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Highlights

• We derive the analytic integral of an SPH cubic spline kernel function over the volume of a random polyhedron.
• The integral enables us to calculate the average density of each cell when mapping SPH data onto a Voronoi grid.
• Our method provides an accurate solution, which is faster than the previously proposed in the literature numerical approach.
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Abstract

Voronoi grids have been successfully used to represent density structures of gas
in astronomical hydrodynamics simulations. While some codes are explicitly
built around using a Voronoi grid, others, such as Smoothed Particle Hydro-
dynamics (SPH), use particle-based representations and can benefit from con-
structing a Voronoi grid for post-processing their output. So far, calculating the
density of each Voronoi cell from SPH data has been done numerically, which
is both slow and potentially inaccurate. This paper proposes an alternative
analytic method, which is fast and accurate. We derive an expression for the in-
tegral of a cubic spline kernel over the volume of a Voronoi cell and link it to the
density of the cell. Mass conservation is ensured rigorously by the procedure.
The method can be applied more broadly to integrate a spherically symmetric
polynomial function over the volume of a random polyhedron.

Keywords: Voronoi grid, SPH kernel, density structure

1. Introduction

Environments of astronomical interest and significance, such as stellar sys-
tems (Bate et al. (2002), Clementel et al. (2014)), star-forming clouds (Dale
et al. (2012), Hubber et al. (2016)) or entire galaxies (Aumer et al. (2013), Si-
jacki et al. (2012)), have been successfully simulated using computer models.
While some of these models focus on the evolution of the fluid-like interstellar
matter, others trace the stellar light that is propagating through this dusty,
inhomogeneous medium in order to reproduce observations. The former ones
are hydrodynamics computer codes, which can employ grid-based (Eulerian) or
particle-based (Lagrangian) representations, and the latter are radiative transfer
methods.
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Voronoi tessellations arise in astronomical computer modelling when a hy-
brid between grid-based and particle-based approaches is considered. A Voronoi
tessellation is built around a set of generating sites (typically taken to be par-
ticle positions in this context), and each generating site is assigned the area of
space that is closer to itself than to any other site (Voronoi (1908), Dirichlet
(1850)). This creates a grid structure consisting of randomly shaped convex
polyhedra, and as such it provides a discretisation of space without the rigidity
of a Cartesian grid. Some hydrodynamics codes are built explicitly around a
moving Voronoi grid (Springel (2010), Duffell and MacFadyen (2011), Vanden-
broucke and De Rijcke (2016)) for the above reasons. Others, such as Smoothed
Particle Hydrodynamics (SPH) (Lucy (1977), Gingold and Monaghan (1977)),
follow a particle representation, however their output is often post-processed
with a radiative transfer code, requiring a density grid (Koepferl et al. (2016),
Clementel et al. (2014), Hubber et al. (2016)). Due to the fact that SPH parti-
cles follow the fluid motion and are thus potentially irregular, the density profile
is typically reconstructed using an adaptive mesh refinement scheme (Kurosawa
and Hillier (2001), Steinacker et al. (2002), Harries et al. (2004)) or, more re-
cently, a Voronoi grid (Camps et al. (2013)).

The problem addressed by this paper is how to calculate the average density
of a Voronoi cell when regridding SPH data. Such task is non-trivial, as in
SPH the density at every point in space is given as a sum of particle contri-
butions (Price (2012)). The contribution of each particle to the local density
is calculated from the distance to the particle and the kernel function. The
latter is a bell shaped compactly supported function that goes to zero at a finite
radius, defined by the smoothing length. The SPH continuous density distribu-
tion constructed through the kernel function is an approximate representation
of the true underlying density distribution, discretised by the SPH particles.
Discussing the choice of kernel function and the errors associated with it is be-
yond the scope of this paper (see Price (2012) and Monaghan (1985) for more
information). Instead from now on we will assume that the SPH kernel density
distribution is a close representation of the true distribution, and as such we
want to map it correctly onto a Voronoi grid.

One possible approach for calculating the density structure of the grid would
be to divide the mass of each particle by the volume of its corresponding cell
(Clementel et al. (2014), Hubber et al. (2016)). This is only possible when there
is one grid cell per particle, which is often the case as SPH particle positions are
commonly used as grid-generating sites for the Voronoi tesselation (Clementel
et al. (2014), Hubber et al. (2016)). This method has been successfully adopted
by some authors, since it is easy to implement and it ensures mass conservation
between the particle and grid representations. However, it has two major limi-
tations. The first one is related to the fact that there is no direct correspondence
between the size of a Voronoi cell and the smoothing length of an SPH kernel,
which can lead to an assigned cell density that deviates significantly from the lo-
cal SPH density in that region. In particular, there is an unfortunate resolution
effect when a large density gradient is present, resulting in some cells having
too high and others too low densities. Such resolution issues can be overcome
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by inserting extra Voronoi cells (Koepferl et al. (2016)), which brings us to the
second limitation of the method. It can only be applied when there is one grid
cell per particle.

Koepferl et al. have implemented an alternative approach, in which they
sample random points inside of each grid cell, compute the SPH density at each
point and then calculate the average of these values (Koepferl et al. (2016)).
Their method assigns accurate densities to the cells, however the thorough sam-
pling of points can be a computationally slow process. Short computing times
become crucial if we want to not only post process SPH data with radiative
transfer approach, but also combine the two codes and run them together. In
that case the Voronoi grid mapping will be performed many times, and opti-
mising computing speed and mass conservation becomes compulsory.

This work offers an analytical solution to the above stated problem instead.
We compute the mass contribution to a cell from each neighbouring SPH particle
using a derived mathematical formula, add up these contributions to calculate
the total mass contained in the cell, and then divide this mass by the volume
of the cell in order to obtain the average density1. We demonstrate the validity
of our method in Section 2 and show the detailed mathematical derivations in
Section 3. In the remaining sections we address the testing of the method in
terms of computing time and accuracy, and we compare its results obtained for
specific datasets with those from other approaches used in the field.

2. Method

2.1. SPH kernel function and density estimation

One of the most important questions in the heart of SPH is how to obtain
a continuous density profile from a set of discrete mass particles (Price (2012)).
In order to have a measure of density at a given point in space, one needs to
consider the local particle distribution. Furthermore, particles that are further
away from the site of interest should have a lesser contribution than ones closer
to that site. Arising from these considerations, the density at point r in SPH is
calculated using the following expression:

ρ(r) =

N∑
j=1

mjW (|r− rj |, hj). (1)

In the above mj is the mass of a particle located at rj and W is the SPH
kernel function, which depends on the distance between the particle and the
point of interest. The parameter hj is called kernel smoothing length and it
gives a measure of the ”radius of influence” that a particle has towards the local
density around it.

1An implementation of the code can be downloaded from
https://github.com/mapetkova/kernel-integration.
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W is normalised to ensure that the total mass of a region described by the
continuous density distribution equals the sum of particle masses, as it should.

M =

∫
V

ρ(r′)dV ′ =
N∑
j=1

mj , (2)

where V is the volume of the entire region of space in the simulation. From
equations 1 and 2, this requires:

∫
V

W (|r′ − rj |, hj)dV
′ = 1. (3)

2.2. Voronoi cell density

We will now move from the concept of density at a specific location to that
of average density in an enclosed volume (e.g. a Voronoi cell). A Voronoi
tessellation divides space in N ′ non-overlapping regions (note that N ′ can be
chosen to differ from the total number of particles, N), such that all of them
add up to the full volume of V . Let us denote the average density of the i-th
region by ρi.

ρi ≡ 〈ρ〉 = 1

Vi

∫
Vi

ρ(r′)dV ′, (4)

where Vi is the region’s volume.
The above expression can also be written in terms of Mi, the total mass

contained in the region:

ρi =
Mi

Vi
, (5)

with

Mi =

∫
Vi

ρ(r′)dV ′ (6)

=

∫
Vi

N∑
j=1

mjW (|r′ − rj |, hj)dV
′ (7)

=
N∑
j=1

mj

∫
Vi

W (|r′ − rj |, hj)dV
′. (8)

The last representation ofMi allows us to think of a ”mass contribution” that
each particle has towards a region. This contribution is given by the integral of
the kernel function over the volume of the region.

Since SPH typically uses kernel functions that have an analytic description,
one could, in principal, attempt to solve the integral of interest analytically.
The derivation of one such solution is the focus of the following section.
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2.3. Mass conservation

As a final step, let us demonstrate that the masses of the regions, as consid-
ered above, add up to the sum of particle masses. We can write the total mass
as:

N ′∑
i=1

Mi =

N ′∑
i=1

N∑
j=1

mj

∫
Vi

W (|r′ − rj |, hj)dV
′ (9)

=
N∑
j=1

mj

N ′∑
i=1

∫
Vi

W (|r′ − rj |, hj)dV
′. (10)

Since the different Voronoi cell regions are non-overlapping and together
they cover the full simulation space, we can rewrite:

N ′∑
i=1

∫
Vi

W (|r′ − rj |, hj)dV
′ =

∫
V

W (|r′ − rj |, hj)dV
′ = 1, (11)

using the normalisation property of the kernel.

This gives us
∑N ′

i=1 Mi =
∑N

j=1 mj , as desired. Mass conservation is there-
fore ensured to high level of precision even in simulations where the mapping
from SPH to a Voronoi grid is repeated many times (e.g. if the radiative transfer
feedback is included during the SPH runtime).

3. Derivation

3.1. Overview

In order to simplify the notation, let us drop the i and j indices from the
previous equations and rewrite the mathematical problem in an easier-to-work-
with form. It is sufficient to consider one single particle, positioned at the origin
of a coordinate system, together with a random polyhedron (which may or may
not contain the origin itself). We can assume that we know the coordinates
of each vertex of the polyhedron, enclosing space V, as well as the smoothing
length of the particle’s kernel function, h. Thus, we will compute the integral:

IV =

∫
V
W (r)dV. (12)

The solution presented in this section follows three logical steps. First, (step
i) IV is transformed from a volume integral to a surface integral using the
Divergence Theorem. The surface integral consists of a sum of 2D integrals
(each of them denoted as IS), calculated over the area of each of the polygonal
faces of the polyhedron. Geometrically IS represents the volume integral of the
kernel function inside of what we have named as a “wall pyramid” (see Figure
1). Secondly, (step ii) each of the 2D integrals is then reduced to a contour
integral along the edges of each wall using Green’s Theorem. Similarly, the
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integral of each line segment (IL) of the contour is associated with the integral
of the kernel function inside of a “line pyramid” (Figure 1). Finally, (step iii)
one more integration is performed, so that in the end we have an expression
for IV that only depends on the location of each vertex of the polyhedron. By
evaluating our final solution at each vertex location, we obtain the integral of
the kernel function inside the volume of a particular “vertex pyramid” (Figure
1).

The mathematical steps of this derivation follow roughly the outline pre-
sented in Mirtich (1996). Some important modifications needed to be made,
however, to accommodate for the spherically-symmetric nature of W and the
angular shape of the polyhedron.

Figure 1: By applying the Divergence Theorem (Top left), a Voronoi cell is effectively divided
into wall pyramids. When calculating the surface integral IS for each wall, we obtain the vol-
ume integral of the kernel function inside the shaded pyramid. By applying Green’s Theorem
(Top right), a wall pyramid is divided into line pyramids. The line integral IL represents the
volume integral of the kernel function inside the line pyramid. Furthermore, a line pyramid
(Bottom) comprises of two vertex pyramids. The expression for IP , evaluated at each vertex
of each wall, gives us the volume integral of the kernel function inside the vertex pyramid.
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3.2. Kernel function

For the purposes of this work we have picked a cubic spline kernel, given by
the following expression:

W (r) =
1

h3π

⎧⎪⎨
⎪⎩
1− 1.5

(
r
h

)2
+ 0.75

(
r
h

)3
, r ≤ h;

0.25
(
2− (

r
h

))3
, h ≤ r ≤ 2h;

0, r ≥ 2h.

(13)

The final solution is kernel-specific, and this particular function was chosen
because it is the most commonly used one in the astronomical community (Price
(2012)). Its polynomial form also makes it particularly suitable as it allows for
simpler integration.

3.3. Reducing the volume integral to a surface integral

First, we will transform equation 12 into a surface integral. In order to do
so, we will use the Divergence Theorem, given by:

∫
V
∇ · FdV =

∫
∂V

F · n̂dS, (14)

where n̂ is the unit vector normal to the surface of the polyhedron ∂V.
It is easy to notice that the left hand side of equation 14 is analogous to

equation 12. In order to apply the theorem, we will construct F, such that
∇ · F = W . This is analogous to the relationship between charge and electric
field in electrostatics.

Since W is spherically-symmetric, expressing F in spherical coordinates is
the most suitable choice. Hence for F and its divergence we have:

F = Fr r̂+ Fθθ̂+ Fφφ̂; (15)

∇ · F =
1

r2
∂(r2Fr)

∂r
+

1

r sin θ

∂(Fθ sin θ)

∂θ
+

1

sin θ

∂Fφ

∂φ
. (16)

Additionally, due to the spherical symmetry of the problem, we consider a
function for which Fθ = Fφ = 0. This gives us the equation

1

r2
∂(r2Fr)

∂r
= W (r), (17)

which integrates to the following solution:

Fr(r) =
1

r2
1

h3π

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
3r

3 − 3
10h2 r

5 + 1
8h3 r

6 + C1, r ≤ h;

1
4

(
8
3r

3 − 3
hr

4 + 6
5h2 r

5 − 1
6h3 r

6
)
+ C2, h ≤ r ≤ 2h;

0 + C3, r ≥ 2h,

(18)
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where C1, C2 and C3 are constants of integration.
By enforcing continuity of Fr at r = h and r = 2h, we obtain the relation-

ships:

C1 =
h3

60
+ C2; C3 =

4h3

15
+ C2. (19)

Using the property of the kernel, that it integrates to 1 within a radius of
r ≥ 2h, we can write that:

∫
∂V

F · n̂dS =

∫ 2π

φ=0

∫ π

θ=0

Fr(r)r
2 sin θdθdφ = 1. (20)

Equations 19 and 20 lead to the following solution for the constants of inte-
gration:

C1 = 0; C2 = −h3

60 ; C3 =
h3

4
. (21)

3.4. Calculating the surface integral on a plane

We have now transformed IV into the surface integral given by equation
14. Since the surface of a polyhedron is a set of polygons, we will focus on
integrating over only one of them. Namely, we wish to compute the integral

IS =

∫
A
F · n̂dS, (22)

where A is the region of space contained in a single polygonal wall.
Without loss of generality, we can choose the spherical coordinate system

that F is defined in so that the normal of the plane of the desired flat surface
coincides with the θ = 0 axis. Let the orthogonal distance from the origin to
the plane be denoted by r0.

We can express any surface element in spherical coordinates as

dS = n̂dS = r2 sin θdθdφr̂+ r sin θdrdφθ̂+ rdrdθφ̂, (23)

and hence:

F · n̂dS = Frr
2 sin θdθdφ. (24)

Since we are integrating over θ and Fr is a function of r(θ), it would be
necessary to pick a suitable integration variable. From the chosen coordinate
system orientation we have the relationship:

r =
r0

cos θ
. (25)
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Let μ = cos θ, then r = r0
μ and dμ = − sin θdθ. This gives us the following

expressions, which are simpler to work with:

F · n̂dS = −Fr(μ)

(
μ

r0

)−2

dμdφ; (26)

Fr(μ) =

(
μ

r0

)2
1

h3π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3

(
μ
r0

)−3

− 3
10h2

(
μ
r0

)−5

+ 1
8h3

(
μ
r0

)−6

, μ ≥ r0
h ;

1
4

(
8
3

(
μ
r0

)−3

− 3
h

(
μ
r0

)−4

+ 6
5h2

(
μ
r0

)−5

− 1
6h3

(
μ
r0

)−6

− h3

15

)
, r0

2h ≤ μ ≤ r0
h ;

h3

4 , μ ≤ r0
2h .

(27)

3.5. Reducing the surface integral to a contour integral

In order to represent the surface integral IS as a contour integral we use
a method analogous to the one above. In two dimensions we have Green’s
Theorem, given by:

∫
A
∇ ·HdA =

∫
∂A

H · m̂dl, (28)

where m̂ is the unit vector normal to the contour ∂A of the area of integration
A.

In order to apply the theorem, we need to construct function H, such that
∇ ·HdA = F · n̂dS. While F is defined as a three-dimensional vector function,
H should be in two dimensions, and the spherically-symmetric nature of W
suggests that we should define H in terms of polar coordinates:

H = HRR̂+Hφφ̂; (29)

∇ ·H =
1

R

∂(RHR)

∂R
+

1

R

∂Hφ

∂φ
. (30)

Let us set Hφ = 0. The area element can be written as dA = RdRdφ, where
φ is ensured to be the same as the three-dimensional coordinate used for F by
aligning the coordinate systems’ axes appropriately. This gives us the following
expression:

∇ ·HdA =
∂(RHR)

∂R
dRdφ. (31)

From geometrical considerations we can show that R = r sin θ = r0 tan θ,
which leads to dR = r0 sec

2 θdθ. This allows us to rewrite the following:
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F · n̂dS = Frr
2 sin θdθdφ (32)

= Fr
R2

sin2 θ
sin θ

dR

r0 sec2 θ
dφ (33)

= Fr
R2

r0 tan
2 θ

sin θdRdφ (34)

= Frr0 sin θdRdφ. (35)

By combining equations 31 and 35, we obtain the integral:

HR =
1

R

∫
Frr0 sin θdR. (36)

We will now write the above expression in terms of μ, so that we can integrate
it easily. We can notice that sin θdR = r0 sec

2 θ sin θdθ = −r0μ−2dμ , and with
this modification the solution for HR becomes:

HRR =
r30
h3π

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
6μ

−2 − 3
40 (

r0
h )2μ−4 + 1

40 (
r0
h )3μ−5 + B1

r30
, μ ≥ r0

h ;

1
4 (

4
3μ

−2 − ( r0h )μ−3 + 3
10 (

r0
h )2μ−4 − 1

30 (
r0
h )3μ−5 + 1

15 (
r0
h )−3μ) + B2

r30
, r0

2h ≤ μ ≤ r0
h ;

− 1
4 (

r0
h )−3μ+ B3

r30
, μ ≤ r0

2h .

(37)
In the above expression B1, B2 and B3 are the constants of integration,

which can be functions of r0 and h.

3.6. Deriving expressions for B1, B2 and B3

Consider integrating F over the area of a circle, extending from μ = 1 to
μ = μ0. Depending on the value of r0 we would need to use different parts of the
piecewise form of F. This will result in the constants of integration B1, B2 and
B3 having different form depending on r0, so that H gives answers consistent
with those for F.

In order to find expressions for them, let us start by considering r0 ≥ 2h.
This means that r0

2h ≥ 1 ≥ μ, and we need to use only the third expression for
F, which gives us the following integral:

IS = 2π

∫ 1

μ0

Fr(μ)

(
μ

r0

)−2

dμ =
1

2
(1− μ0). (38)

If we were to apply Green’s theorem and use H, then the following should
give us the same answer for all values of μ0:

IS =

∫
H · m̂dl =

∫ 2π

0

HRRdφ =
2B3

h3
− 1

2
μ0. (39)
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By comparing the coefficients of each term of the above polynomials, we get

that B3 = h3

4 .
Similarly, we then consider the case of h ≤ r0 ≤ 2h. Here, we have that

r0
h ≥ 1 ≥ μ, however, depending on the final integration value of μ0, we would
either use the second polynomial of F or a sum of the second and the third one.
By calculating the integral in two different ways, as shown previously, we can
then obtain expressions for the constants. If μ0 ≥ r0

2h , then we get an expression
for B2, and if μ0 ≤ r0

2h , we can express B3.
In the third case, when r0 ≤ h, we have three possibilities (μ0 ≥ r0

h ; r0
2h ≤

μ0 ≤ r0
h ; μ0 ≤ r0

2h ), which give rise to expressions for B1, B2 and B3 respectively.
The final polynomial forms of B1, B2 and B3 are as follows:

B1 =
r30
4

(
−2

3
+

3

10

(r0
h

)2

− 1

10

(r0
h

)3
)
; (40)

B2 =
r30
4

⎧⎪⎨
⎪⎩
− 2

3 + 3
10

(
r0
h

)2 − 1
10

(
r0
h

)3 − 1
5

(
r0
h

)−2
, r0 ≤ h;

− 4
3 +

(
r0
h

)− 3
10

(
r0
h

)2
+ 1

30

(
r0
h

)3 − 1
15

(
r0
h

)−3
, h ≤ r0 ≤ 2h;

(41)

B3 =
r30
4

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− 2
3 + 3

10

(
r0
h

)2 − 1
10

(
r0
h

)3
+ 7

5

(
r0
h

)−2
, r0 ≤ h;

− 4
3 +

(
r0
h

)− 3
10

(
r0
h

)2
+ 1

30

(
r0
h

)3 − 1
15

(
r0
h

)−3
+ 8

5

(
r0
h

)−2
, h ≤ r0 ≤ 2h;

(
r0
h

)−3
, r0 ≥ 2h.

(42)

3.7. Calculating the contour integral on a line

We have now reduced IS to a contour integral, which consists of a sum of
line integrals (i.e. along the edges of the polygonal wall). Similarly to before, we
will only consider the integral of H over a single line segment, L. The integral
that we will focus on is given by:

IL =

∫
L
H · m̂dl. (43)

Without loss of generality, we can select the orientation of the coordinate
system such that the φ = 0 line is perpendicular to the line segment that we
are interested in. Let the perpendicular distance to the line from the centre of
the 2D polar coordinate system be denoted by R0.

We then have the following expressions:

m̂ = x̂ = cosφR̂− sinφφ̂; (44)

11



H · m̂ = HR cosφ. (45)

In order to express dl, we will use its vector form given by:

dl = dRR̂+Rdφφ̂. (46)

Alternatively, we also have that:

dl = dlŷ = dl sinφR̂+ dl cosφφ̂. (47)

By comparing the φ̂ terms we can write that:

dl =
Rdφ

cosφ
. (48)

And hence, for a linear segment, we have that:

H · m̂dl = HRRdφ. (49)

3.8. Calculating the line integral analytically

In order to proceed, we require a kernel function which is integrable, in order
to provide an analytical (or tabulated) form of this expression. Previously, we
have expressed HRR as a function of μ and now we want to integrate it with
respect to φ. In order to complete the integration we need to express μ as a
function of φ or vice versa.

From geometrical considerations we have the following:

R =
R0

cosφ
= r sin θ. (50)

And hence

r =
R0

sin θ cosφ
. (51)

We also have that:

μ =
r0
r

=
r0 sin θ cosφ

R0
. (52)

By squaring both sides, substituting sin2 θ for 1 − μ2, and rearranging, we
obtain the relationship:

μ =
r0
R0

cosφ√
1 +

r20
R2

0
cos2 φ

. (53)
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Since HRR is a polynomial consisting of different powers of μ, we need to
integrate the following terms and insert them into the polynomial:

In =

∫
μndφ =

∫ ⎛
⎝ r0

R0
cosφ√

1 +
r20
R2

0
cos2 φ

⎞
⎠

n

dφ, (54)

where n ∈ Z.
We can easily notice that I0 is trivial and can be expressed as:

I0 =

∫
dφ = φ+ C. (55)

For the remaining even powers (n = −2k, k ∈ N) of μ we can simplify as
follows:

I−2k =

∫ ⎛
⎝1 +

1
r20
R2

0
cos2 φ

⎞
⎠

k

dφ. (56)

Hence,

I−2 = φ+

∫
dφ

r20
R2

0
cos2 φ

(57)

= φ+
r20
R2

0

tanφ+ C; (58)

I−4 =

∫ ⎛
⎝1 +

2
r20
R2

0
cos2 φ

+
1

r40
R4

0
cos4 φ

⎞
⎠ dφ (59)

= φ+ 2
r20
R2

0

tanφ+
1

3

r40
R4

0

tanφ(sec2 φ+ 2) + C. (60)

For the odd powers (n = 1; n = −3; n = −5) we will express φ in terms of
μ, as it follows from equation 54:

dφ = −R0

r0

dμ

(1− μ2)

√
1−

(
1 +

R2
0

r20

)
μ2

. (61)

Starting with integrating the expression for n = 1, let α = R0

r0
, and then:

I1 =

∫ −αμdμ
(1− μ2)

√
1− (1 + α2)μ2

(62)
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Let u =
√
1− (1 + α2)μ2. Then du = − (1+α2)μdμ√

1−(1+α2)μ2
, and 1− μ2 = α2+u2

1+α2 .

This changes the expression for I1 to:

I1 =

∫
αdu

α2 + u2
= tan−1

(u

α

)
+ C. (63)

Using the same substitution, the expressions for I−3 and I−5 can be written
as follows (for more details, see Appendix):

I−3 =
α(1 + α2)

4

(
2u

1− u2
+ log(1 + u)− log(1− u)

)

+
α

2
(log(1 + u)− log(1− u)) + tan−1

(u

α

)
+ C; (64)

I−5 =
α(1 + α2)2

16

(
10u− 6u3

(1− u2)2
+ 3(log(1 + u)− log(1− u))

)

+
α(1 + α2)

4

(
2u

1− u2
+ log(1 + u)− log(1− u)

)

+
α

2
(log(1 + u)− log(1− u)) + tan−1

(u

α

)
+ C. (65)

The final solution is hence given by:

IP =
r30
h3π

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
6I−2 − 3

40

(
r0
h

)2
I−4 +

1
40

(
r0
h

)3
I−5 +

B1

r30
I0,

r0
h ≤ μ;

1
4 (

4
3I−2 − ( r0h )I−3 +

3
10 (

r0
h )2I−4 − 1

30 (
r0
h )3I−5 +

1
15 (

r0
h )−3I1) +

B2

r30
I0,

r0
2h ≤ μ ≤ r0

h ;

− 1
4 (

r0
h )−3I1 +

B3

r30
I0, μ ≤ r0

2h .

(66)
In the applications of this method boundary conditions are applied to ensure

continuity between the different regions of the function.
The method can be extended to any piecewise polynomial kernel using the

integral relations in the Appendix.

4. Application

A similar derivation to the one above was also performed in 2D space (see
Appendix). In that case, the step of applying the Divergence Theorem is omit-
ted, since it is not relevant, and the starting kernel function has slightly different
coefficients. The final solution, however, resembles the one obtained for the 3D
case.
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4.1. Constructing a Voronoi grid

There are two implementations of Voronoi tessellation construction algo-
rithms that were used for this work. The first one is a two-dimensional one and
is written in Fortran. It builds the tessellation by constructing its complemen-
tary Delaunay triangulation first, following an incremental algorithm (Bowyer
(1981), Watson (1981)).

The second one was used for the three-dimensional tests and applications,
and was performed by the C++ library VORO++ (Rycroft (2009)). The library
is tailored towards performance efficiency, which is crucial for large-scale prob-
lems. It computes each Voronoi cell individually and stores statistical data, such
as a list of neighbouring cells and cell volume. These features were beneficial
for the implementation of our density calculation approach.

4.2. Testing

Figure 2: (Top left) 2D SPH kernel function (representing density) with h = 1. Dark blue
corresponds to higher density, and the contour lines are at r = h and r = 2h. The kernel
function is zero outside of the larger cirlcle. (Top right) 2D Voronoi grid created from 50
randomly sampled generating sites. (Bottom) The average density of each Voronoi cell, as
calculated with the analytic solution is plotted in colour. The same colour scheme is used as
in the top left plot, and we can see that we preserve the SPH density structure.

Having completed the derivation of the analytic solution, the computer im-
plementation follows a clear structure. For the case of a single particle existing
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in a Voronoi grid we loop through all of the cells and apply the mathematical
formula for the ends of each side, of each wall, of a cell. We then add up these
values obtained for each cell and divide the sum by the cell volume, which gives
us the cell density. This setup served as our initial test and we performed it
both in 2D and 3D (see Figure 2 and 3).

Figure 3: Similar to Figure 2, but performed for a 3D test. A 3D SPH kernel function with
h = 0.5 is represented through a 3D Voronoi grid with 50 randomly sampled generating
sites. The average density of each cell, as given by the analytic solution, is represented by
its transparency. Darker regions correspond to higher column density along our line of sight.
Here, again, the SPH density structure is preserved.

Through simple visual inspection, the density distribution of the cells matches
the expected profile of a particle’s kernel. Furthermore, the total mass of all
cells equals that of the particle that was considered. In order to have a more
rigorous test, however, we have also implemented a numerical integration algo-
rithm based on Simpson’s rule and compared its answers for the cell masses to
those given by the analytical solution (see Figure 4). The comparison shows
clear agreement and demonstrates the validity of our proposed method.

4.3. SPH data

After completing the single kernel tests, we have applied the method to
data taken from an SPH simulation of a clumpy cloud. The full data set con-
tains 400728 particles and was produced with Phantom (Forgan and Bonnell
(in prep.)) to simulate a clumpy shock. The dataset consists of high density
cores embedded into a uniform low density medium, and was evolved for about
1700 years. For this example we have considered the last snapshot of the SPH
run and have constructed a single grid cell around the position of each particle.

Once we have a large number of kernels and cells, it is no longer practical
to loop over all cells for each kernel. Since the kernel function is zero beyond
twice the smoothing length, it is sufficient to consider only cells that are within
that radius. To do so, we employ a simple friends-of-friends type of algorithm.
We construct a queue structure where we store the indices of the cells which
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Figure 4: Fractional difference between the numerically calculated and the analytically cal-
culated cell masses for the setup in Figure 3. The different colours represent the number of
intervals per smoothing length that were used for the numerical integration of the cell masses.
By increasing the number of intervals, the numerical masses converge to the analytically
calculated ones, demonstrating the validity of our method.

will receive non-zero mass contribution from the particle. As we go through the
queue, we check if each wall of the currently considered cell is within a radius
of two smoothing lengths. If the entire wall or part of it is inside of this radius,
we add the cell on the other side of the wall to the back of the queue, provided
it is not already in it. Initially the queue starts with only one element, which is
the index of the cell generated around the particle’s location.

We have considered subsets of the full SPH dataset in order to perform
timing tests. In this specific case the number of cells that receive mass from
a given particle is between about 50 and 100, hence for the larger subsets we
can treat that number as constant and expect the computation time of the full
density calculation to depend linearly on the number of particles in the subset.

This linear relation does not necessarily hold if we compare full SPH datasets
of different total particle numbers. For the purposes of numerical convergence,
an ideal implementation of SPH would have the number of neighbours scaling
as the square root of the total particle number (Zhu et al. (2015)). This would
lead to the computing time being proportional to the total number of particles
to the power of 1.5 when different SPH datasets are compared to each other.

We can see in Figure 5 that the computing time for the analytical method
follows a linear dependence, as expected. We have compared this to the numer-
ical solution with 10 intervals per smoothing length, for which computational
time also depends linearly on the number of particles. As the figure shows, the
numerical approach is a factor of about 200 times slower than the analytical
one. Note that both of the algorithms were executed sequentially, however they
could be easily parallelised.
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Figure 5: Comparison between the computing time of the analytically calculated density
structure and the numerically calculated density structure (with 10 intervals per smoothing
length) for differently sized samples of an SPH dataset. In both the analytic and the numeric
cases, there is a linear dependence between computing time and the number of particles, as
expected. The gradient of the numerical solution is 200 times larger than that of the analytic
one, making the method much slower than desired.

5. Discussion

5.1. Comparing the analytically obtained densities to other types of density map-
ping

After demonstrating the validity of our proposed density calculation method,
we will focus on comparing its results with the more commonly used ways of
calculating average densities of Voronoi cells in astronomy. The first one, from
here on referred to as method 1, is by creating one cell per particle and dividing
a particle’s mass by its cell volume to obtain density. We have previously argued
that method 1 will not produce accurate solutions, and we have compared the
results it gives to the analytical method in Figure 6. The second method,
or method 2, calculates the SPH density at the centroid point of a Voronoi
cell and assigns it as the average cell density. While method 2 can produce a
reasonable estimate of the local density (see Figure 6) provided that no large
density gradients are present in the data, it does not ensure mass conservation.

Figure 6 demonstrates a comparison between method 1, method 2 and the
analytic solution for four different datasets with varying properties, namely a
clumpy cloud, a uniform density box, a disk galaxy and a cloud affected by a
supernova explosion. The clumpy cloud is the dataset introduced in the previous
section for testing purposes. The rest of the models were done using SPHNG
(Bate et al. (1995)). The box consists of 122333 uniformly sampled particles,
however some noise is present in the particle positions and hence in the densities.
We have only used the initial setup of this model instead of evolving it in time,
in order to keep the desired density distribution. We have done the same with
the disk galaxy model (Ramon Fox et al. (in prep.)), by only considering its
initial conditions given by the prescription of McMillan and Dehnen (2007). It
contains 500000 gas particles, following a smooth density power-low without any
features. Finally, the post-supernova cloud contains 208155 particles on both
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Figure 6: Histograms studying the accuracy of two commonly used methods for density calcu-
lation: particle mass divided by cell volume (method 1) and SPH density at the cell centroid
point (method 2). Method 1 and 2 are compared to the analytically obtained density for the
case of a clumpy cloud (top left), uniform density box (top right), disk galaxy (bottom left) and
supernova shock wall (bottom right). The dashed horizontal lines indicate the level at which
the bins have reached 1% and 10% respectively of the total number of cells. Both method
1 and 2 show significant deviations from the analytic solution, which can cause inaccuracies
when the SPH data is post-processed with MCRT.

sides of a shock wall where many complex structures are present (Lucas et al.
(in prep.)).

From Figure 6 we can see that while method 2 tends to have broader range
of density deviations than method 1, the bulk of its particles are concentrated in
a narrower region around 0%. Additionally to the primary peak method 2 has a
secondary peak at -100% for three of the four datasets. These are cells for which
the centroid method assigns zero density, and are located at the outskirts of the
data samples, where the cells are elongated due to the cuboid boundaries. The
dataset without a secondary peak is the one of the uniform density cube, where
the distribution of the data points matches the shape of the cuboid boundaries.

We have previously mentioned that method 2 does not ensure mass conser-
vation. In each of the four examples that we have considered, the total mass
produced by method 2 differs by less than 5% from the analytic total mass.

The conversion from particle to grid structure of SPH data is typically
done in order to perform post-processing with Monte Carlo Radiative Trans-
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port (MCRT), and it is hard to estimate how much the density deviation of
both method 1 and method 2 will affect the results of the MCRT, since that
will strongly depend on other parameters as well. However if we incorporate
MCRT into the hydrodynamics code, we will be performing the density map-
ping and the radiative transport many times which will multiply the effect of
any inaccuracies.

Although from Figure 6, method 2 appears preferable to method 1, especially
when there are not many elongated cells at the boundaries, neither can provide
a comparable solution to our analytical method.

5.2. Allowing for the number of cells and the number of particles to differ

A significant byproduct of our density calculation method is the fact that the
number of cells does not need to match the number of particles. This was already
evident in Figures 2 and 3, where we presented the test cases. The implication
of this byproduct is that we have gained extra freedom in choosing local grid
resolution, making our method non-particle based. While it is a reasonable idea
to construct a grid cell around each SPH particle, this will not be optimal if we
are interested in post processing the data with MCRT.

Dense areas of a cloud, which are far away and/or shielded from the sources
of light will receive very small number of photon packets during post-processing.
Additionally, dense areas in SPH consist of a clustering of particles, which in
this case will provide high resolution at a place where it is not needed. In terms
of computing efficiency, this region will be much better represented by a single
cell.

Conversely, at a sharp boundary between a high density and a low density
region of a cloud, there is a poor resolution effect caused by the property of the
Voronoi tessellation to bisect the distance between neighbouring cell generating
sites. This creates elongated dense cells which stretch into the low density
region, and can affect the MCRT post processing. This scenario has been studied
by Koepferl et al. (2016) in the context of the geometry of an ionisation bubble,
and their proposed solution is to create more cells within the region of interest.

5.3. Broader applicability of the analytic solution

In this paper, we have been considering a specific SPH kernel function in the
form of a cubic spline. While this is one of the most broadly used SPH kernels,
one might want to perform the density calculation method with a different
function. The method presented in this work can be applied to other functions
as well, provided that the individual integration steps can be performed. In
particular, similar analytic solutions can be obtained for different polynomial
kernels.

Additionally, this work is not limited to Voronoi cells. Throughout our
derivations we have not used any of the geometric properties of the Voronoi
tessellation, but have instead considered the space contained in a random poly-
hedron. This makes our method applicable to a broader range of problems,
including calculating densities of regular grids.
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Since the mathematical question that we have answered was about how
to integrate a spherically symmetric function over the volume of any random
polyhedron, the presented approach can have applications beyond SPH kernels
and Voronoi cells as well.

6. Summary

We have presented a new approach for computing Voronoi cell densities from
SPH data. Our method uses a cubic spline kernel function in order to calculate
the mass contribution of a particle to the cells that it overlaps with. All of the
mass contributions that a cell receives are then added up and divided by the
cell volume in order to obtain the average density of the cell.

Our method is based on an analytic expression which we have derived both
for 2D and 3D space, and which is evaluated at the vertices of each Voronoi
polyhedron. When compared to a numerical solution for the same problem, our
approach is about 200 times faster in terms of computational time.

We have additionally applied our solution to different SPH datasets and
compared the density profiles that we have obtained to ones constructed with
more commonly used density mapping methods. In some cases, we have found
significant discrepancies, which can affect further post-processing of the SPH
output.

A significant property of the presented work is that it is not limited to grid
representations with equal number of SPH particles and Voronoi cells. This
provides additional freedom to choose to alter the local resolution when post-
processing SPH data sets.

Finally, the mathematical method of the derivation can be used more broadly.
One could consider other kernels, or even functions unrelated to SPH or the
current problem of interest, provided that the relevant integration steps can be
performed. Moreover, the analytic integration was performed over the volume
of a random polyhedron, which need not be a Voronoi cell. It can be applied to
any grid representation with flat cell walls, including regular grids.
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Appendix

Derivation of I−1

In order to obtain I−3 and I−5, we will first find I−1, as follows:

I−1 =

∫ −αdμ
μ(1− μ2)

√
1− (1 + α2)μ2

(67)

=

∫ −α(1− μ2 + μ2)dμ

μ(1− μ2)
√
1− (1 + α2)μ2

(68)

=

∫ −αdμ
μ
√
1− (1 + α2)μ2

+

∫ −αμdμ
(1− μ2)

√
1− (1 + α2)μ2

(69)

= I
′
−1 + I1. (70)

As we already have a solution for I1, we only need to express I
′
−1 by using

u =
√

1− (1 + α2)μ2 and the fact that μ = 1−u2

1+α2 :

I
′
−1 =

∫
αdu

1− u2
(71)

=
α

2

∫
(1 + u+ 1− u)du

(1− u)(1 + u)
(72)

=
α

2

∫ (
1

1− u
+

1

1 + u

)
du (73)

=
α

2
(log(1 + u)− log(1− u)). (74)

By following a similar approach, we then obtain solutions for I−3 and I−5.

Integration in the 2D case

The kernel function that we have chosen for the case of 2D space is analogous
to that for 3D space and is given by:

W (r) =
10

7h2π

⎧⎪⎨
⎪⎩
1− 1.5

(
r
h

)2
+ 0.75

(
r
h

)3
, r ≤ h;

0.25
(
2− (

r
h

))3
, h ≤ r ≤ 2h;

0, r ≥ 2h.

(75)

By applying Green’s Theorem, as stated in equation 28, we can construct

function H = Hr r̂, such that 1
r
∂(rHr)

∂r = W (r). As we integrate, we obtain the
following solution for Hr:

Hr(r) =
1

r

5

7h2π

⎧⎪⎨
⎪⎩
r2 − 3

4h2 r
4 + 3

10h3 r
5, r ≤ h;

2r2 − 2
hr

3 + 3
4h2 r

4 − 1
10h3 r

5 − 1
10h

2, h ≤ r ≤ 2h;
7
10h

2, r ≥ 2h,

(76)
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Finally, by expressing r = r0
μ and integrating further, we have the solution:

IP =

∫
Hr(r)rdφ =

5r20
7h2π

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I−2 − 3
4

(
r0
h

)2
I−4 +

3
10

(
r0
h

)3
I−5, r ≤ h;

2I−2 − 2 r0
h I−3 +

3
4

(
r0
h

)2
I−4 − 1

10

(
r0
h

)3
I−5 − 1

10

(
r0
h

)−2
I0, h ≤ r ≤ 2h;

7
10

(
r0
h

)−2
I0, r ≥ 2h,

(77)
where I0, I−2, I−3, I−4, I−5 are defined as previously.
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