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Abstract 

With rapid increases over recent years in the determination of protein sequence and structure, 

alongside knowledge of thousands of enzyme functions and hundreds of chemical mechanisms, it is 

now possible to combine breadth and depth in our understanding of enzyme evolution. 

Phylogenetics continues to move forward, though determining correct evolutionary family trees is 

not trivial. Protein function prediction has spawned a variety of promising methods that offer the 

prospect of identifying enzymes across the whole range of chemical functions and over numerous 

species. This knowledge is essential to understand antibiotic resistance, as well as in protein re-

engineering and de novo enzyme design. 

 

Introduction 

Our picture of the natural history of proteins is based on reconstructing the evolutionary past of the 

protein domain folds as catalogued in databases such as CATH [1, 2], SCOP [3], its successor SCOPe 

[4], CDD [5], ECOD [6] – which is specifically designed primarily to reflect evolutionary relationships, 

and Pfam [7].  These databases provide the key to understanding the evolutionary past of the 

various cellular and molecular functions, especially enzymatic ones, associated with the catalogued 

protein folds. Given that protein domains widely found in the proteomes of diverse present-day 

organisms are more likely to be ancient than those present only in niches, it is possible to make 

inferences about the approximate ages of protein folds [8, 9, 10]. Cross-referencing with data from 

other fields of science such as geology can provide estimates of absolute fold ages [11]. One can 

similarly make suggestions about the folds, and indeed functions, which may have been present in 

the last universal common ancestor (LUCA) of extant life [8, 12], which constitutes an event horizon 

for bioinformatics. 

 

This brief review will consider not only this broad sweep of the evolutionary history of enzymes, but 

also discuss studies capturing specific changes in function. We will look at a combination of 

experimental and computational approaches to unravel the mysteries of how enzymes manage to 

evolve novel functions, and consider recent progress in protein function prediction. Finally, we will 

discuss some priorities for future research. 

 

Enzyme Evolution 

Voordeckers et al. [13] carried out a beautifully-designed joint experimental and computational 

study in which they caught a family of fungal sugar-metabolising enzymes in the act of evolving. In 

addition to assaying the extant maltases (EC 3.2.1.20) and isomaltases (EC 3.2.1.10) for activity 

against a range of sugars, they also reconstructed the putative sequences of their common 

ancestors. They found that the reconstructed ancestral enzymes had broader but weaker activity, 

turning over a wider range of substrates. Gene duplications gave rise to paralogs which were able to 
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specialise on a narrower range of substrates and increase their catalytic power on these, while 

relinquishing the ability to turn over alternative substrates. Interestingly, at least one modern 

enzyme retains the ancestral breadth of catalytic capability. The study’s authors note that textbook 

categories of evolutionary process, such as neofunctionalisation and subfunctionalisation, are 

inadequate to describe the shift from diverse to specific functionality. Their work looks at small 

changes in enzyme function, corresponding to changes only at the fourth level of the EC number. 

The picture of modern enzymes as having evolved from precursors with lower activity and broader 

specificity is consistent with that suggested by the Tawfik group [14], noting that a few mutations 

can improve the secondary activity of a moonlighting or promiscuous enzyme by several orders of 

magnitude without immediate and complete loss of the primary function.  

 

The Babbitt group [15, 16] have created the Structure-Function Linkage Database (SFLD), which 

takes a bigger-picture view of protein evolution. They study superfamilies of evolutionarily related 

enzymes with whose chemical functions are related, but nonetheless diverse. While they catalogue 

only a few families, they do so in considerable detail. For example, the radical SAM superfamily 

contains 85 separate reactions. Several subsets of these reactions have very similar EC numbers, 

within the same third level subclass, and all members of the superfamily share a common 

mechanistic step. Nonetheless, the superfamily is still functionally broad enough to include examples 

from four of the six EC classes. This illustrates how very similar chemical mechanisms can be co-

opted to catalyse reactions which are well-separated within the EC scheme. This ability of similar 

enzymes to catalyse diverse reactions provides support for Lazcano & Miller’s patchwork model [17] 

of recruitment of enzymes to metabolic pathways.  

 

In an ambitious project, Furnham et al. [18] have created the FunTree description of the evolution of 

function within each CATH homologous superfamily of protein domains. For this purpose, they have 

created hundreds of phylogenies describing the evolution of function. They consider 379 

superfamilies within which enzymatic functions have evolved – many of which have more than one 

so-called structurally similar group (SSG), with a separate tree needed for each SSG. Producing that 

number of individual family trees of enzymes is not a trivial task, and the best option is using a 

consistent automated approach. The resulting trees give a protein-centric picture of evolution, but 

their construction is guided by an underlying tree of relationships between species. Inevitably, a tree 

generated by such a high-throughput approach may differ from the tree that would result for the 

same superfamily if a phylogenist were given months to fine-tune the selection of data, parameters 

and model-building software to their complete satisfaction. FunTree is a resource which allows one 

to look at the evolution of enzyme function in every annotated superfamily where catalytic 

capability is present, right across protein structure space. However, surprising or unexpected results 

from this analysis will require further investigation. We encountered such phylogenetic ambiguity 

when devising a methodology [19] to investigate the still-unresolved question of whether metallo-

beta-lactamase activity (EC 3.5.2.6) has arisen twice independently in the same CATH superfamily 

3.60.15.10, after we had used the FunTree phylogeny as a starting point. Phylogenetic trees of 

enzymes can identify presumptive evolutionary events, but they do not in themselves assign 

functions to the putative ancestors. While Voordeckers et al. [13] were able to do this by expressing 

reconstructed ancient sequences, typically the required resources to do this are unavailable; in our 

case we used homology modelling alongside protein function prediction software. In any case, the 

ancestral sequences are subject to uncertainty, as therefore are estimates of their catalytic power 



and substrate specificity. Nonetheless, the potential for beta-lactamase activity to evolve anew is 

significant in the context of current concerns over the rapid spread of antibiotic resistance.  

 

Martinez Cuesta et al. [20] carried out a detailed study of evolutionary events involving isomerases. 

Since this EC class is united most obviously by its members having reaction products that happen to 

by isomers of the substrates, it is not immediately clear how much shared chemistry there might be.  

For other EC classes such as oxidoreductases, hydrolases and ligases, likely similarity in reactions and 

mechanisms is more obvious. Indeed, those authors find that isomerases are very frequently 

involved in out-of-class evolutionary changes, just as might have been expected from the eclectic 

nature of the categorisation that defines the class. Their data show a number of evolutionary 

changes to isomerases where the change in reaction catalysed is small in chemoinformatics terms, 

but nonetheless sufficient to result in a change of top-level EC class, and hence they describe 

multiple examples of similar chemical reactions being far apart in the EC classification. 

 

Smock et al. [21] have used a combination of bioinformatics and directed evolution experiments to 

look at the structural aspects of protein evolution. Although they carry out selection based on 

binding proteins, the insights into structural evolution of proteins are likely to apply equally to 

enzymes. Smock et al.  identified beta-propeller sequences from Pfam [7] and used phylogenetic 

methods to reconstruct sequences of putative ancestral motifs. They used deliberately error-prone 

PCR to introduce diversity into their library of motifs. By means of duplication and fusion, lectin-like 

proteins were assembled from these motifs. Using iterations of directed evolution, the authors of 

the study were able to select variants with optimal ability to bind the glycoprotein mucin. Thus they 

found that beta-propeller proteins could be formed by duplication and fusion of small sequence 

segments of around 50 residues, and they argued that foldability is the main property being 

evolutionarily selected for in this case. The application of directed evolution approaches to artificially 

change or improve the properties of enzymes has been reviewed at some length by Currin et al. [22] 

Gilson et al. [23] used lattice models of protein folding and data from SCOP in their study of the 

relationship between the divergence of protein sequence and structure, and how fitness and 

foldability are preserved along evolutionary trajectories. They suggest that discovery of new 

structures by evolving proteins is likely to require traversal of regions of lower fitness. All these 

studies have clear applicability to protein re-engineering. 

 

The Importance of Chemical Mechanism 

The structural and evolutionary information in CATH [1], SCOP [3], or ECOD [6] and the chemical 

transformations inherent in EC numbers provide complementary ways of describing and categorising 

enzymes. A further dimension to the conceptual space of enzyme functions comes from considering 

the chemical mechanisms employed, that is the different routes through which the molecular 

transformations are brought about.  These cannot be deduced directly from the substrates and 

products, but instead require specific experimental or computational studies to identify the sets of 

intermediates and transition states through which these routes pass. Such studies have traditionally 

been published in biochemistry, organic chemistry or computational chemistry journals, each of 

which may require some expertise to translate into a form comprehensible even to experts in the 

adjacent fields. To address this, the database MACiE [24] provides a catalogue of around 350 

mechanisms in both human-readable and computer-readable forms. MACiE, like most approaches to 



structural bioinformatics, was originally based on a non-homologous dataset, albeit with later 

additions. Given this, and also because of the experimental limitations on mechanism determination, 

MACiE mostly provides a zoomed-out overview of the totality of enzyme space, and only 

occasionally includes close neighbours with small differences. SFLD [15], in contrast, has very good 

coverage of a few specific regions of that space, corresponding to a few specific functional 

superfamilies.  While not concentrating on mechanism to the extent of MACiE, the SFLD’s 

superfamilies are partly defined by a shared mechanistic step common to their reactions. Thus the 

kind of divergent evolution described by SFLD involves mechanistic similarity. By way of contrast, 

convergently evolved instances of similar chemical transformations typically have mechanisms that 

are significantly less similar than are their overall reactions [25]. A third mechanistic database, 

EZCatDB [26], currently contains mechanistic data on 878 enzymes classified according to its own 

RLCP system. By combining the steps constituting MACiE mechanisms with the associated catalytic 

domains and fold ages, Nath et al. [27] produced a somewhat speculative account of the 

development of enzyme mechanistic and functional diversity over evolutionary time, see Figure 1.  

 

 
Figure 1. Growth of the diversity of enzyme chemistry over evolutionary time, created using data 

from Nath et al. [27]. This work uses fold ages from MANET [9] and mechanistic steps from MACiE 

[24]. The last universal common ancestor (LUCA) may possibly lie in the region indicated. The multi-

coloured inset shows functions of different EC classes arising over time. 

 

Protein Function Prediction 

As suggested above, assignment of function to enzymes is ideally done by experimental means. 

Considering the extensive resources required to achieve this, however, it is more usual to utilise 

computer-based function prediction [28]. The difficulty of function prediction for a particular protein 

varies greatly, depending on the available sequence and structure information and on the 

identification of homologues, the available methods being based on one or both of sequence and 



structure [29, 30, 31]. The majority of the predictive load is usually carried by sequence [32, 33]. 

Prediction of protein function on a large scale remains a significant challenge. As the volume of 

genomic data appearing each year far exceeds the capacity for manual annotation, let alone 

experiment, assignment of function to novel genes and proteins needs to be an automatic process. 

Unfortunately, an unknown but possibly significant proportion of such annotations in bioinformatics 

databases may be erroneous, with misannotations then propagating as they are transferred to fresh 

homologues and other databases [34]. Such misannotations could then be further propagated to 

related sequences in future prediction exercises. Indeed, the circularity of the combined process of 

propagating annotations and then predicting function, based on the same annotations and 

homologies, may be problematic. Sequence-based enzyme function predictions based on EC number 

annotations in databases can indeed give very impressive results [35] and such predictive exercises 

can be extended to include mechanism [36], both processes usually operating mostly via the 

detection of homology - although 3D structure-based methods also exist [37, 38, 39]. Using 

mechanisms and catalytic chains as defined in MACiE, the corresponding UniProt sequences are 

interrogated against InterPro signatures [29] to re-express the MACiE entries in terms of the 

signatures present in them. This information forms the input into a machine learning exercise [36] to 

associate test sequences with enzymatic mechanisms, as shown in Figure 2. 

 

 
Figure 2. Clockwise from top right: Sequences, mechanisms at catalytic domain definitions are taken 

from MACiE and combined in a machine learning exercise with InterPro signatures, which are 

themselves derived from a diversity of source databases. All these data, bottom right, can be used to 

predict mechanisms for new query sequences [36]. 

 



Recently, the success of different groups’ approaches to protein function prediction has been 

evaluated in the CAFA (Critical Assessment of Functional Annotation) exercises, of which the second 

[40] assessed predictions made in late 2013 and focussed on predicting the Gene Ontology (GO) [41] 

terms associated with proteins. This process was lengthy, and notably involved a period of several 

months in which new annotations on the many target proteins were allowed to accumulate in the 

literature before these freshly assigned labels were used in the assessment of the already-submitted 

entries. Given the large numbers of sequences and of ontological terms being predicted, the 

participants’ freedom to predict only subsets, and the ever growing nature of the available 

experimental annotations, it was inevitable that submitted predictions would be both incomplete 

and partially incorrect. The process of assessment and criteria for evaluation were therefore not 

straightforward, and this complexity meant that CAFA2 had no clear ‘winner’. Nevertheless, the 

official paper reporting the exercise convincingly argued that the quality of predictions had improved 

since the previous exercise [40,42].  

 

Amongst the successful entries was the Orengo group’s functional clustering of CATH superfamilies 

into functional families (FunFams) by the FunFHMMer method, as reported by Das et al. [43] The 

Gough group [44] made extensive use of SCOP data to predict functional annotations at the domain 

level by statistical inference.  Also impressing in CAFA2, the FFPred3 method of Cozzetto et al. [45] 

assigns functional labels based on predicted biophysical attributes associated with protein secondary 

structure, and is especially useful in those hard-to-predict cases where no relevant information is 

available from homology. The Multi-Source k-Nearest Neighbor (MS-kNN) approach of Lan et al. [46] 

achieved its success by identifying proteins similar to the query as its neighbours, and then inferring 

its function from a weighted average of their functions. Another very successful approach was that 

of Gong et al. [47], who trained their algorithm to identify the functionally discriminating residues 

relevant to each GO term.  Some of the methods in CAFA2 specialised in identifying particular 

functions, rather than being general purpose; for instance APRICOT [48] is a sequence signature 

approach designed specifically to identify RNA binding proteins. APRICOT makes substantial use of 

both InterPro [29] and CDD [5]. 

 

Conclusions and Future Priorities 

While protein function prediction is a well-established field, more progress can be made by making 

databases more robust against propagation of erroneous information, and by describing both 

molecular and biological function in more specific and detailed ways. For enzyme reactions, more 

basic science is required to investigate if and how mechanism is affected by relatively modest 

evolutionary changes in sequence and structure. Alongside this, more enzyme mechanisms need to 

be determined and consistently recorded wherever possible. Applications such as protein re-

engineering and even de novo enzyme design [49] will require a deep understanding of the interplay 

of chemistry with protein structure. Such advances promise major applications in fields as diverse as 

medicine, agriculture, food, laundry, deodorants and green energy. Further understanding of how 

enzyme functions evolve is another major priority, especially in the context of rapidly increasing 

antibiotic resistance [50].  
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