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Abstract:  Modern software systems are expected to be dependable and the development of 

such systems requires strong modelling and analysis methods. Model-Driven Development is 

becoming a mainstream practice in software development to cater for that need. Models help 

to cope with the large scale and complexity of software systems by specifying the structural 

and behavioural aspects of the system and providing a means of communication between 

domain experts, analysts, designers and developers. Consequently, there is an increasing 

need for being able to combine the benefits of popular design approaches and formal models 

to contribute to better software products. Sequence Diagram-to-Coloured Petri Net 

(SD2CPN) is a scenario-based model transformation tool with analysis capabilities. It 

captures scenarios using Unified Modelling Language sequence diagrams and transforms 

them into coloured Petri nets that enable reliable analysis of the system models. The model 

transformations are based on the strongly consistent model-to-model transformation rules 

that are formally defined previously as part of this research. This paper presents the design, 

implementation, main features and usage of SD2CPN tool. 

 

Keywords:  SD2CPN, coloured Petri net, model-driven development, model transformation, 
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________________________________________________________________________________ 

 
INTRODUCTION  
 

Model-Driven Development (MDD) is a popular software engineering practice that 

addresses the complexity issues of a software system [1-3]. The complexity of a software system is 

a generic norm within large scale systems. Often the domain specific complexities are associated 

with the solution architecture, making the management of the design architecture a challenge. A 

common approach to overcoming such complexities is using multiple models, each of which 

provides a unique viewpoint of the solution architecture. This is based on the divide-and-conquer 
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software design principle and often brings a new challenge of relating and maintaining the 

consistency of these multiple models. Moreover, these models may require to be transformed into 

different models in which each has unique views for further analysis. The manual practice of 

referring to multiple models in a design and transforming them can be a tedious task for the 

software engineers. Without automated techniques, generating model transformations manually is 

deemed to be unrealistic and compromises the design quality factors such as model efficiency, cost 

and risk management. 

In order to ensure that software systems behave as intended, formal verification can be used 

if the design models are of well-defined semantics. Unified Modelling Language (UML) sequence 

diagram (SD) is a widely used graphical modelling language for capturing inter-object behaviours, 

although it lacks formal semantics that is required for the formal verification [5, 6]. On the other 

hand, coloured Petri net (CPN) [7, 8] is a formal model that can represent a system behaviour, both 

graphically and mathematically, and enables different analyses of a wide range of systems [7, 9].  

Model transformations with tool support mediate the discrepancies between different models 

by making them consistent with each other while supporting model simulation and/or formal 

verification [4]. Thus, modelling and transformations are considered as key processes in MDD. As a 

result, there is a growing demand to explore methods and practices of transforming models in a 

more efficient, complete and consistent manner. The focus of this research concerns the link 

between MDD and formal methods of model transformations. 

Previous work of this research [10-12] has defined a set of formal rules for model 

transformation from an SD to a CPN with proof for its correctness. However, developers often find 

it challenging to use formal representations; instead they prefer automated model transformation as 

part of their integrated development environments and computer-aided software engineering tools 

they use. Users of such tools can carry out an architectural redesign and evaluation without having 

expertise in the underlying formal models being used. This paper presents a tool named Sequence 

Diagram-to-Coloured Petri Net (SD2CPN) that supports the integrated and automated model 

transformation from an SD to a CPN.   
 
DESIGN MODELS OF SD AND CPN  
 

SDs are a widely used graphical modelling method for capturing inter-object behaviours 

with a set of messages that communicate between the instances participating in an interaction over 

time (see Figure 1(a)). An SD is represented within a solid-outline rectangular frame around the 

diagram. The name of the diagram following the keyword sd is placed inside a pentagon-shaped 

compartment on the upper-left corner of the frame. An instance can correspond to a particular 

object in the interaction. An instance has a vertical line called lifeline that represents its existence at 

a particular time. The most visible aspect is a sequence of messages that are exchanged between the 

instances, along with their corresponding occurrence on the lifelines. A message with the same 

source and target lifeline is called a self-message [5, 6].  As shown in Figure 1(a), the SD named N 

contains three object instances, viz. a:A, b:B and c:C. The interactions within the diagram start by 

instance a sending a message m0 to instance c.  

A UML SD may contain constructs called interaction-fragments denoted by a solid-outlined 

rectangle and add more structure to part of an interaction. An interaction-fragment has one operator 

(e.g. alt), one or more operands separated using dashed horizontal lines, and zero or more guard-

conditions [5, 6]. An operator is shown in the upper-left corner of the fragment and determines how 

its operands are executed. The UML standard [6] defines a range of operators and this example 
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shows only the alt operator for alternative behaviour. A guard-condition is a Boolean expression 

that determines whether its operand executes or not and it is shown covering the lifeline where the 

first event occurs. The SD in Figure 1(a) shows alt interaction-fragment behaviour with two 

operands. Here, instance c makes a choice based on the guard-condition, which evaluates to true 

and sends the message m1 to instance b or a self-message m2 to instance c.  

A CPN [7-9] is a directed, connected, bi-partite graph with two node types called places and 

transitions that are connected through directed arcs (see Figure 1(b)). A CPN is both state- and 

action-oriented. It describes the states (places) of the system and the operations (net-transitions) that 

cause the model to change state. Graphically, places are represented by circles, transitions by 

rectangles, and arcs by arrows connecting places and net-transitions. Places may contain tokens, 

which are shown as black dots. Tokens and places are associated with colours that distinguish 

between object types.  Each transition is fired when it acquires the relevant tokens from the linked 

places. When a transition fires, the acquired tokens are passed onto each output place associated 

with the transition. Thus, the firing of a transition results in a state change for the tokens. 

Additionally, a transition or an arc may have an associated guard (a Boolean expression) to 

represent system interactions such as the execution of a conditional statement. The guard is required 

to evaluate true, to enable the binding and fire the transition.  

 

    
(a)                                                                              (b) 

 

Figure 1.  Graphical representation of (a) SD and (b) CPN 

 
Figure 1(b) shows an example of a CPN named K, which represents a conditional behaviour.  

There are three object types (colours): a, b and c, each with one token in their initial places s0a, s0b 

and s0c respectively. CPN A contains three labelled net-transitions t1, t2 and t3, and unlabelled net-

transitions alt-beg and alt-end, that are used to synchronise the control flow of the model.  The 

transitions t2 and t3 are guarded with conditions [x==1] and [x==2] respectively, and the firing 

transition is selected based on the condition that evaluates to true.  
 

RELATED WORK 
 

In terms of transforming scenario-based models into state-based models, many approaches 

were published previously [13-16]. However, some of them considered only the basic SD constructs 

or event flow of the system and did not consider the handling of the data flow with object-oriented 
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features. Moreover, some presented only a graphical transformation and did not define the formal 

transformation rules.  In some interesting work [15, 16], behavioural trees were used to support both 

the graphical and formal representations. The evolutionary design and integration relationships were 

also supported by the models in which the behavioural  trees were used. 

 In our previous work [10-12, 17-19] a formal model-to-model transformation from an SD to 

a CPN was defined by explicitly stating the connection between the elements of the two models. 

Also, we have shown the correctness of the transformation by proving that the languages in both 

models are strongly consistent; thus the transformation is free of implied scenarios. We have 

contributed to the scalability of the models by supporting partial and incremental analyses of the 

target model [11]. Further, we have shown the applicability of our transformations for various 

application domains such as cloud services [12], an elevator system [17] and immersive 

environments [18]. 
 

TOOL DESIGN 
 

The main aim of the SD2CPN tool is the transformation of an SD into a behaviourally 

equivalent CPN which can be analysed using existing formal methods. This is done based on the 

previously defined formal model transformation rules [10-12]. The tool supports both the graphical 

and textual representations of the input and output models. The graphical user interface (GUI) of the 

tool consists of tool palettes and menus, and provides drag and drop capabilities to draw an SD. The 

textual representation has the same expressiveness as the graphical notations and the text-based 

grammar is based on Backus-Naur form [20]. This commonly used graphical representation is easy 

to understand. However, the textual representation can be used to integrate input and output models 

with the existing SD and CPN modelling tools. For example, an SD modelled by an existing tool 

can be an input to perform the transformation and the textual output can be used as an input to 

another tool to analyse the CPN.  

 

 
 

Figure 2.  An overview of the designer’s interaction with the tool 

 

Figure 2 shows an overview of the interactions between a user and the SD2CPN tool. A user 

can model an SD and the tool converts it to the corresponding CPN using defined transformation 

rules [10]. The user’s interaction with the SD2CPN tool is based on direct manipulation of either a 

graphical or a textual representation of a model. In order to support the user in modelling an SD, the 

GUI includes tool palettes with drag and drop capabilities. Alternatively, the user can also represent 

an SD textually using a textual notation (see section on Tool Evaluation: A Case Study) with the 

same expressiveness as that of the more popular graphical notation.  Having an SD as the input, the 

SD2CPN tool generates a formal representation of the SD and synthesises the corresponding CPN 

for analysing the model. The tool simulates a token passing (the involvement of objects) between 
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transitions and places, and keeps a track of the model’s execution flow. Thus, the simulation of the 

CPN shows the system flow with object-orientation. The synthesised model can be used to validate 

the SD by reproducing the expected scenarios of the system behaviour.     

 

 
 

Figure 3.  Design architecture of SD2CPN tool 

 

Figure 3 shows the tool design that follows a component-based modular architecture. There 

are two main modules as follows: the view component that represents the front end of the tool and 

the process component that constitutes the back end with the transformations. The SD-presenter 

process is in charge of representing the input SD model either graphically or textually. Then the SD-

generator process generates the corresponding formal representation of the SD model [10] and 

passes it to the transformation-generator process. Here, the transformations are performed by 

considering the meta-models of SD and CPN [17], and the formal transformation rules [10]. The 

transformation rules define the mapping of a given element in an SD meta-class to the 

corresponding element in the CPN meta-class.  The CPN-generator process uses the outcome of the 

transformation process to synthesise the corresponding CPN. Then the CPN-presenter process 

shows the resulting CPN graphically or textually. The tool is implemented using Java NetBeans 

environment. NetBeans-visual-library API (application program interface) and Utilities API are 

used to implement the GUI-based classes in the view-component module. Standard Java 

programming is used to implement the classes in the process-component module.  
 
TOOL IMPLEMENTATION  
 

This section presents the implementation of the transformations in the SD2CPN tool. 

Scheme 1 states the execution of the process-component module during the transformation of an SD 

to a CPN by considering the general elements of the SD. The process starts by getting the input 

elements of the SD and identifying their instances and associations that correspond to the SD meta-

model [17]. As the first step towards transformations, an object of an SD model and the 

corresponding object of the CPN are created with the same diagram name. While building the 

formal SD model [10], each SD element is transformed into the corresponding CPN element, 

leading to a complete CPN model [10].  

Consider the procedure given in Scheme 1. If the element is an instance, it is added as a 

class ‘Instance’ of the SD meta-model and transformed into the class ‘Colour’ in the CPN meta-

model. Then a state location associated with the instance is added to the SD model. This object 

‘StateLocation’ is transformed into the object ‘Place’ with the corresponding colour and marking, 

which is then added to the CPN model.  
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      Scheme 1.  Algorithm for general transformation function in SD2CPN tool 
 

 

Procedure GeneralTransformation(SD) 
Input   Array of SD (name, instance, transition{send instance a , message label m, receive instance b})  

elements e[]; 
Output Coloured Petri Net cpn (name, place, net-transition, arc, variable, expression); 
Begin 

i = 1,  j = 0, k = 0, p = 0, x = 0; 
Create an SD instance and a CPN instance  

SD sd = new SD(); 
CPN cpn = new CPN(); 

Assign the SD name 
sd.name = e[0]; 

Transform SD name to CPN name 
cpn.name = sd.name;    

foreach(e[i]){ 
if(e[i] == instance){ 

Add an instance to SD 
sd.instance[j] = e[i]; 
Transform SD instance to a colour in the CPN 
cpn.colour[j] = sd.instance[j]; 
Add an initial state location to SD 
sd.state[j] = new stateLocation(sd.instance[j]); 
Transform the state location to a place in the CPN with corresponding colour and marking 
cpn.place[j] = sd.state[j](cpn.colour[j], 1); 
j := j+1; 

} 
else if(e[i] == transition){ 

Add message label to SD 
sd.messageLabel[k] = e[i].m; 
Transform to the corresponding CPN label 
cpn.label[k] = sd.messageLabel[k]; 
Initialise send and receive events of the transition 
sd.event a = e[i].a; 
sd.event b = e[i].b; 
Initialise send and receive state locations 
sd.state s1= new sd.state(e[i].a); 
sd.state s2 = new sd.state(e[i].b): 
Transform state location to the corresponding place in the CPN 
cpn.place[p] = TransformStateToPlace(s1, a);   p := p+1; 
cpn.place[p] = TransformStateToPlace(s2, b);  p := p+1; 
Add transition to SD 
sd.localTransition[k] = new sd.localTransition(sd.messageLabel[k], a, b, s1, s2); 
Transform transition to the corresponding net-transition in the CPN 
cpn.transition[k] = TransformTransitionToNetTransition(sd.localTransition[k]); 
Add corresponding arcs to CPN given the net-transition and respective places 
cpn.arc[x] = AddArc(cpn.place[p-4], cpn.transition[k]); x := x+1; 
cpn.arc[x] = AddArc(cpn.place[p-3], cpn.transition[k]); x := x+1; 
cpn.arc[x] = AddArc(cpn.transition[k], cpn.place[p-2]); x := x+1; 
cpn.arc[x] = AddArc(cpn.transition[k], cpn.place[p-1]); x := x+1; 

}  
Keep track of each element 
i:=i+1; 
} 
Display generated CPN 

     display(cpn); 

end 
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If the element is a local transition with a message label and the two events (corresponding to 

the sending instance and the receiving instance), the process starts by adding the corresponding 

object of the class ‘messageLabel’ and the objects of the associated classes, ‘Event’ and 

‘StateLocation’ to the SD model (which is an object of the class SD). After that, the object of the 

LocalTransition is added to the SD object model. Thereafter, each of these objects, i.e. 

messageLabel, localTransition and stateLocations, are transformed into the objects of Label, 

NetTransition and Place respectively, and added to the CPN object model. The process retrieves the 

associated input places of the net-transition and adds the corresponding objects of Arc that links the 

net-transition and the associated places.   

Next, the process updates the status of each object array to keep the flow control and 

retrieves the next object. When all the SD elements are transformed into the corresponding elements 

of the CPN, the tool displays the generated CPN by calling the process within the view component.  

With respect to the interaction-fragment behaviour, the above algorithm is extended 

according to the formal transformation rules defined in our previous work [10-12]. Here, when the 

element is a fragment, the process adds an object of the class ‘InteractionFragment’ to the SD model 

[17]. It also adds the associated objects of the class ‘Event’ to the beginning of the fragment and the 

objects of the class ‘StateLocation’ for each operand. The beginning of the fragment is transformed 

into an object of the class ‘NetTransition’ (unlabelled) while the created object of the class 

‘StateLocation’ is transformed into the corresponding object of the class ‘Place’ in the CPN meta-

model [17]. By linking with the previous places (the source place of an arc), the objects of the class 

‘Arc’ are created between the net-transition and the associated places. The interactions (local 

transitions in an SD) within each of the operand are executed according to the general 

transformation algorithm given above.  

When the process encounters a local transition outside the fragment, the end of the fragment 

is processed. Here, the objects of the class ‘Event’, which are associated with the end of the 

fragment, and the objects of the class ‘StateLocation’ after the fragment, are added to the SD model 

and transformed into the corresponding objects of the classes ‘NetTransition’ and ‘Place’ in the 

CPN model respectively. After that, the objects of the class ‘Arc’ are added to the CPN model. 

Further, the guard expressions and the associated variables are processed.  
 
TOOL EVALUATION: A CASE STUDY 
 

In order to evaluate the SD2CPN tool, we used an immersive environment development 

project with educational content manipulation. Three-dimensional multi-user virtual environments 

(MUVEs), also known as immersive environments or virtual worlds, provide engaging and dynamic 

user interactions through the means of virtual persona called avatar. The virtual worlds consist of 

specific features [18], thus useful in many application domains such as education, entertainment, 

gaming and simulation. However, these features must be carefully considered when programming 

the dynamic behaviour inside these virtual worlds, so it can be a challenging task. Here, we used an 

educational environment based on Open Simulator (OpenSim) [21], which is one of the prominent 

open-source MUVE platforms. With an architecture that supports virtual world development and 

plugins for additional functions, OpenSim has become a popular choice for academics to start their 

MUVE-supported teaching or learner support activities [22].  

Although the SD2CPN tool could be used for complex interactions, for brevity of analysis, 

the following basic scenario was selected to indicate a real usage of this tool. This scenario has been 

implemented through the in-world and content-based scripting using Linden Scripting Language 
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inside the education-island in OpenSim virtual world, as part of the teaching and learner support 

islands we have developed [22].  

When an avatar of a student comes near the reception desk of the education-island (within the 

range of 2-metre radius) the reception service welcomes the avatar with a personalised greeting 

message: “Hello <avatar name>. Welcome to the education-island.” The reception desk is provided 

with two buttons for initiating a teleporting process to their corresponding islands: introduction-

island (push red cube button) and management-island (push blue sphere button). After the welcome 

message is presented, the avatar is invited to select its preferred destination from the given two 

buttons. Once the avatar pushes the button for a selected destination, the reception service initiates 

the teleporting process. Then the teleporter service processes the avatar information and links the 

avatar with the destination-island simulation. Finally, the avatar is located within the destination 

island. Figure 4(a) shows an avatar interacting with the reception desk and Figure 4(b) shows the 

avatar being teleported to the chosen destination island.  

 

.      

(a)                                                                    (b) 
 
Figure 4.  (a) An avatar nears reception desk in the education-island; (b) An avatar in a 
region after being teleported from the education-island 
 

Figure 5(a) shows an SD named Teleport that represents the interactions associated with the 

teleport functionality of an avatar. The SD contains four instances, namely avatar, receptionService, 

teleporter and region. When the distance between the avatar and the reception service is less than 2 

metres, the appearance of the welcome message is represented by an opt interaction-fragment 

(optional behaviour) in the SD. Then the remaining interactions occur between the instances. Here, 

opt interaction-fragment denotes a choice of behaviour, where either the operand happens or it does 

not. The interactions within the operand are executed only if the guard-condition is evaluated to 

true. If it is evaluated to false, then the interactions within opt operand are ignored and the 

remainder of the interactions in the SD are continued with the execution.   

The text-based input and output representations are included in the SD2CPN tool to facilitate 

the integration of transformations with the existing tools. The grammar for these representations is 

defined in Backus-Naur Form, which describes the syntax of a modelling language [20].  

The text-based representation for the teleport scenario, which is an alternative input to the 

tool, is shown in Figure 5(b). For the SD named Teleport, each instance is specified with an identifier 

followed by its name, e.g. a: avatar. The beginning of opt fragment is represented by Beg Frag 1: 

opt, indicating the fragment identifier and type. The operand and associated condition of the 

fragment is specified as Beg Op 1:1 [d<2] and followed by the instance identifiers a, s   that are 
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involved in the operand. The textual representation for the first local transition, i.e. transition: s, 

welcomeMsg, a, specifies that the transition with the message label ‘welcomeMsg’ is sent from 

instance s to instance a. Next, the end statement for the operand is specified. After all the interactions 

are stated, the end of the diagram is indicated by SD end.  

 

 
(a)                                                                    (b) 

 

Figure 5.  (a) SD modelled using SD2CPN; (b) Textual representation 
 

Figure 6(a) shows the CPN representation after transforming the SD Teleport. By applying 

the formal transformations defined in our previous work [10-12, 17, 18], the CPN was generated 

with the following colours: avatar, receptionService, teleporter and region, with the corresponding 

identifiers a, s, t, and r respectively. Here, the state locations and the local transitions of the SD are 

mapped to the places and the net-transitions of the CPN respectively, and the arcs create the links 

between the places and the net-transitions as expected. 

When transforming an SD with the opt interaction-fragment, the corresponding CPN 

representation contains two net-transitions, namely opt-beg and opt-end, to synchronise the 

behaviour of the interaction-fragment at the beginning and end respectively [10]. The places and the 

net-transitions within opt-beg and opt-end describe the same sequence of interaction as in the SD. 

The guard-condition of the fragment is associated with the first net-transition after opt-beg. 

Additionally, a new net-transition, namely no-opt, is defined in the CPN. The no-opt net-transition 

is associated with a guard-condition that is the negation of the disjunction of the condition in the 

enclosing opt interaction-fragment. This new net-transition is linked with the places that correspond 

to the minimum and maximum state locations within the fragment of an instance [10].  

Figure 6(b) shows the textual representation of the CPN obtained from the SD2CPN tool.  

The CPN consists of four colours (a, s, t, r), associated net-transitions, places and arcs. The textual 

statement place: S0a:1 indicates that the place S0a contains one token. The statement arc: A_S0a To 

1:opt-beg specifies that there is an arc where the source element is the place S0a and the target 

element is the net-transition 1:opt-beg. The first net-transition (unlabelled) is represented by 

transition: 1: opt-beg, which corresponds to the beginning of the option fragment in the SD. 

Remaining statements are continued based on the execution order. In order to indicate the end of the 

CPN the string, CPN end, is presented at the end.  
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(a)                                                                    (b) 

 
Figure 6.  (a) CPN generated by SD2CPN; (b) Textual representation of CPN 

 

Since a CPN constitutes a single coherent description of the behaviour specified by the SD, 

the simulation flow of a CPN represents the communication between each object. Our tool follows 

the approach given by Jensen and Kristensen [7] to generate the state space report and simulation 

report. Figures 7(a) and 7(b) show the state space report and simulation report of the teleport 

scenario respectively. The simulation report lists the occurrences of places, arcs and net-transitions. 

According to the state space report, the system design model we made does not contain unsafe or 

intentionally unreachable places; therefore the tool allows the design verification. 

 

 
(a)                                                                    (b) 

 
Figure 7.  (a) State space report of generated CPN; (b) Simulation report of generated CPN 
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The SD2CPN tool supports the examination of properties such as reachability and liveness 

of the modelled system. The reachable CPN places are extracted by referring to the place list given 

by the simulation report. The liveness property is monitored by considering the net-transitions that 

are enabled, hence fired. Also, the simulation of the CPN model shows the token passing from one 

place to another via a net-transition. Thus, we can see the object involvement within the system 

execution and how it depicts the object-oriented features in the original SD. The tool facilitates 

keeping track of the actions that are executed and the states that are reached in the system design. 

These two reports can be used to locate errors or increase the confidence in the correctness of the 

software system being designed.   

 
CONCLUSIONS   
 

We have discussed the need for tools that support MDD as a growing area of interest for 

software architecture and design. The SD2CPN tool presented in this article harnesses the benefits 

of a graphical modelling language (i.e. UML) and a formalism (i.e. CPN), to bridge two popular yet 

uniquely distinct software design methodologies. The focused type of UML diagrams for the tool is 

SD; however, the modular architecture of the tool makes it possible to extend model 

transformations to other UML diagram types with minimum modifications.  

The SD2CPN tool supports a forward transformation through automation; it can be extended 

to incorporate back annotating of the analysis results to the source SD model, thereby providing a 

complete automation cycle for model transformation. Further, the platform-independent 

implementation of the SD2CPN tool can be wrapped with a plug-in layer for the existing modelling 

and analysis tools by using the extensibility features given in the textual notations.  
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