in a

more efficient, complete and consistent manner. The focus of this research concerns the link

between MDD and formal methods of model transformations.

Previous work of this research [10-12] has defined a set of formal rules for model

transformation from an SD to a CPN with proof for its correctness. However, developers often find

it challenging to use formal representations; instead they prefer automated model transformation as

part of their integrated development environments and computer-aided software engineering tools

they use. Users of such tools can carry out an architectural redesign and evaluation without having

expertise in the underlying formal models being used. This paper presents a tool named Sequence

Diagram-to-Coloured Petri Net (SD2CPN) that supports the integrated and automated model

transformation from an SD to a CPN.

DESIGN MODELS OF SD AND CPN

SDs are a widely used graphical modelling method for capturing inter-object behaviours

with a set of messages that communicate between the instances participating in an interaction over

time (see Figure 1(a)). An SD is represented within a solid-outline rectangular frame around the

diagram. The name of the diagram following the keyword sd is placed inside a pentagon-shaped

compartment on the upper-left corner of the frame. An instance can correspond to a particular

object in the interaction. An instance has a vertical line called lifeline that represents its existence at

a particular time. The most visible aspect is a sequence of messages that are exchanged between the

instances, along with their corresponding occurrence on the lifelines. A message with the same

source and target lifeline is called a self-message [5, 6]. As shown in Figure 1(a), the SD named N

contains three object instances, viz. a:A, b:B and c:C. The interactions within the diagram start by

instance a sending a message m0 to instance c.

A UML SD may contain constructs called interaction-fragments denoted by a solid-outlined

rectangle and add more structure to part of an interaction. An interaction-fragment has one operator

(e.g. alt), one or more operands separated using dashed horizontal lines, and zero or more guard-

conditions [5, 6]. An operator is shown in the upper-left corner of the fragment and determines how

its operands are executed. The UML standard [6] defines a range of operators and this example

Maejo Int. J. Sci. Technol. 2016, 10(03), 272-283

274

shows only the alt operator for alternative behaviour. A guard-condition is a Boolean expression

that determines whether its operand executes or not and it is shown covering the lifeline where the

first event occurs. The SD in Figure 1(a) shows alt interaction-fragment behaviour with two

operands. Here, instance c makes a choice based on the guard-condition, which evaluates to true

and sends the message m1 to instance b or a self-message m2 to instance c.

A CPN [7-9] is a directed, connected, bi-partite graph with two node types called places and

transitions that are connected through directed arcs (see Figure 1(b)). A CPN is both state- and

action-oriented. It describes the states (places) of the system and the operations (net-transitions) that

cause the model to change state. Graphically, places are represented by circles, transitions by

rectangles, and arcs by arrows connecting places and net-transitions. Places may contain tokens,

which are shown as black dots. Tokens and places are associated with colours that distinguish

between object types. Each transition is fired when it acquires the relevant tokens from the linked

places. When a transition fires, the acquired tokens are passed onto each output place associated

with the transition. Thus, the firing of a transition results in a state change for the tokens.

Additionally, a transition or an arc may have an associated guard (a Boolean expression) to

represent system interactions such as the execution of a conditional statement. The guard is required

to evaluate true, to enable the binding and fire the transition.

(a) (b)

Figure 1. Graphical representation of (a) SD and (b) CPN

Figure 1(b) shows an example of a CPN named K, which represents a conditional behaviour.

There are three object types (colours): a, b and c, each with one token in their initial places s0a, s0b

and s0c respectively. CPN A contains three labelled net-transitions t1, t2 and t3, and unlabelled net-

transitions alt-beg and alt-end, that are used to synchronise the control flow of the model. The

transitions t2 and t3 are guarded with conditions [x==1] and [x==2] respectively, and the firing

transition is selected based on the condition that evaluates to true.

RELATED WORK

In terms of transforming scenario-based models into state-based models, many approaches

were published previously [13-16]. However, some of them considered only the basic SD constructs

or event flow of the system and did not consider the handling of the data flow with object-oriented

Maejo Int. J. Sci. Technol. 2016, 10(03), 272-283

275

features. Moreover, some presented only a graphical transformation and did not define the formal

transformation rules. In some interesting work [15, 16], behavioural trees were used to support both

the graphical and formal representations. The evolutionary design and integration relationships were

also supported by the models in which the behavioural trees were used.

 In our previous work [10-12, 17-19] a formal model-to-model transformation from an SD to

a CPN was defined by explicitly stating the connection between the elements of the two models.

Also, we have shown the correctness of the transformation by proving that the languages in both

models are strongly consistent; thus the transformation is free of implied scenarios. We have

contributed to the scalability of the models by supporting partial and incremental analyses of the

target model [11]. Further, we have shown the applicability of our transformations for various

application domains such as cloud services [12], an elevator system [17] and immersive

environments [18].

TOOL DESIGN

The main aim of the SD2CPN tool is the transformation of an SD into a behaviourally

equivalent CPN which can be analysed using existing formal methods. This is done based on the

previously defined formal model transformation rules [10-12]. The tool supports both the graphical

and textual representations of the input and output models. The graphical user interface (GUI) of the

tool consists of tool palettes and menus, and provides drag and drop capabilities to draw an SD. The

textual representation has the same expressiveness as the graphical notations and the text-based

grammar is based on Backus-Naur form [20]. This commonly used graphical representation is easy

to understand. However, the textual representation can be used to integrate input and output models

with the existing SD and CPN modelling tools. For example, an SD modelled by an existing tool

can be an input to perform the transformation and the textual output can be used as an input to

another tool to analyse the CPN.

Figure 2. An overview of the designer’s interaction with the tool

Figure 2 shows an overview of the interactions between a user and the SD2CPN tool. A user

can model an SD and the tool converts it to the corresponding CPN using defined transformation

rules [10]. The user’s interaction with the SD2CPN tool is based on direct manipulation of either a

graphical or a textual representation of a model. In order to support the user in modelling an SD, the

GUI includes tool palettes with drag and drop capabilities. Alternatively, the user can also represent

an SD textually using a textual notation (see section on Tool Evaluation: A Case Study) with the

same expressiveness as that of the more popular graphical notation. Having an SD as the input, the

SD2CPN tool generates a formal representation of the SD and synthesises the corresponding CPN

for analysing the model. The tool simulates a token passing (the involvement of objects) between

Maejo Int. J. Sci. Technol. 2016, 10(03), 272-283

276

transitions and places, and keeps a track of the model’s execution flow. Thus, the simulation of the

CPN shows the system flow with object-orientation. The synthesised model can be used to validate

the SD by reproducing the expected scenarios of the system behaviour.

Figure 3. Design architecture of SD2CPN tool

Figure 3 shows the tool design that follows a component-based modular architecture. There

are two main modules as follows: the view component that represents the front end of the tool and

the process component that constitutes the back end with the transformations. The SD-presenter

process is in charge of representing the input SD model either graphically or textually. Then the SD-

generator process generates the corresponding formal representation of the SD model [10] and

passes it to the transformation-generator process. Here, the transformations are performed by

considering the meta-models of SD and CPN [17], and the formal transformation rules [10]. The

transformation rules define the mapping of a given element in an SD meta-class to the

corresponding element in the CPN meta-class. The CPN-generator process uses the outcome of the

transformation process to synthesise the corresponding CPN. Then the CPN-presenter process

shows the resulting CPN graphically or textually. The tool is implemented using Java NetBeans

environment. NetBeans-visual-library API (application program interface) and Utilities API are

used to implement the GUI-based classes in the view-component module. Standard Java

programming is used to implement the classes in the process-component module.

TOOL IMPLEMENTATION

This section presents the implementation of the transformations in the SD2CPN tool.

Scheme 1 states the execution of the process-component module during the transformation of an SD

to a CPN by considering the general elements of the SD. The process starts by getting the input

elements of the SD and identifying their instances and associations that correspond to the SD meta-

model [17]. As the first step towards transformations, an object of an SD model and the

corresponding object of the CPN are created with the same diagram name. While building the

formal SD model [10], each SD element is transformed into the corresponding CPN element,

leading to a complete CPN model [10].

Consider the procedure given in Scheme 1. If the element is an instance, it is added as a

class ‘Instance’ of the SD meta-model and transformed into the class ‘Colour’ in the CPN meta-

model. Then a state location associated with the instance is added to the SD model. This object

‘StateLocation’ is transformed into the object ‘Place’ with the corresponding colour and marking,

which is then added to the CPN model.

Maejo Int. J. Sci. Technol. 2016, 10(03), 272-283

277

 Scheme 1. Algorithm for general transformation function in SD2CPN tool

Procedure GeneralTransformation(SD)
Input Array of SD (name, instance, transition{send instance a , message label m, receive instance b})

elements e[];
Output Coloured Petri Net cpn (name, place, net-transition, arc, variable, expression);
Begin

i = 1, j = 0, k = 0, p = 0, x = 0;
Create an SD instance and a CPN instance

SD sd = new SD();
CPN cpn = new CPN();

Assign the SD name
sd.name = e[0];

Transform SD name to CPN name
cpn.name = sd.name;

foreach(e[i]){
if(e[i] == instance){

Add an instance to SD
sd.instance[j] = e[i];
Transform SD instance to a colour in the CPN
cpn.colour[j] = sd.instance[j];
Add an initial state location to SD
sd.state[j] = new stateLocation(sd.instance[j]);
Transform the state location to a place in the CPN with corresponding colour and marking
cpn.place[j] = sd.state[j](cpn.colour[j], 1);
j := j+1;

}
else if(e[i] == transition){

Add message label to SD
sd.messageLabel[k] = e[i].m;
Transform to the corresponding CPN label
cpn.label[k] = sd.messageLabel[k];
Initialise send and receive events of the transition
sd.event a = e[i].a;
sd.event b = e[i].b;
Initialise send and receive state locations
sd.state s1= new sd.state(e[i].a);
sd.state s2 = new sd.state(e[i].b):
Transform state location to the corresponding place in the CPN
cpn.place[p] = TransformStateToPlace(s1, a); p := p+1;
cpn.place[p] = TransformStateToPlace(s2, b); p := p+1;
Add transition to SD
sd.localTransition[k] = new sd.localTransition(sd.messageLabel[k], a, b, s1, s2);
Transform transition to the corresponding net-transition in the CPN
cpn.transition[k] = TransformTransitionToNetTransition(sd.localTransition[k]);
Add corresponding arcs to CPN given the net-transition and respective places
cpn.arc[x] = AddArc(cpn.place[p-4], cpn.transition[k]); x := x+1;
cpn.arc[x] = AddArc(cpn.place[p-3], cpn.transition[k]); x := x+1;
cpn.arc[x] = AddArc(cpn.transition[k], cpn.place[p-2]); x := x+1;
cpn.arc[x] = AddArc(cpn.transition[k], cpn.place[p-1]); x := x+1;

}
Keep track of each element
i:=i+1;
}
Display generated CPN

 display(cpn);

end

Maejo Int. J. Sci. Technol. 2016, 10(03), 272-283

278

If the element is a local transition with a message label and the two events (corresponding to

the sending instance and the receiving instance), the process starts by adding the corresponding

object of the class ‘messageLabel’ and the objects of the associated classes, ‘Event’ and

‘StateLocation’ to the SD model (which is an object of the class SD). After that, the object of the

LocalTransition is added to the SD object model. Thereafter, each of these objects, i.e.

messageLabel, localTransition and stateLocations, are transformed into the objects of Label,

NetTransition and Place respectively, and added to the CPN object model. The process retrieves the

associated input places of the net-transition and adds the corresponding objects of Arc that links the

net-transition and the associated places.

Next, the process updates the status of each object array to keep the flow control and

retrieves the next object. When all the SD elements are transformed into the corresponding elements

of the CPN, the tool displays the generated CPN by calling the process within the view component.

With respect to the interaction-fragment behaviour, the above algorithm is extended

according to the formal transformation rules defined in our previous work [10-12]. Here, when the

element is a fragment, the process adds an object of the class ‘InteractionFragment’ to the SD model

[17]. It also adds the associated objects of the class ‘Event’ to the beginning of the fragment and the

objects of the class ‘StateLocation’ for each operand. The beginning of the fragment is transformed

into an object of the class ‘NetTransition’ (unlabelled) while the created object of the class

‘StateLocation’ is transformed into the corresponding object of the class ‘Place’ in the CPN meta-

model [17]. By linking with the previous places (the source place of an arc), the objects of the class

‘Arc’ are created between the net-transition and the associated places. The interactions (local

transitions in an SD) within each of the operand are executed according to the general

transformation algorithm given above.

When the process encounters a local transition outside the fragment, the end of the fragment

is processed. Here, the objects of the class ‘Event’, which are associated with the end of the

fragment, and the objects of the class ‘StateLocation’ after the fragment, are added to the SD model

and transformed into the corresponding objects of the classes ‘NetTransition’ and ‘Place’ in the

CPN model respectively. After that, the objects of the class ‘Arc’ are added to the CPN model.

Further, the guard expressions and the associated variables are processed.

TOOL EVALUATION: A CASE STUDY

In order to evaluate the SD2CPN tool, we used an immersive environment development

project with educational content manipulation. Three-dimensional multi-user virtual environments

(MUVEs), also known as immersive environments or virtual worlds, provide engaging and dynamic

user interactions through the means of virtual persona called avatar. The virtual worlds consist of

specific features [18], thus useful in many application domains such as education, entertainment,

gaming and simulation. However, these features must be carefully considered when programming

the dynamic behaviour inside these virtual worlds, so it can be a challenging task. Here, we used an

educational environment based on Open Simulator (OpenSim) [21], which is one of the prominent

open-source MUVE platforms. With an architecture that supports virtual world development and

plugins for additional functions, OpenSim has become a popular choice for academics to start their

MUVE-supported teaching or learner support activities [22].

Although the SD2CPN tool could be used for complex interactions, for brevity of analysis,

the following basic scenario was selected to indicate a real usage of this tool. This scenario has been

implemented through the in-world and content-based scripting using Linden Scripting Language

Maejo Int. J. Sci. Technol. 2016, 10(03), 272-283

279

inside the education-island in OpenSim virtual world, as part of the teaching and learner support

islands we have developed [22].

When an avatar of a student comes near the reception desk of the education-island (within the

range of 2-metre radius) the reception service welcomes the avatar with a personalised greeting

message: “Hello <avatar name>. Welcome to the education-island.” The reception desk is provided

with two buttons for initiating a teleporting process to their corresponding islands: introduction-

island (push red cube button) and management-island (push blue sphere button). After the welcome

message is presented, the avatar is invited to select its preferred destination from the given two

buttons. Once the avatar pushes the button for a selected destination, the reception service initiates

the teleporting process. Then the teleporter service processes the avatar information and links the

avatar with the destination-island simulation. Finally, the avatar is located within the destination

island. Figure 4(a) shows an avatar interacting with the reception desk and Figure 4(b) shows the

avatar being teleported to the chosen destination island.

.

(a) (b)

Figure 4. (a) An avatar nears reception desk in the education-island; (b) An avatar in a
region after being teleported from the education-island

Figure 5(a) shows an SD named Teleport that represents the interactions associated with the

teleport functionality of an avatar. The SD contains four instances, namely avatar, receptionService,

teleporter and region. When the distance between the avatar and the reception service is less than 2

metres, the appearance of the welcome message is represented by an opt interaction-fragment

(optional behaviour) in the SD. Then the remaining interactions occur between the instances. Here,

opt interaction-fragment denotes a choice of behaviour, where either the operand happens or it does

not. The interactions within the operand are executed only if the guard-condition is evaluated to

true. If it is evaluated to false, then the interactions within opt operand are ignored and the

remainder of the interactions in the SD are continued with the execution.

The text-based input and output representations are included in the SD2CPN tool to facilitate

the integration of transformations with the existing tools. The grammar for these representations is

defined in Backus-Naur Form, which describes the syntax of a modelling language [20].

The text-based representation for the teleport scenario, which is an alternative input to the

tool, is shown in Figure 5(b). For the SD named Teleport, each instance is specified with an identifier

followed by its name, e.g. a: avatar. The beginning of opt fragment is represented by Beg Frag 1:

opt, indicating the fragment identifier and type. The operand and associated condition of the

fragment is specified as Beg Op 1:1 [d<2] and followed by the instance identifiers a, s that are

Maejo Int. J. Sci. Technol. 2016, 10(03), 272-283

280

involved in the operand. The textual representation for the first local transition, i.e. transition: s,

welcomeMsg, a, specifies that the transition with the message label ‘welcomeMsg’ is sent from

instance s to instance a. Next, the end statement for the operand is specified. After all the interactions

are stated, the end of the diagram is indicated by SD end.

(a) (b)

Figure 5. (a) SD modelled using SD2CPN; (b) Textual representation

Figure 6(a) shows the CPN representation after transforming the SD Teleport. By applying

the formal transformations defined in our previous work [10-12, 17, 18], the CPN was generated

with the following colours: avatar, receptionService, teleporter and region, with the corresponding

identifiers a, s, t, and r respectively. Here, the state locations and the local transitions of the SD are

mapped to the places and the net-transitions of the CPN respectively, and the arcs create the links

between the places and the net-transitions as expected.

When transforming an SD with the opt interaction-fragment, the corresponding CPN

representation contains two net-transitions, namely opt-beg and opt-end, to synchronise the

behaviour of the interaction-fragment at the beginning and end respectively [10]. The places and the

net-transitions within opt-beg and opt-end describe the same sequence of interaction as in the SD.

The guard-condition of the fragment is associated with the first net-transition after opt-beg.

Additionally, a new net-transition, namely no-opt, is defined in the CPN. The no-opt net-transition

is associated with a guard-condition that is the negation of the disjunction of the condition in the

enclosing opt interaction-fragment. This new net-transition is linked with the places that correspond

to the minimum and maximum state locations within the fragment of an instance [10].

Figure 6(b) shows the textual representation of the CPN obtained from the SD2CPN tool.

The CPN consists of four colours (a, s, t, r), associated net-transitions, places and arcs. The textual

statement place: S0a:1 indicates that the place S0a contains one token. The statement arc: A_S0a To

1:opt-beg specifies that there is an arc where the source element is the place S0a and the target

element is the net-transition 1:opt-beg. The first net-transition (unlabelled) is represented by

transition: 1: opt-beg, which corresponds to the beginning of the option fragment in the SD.

Remaining statements are continued based on the execution order. In order to indicate the end of the

CPN the string, CPN end, is presented at the end.

Maejo Int. J. Sci. Technol. 2016, 10(03), 272-283

281

(a) (b)

Figure 6. (a) CPN generated by SD2CPN; (b) Textual representation of CPN

Since a CPN constitutes a single coherent description of the behaviour specified by the SD,

the simulation flow of a CPN represents the communication between each object. Our tool follows

the approach given by Jensen and Kristensen [7] to generate the state space report and simulation

report. Figures 7(a) and 7(b) show the state space report and simulation report of the teleport

scenario respectively. The simulation report lists the occurrences of places, arcs and net-transitions.

According to the state space report, the system design model we made does not contain unsafe or

intentionally unreachable places; therefore the tool allows the design verification.

(a) (b)

Figure 7. (a) State space report of generated CPN; (b) Simulation report of generated CPN

Maejo Int. J. Sci. Technol. 2016, 10(03), 272-283

282

The SD2CPN tool supports the examination of properties such as reachability and liveness

of the modelled system. The reachable CPN places are extracted by referring to the place list given

by the simulation report. The liveness property is monitored by considering the net-transitions that

are enabled, hence fired. Also, the simulation of the CPN model shows the token passing from one

place to another via a net-transition. Thus, we can see the object involvement within the system

execution and how it depicts the object-oriented features in the original SD. The tool facilitates

keeping track of the actions that are executed and the states that are reached in the system design.

These two reports can be used to locate errors or increase the confidence in the correctness of the

software system being designed.

CONCLUSIONS

We have discussed the need for tools that support MDD as a growing area of interest for

software architecture and design. The SD2CPN tool presented in this article harnesses the benefits

of a graphical modelling language (i.e. UML) and a formalism (i.e. CPN), to bridge two popular yet

uniquely distinct software design methodologies. The focused type of UML diagrams for the tool is

SD; however, the modular architecture of the tool makes it possible to extend model

transformations to other UML diagram types with minimum modifications.

The SD2CPN tool supports a forward transformation through automation; it can be extended

to incorporate back annotating of the analysis results to the source SD model, thereby providing a

complete automation cycle for model transformation. Further, the platform-independent

implementation of the SD2CPN tool can be wrapped with a plug-in layer for the existing modelling

and analysis tools by using the extensibility features given in the textual notations.

REFERENCES

1. A. Kleppe, J. Warmer and W. Bast, “MDA Explained: The Model Driven Architecture:

Practice and Promise”, 1st Edn., Addison-Wesley Longman Publishing Co., Inc. Boston, 2003,

pp.12-22.

2. T. Stahl, M. Völter, J. Bettin, A. Haase and S. Helsen, “Model Driven Software Development:

Technology, Engineering, Management”, 1st Edn., John Wiley and Sons, New York, 2006, pp.

13-21.

3. S. Sendall and W. Kozaczynski, “Model transformation: The heart and soul of model-driven

software development”, IEEE Softw., 2003, 20, 42-45.

4. M. B. Kuznetsov, "UML model transformation and its application to MDA technology",

Program. Comput. Softw., 2007, 33, 44-53.

5. J. Arlow and I. Neustadt, “UML 2 and the Unified Process: Practical Object-Oriented Analysis

and Design”, 2nd Edn., Addison-Wesley Professional, Boston, 2005, pp.273-282.

6. Object Management Group, “OMG unified modelling language: Superstructure”, 2011,

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF, pp.473-533 (Accessed: June 2015).

7. K. Jensen and L. M. Kristensen, "Coloured Petri Nets: Modelling and Validation of Concurrent

Systems", 1st Edn., Springer, Berlin, 2009, pp.313-361.

8. K. Jensen, "An introduction to the theoretical aspects of coloured Petri-nets", in “A Decade of

Concurrency Reflections and Perspectives” (Ed. J. W. de Bakker, W. P. de Roever and G.

Rozenberg), Springer-Verlag, London, 1993, Ch.6.

Maejo Int. J. Sci. Technol. 2016, 10(03), 272-283

283

9. G. Gelen and M. Uzam, "Novel analysis of Petri-net-based controllers by means of TCT

implementation tool of supervisory control theory", Maejo Int. J. Sci. Technol., 2010, 4, 360-

396.

10. J. Bowles and D. Meedeniya, “Formal transformation from sequence diagrams to coloured Petri

nets”, Proceedings of 17th Asia Pacific Software Engineering Conference, 2010, Sydney,

Australia, pp.216-225.

11. J. Bowles and D. Meedeniya, “Strongly consistent transformation of partial scenarios”, ACM

SIGSOFT Softw. Eng. Notes, 2012, 37, 1-8.

12. J. Bowles and D. Meedeniya, “Parametric transformations for flexible analysis”, Proceedings of

19th Asia Pacific Software Engineering Conference, 2012, Hong Kong, pp.634-643.

13. M. A. Ameedeen, B. Bordbar and R. Anane, “Model interoperability via model driven

development”, J. Comput. Syst. Sci., 2011, 77, 332-347.

14. O. R. Ribeiro and J. M. Fernandes, "Some rules to transform sequence diagrams into coloured

Petri nets", Proceedings of 7th Workshop and Tutorial on Practical Use of Coloured Petri nets

and the CPN tools, 2006, Aarhus, Denmark, pp.237-256.

15. L. Wen, D. Tuffley and R. G. Dromey, “Formalizing the transition from requirements’ change

to design change using an evolutionary traceability model”, Innovat. Syst. Softw. Eng., 2014,

10, 181-202.

16. K. Ahmed, T. Myers, L. Wen and A. Sattar, “Detecting requirements defects utilising a

mathematical framework for behavior engineering”, Int. J. Soft Comput. Softw. Eng., 2013, 3,

187-198.

17. D. Meedeniya, J. Bowles and I. Perera, "SD2CPN: A model transformation tool for software

design models", Proceedings of 18th International Computer Science and Engineering

Conference, 2014, Khon Kaen, Thailand, pp.461-466.

18. D. A. Meedeniya and I. Perera, "Model based software design: Tool support for scripting in

immersive environments", Proceedings of IEEE 8th International Conference on Industrial and

Information Systems, 2013, Peradeniya, Sri Lanka, pp.248-253.

19. D. A. Meedeniya, I. Perera and J. Bowles, "Transformation and composition of software

design models for Model Driven Development ", Proceedings of IEEE 10th International

Conference on Industrial and Information Systems, 2015, Peradeniya, Sri Lanka, pp.31-36.

20. M. A. Reniers, “Message sequence chart: Syntax and semantics”, PhD Thesis, 1999, Eindhoven

University of Technology, Netherlands.

21. The Open Simulator Project, “Open Simulator”, 2007, http://opensimulator.org/wiki/Main_Page

(Accessed: June 2015).

22. C. Allison, A. Miller, T. Sturgeon, I. Perera and J. McCaffery, “The third dimension in open

learning”, Proceedings of 41st Frontiers in Education Conference, 2011, Rapid City (SD), USA,

pp.1-6.

© 2016 by Maejo University, San Sai, Chiang Mai, 50290 Thailand. Reproduction is permitted for

noncommercial purposes.

