
AUTOMATIC GENERATION OF PROOF TERMS IN

DEPENDENTLY TYPED PROGRAMMING LANGUAGES

Franck Slama

A Thesis Submitted for the Degree of PhD
at the

University of St Andrews

2018

Full metadata for this thesis is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this thesis:
http://hdl.handle.net/10023/16451

This item is protected by original copyright

This item is licensed under a
Creative Commons Licence

https://creativecommons.org/licenses/by-nc-nd/4.0/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/161932221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/16451
https://creativecommons.org/licenses/by-nc-nd/4.0/

Automatic Generation of Proof
Terms in Dependently Typed

Programming Languages

by

Franck Slama

This thesis is submitted to the

University of St Andrews

in conformity with the requirements for the
degree of

Doctor of philosophy in computer

science

submitted on

02-03-2018
Copyright © 2018 by Franck Slama

Abstract

Dependent type theories are a kind of mathematical foundations
investigated both for the formalisation of mathematics and for reasoning
about programs. They are implemented as the kernel of many proof
assistants and programming languages with proofs (Coq, Agda, Idris,
Dedukti, Matita, etc). Dependent types allow to encode elegantly and
constructively the universal and existential quantifications of higher-
order logics and are therefore adapted for writing logical propositions
and proofs. However, their usage is not limited to the area of pure logic.
Indeed, some recent work [7, 10, 32, 33, 35, 36, 44] has shown that they
can also be powerful for driving the construction of programs. Using
more precise types not only helps to gain confidence about the program
built, but it can also help its construction, giving rise to a new style of
programming called Type-Driven Development [9].

However, one difficulty with reasoning and programming with de-
pendent types is that proof obligations arise naturally once programs
become even moderately sized. For example, implementing an adder for
binary numbers indexed over their natural number equivalents natur-
ally leads to proof obligations for equalities of expressions over natural
numbers. The need for these equality proofs comes, in intensional type
theories (like CIC and ML) from the fact that in a non-empty context, the
propositional equality allows us to prove as equal (with the induction
principles) terms that are not judgementally equal, which implies that
the typechecker can’t always obtain equality proofs by reduction.

As far as possible, we would like to solve such proof obligations auto-
matically, and we absolutely need it if we want dependent types to be use
more broadly, and perhaps one day to become the standard in functional
programming. In this thesis, we show one way to automate these proofs
by reflection in the dependently typed programming language Idris.
However, the method that we follow is independent from the language
being used, and this work could be reproduced in any dependently-typed
language. We present an original type-safe reflection mechanism, where
reflected terms are indexed by the original Idris expression that they
represent, and show how it allows us to easily construct and manipulate

proofs. We build a hierarchy of correct-by-construction tactics for proving
equivalences in semi-groups, monoids, commutative monoids, groups,
commutative groups, semi-rings and rings. We also show how each tactic
reuses those from simpler structures, thus avoiding duplication of code
and proofs. Finally, and as a conclusion, we discuss the trust we can have
in such machine-checked proofs.

2

Candidate’s Declaration

I, Franck Slama, do hereby certify that this thesis, submitted for the
degree of PhD, which is approximately 60000 words in length, has been
written by me, and that it is the record of work carried out by me, or
principally by myself in collaboration with others as acknowledged, and
that it has not been submitted in any previous application for any degree.

I was admitted as a research student at the University of St Andrews in
November 2012.

I received funding from an organisation or institution and have acknow-
ledged the funder(s) in the full text of my thesis.

Signature of Candidate: .

Date: 02-03-2018

Supervisor’s Declaration

I hereby certify that the candidate has fulfilled the conditions of the
Resolution and Regulations appropriate for the degree of Doctor of
philosophy in computer science in the University of St Andrews and that
the candidate is qualified to submit this thesis in application for that
degree.

Signature of Supervisor: .

Date: 02-03-2018

Permission for Publication

In submitting this thesis to the University of St Andrews we understand
that we are giving permission for it to be made available for use in ac-
cordance with the regulations of the University Library for the time being
in force, subject to any copyright vested in the work not being affected
thereby. We also understand, unless exempt by an award of an embargo
as requested below, that the title and the abstract will be published, and
that a copy of the work may be made and supplied to any bona fide
library or research worker, that this thesis will be electronically accessible
for personal or research use and that the library has the right to migrate
this thesis into new electronic forms as required to ensure continued
access to the thesis.

I, Franck Slama confirm that my thesis does not contain any third-party
material that requires copyright clearance.

The following is an agreed request by candidate and supervisor regarding
the publication of this thesis:

No embargo on any electronic nor print copy.

Signature of Candidate: .

Date: 02-03-2018

Signature of Supervisor: .

Date: 02-03-2018

Underpinning Research Data or Digital

Outputs

I, Franck Slama, hereby certify that no requirements to deposit original
research data or digital outputs apply to this thesis and that, where
appropriate, secondary data used have been referenced in the full text of
my thesis.

Signature of Candidate: .

Date: 02-03-2018

Acknowledgements

I’d like to sincerely thank the following people:

Edwin, for giving me the freedom and the encouragements to in-
vestigate what I wanted to, for your constant support throughout these
years, and for always being so positive and motivating. It sincerely was a
pleasure to work with you and I can’t express how grateful I am.

Kevin, for accepting to be my second supervisor, and also for the work
you are doing within the Functional Programming group at St Andrews
to make it grow healthy.

The examiners Thorsten Altenkirch and Susmit Sarkar, for accepting
the extra load of work to review this thesis, and for many improvements
that you suggested. Also, thank you Susmit for letting me lecture parts
of the module on computational complexity to the third year students.
I’ve really enjoyed doing it.

Roy Dyckhoff for the feedback you gave me on an early version of my
work and for the discussions we had at several seminars across Scotland.

My office mates Chris, Matus and Adam, and my almost office mates
David C. (who visited us regularly from the end of the corridor) and
Jan (who even had a chair at his name in our office) for all the interest-
ing discussions, for your help, but also for the laughs and the needed
distractions, especially the boardgames at Matus’ place.

The technicians and the administrative team of the School of Com-
puter Science for your support in many daily tasks, and for making our
department such a nice and pleasant place to work.

The University of St Andrews and the School of Computer Science
for funding this work.

9

My good old friend Mathias, for all the work we’ve done together
while we were undergraduates in Toulouse, for all the projects we’ve
been hacking on, and also for the good time we’ve had talking about so
many things around some infused rums.

Ludovic, for reminding me to sometimes forget about my research,
and for coming on some hiking trips around Scotland with me. Not to
forget all the pubs and restaurants we visited in St Andrews!

Nikitas, alias Mouglon for playing some video games with me despite
my poor skills at gaming, for all the interesting discussions we regularly
have, and for the good ales we had together.

David S. for all the good time we had together sharing this house
in St Andrews, and for helping me to improve my English when I first
arrived in the UK five years ago.

Cyril, Charlotte, Lionel, Chloé, Adrien and Justine for all the good
time we had when we were students in Toulouse. I can’t believe it was
many years ago.

Christine Maurel for your amazing lecture on lambda calculus that
got me into it, Ralph Matthes, Sergei Soloviev and Celia Picard for my
first internships and for introducing me to Coq, coinduction and category
theory. And of course many thanks to Armelle Bonenfant for being the
one who encouraged me to move to St Andrews for doing this PhD with
Edwin; it was indeed a beautiful experience.

Alain Prouté for all the interesting discussions we had about the
formalisation of mathematics, and for inviting me to the very first meeting
on the Saunders system at your home by a sunny afternoon of July 2013.

Frédéric Blanqui and Gilles Dowek for the post-doc in your group
that I am now about to start. I’m really looking forward to work with
you in the Deducteam research group at École Normale Supérieure.

My Mother, my Father, my Brother, my Sister, and my Grandparents
for your constant encouragements and support, and for your understand-
ing when I am terrible at giving news.

Gisèle, Alain, Jade, Michel and Aude’s grandparents, for opening up
your home to me and always making me feel welcome from the moment
I first walked through the door. Thank you for making me feel like a part
of your family.

10

Aude, for everything you’ve done for me and for having changed my
life. You know, it’s only because of you that I’ve managed to finish this
thesis, but I owe you so much more than that. There’s no words to thank
you properly for your unwavering support, or to express how thrilled I
am to have you in my life. I love you.

Franck Slama
St Andrews

02-03-2018

11

To Aude

Contents

Contents 15

1 Introduction 19
1.1 The need of formal certification 19

1.1.1 Critical software and formal methods 19

1.1.2 Proof assistants and programming languages . . . 25

1.1.3 Programming and proving in Idris 28

1.2 Dependent types . 37

1.2.1 What dependent types are 37

1.2.2 Dependent types’ expressivity 40

1.2.3 Strong specification as dependent types 42

1.2.4 Common problems with dependent types 44

1.3 How proof obligations arise on a small example 48

1.4 Contributions and outline of the thesis 53

2 Logic, Type Theory and Equality 55
2.1 Lambda calculus and simple types 55

2.2 Propositions as types : the Curry-Howard correspondence 57

2.3 Constructive logic and type theory 58

2.4 Basic notions of type theory 60

2.5 Type theory and verification of proofs 61

2.6 Terms transformation along equality proofs 64

2.7 Equalities in intentional type theory 65

2.7.1 Definitional and propositional equalities 65

2.7.2 Equality proofs in non-empty contexts 66

2.8 Proof engineering and proof automation 69

15

Contents

2.8.1 Proof engineering . 69
2.8.2 State of the art in proof automation 71

3 Automating Proofs by Reflection 73
3.1 Working by reflection . 74
3.2 Type-safe reflection . 76
3.3 A correct by construction approach 77
3.4 Usage of the “tactic" . 84
3.5 Construction of the reflected terms 85
3.6 Summary . 89

4 Equivalences in Algebraic Structures 91
4.1 Generalising the problem 91
4.2 Proving equivalences instead of equalities 93
4.3 The hierarchy . 96

4.3.1 Hierarchy of interfaces 100
4.3.2 Reflected terms . 104
4.3.3 A bit of notation . 106

4.4 Deciding equivalence . 107
4.5 Automatic reflection . 108
4.6 Normalisations functions and re-usability of the provers . 111

4.6.1 Normal form shape 112
4.6.2 Computing the normal form 116
4.6.3 Normalization of terms in semi-groups 117
4.6.4 From a semigroup prover to a monoid prover . . . 119
4.6.5 From a monoid prover to a group prover 119
4.6.6 From a group prover to a commutative group prover 121
4.6.7 From a commutative group prover to a ring prover 122

4.7 Properties and results . 122
4.7.1 Correctness . 122
4.7.2 Completeness . 123
4.7.3 Termination . 126
4.7.4 Results . 130
4.7.5 Complexity and performances 132

4.8 Alternative approaches . 136

16

Contents

4.8.1 A naive approach . 136
4.8.2 Coq’s implementation 138

4.9 Summary . 141

5 Programming with Dependent Types 143
5.1 Using views to gain structural information 143
5.2 Using indexed types to build structures on trusted ones . 149
5.3 Refinement types and restricted forms of dependent types 151

6 Predicate Testing in Formal Certification 155
6.1 Believing in machine-checked proofs 156
6.2 Usual approaches to the adequacy problem 159
6.3 Predicate testing by automatic generation of terms 162
6.4 Summary . 165

7 Conclusions 169

Bibliography 173

17

Chapter 1

Introduction

There are two ways of constructing a software design.
One way is to make it so simple that there are obvi-
ously no deficiencies. And the other way is to make it
so complicated that there are no obvious deficiencies.

— C.A.R. Hoare

1.1 The need of formal certification

1.1.1 Critical software and formal methods

We use software everywhere and all the time. They are involved when we
travel, when we buy or order something, when we call someone, when we
write something on a computer or on one of these smart-phones or pads
that we now take everywhere with us. They are also involved in all these
devices that we forget to see, from fire-alarm systems to heating control
systems that we find in many of our houses. They are also running in
places and items that aren’t familiar to many of us, like nuclear plants
and in military devices. We can also find them in many medical devices,
from diagnostic systems to computer-assisted surgery. Even though they
are everywhere, we usually only realise that we need them so frequently
when one of them suddenly stops working. When it’s late, when the last
train of the evening is approaching, and when the only machine that sells
tickets seems to be stuck in an infinite loop. When we really need to call
someone in great hurry, but the voice-over-IP software doesn’t want to

19

1. Introduction

let the call go through. We’re used to being annoyed by software that
doesn’t work as intended when we really need them, and we usually
accommodate it. Sometimes, and when we can, turning them off and on
again make them back to work. We’re used to losing data, time or some
money because of them. However, there are software on which we rely
completely and that take vital decisions for ourselves, and the situation
is completely different with these ones. These software are called critical
software. Many of them are embedded, like the one implemented in
airplanes and rockets. For this kind of software, it would definitely be
a bad idea to try to restart them suddenly: no one wants to restart the
flight system of an airplane in the middle of a flight, or to restart the
control program of a nuclear plant. These software are absolutely vital,
and we can’t accept any bugs in them, as the consequences of a single
failure can be disastrous. Therefore, these software need more care, more
time and more energy to develop. But they need more than that : they
also need new methods.

The usual approach for making sure that a software effectively fulfils
its specification is to test it. There are several types of tests, but the general
idea of a test is to run a component of a program on various inputs, and
to compare the results produced by the program with the expected ones.
This activity can be automated to some extent in order to perform a large
number of tests that would be otherwise beyond reach. But even with a
big number of tests, tests are still incomplete : it is impossible to test all
the situations that can happen and all the input that could be processed,
because usually the domains of functions are infinite (think of a function
taking a number in input for instance). Thus, "testing can be used to show
the presence of bugs, but never to show their absence" [Dijkstra-1970],
and that’s the reason why new methods for critical software have been
developed in the last decades. We can divide these methods that bring
more confidence about the correctness of programs into the following
categories : model checking, abstract interpretation, static typing, and
formal certification within logical frameworks.

• Model checking : This is a technique that applies for systems that
have a finite number of states or that may be reduced to it by

20

1.1. The need of formal certification

abstraction, and is based on the study of such automatons. This
technique has appeared in the early 80s. The goal is to verify if
some properties (like the program is free of deadlocks, a pointer
is never null, etc) are verified by the model of a system. These
properties are often written in temporal logic, a logic that enables
to qualify propositions in terms of time, for expressing things like
"the system always verifies P", or "P will be true until the system
reaches the state S". The general goal of model checking is to check
if these formulae are valid on an automaton that models the system,
and these verification can often be done automatically. When a
proposition doesn’t hold on the model, we are generally interested
in producing a counter-example, i.e. an execution of the system that
invalidates the proposition. Model-checking is nowadays one of the
most used formal technique in the industrial sphere, as it can often
be relatively well automated, compared to the other approaches.

• Abstract interpretation : This is a technique that aims to compute
an approximation of the semantics of a program which can be used
for answering some questions, like "may this pointer be null" or
"may this value be bigger than X". There is necessarily a loss of
information between the concrete semantic (that describes the real
execution of the program) and the approximated one, which is the
price to pay in order to have a computable semantic. Abstract inter-
pretation was originally conceived by Patrick and Radhia Cousot
in the late 70s, and is based on monotonic functions over ordered
sets. It can be viewed as a partial execution of a program which
gains information about its semantics without performing all the
calculations. This technique is used when computing the exact
semantics is impossible or too expensive. Abstract interpretation
isn’t only used in formal certification, but is also used in compilers
to decide if certain transformations (mostly optimisations) can be
done.

This thesis will however completely focus on the next two methods :

• Static typing : Some languages like Haskell and Ocaml have a strong

21

1. Introduction

and restrictive notion of type. In these statically typed languages,
types are semantic entities that ensures that the programmer is not
mindlessly mixing objects of different sorts, as it is known to cause
many bugs. All the operations will be only applicable to the objects
of the right type, without any implicit conversion of type. Therefore,
in these languages, it is impossible to write a completely senseless
operation.

The benefits of having a strong and static type system are now well
known, as they eliminate at the root –by simply rejecting ill-typed
programs– many bugs that are otherwise hard to debug. Types
can also be a guide for the programmer, since the typechecker will
automatically report all programming mistakes that are related to
the sort of objects that are manipulated and the operations that
can be applied to them. For instance, if n is a natural number, the
expression if n then 0 else 1 won’t typecheck as n should be
a boolean but is here a natural number. The expression 0 + True

will also be rejected by the typechecker as True is expected to be a
natural number, but is a boolean. In most programming languages
(like C) that do not have such a powerful notion of types, these
examples would be unfortunately valid code, and the latter would
typically be evaluated to 1 because the value True would have been
implicitly converted to the integer 1.

Typing is a kind of static analysis, done at the first stage of the
compilation process : the source of the program is analysed, without
being executed, and this analysis decides if the program will be
compiled or rejected. As these types become richer, the more
bugs can be avoided. We will see in this thesis some very rich
types, called dependent types, that enable to capture very precise
informations about the sort of object manipulated, so precise that
we will be able to use these types to carry proofs.

• Logic, formal specifications and proofs :

Another possibility in order to increase the confidence in software
is to formally prove its correctness, and this approach is often

22

1.1. The need of formal certification

a complement to static typing. Such proofs are made within a
logical theory (simply called a logic) that is suited for talking and
reasoning about programs. Some logics, like Hoare logic [24] and
its variants, are designed to reason about imperative programs, and
constructive logics, like the Calculus of Constructions (CoC) [15]
and Martin Löf type theory (ML) [29], are shaped to reason about
functional programs. We will explain the meaning of the adjective
"constructive" later. For both imperative and functional programs,
the general idea is to express a formal specification within this
logic, and to prove that the program fulfils this formal specification.
Sometimes, the program is instead derived from the specification,
by iterative refinements. This thesis will focus on this activity of
proving.

For imperative programs, the specification is often expressed as pre
and post conditions, which can be seen as a contract. If the caller of a
function respects the conditions expressed in the pre-conditions, then we
have the guarantee that the properties expressed by the post-conditions
will be valid after the execution of this function. This idea comes from
Hoare in 1969, and originally these verifications were done on paper.
It’s only a few decades ago that tools like the B-toolkit [1] appeared (in
1996), with the goals of helping the construction of the proof, and, more
essentially, of verifying the complete proof.

For functional programs, the formal specifications and the proofs are
made within a logical framerwork called type theory. Type theory is, in
modern presentations, a formal system that contains computational rules
(defining a rewriting system) and typing rules (defining a logic). The
computational rules express how the computations are performed in
order to reduce expressions to their results, and the typing rules describe
how the different objects of the theory can be manipulated and combined
(and which ones are valid objects). Because of a deep correspondence
between types and logical propositions (described in 2.3), these typing
rules also describe the kind of logical properties that can be expressed
and proven about these programs.

Although there exists different kind of type theories (intensional,

23

1. Introduction

extensional, with or without cumulativity of universes, univalent or not,
etc), and many different implementations of them, they all share some
basic concepts [2]. This situation can be compared to set theory, where
concrete systems like ZF, ZFC and Kripke-Platek set theory, all share the
same intuitive notion of set, which comes directly from naive set theory.
In type theory, types are used as a way to discriminate the "valid objects".
This is used in every type system as a way to reject badly behaving
terms (like Ω = (λx. xx) (λx. xx), which reduces to itself), and as a way
to avoid paradoxes, like Russell’s paradox, where self-references create
inconsistencies. Type theory is even a branch of mathematics that has
initially been developed for this purpose, when in 1908 Russel proposed
his "ramified theory of types" in order to address the paradox that he
discovered when he studied the book [20] on logic written by Frege.

Type theory has gained momentum after Howard and Curry dis-
covered independently (in 1958 and 1969) that proofs correspond to
computable functions (lambda-terms or combinators), and logical formu-
lae to types. This discovery has reunited two pieces considered previously
as separate : logic and computations. Because with this correspondence a
logical proposition can be represented by a type, any type theory embeds
a logic, and the rules of this logic are expressed by the typing rules of the
theory considered. Different flavours of type theory have been developed
and explored since then, with different inference rules and axioms, that
has lead to various expressivity and different usages. We will say more
about type theory and the Curry-Howard correspondence in section 2.2.

In this thesis, we will use the type theory implemented as the kernel of
the Idris language, but all the ideas presented in this thesis can be applied
to any dependently-typed programming language or proof assistant. The
rest of this introduction will talk about such proof-oriented languages
and proof assistants in 1.1.2, before presenting the Idris programming
language in 1.1.3. Then, we will focus on dependent types and the
problems that they bring in 1.2, and we will present on a concrete example
in 1.3 the specific problem that we want to address in this thesis.

24

1.1. The need of formal certification

1.1.2 Proof assistants and programming languages

Proof assistants are software that enable the writing of code, logical
statements and proofs. Each proof assistant is based on a formal system
(or theory), which is often a type theory. On top of this trusted kernel,
they can offer various features and automations that aim to help the
construction of programs and proofs, but their most important aspect
is the automatic verification of proofs. A proof done on paper can be
wrong, because a wrong assumption can be made or a theorem badly
applied. This is not something specific to proofs about programs, as some
theorems in maths have had false proofs for quite a while before that the
mathematical community realised that the proof was actually false. The
paper never complains about a false proof, which makes these mistakes
hard to spot, and they can ruin the efforts done to make a software safe.
Thus, the great advantage of proof assistants is that they make sure that
the proof built by the user is valid and effectively proves the statement
claimed by the lemma. The way they verify the validity of proofs will be
described later, in 2.5.

For proof assistants based on constructive logics, Coq [6] and Agda [35]
are certainly the two most famous nowaday. They are based on fairly
similar type theories (CIC [14] and an extension of ML respectively),
but their spirit is slightly different. Coq is a proof assistant in the tra-
ditional sense : the proofs are often done in a proof mode by applying
tactics, that have an effect on the current context and on the goal to
prove. If we want to prove the following lemma of propositional logic :
∀(P Q : Prop), P ∧Q→ P ∨Q, the proof goes like this :

1. We use intros P Q, the context becomes Γ = {P : Prop, Q :
Prop}, and the goal P ∧Q→ P ∨Q.

2. We use intro H to introduce the hypothesis P ∧Q in the context,
which is now Γ = {P : Prop, Q : Prop, H : P ∧Q}. The current
goal becomes P ∨Q.

3. From the available proof H of P ∧ Q that we have in the context,
we can extract a proof H1 of P and a proof H2 of Q by using

25

1. Introduction

destruct H as [H1 H2], and the context becomes Γ = {P :
Prop, Q : Prop, H1 : P, H2 : Q}. The goal is unchanged.

4. Now that we have a proof of P and a proof of Q available in the
context, we have two possibilities for proving P ∨Q. We can prove
it by proving only P, and in this case we apply the tactic left, and
the goal will become P, or we can prove it by proving only Q, and
in this case we apply the tactic right, and the goal will become Q.

5. If we’ve chosen to prove P at the previous step, then we can simply
exact H1, which is a proof of P. If we’ve chosen to prove Q, then
we can exact H2. In both cases, that finishes the proof.

Once the proof is complete (i.e. when there is no more subgoals to
prove), we must tell the system that the proof is finished, and it will
verify it. This is done by the command Qed. Therefore, a tactic could
be wrongly implemented, it would not create any inconsistency in the
system, as anyway, the complete proof –represented by a lambda-term
that has been built by the application of these tactics– is going to be
completely checked at the end.

Lemma and_imp_or : forall (P Q : Prop), P /\ Q -> P \/ Q.
Proof.
intros P Q.
intro H.
destruct H as [H1 H2].
left.
exact H1.
Qed.

Figure 1.1: A proof script in Coq

In Agda, the complete lambda-term representing this proof will be
very similar, but the way to build it will be slightly different. Agda
looks more like a traditional functional language and we write proofs in
it as we write usual programs. The same proof would be written like this :

26

1.1. The need of formal certification

andImpliesOr : {P Q : Set} → (P ∧ Q) → (P ∨ Q)

andImpliesOr (∧-intro p q) = ∨-intro-left p

This proof is written as a function that does pattern matching on its
only argument. Since the type ∧ contains only one constructor called
∧-intro, of type P → Q → P ∧ Q, the only possibility for being a
proof of (P ∧ Q) is that the input is (∧-intro p q) where p and q

are respectively proofs of P and Q. In order to build a proof of P ∨ Q,
we can use either the constructor ∨-intro-left or the constructor
∨-intro-right that are the two constructors of the type ∨. The former
one expects a proof of P, like p, and the latter a proof of Q, like q. That’s
why the term ∨-intro-left p has the right type, i.e. is a valid proof
of the lemma.

For inductive proofs, that are done with the induction tactic in
Coq, they are directly written as a recursive function in Agda, where the
recursive call on the smaller argument produces the induction hypothesis.
That does not changes much the lambda-term that we obtain in both
cases at the end, but the intellectual gymnastic of producing a proof is
a bit different. Sometimes, the "script-style" of proofs in Coq is more
efficient or seems more natural, and sometimes, writing directly the
corresponding program in the Agda-style seems more straightforward.
Note that this second style of proofs (writing them directly as lambda-
terms) is also doable in Coq, but it is often more cumbersome than using
the interactive proof mode.

Proof assistants like Coq and programming languages like Agda have
in common the fact that they enable the writing of formal specifications
and proofs that are verified by type-checking within the theory that
they implement. The differences between these two categories are more
cosmetic : in proof assistants, the emphasis is on the writing of proofs,
while it is on the writing of programs in programming languages.

In this thesis, we will use the programming language Idris [8], but
almost all the ideas that we will present can be adapted to any depend-
ently typed functional programming language (dependent types will be
described soon in the section 1.2). Idris is closer to the family of program-
ming languages that enables to reason about code, like Agda, than it is to

27

1. Introduction

the family of proof assistans like Coq. However, all these tools share the
essential property that proofs are verified by a small trusted kernel, which
is absolutely needed for believing in machine-checked proofs. In Idris,
proofs are usually directly written as a function (i.e. as a lambda-term),
even though Idris also has a proof mode with a few tactics available.
However, unlike Coq and Agda, Idris is intended to be a general purpose
programming language, suited for developing real-world applications,
and therefore includes support for things like system programming and
network programming. We describe briefly the basics of Idris in the next
subsection.

1.1.3 Programming and proving in Idris

The use of proof assistants is currently limited to researchers trained in
type theory and logic, and systems like Coq and Agda haven’t really
penetrated the industrial sphere, and aren’t particularly suited for "real"
industrial applications. Idris [8] is a functional programming language
that has been created in order to address these shortcomings, and has
been designed from the start with the aim to bring formal verification to
programmers. The intention behind it is to convince programmers that
type-based verification can greatly enhance software’s safety, even for
real world applications, like the one interacting with the system and the
user, communicating through the network, etc. We start by presenting
the basics of this language with proofs.

Functions definitions in Idris

Idris’ syntax is heavily influenced by Haskell. For instance, the definition
of a function that composes two functions given in input is very similar
to its Haskell equivalent :

compose : {A:Type} → {B:Type} → {C:Type}

→ (A → B) → (B → C) → (A → C)

compose f g x = g (f x)

First, the type of compose is claimed by the programmer, and then
its definition is given. In the type, the element in curly braces {...} are

28

1.1. The need of formal certification

representing implicit arguments, i.e. arguments that won’t have to be
passed to the function because they can be inferred automatically from
the other arguments. Here, in order to call compose, we will only have
to provide two functions f and g 1 such that the domain of g coincides
with the co-domain of f. The types A, B, and C can be retrieved from the
type signatures of these functions.

It is interesting to notice a first advantage of static typing : the type
of the function compose brings the guarantee that it won’t be possible to
compose two functions that do not have a corresponding domain and
co-domain, as the typechecker will make sure -by unification- that this
constraint is preserved. Of course, this function compose is completely
useless as we can always directly use the composition g (f x). In order
to write more interesting functions, we need to introduce some types like
Bool, Nat and List.

Inductive types and recursive functions

These datatypes Bool, Nat and List are defined as inductive types,
which are sometimes also called (recursive) sum types, disjoint union or
more occasionally variant types and tagged union in the literature. An
inductive type contains some data constructors, that all have a type, and
that represent the different way of constructing terms of this type. One of
the easiest example, that has two constants constructors, is Bool. There
are two possibilities for being a boolean : being either True or False.
This leads to the following definition in Idris 2

data Bool : Type where

True : Bool

False : Bool

Both constructors True and False are constants in the sense that
they do not expect any parameter. Thus, both can generate only one
inhabitant of this type, leading to a type with only two inhabitants, often

1and eventually an element x of type A, depending on if we want to get as a result
the composed function itself, or its application to x (compose is a curried function, and
the result compose f g is itself a function)

2The definition of Bool by the user is not needed, as this type is already provided
by the language where it is defined exactly like this.

29

1. Introduction

called 2 in type theory. We can see such a type with only constant
constructors as an enumeration.

A bit more interesting than Bool is the case of the natural numbers
Nat. A natural number is either the number zero, or the successor
of another natural number. The first case gives a constant constructor,
called Z in Idris (of arity 0, like True and False), and the second case a
recursive constructor called S, as an abbreviation of "successor".

data Nat : Type where

Z : Nat

S : Nat → Nat

This definition is in fact an encoding of numbers in a unary numeral
system, which generates the terms Z, S Z, S (S Z), S (S (S Z)),
and so on, respectively representing the numbers 0, 1, 2, 3, etc.

There are some restrictions, and not all inductive definitions are ac-
ceptable, because the system could become otherwise inconsistent. In
an inductive definition of a type T, each constructor must be strictly
positive, which means that all occurrences of the type T must be strictly
positive. An occurrence is strictly positive if and only if it used in
output position, but not in input position. This can be syntactically
checked by not allowing T to appear directly at the left of an arrow.
For instance, the occurrence of T in (T → nat) is negative. Thus, the
following data constructor for T would be rejected by the system :
isRejected:(T → nat) → T. These positivity restrictions are needed
in order to avoid non-terminating programs.

A type can also be parametrised by another type, and this is a case
of polymorphism. For example, polymorphic lists are parametrised by
the type of their elements, and their definition in Idris is in all aspects
similar to what we find in Haskell or Ocaml :

data List : Type → Type where

Nil : {T:Type} → List T

(::) : {T:Type} → (h:T) → (t:List T) → List T

Nil represents the polymorphic empty list. The second constructor,
written with the infix notation (::), is called Cons. It takes an element
of T (called h, for head), a List of T (called t, for tail), and it represents

30

1.1. The need of formal certification

a lists made of h followed by t. In order to facilitate the writing of lists,
Idris, like many other functional languages, uses the traditional concrete
syntax for lists, where [a, b] represents the list a::b::Nil.

Many functions that operate on an inductive type are recursive :
they solve a problem by calling themselves on a smaller instance of the
problem, and eventually by doing some additional treatments. With
List, one of the first function we want to write is usually a function that
computes the length of a given list.

length : {T:Type} → List T → Nat

length Nil = Z

length (h::t) = S (length t)

When the input list is the empty list Nil), its length is zero (denoted
by Z). When the input list is a Cons of a head h and a tail t, we can
determine its length by computing recursively the length of the sublist t,
and by adding one to this number, which is done by taking the successor
of that number.

Another typical function with lists is append, which takes two lists
l1 and l2 with elements of type T, and produces another list : the
concatenation of the two input lists, often denoted l1++l2.

append : {T:Type} → List T → List T → List T

append Nil l2 = l2

append (h::t) l2 = h :: (append t l2)

When the first list is the empty list Nil, we can simply return the
second list l2. When the first list is a Cons of a head h and a tail t, we
can do it by appending t to l2 (which is done by the recursive call), and
then by adding h at the head of this intermediate result.

Predicates and proofs

We’ve mentioned earlier that Idris is one of these programming languages
that enables to manipulate predicate and proofs, and which therefore
makes it possible to do formal certification within the language. Thus, in
order to gain confidence in the definitions that we have written above, we

31

1. Introduction

should now formally specify the behaviour of these functions 3, and prove
the correctness of these functions according to these formal specifications.
These formal specifications will use predicates and logical connectors.
A predicate is a logical formulae that takes (at least) a parameter in
input, and that can be proven for some of its possible inputs. Often, the
predicates are themselves defined inductively, and we call them inductive
predicates. Sometimes, and especially when the function being proven
is very primitive, its lemma of correctness will use predicates that are
extremely similar to the definition itself. This can become a problem,
which is discussed more in depth in chapter 6. For example, the predicate
"is the length of this list" will match very precisely the computational
definition of the length function :

data HasLength : {T:Type} → List T → Nat → Type where

NilHasLengthZero : HasLength [] Z

ConsHasOneMoreElement : {T:Type} → (t:List T)

→ (n:Nat) → (pr:HasLength t n) → (h:T)

→ HasLength (h::t) (S n)

Even though the predicate HasLength is very similar to the function
length, they shouldn’t be confused : length is a function that can be
immediately computed in order to return the length of the input list, but
hasLength is a predicate that has to be proven on a given list. Its first
constructor says that [] has length Z, and it precisely stands as a proof
of it. As this definition is a logical one, the second constructor must be
read by thinking of its arguments as universal quantifications. Its logical
meaning is therefore :

∀ (T:Type) (t:List T) (n:Nat) (pr:HasLength t n) (h:T),

hasLength (h::t) (S n)

which can be expressed in English by “for any type T and any list t of T,
if n is the length of t, then for any element h, the list (h::t) has size
(S n)".

3Some people would object that in fact, this activity of specification should have
been done even before the writing of the functions.

32

1.1. The need of formal certification

The correctness lemma for length simply says that any list l has
for length (according to the predicate HasLength) the result of the
computation length l. This is expressed in Idris as :

length_correct : (l:List T) → HasLength l (length l)

The proof is not difficult and can be done by induction on the input
list l. When l is Nil, we have to prove HasLength [] (length []),
which reduces to HasLength [] Z as length [] reduces Z. But build-
ing a proof of HasLength [] Z is an easy task, because we have the
first constructor of HasLength, called NilHasLengthZero, that says
precisely what we need. Therefore, we can build the desired proof by
simply returning this constant4, which is the proof we need :

length_correct [] = NilHasLengthZero

The case where the input list l is a Cons h t is the inductive step.
length_correct, although expressing a logical statement, is still an
ordinary function that can be used as any other function. In particular,
we can call it recursively on the smaller argument t, and if we do so, we
will get the induction hypothesis, of type HasLength t (length t),
which states that t has provably the length length t, or said differently
that the function length is behaving correctly on this smaller input t.
Thus, according to the constructor ConsHasOneMoreElement, if we
add any element in front of t, the result will provably have a length
of one more, which is S (length t). This can be applied to the
abstract element h that we have, and this is precisely what we need,
as the computation length (Cons h t) precisely returns the value
S (length t) according to the second pattern of the definition of the
length function. Thus, we can get the proof that we need by simply
doing :

length_correct (Cons h t) =

ConsHasOneMoreElement t (length t)

(length_correct t) h

4This constructor takes in fact a parameter, T, but as this parameter is only a type
parameter, we can see this constructor as a constant (but a polymorphic one, that works
for any type of elements).

33

1. Introduction

We realise that this proof, in both cases, was really easy, and this is no
surprise as the logical specification HasLength and the computational
definition length are saying exactly the same thing. The only difference
between the function length and the predicate HasLength is that the
former one is a function that can be computed on a given list to produce a
natural number, when the later can only be proven for a given list and a
given natural number.

We could now do the same kind of work for append, by defining
a formal specification for it with a predicate isAppend, that will take
three lists in input, and that will be provable only when the third one is
the concatenation of the first two lists. The definition of this predicate
isAppend and the proof of correctness of append would not be more
complicated than it was for length. However, it appears that for very
primitive functions, like length and append, such proofs of correctness
do not really bring any valuable guarantee because their specifications
match too closely their definitions. For this kind of functions, highlighting
logical links between these definitions would certainly give us a much
more valuable guarantee than the actual proof of correctness that we just
did, which connects two things (a logical definition and a computational
one) that are too similar.

So far, we haven’t expressed any link between these functions length
and append, but there is a strong one, as appending two lists creates
a list of a size that is the sum of the input’s size. If we manage to
make this link explicit and checkable by the machine, we will gain some
additional confidence in these definitions. Of course, this property taken
separately is not enough to completely validate the correctness of these
functions. However, adding such links between different functions brings
a good level of confidence, and is easily accessible to programmers. By
continuing this activity with additional logical links when more functions
will be defined, we will become more and more confident about this
library of lists. This activity of proving lemmas that connects many
definitions and objects is in fact a very common activity in mathematics
where the behaviour of a new, freshly defined object is defined beside the
objects and concepts that already exist, especially in the area of category
theory. Computer scientists have already followed this path, and a good

34

1.1. The need of formal certification

formalisation of lists, such as the one found in the Coq proof assistant, is
expected to highlight many of these logical links.

An example of such a link is the fact that, for any lists l1 and l2, the
length of the append (l1++l2) must be (length l1) + (length l2).
We can state this property by writing a lemma, expressed in Idris as an
ordinary function that has this type :

append_length : {T:Type} → (l1:List T) → (l2:List T)

→ length (l1 ++ l2) = length(l1) + length(l2)

We won’t show the proof of this lemma as it would require some
notions about equality that will be presented later in chapter 2, but
this proof would again be done by induction on its first argument l1,
and would consist of checking that in both cases (Nil and Cons) the
computation of the length unfolds to two expressions that are equal.

Types can express more

If the type of lists would encapsulate their length, we could state this
logical property directly in the type of the function append, instead of
having to define this auxiliary lemma append_length. Having this
kind of property expressed directly in the type would be interesting
because it would help the definition of the function : types can drive
the development of software, as this is something we already know
from Haskell and Ocaml, where having a strong type –that expresses
more than its usual C or Java equivalent– leads to less errors and less
debugging work, and can even drive the construction of the program.
Here, that would mean that if the definition written for append doesn’t
verify this property about the sizes, then the definition would simply
be rejected by the typechecker. Also, having the property about the size
expressed in the type itself leads to less code and proof duplication, as
the proof of append_length is looking at the definition of append, and
is in fact following precisely the same recursive pattern.

In order to be able to express these links, dependently typed languages
like Coq, Agda and Idris enable the manipulation of types that are
indexed over some values. This enables to define the type Vect, that
behaves like lists, but which has the novelty of being indexed over a

35

1. Introduction

natural number (in addition of being still polymorphic on a type T). We
will describe dependent types more precisely in the next section, but we
first give just a taste of what we can do with them. When an element v
has type Vect n T (where n is a natural number and T a type), it means
that v is a vector of size n, with elements of type T. The type of Vector
indexed over their length can be written like this in Idris :

data Vect : Nat → Type → Type where

Nil : {T:Type} → Vect Z T

(::) : {T:Type} → {n:Nat} →
(h : T) → (t : Vect n T) → Vect (S n) T

The first constructor, Nil, is still polymorphic over T, but it has now
an encapsulated size, which is Z (denoting zero). The meaning is that
Nil is a vector of size zero. The second constructor (::) can build an
element of type Vect (S n) T, i.e. a vector of size (S n), when given
in parameter a head h of type T, and a tail t of type (Vect n T), i.e. a
vector of size n.

Thanks to this index, the type of functions –like append– that work
with vectors can be a lot more informative. For example, we can now
state directly in the type of append that when applied to a Vect of size
n1 and a Vect of size n2, the result must have size n1+n2 :

append : {T:Type} → {n1:Nat} → {n2:Nat}

→ (Vect n1 T) → (Vect n2 T) → Vect (n1+n2) T

With this stronger type, there are several mistakes that can be avoided
in the definition of append, since only an algorithm that builds a vector of
size n1+ n2 will be accepted. For example, a function that always returns
the first vector would be rejected by the system. We will now describe
more in depth dependent types, their advantages and the problems that
they bring in the next section.

36

1.2. Dependent types

1.2 Dependent types

1.2.1 What dependent types are

Dependent types informally

The biggest novelty in functional programming compared to imperative
or object-oriented programming is the fact that functions are first-class
values5. In the same way, in dependently-typed programming languages,
the novelty is that types –that were previously only a compile-time
information– are now first-class values. They are something that can
be computed, which means that they can be taken in parameter and
returned by a function, just as any other value. It is for example possible
to write this function :

NatOrList : (b:Bool) → Type

NatOrList False = Nat

NatOrList True = List Nat

This function returns a type, so for a given boolean b, the expression
(NatOrList b) is a type, and this type depends on the value b : if b
is False then this type is Nat, if b is True then this type is List of Nat.

With this, we can write a function that produces a value that can have
two different possible types, depending on the actual value of the input.

ZeroOrNil : (b:Bool) → NatOrList b

ZeroOrNil False = Z

ZeroOrNil True = []

The type of the output of this function depends on the value of the input,
and therefore this function has a dependent type.

With dependent types, not only a function can have the type of its
output depend on the value of one of its input, but also pairs of values
can become dependently typed, which means that the type of the second
component y of a pair (x,y) can depend on the value of the first
component. These dependent pairs are written (x ** F(x)) in Idris. We

5Imperative and object-oriented languages are now starting to get some of the
concepts coming from functional programming.

37

1. Introduction

can for example define the type of pairs where the first component is a
natural number n, and the second a vector of booleans of size n :

PairNatVect : Type

PairNatVect = (n:Nat ** Vect n Bool)

The value (2 ** [True, True]) is an inhabitant of this type, but
(2 ** [True, True, True]) is not, because the second component
has type Vect 3 Bool while it is expected to have type Vect 2 Bool.

As we’ve seen in the previous section with the example of the type
Vect of "lists" indexed by their size, an inductive type can be indexed
over a value. This is possible because inductive types are not different
from other types in regard to dependent types, and it is therefore possible
to inductively define IndexedType of type TypeIndex → Type. If
i has type TypeIndex, then (IndexedType i) is a type. Therefore,
IndexedType describes a family of types, indexed over TypeIndex. In
practice, in order to define inductively such a family of types, we still use
constructors, and each constructor targets a part of the family of types, by
specifying what the index is for this constructor. To make things clearer,
if TypeIndex is a type that contains the constants I1 and I2, an indexed
type can be defined inductively like this :

data IndexedType : TypeIndex → Type where

Constr1 : ... → indexedType I1

Constr2 : ... → indexedType I2

...

This definition means that Constr1 targets the part that is indexed
over I1, i.e. it builds values that have type (indexedType I1), while
Constr2 builds values that have type (indexedType I2).

Dependent types more formally : Π types and Σ types

We’ve just seen with the function ZeroOrNil that functions can now
have the type of their output depend on the values of their inputs. The
usual function space (written with the arrow symbol →) with a fixed
codomain found in non dependently-typed languages has been replaced
by a dependent function space. This has been made possible by several

38

1.2. Dependent types

changes, and the most important of them is that there is no longer a
separation between terms and types. In non dependently-typed systems,
the relation x:T relates a term x and a type T, and these two things live
at different levels. However, in dependently-typed systems, there is no
longer such a strict separation, and everything is a term. That means that
types are no longer just a semantic information about a term, but they are
ordinary values that can be computed. Being given a type A, we’ve seen
that we can write a family of types B : A→ Type which assigns to each
term a : A a type B(a) : Type. The function NatOrList that we’ve written
above was such a family of type. We’ve also seen that we can use such
a family of type in order to build a dependent function, i.e. a function
where there is no fixed codomain. Formally, the type of such a function
is a pi-type, denoted Π(x:a)B(x). In Idris, the type of such a function is
simply written (x:a) → (B x), and the fact that the right-hand side
of the arrow uses the value x makes it explicit that this is a dependent
function. The function ZeroOrNil that we’ve defined above was such a
dependent function.

When B : A → Type is a constant function, the type Π(x:A)B(x)
becomes completely equivalent to A → B, which means that dependent
functions and "ordinary" functions coincide when the type of the output
doesn’t change with the value of the input.

In the same way that the ordinary function space has been generalised
with pi-types, ordinary pairs are generalised with sigma-types, that are
written Σ(x:A)B(x), where B is still a family of types. For example, the
type of dependent pairs with a natural number n as first component
and a vector of booleans of size n as second component –that we’ve
defined above in Idris as (n:Nat ** Vect n Bool)– is formally writ-
ten Σ(n:Nat)(Vect n Bool) in type theory. This generalisation of pairs is
completely equivalent to ordinary pairs when the type of the second com-
ponent does not change with the value of the first : the type Σ(x:A)B(x)
is the same as the product type A ∗ B when B is a constant function.

39

1. Introduction

1.2.2 Dependent types’ expressivity

One of the great advantages of dependent types is that they enable the
programmer to be a lot more precise about the sort of elements that
are being manipulated. That avoids the situation where one has to
use a type containing more inhabitants than needed (which means that
the type therefore contains junks), as using too-large types is often a
source of bugs. For example, if one defines an integer division function
as divide : Nat → Nat → Nat, then what should be the result
when it is called with zero as the second argument? The answer is
that there is no good value to produce for this case, since we’ve left
an unwanted value come in. The traditional solution is to use excep-
tions, or to change the type of the output type from Nat to the monad
Either Nat Error6 , but that still doesn’t make explicit that the error
appears only when the second argument is zero, and it still doesn’t pre-
vent it to happen, it just deals with it. Instead of making the output type
more complicated –and therefore complicating the use of this function, as
we would have to check if the result is a Nat or an Error–, dependent
types allow us to simply reject the value zero by being more precise about
the type of this second argument. This second argument can become
a dependent pair Σb:Nat(b>0), which carries a natural number b and a
proof that b is strictly greater than zero. With this type, the problem of
dividing by zero won’t happen at all, since it is impossible to pass to the
function a proof of b>0 when b is zero. We see here that dependent types
allow us to define very precise types by cutting down unwanted values
with logical formulae.

It is now important to mention that the ability to write logical formulae
also comes from the fact that types are first class objects. These logical
formulae (like b>0 that we’ve just encountered) are made of predicates
(> in this example), and these predicates themselves use types as first
class objects : the predicate > is defined as a family of types, of type
Nat→ Nat→ Type. For any x and y of type Nat, the expression x>y is a
type, and if this type is inhabited, then x is effectively greater than y, and

6These two possibility are semantically equivalent. The difference is that exceptions
are supported directly by the language, when one would have to do a few more things
by hand with the type Either Nat Error.

40

1.2. Dependent types

all the inhabitants of this type stand as proofs of this fact.
The predicate "strictly greater than" is defined by using the other

predicate "strictly lower than" : (a>b) := b<a. Then, the predicate
"strictly lower than" is defined using the predicate "lower or equal" :
(a<b) := (S a) ≤ b. Finally, the predicate "lower or equal" is defined
inductively, and as usual, each constructor targets a part of the family. In
Idris, this predicate ≤ is called LTE and is defined as follow :

data LTE : Nat → Nat → Type where

LTEZero : LTE 0 right

LTESucc : LTE left right → LTE (S left) (S right)

While it is defined like this in Coq:

Inductive le (n:nat) : nat → Prop :=

le_n : n≤ n
le_S : ∀m : nat, n≤m→ n≤ Sm

It is interesting to realize that the same predicate can often be defined
in different ways, as it is the case for this ≤ predicate : although these two
definitions are logically equivalent, they are two different constructions
that are not only syntactically different.

Let’s mention that in Coq, these predicates have type Nat→ Nat→
Prop, because Coq separates the world of computations (that lie in Type)
from the world of logical formulae (that lie in the impredicative sort
Prop). That’s not the case in Idris which only has a predicative Type,
but in which x>y must still be thought of as a logical proposition.

In summary, in dependently typed theories, we have the following
properties :

• We can now return a type or pass a type as parameter

• Because of the first point, we can now write family of types, with
the signature A→ B→ ...→ Type, where A, B, ... are types. And
when such a family is inductively defined, we talk more often of
an indexed type, rather than a family of types. The type Vect,
with embedded size is the first example of indexed type that we’ve
encountered. And for non-inductive definition, we’ve seen the type
family NatOrList.

41

1. Introduction

• We can now write dependent functions (Π-types), like the function
ZeroOrNil and dependent pairs (Σ-types), like
Σ(n:Nat)(Vect n Bool), where the type of an argument/component
depends on the value of a previous argument/component.

• We can write predicates as indexed types, as we’ve seen with the
predicate "greater than", of type Nat→ Nat→ Type.

• Thanks to dependent pairs and predicates, we can specify more
precisely a type, for example in order to avoid unwanted values
in input of a function. More generally, dependent types enable to
reason about programs, as any dependently-typed theory contains
a logical counterpart, as we will show in the next subsection.

1.2.3 Strong specification as dependent types

We’ve just seen that in this kind of dependently-typed language, we
can write predicates (like ">"), and expressions (like b>0), that help to
create pre-conditions that will be verified at compile-time by the ma-
chine. The activity of specifying formally the behaviour of a function
doesn’t stop here. In fact, we have all the necessary bricks for writing
any logical formulae that can be expressed in higher-order logic, which
gives us the ability to write post-conditions as well. If one wants to
completely specify the behaviour of the previous integer division func-
tion, one would usually write the logical formulae ∀a : Nat, ∀b : Nat, ∀p :
(b > 0), (divide a (b, p)) ∗ b ≤ a ∧ ((divide a (b, p)) + 1) ∗ b > a.
This formulae says that the result is such that if we multiply it by
the denominator b then we get back at most the numerator a; and
also that if this result would be larger by one, then multiplying it
by the denominator b would give strictly more than the numerator a.
We’ve already mentioned that in a constructive theory, logical formu-
lae correspond to types. That means that this logical formulae will
become a type, and more precisely the type of a dependent function,
as each universal quantification will become a pi-abstraction. It is a
dependent type (and not an ordinary function with the usual func-
tion space →) because the third argument (the proof p) uses the value

42

1.2. Dependent types

of the second argument (the denominator b), and more significantly
because the type of the output (which is divide a (b, p)) ∗ b ≤
a ∧ ((divide a (b, p)) + 1) ∗ b > a) uses the values of all the in-
puts. Therefore, this logical formulae becomes the following pi-type:
divide_correct : Π(a:Nat) Π(b:Nat) Π(p:GT b 0) (divide a (b, p)) ∗ b≤
a ∧ ((divide a (b, p)) + 1) ∗ b > a. A proof of it will be any inhabitant of
this type, i.e. any dependent function that has this type.

We’ve just encountered the logical side of the dependent function
space : pi-types Πx:A(P x) can be read as universal quantifications
∀x : A, P x when they are used to state a logical proposition. There
was no existential quantification in this formulae, but we can note that
(∃x : T, P x) would become a sigma-type Σ(x:T)P x that carries both the
value x and the proof that x is conform, i.e. an inhabitant of (P x).

The logical formula that we have expressed above can be expressed
as a lemma after the definition of the function. This approach is what
we call the "usual approach" for formal certification, where we first write
a function, and later complete the type of the function by one or a few
additional lemmas, that all together specify completely the behaviour of
the function. This is what we’ve done for the length function for lists,
with the lemma length_correct that we’ve presented in section 1.1.3
and this is what is usually done with the Coq proof assistant. When the
behaviour of a function has to be specified by one or more additional
lemmas like length_correct and divide_correct, we say that the
type of the function is a weak type. It is weak in the sense that it is
not sufficient for specifying completely the expected behaviour of the
function.

However, now that we have dependent types, it becomes possible to
write strong types that will specify completely the behaviour of a function.
The type becomes of course more complicated, and the same goes for
the definition of the function itself, but it has the advantage to ensure
from the start that the function being defined is exactly what we need.
With the usual approach it was possible to only realise that the function
is incorrect when we’re trying to prove its correctness in vain. However,
with stronger types, this risk is reduced. In the case of divide, a possible
strong type would be : divide : Π(a:Nat) Π(b:Nat) Π(b0) Σ(c:Nat)((c ∗ b≤

43

1. Introduction

a) ∧ ((c + 1) ∗ b > a)). The output is a dependent pair, whose first
component c is the result of the division, and the second is the proof that
this result has all the properties that we need in order to consider this
function as correct.

We have to be careful with dependent types and strong specification
as dependent types, as they can make both types and definitions a
lot more complicated and hard to maintain. Putting all the properties
directly into the type is not necessarily always the best thing to do.
Instead, trying to find some important properties, that are easy enough
to express, and powerful enough for ensuring a good level of safety is
often more interesting. Dependent types bring the possibility to add
logical properties into our types, but we are not limited to have nothing
or everything into them, and the difficult but rewarding goal is to find a
good compromise. Often, the entire correctness isn’t what really matters.
Ensuring some properties or invariants can already give some very strong
guarantees and dependent types are very useful for this task.

Let’s recall that everything is not only about post-conditions. There’s
also the fact that some functions are not defined if their inputs does not
verify some conditions (called pre-conditions), as we have seen with the
function divide that is not defined when the denominator is zero. We
can also mention the traditional zip function for lists, because the two
lists in input must have the same length. In a more traditional language
that does not have dependent types (like Haskell or Ocaml), we usually
return an error, raise an exception, or do the treatment partially and as
much as possible, stopping when the end of the shortest list is reached.
But when working in a dependently-typed theory, we can write the most
precise type zip : Vect n A → Vect n B → Vect n (A*B).
Here, the typechecker will (statically) make sure that the two vectors are
always forced to have the same size, and it will do that by inspecting
their type, as their size is a part of their type.

1.2.4 Common problems with dependent types

Thanks to the introduction of dependent types, we can now define more
precise types, and we have the ability to write logical formulae. However,

44

1.2. Dependent types

these new possibilities also bring new problems. The first of them is that
dependent types induce logical links between values and their types, and
therefore obtaining an information about the shape of a term might give
an information about some other terms. If the system doesn’t support
these logical links, we will run into problems when defining functions.
For example, when a function manipulates a natural number n and a
vector v of type Vect n T, in the case where n is zero, we know that v
has type Vect 0 T. However, in many systems, including the Coq proof
assistant –outside of the proof mode–, v will still be seen as an element
of type Vect n T. Said differently, Coq doesn’t natively propagate the
informations that we get from the shape of a value to the other types
involved in the function. In Coq, one possiblity is to switch to the proof-
mode and to do the case analysis with the tactic "destruct", or to still do
it in the language-mode, but with the "match ... as ... return ..." construct
which makes the definition slightly more complicated. Idris doesn’t have
this complication, and if the shape of a term gives us informations about
some other values, the system will know and use these informations. For
example, the following (incomplete) code will typecheck :

f : (x:Nat) → (v: Vect x Bool) → Vect 0 Bool

f Z v = v

And that typechecks because Idris knows that v has effectively type
Vect 0 Bool in the case where x is zero.

This good support for dependent types that Idris has does not only
propagate the information that we get by inspecting some values into
the types of other values, but it also uses these informations to en-
force the shape of these other values. For example, if a vector of type
Vect x Bool happens to be a Nil then x is forced to be Z, and the
system knows it.

Every time that a term t of a dependent type (often a predicate)
contains some information about some components of t, the system will
collect this information and they will be facts that can then be used during
the type-checking. For example, one way to define an Even predicate is :

data Even : Nat → Type where

IsEven : {x:Nat} → Even (x + x)

45

1. Introduction

We can use an element of Even n in order to know that n has the shape
x+x for some x. This is extremely powerful because, as we notice here,
the information about the shape isn’t forced to be a constructor : it can
be a "non-primitive shape", such as x+x. Let’s use this information in the
definition of a function that divides by two any even natural number :

divideByTwo : {n:Nat} → (Even n) → Nat

divideByTwo {n=k+k} IsEven = k

We see that this definition of Even is particularly useful when the
point of view being taken is that an even number can be divided by two7.
Such a definition is possible because we have this powerful dependent
pattern-matching which reveals informations not only about the shape of
the expression which is being matched (here, the value of type Even n),
but also about other expressions (n in this case). We will see in chapter 5
that this powerful dependent matching also enables matching on some
intermediate computations (still on the left hand side of definitions), and
that it can deduce even more informations about the other expressions,
with what will be called views.

In Coq, because there isn’t such a powerful dependent pattern match-
ing built to its core type-theory, some functions are very difficult to define,
and often, the last hope will be to define them in the proof-mode, as one
would prove a theorem. However, the definition of a function done in
proof-mode is very opaque, hard to understand and hard to maintain.

The presence of this powerful dependent pattern matching in Idris
makes the definitions of many functions easier, especially the ones that
manipulate terms of dependent types which contain links between several
values, because the system will take in account the fact that knowing the
shape of a term can affect the forms of other terms. This feature brings
more structure to the programming activity, as the links between various
data are becoming explicit.

However, there is still an important problem that will be encountered
frequently when defining a function that returns a value of a dependent
type. Often, the type of the function makes the claim that the output

7Another definition, more conventional but which does not help for defining the
division by two, is to say that 0 is even, and that ∀n, Even n → Even (S (S n)).

46

1.2. Dependent types

has some specific indices (i.e. the output has type T i1 i2 ... in), but the
definition creates a term that has some different indices (i.e. a term of
type T i′1 i′2 ... i′n), and the typechecker will simply reject this definition,
as it produces something that does not have the expected type. If the
definition makes sense, of course, the corresponding indices must be
equal. By "equal", we mean something very specific called propositional
equality, that will be detailed in chapter 2, but intuitively this equality
means "provably equal", and implies "replaceable". This is in fact the
very common and intuitive equality used in mathematics, where the left
and right hand side of an = symbol can be written down differently, but
must describe objects that are replaceable by each other. A propositional
equality is therefore something that has to be proven, and in the case of
such a function definition, the user of the system will have to prove that
each index ik is equal to its corresponding i′k produced in the definition,
in order to make the definition accepted by the system. Said differently,
when the programmer is defining a function with a slightly different type
than expected, that’s his duty to prove the convertibility between the two
types. That means that as soon as we start to introduce dependent types,
we have proof obligations coming along the way. We will now present a
concrete example of how these proof obligations arise in practice.

47

1. Introduction

1.3 How proof obligations arise on a small

example

Proving that one term is equal to another is common in formal verification,
and proof obligations arise naturally in dependently typed programming
when indexing types over values in order to capture some logical proper-
ties. To demonstrate this, we revisit8 an example from previous work [11]
which shows how proof obligations arise when a type is indexed by
natural numbers. Our goal is to implement a verified library of binary
numbers. To ensure functional correctness, we define the types Bit and
Binary indexed over the value they represent (expressed as a natural
number):

data Bit : Nat → Type where

b0 : Bit Z

b1 : Bit (S Z)

data Binary : (width : Nat) → (value : Nat) → Type where

zero : Binary Z Z

(#) : Binary w v → Bit bit

→ Binary (S w) (bit + 2 * v)

The constructor b0 represents the single bit 0, so it builds a Bit

indexed over the natural number zero. Similarly, the constructor b1
represents the single bit 1, therefore it builds a Bit indexed over the
natural number one.

The type Binary allows the representation of a binary number of
width and value zero with the constructor zero, and the representation
of larger numbers with the constructor #, which extends a binary number
bin by adding a digit to its right, and the value represented by this new
binary number is two times the value (v) represented by bin plus the
value (bit) represented by the added digit.

We will write a function to add two binary numbers. To do so, we
begin with an auxiliary function, which adds three bits (the third is a

8see the file binary.idr on the Github project

48

1.3. How proof obligations arise on a small example

carry bit), and produces the two bits of the result, where the first is the
more significant bit:

addBit : Bit x → Bit y → Bit c → (bX ** (bY **
(Bit bX, Bit bY, c + x + y = bY + 2 * bX)))

addBit b0 b0 b0 = (_ ** (_ ** (b0, b0, Refl)))
addBit b0 b0 b1 = (_ ** (_ ** (b0, b1, Refl)))
addBit b0 b1 b0 = (_ ** (_ ** (b0, b1, Refl)))
addBit b0 b1 b1 = (_ ** (_ ** (b1, b0, Refl)))
addBit b1 b0 b0 = (_ ** (_ ** (b0, b1, Refl)))
addBit b1 b0 b1 = (_ ** (_ ** (b1, b0, Refl)))
addBit b1 b1 b0 = (_ ** (_ ** (b1, b0, Refl)))
addBit b1 b1 b1 = (_ ** (_ ** (b1, b1, Refl)))

Figure 1.2: Addition of three bits

The syntax (n ** t) denotes a dependent pair, where the type of
the second argument t can refer to the first argument n. So, we can
read this type as: “there exists a number bX, and a number bY, such
that we have two bits Bit bX and Bit bY and the sum of the input
bits c, x and y equals bY + 2 * bX.” For example, on the second line,
which corresponds to the computation 12 + 02 + 02 = (01)2, the function
produces this bits b0 and b1, and a proof that 1 + 0 + 0 = 1 + (2× 0).

It should be pointed that the proof part of the output is systematically
produced by using only Refl. Indeed, for each of the eight patterns,
a simple computation reduces the two expressions to the same value,
and Refl therefore stands as a proof of equality of these two identical
entities. Also note the usage of the underscore symbol for inferable terms,
which let the system fill in these holes.

There is no need to produce any lemma of correctness about addBit
afterwards as the correct by construction style in which it is written
already gives the needed property: the two bits produced effectively
represent the addition of the three bits given in input.

We then define the function adc that adds two binary numbers and
a carry bit. This works for two binary numbers with the same number
of bits, and produces a result with one more bit. This result represents

49

1. Introduction

the value c + x + y, where c represents the value of the input carry
bit, and x and y represent the values of the two binary numbers given in
input. We would like to write:

adc : Binary w x → Binary w y → Bit c

→ Binary (S w) (c + x + y)

adc zero zero carry = zero # carry

adc (numx # bX) (numy # bY) carry

= let (vCarry0 ** (vLsb ** (carry0, lsb, _)))

= addBit bX bY carry in

adc numx numy carry0 # lsb

The first pattern performs the addition between the values zero, zero
and a carry. In this simple case, we simply have to produce the one-
digit value zero # carry. The second pattern is when the two binary
numbers are respectively (numx # bX) and (numy # bY) where numx
and numy are smaller binary numbers and bX and bY are two bits. In
this case, we start by adding the least significant bits bX and bY with
the carry, and this is performed by calling the function addBit. It
will essentially produce 2 bits, the first one representing the carry of the
result (called carry0), and the second one the least-significant bit of the
result (called lsb). Once we have this intermediate result, we can call
resursively adc on the smaller terms numx and numy with carry0 as
the carry that we need to propagate, and finally add lsb to the right of
this result.

Unfortunately, this definition is rejected by idris’ type-checker because
the types do not match for both patterns. The result of the first line adc
zero zero carry is expected to have the type :

Binary 1 ((c + 0) + 0)

but we provide a term of type :

Binary 1 (c + 0).
For the second case, the expected index is:

((c + (bit2 + (v1 + (v1 + 0)))) + (bit + (v + (v + 0))))

while we’re trying to provide a term indexed over:

vLsb + (((vCarry0 + v1) + v) + (((vCarry0 + v1) + v)

+ 0)).

50

1.3. How proof obligations arise on a small example

The definition of adc we have given would behave correctly, and
it has provably the expected type, but it does not have it immediately or
judgementally: after full reductions9 the expected and provided types are
still different.

For these situations where we want to keep the code simple and to
work on the type mismatch problem separately, Idris provides provisional
definitions with the syntax ?= instead of =. Using provisional definitions
here will make the definition accepted, but it will also generate two
proof obligations, one for each pattern. Each of these proof obligations
requires us to prove an implication P → E where P is the provided type
and E is the expected one, meaning that it is possible to transform (by
a computation) the provided term into a term that has the right type10.
One way to do so is to show that the expected and provided types are
in fact provably equal and to transform the output along such an equality
proof. Without automations, these proof of equalities have to be done by
the programmer, and they consist of a series of rewriting steps, where
each step uses a property about the operation + on natural numbers.
The proof for the second pattern is shown underneath, with some detail
elided:

adc_lemma_2 = proof {
intros;
rewrite sym (plusZeroRightNeutral x);
[...]
rewrite (plusAssociative c (plus bit0 (plus v v)) bit1);
rewrite plusCommutative bit1 (plus v v);
[...]
rewrite (plusAssociative (plus (plus x v) v1) (plus x v) v1);
trivial;

}

Such proofs consist of a potentially long sequence of rewriting steps,
9In dependently typed theories, the presence of types predicated on values requires

also using reductions inside the types.
10It is therefore unfortunately possible to throw away the initial output of the function

by doing this "conversion", leading to a very misleading code. Idris will be improved in
this respect in a future version.

51

1. Introduction

each using one of the properties: neutral element, commutativity, associ-
ativity. Without some automation, this sequence of rewritings must be
done by the programmer. Not only is this time consuming, but a small
change in the definition may lead to a different proof obligation, thus
invalidating the proof. A minor change in the datatype, or the definition
of addBit or adc will require us to do a new proof, and thus, without
support from the machine, these small proofs can become the everyday
routine in any dependently-typed language. It is worth mentioning
that even without using dependent types, these proof obligations for
equalities happen very frequently during the formal certification of most
applications. The proofs are absolutely not reusable because they perform
rewritings for very specific terms. Even though they are usually omitted
“on paper” for everyday mathematics, they are nonetheless required by
proof assistants, no matter how obvious they can be to a human reader.

Our handwritten proof adc_lemma_2 uses only the existence of a
neutral element, and the associativity and commutativity of + on Nat.
Thus, we’re rewriting a term by using the properties of a commutative
monoid. With the right choice of combinators [12] such proofs could
be made much simpler, but we would like to let a generic prover for
commutative monoids to find a proof automatically.

Such an automatic prover is possible to build, because algebraic
structures like monoids, groups and rings (commutative or not) all have
a very useful property: every expression in them can be normalised to a
canonical representation in the absence of extra axioms, i.e. in the case
of "pure" algebraic structures. Thus this kind of proofs of equality can
be automatically produced by computing the normal forms for each side
of the equality, and then comparing them using the syntactical equality,
because when they are in normal form, being equal is just a matter of
being syntactically the same entity. A few proof automations have already
been developed for some structures (ring and commutative rings mostly),
for some proof assistants. In the next chapter, we will precisely discuss
the aspects of proof engineering and we will review some of the main
tools that already exist in the area of proof automation, but we first close
this chapter by stating the contributions of this thesis.

52

1.4. Contributions and outline of the thesis

1.4 Contributions and outline of the thesis

Ring solvers are already implemented for various proof assistants, in-
cluding Coq [22] and Agda11. In this thesis, I describe a certified im-
plementation12 of an automatic prover for equalities in a hierarchy of
algebraic structures, including Monoid, Groups and Rings (all potentially
commutative), for the Idris language.

The principal novelty is in the approach that we follow, using a new
kind of type-safe reflection. Working by reflection for implementing tactics
has been done several times, including for the implementation of a ring
solver for the Coq proof assistant, but without providing any guarantees,
contrary to our type-safe reflection. I will compare our approach with
other implementations in Section 4.8.

The contributions of this thesis are the following :

1. In chapter 2, we present important concepts of logic and type theory,
including the correspondence between proofs and programs, and
we define the notion of equality in the setting of intentional type
theories. Then we discuss about proof engineering and we show
the current state of the art in the area of proof automation.

2. We present a new type-safe reflection mechanism, where the reflected
terms are indexed over the concrete inputs, thus providing a direct
way to pull out the proofs, and providing the guarantee that the
reflection of a term is indeed a faithful representation of the term.
The basic ideas of the technique are first presented in chapter 3 on
a smaller problem with only natural numbers and addition, and
are later adapted for a hierarchy of tactics proving equalities in
algebraic structures, in chapter 4.

3. The normalisation procedures are implemented by following a
correct by construction approach, instead of implementing a norm-
alisation procedure, and proving afterwards that this function is

11http://wiki.portal.chalmers.se/agda/%22?n=Libraries.
UsingTheRingSolver

12The implementation of our hierarchy of tactics can be found online at https:
//github.com/FranckS/RingIdris

53

http://wiki.portal.chalmers.se/agda/%22?n=Libraries.UsingTheRingSolver
http://wiki.portal.chalmers.se/agda/%22?n=Libraries.UsingTheRingSolver
https://github.com/FranckS/RingIdris
https://github.com/FranckS/RingIdris

1. Introduction

correct. This approach is much more suitable for programming
languages like Idris. Again, this approach will be presented in
chapter 3 on the smaller problem, and in chapter 4 for the complete
hierarchy of algebraic structures.

4. We develop a hierarchy of tactics where each tactic reuses the re-
writing machinery of the structure from which it naturally inherits.
For example, simplifying neutral elements is only implemented
at the monoid level, and each level inheriting from it will reuse it.
Re-usability is difficult to obtain when we want to reuse the prover
of a less expressive structure. For example, reusing the monoid
prover for building the group prover is not trivial, since we lose
the possibility to express negations (−x) and subtractions (x− y).
Some specific encodings will be presented in Section 4.6 for solving
this problem.

These contributions 1-4 have led to the paper "Automatically Proving
Equivalence by Type-Safe Reflection" [42], co-authored with Edwin Brady,
which has been presented to the international Conference on Intelligent
Computer Mathematics (CICM) 2017.

5. In chapter 5, we present a style of programming with dependent types
that enables to gain structural information about terms. This style
of programming enables to gain some confidence about programs,
but often requires some proof automations to be practicable, as the
ones developed in the previous chapter of this thesis.

6. As an opening in chapter 6, we discuss the limits of formal proofs, the
imperfect guarantees that they represent, and we present ideas to
increase the trust that we can have in formal proofs. These ideas
have been published in a paper titled "Automatic Predicate Testing
in Formal Certification" [41] authored by myself, which has been
accepted to the international conference on Tests And Proofs (TAP)
2016.

54

Chapter 2

Logic, Type Theory and Equality

It is with logic that we prove, and with intuition
that we find.

— H. Poincaré

In this chapter, we introduce some important notions of type-theory,
especially the correspondence between proofs and programs that we have
already mentioned, also called the Curry-Howard correspondence, which
leads to constructive logics. Then, we present some well-known problems
of type-theory and we show how the propositional equality is formally
defined in the setting of intensional and constructive type theory.

2.1 Lambda calculus and simple types

Type theory is a formalism in which we develop and reason about
functional programs, so it is natural that they are built on top of a micro-
kernel that captures the essence of functional programming. This micro-
kernel is the lambda calculus. In its simplest form, the untyped lambda
calculus, we only have computational rules (together with conversion
rules). The most important of them is the β-reduction, which captures
the idea of function application. It is defined in terms of substitution :

(λx.t)s →β t[x := s]

It relies on the notion of capture-avoiding substitution : the notation t[x :=
s] denotes the term t where all free occurrences of the variable x have

55

2. Logic, Type Theory and Equality

been replaced by the term s. Often, this notion of substitution is part of
the metatheory : it is defined outside of the theory, unlike the abstraction
and the function application. Otherwise, when the substitutions are
part of the calculi, as it is for instance the case for logic G which uses
the λ-tree syntax approach to representing syntactic structures, we talk
about explicit substitutions, which enable new possibilities [4] such as
reasoning about the substitutions themselves, using sharing in structures,
etc.

In the untyped lambda calculus, the β-reduction as a rewriting rule
is neither strongly nor weakly normalising, and therefore the untyped
lambda calculus is not a terminating system1. Also, even if it is possible
to simulate common data structure with Church encodings [5], there is
no proper notion of type inside of the language, and any lambda term
can always be applied to any other term. It is for example possible to
pass a list to a function that is intended to operate on natural numbers.
In order to avoid these issues, the lambda calculus can be equipped
with simple types, and this has also the effect of turning the system
strongly normalizing [21] : well-typed terms always reduce to a value
(their normal form) after a finite series of reductions.

The simply typed lambda calculus adds to the computational rules
some typing rules. The most two important are the well known typing
rules of an abstraction and of an application :

Γ, x : T1 ` e : T2

Γ ` (λx : T1. e) : (T1→ T2)
abst, →intro

Γ ` f : T1→ T2 Γ ` x : T1

Γ ` f x : T2
app, →elim

The first rule says that if the expression e has type T2 in a context
where x is declared and has type T1, then the lambda expression that
takes an x of type T1 and returns e has type T1→ T2. This typing rule of
abstractions is often calls→intro as it introduces the arrow type.

1As an example, consider the looping term Ω = (λx.xx)(λx.xx) which reduces to
itself.

56

2.2. Propositions as types : the Curry-Howard correspondence

The second rule says that given a function f of type T1→ T2 and an x
of type T2, the application of f on x has type T2. This typing rule of the
function application is often calls→elim as it eliminates the arrow type.

We will see in the following sections that these typing rules also have
a logical interpretation, which makes type theory not only adapted to
computing, but also to reasoning.

2.2 Propositions as types : the Curry-Howard

correspondence

Type theory is not based on predicate logic, in the sense that it does
not require any pre-existing logical concept, unlike set-theory which
uses an (unspecified) first-order logic that lies outside of the theory. In-
stead, all the logical constructions are interpreted within the type theory
through the Curry-Howard correspondence, where a logical proposition
is interpreted as a type whose inhabitants represent the proof of the pro-
position. This correspondence between propositions and types necessary
leads to a correspondence between proofs and programs (i.e. lambda
terms) : if A and B denotes two logical propositions, a proof of A→ B
is a function that takes as parameter a proof of A (i.e. an element of
the type A) and which produces a proof of B. For instance, a proof of
(A→ B)→ (B→ C)→ A→ C is a function that takes 3 arguments : a
proof of (A→ B) –let’s call it f –, a proof of (B→ C) –lets call it g–, and
a proof of A –let’s call it a–, and which produces a proof of C. Such a
proof of C can be built by composing the two functions : g (f a) has
type C, i.e. it is a proof of C. This proof is nothing else but the compose
function2 that we’ve seen in 1.1.3. It becomes now clear that the typing
rule of an abstraction (presented above) also expresses the fact that the
implication T1→ T2 can be proven in a context Γ if one can prove T2 in
the context Γ augmented with the hypothesis T1. Correspondingly, the
logical interpretation of the elimination rule is that one can prove the

2We clearly see that a lemma of propositional logic corresponds immediately to a
type, where all the implications symbols are replaced by arrows of the function space,
and where the propositional variables are interpreted as type variables.

57

2. Logic, Type Theory and Equality

proposition T2 given a proof of the implication T1→ T2 and a proof of T1.
In summary, typing rules have a logical counterpart that can be revealed
by simply forgetting the terms and keeping only their types.

With this correspondence between propositions and types in mind, it
is easy to understand how the usual logical connectors, like ∧ and ∨ are
defined in constructive type-theory :

data And : Type → Type → Type where
And_intro : {A:Type} → {B:Type} → A → B → And A B

data Or : Type → Type → Type where
Or_intro_left : {A:Type} → {B:Type} → A → Or A B
Or_intro_right : {A:Type} → {B:Type} → B → Or A B

Figure 2.1: Definition of logical connectors in Idris

The connector ∧ is defined as an inductive type (or sum type), para-
metrised by the two propositions A and B of the conjunction. It has only
one constructor –usually called And_intro– which expects two argu-
ments : an element of A and an element of B, standing respectively as
proof of A and proof of B. With this definition, the only way to build an
inhabitant of the type A∧ B (i.e. to build a proof of this conjunction), is to
build separately a proof of A and a proof of B, and to use the constructor
And_intro on these two proofs. Following the same idea, the connector
∨ is defined with two constructors : Or_intro_left that only expects
a proof of A, and Or_intro_right, that only expects a proof of B. As
the intuition demands, in order to prove A∨ B there are two possibilities :
either proving A (and using Or_intro_left), or proving B (and using
Or_intro_right).

The correspondence between propositions and types that we’ve de-
scribed leads to an internal logic that is said to be constructive.

2.3 Constructive logic and type theory

In order to describe constructive logic, we first need to talk about classical
logics, because constructive logic is an alternative to it. In classical logic,

58

2.3. Constructive logic and type theory

each logical formulae has a truth value, which is either True or False.
This is called the "principle of excluded middle". That means that in these
systems, we have ∀ P, P ∨ ¬P. And from this principle, some important
consequences can be derived, like the "principle of double negation",
which says that a formulae and its double negation are equivalent :
∀P, P↔¬¬P. Often, the principle of excluded middle is not added as an
axiom, but can be proven3 from the definition of the implication, which is
P→Q≡¬P ∨Q in classical logic. That means that P→Q, is completely
equivalent to ¬P ∨ Q : one does not say anything more than the other.
This is precisely this interpretation of the implication which is rejected4

in constructive logics, because this definition does not make any link
between the hypothesis P and the conclusion Q : this is a definition only
based on a truth table that does not algorithmically construct a proof of
Q from a proof of P.

In constructive logics, the validity of a formulae is defined in terms of
demonstrability instead of truth values in a truth table. The implication
P→ Q isn’t thought anymore as its truth table (as it was the case in
classical logic), but is defined as a function that transforms a proof of P
into a proof of Q. This is in this sense that this logic is "constructive" :
it algorithmically constructs the demonstrability of the formulae. In the
same spirit, a proof of A ∨ B needs to construct a term of type A ∨ B,
where ∨ is just a shorthand for the sum type Or with two constructors
that we’ve presented above. Thus, if we inspect the content of a proof of
A ∨ B, it will contain either a proof of A or a proof of B. Finally, a proof
of ∃x : T, P(x) must contain an algorithm able to produce a witness a : T
and a proof of P(a), i.e. an evidence of the fact that this element a has
effectively the desired property. Thus, in dependently-typed theories, the
formulae ∃x : T, P(x) is represented with the Sigma types Σ(x:T)P(x), and
a proof of it is a dependent pair, introduced in 1.2. From these definitions
comes the computational content of constructive logic.

3The proof is done by replacing Q by P in the definition of P→ Q, which gives
P→ P≡¬P ∨ P. But since P→ P is a tautology, we get that ¬P ∨ P is a tautology too.

4In constructive logic, it can be showed that (¬P ∨Q)→ (P→Q) by analysing the
two possibilities for the premise (¬P ∨ Q), but we cannot extract a proof of ¬P ∨ Q
from a proof of P→Q because a proof of a disjunction must tell which part is true by
giving a proof of it.

59

2. Logic, Type Theory and Equality

Constructive logic is often inappropriately identified with intuition-
istic logic, which is the first constructive system developed (by Brouwer)
in 1907 in his "program of intuitionism". That’s why many people still
talk about intuitionistic logic to talk about constructive logic. This "pro-
gram of intuitionism" was more a philosophical treaty and still quite
far from a complete formalisation, and it’s only in the 30s that Heyting
started to formalise most of it [23].

In the seventies, Per Martin Löf built the first constructive type theory,
referred to as "ML". Today, constructive logics are essential in the con-
text of formal verification by theorem proving, because these logics are
naturally well suited for talking about programs and proofs. These con-
structive theories are implemented as the kernel of most proof assistants
and programming languages with proofs, like Coq, Agda and Idris that
we have already mentioned.

2.4 Basic notions of type theory

The notion of context is central to everything in type theory. A context is
a container for zero, one or more typing assumptions5, like [a : A, b : B].
They are often denoted by the letter Γ, and they can be thought of as lists
of assumptions.

In type theory, one of the most important notion is the one of judge-
ment. A judgement is a statement in the meta-language. There are
different kind of judgements, including :

• Context validity : ` Γ Context which means that Γ is a well formed
context of typing assumptions. The condition for being a valid
context usually is that a variable should not be assigned multiple
types, and that types should be introduced before being used (for
example, [A : Type, a : A] is a valid context, but not [a : A, A : Type]).
Often, when we will mention a context, we will make implicit the
assumption that it is a valid one in order to make things more
readable.

5These typing assumptions can be seen as "logical assumptions" for the reasons
we’ve explained in 2.2.

60

2.5. Type theory and verification of proofs

• Type validity : Γ ` A Type, which means that A is a well-formed
type in the context Γ. In dependently typed languages, everything is
a term (including types), but not every term is a type. For example,
a lambda-abstraction isn’t a type. We will only be able to talk about
type inhabitants for valid types.

• Typing judgement : Γ ` a : A, which means that a is a well-formed
term of type A in the context Γ.

Another important notion is the one of typing rule, and we have
already seen two typing rules with →intro and →elim. A typing rule is
an inference rule that has one or more judgements as hypothesis, and a
judgement of conclusion. It says that the judgement of the conclusion can
be derived from the hypothesis. Because of the correspondence between
computations and proofs that we have presented, the reason why typing
rules are presented like inference rules in logic becomes clear. The typing
rule :

Γ1 ` e1 : T1 ... Γn ` en : Tn
Γ ` e : T

has the following logical counterpart :

Γ1 ` T1 ... Γn ` Tn
Γ ` T

which can be retrieved from the typing rule by simply erasing the
terms, and keeping only the contexts and the types.

2.5 Type theory and verification of proofs

In this thesis, the type theory that is being used is the one implemented
as the kernel of Idris. It is a variant of the type theory ML. As explained
in the previous chapter, this type theory allows types depending on
terms [5]. The typing rules of Idris’ type theory can be found in [8].

61

2. Logic, Type Theory and Equality

When a type theory is defined, it essentially contains typing rules
and computational rules. If we focus on the typing rules, there are three
problems of interest6 :

• Type-checking : given a term t and a type T, does t have effectively
type T (or a type that can be converted to T)? Formally, the system
is looking for a derivation of ` t : T where both the term t and the
type T have been given by the user of the system.

• Type-inference (typability) : given a term t, is this term typable, i.e.
does there exist a type T such that ` t : T can be derived? Here, the
type of t (if it exists) is produced, not given in input.

• Type inhabitation (proof search) : given a type T, is this type
inhabited, i.e. does there exist a term t such that ` t : T can be
derived? Here, the problem is to find (if it exists) an inhabitant of a
type, i.e. a proof of a proposition according to the Curry-Howard
correspondence.

Internally, proofs are always represented as lambda-terms, regardless
of the way used to write them (as a proof script, or directly as a function),
because of the correspondence between proofs and functions described
in 2.2. Therefore, in this setting, the verification of proofs is nothing more
than type-checking with very rich types, especially with sigma-types
and pi-types. Logical formulae correspond to types, and proofs of these
formulae to functions. So in order to mechanically verify that a claimed
proof p (i.e. a function) is a valid proof of the formulae F it is enough
to type-check p against F, or to infer the type of p and to compare the
obtained type with F. If they are the same (after full reductions and
modulo alpha-conversion), then p is effectively a valid proof of what has
been claimed, i.e. a proof of F.

The decidability of type-inference and type-checking depends on
the exact system considered. In the most general case, the problem of
type-inference is undecidable in dependently typed calculus [19], but

6There are also interesting problems about the computational rules, like normal-
isation and strong normalisation, and interesting problems about both computational
rules and typing rules, like preservation of type through reduction.

62

2.5. Type theory and verification of proofs

most implementations of such systems are designed to have at least a
decidable type-checking for a big fragment of the language, which means
that with some type annotations given by the user when needed, the
type-checking becomes decidable (potentially if we put aside some patho-
logical cases). The decidability of type-checking is often7 an important
property for these type theories that are implemented as the internal
kernel of proof assistants and programming languages with proofs, as
the same type-checking algorithm is also used to verify proofs under
the Curry-Howard correspondence. When this verification of proofs
can be done completely automatically by a decidable type-checking al-
gorithm, the user of the system needs to write proofs, but at least their
verification is automatic. However, and unfortunately, such proofs can
not be produced automatically by the machine, because the problem of
type-inhabitation8 is undecidable in second-order systems (like system F)
and above.

The situation that interests us is the type-checking one, where the
user of the system writes a term and a type, and where the system must
check if the definition is valid. As we have seen in the introduction
with the example of binary numbers indexed over their natural number
equivalents, in the presence of dependent types, it is often the case
that the type-checking algorithm of the system will reject the definition,
because the type claimed by the user and the one produced by the system
are different and are not mechanically convertible by reductions and
conversions. We also saw that in this case, only a proof –which is at
the moment done by the user– can be used to explicitly transform the
produced term into another –very similar– term with a different type,
therefore making the definition acceptable.

7There are however also some interesting theories where type-checking is not
decidable and requires some work from the user.

8The only interesting (but primitive) system in which type-inhabitation is decidable
is the simply typed lambda calculus.

63

2. Logic, Type Theory and Equality

2.6 Terms transformation along equality

proofs

Given an element a : T it is possible to build an element of the type T′ if
T and T′ are replaceable. This notion of replaceability is implemented
in intensional type theory by the propositional equality, which will be
described in depth in section 2.7, and which means "being provably
equal". One of the essential aspect of the equality, which is implemented
as a specific type, is its elimination principle : a proof p of T = T′ can be
eliminated with an element a : T to build an element of type T′, denoted
as rewrite p in a :

a : T, p : T = T′

(rewrite p in a) : T′
=elim

Therefore, an element a : T can be transformed9 into an inhabitant
of T′ if one can prove the equality between the types T and T′. This
is something essential, because when one tries to define a function, it
is common that the typechecker reports an error because the result of
the computation does not have the expected type –the one expressed
in the function’s type–. When this happens, it is enough to prove the
equality between the two types, which is something necessarily doable
if the definition makes sense, and to use this equality to transform the
produced term into a term of the right type.

In the presence of dependent types, this situation happens very often,
and a concrete example has been described in the introduction. The
reason is that in presence of a type family T : I→ Type, a function with a
dependent type can be defined to provide a term, which, according to
the typing-rules, is of type (T x) while it is expected to be an element of
(T x′). In this case, it will be enough to build a proof of equality between
these two indices x = x′ in order to obtain a proof of T x = T x′ that can
be used to transform the term appropriately. Because of the very nature
of the propositional equality, building such proofs of equality can be far

9Let’s emphasize that the conclusion of the rule is not a : T′ in the system that we
consider, which would make type-checking undecidable in the general case.

64

2.7. Equalities in intentional type theory

from trivial, and the next subsection will explain why and will describe
the two notions of equality in intensional type theory.

2.7 Equalities in intentional type theory

2.7.1 Definitional and propositional equalities

In Mathematics, equality is a proposition, e.g. we can disprove an equality
or assume an equality as a hypothesis. Since in type theory, propositions
are seen as types [25], the proposition that two elements x and y are
equal corresponds to a type. Thus, if x and y are of type a, then the
type Ida(x,y) represents the proposition “x is equal to y". If this type
is inhabited, then x is said to be provably equal to y. Thus, Id is a type
family (parametrised by the type a) indexed over two elements of a,
giving Id (a : Type) : a→ a→ Type. For convenience, we write (Ida x y)
as (x =a y), or even simply as (x = y). This equality is the equality
which can be manipulated in the language.

There is another, more primitive, notion of equality in Intensional Type
Theory, called judgemental equality, or definitional equality. This second
equality means “equal by definition”. The judgemental equality cannot
be negated or assumed; we cannot talk about this primitive equality
inside the theory. Whether or not two expressions are equal by definition
is a matter of evaluating the definitions. For example, if f : N → N is
defined by f x ≡ x + 2, then f 5 is definitionally equal to 7. Definitional
equality entails unfolding of functions and reductions, until no more
reduction can be performed. We denote the definitional equality by ≡.

The judgemental equality has to be included in the propositional
equal, because what is equal by definition must be provably equal. This
is accomplished by giving a constructor for the type Id(a, a) and nothing
when “a is not b". In these theories, Id is therefore implemented with
the following type with one constructor :

data Id : a → a → Type where

Refl : (x : a) → Id x x

65

2. Logic, Type Theory and Equality

The only way for (Ida x y) to be inhabited is therefore that x and y

are equal by definition. In this case, the constructor Refl helps to create
a proof of this equality : (Refl x) is precisely the proof which says
that x =a x. Here, we are using the notation of Idris where unbound
variables like a in the definition of Id are implicitly quantified, as a
concise programming notation.

2.7.2 Equality proofs in non-empty contexts

When reading these definitions, one could wrongly think that because the
propositional equality captures exactly the judgemental equality, it will
be impossible to prove the equality between syntactically different terms,
like a + b and b + a for any a and b. In fact, the propositional and the
judgemental equality only coincide in an empty context. When proving
∀a b, a + b = b + a, the variables a and b are first abstracted, and the
equality goal a + b = b + a makes sense in a context that contains these
abstracted variables a and b. It is then possible to finish the proof because
in these type theories a principle of induction is associated with each
inductive type. An inductive principle says that if a proposition holds
for the base cases (i.e. the constant constructors), and if it can be showed
that when it holds for some terms then it will also hold for the bigger
terms obtained by using the recursive constructors, then this proposition
will hold for any term of this type. More formally, if a type T is an
inductive type with a constant constructor and a recursive constructor,
i.e. T = 1 + T, defined in idris as :

data T : Type where

T0 : T

T1 : T → T

then we have :
T_ind : ∀P : T→ Type, (P T0)→ (∀t : T, P t→ P (T1 t))→ (∀t : T, P t).

An aside about the axioms of the underlying theory : The induction
principles are not necessary pure axioms of the theory. For each type, the
associated principle of induction can be proven by the use of a recursive

66

2.7. Equalities in intentional type theory

definition10. Therefore, we can either take the inductive principles as the
primitive brick, and consider that the theory automatically adds such an
axiom every time that a new inductive type is defined, or we can consider
that the theory allows the computation of fixpoints through well-founded
recursive definitions and that this is the primitive construction. The first
way to see things is the standard logical point of view where we see the
internal type theory as a logic with clear axioms that are easy to state,
and the second formalisation is a computational point of view, where the
internal mechanisms of recursive definitions enabled by the language
become part of the trusted kernel of the theory. The important thing
is that either way, we now have the possibility to prove the equality of
terms containing universally quantified variables. For the rest of the text,
we will consider that we have these induction principles, and we will talk
about them as axioms because they are either pure axioms, or they directly
follow from the ability to write well-founded recursive definitions.

These principles of induction can be used for proving any proposition,
so they also work for the propositional equality. For example, we can
prove that n + 0 = n for all n by induction on the Nat n, even if n + 0 6≡ n
(in a context containing n) with the usual definition of +, recursive on its
first argument. So, the axiom of induction enables us to prove the equality
between terms that are not definitionally equal in non-empty contexts.
Proving equalities is therefore in these theories something which isn’t
automatically decidable by the type-checker in the general case : when
some variables x, y, etc are abstracted, evaluating completely the left
and right hand sides L(x,y, ...) and R(x,y, ...) is not enough because the
reductions will be stuck until actual values are passed for the variables x,
y, etc.

Because of the dependent pattern-matching that Idris has, given an
equality proof p of L = R (with L and R potentially containing free
variables), it is possible to prove that necessarily p is Re f l by pattern-
matching on p. Said differently, the only acceptable shape of an equality
proof is Re f l, which means that axiom K is provable in Idris. That means
that even for a universally quantified formulae like ∀x y, L(x,y, ...) =

10see the file others/axiomInduction_byRecursivity.idr

67

2. Logic, Type Theory and Equality

R(x,y, ...), when given a proof p of it, p always reduces to Re f l when fully
applied, which means it can be used as a definitional equality. Therefore,
we can manipulate as definitionally equal things which have been proven
to be propositionally equal.

The problem is that when trying to prove a lemma of the shape
∀x y, L(x,y, ...) = R(x,y, ...), after abstracting the universally quantified
variables, we are left with the goal L(x,y, ...) = R(x,y, ...) that might not
be provable by using directly Re f l because until we get actual values
for the abstract variables x, y, etc, we have two things that might not
be judgmentally equal. As an example, when trying to prove ∀x y, x +

y = y + x, after the abstraction of x and y, we are left with the goal
x + y = y + x that cannot be proven by Re f l. But since we have these
variables x and y in the context, we can use the induction principles (here
either on x or on y) to make some progress in the proof and ultimately to
finish it. However, using the induction principle requires to make proofs
(for the base case and the induction step), which, as explained in 2.4 is
not fully automatically doable and is therefore the programmer’s role.

However, it is often possible to indicate a normalisation procedure
that transforms each term into the canonical representative of its equival-
ence class. This is often possible when the considered datatype and its
operations happen to have some classical properties, like the associativity
or the commutativity of an operator, or the existence of a neutral ele-
ment. For example, the type Nat and its operation of addition +, defined
recursively on its first argument, verifies these three properties:

• associativity : ∀(x y z : Nat), (x + y) + z = x + (y + z),

• commutativity : ∀(x y : Nat), x + y = y + x and

• neutral_element : ∀x : Nat, x + 0 = 0 + x = x.

For such datatypes, it will be possible to automatically decide the
equality between two terms. In chapter 3 we will implement such a
decision procedure for Nat and the property of associativity, and in
chapter 4 we will see how this can be generalized to any datatype for
various algebraic structures.

68

2.8. Proof engineering and proof automation

Prior to that and in the next subsection, we will talk about proof
engineering and we will review the current state of the art in the area of
proof automation.

2.8 Proof engineering and proof automation

2.8.1 Proof engineering

The last decades have seen the emergence of good practices for the
development of software, including essential aspects like the ones of
code-reusability and automation of the production of code and test cases
that can be automatically generated. Unfortunately, we’re still lagging
behind in the area of formal certification, where the development of
proofs is still a tedious activity reserved to experts who produce, often
by hands, proofs that are most of the time not reusable.

The development of a formally certified application is usually done
by following what we call the "standard approach of formal certifica-
tion", which proceeds like this for all the functions that are part of the
application :

1. The function is declared by stating its type, seen as a weak specific-
ation : the function maps a domain D to a codomain C. This is also
what we do in a programming language like Ocaml or Haskell.

2. The implementation of the function is given, and it must satisfy its
type.

3. Logical properties that will be needed for expressing the correctness
lemma of the function are defined. For example, for building a cer-
tified sorting function, defining a predicate isSorted is an essential
key (see the discussion in chapter 6 about the potential danger that
such definitions can represent).

4. A correctness theorem which captures all the properties we want
this function to verify is stated.

69

2. Logic, Type Theory and Equality

5. A proof that the given implementation of the function fulfils this
stronger specification is developed, often using intermediate lem-
mas.

If the implementation changes (even just a bit, for a small optimisa-
tion, or for improving the clarity of the code for example), the proof
of correctness will most of the time become invalid. This is a big issue
because :

• Making proof is a tough activity, and we don’t want to throw away
the production of this tedious work

• We are therefore encouraged to never change the implementation

As we know, software naturally evolve with time, with the need of
new features, and that often implies adding pieces of informations in
types (like adding constructor to inductive types), and re-adapting the
implementation of the existing functions with these new dataypes, which
in turn implies the fact that the proof of correctness needs to be adapted
or in the worst case completely redone. Most of the time, even a small
change will completely break the proofs that have been built. Formal
certification is, on this dimension, incompatible with the good practices
of software engineering that have been discovered. This apparent incom-
patibility is one of the reason which currently prevents formal methods
to be used broadly, and especially for real-world applications, as it does
not scale well with large developments.

This is why, when this is doable, we would like to let the machine
automatically generate the proof of correctness. Managing changes in
data-types, algorithms and in proofs of correctness would become much
more easy to handle if all the mechanical lemmas could be automatically
proven by the machine, as less effort would have to be developed in order
to certify (partially or totally) an application.

Therefore, the general tendency in formal certification is to equip
programming languages and proof assistants with proof automations that
discharge the programmer from proving all the mechanical lemmas
that can be automatically proven. In this thesis, we will describe the

70

2.8. Proof engineering and proof automation

implementation of a hierarchy of tactics that prove equalities in algebraic
structures, like monoids, groups and rings.

2.8.2 State of the art in proof automation

Various proof automations have already been implemented for proof
assistants and programming languages like Coq and Agda. Coq is
equipped with a unified ring and semi-ring prover [22] which proves
equalities in such structures (potentially commutative), with variables
universally quantified. When given a goal of the form f orall (x y z... :
T), f (x,y,z, ...) = g(x,y,z, ...) where T is a ring and f and g are composi-
tions of operations of the ring (like + and ∗), the prover will automatically
generate a proof of it if such a proof exists. Otherwise, if it fails, then
that means that either the given equality is false, or that proving it re-
quires some properties that are external to the ring. This prover has
been implemented by reflection : the left and the right hand side of the
potential equality are being reflected in the language, with the use of
specific data-types.

As well as the ring prover, Coq also provides the Omega solver [16],
which solves a goal in Presburger arithmetic (i.e. a universally quantified
formula made of equations and inequations), and a field [18] decision
procedure for real numbers, which plugs to Coq’s ring prover after
simplification of the multiplicative inverses.

In Coq, most tactics are implemented in Ocaml (using the abstract syn-
tax of Coq terms). A few others are implemented using Ltac [17], a proof
dedicated and untyped meta-language for the writing of automations,
which allows to do pattern-matching on goals and on proof contexts.
More recently, the Mtac extension [51] provides a typed language for im-
plementing proof automation which supports dependently-typed tactic
programming.

Agda’s reflection mechanism11 gives access to a representation of the
current goal (that is, the required type) at a particular point in a program.
This allows various proof automations to be done in Agda [27, 28].

11http://wiki.portal.chalmers.se/agda/pmwiki.php?n=
ReferenceManual.Reflection

71

http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.Reflection
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.Reflection

2. Logic, Type Theory and Equality

Proofs by reflection has been intensively studied [13, 30], but without
anything similar to the type-safe reflection that we will present in the
next two chapters, and which are the essential part of thesis.

72

Chapter 3

Automating Proofs by Reflection

The fact that an opinion has been widely held is
no evidence whatever that it is not utterly absurd;
indeed in view of the silliness of the majority of
mankind, a widely spread belief is more likely to be
foolish than sensible.

— B. Russell, Marriage and Morals

We will first present the basic ideas of our technique for solving equal-
ities on a simplified problem, in which we aim to deal with universally
quantified natural numbers and their addition. What we want is to
automatically generate proofs of this kind of goals :

Example 1. ∀(x y z : Nat), (x + y) + (x + z) = x + ((y + x) + z)

For this smaller problem, we have decided to only work with the
associativity of +, expressed formally by the property plusAssociative :
∀x1 x2 x3, (x1 + x2) + x3 = x1 + (x2 + x3) and with the fact that Z is
a right neutral element for the + operation, expressed formally by the
property plusZeroRightNeutral : ∀x, x + Z = x. Note that Z is also a left
neutral element, but this property is not needed because we have this
behaviour by reduction, as + is defined recursively on its first argument.
Of course, some datatypes can have more or less properties than these
two, and this work will be extended in chapter 4 where we will present a
very general hierarchy of provers for multiple algebraic structures.

73

3. Automating Proofs by Reflection

Thus, in summary, in this section, we want to write a decision procedure,
able to tell if two expressions composed of universally quantified natural
numbers and additions of these numbers are equal, and to produce a
proof of this equality if appropriate, where “equal" has the meaning
syntactically equal or equal thanks to the properties of associativity and
of right neutral element.

3.1 Working by reflection

When trying to prove this kind of equalities, the variables are abstracted,
and they become part of the context. In the example 1 given above, after
abstraction of the variables, the goal becomes simply (x + y) + (x + z) =
x + ((y + x) + z), which is something of the general form x = y. The
general idea –that will also apply for the more general problem detailed
in the next chapter– will be to normalize both sides of the "potential
equality" x = y, and afterwards to compare them with a syntactic equality
test. The goal of the normalization is to compute a canonical represent-
ation for an expression, such that any other number provably equal to
this expression (by using the two available properties) will have the same
canonical representation, and reciprocally. For example, the normalisa-
tion might transform x + ((y + x) + z) into ((x + y) + x) + z if we decide
that the normal form will be completely left associative. If so, then the
normalisation of the right hand side will also give ((x + y) + x) + z. It
will then be possible to decide the equality by simply comparing the
normalised left and right hand sides with a strict syntactic equality test.
This is in fact what we do all the time when we have to decide if two
things, written differently, are equal or not. For example, when given two
mathematical polynomials, in order to decide the (pointwise) equality
of these two functions, a technique that always works is to decide once
and for all a canonical representation of polynomials, and to put both
polynomials in this form. If the normalised forms are the same, then the
two original polynomials are equal, otherwise they do not represent the
same computation.

74

3.1. Working by reflection

In fact, such a normalisation function can’t be written directly because
in the LHS and RHS of x = y, we potentially have variables which have
been universally quantified. And the normalization function needs to
do different treatments for a “variable natural number" (i.e. a number
which has been universally quantified) and for the constant Z. This is
not possible yet, because once the variables are abstracted, they are just
ordinary values of type Nat, and there is no way to distinguish them.
Indeed, this information only exists at the level of the abstract syntax
trees representing the two terms, and we do not have a direct access to
these ASTs. For this reason, we will work by reflection. In this example,
it means that we will define a datatype that will be used as an encoding
of natural numbers, or more precisely, as an encoding of natural numbers
composed of “variable numbers", Z, and additions of these things. This
datatype will let us inspect the internal structure of a number by pattern
matching. Previously, we were only able to pattern match a natural
number against the constructors Z and S, which wasn’t what we needed.
With the first version of the datatype Expr presented in Figure 3.1, we
will be allowed to pattern match an encoding of number against the
constructors Plus, Var and Zero.

data Expr : (Γ : Vect n Nat) → Type where
Plus : {n:Nat} → {Γ:Vect n Nat} →

Expr Γ → Expr Γ → Expr Γ
Var : {n:Nat} → {Γ:Vect n Nat} →

(i : Fin n) → Expr Γ
Zero : {n:Nat} → (Γ:Vect n Nat) →

Expr Γ Z

Figure 3.1: First version of reflected natural numbers

Variables are represented using a De Brujin-like index: Var FZ de-
notes the first variable abstracted, Var (FS FZ) the second one, and so
on.

The type Expr is indexed over a vector of natural numbers Γ, which
is the context of all universally quantified variables. In the example 1, we
will encode (x + y) + (x + z) and x + ((y + x) + z) in a context where

75

3. Automating Proofs by Reflection

three elements are present. The first element of this context denotes the
variable x, the second denotes y, and the third denotes z. Thus, the left
hand side will be encoded by :

e1 : (x, y, z : Nat) → Expr [x, y, z]

e1 x y z = Plus (Plus (Var FZ) (Var (FS FZ)))

(Plus (Var FZ) (Var (FS (FS FZ))))

3.2 Type-safe reflection

If we continue with this first definition of Expr, the normalisation func-
tion will take an Expr and produce another Expr, and we will need to
prove that after normalisation, the natural number represented by the
resulting expression is the same than the one represented by the original
expression. That can be expressed by the following correctness lemma :
∀ e:Expr Γ, reify Γ (reduce e) = reify Γ e

where reify is a function computing the interpretation of an Expr in a
context Γ, that is to say, the natural number that this Expr is encoding.

Another possibility, which we follow, is to add an index to the type
Expr that precisely captures the concrete number that the Expr is encod-
ing. This representation creates a link between a syntactical expression
and its semantics, and is the first brick to our type-safe reflection mech-
anism. With it, it won’t be necessary to define the reify function, as
the type of an encoded expression already gives the concrete value it
represents : the concrete element reflected by a term of type Expr Γ x

is precisely the index x. Therefore, we get the property that the reflection
of a term x is guaranteed to be a faithful representation of x.

76

3.3. A correct by construction approach

using (x : Nat, y : Nat, Γ : Vect n Nat)
data Expr : (Vect n Nat) → Nat → Type where

Plus : Expr Γ x → Expr Γ y →
Expr Γ (x + y)

Var : (i : Fin n) → Expr Γ (index i Γ)
Zero : Expr Γ Z

Figure 3.2: Second version of reflected number with embedded denota-
tion

For an expression ex : Expr Γ x, we will say that ex denotes (or
encodes) the number x in the context Γ. When an expression is a variable
Var i, the denoted number is simply the corresponding variable in
the context, i.e. (index i Γ). Also, the Zero expression denotes the
natural number Z. Finally, and fairly trivially, if ex is an expression
encoding the number x, and ey is an expression encoding the number
y, then the expression Plus ex ey denotes the concrete natural number
(x + y).

The second datatype Expr that we use makes a link between the syn-
tax of expression and their semantics. We will take advantage of it when
writing the normalisation function, thanks to Idris’ dependent pattern-
matching. However, this representation means that it is impossible to
write a purely syntactic operation not married to any semantics. An
alternative approach here would have been to define the type of ex-
pression as only indexed over the number of variables in which they
make sense (i.e. Expr: Nat → Type) and to have separately a reify
function of type Expr n → Vect n Nat → Nat that evaluates an
expression in a context having the right size. We could then retrieve a
type isomorphic to Expr by defining Expr’ Γ x as the dependent pair
e:Expr n ** reify e Γ = x.

3.3 A correct by construction approach

We want to write the reduction function on a correct by construction
way, which means that no additional proof should be required after the

77

3. Automating Proofs by Reflection

definition of the function. Thus, reduce will produce the proof that the
new Expr freshly produced has the same interpretation as the original
Expr, and this will be made easier by the fact that the datatype Expr is
now indexed over the real –concrete– natural number : a term of type
Expr Γ x is the encoding of the number x. Thus, we can write the type
of reduce like this :
reduce : Expr Γ x → (x’ ** (Expr Γ x’, x = x’))

The function reduce produces a dependent pair : the new concrete
number x’, and a pair made of an Expr Γ x’ which is the new encoded
term indexed over the new concrete number we have just produced, and
a proof that old and new –concrete– natural numbers are equal.

This function doesn’t simply produce an Expr Γ x, because the
concrete number on which the resulting expression will be indexed is not
necessary syntactically equal to the original number. Indeed, x and x’

can represent the same computation without being syntactically equal.
Indeed, they can precisely be equal thanks to the two available properties
of associativity and neutral element that we have, and this is precisely
why we are building such proof automations. Said differently, even if
we can prove x = x′ (if the function is correctly defined), we do not have
x≡ x′.

It would be a bad idea to force this function to produce an Expr Γ x

as it would mix computations and proofs. Doing so would make this
function compute (in an intermediate result) an Expr Γ x’ –that’s
the computational part–, a proof of x = x′ into another intermediate
result –that’s the proof part–, and would use this proof to transform the
Expr Γ x’ into an Expr Γ x, that would finally be returned. However,
after using the proof for converting the type of the expression, the proof
would be lost as it is not returned. And in fact, what really interests us in
this function is precisely this proof of x = x′, so we better return it. This
proof is crucial because it will be the essential component for building
the desired proof of x = y, which is the main problem that we are trying
to solve.
More precisely, the tactic will work as follow. We have an expression
ex encoding x, and an expression ey encoding y. The Idris expressions
x and y are potentially open terms, so they make sense in a potentially

78

3.3. A correct by construction approach

non empty context, due to variables that were universally quantified.
We will normalize ex and this will give a new concrete number x′, a
new expression ex′ :Expr Γ x’, and a proof of x = x′. We will do the
same with ey and we will get a new concrete number y′, an expression
ey′ :Expr Γ y’, and a proof of y = y′.
It is now enough to simply compare ex′ and ey′ using a standard syntactic
equality test because these two expressions are now supposed to be in
normal form. This syntactic equality can be defined like this :

eqExpr : (e : Expr Γ x) → (e’ : Expr Γ y) → Maybe (e = e’)

eqExpr (Plus x y) (Plus x’ y’) with (eqExpr x x’, eqExpr y y’)

eqExpr (Plus x y) (Plus x y) | (Just Refl, Just Refl)

= Just Refl

eqExpr (Plus x y) (Plus x’ y’) | _ = Nothing

eqExpr (Var i) (Var j) with (decEq i j)

eqExpr (Var i) (Var i) | (Yes Refl) = Just Refl

eqExpr (Var i) (Var j) | _ = Nothing

eqExpr Zero Zero = Just Refl

eqExpr _ _ = Nothing

Now, if the two normalised expressions ex′ and ey′ are equal, then they
necessary have the same type1, and therefore x′ = y′. By rewriting the two
equalities x = x′ and y = y′ (that we obtained during the normalisations)
in the new equality x′ = y′, we can get a proof of x = y. This is what the
function buildProof is doing.

buildProof : {x : Nat} → {y : Nat} → Expr Γ x’

→ Expr Γ y’ → (x = x’) → (y = y’) → Maybe (x = y)

buildProof ex’ ey’ lp rp with (eqExpr ex’ ey’)

buildProof ex’ ex’ lp rp | Just Refl = ?MbuildProof

buildProof ex’ ey’ lp rp | Nothing = Nothing

The argument of type Expr Γ x’ is the normalised reflected left
hand size of the equality, which represents the value x’. Before the nor-
malisation, the reflected LHS was reflecting the value x. The Expr Γ y’

is the normalised reflected right hand size, which now represents the
1We are working with the heterogeneous equality JMeq by default in Idris, but as

always, the only way to have a proof of a:A = b:B is when A≡ B.

79

3. Automating Proofs by Reflection

value y’, but which was encoding y before the normalisation. The func-
tion also expects a proof of x = x′ and of y = y′, and we will be able to
provide them because the normalisation function also produces the proof
of equality between the original and the new concrete values.

Note on metavariables : In Idris, it is possible to put a metavariable
M, noted with an interrogation mark ?M, in place of a definition. This
metavariable behaves as a placeholder that needs to be later defined or
proven. Often, we will use metavariables as placeholders for proofs that
will be done later, because we want to focus on algorithms and to put
aside proofs, exactly as we did with provisional definitions (introduced
in 1.3). What Idris does when it encounters such a metavariable ?M is
that it creates a name M with its type, but with no definitions associated.
Obviously, the program is no longer total as long as the definition of the
metavariable is not completed, and running it at this stage might not
terminate or might not give an answer for some inputs. According to the
Curry-Howard correspondence (see section 2.2), if this term was behaving
as a proof term, then running the program is still possible, but all the
logical properties obtained are now subject to the validity of this axiom.
Said differently, the proofs are now made with this additional axiom, and
if one wants to get rid of this axiom, one has to do the corresponding
proof. The definition of a metavariable can be done in proof mode, or
can be done traditionally as any other function.

As mentioned above, the proof-term that fills the hole represented by
the metavariable MbuildProof is just a rewriting of the two equalities
that we have :

MbuildProof = proof {

intros; refine Just; rewrite sym p1; rewrite sym p2;

exact Refl;

}

Finally, the main function which tries to prove the equality x = y
simply has to reduce the two reflected terms encoding the left and the
right hand side, and to use the function buildProof in order to compose
the two proofs that we just obtained :

80

3.3. A correct by construction approach

testEq : Expr Γ x → Expr Γ y → Maybe (x = y)

testEq ex ey =

let (x’ ** (ex’, px)) = reduce ex in

let (y’ ** (ey’, py)) = reduce ey in

buildProof ex’ ey’ px py

The only remaining part is to define the function reduce. To do
that, we have to decide a canonical representation of associative natural
numbers. We decide that the left associative form will be the canonical
representation. Thus, the reduce function has to rewrite the reflected
terms by rearranging the parentheses in order to transform the underlying
concrete number in the form (...((x1 + x2) + x3)... + xn). To do so, one
possibility is to define a new datatype which captures this property, and
to write a function going from Expr to this new type. Thus it will be
easier to be certain that we are effectively computing the normal form :
forcing properties to hold by the shape of a datatype is a good usage of
dependent types when, like here, it doesn’t introduce more complications.

data LExpr : (Γ : Vect n Nat) → Nat → Type where
LPlus : LExpr Γ x → (i : Fin n)

→ LExpr Γ (x + index i Γ)
LZero : LExpr Γ Z

Figure 3.3: Reflected left associative numbers

This datatype has only two constructors. In fact, it combines the
previous Var and Plus constructors so that it becomes impossible to
write an expression which isn’t left associative, because the constructor
LPlus is only recursive on its first argument.

As part of the normalization, we write a function expr_l which
converts an Expr Γ x to a LExpr Γ x’ and which produces a proof
of x = x′. This function will therefore use the two available properties
multiple times, while rewriting the term until the fully left associative
desired form is obtained.

expr_l : Expr Γ x

81

3. Automating Proofs by Reflection

→ (x’ ** (LExpr Γ x’, x = x’))

expr_l Zero = (_ ** (LZero, Refl))

expr_l (Var i) = (_ ** (LPlus LZero i, Refl))

expr_l (Plus ex ey) =

let (x’ ** (ex’, px)) = expr_l ex in

let (y’ ** (ey’, py)) = expr_l ey in

let (res ** (normRes, Pres)) = plusLExpr ex’ ey’ in

(res ** (normRes, rewrite px in (rewrite py in Pres)))

where

plusLExpr : {Γ : Vect n Nat} → {x, y : Nat}

→ LExpr Γ x → LExpr Γ y

→ (z ** (LExpr Γ z, x+y=z))

plusLExpr {x=x} ex LZero =

(_ ** (ex, rewrite (plusZeroRightNeutral x) in Refl))

plusLExpr ex (LPlus e i) =

let (xRec ** (rec, prfRec)) = plusLExpr ex e in

(_ ** (LPlus rec i, ?MplusLExpr))

In the case of an addition Plus ex ey, the function expr_l does
the job of normalisation recursively on ex and on ey, and then it uses
the sub-function plusLExpr to normalise the addition of these two –
already normalised– terms. This sub-function plusLExpr has two kind
of simplifications to do. When the second argument is an LZero, it
simply returns its first arguments along with the justification for this
rewriting, which obviously uses plusZeroRightNeutral. However,
when the second argument is an LPlus e i, it continues recursively by
computing plusLExpr ex e, and it finally adds i to it. That had the
effect of moving the parenthesis on the left, and the correctness of this
treatment is going to be justified by the use of plusAssociative in the
proof that corresponds to the meta variable MplusLExpr .

This metavariable MplusLExpr –that expresses the equality between
the old and the new index– requires us to prove the goal :
x1 + (x2 + index i Γ) = xrec + index i Γ

in a context where we’ve got, amongst other things :
prfRec : x1 + x2 = xrec.

82

3.3. A correct by construction approach

By using the property of associativity on the goal, we now need to
prove (x1 + x2) + index i Γ = xrec + index i Γ, which can
be done by rewriting the proof prfRec obtained recursively.

MplusLExpr = proof {

intros

rewrite (sym (plusAssociative x1 x2 (index i Γ)));

rewrite prfRec;

exact Refl;

}

It is really important to understand that the kernel of the automatic
construction of the desired proof of x = y happens precisely in these
usage of plusZeroRightNeutral and plusAssociative that are
nested by chaining recursive calls in the definition of expr_l and of its
meta-variable MplusLExpr. These proofs replace the arithmetical proofs
that we were doing previously by hand in section 1.3 with the lemma
adc_lemma_2.

Using this new datatype LExpr has changed the representation of our
encoded natural numbers, so we need to convert back an LExpr Γ x to
an Expr Γ x. The function l_expr performs this easy task :

l_expr : LExpr Γ x → Expr Γ x

l_expr LZero = Zero

l_expr (LPlus x i) = Plus (l_expr x) (Var i)

We notice that in order to transform the expression into its left associ-
ative equivalent representation, we’ve effectively needed to know where
the variables and the Z constants are : the functions expr_l and l_expr
are doing different treatments for these different possibilities.

We can now define the normalisation function, which is just the
composition of the two previous functions expr_l and l_expr:

reduce : Expr Γ x → (x’ ** (Expr Γ x’, x = x’))

reduce e =

let (x’ ** (e’, prf)) = expr_l e in

83

3. Automating Proofs by Reflection

(x’ ** (l_expr e’, prf))

At the moment, what we’ve got is not exactly a real tactic, in the
sense that we only have a function which produces a value of type
Maybe (x = y). A real tactic would be a wrapper of this function that
would fail properly with an error message when the two terms are not
equal. However, here, when x 6= y, the function testEq will simply
produce the value Nothing.

3.4 Usage of the “tactic"

It is now time to see how to use this minimalist “tactic". Let’s go back
to the example 1. We had defined the expression e1 representing the
value ((x + y) + (x + z)) and we now have to produce the encoding for
(x + ((y+ x) + z)), still in the context [x,y,z] of three abstracted variables.

e1 : (x, y, z : Nat)
→ Expr [x, y, z] ((x+y) + (x+z))

e1 x y z = Plus (Plus (Var FZ)
(Var (FS FZ)))

(Plus (Var FZ)
(Var (FS (FS FZ))))

e2 : (x, y, z : Nat)
→ Expr [x, y, z] (x + ((y + x) + z))

e2 x y z = Plus (Var FZ)
(Plus (Plus (Var (FS FZ))

(Var FZ))
(Var (FS (FS FZ))))

Figure 3.4: Two test expressions

The numbers denoted by the expressions e1 and e2 are equal, and we
can generate a proof of this fact by using testEq.

e1_e2_testEq : (x, y, z : Nat)

→ Maybe (((x + y) + (x + z)) = (x + ((y + x) + z)))

84

3.5. Construction of the reflected terms

e1_e2_testEq x y z = testEq (e1 x y z) (e2 x y z)

We can evaluate this term, which produces Just and a proof of
equality between the two underlying concrete values :

#\x => \y => \z => e1_e2_testEq x y z

\x => \y => \z => Just (replace (sym (replace (sym (replace
(sym (plusAssociative x 0 y)) (replace (replace (sym
(plusZeroRightNeutral x)) Refl) Refl))) (replace (sym
(replace (sym (plusAssociative x 0 z)) (replace (replace
(sym (plusZeroRightNeutral x)) Refl) Refl))) (replace (sym
(plusAssociative (x+y) x z)) [...]
: (x : Nat) → (y : Nat) → (z : Nat)
→ Maybe ((x + y) + (x + z)

= x + ((y + x) + z))

Figure 3.5: Automatically generated proof (truncated)

And we effectively get the proof of equality we wanted. As expected,
this proof uses the properties of associativity (plusAssociative) and
the property of neutrality of Z for + (plusZeroRightNeutral).

3.5 Construction of the reflected terms

For the moment, even if what we have is perfectly usable and works, we
had to create the reflected terms e1 and e2 by hand, which is easy but time
consuming. We have replaced the (potentially hard) problem of proving
something by the simpler problem of building some encodings. This is
already a huge simplification, because as it can be seen in the definitions
of e1 and e2, the reflected terms completely follow the structure of the
expression to encode : there’s absolutely no creativity needed for this
task, unlike the proving activity. The way to create the encodings is in
fact so systematic that, of course, we would like to automatize it in order
to get a real and completely automatic tactic.

However, we can also note that even when done by hand, there
is no room for making mistakes in this simple task of encoding : we

85

3. Automating Proofs by Reflection

simply can’t generate a wrong encoding : if e1 and e2 are not respectively
reflecting ((x+ y)+ (x+ z)) and (x+((y+ x)+ z)) then these definitions
won’t typecheck because the expected and real index won’t match.

Still, we want to build an automatic way of constructing these reflected
terms because what we have currently is not convenient enough for being
used regularly. We want to program an automatic way of going from the
concrete values (of type Nat), to the reflected terms (of type Expr). The
only way to do that is to inspect the abstract syntax tree of the concrete
value. By using Idris’s reflection mechanism, we can tag a function with
the keyword "%reflection", which means that this function runs on syntax
instead of values. We will use this possibility to write a function of
reflection that does the job of producing the reflected terms for the user
of the tactic :

%reflection

total

reflectNat : {n:Nat} → (Γ : Vect n Nat) → (x:Nat)

→ (m ** (Γ′ : Vect m Nat ** (Expr (Γ ++ Γ′) x)))

This function will reflect the natural number x in the context of Γ,
which contains n already abstracted variables. This function will compute
an extension –of arbitrary size m– to the context, called Γ′. This extension
will contain the variables used in x that were not already present in Γ. It
will also produce the reflected term, which is expressed in the complete
context Γ + + Γ′, and which is, of course, indexed over the concrete
value x.

If x is the natural number Z, then we don’t have any variable to add to
Γ, so the extension will be the empty vector, and the reflected expression
is simply Zero.

reflectNat {n=n} G Z =
(Z ** ([] ** (Zero {n=n+0} {G=G++[]})))

Figure 3.6: Reflecting natural numbers - pattern for zero

If the natural number to reflect is an addition x + y, then we will

86

3.5. Construction of the reflected terms

start by reflecting x in the context of Γ. That will give us an extension
Γ′ and an expression ex of type Expr (Γ ++ Γ’) x. We continue by
reflecting y, but this time in the context (Γ + + Γ′) of n + m already
abstracted variables, because the reflection of x has potentially abstracted
some new variables, and we don’t want to abstract them a second time.
That will give us a second extension Γ′′ and an expression ey of type
Expr ((Γ ++ Γ’) ++ Γ”) y. We now simply want to return the
Plus of ex and ey, but we can’t immediately, because these encodings
aren’t defined on the same context. The context in which ex makes
sense is (Γ ++ Γ′), but the context in which ey makes sense is ((Γ +

+ Γ′) ++ Γ′′). We will therefore need a weakening function that takes a
reflected expression ex, and returns the same expression, but expressed
in an augmented context.

reflectNat Γ (x + y) =
let (_ ** (Γ′ ** ex)) = (reflectNat Γ x) in
let (_ ** (Γ′′ ** ey)) = (reflectNat (Γ ++ Γ′) y) in
let result = Plus (weaken Γ′′ ex) ey in

(_ ** ((Γ′ ++ Γ′′) ** ?MreflectNat_1))

Figure 3.7: Reflecting natural numbers - pattern for a plus

The total extension that has been computed is Γ′ + + Γ′′, and the
metavariable MreflectNat_1 simply uses the associativity of the ap-
pend operation to prove that the provided context ((Γ ++ Γ′) + + Γ′′)

is equal to the expected one (Γ ++ (Γ′ ++ Γ′′)).

The function weaken (Figure 3.8) is easy to write because we’re adding
the extension Γ′ on the right of Γ. For example, extending the context
[v, w, x] with [y, z] produces the context [v, w, x, y, z]. The variables
v, w and x, which were respectively refereed to as the first, second and
third variables in Γ, are still the first, second and third variables in the
complete context. That means that a variable Var i will still be a Var i

after the weakening : the position i does not change by augmenting the
context.

87

3. Automating Proofs by Reflection

weaken : {n:Nat} → {m:Nat} → {Γ:Vect n Nat} → {x:Nat}
→ (Γ′:Vect m Nat) → (Expr Γ x) → (Expr (Γ ++ Γ′) x)

weaken Γ′ Zero = Zero
weaken Γ′ (Plus e1 e2) = Plus (weaken Γ′ e1) (weaken Γ′ e2)
weaken Γ′ (Var i) = Var (convertFin _ i m)

Figure 3.8: Weakening function

The position i hasn’t changed but however, the original i had type
Fin n, but the new i must have type Fin (n+m). This is why we’ve
used convertFin, which returns the same element, but seen in a bigger
Fin.

convertFin : (n:Nat) → (i:Fin n) → (x:Nat) → Fin (n+x)

We’ve treated the case of the constant Z and the case of the addi-
tion. We now have to deal with the last possibility of a variable. For
encoding a variable, we must see if this variable is already present in
the context Γ of variables already abstracted. If it is already present
there, then there is no extension to build, and the reflected term is simply
Var (convertFin n i Z), where i is the position of the variable in
this context Γ. The conversion is needed because the original context is
Γ, and the new one is (Γ ++ []), which aren’t automatically unifiable.
However, if this variable is missing, then we must add it, which means
that we will return an extension containing this single variable. The
original context Γ had a size of n, and we’ve built an extension of size
one, so the complete context has therefore size (n + 1). The variable
that we’ve added is currently the last one of these (n + 1) variables. If
we use a function2 lastElement’: (pn:Nat) → Fin (pn+1) to
construct the last element of a Fin of size pn + 1, then the reflected term
that we need to produce is simply Var (lastElement’ n).

2This function doesn’t have the type (n : Nat) → Fin n because there is no last
element of a Fin of size zero, as there is no element at all.

88

3.6. Summary

reflectNat Γ t with (isElement t Γ)
| Just (i ** p) = let result =

Var {Γ=Γ++[]} (convertFin n i Z) in
(Z ** ([] ** ?MreflectNat_2))

| Nothing ?= (((S Z) ** ([t] **
Var {Γ=Γ++[t]} (lastElement’ n))))

Figure 3.9: Reflecting natural numbers - pattern for a variable

isElement is a function which checks whether an element x belongs
to a vector Γ, and if so, returns Just and a dependent pair containing
the index of x in this vector, and a proof that index i Γ = x.

isElement : {n:Nat} → (x : a) → (Γ : Vect n a)

→ Maybe (i:Fin n ** (index i Γ = x))

The metavariable MreflectNat_2 will require us to prove that the
provided term of type Expr (Γ ++ []) (index (convertFin n

i Z) (Γ ++ [])) is transformable into a term of the expected type
Expr (Γ ++ []) t. This is doable by using the proof p –returned by
isElement– which says that index i Γ = t, together with the fact
that convertFin does not change the index, but only converts its type.

As for the case where t was not in the original context (the Nothing
case), we will need to prove that we can convert (index (lastElement’

n) (Γ ++ [t])) into t. This is doable because we can prove and use
the following lemma :
indexOfLastElem : {T:Type} → {n:Nat} → (v:Vect n T)

→ (x:T) → index (lastElement’ n) (v++[x]) = x.
That finishes the automatic reflection for this specific prover. The

encoding of ((x + y) + (x + z)) can now be automatically produced with
reflectNat [] ((x+y) + (x+z)).

3.6 Summary

In this chapter, we’ve developed a very specific mechanism for automatic-
ally proving equalities over natural numbers, with universally quantified

89

3. Automating Proofs by Reflection

natural numbers and the addition. We’ve implemented this "tactic" in a
correct-by-construction way, which means that no additional proofs are re-
quired after the definition of the functions : we produce the normal form
and the proof at the same time, and the generation of the proof follows
exactly the generation of the normalised term. The proof is somehow
guided by the computation, and this way to build proofs is particularly
well suited for programming languages with dependent types, as Idris,
that are not equipped like proof assistants. We’ve also used a new kind of
type-safe reflection mechanism, with embedded concrete values as index of
dependent types. This index has played a central role in the construction
of the proof.

We have also shown how we can use Idris reflection mechanism
to build an automatic way of encoding the original Idris expressions
into reflected terms, thus avoiding the need of building these encodings
manually.

However, all this work was very specific : this prover can only be
used for proving equalities over Nat, and only uses the two properties
of associativity and of neutral element. There are other properties of
interest (commutativity, distributivity of an operator on another one, etc)
that appear in Nat and in various other datatypes. What we want now,
is to deal with all these properties, for all these potential datatypes. The
next chapter, which is the heart of this thesis, will develop such a generic
collection of provers.

90

Chapter 4

Equivalences in Algebraic
Structures

Mathematics is the art of giving the same name to
different things.

— H. Poincaré

4.1 Generalising the problem

In the previous chapter, we’ve produced a tactic that proves equalities
(on Nat), with the only two properties of associativity for + and the
property of simplification with the neutral element Z. Now that we
have introduced the key ideas of our technique on this small example,
and especially the type-safe reflection mechanism and the correct-by-
construction approach, we will apply them for our more general main
goal : proving equalities for many types and not only for Nat, and for
various properties. Very often, the properties available on a given type
are the ones of a well known algebraic structure : semi-groups, monoids,
groups, rings, etc. An algebraic structure, in abstract algebra, is a set
(called the carrier set, or the underlying set), equipped with operations
and constants and that satisfy certain axioms. Thus, an algebraic structure
is an abstraction, that can be instantiated, and where all the instances
share some essential properties. The operations of these structures are
often called sum and product, because the first and most natural instanti-

91

4. Equivalences in Algebraic Structures

ations of these structures are the set of numbers N and R equipped with
their natural sums and products, but some instances can have nothing to
do with numbers. These algebraic structures have been studied intens-
ively, and many formal system fall in one of these structures. We can
cite, for example, the natural numbers, their addition and the element 0
that form a monoid, refereed to as (N, 0,+). The requirement for being a
monoid is that the addition + must be associative, and that there must
be a constant, often called 0, that must be the identity element of +. The
natural numbers equipped with the standard addition and the constant
0 satisfy these conditions, and form therefore a monoid. The relative
numbers, their addition, the unary negation, and the element 01 form
a group. A group is a monoid (i.e. it must also satisfy all the axioms
of a monoid) with inverses elements, i.e. with an element −x for every
element x, such that x + (−x) = (−x) + x = 0. The relative numbers
form therefore a group, which happens to be commutative, because we
also have the property that x + y = y + x for all x and y. If we add
the multiplication, we obtain a ring, with the element one playing the
role of multiplicative neutral element (also called multiplicative identity
element). The exact axioms of a ring and all the other structures will
be described in the next subsection, with the diagram 4.2. We see here
that there are more sophisticated structures, like group, that inherit from
more primitive structures (monoid here), which means that the most
sophisticated structure has all the requirements of the most primitive one,
plus a few extra ones.

Algebraic structures do not only describe numbers, and many other
datatypes (or sets for mathematicians) are instances of these structures.
For instance, lists with concatenation form a monoid, as the concatenation
is associative (i.e. ∀ l1 l2 l3, l1++(l2++l2) = (l1++l2)++l3)
and the empty list Nil plays the role of a neutral element for the con-
catenation (i.e. ∀ l, l++Nil = Nil++l = l). We can also cite the

1In ordinary maths there is no explicit notion of type, and therefore the element
zero of the natural numbers is the same object as the element zero of relative numbers.
However, in type-theory that is not the case, and these two objects are in fact distinct
entities.

92

4.2. Proving equivalences instead of equalities

ring Mn(R) of matrix of size n ∗ n over some ring R. What this means
is that many common objects, like natural numbers, relative numbers,
lists, and matrix have the same properties, or more precisely, a few of the
same properties. These properties are the existence of neutral elements,
the associativity or the commutativity of an operation, the existence of
inverse elements, the distributivity of an operation (playing the role of
a multiplication) over another one (playing the role of an addition), etc.
Therefore, with some abstraction, we can solve the problem of generating
proof of equality for many datatypes like natural numbers, lists, matrix,
and many others all at once by implementing a very generic prover that
works for any type that is an instance of an algebraic structure. In fact,
that will be a hierarchy of provers –with one prover for each algebraic
structure– that can prove equalities of terms in any instance of the corres-
ponding structure. We will no longer only work with the properties of
associativity and of right neutral element for natural numbers as it was
the case in the previous chapter, but we will have available the proper-
ties of a given algebraic structure. These tactics will be usable on any
type that satisfies these properties. The properties of a given algebraic
algebraic structure will be expressed in a corresponding interface. This
interface will extend the interface from which it naturally inherits (see
the diagram4.2 for the complete hierarchy). For example, the Group
interface will extend the Monoid one. We will end up with a hierarchy
of interfaces and will write one tactic for each of these interface. All the
tactics that we will implement (the ring prover, the group prover, etc) will
be able to work on any type, being given that an implementation of the
corresponding interface is provided.

4.2 Proving equivalences instead of

equalities

Before developing a collection of tactics for proving equalities, we can
realise that with some reasonable additional effort, we could produce
a collection of tactics for proving equivalences. Therefore, why only
prove equality when we could prove equivalence, which is more general?

93

4. Equivalences in Algebraic Structures

The machinery would be very similar, and if we do the right abstraction
from the start, we could gain one more degree of genericity, with the
freedom of choosing the equivalence relation (which can of course be
the usual equality). This is needed because Idris does not allow higher
inductive types (HITs) that would allow the user to define constructors
for equalities at the same time that the elements are being defined, thus
extending the equality [3].

We want to give the user the possibility to use his own equivalence
relation, as long as he is able to provide the properties of the algebraic
structure he wants to use. Let’s call c the carrier type, i.e. the type
on which we want to prove equivalences. The equivalence relation
on c has the following profile ('): c → c → Type2, and has to
be accompanied by the usual properties of reflexivity, symmetry and
transitivity.

All of our tactics will require having a way of testing this equivalence
between elements of the underlying set, that is to say, a way to test
equivalence between constants. For this reason, we define a notion of
Set3, which only requires the definition of the equivalence relation –
accompanied with the proofs that this is indeed an equivalence relation–
and this equivalence test set_eq. All the algebraic structures will later
extend this interface :

interface Set c where
(') : c → c → Type
refl : (x:c) → x ' x
sym : {x:c} → {y:c} → (x ' y) → (y ' x)
trans : {x:c} → {y:c} → {z:c}

→ (x ' y) → (y ' z) → (x ' z)
set_eq : (x:c) → (y:c) → Maybe (x ' y)

Figure 4.1: Set

2This Type would be a Prop in systems –like Coq– that make a distinction between
the world of computations and the world of logical statements.

3This notion of Set isn’t a formalisation of sets and their elements, but is only a way
to talk about the carrier type and an equivalence relation, sometimes called Setoid.

94

4.2. Proving equivalences instead of equalities

If one wants to prove propositional equalities, then one will simply
instantiate (') with the built-in (=) during the implementation of the
Set instance. We need set_eq in order to decide if two constants of the
domain c are considered as equivalent. Note that it only needs to produce
a proof when the two elements are equivalent, but it doesn’t produce
a proof of dis-equivalence when they are different – instead, it simply
produces the value Nothing–. That’s quite natural, since we want to
generate proof of equivalence, and not to generate counter examples for
proving dis-equivalence, which is another problem.

Obviously, there is no tactic associated to Set, since we have no
operations and no properties associated to this structure. Therefore,
equivalences in a Set are just the "syntactic equivalences", and they can
simply be proven with refl4.

As it was the case in chapter 3, the kernel of our machinery will be a
function reduce that will be composed of multiple functions composed
together, that each do a part of the normalisation and that generate the
proof of equivalence between old and new concrete values for this part of
the normalisation. That was the two functions expr_l and l_expr on
the smaller problem presented in chapter 3. For each of these functions,
these proof obligations will be expressed as meta-variables, and their
proofs will have to be done by hand, precisely because we do not have
any tactic to automate them at the moment, as this is precisely what we
are building. These small proofs done by hand are in fact the proofs of
correctness of our machinery. And that’s the compositions of all these
small static proofs, done dynamically during the evaluations of the reduce
function, that will produce the desired proof of x = y.

Working with equivalences instead of equalities will bring one com-
plication. These proofs of correctness that we will have to produce by
hand will be slightly more complicated, as we won’t be able to use Id-
ris’ "rewrite" command, that enables rewriting a subterm of a term by
another one, provided that the two subterms are equal. More precisely,

4refl should not be confused with Refl, the only constructor of (=). But of
course, when (') is instantiated with the equality (=), the instantiation of refl will
be Refl. Therefore, refl of the interface Set is a generalisation of the most specialised
Refl for (=).

95

4. Equivalences in Algebraic Structures

if we need to prove P x, and have a proof of equivalence pr : x' x′, we
can not use rewrite pr in order to transform the goal into P x′, as we
would normally do if the available proof would be an equality x = x′.
This is a classical problem of working within a setoid, and this problem
can be slightly mitigated when the programming language offers a good
support for rewriting terms in setoids. However, Idris isn’t equipped
with any automation for setoids, and everything will have to be done by
hand. For this purpose, we will use the following lemma :

eq_preserves_eq : {c:Type} → (Set c) → (x:c) → (y:c)
→ (c1:c) → (c2:c) → (x ' c1) → (y ' c2)
→ (c1 ' c2) → (x ' y)

This lemma says that the equivalence preserves the equivalence, which
means that in order to prove x' y, we can prove the (hopefully) simpler
problem c1' c2, provided that x' c1 and that y' c2. This lemma will be
intensively used for building the proofs of equivalence (between the old
and new indices) that are required by the development of our machinery.

Proof. We have x' c1 and we have c1' c2, therefore we have x' c2 by
the use of the axiom of transitivity (of the interface Set).

We also have y ' c2 and therefore we have c2' y by the use of the
symmetry axiom (of the interface Set).

Now that we have these fresh proofs of x' c2 and of c2' y, we can
use one last time the property of transitivity, in order to get a proof of
x' y.

This lemma will be basically used as a replacement to the rewrite
tactic that we can no longer use since we are dealing with equivalence
and not equality.

4.3 The hierarchy

The complete hierarchy of structures that we will be dealing with is
represented in the following diagram :

96

4.3. The hierarchy

Set (T)

• ': T→ T→ Type

• set_eq : (x : T)→ (y : T)→Maybe(x' y)

• re f l : ∀x : T, x' x

• sym : ∀(x y : T), x' y→ y' x

• trans : ∀(x y z : T), x' y→ y' z→ x' z

Magma (T)

• + : T→ T→ T

Semi-Group (T)

• plus_assoc : ∀(x y z : T), (x + y) + z =
x + (y + z)

Monoid (T)

• 0 : T

• plus_neutral : ∀x, x + 0 = 0 + x = x

97

4. Equivalences in Algebraic Structures

Group (T)

• neg : T→ T

• plus_inverse : ∀x :
T, x + (−x) =
(−x) + x = 0

Commutative Group (T)

• plus_comm : ∀(x y :
T), x + y = y + x

Commutative Monoid (T)

• plus_comm′ : ∀(x y :
T), x + y = y + x

Ring (T)

• 1 : T

• ∗ : T→ T→ T

• mult_assoc : ∀(x y z :
T), (x ∗ y) ∗ z =
x ∗ (y ∗ z)

• mult_neutral :
∀x, x ∗ 1 = 1 ∗ x = x

• mult_dist : ∀(x y z :
T), x ∗ (y + z) =
(x ∗ y) + (x ∗ z)

• mult_dist_2 : ∀(x y z :
T), (x + y) ∗ z =
(x ∗ z) + (y ∗ z)

Semi-Ring (T)

• 1 : T

• ∗ : T→ T→ T

• mult_assoc′ : ∀(x y z :
T), (x ∗ y) ∗ z =
x ∗ (y ∗ z)

• mult_neutral′ :
∀x, x ∗ 1 = 1 ∗ x = x

• mult_dist′ : ∀(x y z :
T), x ∗ (y + z) =
(x ∗ y) + (x ∗ z)

• mult_dist_2′ : ∀(x y z :
T), (x + y) ∗ z =
(x ∗ z) + (y ∗ z)

• mult_absorbingElt :
∀x : T, x ∗ 0 = 0 ∗ x = 0

Figure 4.2: Diagram of algebraic structures

98

4.3. The hierarchy

At the root of the hierarchy, there is the Set structure with its equi-
valence relation ' and the equivalence test set_eq. Then we find the
Magma, SemiGroup and Monoid structures. The first one adds a + oper-
ation and no properties about it, while the second one adds the property
of associativity, and the third one further adds the property of neutral
element for a distinguished element called 0.

Then, two structures inherit from Monoid. The most traditional one
is the Group structure, which basically adds inverse elements, and from
which the CommutativeGroup structure is built (also called Abelian
group). Another one, less known, is the CommutativeMonoid structure
(also called less commonly Abelian monoid), that directly inherits from
Monoid, and which therefore is not equipped with inverse elements.

Now, if we extend CommutativeGroup with a product that is as-
sociative, distributive on the addition, and that admits a distinguished
element called 1 as neutral element, we obtain the Ring structure. If we
add the same things to the CommutativeMonoid structure, we obtain
the intermediate structure of PreSemiRing, and if we extend the latter
with the property5 that 0 is an absorbing element for the product (some-
times called annihilator element), we obtain what is called a SemiRing.
Both Ring and SemiRing structures can be extended with the com-
mutativity of the product, which leads to CommutativeRings and
CommutativeSemiRings.

The bottom of the hierarchy has two branches, that both inherits from
the same structure (Monoid). This divergence comes from the fact that
the left branch is equipped with negation and inverse elements (from
the Group structure), while the right branch has skipped this structure,
and directly inherits from Monoid. Many concrete structures are not
equipped with negation and inverse elements, like natural numbers, lists,
etc. Therefore leaving these operations and properties as optional is
important for the generality of the provers. The CommutativeMonoid
and SemiRing structures are very useful for advanced structures that
have a commutative addition, or that are equipped with a product, but
that do not have a notion of negation and inverse elements.

5This axiom isn’t needed for the Ring structure because it follows from the other
axioms.

99

4. Equivalences in Algebraic Structures

4.3.1 Hierarchy of interfaces

We will develop a hierarchy of interfaces for all these algebraic structures.
Each interface will contain the axioms of the corresponding abstract
structure. At the usage, in order to invoke, for example, the group prover
on a specific type T, we will have to provide an implementation of the
interface Group T, which means that we will have to prove that T verifies
all the properties to be a group.

The first structure, completely trivial, is the magma. A magma is a
structure built on top of Set, that just adds a Plus operation, and no
specific properties about it.

interface Set c => Magma c where
Plus : c → c → c

Figure 4.3: Magma

This code means that a type c (for "carrier") is a Magma if it is already
a Set (i.e. it is equipped with the equivalence relation ' and the test
set_eq), and if it has a Plus operation. In fact, there is an additional
requirement that will apply for all operators (in this case, the Plus op-
eration), which is that they need to be compatible with the equivalence
relation, which is expressed by the following axiom for Plus :

Plus_preserves_equiv : {c1:c} → {c2:c}
→ {c1’:c} → {c2’:c} → (c1 ' c1’) → (c2 ' c2’)
→ ((Plus c1 c2) ' (Plus c1’ c2’))

This requirement comes from the fact that we’re dealing with arbitrary
equivalence relation. The user is free to use his own equivalence relation,
but it should be compatible with the operations that he is using. Said
differently, the equivalence should be preserved by the Plus operation,
and the user of our tactics will have to prove it. These requirements will
be omitted from the interfaces that are showed in this text. As it was the

100

4.3. The hierarchy

case for Set, there is no tactic to write for Magma, because there is no
property at all : all equivalences are again syntactic equivalences, and
they can all be proven by refl.

A bit more interesting is the SemiGroup interface. A SemiGroup

is a Magma (i.e. it still has a Plus operation), but moreover it has the
property of associativity for this operation. We will have to write a prover
for semi-groups, as the equivalence found in a semi-group are not only
the syntactic ones, precisely because of the associativity property.

interface Magma c => SemiGroup c where
Plus_assoc : (c1:c) → (c2:c) → (c3:c)

→ (Plus (Plus c1 c2) c3
' Plus c1 (Plus c2 c3))

Figure 4.4: Semi-Group

A bit more sophisticated is the Monoid structure, which is a SemiGroup
with the property of neutral element for a distinguished element called
Zero.

interface SemiGroup c => Monoid c where
Zero : c
Plus_neutral_1 : (c1:c) → (Plus Zero c1 ' c1)
Plus_neutral_2 : (c1:c) → (Plus c1 Zero ' c1)

Figure 4.5: Monoid

We continue the hierarchy with the more interesting structure of
Group. A Group is a Monoid, with a new operation : the unary opera-
tion Neg. However, in order to give the user the flexibility of allowing
the binary Minus, we also add this binary operator to the Group inter-
face. We must have the property that Minus can always be simplified
with the negation and the addition. That means that Minus is not a
"primitive" operation of a group, since we can always rewrite (a− b) into
(a + (−b)). Letting the user using subtractions (a− b) in the left and

101

4. Equivalences in Algebraic Structures

right sides of the equality he wishes to prove increases the usability of
the prover, as he won’t have to rewrite by hand the Minus operations
by sums of negations before invoking the prover. Note that if he does
not have a Minus operation in his concrete structure, he can define it
to match directly the required property : (a− b) := (a + (−b)) when
providing an implementation of the interface.

The second and main axiom of Group is the fact that any value c1
admits (Neg c1) as symmetric element (also called additive inverse),
which means6 that c1 + (Neg c1) = 0∧ (Neg c1) + c1 = 0. This notion of
symmetric element can be expressed in Idris by the following definition :

-- This is a conjunctive predicate
hasSymmetric : (c:Type) → (p:Monoid c) → c → c → Type
hasSymmetric c p a b = (Plus a b ' Zero, Plus b a ' Zero)

interface Monoid c => Group c where
Minus : c → c → c
Neg : c → c
Minus_simpl : (c1:c) → (c2:c)

→ Minus c1 c2 ' Plus c1 (Neg c2)
Plus_inverse : (c1:c) → hasSymmetric c _ c1 (Neg c1)

Figure 4.6: Group

A Commutative Group is a group with the extra property of commut-
ativity :

interface Group c => CommutativeGroup c where
Plus_comm : (c1:c) → (c2:c)

→ ((Plus c1 c2) ' (Plus c2 c1))

Figure 4.7: Commutative Group

A Ring is a CommutativeGroup with a Mult operation (that pre-
serves the equivalence), a distinguished element 1 that is a neutral ele-

6Note that we need both part of the conjunction, because Plus is not necessary
commutative.

102

4.3. The hierarchy

ment of Mult, together with the fact that Mult must be associative and
distributive over Plus :

interface CommutativeGroup c => Ring c where
One : c
Mult : c → c -> c

Mult_assoc : (c1:c) → (c2:c) → (c3:c)
→ (Mult (Mult c1 c2) c3)
' (Mult c1 (Mult c2 c3))

Mult_dist : (c1:c) → (c2:c) → (c3:c)
→ (Mult c1 (Plus c2 c3))
' (Plus (Mult c1 c2) (Mult c1 c3))

-- Needed because * is not necessary commutative
Mult_dist_2 : (c1:c) → (c2:c) → (c3:c)

→ (Mult (Plus c1 c2) c3)
' (Plus (Mult c1 c3) (Mult c2 c3))

Mult_neutral : (c1:c)
→ ((Mult c1 One) ' c1, (Mult One c1) ' c1)

Figure 4.8: Ring

We have not shown the interfaces for CommutativeMonoid and
SemiRing because they are very similar to the CommutativeGroup

and Ring interfaces.
All these interfaces will be used as predicates which classify types.

In order to call a prover on a type c, the user of the system will have
to satisfy the requirements expressed in the corresponding interface by
providing an implementation of it for the type c, i.e. he will have to
prove that the corresponding properties effectively hold for this type c.
Note that the properties will either be obtained by implementation if the
operations are real –computable– functions, or by axioms if the user is
working within an axiomatised theory where the operations (Plus, Neg,
etc) are defined as axioms.

As discussed in the section 3.1 on the smaller problem, the algorithm
of normalisation will not directly use the concrete values of type c, but
reflected terms instead, indexed over the concrete values. That still holds
here.

103

4. Equivalences in Algebraic Structures

4.3.2 Reflected terms

We need to define a datatype for reflecting terms in each algebraic
structure. Each of these datatype is parametrised over a type c, which is
the real type on which we want to prove equalities (the carrier type). It
is also indexed over an implementation of the corresponding interface
for c (we usually call it p, because it behaves as a proof telling that the
structure c has the desired properties), and indexed over a context (a
vector Γ of n elements of type c), and also indexed over a value of type
c, which is precisely the concrete value being encoded. A magma is only
equipped with one operation Plus. Thus, we only have three concepts
to express in order to reflect terms in a Magma : constants, variables, and
additions.

data ExprMa : Magma c → (Vect n c) → c → Type where
ConstMa : (p : Magma c) → (Γ:Vect n c)

→ (c1:c) → ExprMa p Γ c1
PlusMa : {p : Magma c} → {Γ:Vect n c}

→ {c1:c} → {c2:c}
→ ExprMa p Γ c1 → ExprMa p Γ c2
→ ExprMa p Γ (Plus c1 c2)

VarMa : (p:Magma c) → {Γ:Vect n c}
→ (i:Fin n) → ExprMa p Γ (index i Γ)

Figure 4.9: Reflected terms in a Magma

When we encode a constant c1 in a context Γ, we use the constructor
ConstMa to produce a term of type ExprMa p Γ c1 : the index rep-
resenting the concrete value is precisely this constant c1. If e1 is an
expression of type ExprMa p Γ c1 (i.e. a term encoding the value
c1), and e2 is an expression of type ExprMa p Γ c2 (i.e. a term
encoding the value c2), then the term PlusMa e1 e2 will have the
type ExprMa p Γ (Plus c1 c2), i.e. this term will encode the value
(Plus c1 c2), where Plus is the operation available in the implement-
ation p of the Magma interface. Because the reflected terms embed their
corresponding inputs, they are guaranteed to be faithful representations.

104

4.3. The hierarchy

There are no additional operations in SemiGroup and Monoid, so
the datatypes that reflect terms in these two structures will have exactly
the same shape as the one for Magma that we have given above. However,
the one for Group will introduce two new constructors for the Neg and
Minus operations :

data ExprG : Group c → (Vect n c) → c → Type where
ConstG : (p : Group c) → (Γ:Vect n c)

→ (c1:c) → ExprG p Γ c1
PlusG : {p : Group c} → {Γ:Vect n c}

→ {c1:c} → {c2:c}
→ ExprG p Γ c1 → ExprG p Γ c2
→ ExprG p Γ (Plus c1 c2)

MinusG : {p : Group c} → {Γ:Vect n c}
→ {c1:c} → {c2:c}
→ ExprG p Γ c1 → ExprG p Γ c2
→ ExprG p Γ (Minus c1 c2)

NegG : {p : Group c} → {Γ:Vect n c} → {c1:c}
→ ExprG p Γ c1 → ExprG p Γ (Neg c1)

VarG : (p : Group c) → {Γ:Vect n c}
→ (i:Fin n) → ExprG p Γ (index i Γ)

Figure 4.10: Reflected terms in a Group

The index of type c (the real value encoded by an expression) is
always expressed by using the lookup function index and the available
operations in the implementation p, which for a group are Plus, Minus
and Neg.

Again, because there is no additional operations in CommutativeGroup
and CommutativeMonoid, the datatypes that reflect terms in these two
structures will have exactly the same shape as the one for Group that
we have showed above. However, the Ring structure has to have an
additional construction for the Mult operation :

105

4. Equivalences in Algebraic Structures

data ExprR : Ring c → (Vect n c) → c → Type where
ConstR :(p:Ring c) → (Γ:Vect n c) → (c1:c)

→ ExprR p Γ c1
PlusR : {p:Ring c} → {Γ:Vect n c}

→ {c1:c} → {c2:c}
→ ExprR p Γ c1 → ExprR p Γ c2
→ ExprR p Γ (Plus c1 c2)

MultR : {p:Ring c} → {Γ:Vect n c}
→ {c1:c} → {c2:c}
→ ExprR p Γ c1 → ExprR p Γ c2
→ ExprR p Γ (Mult c1 c2)

MinusR: {p:Ring c} → {Γ:Vect n c}
→ {c1:c} → {c2:c}
→ ExprR p Γ c1 → ExprR p Γ c2
→ ExprR p Γ (Minus c1 c2)

NegR : {p:Ring c} → {Γ:Vect n c} → {c1:c}
→ ExprR p Γ c1 -> ExprR p Γ (Neg c1)

VarR : (p:Ring c) → {Γ:Vect n c}
→ (i:Fin n) → ExprR p Γ (index i Γ)

Figure 4.11: Reflected terms in a Ring

4.3.3 A bit of notation

The equivalence we are trying to prove is x ' y, where x and y are
terms (potentially open) of the type c in a potentially non empty context
(due to variables that were universally quantified). The type c simulates a
set with some properties (making it a Monoid, or a Group, etc). The fact
that c fulfils the specification of an algebraic structure is expressed as an
implementation of the corresponding interface, and this implementation
will be denoted as p. The reflected term for x will be denoted ex, and
this term will have the type ExprG p Γ x. The term ex is the encoding
of x and its type is precisely indexed over the real value x, as the reflected
terms embed the concrete values. We’ve got similar things for y, which
is encoded by ey, and its type is indexed over the real value y. Running
the normalisation procedure on ex will produce the normal form ex’

of type ExprG p Γ x’ and a proof px of x ' x’ while running the

106

4.4. Deciding equivalence

normalisation procedure on ey will produce the normal form ey’ of
type ExprG p Γ y’ and a proof py of y ' y’.

4.4 Deciding equivalence

Each algebraic structure will have a function for reducing the reflected
terms into their normal forms. The fact that all of these algebraic struc-
tures admit a canonical representation for any element is in fact a very
nice property that we are using in order to decide equivalences. Without
this property, it would become a lot more complicated to decide the
equivalence of two terms without brute-forcing a series of rewriting, that
might even not terminate. These normalisation functions will compute
the canonical representation of the reflected input term, by rewriting the
given term multiple times, and at the same time, it will produce the proof
of equality between the original real value (indexing the input term) and
the produced real value (indexing the produced term). Thus, the type of
the reduction function for group is :

groupReduce : {c:Type} → {n:Nat} → (p:Group c)

→ {Γ:Vect n c} → {x:c} → (ExprG p Γ x)

→ (x’ ** (ExprG p Γ x’, x ' x’))

This function has more work to do in structures with multiple axioms
(like Group), than for the simpler ones (like Monoid). The details of
these functions will be given in the next section. For the moment, we just
assume that we’ve got such a function of normalisation for each structure.
We will give details about the implementation for the Group structure,
but the principle is exactly the same with the other structures.

We want to write the following function :

groupDecideEq : (p:Group c) → {Γ:Vect n c} → {x : c}

→ {y : c} → (ExprG p Γ x) → (ExprG p Γ y)

→ Maybe (x ' y)

The first thing this function has to do is to compute the normal form
of the two expressions ex and ey respectively encoding x and y. Then,
the only thing remaining to do will be to syntactically compare ex’ and

107

4. Equivalences in Algebraic Structures

ey’, and if they are equal then that will give us x′ = y′, and we will
be able to produce the desired proof of x ' y by using the two proofs
px : x' x′ and py : y' y′.

groupDecideEq p ex ey =

let (x’ ** (ex’, px)) = groupReduce p ex in

let (y’ ** (ey’, py)) = groupReduce p ey in

buildProofGroup p ex’ ey’ px py

The syntactic test of equality between ex’ and ey’ and the composi-
tion of the two proofs is done in the auxiliary function buildProofGroup,
similarly to what we’ve done for the small tactic on Nat in the previous
section.

buildProofGroup : (p:Group c) → {Γ:Vect n c}

→ {x : c} → {y : c} → {x’:c} → {y’:c}

→ (ExprG p Γ x’) → (ExprG p Γ y’)

→ (x ' x’) → (y ' y’)

→ (Maybe (x ' y))

buildProofGroup p ex’ ey’ px py with (exprG_eq p ex’ ey’)

buildProofGroup p ex’ ex’ px py | Just refl

= ?MbuildProofGroup

buildProofGroup p ex’ ey’ px py | Nothing = Nothing

We have used here a function exprG_eq to decide the syntactic equal-
ity between the normalised reflected terms ex’ and ey’. This function
plays the same role as eqExpr, presented on section 3.3 for the small
prover on Nat. Also, the proof of the metavariable MbuildProofGroup
corresponds exactly to the proof done for the metavariable MbuildProof.

4.5 Automatic reflection

As we did for the specific problem in chapter 3, we want to program
an automatic reflection mechanism, in order to let the machine build
automatically the encodings for us. This time, we want to write a function
able to compute encodings for any type that behaves as one of our

108

4.5. Automatic reflection

algebraic structure. We will show here the details for Ring, which is one of
the most sophisticated structures. So, we’ve got a carrier type (c:Type),
an implementation (p:Ring c) which says that c behaves as a ring,
a context Γ of already abstracted variables, and an element (x:c) to
encode, and we want to return an ExprR p Γ x. We are doing this
reflection for any type c, so we don’t know which constants are inhabiting
this type. For this reason, we will need to expect an extra argument
funReflectCst of type (ConstantsRingReflector c p) which
is a function able to do the reflection for constants only. This function
will be provided for various datatypes, like Nat, Z and List. But if
the user wants to use the reflection mechanism for a new datatype of
his own, then he will only have to provide this function of encoding for
the constants of his type. He won’t have to rebuild the entire reflection
mechanism. A ConstantsRingReflector for a given type c and
a given implementation p is a function that takes any context Γ, any
element c1 of c, and which tries to produce an (ExprR p Γ c1).

ConstantsRingReflector : {c:Type} → (p:Ring c) → Type

ConstantsRingReflector {c=c} p =

({n:Nat} → (Γ:Vect n c) → (c1:c)

→ Maybe (ExprR p Γ c1))

If c1 is indeed a constant, then it is supposed to return Just and a
term reflecting this constant. If it was something else (a variable, a sum
a + b, a product a ∗ b, ...) then it simply returns Nothing.

We can now present the type of the reflection function for Ring.

reflectRingTerm : {c:Type} → {p:Ring c}

→ {n:Nat} → (Γ : Vect n c)

→ (funReflectCst:ConstantsRingReflector {c=c} p)

→ (x:c)

→ (n’ ** (Γ′:Vect n’ c

** (ExprR {c=c} {n=n+n’} p (Γ ++ Γ′) x)))

This function will work very similarly to the reflection function for
Nat that we’ve written in section 3.5. Here, there are simply more
constructions to deal with, because c is also equipped with negations,

109

4. Equivalences in Algebraic Structures

subtractions and multiplications, and not only with additions. We show
one of these new pattern on figure 4.12.

reflectRingTerm {p} {n=n} Γ funReflectCst (a*b) =
let (n’ ** (Γ′ ** a’))

= reflectRingTerm Γ funReflectCst a in
let (n’’ ** (Γ′′ ** b’))

= reflectRingTerm (Γ ++ Γ′) funReflectCst b in
let this = MultR (weakenR Γ′′ a’) b’ in
((n’ + n’’) ** ((Γ′++Γ′′) **

(convertVectInExprR (plusAssociative n n’ n’’)
(vectAppendAssociative Γ Γ′ Γ′′) this)))

Figure 4.12: Automatic reflection - case of a multiplication

We have to do the same for additions, negations and subtractions
(that we omit here), and then the final case to consider is for constants
and variable. Since we’ve got the function funReflectCst –which tries
to do the reflection for constants only–, we can easily finish the definition
of reflectRingTerm. If funReflectCst returns something, then we
know the input is a constant, and we got its encoding. Otherwise, we
just have to treat it as a variable.

reflectRingTerm {p} {n=n} Γ funReflectCst t =
case funReflectCst Γ t of

-- funReflectCst decides that ’t’ is a constant
Just this => Z ** ([] ** this)
-- Otherwise it should be considered as a variable
Nothing => case (isElement t Γ) of
Just (i ** pr) =>

let res = VarR p (RealVariable i) in
(Z ** ([] ** res))

Nothing =>
let res = VarR p

(RealVariable (lastElement’ n)) in
(S Z ** ([t] ** res))

Figure 4.13: Automatic reflection - case of constants and variables

110

4.6. Normalisations functions and re-usability of the provers

We have intentionally omitted showing a few conversions of type in
order to keep this part of the definition more readable.

4.6 Normalisations functions and re-usability

of the provers

The only thing left to describe about the implementation is the normalisa-
tion functions for the various algebraic structures. We will also explain
how we’re reusing the provers, with the most specialised structures
that inherit from the simplest ones. What we describe in this section
is the construction of all the normalisation functions (monoidReduce,
groupReduce, etc) that we’ve skipped in section 4.4. These functions
take an expression in input, and compute the normal form of the given
expression and the proof of equivalence between the underlying concrete
values.

The construction of the desired proof is always done bit by bit, because
every rewriting of the reflected term is immediately justified by a simple
accompanying proof which shows the equivalence of the previous and
new index. This is the correct-by-construction style in which we will write
the normalisation.

smallRewriting : (p:algebraic structure on c)

→ (Γ:Vect n c) → {c1:c}

→ (Expr p Γ c1) → (c2 ** (Expr p Γ c2, c1 ' c2))

smallRewriting p Γ e = (new value **

(new expression, justification))

The idea will be to write each simplification as a small rewriting,
and composing these small rewritings will lead to the computation of
the normal form and to the proof of equivalence. Before going into the
implementation details of these rewritings, we first need to decide a
normal form shape.

111

4. Equivalences in Algebraic Structures

4.6.1 Normal form shape

It is noticeable that all the traditional algebraic structures that we’re
dealing with admit normal forms : for every term t, there exists a term
(norm t) such that, for any other term t’ equivalent to t, their normal
form will be the same, and reciprocally, when the normal form norm t

and norm t’ are the same, then the two original terms are equival-
ent. The existence of normal forms for algebraic structures is rarely
(if not never) mentioned in the literature, but this is something crucial
to us, because we precisely use this property for deciding the equival-
ence. More precisely, we will use the fact7,8 that ∀t t′, norm (re f lect t)≡
norm (re f lect t′)→ t ' t′ for building a proof of t ' t′ (when possible)
after having computed norm (re f lect t) and norm (re f lect t′) and having
compared them with a syntactic equality test.

Let’s describe the normal form shape first before describing the imple-
mentation of the normalisation functions. For the sake of completeness,
let’s consider the case of a ring, that has all the operations and all the
properties about these operations. The normalisation function takes in
input an expression expressed with sums, products, constants (zero,
one...) and variables that belong to an ordered set V of variables. In short,
the normalisation function takes in input a polynomial of multiple vari-
ables. In output, it must produce a normal form representing the same
polynomial. Therefore, we have to decide a canonical representation of
polynomials. Many canonical representations can be used. We decide
to stick with classical mathematical conventions. The first one, is that
the polynomial will be completely developed, i.e. the distributivity of ∗
over + will be applied until it can’t be applied any more. The advantage
is the simplicity, as factorising would be significantly more complicated.
Because the polynomial is completely developed, at the toplevel, it is a
sum :

7which is in fact the correctness lemma of the machinery, see sections 4.7.1 and 4.8.1
8We will discuss in the subsection 4.7.2 that the normalisation function also needs to

be complete for being useful, and completeness is the implication in the other direction.

112

4.6. Normalisations functions and re-usability of the provers

P =
a

∑
i=1

(
b

∏
j=1

Monomial j
i)

where

Monomial j
i = Cj

i ∗
c

∏
k=1

Varj
i,k

with Cj
i a constant, and Varj

i,k one of the variable that belong to V .

We use the most common and most flexible definition of a monomial,
where the product of variables is preceded by a constant9 .

One could be surprised by the fact that it’s a sum of product of
monomials, and not directly a sum of monomials. The reason is the
following. A monomial (for our normal form) is a product of a constant
Cj

i (like 4) and of a product of variables (like x ∗ y ∗ z). For example,
5 ∗ (x ∗ (y ∗ z)) is a monomial. Now let’s consider the term (5 ∗ (x ∗ (y ∗
z))) ∗ (4 ∗ (z ∗ z)). This term is not a monomial, but we could be tempted
to simplify it into the monomial 20 ∗ (x ∗ (y ∗ (z ∗ (z ∗ z)))). However,
that would assume that the product is always commutative, i.e. that we
can re-organize the subterms of a product as we want. This is the case in
a commutative ring, but this does not hold for any ring. Therefore, after
the full development, the polynomial is a sum of product of monomials, and
not directly a sum of monomials. The only rearrangement that can be
done with the multiplication is to check if two constants are consecutive
in a product, and if so, to replace them by the constant that represents
the product of them.

However, because + is always a commutative operator in a ring, the
different products of monomials themselves can be rearranged in different
ways in this sum. That will be done at the level of the commutative group
prover if we can provide an ordering for product of monomials.

We start by defining an order between monomials, and in a second
time, we will use this order in order to build an order between product
of monomials. We decide the following order between monomials,

9In maths, a monomial can refer to a product of variables or to a product of variables
multiplied by a constant, called the coefficient of the monomial.

113

4. Equivalences in Algebraic Structures

that we name isBefore_mon10. Given two monomials Monomial j
i and

Monomial j′

i′ we need to decide which one comes first, i.e. we need to
decide which of these two generic terms comes first :

Monomial j
i = Cj

i ∗
c

∏
k=1

Varj
i,k

and

Monomial j′

i′ = Cj′

i′ ∗
c′

∏
k=1

Varj′

i′,k

We will decide the ordering of these two product by looking at the
variables, simply ignoring the constant, and so we need to unfold the
first variable of the products :

Monomial j
i = Cj

i ∗ (Varj
i,1 ∗

c

∏
k=2

Varj
i,k)

and

Monomial j′

i′ = Cj′

i′ ∗ (Varj′

i′,1 ∗
c′

∏
k=2

Varj′

i′,k)

The term Varj
i,1 contains one of the variables of the ordered set V .

Let’s call this variable ve where e is the position of this variable in the
ordered set : Varj

i,1 = ve with ve ∈ V . Now let’s call ve′ the variable

denoted by Varj′

i′,1. We will decide which terms comes first by using the
order on the variables, on these two variables. If e<e′ then we decide that
Monomial j

i comes before Monomial j′

i′ . However, if e>e′, then we decide

that Monomial j′

i′ comes before Monomial j
i . The last case is when e = e′,

i.e. when both monomials start with the same variable, and in this case
we continue by inspecting the remaining variables. If we can’t continue
because one of the two monomials has less variables than the other, then
we decide that the one with fewer variables comes first (exactly like the
word "house" comes before the word "housemate" with the lexicographic
order).

10which can be found on line 71 of the file commutativeGroup_reduce.idr, where this
function takes two monomials in input, and decides if the first comes before the second

114

4.6. Normalisations functions and re-usability of the provers

We can now build the order on product of monomials that we needed.
We name it isBefore11. Given two product of monomials Prodi and
Prodi′ we need to decide which one comes first, i.e. we need to decide
which of these two generic terms comes first :

Prodi = (
b

∏
j=1

Monomial j
i)

and

Prodi′ = (
b′

∏
j=1

Monomial j
i′)

We will obviously use the order isBefore_mon on the first monomi-
als of these two products. If it says that Monomial1

i comes before
Monomial1

i′ , then we decide that Prodi comes before Prodi′ . Conversely, if
that’s Monomial1

i′ that comes first, then we decide that Prodi′ comes first.
However, if Monomial1

i and Monomial1
i′ have exactly the same position12

in the order, then we continue by inspecting the remaining monomials
with a recursive call on isBefore. As previously, if we can’t continue
because one of the two products has less monomials than the other, then
the one with fewer monomials will come first.

A few additional conventions had to be decided about the normal
form :

• The top-level sum of the polynomial will be written in the com-
pletely right-associative form :
prodMon1 + (prodMon2 + (prodMon3 + (... + prodMona)))

• The two levels of product that we have, namely the products of
monomials (at the main level) and the products of variables (at

11which can be found on line 96 of the file commutativeGroup_reduce.idr, where
this function takes two product of monomials in input, and decides if the first comes
before the second

12We have an auxiliary function for this task, called samePosition_mon, that
decides if two monomials have exactly the same position in the order. Note that even
two different monomials can have the same position in the order because we do not
compare the constants. Comparing the constants would be a bad idea as it would add
the unnecessary requirement that the user must provide an order between the constants
of the underlying set.

115

4. Equivalences in Algebraic Structures

the monomial level), will also be written on the completely right-
associative form.

• We always simplify as much as possible with constants. That
includes doing the simplification for the addition with zero and for
the multiplication with one, doing the computation between two
constants that are adjacent in a sum or in a product, etc.

• We always replace the binary operator Minus by a sum and a Neg
(a− b = a + (−b)) since the binary operator Minus is just allowed
for the user’s convenience, but internally, we replace them all by
their complete form.

• We always simplify the sum of an expression e and its inverse −e
into the constant zero.

4.6.2 Computing the normal form

Now that we have decided a shape for our polynomials in normal form,
we need to implement its computation, while keeping an eye on the
simplicity because the normalisation does not only produce a normalised
term, but it also produces a proof of equivalence between the original
form and the new one, and this is in fact the most important part. Our
normalisation function will do the simplifications that are required to
do according to a Knuth-Bendix [26] completion, but it is important to
recall that our goal here is not to implement a generic Knuth-Bendix
completion for any set of rules. Instead, what we want is to implement
an algorithm that computes the result of such a completion, for each of
our algebraic structures.

A naive implementation would be monolithic, but we are building
a hierarchy of tactics for various algebraic structures. There will be a
prover for each structure, and we want to reuse each of them as much as
possible for building the others. For example, the semi-group prover will
reorganize sums into their right-associative form, and the monoid level
–that specifically needs to simplify sums with the constant zero– will reuse
the monoid level for producing the right-associative form. Thus, even
if our attention is on the most complicated structure that we’re dealing

116

4.6. Normalisations functions and re-usability of the provers

with (ring), we will pay attention to take each step of the normalisation
independently and we will implement them separately at the appropriate
level on the most general way. This way, each simplification will not only
work for the level where it is implemented, but also for all the levels
where this treatment is required. The next subsections will describe the
organisation of all the simplifications needed at the different levels of the
hierarchy.

4.6.3 Normalization of terms in semi-groups

In a semigroup, we only have to deal with the property of associativ-
ity. As it was the case with the toy prover for Nat in section 3, we
will have to rearrange the parenthesis on a systematic way, either left
associative, or right associative. We’ll use the complete right associative
form. However, this is not the only thing that we have to do for dealing
completely with the property of associativity. Indeed, if x, y and z de-
note variables, we don’t only want to transform x + ((y + 4) + (5 + z))
into (((x + y) + 4) + 5) + z. We also want the constants 4 and 5 to be
simplified together, because they are close to each other (and we have
the right to do so because we can rearrange the parenthesis thanks to the
associativity), and the result should be ((x + y) + 9) + z on this example.
Three possible patterns need this treatment : (x + const1) + (const2 + y),
(x + const1) + const2 and const1 + (const2 + x) where const1 and const2
denote constants. The simplification between the constants const1 and
const2 will be denoted as constResult, and this computation can be done
at the underneath magma level, with its normalisation function called
magmaReduce. All he have to do here is to rewrite the first pattern into
(x + constResult) + y, the second into (x + constResult) and the third
one into (constResult + x). We show the code for the first pattern :

117

4. Equivalences in Algebraic Structures

assoc : (p:SemiGroup c) → (Γ:Vect n c) → {c1:c}
→ (ExprSG p Γ c1)
→ (c2 ** (ExprSG p Γ c2, c1 ' c2))

assoc p Γ (PlusSG
(PlusSG ex (ConstSG _ _ const1))
(PlusSG (ConstSG _ _ const2) ey)) =

let (r_ihx ** (e_ihx, p_ihx)) = (assoc p Γ ex) in
let (r_ihy ** (e_ihy, p_ihy)) = (assoc p Γ ey) in
let (r_3 ** (e_3, p_3))
= magmaReduce (semiGroup_to_magma

(PlusSG (ConstSG _ _ const1)
(ConstSG _ _ const2))) in

let e_3’ = magma_to_semiGroup p e_3 in
(_ ** ((PlusSG (PlusSG e_ihx e_3’) e_ihy),

?Massoc1))

Figure 4.14: Computing with associativity in a Semi-Group, first pattern

The treatment is applied recursively on the sub-expressions ex and
ey, which produces the new expressions e_ihx and e_ihy together
with the new concrete values they represent (r_ihx and r_ihy) and
the proofs (p_ihx and p_ihy) justifying these transformation on the
concrete values. Note that the computation of the constant represent-
ing const1 + const2 is done by calling the underneath magma prover,
which gives a new expression e3, even thought it could perfectly be done
directly here : we simply wanted to show how a prover can be reused
for building another prover on this very simple example. We see that
we need functions for converting terms between the different levels in
order to reuse the underneath prover : that’s the role of the functions
semiGroup_to_magma and magma_to_semiGroup.
A meta-variable Massoc1 has been introduced by this definition. This
metavariable corresponds to a proof obligation for the following prop-
erty : Plus (Plus x const1) (Plus const2 y) ' Plus (Plus r_ihx r3) r_ihy
in a context where there is, amongst other things, p_ihx : x ' r_ihx,
p_ihy : y ' r_ihy and p3 : Plus const1 const2' r_3. The left hand side of
the equivalence to prove is the expected concrete value, and the right-
hand side is the concrete value produced by the computation that we have

118

4.6. Normalisations functions and re-usability of the provers

done. This lemma says that the treatment done by this function assoc

on this pattern was sound because the previous and the new concrete
values are equivalent. It can easily be proven with a few rewritings and
the use of the associativity, available from the implementation p of the
semi-group interface.

After this simplification of constants computable thanks to associativity,
the normalization for semi-group also has to rearrange the brackets on a
systematic way. The fully right or fully left associative forms can both
be chosen for this purpose, and the implementation is very similar to
the function expr_l previously described for the smaller example on
section 3.3

4.6.4 From a semigroup prover to a monoid prover

In a monoid, we simply have to eliminate zeros, thanks to the two
properties of left and right neutrality. The simplification of additions
between a zero and another constant has already be done at the level of
semigroup because nearby constants have been simplified, so we only
have to simplify the addition between the constant zero and a variable.
There are in fact two cases, since the variable can come first, or the zero
can come first. We can write a function elimZero which rewrites these
two patterns x+Z and Z+x into x.

The normalization of reflected expressions in a monoid is simply
made of a call to the function reducing terms on a semigroup, followed
by a call to elimZero that eliminates the remaining additions with zeros.

4.6.5 From a monoid prover to a group prover

The first thing that the reduction function of the group prover has to
do is to transform every subtraction (a − b) into (a + (−b)), and we
are entitled to do so precisely because we have available the property
Minus_simpl contained in the implementation of the interface. After
that, the reduction continues with the propagation of the Neg operation
inside the parenthesis and −(a + b) is transformed into (−b) + (−a).

119

4. Equivalences in Algebraic Structures

Note that we have to be careful and not simplify it to (−a) + (−b) as it
would assume that we’re having a commutative monoid. Then, because
we’ve pushed some negations inside the parenthesis, we might have
sequences of two or more consecutive negations. We simplify them
by removing two consecutive negations every time that we find such a
sequence. Once this is done, there is a last major step specific to groups
to accomplish, which is the simplification of sums of symmetric elements.

This might be a direct sum of symmetric elements, like −e1 + e2 or
e1 +−e2 and in these two cases, we need to simplify them when e1 can
be reduced13 to e2 , and if so the result should be Zero. We are entitled
to do this treatment because of the property Plus_inverse.

The sum to simplify might be more complex, with two or three levels
of Plus. In these cases, there might be some simplifications to do thanks
to the associativity property. With two levels of sums, we will transform
(e1 + (−e2 + e3)) and (−e1 + (e2 + e3)) into e3 when e1 can be reduced
to e2. Also, ((e1 + e2) + −e3)) and ((e1 + (−e2)) + e3) are simplified
into e1 when e2 can be reduced to e3. Finally, in presence of three level
of sums, we will transform (a + b) + ((−c) + d) and (a + (−b)) + (c + d)
into a + d when b can be reduced to c.

The last remaining step is to call the monoid prover. Unfortunately,
we can’t directly write a function of conversion from group to monoid,
because in a group we have the possibility to express negations and
subtractions, that we do not have in a monoid. The idea is that we will
encode negations as variables, and we will let the monoid prover deal
with them as ordinary variables. In order to achieve this goal, we need
the following datatype that will help us to distinguish between a real
variable and the encoding of a negation :

data Variable : {c:Type} → {n:Nat}

→ (Vect n c) → c → Type where

RealVariable : (Γ:Vect n c) → (i:Fin n)

→ Variable Γ (index i Γ)

13It is not enough to simply check their syntactic equality, as they might not be
immediately equal but could perhaps be normalised to the same term. Thus, this step
–which is part of the reduction function– uses the entire reduction function, but it calls
it on a smaller term.

120

4.6. Normalisations functions and re-usability of the provers

EncodingNegOfVar : (Γ:Vect n c) → (i:Fin n)

→ Variable Γ (Neg (index i Γ))

We only need to encode negations of variables, as negations of con-
stants can be simplified into a constant. Also, there can’t be a negation of
something different than an atom (a variable or a constant), because of
the treatments we’ve done beforehand, and particularly because we have
pushed all the negations symbols inside the parenthesis.

The constructor for variables now takes a Variable as parameter,
instead of taking directly an element of (Fin n) :

VarG : (p:Group c) → {Γ:Vect n c} → {val:c}

→ (Variable Γ val) → ExprG p Γ val

Thanks to this encoding, we can now transform an ExprG to an
ExprMo. A constant (ConstG p Γ c1) will be transformed into the
corresponding constant (ConstMo p Γ c1), a PlusG into the corres-
ponding PlusMo, a real variable into the same real variable, the negation
of a constant into the resulting constant, and finally the negation of a
variable i into a (VarMo p (EncodingNegOfVar Γ i)). Once this
encoding is computed, the penultimate step is to call the monoid prover
for finishing the normalisation. Finally, we interpret back the result into
an ExprG, which implies converting the potentials EncodingNegOfVar
into Neg of the corresponding variables.

4.6.6 From a group prover to a commutative group
prover

A commutative group, compared to its underlying group, only has
one extra axiom : the axiom of commutativity for the addition. The
normalisation will therefore work as follow : it will start by calling
the group prover. Here, the two algebraic structures have the same
power of expressivity, and thus there’s no specific encoding to design
in order to convert an ExprCG into an ExprG. Calling the group prover
will do all the needed simplifications, apart from the simplifications
relative to the use of commutativity. That’s why, afterwards, we need to
order the products of monomials in the toplevel sum, following the rules

121

4. Equivalences in Algebraic Structures

presented in 4.6.1. The current implementation uses an insertion sort for
ordering these products of monomials. As will be discussed in 4.7.5, if
the efficiency of the commutative group prover (and the provers above)
becomes an issue on large terms, it will be possible to replace this
insertion sort by a more efficient one, like merge sort.

4.6.7 From a commutative group prover to a ring
prover

The most important specific task of the ring reduction is to develop en-
tirely the expression with the use of distributivity. After that, it needs
to call the commutative group prover, but here again, we’re losing some
expressivity as it won’t be possible to express a product at the commut-
ative group level. We follow the same idea that we’ve implemented
for the conversion going from group to monoid, and we will use some
specific encoding. More precisely, all monomials (containing products),
like 3 ∗ (x ∗ y) are encoded as variables before being passed to the com-
mutative group prover. This is possible because we’ve fully developed
the expression, which had the effect of ensuring that a product can’t
contain a sum. We add a constructor to the type Variable in order to
encode these monomials.

4.7 Properties and results

4.7.1 Correctness

All the machinery that we have produced has been formally proven
correct within Idris internal type theory. The proof of correctness is in
fact already contained in our development, and no additional proofs are
required in order to formally establish this correctness, as this proof of
correctness is in fact what our tactics are producing. Indeed, in order
to operate, all our tactics work by normalising the left and the right
hand sides of the potential equivalence, but these normal forms are just
a support for producing the proof of equivalence required by the user.
The proof itself is what our tactics were expected to produce. This is rare

122

4.7. Properties and results

enough to be mentioned, as usually, the result produced by a function
is not the same object as its proof of correctness. The area of proof
automation is here an exception.

Written in plain English, the correctness of our tactics says that when
required to prove (in a potentially non empty context) an equivalence x'
y, the system either generates nothing, or it generates a valid proof of x'
y. Because our tactics return an inhabitant of the type Maybe(x ' y),
and because Idris’ type-checker verifies the proof that has been generated,
we have the guarantee that the proof cannot be invalid, assuming the
internal kernel of Idris14 is sound, which we expect to be15.

4.7.2 Completeness

We’ve said in the previous subsection that correctness is the fact that our
tactics either generates nothing or a valid proof of x' y. Therefore, a tac-
tic that would always return the value Nothing could be seen as correct
: it never generates a false proof, because it simply never generates any
proof. However, such a system, although "correct", would be completely
useless, and this is why completeness matters. Being complete for a tactic
means that whenever ask to generate a proof of x' y, the tactic always
returns a proof if x' y is provable.
Our tactics return a proof of x' y when the normalisation of the reflec-
ted left and right hand sides are syntactically the same entities, which is
checked by the expr_eq. Therefore, completeness can be stated as the
following meta-theorem :

completeness_1 : ∀ x y, x ' y →
expr_eq (reduce (reflect x)) (reduce (reflect y))

= Just refl

14By "internal kernel", we refer to the concrete implementation of Idris’ underlying
type theory.

15If Idris’ internal type theory or its implementation would be unsound, not only
the correctness of our tactics would be affected, but potentially any development could
become unsafe, so the need for proofs and proof automations would disappear as
nothing could be trusted anymore.

123

4. Equivalences in Algebraic Structures

Another possibility to express it, is to say that if the result is Nothing,
then the two concrete expressions x and y are not equivalent :

completeness_2 : ∀ x y,
expr_eq (reduce (reflect x)) (reduce (reflect y))

= Nothing → x 6 ' y

completeness_1 implies completeness_2 because A → B im-
plies ¬B→¬A (here A is x' y, and B is expr_eq (reduce (reflect

x)) (reduce (reflect y)) = Just refl) and because the result
is either Nothing or Just refl, so one possibility is the negation of
the other.

Remark. The other direction completeness_2 → completeness_1

also holds, but only if we place this meta-theoretic analysis in the con-
text of a classical logic, as (¬B→ ¬A)→ (A→ B) can’t be proven in
constructive logic16.

Encoding completeness and proving it inside the language is very
difficult because the output of our normalisation function is just an Expr,
and this type does not constrain the normalisation function to produce an
expression that is indeed in normal form, as this is the type of the input
as well. The type-safe reflection technique that we’ve developed (that
made the building of the tactic and its proof of correctness easier) was the
main focus on our approach, and the trade-off was to make the proof of
completeness more difficult, or even impossible to do with a reasonable
amount of work. However, it would theoretically have been possible to
manipulate a specific datatype for expressions in normal forms. That
would have added quite a lot of hassle, because our datatypes are already
very generic and indexed by multiple values. Someone focusing on a
mechanically verified proof of completeness would have certainly made
a different choice here, by defining a specific datatype for normalised
expressions, that would allow to obtain by construction the proof of
completeness.

16Only a weaker version can be proven in constructive logic : (¬B→¬A)→ (¬¬A→
¬¬B).

124

4.7. Properties and results

Anyway, there is a reason for not needing that much a formal proof
of completeness, which is that nothing can go wrong if a tactic is not
complete. In fact, if a tactic is not complete, then we might realise it at
some point when we will try to prove an equivalence that we know holds,
but that the system can not prove. At this stage, nothing will be broken,
and the system will still be sound. We would just have to do the proof by
hand (as we did without automations), or to fix the prover for dealing
with what is certainly a forgotten treatment in the normalisation function.
As long as no such example are found, the system can be considered
as total in practice without any risk. Developing the formal proof of
completeness would be very complicated, and there is no point to do so
because the guarantee offered by the completeness isn’t something critical
that must be ensured at all time. Moreover, if the proof of correctness
is vital for us, the proof of completeness would not be of any practical
interest inside the proof assistant.

However, we obviously believe that our tactics are complete, or a least
complete-enough for being useful. We believe that they are complete for
two reasons :

The first one is practical : we haven’t seen any example where the
proof should have been generated, but wasn’t generated.

The second, which is the most important, is theoretical : we believe
that the normalisation function that we have implemented effectively
puts the polynomials in a canonical form. The normal form that we
have chosen, which is fully developed (see section 4.6.1), makes it easy
to believe this second point. Let x and y be the left and right side of
the potential equality. Let’s assume that x ' y. Now, let’s consider the
shape of norm x and norm y. After normalisations, we know17 that
we have got polynomials (of multiple variables) expressed as a sum of
products of monomials, where each monomial is itself a product of a
constant and of a product of variables (see 4.6.1 for more details). But
since x ' y, then, by identification, the corresponding constants must
be equal, which makes norm x and norm y being syntactically the
same. We can visualize this argument more easily with one variable

17This is precisely this knowledge which is hard to prove inside the proof assistant,
without using a specific datatype which enforces the normal form shape.

125

4. Equivalences in Algebraic Structures

: if we take a polynomial of a variable x of degree n, developing it
completely will give, after some basic rearrangements and simplifications
: P = a0 ∗ x0 + a1 ∗ x1 + a2 ∗ x2 + an ∗ xn.
If P is equal to another polynomial P′ of the same degree, and if we
rewrite this second polynomial into : P′ = a′0 ∗ x0 + a′1 ∗ x1 + a′2 ∗ x2 +

a′n ∗ xn then, since P = P′, by identification, each coefficient must be
equal to its correspondent coefficient : ai = a′i for each i in [0, n]. Said
differently, once normalised like this, a polynomial of a variable can
only be equivalent to itself if we only consider normalised expressions.
The same happens with our polynomials of multiple variables, but the
identification works there between the coefficients of the monomials.

4.7.3 Termination

Termination is another important property because no one likes to wait
for the output of a program that will never come because the program is
stuck in an infinite loop. We use computer programs to automate tasks
and we want the tasks to be effectively done after a finite amount of time.
In order to gain guarantee about the termination, Idris is equipped with
a totality checker. A function is total if it is defined for all possible inputs
and if it is guarantee to always terminate, so totality is more than just
termination as it also contains coverage. In dependently typed theories,
totality checkers check the termination by looking at the size of the
arguments in recursive calls. If all recursive calls always happen on a
term strictly smaller than the original one, then we have the guarantee
that the sequence of recursive calls will terminate at some point. Because
it is difficult for the totality checker to automatically determine a good
notion of size, this check is often implemented by simply checking that
recursive calls happen on a strict subterm of the original argument for
at least one argument n, and in this case the function is said to be a
structural recursion on n. Therefore, the semantic notion of termination is
approximated by a more restrictive syntactic notion. That will necessary
lead to false positives, i.e. situations where the totality checker reports
a function as potentially not terminating, when this function is in fact
always terminating. This situation happened multiple times during the

126

4.7. Properties and results

development of our hierachy of tactics. Here is an example that belongs
to the group level : it is the function that pushes negations inside the
parenthesis, following the rule −(a + b) = (−b) + (−a) :

propagateNeg : {c:Type} → (p:Group c)

→ {g:Vect n c} → {c1:c} → (ExprG p g c1)

→ (c2 ** (ExprG p g c2, c1~=c2))

propagateNeg p (NegG (PlusG e1 e2)) =

let (r_ih1 ** (e_ih1, p_ih1)) =

(propagateNeg p (NegG e1)) in

let (r_ih2 ** (e_ih2, p_ih2)) =

(propagateNeg p (NegG e2)) in

-- Careful : - (a + b) = (-b) + (-a) in a group

-- and not (-a) + (-b) in general.

((Plus r_ih2 r_ih1)

** (PlusG e_ih2 e_ih1, ?MpropagateNeg_1))

propagateNeg p (NegG (NegG e)) =

let (r_ih1 ** (e_ih1, p_ih1)) = propagateNeg p e in

(r_ih1 ** (e_ih1, ?MpropagateNeg_2))

propagateNeg {c} p (NegG e) =

-- Here ’e’ can only be a constant or a variable

-- as we’ve treated Plus and Neg before

(_ ** (NegG e, set_eq_undec_refl {c} _))

propagateNeg p (PlusG e1 e2) =

let (r_ih1 ** (e_ih1, p_ih1)) =

(propagateNeg p e1) in

let (r_ih2 ** (e_ih2, p_ih2)) =

(propagateNeg p e2) in ((Plus r_ih1 r_ih2)

** (PlusG e_ih1 e_ih2, ?MpropagateNeg_3))

propagateNeg {c} p e =

(_ ** (e, set_eq_undec_refl {c} _))

This function is reported as non-total by Idris’ totality checker because
in the first pattern (where the input is (NegG (PlusG e1 e2))), the
recursive calls are made on the arguments (NegG e1) and (NegG e2)

which are not subterms of (NegG (PlusG e1 e2)). In fact, this func-

127

4. Equivalences in Algebraic Structures

tion will always terminate, because at some point, the negations will only
be in front of atoms (constants and variables), and in this case the result
is produced directly by returning the input expression (that’s the third
pattern).

Here is another example. In the normalisation functions, we’ve some-
times faced situations where we had to apply a treatment f on the original
expression x0 until the point where applying f again would give the same
result. For example, at the ring level, we have a function develop which
develops one time the products of sums, and then we use a function
develop_fix to fully develop the polynomial by applying develop

as many times as needed. A function f _ f ix that does this job is said
to compute a fixpoint of f , i.e. it produces a solution to the equation
x = f x. Here, the fixpoint that we compute is the fixpoint starting from
the input value x0

18 . We’ve needed these fixpoints when we had to
apply a treatment on a specific pattern (or on a set of patterns), but with
the possibility that the application of the treatment could create a new
instance of the pattern that precisely needs to be rewritten. There is also
the case of nested patterns where we can not treat them all at the same
time, and we have to start the treatment by one of them, leaving the other
one for later (i.e. for the next passes). The idea for writing these f _ f ix
functions is to apply the one-pass treatment f once, and then to inspect
if some simplifications have been done by this application, i.e. to check if
the current result has changed. If so, f _ f ix is applied again recursively.
If not, the current result is returned. Below is the scheme (for rings) of
how such fixpoints can be computed for a specific function f .

f_fix : {c:Type} → (p:Ring c)

→ {g:Vect n c} → {c1:c} → (ExprR p g c1)

→ (c2 ** (ExprR p g c2, c1~=c2))

f_fix p e =

-- Apply the one-pass treatment f once

let (r_1 ** (e_1, p_1)) = f p e in

-- Look for syntactical equality : have we done

-- some simplification in the last pass ?

18Formally, the result x verifies ∃n, f n x0 = x ∧ f n+1x0 = x.

128

4.7. Properties and results

case exprR_eq p _ e e_1 of

-- Previous and current terms are the same :

-- we stop here

Just pr => (r_1 ** (e_1, p_1))

-- Previous and current are different :

-- we apply the fixpoint again

Nothing => let (r_ih1 ** (e_ih1, p_ih1)) =

f_fix p e_1 in

(r_ih1 ** (e_ih1, ?M_f_fix_1))

The termination of a function that follows the scheme of f _ f ix de-
pends on what the one-pass treatment f is doing. For example, if f
replaces all instances of a specific pattern in the original expression, then
even if f occasionally creates an instance of this pattern, we might know
that overall, at some point, they will all be replaced and the function
will terminate. Therefore, only a smart and fine-grained analysis can
realise that functions such as develop_fix terminate. The syntactic
and over-pessimistic totality checker cannot do automatically this kind of
analysis. We could do some hard work for encoding a good notion of size,
and proving that it decreases at every recursive call. However, as was the
case for completeness, developing such a proof in the system is not worth
the effort. So far, we haven’t seen any example of a term that would make
our normalisation function run into an infinite loop. If this situation
happens at some point, we will simply fix the normalisation function.
There is only one case where having a non-terminating function could
be dangerous, and that’s in the case where this function would be used
inside the proof of correctness, i.e. for proving the desired equivalence
x ' y (or in some auxiliary proofs used in this proof). Because of the
Curry-Howard correspondence, proofs are functions, but these functions
absolutely need to be total in order to maintain the system sound. We
make the following claims about termination :

• Even if some functions that produce computational content (i.e.
not proofs) can’t be tagged as total in the system, we always have
good reasons for trusting that they will terminate, as it is the case
for the function develop_fix. This reason can be a complicated

129

4. Equivalences in Algebraic Structures

semantic notion that would be hard to encode in the system in order
to formally prove the termination, but that is theoretically doable :
we have never written a function that we know could potentially
never stop on stop inputs.

• The proof of x' y –that is being built automatically by our machinery–
never uses a potentially non-terminating function as a proof, be-
cause that would make the system unsound. In fact, all the lemmas
used in the proof x ' y can be tagged as total. Therefore, if our
tactics generate a proof of x' y, we can be sure that this is a valid
proof.

Finally, let’s emphasize the fact that our machinery runs during
the type-checking of the user’s program, and not during its runtime.
The reason is that our machinery produces something with no real
computational content : it generates a proof that only has to be type-
checked in order to obtain the guarantee that it conveys. Therefore, the
termination of our tactics, even if important, can not affect the termination
of the user’s programs.

4.7.4 Results

The collection of provers that we’ve developed can prove equivalences in
algebraic structures. These provers are generic in multiple ways :

1. They work for many algebraic structures : magma, semi-group,
monoid, commutative monoid, group, commutative group, semi-
ring and ring.

2. They work for any type c that is an instance of one of the structures
mentioned above.

3. They work for any equivalence relation ': c→ c→ Type and not
only for the propositional equality.

These provers are necessary correct (as their proof of correctness is
precisely their output, see section 4.7.1), and we have good reasons to
expect them to be complete (see section 4.7.2)

130

4.7. Properties and results

These provers can be used to automatically prove the proofs obliga-
tions that appear naturally during the development and the certification
of real-world applications. These proofs obligations are common when
dependent types are being used. Let’s go back to the concrete problem
presented 1.3 with binary numbers and their addition, that led to two
proof obligations adc_lemma_1 and adc_lemma_2. The latter, which
was the most complicated, required us to prove that :
vLsb + ((vCarry0 + v) + v1) + ((vCarry0 + v) + v1)
= (c + (bit + (v + (v + 0)))) + (bit1 + (v1 + (v1 + 0)))
In a context there is the following induction hypothesis
ihn : (c + bit) + bit1 = vLsb + (vCarry0 + (vCarry0 + 0))

We are now able to use the proof automation that we’ve developed
in this chapter in order to automatically prove this goal. That will
demonstrate on an example that our machinery can effectively be used to
solve the initial problem of providing proofs for index mismatches. We
are working with natural numbers and the addition, which is associative,
commutative, and which admits 0 as neutral element. Therefore, we
are trying to prove an equality in a commutative monoid. The first
thing that we have to do in order to use the commutative monoid prover
is to write an implementation of the CommutativeMonoid interface for
the type Nat. That consists of providing proofs for all the required
properties. Many of them are already provided in the standard library,
so we can just pass these already made proofs. Once the implementation
of the CommutativeMonoid is defined, we can use the corresponding
normalisation procedure for normalising the hypothesis and the goal
(both left and right hand sides). In this example, we can’t simply call the
prover with the goal that we have to prove, as the left and right hand
sides of the goal are not using the same variables (vLsb and vCarry0 only
appear on the left hand side of the goal, while c, bit and bit1 only appear
on the right) and that’s the hypothesis ihn that makes the link between
these different variables. Let’s assume the ordering of the variables
decided by our machinery is bit < bit1 < c < v < v0 < vCarry0 < vLsb.
We start by normalising the hypothesis, which gives : ihn_norm : bit +
(bit1 + c) = vCarry0 + (vCarry0 + vLsb). We also normalise the goal,
which gives : v + (v + (v1 + (v1 + (vCarry0 + (vCarry0 + vLsb))))) =

131

4. Equivalences in Algebraic Structures

bit + (bit1 + (c + (v + (v + (v1 + v1)))))
We can rewrite the normalised hypothesis ihn_norm in the normal-

ised goal, which gives the following formulae to prove : v + (v + (v1 +

(v1 + (bit + (bit1 + c))))) = bit + (bit1 + (c + (v + (v + (v1 + v1))))). At
this stage, the prover can finish on its own by normalising the left and
right sides of the current goal. This example has required a few more
calls to the normalisation function for commutative monoid because we
had to deal with an hypothesis that made the link between different
variables, but even in this case, all the normalisations were done auto-
matically, so that was effortless. We’ve demonstrated that our machinery
can automatically prove equalities (and equivalences in general), which
helps for the development and the certification of programs, especially
the ones that intensively use dependent types and indices.

4.7.5 Complexity and performances

Worst-case complexity

Evaluating the worst-case complexity of our tactics requires us to analyse
the complexity of the normalisation functions which is not an easy task,
as it depends on the length of the input expression, but also on the actual
content of the expression : if negations are used, on the proportion of
constants being used, and even on the balance of the expression. For
example, if the input expression of length n is a sum A + B, we will
often have recursive calls on the sub-terms A and B. If the expression is
completely unbalanced, with a length of 1 for A, and a length of n− 1 for
B, then the recurrence relation is T(n) = T(1) + T(n− 1) + f (n). Let’s
assume that the cost of the base case is small compared to the cost of
the work done outside of the recursive calls, i.e. T(1) = O(f (n)). We
get T(n) = T(n− 1) + O(f (n)). However, if the input expression was
perfectly balanced, then the recurrence relation is T(n) = 2 ∗ (T(n/2)) +
f (n). In order to see the difference between these two cases, let’s assume
the cost outside of the recursive calls is linear (i.e. f (n) = n). The first
possibility T(n) = T(n− 1) + O(f (n)) leads to a complexity of O(n2).
The second case needs the application of the master theorem that gives
solution of the general recursion relation T(n) = a ∗ T(n/b) +O(nd). The

132

4.7. Properties and results

master theorem says that if d < logba then T(n) = O(nlogba) : that’s the
case where the cost of the treatment done outside of the recursive calls is
insignificant compared to the cost of the recursions. However, if d = logba
then T = O(nd.logbn) : that’s the case where the cost of the recursive calls
and the cost of the treatment done outside of them both matter. The last
case is when d > logba, and in this case T(n) = O(nd) : that’s the case
where the treatment done outside of the recursive calls is so expensive
that it overwhelms the cost of the recursions.

Here a = 2, b = 2, and d = 1, which gives d = logba, so we are in the
second case of the master theorem, and the solution is therefore T(n) =
O(nd.log(n)), i.e. O(n.log(n)). We see here that we can get a significant
difference in the theoretical complexity of a treatment depending on
the balance of the expression. We will therefore have to make a rough
approximation, abstracting over what the content of the expression is
and how it is balanced. Our normalisation functions are split into small
functions that each do a simple task, and these simple tasks often belong
to these categories :

• Traversing an expression, while locally replacing a specific pattern
by another one, like replacing (a− b) by (a + (−b)). For the cases
where both the recognition and the replacement of the pattern is
done in constant time, this treatment correspond to the recurrence
relation T(n) = T(n − 1) + O(1) in the non-balanced case, and
to T(n) = 2.T(n/2) + O(1) in the perfectly balanced case. The
balancedness doesn’t change the result of what is in fact a full
exploration of the expression, and the cost is linear on the size :
T(n) = O(n).

• Applying recursively a treatment on the subterms A and B of a
binary expression like A + B or A ∗ B, and continuing by doing
a treatment of linear complexity. That gives either the relation
T(n) = T(n− 1) + O(n) or T(n) = 2.T(n/2) + O(n) depending on
the balancedness, leading to respectively O(n2) and O(n.log(n)), as
explained above. Shuffling parenthesis goes into this category, like
transforming an expression into its full right-associative form.

133

4. Equivalences in Algebraic Structures

• Reorganizing sub-terms of an expression, like the components of
a sum within a commutative group or commutative monoid. The
reorganization is implemented as a sort, and the complexity of
this treatment therefore depends on the complexity of the sort it-
self. We’ve implemented an insertion sort (of worst-case complexity
O(n2)) instead of a more efficient merge-sort or quicksort for sim-
plicity, as we don’t only sort the subterms of an expression but we
also generate a proof term at the same time, which makes the task
harder. This sorting algorithm can be replaced latter on, giving
room for improving the performances for all the commutative struc-
tures. However, this sorting algorithm is not a theoretical bottleneck
as we have other treatments that are O(n2) in the worst case.

For the most interesting structures of commutative monoids, commut-
ative groups, semi-rings and rings, the normalisation function composes
these three kind of treatments, so the overall complexity of the provers
for these structures is expressed by the sum O(n) + O(n.log2n) + O(n2),
leading to a worst-case complexity of O(n2).

The best case complexity of the current implementation is also quad-
ratic due to the insertion sort. However, the case where the left and right
hand sides are exactly the same could be improved by first checking if
the two expressions are exactly (i.e. syntactically) the same, and if so to
answer immediately, and to only normalise them otherwise.

Performances

In order to give an idea of what the performances are on a real and fairly
complicated example, we go back again to the concrete problem presented
in section 1.3 with binary numbers and their addition, that led to the
proof obligation adc_lemma_2. As explained in the subsection 4.7.4, the
automatic generation of this proof required 6 calls to the normalisation
algorithm for terms in a commutative monoid. The first two calls were for
normalising the left and right hand sides of the hypothesis. The next two
calls where for normalising the left and right hand sides of the goal. After
a rewriting of the normalised hypothesis into the normalised goal, a call
to the prover finished the proof with two last normalisations. In a more

134

4.7. Properties and results

conventional example that does not involve different variables linked via
an hypothesis, only the last two calls would be needed. Therefore, this
example required three times more normalisation calls, which implies
that the time needed to produce the proof is roughly tripled compared
to an example with some equivalent expressions (of roughly the same
size) but without hypothesis to deal with. Still, in this example, our
implementation generates and prints the proof in less than 8 seconds on a
dual core i5 processor @ 2.4 Ghz. Even if that can be seen as slower than
hoped, the tactic is perfectly usable. Also, if we only ask the system to
generate the proof and not to print it (as printing it is completely useless
: the goal of the proof is only to be checked by Idris’ type-checker for
ensuring the corresponding guarantee), the execution time goes under 4
seconds. Therefore, for many concrete examples that involve comparable
expressions (with 7 to 10 variables and 8 to 10 use of operators), the
generation of the proof will often take less than a second, which is felt as
instantaneous by the user.

In the collection of tests that we have implemented for the various
tactics, one of the most complicated one is the proof19 (at the ring level)
of ((((((3 ∗ x) ∗ (y ∗ 2)) ∗ u) + (x ∗ (y− y))) + (3 ∗ ((x ∗ y) ∗ (5 ∗ g)))) =
(((3 ∗ x) ∗ (y ∗ 5)) ∗ g) + (3 ∗ ((x ∗ y) ∗ (2 ∗ u)))) where x,y,u and g are
also relative numbers. The automatic generation of this proof with 4
variables and many simplifications to be performed is done instantly by
our ring prover on the same machine.

In order to compare our performances with another implementation,
Coq’s ring tactic takes a bit less than a second to automatically produce
the proof of adc_lemma_2 by using the same sequence of automating
rewritings, so it is roughly 4 times more efficient on this test. The second
test just above also leads to a proof generated instantly as it was the case
for our own prover.

19The automatic generation of this proof can be found in the file Provers/ring_test.idr
in the term proof_expCr_expC2r.

135

4. Equivalences in Algebraic Structures

4.8 Alternative approaches

4.8.1 A naive approach

Without our type-safe reflection mechanism, the naive and traditional20

way to go for this problem of automatic proof generation would be to have
functions producing only computational content (i.e. the normalisation
functions would only produce a normal form and no proof), and some
external lemmas about them. If we no longer have our type Expr indexed
over the concrete value of type c, then we would have to start by defining
the function reify:Expr → c which interprets back an expression into
its concrete value. As we did in our approach, there would still be a func-
tion for reflecting terms reflect:c → Expr that does the opposite
job. Because reflect is a function based on syntax, it needs to use Idris’
reflection mechanism. We would need to prove the correctness of these
two functions, and it turns out that one lemma is enough for completely
specifying the expected behaviour of these two functions at the same time :
reflect_and_reify_correct:∀ x:c, reify (reflect x) ' x.

Then comes the normalisation function : normalise:Expr → Expr.
Because this function is weakly typed compared to our approach (we no
longer have an index giving a guarantee about the concrete values), we
would need to provide a lemma of correctness about it after its definition.
This lemma of correctness must say that the interpretation of the original
(reflected) term is equivalent to the interpretation of the normalised (re-
flected) term :
normalise_correct:∀ e:Expr, reify (normalise e) ' reify e

We have avoided the need of such a complicated proof in our correct by
construction approach enabled by our type-safe reflection mechanism.

Now, similarly to what we’ve done, we would need a syntactical
equality test, checking whether two reflected expressions are syntactically
equal. The difference here is that, as often with this kind of "traditional"
approach, we would produce something that belongs to the world of
computations, usually an uninformative boolean :

20By “traditional" we have in mind the proof engineering style developed in the
Coq’Art [6] where functions are defined with weak types, and some lemmas proven
afterwards complete their specification.

136

4.8. Alternative approaches

beq_Expr:Expr → Expr → bool

Because this boolean on its own is completely uninformative, we now
need a proof of correctness for this function as well, which says that if
this function decides that two given terms are syntactically equal, then
their interpretation should be equivalent :

beq_Expr_correct : ∀ (e1 e2:Expr),
beq_Expr e1 e2 = true → reify e1 ' reify e2

We did not have to do prove this lemma either with our approach.
We could now build the kernel of the tactic as the following decision

procedure :

decideEq : c → c → bool

decideEq x y =

let ex = reflect x in

let ey = reflect y in

beq_Expr (normalise ex) (normalise ey)

This function on its own would not be enough as the goal of a tac-
tic is not to answer a simple "yes they are equivalent" or "no they are
not equivalent", but to produce the proof of equivalence when appro-
priate. Therefore, we would need to add a correctness theorem, and
this is precisely this correctness theorem that would be the used when
calling the tactic. This correctness theorem for decideEq would be
decideEq_correct:∀ x y:c, decideEq x y = true → x ' y.
Scheme of proof21 : we first need to obtain a proof H0 of rei f y (re f lect x)'
rei f y (re f lect y), which mostly involves using two times the lemma
normalise_correct and one time beq_Expr_correct in the (un-
folded) hypothesis. Then, we can build the desired proof of x ' y by
using two calls to the reflect_and_reify_correct lemma and the
recently obtained proof H0.

21I have developed a formal proof of it in Coq which can be found in the file
others/traditionalApproach.v which is an axiomatic formalisation of how the tactics
could be developed without our type-safe reflection mechanism.

137

4. Equivalences in Algebraic Structures

Now, the tactic could be built by using this correctness theorem.
When trying to prove a goal a ' b, the tactic would apply this theorem
decideEq_correct, which means that x will be unified to a and y to b.
The desired proof is thus produced if the premise decideEq a b = true

holds. But whether this premise holds or not can be easily tested by
running the function decideEq on the two arguments a and b.

Both with this “naive and traditional approach" and with our type-safe
reflection, the activity of proving has effectively been replaced by the task
of running a function, and a simple evaluation is now enough to produce
the desired proof. The main advantage of our approach compared to this
kind of naive approach is that we don’t need external lemmas, and more
generally that the proof of correctness is obtained a lot more easily. Also,
as we will see in the next subsection, this kind of naive approach could
not be followed exactly, and we will show how Coq’s implementation
of a ring prover –which almost follows this naive approach– has been
adapted.

4.8.2 Coq’s implementation

Coq’s implementation

Coq is not equiped with a full hierarchy of provers comparable to what
we’ve built for Idris, but it is equiped with a prover for rings and semi-
rings. In Coq’s latest implementation of the ring tactic, described in [22],
they almost followed what has just been desribed as a “traditional" ap-
proach with the use of many auxiliary lemmas. The biggest difference
between our work and Coq’s Ring tactic is that they’ve implemented
it in Ltac, when our entire development is carried inside Idris’ type
theory. Ltac is an untyped tactic language, in the sense that an Ltac "func-
tion" produces something which might not have a valid –and unique–
type. Because of this, Ltac definitions can only be used in the context
of goals. Applying a tactic defined with LTac might work, and then
it makes progress to the current goal, or it might fail, and in this case
the goal is kept unchanged. And anyway, the validity of the proof
done is going to be checked during the final QED so no inconsisten-
cies can be introduced with these definitions. Ltac functions can’t be

138

4.8. Alternative approaches

used in the statement of a lemma, and it is therefore not possible to
reason about them. That means that it is not possible to write the lemma
reflect_and_reify_correct of the "traditional" approach described
in the previous subsection, because it is not even possible to state it as
it uses a function defined in LTac. Because it is impossible to state this
property, it would not be possible to finish the proof of the main theorem
decideEq_correct:∀ x y:c, decideEq x y = true → x ' y

that we had to do in the naive approach. Indeed, the last step of this
proof was to apply two times –one for the LHS, one for the RHS– the fact
that ∀ x : c, rei f y (re f lect x) ' x. One possibility would be to add this
axiom, but this is particularly unsightly, and potentially harmful. Also, it
would imply that anyone using the ring prover would have this axiom
added to his development, and would be forced to believe in it. Some
proofs would be done automatically for the user of the system, but at
the overly-expensive price of adding some uncertainty. Instead, what
they did for Coq’s implementation of the ring prover was to replace the
main theorem ∀ x y : c, decideEq x y = true → x ' y by the following
lemma22, which is weaker, but still powerful enough to build the desired
tactic :

f_correct:∀ (e1 e2 : Expr),
beq_Expr (norm e1) (norm e2) = true
→ reify e1 ' reify e2

Now, the tactic works like this. When trying to prove the goal
a ' b, it computes (re f lect a) and (re f lect b). It then tries to apply
(f _correct (re f lect a) (re f lect b)) to the goal.

• If it can unify the goal a' b with rei f y (re f lect a) ' rei f y (re f lect b)
then it only has to check the validity of the premise by running the
decision procedure. More precisely, if beq_Expr (norm (reflect

a)) (norm (reflect b)) is evaluated to true, then it has built

22This lemma –that they call setpolynomial_simplify_ok– can be found in
Coq’s repository in the file plugins/ring/Setoid_ring_normalize.v.

139

4. Equivalences in Algebraic Structures

the premise of f_correct and there’s nothing left to prove. How-
ever, if the result was false, then it means that the automatic ring
prover hasn’t been able to prove this goal, because the left-hand side
and the right-hand side don’t reduce to the same thing. Assuming
the ring prover is complete, that means that a is not23 equivalent to
b, or at least, they aren’t equivalent only with the properties of a
ring.

• If it could not unify the goal a' b with rei f y (re f lect a) ' rei f y (re f lect b),
then it means that there is something wrong in the definitions of the
functions reflect and reify, and it could print something like
“The ring prover has failed unexpectedly. There’s something wrong
with the implementations of the reflect and reify functions".
Nothing really bad would have happened, as no inconsistent proof
would have been produced, nor no axioms added. That would
just mean that the implementation of the ring prover is slightly
broken, and that some goals that should be automatically provable
aren’t automatically proved. Thus, it would only decrease the com-
pleteness of the prover. That would be of course bad –because as
discussed in 4.7.2, in the extreme case the prover never succeeds
to generate a proof and is therefore completely useless–, but that
would only limit the scope of usage of the prover.

Differences with Coq’s implementation

Coq’s ring prover follows the traditional approach of defining func-
tions, and latter on proving many auxiliary lemmas about them.
This is particularly adapted to Coq, which has many facilities for the
construction of proofs, and a powerful proof mode. However, this
approach kind of duplicates the work : they first tell the machine
how it works, and latter, why it works. This separation between the
world of computations and the world of logic becomes smaller in
our approach with a fine use of dependent types, that allows to

23Note that in this case, it hasn’t produced a formal proof of dis-equivalence, which
isn’t the goal of a ring prover.

140

4.9. Summary

write more specific types, and thus to capture logical properties. The
writing of functions can therefore be guided by these more precise
types, and this is one of the main benefit of the approach we have
followed. Moreover, we almost get the proof of correctness for free,
because every little bit of rewriting done for the normalisation of
the reflected terms is accompanied by the logical justification which
tells why this rewriting can be done –and locally, this justification
is always simple !–. In the end, all the proofs we had to do were
systematically straightforward, since they only contained rewritings
with the available hypothesis and the use of the properties of the
corresponding algebraic structure.

Another difference with our implementation is that we have im-
plemented a hierarchy of tactics for many algebraic structures, but
Coq’s implementation only deals with rings and semi rings. If
someone wants to prove equalities in a commutative group that
isn’t a ring, he simply can not use their prover. A dedicated prover
for commutative groups would be needed, and Coq currently does
not have one. The worst is that such a prover for commutative
group would do very similar treatments, which means that a lot of
code and proofs could have been factorised. This is what we’ve ob-
tained by taking this in account from the start. Our monoid prover
uses the underneath semi-group prover, our group prover uses the
underneath monoid prover, and so on. In this dimension, the level
of re-usability that we have achieved is better than the re-usability
of the ring tactic for Coq. However, their implementation is more
efficient, as discussed earlier in 4.7.5.

4.9 Summary

In this chapter we have implemented a very generic solution to the
original problem of index mismatch that appeared in chapter 1.3
when we tried to define functions that use dependent types. This
solution takes the form of a hierarchy of provers for equivalence

141

4. Equivalences in Algebraic Structures

relations in algebraic structures. These provers are generic in mul-
tiple ways : they work for many algebraic structures (semi-group,
monoid, commutative monoid, group, commutative group, ring
and semi-ring), for any type that behaves as one of these structures,
and for any equivalence relation on this type (and not only for the
propositional equality). The implementation is modular and each
prover reuses the prover of the structure from which it directly
inherits.

These provers can automatically prove equivalence between terms,
which discharges the user of providing proofs for all the proof
obligations that appear naturally when using dependent types.
Therefore, these provers enable the user to focus on the interesting
and main proofs of his development that require specific know-
ledge and creativity, instead of wasting time and energy for proving
routine lemmas that can be automated. We think that the human
time is best used when it is devoted for proving things that can not
be automated.

The correct-by-construction method that we have followed was the
same as the one presented in chapter 3. It involved the design of a
type-safe reflection mechanism where reflected terms were indexed
over the concrete expressions, and from which we were able to pull
out the proofs easily. The construction of the proof is done step
by step, and it follows the construction of the normalised terms.
Therefore, unlike other implementations –like Coq’s implementa-
tion of a ring prover– we do not have the traditional duplication
that happens when separating the computational content from the
proof of correctness24 . Instead, in our approach, the construction
of the proof is guided by the construction of the normalised terms,
which, in addition of avoiding redundancy, simplifies the proof
generation considerably.

24This is particularly well suited here, because the normalised terms are not needed in
output, and the proof of correctness is in fact what has to be produced. See section 4.7.1.

142

Chapter 5

Programming with Dependent
Types

He who hasn’t hacked assembly language as a youth
has no heart. He who does as an adult has no brain.

— J. Moore

In the previous chapter, we’ve built a hierarchy of automatic provers
for algebraic structures. Such automations make it easier to use de-
pendent types for everyday programming, as discussed in chapter 1.

As dependent types have become more popular, new usages of them
have been investigated, not only as a formal language for doing
pure theorem proving, but also as a way to improve code safety
without necessarily going as far as proving the full correctness. We
explore in this chapter some of these usages, and we highlight some
connections with the machinery that we have developed.

5.1 Using views to gain structural

information

Dependent types have been shown [36, 33, 47, 32, 8, 35, 44, 10, 7] to
be an effective tool for expressing logical links, and especially for
building links between different representations of the same data.

143

5. Programming with Dependent Types

In [36], an alternative representation of lists is studied, which gives
an immediate access to the last element, while still preserving an
almost immediate access to the first. Such a representation of an
existing datatype is called a view, provided that it is possible to write
a function that builds the view from the value of the original type
(List here). This new view of lists is particularly useful for writing
an algorithm of (right) rotation on lists, as it offers a direct access
to the last element of the list, while preserving the natural order of
the list, which therefore goes from the first to the penultimate. In
this section, we use this example as a case study, and we adapt it to
Idris.

These new lists are defined inductively, and they are indexed over
the list that is being represented, denoted as a standard list. In Idris,
this definition can be written like this :

data SnocView : {A:Type} → List A → Type where

SNil : SnocView Nil

Snoc : {A:Type} → (xs:List A) → (x:A)

→ SnocView (xs ++ [x])

It is important to see that the Snoc constructor encapsulates a
standard list instead of being recursive. The value SNil represents
an empty list, and Snoc xs x represents the list xs augmented
with x at its end, which can be expressed as xs ++ [x]. This
representation gives an immediate access to the last element as
pattern matching a SnocView value gives it immediately when the
underlying list is not empty. We also have an almost immediate
access to the head of the list as this only requires to pattern match
the value and its underlying list if we are in the case of a Snoc.

Given a standard list, we want to have an automatic way to build
its SnocView representation. For this purpose, we write a function
which builds the view from the original list, and it has the following
type :

buildSnocView : {A:Type} → (l:List A) → SnocView l

144

5.1. Using views to gain structural information

The type of this function already expresses that the SnocView that
is built effectively represents the input l, as it produces a value of
type SnocView l.

The SnocView of an empty list Nil is Snil :

buildSnocView Nil = SNil

The SnocView of a non empty list h::t is built by computing
recursively the SnocView of the sub-list t and using this result
in a dependent pattern matching (see 1.2.4) that gives us some
information about the input we are having :

buildSnocView (h::t) with (buildSnocView t)

buildSnocView (h::Nil) | SNil = Snoc Nil h

buildSnocView (h::(ys ++ [y])) | Snoc ys y

= Snoc (h::ys) y

If the result of the recursive call buildSnocView t produces
SNil, we know that t is Nil, and so we simply return Snoc Nil h

with only one element, which is necessarily the last. However, if the
result of the recursive call is Snoc ys y, then we deduce that the
input t is ys ++ [y]. In this case, as y is the last element of the
sub-list t, it is necessarily also the last element of the original input
list h::t, and the function can therefore return Snoc (h::ys) y.

This buildSnocView function builds the SnocView of a list given
in input, and thus provides a representation which is adapted for
manipulating both the first and the last element of the structure.
Following [36], if we now want to write a rotateRight function
on lists, the view that we have created (and which can be automat-
ically computed with buildSnocView) will be extremely useful.
This rotateRight function takes a list in input and returns a list
where the last element of the original list is now the first element,
and all the other elements have been moved one step to the right.
Building such a rotateRight function can easily be done by do-
ing a dependent pattern-matching on the intermediate computation
buildSnocView l.

145

5. Programming with Dependent Types

rotateRight : {A:Type} → List A → List A

rotateRight l with (buildSnocView l)

rotateRight Nil | SNil = Nil

rotateRight (ys ++ [y]) | Snoc ys y = y::ys

If the SnocView is SNil, then the input is forced to be Nil, and its
right rotation is simply Nil. If the SnocView is Snoc ys y, the
input is forced to be ys ++ [y], and in this case its right rotation
can be expressed easily as y::ys.

If we evaluate rotateRight [1, 2, 3, 4, 5], we get the ex-
pected output [5, 1, 2, 3, 4].

With this technique of defining a view (SnocView) which carries
the information that we need and an automatic way to compute this
view from any input (the buildSnocView function), we have been
able to gain some information about the shape of our inputs because
of the strong link expressed (by a dependent type) between a list l
and its view of type SnocView l. Append is not a constructor of
List, so it would not have been possible to directly pattern-match
a list against an append operation. Here, by using the more general
dependent pattern matching on a well-chosen view, we’ve been able
to gain the information we needed about the last element of the
input list. Such a pattern-matching remain total because it explores
exhaustively the possible outcome of computing the view.

In [36], such techniques are implemented for the development of
parts of a domain-specific language for cryptographic protocols
inspired by Cryptol (Galois, Inc. 2002). One of the most distinctive
feature of Cryptol is its pattern matching on bit vectors, where a
word is split into pieces, as in the following definition :

swab : [32] → [32]

swab [a b c d] = [b a c d];

Such a pattern-matching can be simulated by defining a view in-
dexed over the complete bit vector :

data SplitView {A:Type} : {n:Nat} → (m:Nat)

146

5.1. Using views to gain structural information

→ Vect (m * n) A → Type

A SplitView n m v represents the vector v (of size m ∗ n) split
into m vectors of size n. This view has a single constructor :

[_] : {n, m:Nat} → (xss : Vec m (Vec n A))

→ SplitView m (concat xss)

where concat is the simple following function :

concat : {A:Type} → {n,m:Nat} → Vect m (Vect n A)

→ Vect (m * n) A

concat [] = []

concat (xs::xss) = xs ++ concat xss

It is then enough to write a buildSplitView function that auto-
matically builds the SplitView from the flat input vector, and
then the swab function can be written straightforwardly :

swab : Word 32 → Word 32

swab xs with buildSplitView 8 4 xs

swab _ | [a::b::c::d::Nil]

= [b::a::c::d::Nil]

The buildSplitView function is not detailed, but it uses a split
function, of type
∀ (n,m:Nat), Vec (m*n) A → Vec m (Vec n A) and it re-
quires this lemma about it:

∀ {n,m:Nat} (xs:Vec (m*n) A),

concat (split n m xs) = xs

Writing views for defining custom pattern matching principles
in a dependently-typed language has originally been described
by Wadler in [47] and later enhanced by McBride in [33] where
a general high-level style of programming in dependently type
theory is described. These theoretical ideas about a dependent
pattern-matching which gains information about various terms
simultaneously following their logical dependencies have lead to
various implementation, first in Epigram [32], then in Agda [35] and

147

5. Programming with Dependent Types

more recently in Idris [8]. In these kind of usages, dependent types
are not used as a way to build a complete formal proof of correctness
(we haven’t really proved the correctness of the rotateRight

and swab functions after all), but instead as a way to express
more easily some algorithms. These algorithms become so easy
to write that the need for a formal proof becomes less important
because a formal specification would match exactly the code that has
been written. For example, we’ve written that the rotateRight
of any list ys ++ [y] is simply y::ys, but a legitimate logical
specification would be to state exactly that.

In [31], these techniques are also used for gaining structural inform-
ations about terms, this time not exactly for more easily writing
an algorithm, but for proving more easily the termination of a
first-order unification algorithm. Usually, unification algorithms
are written using general recursion, and the proof of termination
is done separately, relying on the "occur-check" to ensure that each
substitution reduces the number of distinct variables remaining in
the problem. As the usual representation of terms does not take in
account the number of variables involved, this proof of termination
is quite difficult. McBride presents a new representation of terms,
indexed over the number of variables n, which enables writing a
unification algorithm as a structural recursion in n. By expressing
more structure, dependent types therefore make more recursion
structural. Similar techniques have been used in [44, 10, 7] where in-
dexed types and views enables getting more structural informations
about terms.

In all these examples from the literature that we have mentioned,
the use of dependent types bring more formal guarantees or enables
to write more easily some algorithms. This new style of program-
ming that uses the types to be guided to the solution is, we believe,
the future of functional programming. However, in all of these
formalisations, some work has to be done for proving routine lem-
mas that are needed for the definition of the function that builds the
view. In that respect, the work that we have presented in chapter 4

148

5.2. Using indexed types to build structures on trusted ones

on proof automation can help programming more naturally with
dependent types, as motivated initially in 1.3. Building automations
for all possible kind of goals encountered when programming with
dependent types would go well beyond algebraic structures and
beyond the aim of this thesis, but it would continue to go in the
same direction.

5.2 Using indexed types to build

structures on trusted ones

When programming with dependent types, it is possible to define
a new concept as a data-type indexed over another one, the later
playing the role as a (potentially partial) semantic for the former.
As an example, let’s explore briefly how one could define labelled
binary trees as a type indexed over the list of the elements found in
the tree :

data Tree : (A:Type) → List A → Type where

EmptyTree : {A:Type} → Tree A []

Node : {A:Type} → {l1:List A} → {l2:List A}

→ (left:Tree A l1)

→ (elem:A)

→ (right:Tree A l2)

→ Tree A (l1++[elem]++l2)

Such a representation makes it easier to statically check some op-
erations on trees, as most of them will have an impact on the
underlying list of values. It is indeed possible to express directly
the effect of an operation on trees by stating how the underlying
list is transformed, using functions on lists that are assumed to
be correct. This way, we get the correctness of operations on trees
relatively to a (computational) specification on lists.

For instance, if we want to write a function that inserts at the right
location an element x into a supposedly ordered tree, we can write
this function with the following type :

149

5. Programming with Dependent Types

insertTree : {A:Type} → (Aord : PartialOrder A)

→ (x:A)

→ {lindex:List A} → Tree A lindex

→ Tree A (insert Aord x lindex)

With such a type, if we assume that the insert function on
List is correct, we immediately get that any implementation of
insertTree that typechecks is correct too.

It is then possible to write the following function, which builds a
binary search tree from a list of values :

buildSortedTree : {A:Type} → (Aord : PartialOrder A)

→ (l:List A)

→ Tree A (sortList Aord l)

Again, any implementation of buildSortedTree that typechecks
will be correct if sortList is correct too.

This technique, which consists of relying on a trusted datatype and
its associated operations to build a new one, can also be used for
writing a new and cleverer version of the same datatype. The first
representation can be simple and easy to reason about, and the
second one can improve the performances on many operations, or
use a more compact representation. In this case, indexing the new
type over the existing one will give a complete semantics as both types
represent the same concept.

In all these kind of applications, there is always many proof ob-
ligations coming along, as the term which is computed has very
rarely the right indices without doing some rewriting. For this
reason, having proof automations available can greatly improve the
usability of such techniques, where an existing type is used as a
way to express the specification of a new one.

150

5.3. Refinement types and restricted forms of dependent types

5.3 Refinement types and restricted

forms of dependent types

Using dependently typed theories to entirely verify the correctness
of an application always requires an incredible amount of time
and energy. Not only is writing a good and complete formal
specification difficult, but the proving step that comes just after is
even more difficult. Also, the text that constructs all the proofs is
often between 5 to 10 times the volume of the code being verified.
That’s why we need as many proof automations as possible to make
formal verification doable, and this thesis has presented a way to
build a hierarchy of provers to help the activity of theorem proving
for formal verification. There is also some ongoing research[37, 40,
43, 48, 49, 50] in alternative systems that offer a restricted form of
dependent types, and which are therefore not as general as the
languages and theories that we have exposed throughout this thesis.
However, these systems with such limitations induce decidable
logics, and much of the proofs are therefore constructed by the
system itself without requiring some manual intervention.

One of these systems is the Logically Qualified Data Types sys-
tem [40] (abbreviated to Liquid Types), where liquid types are a
restricted version of refinement types in which type inference is
decidable, meaning that the user never has to write manual type
annotation.

Let’s explain first this notion of refinement types, in the context of
the Hindley-Milner type system. A refinement type has the form
{e : T | b} where T is an Hindley-Milner type, and b is a boolean
expression which may contain the variable e and the free variables
of the program. This refinement type contains all the values v
of type T that make the boolean predicate b[v/e] evaluate to true.
This construction is the exact equivalent to the construction of an
intensional set in set theory : {x ∈ X | P(x)}, which builds a new
set from the set X, which contains all the elements x of X that
verify the condition P(x). For example, the type {e : Nat | e > 0}

151

5. Programming with Dependent Types

is a refinement of the type Nat, without the value 0. The notion
of subtyping is essential in this system, as the notion of subset is
essential in set theory with intensional sets. A refinement type
τ1 = {e : T | b1} is a subtype of the refinement type τ2 = {e : T | b2}
if the formulae b1→ b2 is universally valid. Any original (Hindley-
Milner) type T can be converted to the refinement type {e : T | true}
without changing the terms that it contains, so any refinement
τ = {e : T | bτ} of T is a subtype of T, as bτ→ true for all bτ.

A liquid type is a refinement type where the boolean predicate b
is a conjunction of boolean predicates from a set Q∗. This set Q∗
is different at each text location. Every set Q∗ is obtained from
a set Q given by the programmer, which contains all the logical
qualifiers of interest. These logical qualifiers are boolean predicates
built using program variables, a special value variable ν which
is distinct from the program variables, and a special placeholder
variable ∗ that can be instantiated with any program variable. All
the Q∗ sets are built by replacing the placeholder ∗ of all the
logical qualifiers from Q by variables in scope at that location, and
by only keeping the well-typed logical qualifiers. As in [37, 40],
let’s take the example of a set Q containing the logical qualifiers
{0 ≤ ν, ∗ ≤ ν, ν < ∗, ν < len ∗}. At a program location where the
following variables are in scope : [x : Nat, y : Nat, a : Array], the
set Q∗ is : {0 ≤ ν, x ≤ ν, y ≤ ν, k ≤ ν, ν < n, ν < len a}. Note
that ill-typed logical qualifiers are removed immediately after being
rejected, and are therefore not part of Q∗.

Liquid types offer the possibility to get many of the benefits of
doing formal certification, without paying much of the cost. The
user only has to provide the pre- and post-conditions of a function
as liquid types, without having to give any intermediate assertions
like loop invariants which can be inferred by the system. Then, all
the proof obligations are automatically extracted, and proved auto-
matically by the system. The main restriction is the kind of logical
formulae which can be proved in this way : they must belong to a
decidable logic, which ensures that they are provable by an SMT

152

5.3. Refinement types and restricted forms of dependent types

prover, which is the internal proving machinery of Liquid Types
systems.

Liquid Haskell (LH) [37, 45, 46] is a system which implements
Liquid Types on top of the programming language Haskell, there-
fore providing a weak version of dependent types to Haskell. LH
uses the haskell compiler GHC in order to first type-check the pro-
gram in the Hindley-Milner sense, and then deals with the Liquid
type annotation given by the programmer. From these pre and
post-conditions, it generated proof obligations in the form of type
constraints, which are then solved by an SMT solver.

Let’s also mention the F* language[43], which, unlike Liquid Haskell
is equipped with full dependent types, while still offering refine-
ment types. In practice, this system looks like an extension of Ocaml
with dependent types. This language has initially been designed for
the development and the verification of cryptographic protocols[39].

Some other forms of restricted dependent types have been studied
for programming with dependent types without all the burden
of proof assistants with full dependent types. In Dependent ML
(DML) [50], the ML language is extended with a restricted form of
dependent types (that its creator has named DML-style dependent
types) where the index terms are required to be taken from a
type index language that is completely separate from the real (run
time) values. This system therefore does not really implement
the "types as values" paradigm advocated by dependent types, as
there is still a distinction between the real values and the types.
In practice, this system is useful if the properties that one want
to verify can be encoded as natural numbers, or as some other
simple expressions. For example, a library of Vector can easily be
developed in this system, with the append function that has, as
usual, a type specifying the size property of the output. By being
a conservative extension to the ML type system, any program that

153

5. Programming with Dependent Types

typechecks in DML is already typable in ML. However, it might
have a more precise type in this extended type system, bringing
some parts of formal verification to ML programming.

Even though DML-style types and Liquid Types are only restricted
forms of dependent types, they are often enough to express interest-
ing properties about programs. They can be an interesting middle
ground between not verifying anything (like in Haskell and Ocaml
programming), and verifying every little property (like in Coq). The
programming language Idris that has been used throughout this
thesis can be seen itself as an intermediate between these weaker
forms of dependent types, and a proof assistant like Coq. It is more
powerful than Dependent ML and Liquid Haskell as it has support
for full dependent types, but its emphasis is more on programming
than on proving, unlike Coq. For instance, Idris does not enforce
the termination check, which often makes the implementation of
prototypes easier, as it does not require to make all recursions struc-
tural in the first instance. Still, we can learn from these simpler
systems, and interfacing Idris with an SMT solver for discharging
proof obligations that are decidable by an LH-style machinery could
be an interesting thing to do, that would continue to go in the proof
automation direction that this thesis has taken.

Often, ensuring some logical properties and some links between
different data can be more important than doing a full proof of
correctness, and these restricted forms of dependent types are
particularly well suited for these tasks. When a proof of correctness
is done, it is always done relatively to a formal specification. But
the formal specification can be as complicated as the code, and
the guarantee obtained by the proof becomes less clear. The next
and final chapter of this thesis explores these issues of adequacy
between formal specification and real requirements.

154

Chapter 6

Predicate Testing in Formal
Certification

Beware of bugs in the above code; I have only proved
it correct, not tried it.

— D. Knuth

In this thesis, we have automated the construction of proofs of
equivalence in some algebraic structures, therefore discharging the
user from some proof obligations and making formal certification
and type-based verifications more accessible to programmers. The
use of these type-based verifications helps to increase the confidence
in critical software, which is the general goal of formal certification
and of the introduction of proofs.

However, a formal proof is only a guarantee relative to a formal
specification, and not necessary about the real requirements [38].
There is always a jump when going from an informal specifica-
tion to a formal specification expressed in a logical theory. Thus,
proving the correctness of a piece of software always makes the
implicit assumption that there is adequacy between the formalised
specification –written with logical statements and predicates– and
the real requirements –often written in English–. Unfortunately,
a huge part of the complexity lies precisely in the specification
itself, and it is far from obvious that the formal specification says

155

6. Predicate Testing in Formal Certification

exactly and completely what it should say. Why should we trust
more these predicates than the code that we’ve first refused to trust
blindly, leading to the necessity of these proofs? In this thesis, we’ve
automated the generation of some kind of proofs, and in this last
chapter, the question is simply : how much can we trust formal
proofs ?

As we will show, the proving activity has not replaced the testing
activity but has only changed the object which requires to be tested.
Instead of testing code, we now need to test predicates and logical
definitions. We present recent ideas about how to conduct these
tests inside the proof assistant on a few examples, and how to
automate them as far as possible.

6.1 Believing in machine-checked proofs

One way to increase our confidence in software is to formally prove
its correctness using a proof assistant. Proof assistants enable to
write code, logical statements and proofs in the same language,
and offer the guarantee that every proof will be automatically
checked. Many of them are functional programming languages, like
Coq [6], Idris [8] and Agda [34], and others, like the B-Method [1]
belong to the imperative paradigm. These different paradigms are
internally supported by different logic. As presented intensively
in the previous chapters, systems like Coq, Idris and Agda are
based on various constructive logics (CIC and different variants
of ML, respectively) and are realisations of the Curry-Howard
correspondence, while the B-Method is based on Hoare logic. These
different foundations lead to different philosophies and different
ways to implement and verify a software, but all of them greatly
increase the confidence on the produced software. However, these
guarantees tend to be too often considered as perfect, when they are
in fact far from it. Knuth was saying “Beware of bugs in the above
code; I have only proved it correct, not tried it". And indeed, having
only a formal proof is not enough. When we prove the correctness

156

6.1. Believing in machine-checked proofs

of a function, we only gain the guarantee expressed by the proven
lemma, and nothing more.

Say we want to implement a formally verified sorting function
for list of elements of type T, where T is ordered by a relation ≤.
We can decide to define the sorting function with a “weak" type,
like sort:List T → List T, and to use an external lemma to
ensure the correctness of the function. Which property does this
function has to respect? First, the output has to be sorted, so we
need to define this notion of being sorted, here as an inductive
predicate :

data isSorted : {T:Type} → (Order T)

→ (List T) → Type where

NilIsSorted : (Tord : Order T) → isSorted Tord []

SingletonIsSorted : (Tord : Order T) → (x:T)

→ isSorted Tord [x]

ConsSorted : {Tord : Order T} → (h1:T) → (h2:T)

→ (t:List T) → (isSorted Tord (h2::t))

→ (h1 ≤ h2) → (isSorted Tord (h1::(h2::t)))

The first and second constructor of this predicate say that [] and
[x] are sorted according to any order, and for any x. The third one
says that a list of two or more elements is sorted if h1 ≤ h2, and if
the list deprived from its head h1 is also sorted. In order to express
that the result of sort is sorted, we can prove the following lemma:
sort_correct:∀ (T:Type) (Tord:Order T) (l:List T),

isSorted Tord (sort l). The problem with this specification
is that it does not say anything about the content of the output. The
function sort could just return the empty list [] all the time, it
would still be possible to prove this correctness lemma. Here, the
problem is that the function is underspecified, and it is therefore
possible to write a senseless implementation, which can be unfortu-
nately proved to be "correct". Only a careful reader could realise
that the lemma sort_correct forgets to mention that the input
and output list should be in bijection, meaning that everything

157

6. Predicate Testing in Formal Certification

which was originally in the input list should still be in the output,
and that nothing else has been added.

Another bug in the specification could have been to simply forget
the third constructor ConsSorted. But things more nasty can
happen. Imagine that this constructor would have been written
with a typo, and that the condition (h1 ≤ h2) would have been
incorrectly written as (h1 ≤ h1). Any list would be seen as
“sorted", just because of this single typo, and the algorithm could for
example return its input unchanged. One could object that when
doing the proof of correctness, we should realize that the proof is
being done too easily, without having to use the essential property
that the output is being built such that any element in the list is
always lower or equal than its next element. The reality is quite
different because many efforts are going in the direction of proof
automation, which aims to let the machine automatically generate
the proof for some kind of goals. As we’ve seen in the previous
chapters, Coq has already a Ring prover [22] and many others
automations, and we have implemented in this thesis a hierarchy
of provers for algebraics structures for Idris [42]. There are even
extensions to languages, such as Ltac [17] and Mtac [51] that aim to
help the automation of tactics. The problem is that the machine is
never going to find a proof “too easy", and will never report that
something seems weird with the specification given by the user.

Thus, if we want to trust the proven software, we’re now forced
to believe that there is adequacy between the formal specification
and the informal requirements. A switch has occurred. We used
to have to trust code, but we now have to trust logical statements
and predicates. However, if the specification does not obviously
capture the informal requirements, why should we blindly be-
lieve in it, when we’ve first refused to blindly trust the code? Of
course, with stronger systems, like dependently typed systems used
throughout this thesis, we can make a formal specification and an
implementation evolve together, which helps to build some confid-
ence. However, the guarantee that we get is not an absolute one,

158

6.2. Usual approaches to the adequacy problem

and the aim of this chapter is to raise awareness on the adequacy
concern, and to see how heterogeneous approaches, that mix both
proofs and tests, can help to go a step forward in the certification
process, in the context of proof assistants based on type theory.
More precisely, we :

– Show some basic approaches to the problem of underspecifica-
tion (section 6.2)

– Present a new way to test the predicate in the proof assistant, by
automatically generating terms, and we completely automate
these tests. We also show how we can go a step forward
by replacing these tests about the predicate by some proofs.
(section 6.3)

– We discuss possible directions for making dependently typed
programming languages more adapted to the testing of spe-
cifications (section 6.4).

We continue to use Idris, but as before, all the ideas that we present
can be applied to any programming language or proof assistant
based on dependent type theory. In this chapter, we will use a
running example about sortedness that can be found online at
https://github.com/FranckS/ProofsAndTests. The ideas
presented in this last chapter have been published in [41].

6.2 Usual approaches to the adequacy

problem

When confronted to this problem of adequacy between the intuitive
notion and the formalised one, a first possibility is to formalise the
notion multiple times, with different predicates, and to prove that
they are equivalent. With our example, that means that we need
to find another formalisation isSorted’ of being sorted, and to
prove the following lemma :

pred_equiv : ∀ (T:Type) (l:List T),

159

https://github.com/FranckS/ProofsAndTests

6. Predicate Testing in Formal Certification

(isSorted l) ↔ (isSorted’ l)

This approach aims at increasing the confidence in our formal
definitions by assuming that if we’ve managed to define multiple
times the same notion, then we have probably succeeded to define
the notion we wanted. The biggest problem with this approach is to
be able to find some alternative formalisations that are sufficiently
different from the original one. Obviously, if the new formalisations
are too similar to the original one (and in the worst case the new
ones are just syntactical variants of the first one), then we won’t gain
any guarantee. The ideal would be to capture the same notion by
using very different points of view, and we will show in section 6.3
an original approach for doing so.

In order to gain confidence in the formal specifications we write,
another traditional approach is to test the predicate on some values.
That consists in defining a few terms, usually by hand, for which
we know if the predicate should hold or not, and to prove that
the predicate effectively holds when it should, and that it does not
when it should not. For example, with the predicate isSorted

defined above, we can prove that it holds on the list [3, 5, 7]

that we know sorted.

isSorted_test1 : isSorted natIsOrdered [3, 5, 7]

isSorted_test1 =

let p1 : (3 <= 5) =

tryDec (lowerEqDec natIsOrdered 3 5) in

let p2 : (5 <= 7) =

tryDec (lowerEqDec natIsOrdered 5 7) in

ConsSorted 3 5 [7]

(ConsSorted 5 7 [] (SingletonIsSorted _ 7) p2) p1

This test is a test done by proof : we show that the predicate
holds on some specific value, here [3, 5, 7], by doing the
proof. We can go a step forward by removing the need of do-
ing these specific proofs by hand, because in this case, the pre-

160

6.2. Usual approaches to the adequacy problem

dicate isSorted can be decided : there exists an algorithm that
produces a proof of (isSorted l) if appropriate, or a proof of
(not (isSorted l)) otherwise :

decideIsSorted : (Tord : Order T) → (l:List T)

→ Dec(isSorted Tord l)

decideIsSorted Tord [] = Yes (NilIsSorted Tord)

decideIsSorted Tord [x] = Yes (SingletonIsSorted Tord x)

decideIsSorted Tord (h1::(h2::t))

with (lowerEqDec Tord h1 h2)

| (Yes h1_lower_h2) with (decideIsSorted Tord (h2::t))

| (Yes h2_tail_sorted) = Yes

(ConsSorted h1 h2 t h2_tail_sorted h1_lower_h2)

| (No h2_tail_not_sorted) = No [...]

| (No h1_not_lower_h2) = No [...]

Now, in order to do tests by proof, we can simply run the decision
procedure.

isSorted_test1’ : Dec (isSorted natIsOrdered [3,5,7])

isSorted_test1’ = decideIsSorted natIsOrdered [3,5,7]

And if we evaluate isSorted_test1’, the system will answer
Yes and a proof of isSorted [3, 5, 7], which means that the
predicate has passed this test. With this technique, we can run
semi-automatically a few tests on the predicate isSorted. It is
semi-automatic in the sense that we still have to define by hand
some terms that we know sorted or unsorted but we can let the
machine produce the proof that the predicate holds or not on these
specific values. This is not too bad –and this is in fact all of what is
usually done, when it is actually done– but we would like to have
a stronger guarantee, and not only that the predicate will coincide
with our intuitive notion on a couple of tested terms.

161

6. Predicate Testing in Formal Certification

6.3 Predicate testing by automatic

generation of terms

We can operate an interesting change of point of view by generating
the set of terms that we precisely wanted to describe with the
predicate. It is often easier to generate examples of a notion than
it is to precisely define it. With our example of sorted lists, that
means that we need to define the same notion of being sorted, but
this time with a definition example-based. Writing a function that
produces all the sorted lists might be a bit more difficult than just
giving a few examples, but this complicated function will have the
main advantage of being so different from the predicate that if the
two notions agree, then we will have gain a great confidence on
the predicate. We decide to use coinduction and the type Stream
(a coinductive version of List, potentially infinite) in order to
generate –with what we call a generator– all the sorted lists of size
n.

generateSortedList : (T:Type) → (recEnu:RecEnum T)

→ (Tord : Order T) → (n:Nat) → Stream (List T)

To do so, the type T needs to be recursively enumerable, which
means that there must exist a computational map Nat → Maybe T

with the condition that this map is surjective, which means that any
value of type T should be hit at least once by the map :

map_is_surjective : (y:T) →
(x:Nat ** (computableMap x = Just y))

We want to check that this function and the predicate coincide. Since
the predicate isSorted is decidable with decideIsSorted, we
can automatically check whether the generated sorted lists of size
n are automatically sorted (according to isSorted) by running
this decision procedure. But since there can be infinitely many
generated sorted lists of size n when n>0, we will only check that

162

6.3. Predicate testing by automatic generation of terms

the generator and the predicate coincide on a finite observation1 of
the resulting stream. The key point is that this observation can be
arbitrary big, and the bigger it is, the better the guarantee is about
isSorted.

We show how the observation is made on an example. Let T be a
type that only contains three constant values A, B and C. Since T
is finite (it’s an enumeration), it is therefore obviously recursively
enumerable. We define on it the strict order A < B < C. Let’s
automatically generate the first m sorted lists of T, of size n, by
unfolding m times the result of generateSortedList.

testGenerator : (m:Nat) → (n:Nat)

→ Maybe(Vect m (List T))

testGenerator m n =

let x = generateSortedList T TisRecEnu TisOrdered n

in unfold_n_times x m

We can ask for the first 8 sorted lists of size 4 by evaluating
testGenerator 8 4 :

Just [[A, A, A, A], [A, A, A, B], [A, A, A, C],

[A, A, B, B], [A, A, B, C], [A, A, C, C],

[A, B, B, B], [A, B, B, C]]

: Maybe (Vect 8 (List T))

Now, instead of simply generating the first m sorted lists, we run
the decision procedure on all of these m tests in order to know if
the predicate and the generator agree on this portion. The result
will be a vector of m booleans.

testSorted : (m:Nat) → (n:Nat) → Vect m Bool

testSorted m n =

let x = generateSortedList T TisRecEnu TisOrdered n in

let y = Smap

(\l => let res = decideIsSorted TisOrdered l in

1A finite observation of a stream, also called approximation at rank m of a stream,
is a vector of size m that has the same m first elements than the stream.

163

6. Predicate Testing in Formal Certification

case res of

Yes _ => True

No _ => False) x in

unfold_n_times_with_padding y m True

And we can inspect the result of running the first 8 tests of size 4
by evaluating testSorted 8 4.

[True, True, True, True, True, True, True, True]

: Vect 8 Bool

When we want to test isSorted on a large number of tests, we
might not want to inspect manually the result of each test. We can
write a function

testSorted_result : (m:Nat) → (n:Nat) → Bool

that calls testSorted m n and does the boolean And on each
element of the resulting vector. Now, we can for example test
the predicate on the first 50 sorted lists of size 9 by running
testSorted_result 50 9 and if we do so we get the overall res-
ult True which means that the predicate agrees with the generator
on all these 50 tests.

However, if the predicate isSorted has been incorrectly written,
then the result of this test might inform us that there is some-
thing wrong with the formal specification. For example, if we’ve
forgotten the third constructor consSorted in the definition of
isSorted, then the result of (testSorted 8 4) will be False,
which means that at least one of the produced list is not seen as
sorted according to isSorted, and we will therefore know that
this predicate does not capture our intuitive notion of sortedness.

In order to go a step forward, we can decide to replace the tests on
the predicate by proofs. Instead of testing the predicate on a finite
subset of all the generated sorted lists as we just did, we can try to
prove that any of the automatically generated sorted list is provably
sorted according to isSorted.

164

6.4. Summary

generated_implies_pred_holds : {T:Type}

→ (recEnu:RecEnum T) → (Tord : Order T)

→ (n:Nat)

→ (All (generateSortedList T recEnu Tord n)

(\l => isSorted Tord l))

Proof. By induction on n. When n is zero, there is only one sorted
list generated, which is the empty list, and we know that the empty
list is sorted thanks to the constructor NilIsSorted. When n is
some successor (S pn), we know by using recursively the lemma
on the smaller value pn that all sorted lists of size pn are sorted
according to isSorted. Since the stream of all sorted lists of size
(S pn) has been made from the stream of all sorted lists of size pn
by adding to all of them –on the head position– an element lower or
equal to their respective current heads, we know that the property
has been preserved at the higher rank.

This lemma has the advantage of not requiring the predicate to be
decidable, whereas this was needed when we automatically tested
the predicate on a finite observation. However, one could object
that this lemma is itself built by using a predicate, All, and that we
can’t necessary trust blindly such a specification. The answer is that
no guarantee is perfect, and all we can do is to add some guarantees,
but there is necessarily always something to trust. Moreover, this
new kind of specifications and proofs –about the predicate itself–
uses more primitive components like streams and the predicate
All, and these components can be provided once and for all. If
they are part of some standard library being used intensively, there
is very low risk that they do not capture the desired semantics.

6.4 Summary

In this chapter, we’ve discussed the confidence that we can have in
formal proofs, and we’ve presented a new way to test a predicate

165

6. Predicate Testing in Formal Certification

based on an automatic generation of terms that are expected to
have the desired property. This adequacy between the predicate
and the generator helps in gaining confidence in the predicate. The
technique presented on section 6.3 was based on a finite observation
of the terms generated in potentially infinite streams, processed by
the decision procedure.

We haven’t been able to find much work done in the direction of
predicate testing in the environment of proof assistants, but we
strongly believe that this aspect is crucial, as there is absolutely
no point in proving the “correctness" of a function relatively to a
bad specification. In this thesis, we’ve automated the construction
of proofs of equality and equivalence which are rather primitive
notions, so we never had to question the exactitude of our specific-
ations. However, there is more than equality and equivalence in
formal certification, and it is therefore legitimate to question the
validity of formal proofs in general.

The machinery developed for the running example presented in this
paper is extremely specific and it is not reasonable to believe that
this work should and could be done for every formal specification.
What it shows is that we really need to explore how proof assistants
themselves could help to gain confidence about predicates and
logical formulae. A possible direction could be to build execution
engines for formal specifications written in dependent type theories.
Such a system would take in input a predicate and would produce
some of the terms that make this predicate hold. The ideal would
be to have a query system where one could ask the system to try
to look if some specific terms are captured by the predicate. Since
the problem of finding proofs is undecidable in the general case in
most logics (not only in higher-order logics, but even in first-order
logic), such a system can’t be complete and entirely automatic, and
therefore the user would have to help the system at times.

Another possible direction is to equip proof assistants with many
robust and generic concepts (like being sorted) once and for all.
That would save the user from the error prone activity of writing

166

6.4. Summary

such primitive logical properties. Equipping proof assistants with
many generic and useful concepts already available, like bricks
ready to be assembled, is another current challenge to make proofs
assistants really usable.

167

Chapter 7

Conclusions

Dependent types and their usability (chapters 1-2) The start-
ing point of this thesis was the need of proof automations to make
dependently typed languages more usable. Dependent types aren’t
really usable without some abstractions that programming lan-
guages have to provide (like the dependent pattern matching of
Idris), and without proof automations as the ones we have built
throughout this thesis, because proof obligations arise naturally,
and especially with dependent types, as initially motivated on the
example with binary numbers indexed over their representation
in section 1.3. If we want dependent types and formal verification
techniques to become part of traditional functional programming,
we need to build abstractions, tools and automations that will help
the users with the most repetitive tasks.

Reflection and Proof automation (chapters 3-4) In order to de-
velop some automations to address some of these issues, first for
natural numbers and their additions in chapter 3, and later for
an entire hierarchy of algebraic structures in chapter 4, we have
developed a type-safe reflection technique which made the building
of these tactics much easier. The proof of correctness of the tactics,
which is what we really need (see 4.7.1) is easily pulled out from
the index representing the real, concrete Idris value of the reflected
expressions. The hierarchy of tactics that we have built with this

169

7. Conclusions

technique is very generic and in multiple ways : they work for many
algebraic structures (semi-group, monoid, commutative monoid,
group, commutative group, ring and semi-ring), for any type that
behaves as one of these structures, and for any equivalence relation
on this type (and not only for the propositional equality). The
implementation is modular and each prover reuses the prover of
the structure from which it directly inherits, thus avoiding as much
as possible code and proof duplication. An interesting thing is that
our approach uses an indexed representation –and thus depend-
ent types themselves– to build automations that are needed in the
presence of dependent types (but not only). However, our imple-
mentation choices are not necessarily always the best. For instance,
our hierarchy of provers is more general and more reusable than the
Coq ring prover, but the later is more efficient (see 4.7.5). Also, we
have focused on our type-safe reflection mechanism which enables
to build the proof of equivalence easily, but making a formalised
proof of completeness would be very difficult, as the shape of our
formal form is not enforced by a specific type. If someone were
to develop again this kind of proof automations for another lan-
guage, that could be something interesting to take in account from
the start. Note that this is not mutually exclusive with using our
type-safe reflection mechanism, as both approaches are compatible
(see section 3). Also, the work which has been done for this thesis
has helped to improve Idris : it was one of the first big pieces of
code written in it, so it has naturally led to discovering some bugs
in its implementation. It may also provide inputs for the successor
of Idris (see https://github.com/edwinb/Blodwen).

Programming with dependent types, views and indices (chapter
5) Using such indexed types is part of a broader and fairly new
usage of dependent types, presented quickly in chapter 5, where
dependent types are not only used as a formal logic for encod-
ing full proofs of program correctness, but also for building the
programs themselves. In this spirit, the types are meant to guide
the programmer towards an implementation easily, and without

170

much debugging work needed afterwards. For this, some precise
types need to be defined. The views presented in the chapter 5
are part of these precise types that give access to some important
information that could not be easily accessed otherwise. This style
of programming with dependent types does not necessary goes as
far as having a formal proof of correctness, but instead tries to gain
confidence on an implementation by refining the types bit by bit, to
the point where the implementation is almost trivial to write and
thus easy to believe.

The limits of formal certification (chapter 6) These new possib-
ilities brought by dependent types are not yet broadly used. In
dependently typed systems, dependent types are more often seen
as a way to reason formally (and they are indeed very good for this
task), but are rarely used as a tool for helping the programming
activity. Let’s recall the conclusion of chapter 6 : a full proof of
correctness mechanically verified is a nice thing, but is also often
over-rated when it comes to software development (the situation is
different if the goal is the formalisation of mathematics). Even for
a reasonably sized application, certifying formally its correctness
involve very complex formal specifications, and the question is why
should we trust more these definitions than the actual code? In
order to bring some guarantee, the formal specification is supposed
to be simpler than the code, but when the formal specification
is not trivial to follow (and the specification is rarely trivial for
a real program), the guarantee carried by a formal proof is not
perfect. That’s the limit of formal specification, presented in the
last chapter. This limit does not encourage us to stop working
with types and formal proofs. Instead, we are encouraged to not
only develop formal proof of correctness, but also to explore ways
to express many links between data as often as possible, as done
in chapter 5 on various examples. It also encourages us to mix
different approaches, combining proofs, tests, and other formal
methods. Programming with dependent types still has a long way
to go before becoming mainstream in functional programming.

171

Bibliography

[1] Jean-Raymond Abrial, Matthew K. O. Lee, David Neilson, P. N.
Scharbach, and Ib Holm Sørensen. The b-method. In Søren
Prehn and W. J. Toetenel, editors, VDM ’91 - Formal Software
Development, 4th International Symposium of VDM Europe, Noord-
wijkerhout, The Netherlands, October 21-25, 1991, Proceedings,
Volume 2: Tutorials, volume 552 of Lecture Notes in Computer
Science, pages 398–405. Springer, 1991.

[2] Thorsten Altenkirch. Naïve type theory, 2017.

[3] Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai
Kraus, and Fredrik Nordvall Forsberg. Quotient inductive-
inductive types. In Christel Baier and Ugo Dal Lago, edit-
ors, Foundations of Software Science and Computation Structures
- 21st International Conference, FOSSACS 2018, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings,
volume 10803 of Lecture Notes in Computer Science, pages 293–
310. Springer, 2018.

[4] David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller,
Gopalan Nadathur, Alwen Tiu, and Yuting Wang. Abella: A
system for reasoning about relational specifications. J. Formal-
ized Reasoning, 7(2):1–89, 2014.

[5] HP Barendregt. Lambda calculi with types, handbook of lo-
gic in computer science (vol. 2): background: computational
structures, 1993.

173

Bibliography

[6] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and
Program Development - Coq’Art: The Calculus of Inductive Con-
structions. Texts in Theoretical Computer Science. An EATCS
Series. Springer, 2004.

[7] Nicola Botta, Patrik Jansson, and Cezar Ionescu. Contributions
to a computational theory of policy advice and avoidability.
Journal of Functional Programming, 27, 2017.

[8] Edwin Brady. Idris, a general-purpose dependently typed
programming language: Design and implementation. J. Funct.
Program., 23(5):552–593, 2013.

[9] Edwin Brady. Type-Driven Development with Idris. Manning
Publications, 2017.

[10] Edwin Brady and Kevin Hammond. A dependently typed
framework for static analysis of program execution costs. In
Andrew Butterfield, Clemens Grelck, and Frank Huch, editors,
Implementation and Application of Functional Languages, 17th In-
ternational Workshop, IFL 2005, Dublin, Ireland, September 19-21,
2005, Revised Selected Papers, volume 4015 of Lecture Notes in
Computer Science, pages 74–90. Springer, 2005.

[11] Edwin Brady, James McKinna, and Kevin Hammond. Con-
structing correct circuits: Verification of functional aspects of
hardware specifications with dependent types. In Marco T.
Morazán, editor, Proceedings of the Eighth Symposium on Trends
in Functional Programming, TFP 2007, New York City, New York,
USA, April 2-4. 2007., volume 8 of Trends in Functional Program-
ming, pages 159–176. Intellect, 2007.

[12] Jacques Carette and Russell O’Connor. Theory presentation
combinators. In Johan Jeuring, John A. Campbell, Jacques
Carette, Gabriel Dos Reis, Petr Sojka, Makarius Wenzel, and
Volker Sorge, editors, Intelligent Computer Mathematics - 11th
International Conference, AISC 2012, 19th Symposium, Calculemus
2012, 5th International Workshop, DML 2012, 11th International

174

Bibliography

Conference, MKM 2012, Systems and Projects, Held as Part of CICM
2012, Bremen, Germany, July 8-13, 2012. Proceedings, volume 7362
of Lecture Notes in Computer Science, pages 202–215. Springer,
2012.

[13] Adam Chlipala. Certified Programming with Dependent Types -
A Pragmatic Introduction to the Coq Proof Assistant. MIT Press,
2013.

[14] Th. Coquand and C. Paulin-Mohring. Inductively defined
types. In P. Martin-Löf and G. Mints, editors, Proceedings
of Colog’88, volume 417 of Lecture Notes in Computer Science.
Springer-Verlag, 1990.

[15] Thierry Coquand and Gérard P. Huet. The calculus of con-
structions. Inf. Comput., 76(2/3):95–120, 1988.

[16] P Crégut. Une procédure de décision reflexive pour un frag-
ment de l’arithmétique de presburger. In Journées Franco-
phones des Langages Applicatifs. Technical report, 2004.

[17] David Delahaye. A proof dedicated meta-language. Electr.
Notes Theor. Comput. Sci., 70(2):96–109, 2002.

[18] David Delahaye and Micaela Mayero. Field, une procédure
de décision pour les nombres réels en coq. In Pierre Castéran,
editor, Journées francophones des langages applicatifs (JFLA’01),
Pontarlier, France, Janvier, 2001, Collection Didactique, pages
33–48. INRIA, 2001.

[19] Gilles Dowek. The undecidability of typability in the lambda-
pi-calculus. In Marc Bezem and Jan Friso Groote, editors,
Typed Lambda Calculi and Applications, International Conference
on Typed Lambda Calculi and Applications, TLCA ’93, Utrecht,
The Netherlands, March 16-18, 1993, Proceedings, volume 664 of
Lecture Notes in Computer Science, pages 139–145. Springer, 1993.

[20] Gottlob Frege. The Foundations of Arithmetic, 1884, translated
from the German by JL Austin. Evanston, Ill.: Northwestern
University Press, 1980.

175

Bibliography

[21] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and types,
volume 7. Cambridge University Press Cambridge, 1989.

[22] Benjamin Grégoire and Assia Mahboubi. Proving equalities
in a commutative ring done right in coq. In Joe Hurd and
Thomas F. Melham, editors, Theorem Proving in Higher Order
Logics, 18th International Conference, TPHOLs 2005, Oxford, UK,
August 22-25, 2005, Proceedings, volume 3603 of Lecture Notes in
Computer Science, pages 98–113. Springer, 2005.

[23] A. Heyting. Die formalen regeln der intuitionistischen logik,
english trans. by a. rocha in mancosu [1998, 311-327]. Sitzber.
Preuss. Akad. Wiss. (phys.-math. Klasse), pages 42–56, 1930.

[24] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.

[25] W.A. Howard. The formulae-as-types notion of construction.
In J.R. Seldin and J.P. Hindley, editors, To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus, and Formalism, 1980.

[26] Gérard P. Huet. A complete proof of correctness of the knuth-
bendix completion algorithm. J. Comput. Syst. Sci., 23(1):11–21,
1981.

[27] Pepijn Kokke and Wouter Swierstra. Auto in agda - program-
ming proof search using reflection. In Ralf Hinze and Janis
Voigtländer, editors, Mathematics of Program Construction - 12th
International Conference, MPC 2015, Königswinter, Germany, June
29 - July 1, 2015. Proceedings, volume 9129 of Lecture Notes in
Computer Science, pages 276–301. Springer, 2015.

[28] Fredrik Lindblad and Marcin Benke. A tool for automated the-
orem proving in agda. In Jean-Christophe Filliâtre, Christine
Paulin-Mohring, and Benjamin Werner, editors, Types for Proofs
and Programs, International Workshop, TYPES 2004, Jouy-en-
Josas, France, December 15-18, 2004, Revised Selected Papers,
volume 3839 of Lecture Notes in Computer Science, pages 154–169.
Springer, 2004.

176

Bibliography

[29] Zhaohui Luo. A unifying theory of dependent types: The
schematic approach. In Anil Nerode and Michael A. Taitslin,
editors, Logical Foundations of Computer Science - Tver ’92, Second
International Symposium, Tver, Russia, July 20-24, 1992, Proceed-
ings, volume 620 of Lecture Notes in Computer Science, pages
293–304. Springer, 1992.

[30] Gregory Malecha, Adam Chlipala, and Thomas Braibant. Com-
positional computational reflection. In Gerwin Klein and
Ruben Gamboa, editors, Interactive Theorem Proving - 5th Inter-
national Conference ITP, 2014, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings,
volume 8558 of Lecture Notes in Computer Science, pages 374–389.
Springer, 2014.

[31] Conor McBride. First-order unification by structural recursion.
J. Funct. Program., 13(6):1061–1075, 2003.

[32] Conor McBride. Epigram: Practical programming with depend-
ent types. In Varmo Vene and Tarmo Uustalu, editors, Advanced
Functional Programming, 5th International School, AFP 2004, Tartu,
Estonia, August 14-21, 2004, Revised Lectures, volume 3622 of
Lecture Notes in Computer Science, pages 130–170. Springer, 2004.

[33] Conor McBride and James McKinna. The view from the left. J.
Funct. Program., 14(1):69–111, 2004.

[34] Ulf Norell. Towards a practical programming language based on
dependent type theory. PhD thesis, Chalmers University of Tech-
nology, 2007.

[35] Ulf Norell. Dependently typed programming in agda. In Pieter
W. M. Koopman, Rinus Plasmeijer, and S. Doaitse Swierstra, ed-
itors, Advanced Functional Programming, 6th International School,
AFP 2008, Heijen, The Netherlands, May 2008, Revised Lectures,
volume 5832 of Lecture Notes in Computer Science, pages 230–266.
Springer, 2008.

177

Bibliography

[36] Nicolas Oury and Wouter Swierstra. The power of pi. In James
Hook and Peter Thiemann, editors, Proceeding of the 13th ACM
SIGPLAN international conference on Functional programming,
ICFP 2008, Victoria, BC, Canada, September 20-28, 2008, pages
39–50. ACM, 2008.

[37] Ricardo Peña. An introduction to liquid haskell. In Alicia
Villanueva, editor, Proceedings XVI Jornadas sobre Programación
y Lenguajes, PROLE 2016, Salamanca, Spain, 14-16th September
2016., volume 237 of EPTCS, pages 68–80, 2016.

[38] Robert Pollack. How to believe a machine-checked proof.
Twenty Five Years of Constructive Type Theory, 36:205, 1998.

[39] Jonathan Protzenko, Jean Karim Zinzindohoué, Aseem Rastogi,
Tahina Ramananandro, Peng Wang, Santiago Zanella Béguelin,
Antoine Delignat-Lavaud, Catalin Hritcu, Karthikeyan Bhar-
gavan, Cédric Fournet, and Nikhil Swamy. Verified low-level
programming embedded in F*. PACMPL, 1(ICFP):17:1–17:29,
2017.

[40] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala.
Liquid types. In Rajiv Gupta and Saman P. Amarasinghe,
editors, Proceedings of the ACM SIGPLAN 2008 Conference on
Programming Language Design and Implementation, Tucson, AZ,
USA, June 7-13, 2008, pages 159–169. ACM, 2008.

[41] Franck Slama. Automatic predicate testing in formal certific-
ation - you’ve only proven what you’ve said, not what you
meant! In Bernhard K. Aichernig and Carlo A. Furia, editors,
Tests and Proofs - 10th International Conference, TAP 2016, Held
as Part of STAF 2016, Vienna, Austria, July 5-7, 2016, Proceedings,
volume 9762 of Lecture Notes in Computer Science, pages 191–198.
Springer, 2016.

[42] Franck Slama and Edwin Brady. Automatically proving equi-
valence by type-safe reflection. In Herman Geuvers, Matthew
England, Osman Hasan, Florian Rabe, and Olaf Teschke, edit-

178

Bibliography

ors, Intelligent Computer Mathematics - 10th International Confer-
ence, CICM 2017, Edinburgh, UK, July 17-21, 2017, Proceedings,
volume 10383 of Lecture Notes in Computer Science, pages 40–55.
Springer, 2017.

[43] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi,
Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bhar-
gavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss,
Jean-Karim Zinzindohoué, and Santiago Zanella-Béguelin. De-
pendent types and multi-monadic effects in F*. In 43rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), pages 256–270. ACM, January 2016.

[44] Wouter Swierstra. Sorted - verifying the problem of the dutch
national flag in agda. J. Funct. Program., 21(6):573–583, 2011.

[45] Niki Vazou, Eric L. Seidel, and Ranjit Jhala. Liquidhaskell:
experience with refinement types in the real world. In Wouter
Swierstra, editor, Proceedings of the 2014 ACM SIGPLAN sym-
posium on Haskell, Gothenburg, Sweden, September 4-5, 2014,
pages 39–51. ACM, 2014.

[46] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis,
and Simon L. Peyton Jones. Refinement types for haskell. In Jo-
han Jeuring and Manuel M. T. Chakravarty, editors, Proceedings
of the 19th ACM SIGPLAN international conference on Functional
programming, Gothenburg, Sweden, September 1-3, 2014, pages
269–282. ACM, 2014.

[47] Philip Wadler. Views: A way for pattern matching to cohabit
with data abstraction. In Conference Record of the Fourteenth
Annual ACM Symposium on Principles of Programming Languages,
Munich, Germany, January 21-23, 1987, pages 307–313. ACM
Press, 1987.

[48] Hongwei Xi. Applied type system: Extended abstract. In
Stefano Berardi, Mario Coppo, and Ferruccio Damiani, editors,
Types for Proofs and Programs, International Workshop, TYPES

179

Bibliography

2003, Torino, Italy, April 30 - May 4, 2003, Revised Selected Papers,
volume 3085 of Lecture Notes in Computer Science, pages 394–408.
Springer, 2003.

[49] Hongwei Xi. Dependent ML an approach to practical program-
ming with dependent types. J. Funct. Program., 17(2):215–286,
2007.

[50] Hongwei Xi. Applied type system: An approach to practical
programming with theorem-proving. CoRR, abs/1703.08683,
2017.

[51] Beta Ziliani, Derek Dreyer, Neelakantan R. Krishnaswami,
Aleksandar Nanevski, and Viktor Vafeiadis. Mtac: a monad
for typed tactic programming in coq. In Greg Morrisett and
Tarmo Uustalu, editors, ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP’13, Boston, MA, USA -
September 25 - 27, 2013, pages 87–100. ACM, 2013.

180

	Contents
	Introduction
	The need of formal certification
	Critical software and formal methods
	Proof assistants and programming languages
	Programming and proving in Idris

	Dependent types
	What dependent types are
	Dependent types' expressivity
	Strong specification as dependent types
	Common problems with dependent types

	How proof obligations arise on a small example
	Contributions and outline of the thesis

	Logic, Type Theory and Equality
	Lambda calculus and simple types
	Propositions as types : the Curry-Howard correspondence
	Constructive logic and type theory
	Basic notions of type theory
	Type theory and verification of proofs
	Terms transformation along equality proofs
	Equalities in intentional type theory
	Definitional and propositional equalities
	Equality proofs in non-empty contexts

	Proof engineering and proof automation
	Proof engineering
	State of the art in proof automation

	Automating Proofs by Reflection
	Working by reflection
	Type-safe reflection
	A correct by construction approach
	Usage of the ``tactic"
	Construction of the reflected terms
	Summary

	Equivalences in Algebraic Structures
	Generalising the problem
	Proving equivalences instead of equalities
	The hierarchy
	Hierarchy of interfaces
	Reflected terms
	A bit of notation

	Deciding equivalence
	Automatic reflection
	Normalisations functions and re-usability of the provers
	Normal form shape
	Computing the normal form
	Normalization of terms in semi-groups
	From a semigroup prover to a monoid prover
	From a monoid prover to a group prover
	From a group prover to a commutative group prover
	From a commutative group prover to a ring prover

	Properties and results
	Correctness
	Completeness
	Termination
	Results
	Complexity and performances

	Alternative approaches
	A naive approach
	Coq's implementation

	Summary

	Programming with Dependent Types
	Using views to gain structural information
	Using indexed types to build structures on trusted ones
	Refinement types and restricted forms of dependent types

	Predicate Testing in Formal Certification
	Believing in machine-checked proofs
	Usual approaches to the adequacy problem
	Predicate testing by automatic generation of terms
	Summary

	Conclusions
	Bibliography

