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A Comparison of Inferential Methods for
Highly Nonlinear State Space Models in
Ecology and Epidemiology
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Abstract. Highly nonlinear, chaotic or near chaotic, dynamic models are
important in fields such as ecology and epidemiology: for example, pest
species and diseases often display highly nonlinear dynamics. However, such
models are problematic from the point of view of statistical inference. The
defining feature of chaotic and near chaotic systems is extreme sensitivity
to small changes in system states and parameters, and this can interfere with
inference. There are two main classes of methods for circumventing these dif-
ficulties: information reduction approaches, such as Approximate Bayesian
Computation or Synthetic Likelihood, and state space methods, such as Par-
ticle Markov chain Monte Carlo, Iterated Filtering or Parameter Cascading.
The purpose of this article is to compare the methods in order to reach con-
clusions about how to approach inference with such models in practice. We
show that neither class of methods is universally superior to the other. We
show that state space methods can suffer multimodality problems in settings
with low process noise or model misspecification, leading to bias toward sta-
ble dynamics and high process noise. Information reduction methods avoid
this problem, but, under the correct model and with sufficient process noise,
state space methods lead to substantially sharper inference than information
reduction methods. More practically, there are also differences in the tuning
requirements of different methods. Our overall conclusion is that model de-
velopment and checking should probably be performed using an information
reduction method with low tuning requirements, while for final inference it is
likely to be better to switch to a state space method, checking results against
the information reduction approach.
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1. INTRODUCTION

Nonlinear or near-chaotic dynamical systems repre-
sent a challenging setting for statistical inference. The
chaotic nature of such systems implies that small varia-
tions in model parameters can lead to very different ob-
served dynamics. This characteristic alone is enough to
invalidate many conventional statistical methods, but in
most cases additional complications are present. First,
the process under study is generally observed with er-
rors. In addition, many models include a further layer
of uncertainty, which we call process stochasticity. In
ecology this is often environmental noise, driving the
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system dynamics. Process stochasticity increases the
complexity of the model in a nontrivial way: apart from
being unobservable, its presence makes every realized
trajectory of the system essentially unique. This is par-
ticularly true for chaotic models where any amount of
process noise will cause rapid divergence of two paths
generated using identical parameters and initial condi-
tions, in sharp contrast to the situation in which dynam-
ics lie on a stable attractor.

Developing statistical methods that can deal ef-
fectively with highly nonlinear systems is not sim-
ply a matter of theoretical interest, since examples
of nonlinear or near-chaotic behavior in ecological
systems abound: lemmings (Kausrud et al., 2008),
voles (Turchin and Ellner, 2000), mosquitos (Yang
et al., 2008), moths (Kendall et al., 2005) and fish
(Anderson et al., 2008). Similar degrees of nonlinear-
ity have been observed in experimental settings, for
example, blowflies (Nicholson, 1957) and flour beetles
(Desharnais et al., 2001).

The focus of epidemiologists often differs from that
of ecologists. Both groups are concerned with explain-
ing the persistence of the species under study, but epi-
demiologists and ecologists are often aiming respec-
tively at causing and avoiding its extinction (Earn, Ro-
hani and Grenfell, 1998). Despite this divergence in
objectives, the mathematical structures used to study
population dynamics are often very similar. Hence,
the role of nonlinearities in the population dynam-
ics of infectious diseases has attracted much attention
in epidemiology as well. In the context of measles,
Grenfell (1992) and Grenfell et al. (1995) describe how
the interaction between seasonal forcing and observed
heterogeneities, such as age structure or spatial cou-
pling, can result in chaotic or stable dynamics, while
Grenfell, Bjørnstad and Finkenstädt (2002) address the
issue of predictability under a time-series Susceptible
Infected Recovered model. More recently, King et al.
(2008), Lavine et al. (2013) and Bhadra et al. (2011)
use nonlinear stochastic models with multiple compart-
ments to analyze cholera, pertussis and malaria epi-
demics, respectively.

The relation between chaos, statistics and probability
theory has been discussed by Berliner (1992) and Chan
and Tong (2001), among others. We have a quite differ-
ent focus, which is to review and compare the main sta-
tistical methods for highly nonlinear dynamic models
in ecology and epidemiology, investigating the difficul-
ties involved in their use, and attempting to establish
the best approach to take in practical applications.

The paper is organized as follows: in Section 2 we
show that the likelihood function of simple dynamic
models can be intractable in certain areas of the pa-
rameter space, while in Section 3 we briefly review
the set of statistical methods most useful in the con-
text of nonlinear dynamic systems. How these meth-
ods deal with the issue discussed in Section 2 is the
subject of Section 4. In Section 5 we compare the rela-
tive performance of these methodologies on a sequence
of increasingly realistic (and hence complex) ecologi-
cal and epidemiological models. We conclude with a
discussion.

2. CHAOS AND THE LIKELIHOOD FUNCTION

To provide a simple example illustrating how the dy-
namics of an ecological model can challenge conven-
tional statistical approaches, let us consider the noisily
observed Ricker map

yt ∼ Pois(φnt ),(2.1)

nt+1 = rnte
−nt+zt+1, zt ∼ N

(
0, σ 2)

,(2.2)

which can be used to describe the evolution in time t

of a population nt . Parameter r is the intrinsic growth
rate of the population, controlling the dynamics of the
system; φ is a scale parameter. The process noise zt

can be interpreted as environmental noise.
Denote with y1:T = {y1,y2, . . . ,yT } and n1:T =

{n1,n2, . . . ,nT } the observations and hidden state se-
quence up to time T , where yt ∈ R

dy and nt ∈ R
dn for

t ∈ {1, . . . , T }. Equations (2.1) and (2.2) define a sim-
ple state space model (SSM), for which parameter in-
ference is nontrivial: defining θ = {r, φ, σ }T , the like-
lihood p(y1:T |θ) is intractable in certain areas of the
parameter space. For example, when σ = 0, the likeli-
hood is analytically available, but extremely irregular
for high values of r . The plot on the top left of Figure 1
shows a transect of the log-likelihood w.r.t. log(r), ob-
tained using 50 observations, yt , simulated using pa-
rameters log(r) = 3.8, σ = 0 and φ = 10. Given the
ragged shape of the log-likelihood, estimating the pa-
rameters by maximum likelihood would be very chal-
lenging computationally, while having only limited
theoretical motivation. Similarly, any standard MCMC
algorithm targeting the parameter posterior distribu-
tions would hardly mix at all. This behavior is generic
to highly nonlinear dynamic systems: Figure 1 shows
likelihood transects for three more dynamic models,
defined in Table 1, any of which could be used to make
the same points made using the Ricker map, below.
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FIG. 1. Slices of the log-likelihoods of four simple models w.r.t.
different parameters (black). In each case σ = 0, hence, the likeli-
hoods are analytically available. For the Ricker map a bifurcation
diagram is included (gray).

Figure 1 reflects the extreme sensitivity of the like-
lihood of chaotic models to minuscule changes in pa-
rameters or process noise. The bifurcation diagram of
the Ricker map (grey) shows the possible long term
values nt of the map, as a function of log(r). While the
trajectories oscillate between two values for log(r) ≈
2, increasing log(r) above 2.5 leads to a sequence of
closely spaced bifurcations, each doubling the period-
icity of the map. This period-doubling cascade has a
direct effect on the likelihood. Notice that this func-
tion is smooth again for values of log(r) where stable
periodic oscillations are recovered. Further increasing
log(r) leads to more period-doubling phases and even-
tually to chaos.

Figure 2 illustrates the origin of this extreme mul-
timodality. We generated two state paths, n1:50, using
σ = 0 and the same initial value n1 = 7, but different
values of log(r): 3.8 (solid) and 3.799 (dashed). The
two paths are close to each other for the first steps, but
the mismatch between them increases with time, and

TABLE 1
Five simple maps that can show chaotic dynamics. In each case

yt ∼ Pois(φnt ) and zt ∼ N(0, σ 2)

Model name Process equation

Generalized Ricker nt+1 = rnt e
−nθ

t +zt

Pennycuick nt+1 = rnt

1+e−a(1−nt )
ezt

Maynard–Smith nt+1 = rnt

(1+nb
t )

ezt

Varley nt+1 =
{

rnt e
zt , if nt ≤ c

rn1−b
t ezt if nt > c

by t = 15 the peaks and troughs of the paths do not co-
incide any more. This sort of divergence of neighboring
trajectories is the defining feature of chaotic dynamics
(measured formally in terms of Lyapunov exponents).

The choice σ = 0 is quite peculiar. What does the
likelihood look like when the process dynamics are
stochastic?

Box 1
Sequential Importance Resampling (SIR) for

likelihood estimation

This algorithm, originally proposed by Gordon,
Salmond and Smith (1993), exploits the Markov
property to approximate integral (2.3) in T se-
quential steps. Let n1:M

0 be a sample of par-
ticles from the prior distribution p(n0). Then
p(y1:T |θ) is estimated as follows.
For t = 1 to T:

1. For i = 1, . . . ,M :
propagate the ith particle forward

ni
t ∼ p

(
ni

t |ni
t−1, θ

)
,

and weight it using the t th observation

wi = p
(
yt |ni

t , θ
)
.

2. Estimate the t th likelihood component

p̂(yt |y1:t−1, θ) = 1

M

M∑
i=1

wi.

3. Resample n1:M
t with replacement, using

probabilities proportional to w1:M .

Finally, estimate the likelihood by using

p̂(y1:T |θ) = p̂(y1|θ)

T∏
t=2

p̂(yt |y1:t−1, θ).

In this case the likelihood, p(y1:T |θ), must be evalu-
ated by integration:

p(y1:T |θ) =
∫

p(y1:T , z1:T |θ) dz1:T
(2.3)

=
∫

p(y1:T ,n1:T |θ) dn1:T ,

where the second integral is generally the more com-
putationally tractable version. The plot on the right
of Figure 2 shows a transect of the estimated log-
likelihood of the Ricker map w.r.t. parameter log(r),
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FIG. 2. Left: two trajectories n1:T of the hidden state, generated
using the same initialization, but slightly different values of log(r).
Right: transect w.r.t. log(r) of the log-likelihood of the Ricker map
with σ = 0.3, estimated using the SIR particle filter. The irregular-
ities at log(r) ≈ 2.6 are due to Monte Carlo noise.

obtained using the Sequential Importance Resampling
(SIR) particle filter with 5 × 105 particles. Box 1 de-
tails the main steps of this algorithm, while we re-
fer to Doucet and Johansen (2009) for a more de-
tailed introduction to particle filters. The observed path
y1:50 has been simulated using log(r) = 3.8, σ = 0.3
and φ = 10. In sharp contrast with the deterministic
case (Figure 1), it appears that the injection of process
noise (σ > 0) into the system has made the likelihood
smooth and unimodal. At this point several questions
arise: is the likelihood really smooth, as Figure 2 sug-
gests, or is it possible that the particle filter is hiding
the extreme multimodality of Figure 1, so that what we
observe in Figure 2 is an artefact of Monte Carlo inte-
gration? If the likelihood is indeed smooth, how did the
transition from Figure 1 to Figure 2 occur? How much
noise σ should be present in order to obtain a smooth
likelihood?

Checking the reliability of the estimates provided by
a particle filter is difficult because, for nonlinear and/or
non-Gaussian models, Monte Carlo or numerical inte-
gration are the only ways to get an approximation to
(2.3). To obtain a benchmark against which to com-
pare the estimates of the likelihood provided by the fil-
ter, we have therefore discretized the state space of the
Ricker map in 500 intervals. In this way we can cal-
culate the likelihood exactly, since the integrations are
replaced by efficiently computable summations over all
the possible values of the states, as detailed in the sup-
plementary material (Fasiolo, Pya and Wood, 2016).
Obviously, we do not propose discretization as a viable
alternative to particle filters, but we want to use a dis-
cretized SSM to compare the performance of a particle
filter with the true likelihood. It is interesting to check
whether the injection of any amount of noise is suf-
ficient to smooth the likelihood, or whether there is a

FIG. 3. Transects of the true log-likelihood (black) of the discrete
Ricker map w.r.t. log(r) for decreasing values of σ . The red lines
are SIR’s estimates, using 1000 particles.

slow transition from the intractable likelihood shown in
Figure 1 to the unimodal case of Figure 2. Perhaps un-
surprisingly, Figure 3 shows that the latter is the case,
since as we reduce the process noise the likelihood be-
comes first multimodal and then (for any practical pur-
pose) nondifferentiable for very low σ . Notice that the
SIR estimate of the likelihood deteriorates as multi-
modality sets in: we will investigate this more fully in
Section 4.

This suggests that there is an area of the parameter
space, corresponding to high log(r) and low σ , where
the likelihood is essentially intractable. For practical
purposes, it is therefore important to compare the ro-
bustness of alternative statistical methods across the
parameter space, and to understand how alternative
methods behave in the face of this difficulty. In particu-
lar, we need to avoid the possibility of concluding that
a system’s dynamics are relatively stable and noisy, not
because they really are, but because that is the only
case in which the likelihood is numerically tractable.

3. AVAILABLE STATISTICAL METHODS

The literature contains two main classes of statistical
methods for nonlinear dynamical systems:

1. Information reduction: methods that discard the
information in the data that is most sensitive to extreme
divergence of trajectories, so that fitting objectives be-
come more regular. Two methodologies belonging to
this group will be described in Section 3.1.
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2. State space: these work on the hidden states (n1:t
in Section 2 notation) in order to estimate model pa-
rameters and/or the hidden states themselves. Some of
these approaches work without modifying the model or
the data in any way, by using advanced computational
techniques based on particle filtering. We describe two
members of this family in Section 3.2.

Given that the main purpose of this work is to
consider the applicability and relative performance of
these methods in the context of near-chaotic dynamic
systems, we will skip over the technical detail when-
ever they are not essential for the discussion. Obviously
our analysis is by no means exhaustive, as we do not
examine all the approaches that could be applied in this
context. In Section 3.3 we briefly describe some of the
alternatives to the methods included in this work.

3.1 Approaches Based on Information Reduction

Since the trajectories of near chaotic systems are ex-
tremely sensitive to perturbations of parameters or sys-
tem state, statistical methods that rely on recovering the
true system state face a difficult task. At the same time
it is often the case that the true state itself is only a nui-
sance for parameter estimation, and discarding some
information regarding the particular observed trajec-
tory might ease the inferential process.

To make this point clearer, consider again the Ricker
paths in Figure 2. Even though the two trajectories,
which we indicate with y1:T and x1:T , are very different
in terms of Euclidean distance ‖y1:T − x1:T ‖, it is clear
that they share some common features. A way around
the impossibility of replicating the observed path, even
when the simulations use the true or “best-fitting” pa-
rameters and initial value, is focusing on the relation-
ship between some characteristic features of the data
and the unknown parameters. One way of doing this
is to transform the observed and simulated data into a
set of summary statistics and to base subsequent infer-
ences on these.

In the following we denote by y0
1:T the observed

path, and with s0 = S(y0
1:T ) the vector of observed

summary statistic. Often methods based on summary
statistics involve two main approximations of the like-
lihood function. The first is implied by the use of
p(s0|θ) as a proxy for p(y0

1:T |θ), where θ are the
model parameters. The second approximation arises
from the fact that p(s0|θ) itself is generally not avail-
able analytically, and hence it has to be approximated
or estimated by simulation.

We will focus on two approaches based on infor-
mation reduction: Approximate Bayesian Computa-
tion (ABC) (Beaumont, Zhang and Balding, 2002;
Fearnhead and Prangle, 2012) and Synthetic Likeli-
hood (SL) (Wood, 2010). These methods will be out-
lined in Sections 3.1.1 and 3.1.2, respectively.

3.1.1 Approximate Bayesian computation. The
main purpose of ABC algorithms is approximating the
posterior density p(θ |y0

1:T ) ∝ p(y0
1:T |θ)p(θ), where

p(θ) is the prior distribution of the model parame-
ters, when the likelihood p(y0

1:T |θ) is unavailable or
intractable. Given that the data is often transformed
into a vector of summary statistics, these methods are
generally aiming at sampling from p(θ |s0) rather than
p(θ |y0

1:T ).
An elementary ABC algorithm iterates the following

rejection procedure (Toni et al., 2009):

1. Sample a vector of parameters θ i from p(θ).
2. Simulate a path yi

1:T from the model p(y1:T |θ i ).
3. Transform yi

1:T to a vector of summary statistics
si = S(yi

1:T ).
4. Compare si to the observed statistics s0 using a

prespecified distance measure d(·, ·). If d(si , s0) ≤ ε,
where ε ≥ 0, accept θ∗, otherwise reject it.

The output of this algorithm will be distributed accord-
ing to

p(θ)p
{
d
(
s, s0)

< ε|θ} ∝ p
{
θ |d(

s, s0)
< ε

}
,

which approximates the posterior density, p(θ |s0), for
sufficiently small ε. In practice, simple rejection ABC
is replaced with MCMC or Sequential Monte Carlo
(SMC) algorithms.

3.1.2 Synthetic likelihood. Similarly to ABC, this
method can be used for problems where the likelihood
is intractable, but it is still possible to simulate from
the model. The main difference between ABC and SL
is how p(s0|θ) is approximated. ABC does not rely on
any distributional assumption on s, while SL assumes
that, approximately,

S(y) ∼ N(μθ ,�θ ).

Briefly, a pointwise estimate of the synthetic likelihood
at θ can be obtained as follows:

1. Simulate N data sets y1
1:T , . . . ,yN

1:T from the
model p(y1:T |θ).

2. Transform each data set yi
1:T into a d-dimensional

vector of summary statistics S(yi
1:T ).
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3. Calculate the sample mean μ̂θ and covariance
matrix �̂θ of the statistics (often robustly).

4. Estimate the synthetic likelihood

p̂
(
s0|θ) = (2π)−d/2|�̂θ |−1/2

· exp
{−1

2

(
s0 − μ̂θ

)T
�̂

−1
θ

(
s0 − μ̂θ

)}
.

Hence, SL explicitly provides point estimates of
p(s0|θ). This estimator can be used within Markov
chain Monte Carlo (MCMC) algorithms approximately
targeting p(θ |s0) or within an optimizer aiming at
maximizing the synthetic likelihood.

3.2 State Space Methods

If discarding information through the use of sum-
mary statistics is not desirable, then it is necessary to
deal with the hidden states explicitly. As previously
stated, calculating the likelihood of SSMs involves in-
tegrating the hidden states n1:T out of the joint den-
sity p(y0

1:T ,n1:T |θ). The SIR particle filter can be used
to obtain a Monte Carlo estimate of the likelihood by
employing a sequential integration scheme. The use of
a sequential approach allows filters to direct the sim-
ulated trajectories of the hidden states toward values
that are consistent with the observations. This feature
is particularly attractive in the context of near-chaotic
models, where simulated paths diverge rapidly (recall
Figure 2). In this work we mainly focus on algorithms
based on the SIR scheme, but many other approaches
are available. For example, it is possible to use al-
gorithms that sample directly from the joint posterior
density of parameters and hidden states, thus circum-
venting the estimation of the likelihood. For detailed
overviews see Andrieu, Doucet and Holenstein (2010)
and Doucet, Godsill and Andrieu (2000).

Here we consider three state space approaches, two
of which are based on particle filtering. In Section 3.2.1
we describe a sampler belonging to the family of Par-
ticle Markov chain Monte Carlo (PMCMC) methods
(Andrieu, Doucet and Holenstein, 2010), while in Sec-
tion 3.2.2 we introduce the Iterated Filtering (IF) algo-
rithm (Ionides et al., 2011). We consider the Parameter
Cascading approach proposed by Ramsay et al. (2007)
in Section 3.2.3.

3.2.1 Particle marginal Metropolis–Hastings sam-
pler. Filters such as the SIR algorithm can provide
point estimates p̂(y0

1:T |θ) of the likelihood, which ide-
ally converge to the true likelihood as the number of
simulations increases. Andrieu, Doucet and Holenstein
(2010) proposed to use these estimates of the likeli-
hood to set up a Particle Marginal Metropolis–Hastings

(PMMH) algorithm, which can be used to sample from
the posterior distribution of the parameters. The algo-
rithm is formed by the following steps:

• Step 1: Initialization i = 0.
Given an estimate or a guess of the parameters θ0,

estimate the likelihood p(y0
1:T |θ0) using a particle

filter.
• Iteration i ≥ 1:

1. Sample a new vector of parameters θ∗ from a
transition kernel K(θ∗|θ i−1).

2. Using a particle filter, estimate the likelihood
p̂(y0

1:T |θ∗).
3. With probability

min
{

1,
p̂(y0

1:T |θ∗)p(θ∗)
p̂(y0

1:T |θ i−1)p(θ i−1)

K(θ i−1|θ∗)
K(θ∗|θ i−1)

}
,

set θ i = θ∗, otherwise set θ i = θ i−1.

This algorithm is exact in the sense that, despite the use
of noisy estimates of p(y0

1:T |θ) in the acceptance step,
it will generate a dependent sample from p(θ |y0

1:T ).
The conditions under which this occurs are detailed in
Andrieu and Roberts (2009).

3.2.2 Iterated filtering. The IF algorithm uses par-
ticle filters to provide approximate Maximum Likeli-
hood estimates of the unknown parameters. As shown
by Ionides, Bretó and King (2006), by including the
unknown parameters in the state space and running a
filtering operation, it is possible to estimate the gradi-
ent of the likelihood function, which can then be used
within an optimization routine. In more detail, Ionides,
Bretó and King (2006) treat the parameters as if they
were following a multivariate random walk

θ t = θ t−1 + ψ t with ψ t ∼ N
(
0, σ 2�

)
.(3.1)

With this choice we have that

E(θ t |θ t−1) = θ t−1, Var(θ t |θ t−1) = σ 2�,

E(θ0) = θ̂ and Var(θ0) = c2σ 2�,

where σ and c2 are two variance multipliers, θ̂ is an
initial estimate, while � is typically a diagonal matrix,
giving the respective scale of the parameters.

The main result underlying the IF algorithm is

lim
σ 2→0

T∑
t=1

V−1
t (θ̂ t − θ̂ t−1) = ∇ logp

(
y0

1:T |θ)
,(3.2)

where

θ̂ t = E
(
θ t |y0

1:t
)

and Vt = Var
(
θ t |y0

1:t
)
,

can be estimated using the SIR particle filter. The IF
algorithm is composed of the following steps:
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• Choose initial value θ̂
(0)

0 , parameters σ 2, c2, �, α ∈
(0,1) and number of iterations M .

• Iterate for j in 1, . . . ,M :

1. Set σj = αj−1. Estimate θ̂
(j)

t and V(j)
t , for t =

1, . . . , T , using a particle filter.
2. Update the parameter estimate

θ̂
(j+1)

0 = θ̂
(j)

0 + V(j)
1

T∑
t=1

(
V(j)

t

)−1(
θ̂

(j)

t − θ̂
(j)

t−1
)
.

• Then θ̂
(M+1)

0 is an approximate Maximum Likeli-
hood estimate of the parameters.

Notice that, as long as σ > 0, IF will not be fitting
the original model, which will be recovered as σ → 0.
Ionides et al. (2011) give results concerning the theo-
retical foundation of IF and describe how slowly σ has
to decrease to assure convergence.

3.2.3 Parameter cascading. In the context of Or-
dinary Differential Equations (ODEs), Ramsay et al.
(2007) proposed an approach to parameter estimation
which can be adapted to the discrete-time models, such
as the Ricker map. The estimation procedure is a nested
optimization problem with three levels. Given λ and a
current estimate θ̂ , the hidden states are estimated by
minimizing an inner criterion

nθ̂
1:T = argmin

n1:T
J (n1:t |θ̂ , λ)

= argmin
n1:T

{
−

T∑
t=1

logp
(
y0
t |nt , θ̂

) + λψ(n1:T |θ̂)

}
,

where

ψ(n1:T |θ̂) =
T∑

t=1

{
nt − E(nt |nt−1, θ̂)

}2

quantifies deviations of the estimated state from the
model, while λ determines the trade-off between data
fitting and model compliance. The parameters are esti-
mated using the higher level criterion

θ̂ = argmin
θ

H
(
θ |nθ̂

1:T , λ
)

= argmin
θ

{
−

T∑
t=1

logp
(
y0
t |nθ̂

t , θ
)}

.

A further level can be added in which an outer grid
search is used to select λ. This method is especially
useful for exploring multimodality problems in Sec-
tion 4.

3.3 Alternative Approaches

The methods described in the preceding sections rep-
resent a subset of those that could be used in the con-
text of parameter estimation for nonlinear state space
models. Here we discuss some of the alternatives, de-
scribe their relation with the methods described above
and detail our reasons for not including them in this
work.

There exist a large variety of particle-filtering-based
methods that can be used to obtain approximate Max-
imum Likelihood (ML) estimates of the static pa-
rameters, such as Andrieu, Doucet and Tadic (2005),
Andrieu and Doucet (2003), Malik and Pitt (2011),
Poyiadjis, Doucet and Singh (2011) and Nemeth,
Fearnhead and Mihaylova (2013). IF belongs to this
class of methods, and we chose to include it, rather
than some of the alternatives, in this work because (i)
it is theoretically justified, as detailed in Ionides et al.
(2011), (ii) it is has been tested on a variety of complex
models, such as those described in King et al. (2008),
He, Ionides and King (2010) and Bhadra et al. (2011),
which are of direct interest to applied researchers in
ecology and epidemiology, and (iii) the computational
cost of a score function estimate is O(M) in the num-
ber of particles, which, to the best of our knowledge, is
state of the art. Hence, we argue that, by including IF,
this work should adequately cover this class of meth-
ods.

Notably, this work does not include MCMC meth-
ods for parameter identification, such as those pro-
posed by Carlin, Polson and Stoffer (1992), Geweke
and Tanizaki (2001), Polson, Stroud and Müller (2008)
and Niemi and West (2010). One reason for this is
that highly nonlinear models, such as those consid-
ered here, are often characterized by strong depen-
dencies between states and static parameters. Under
such circumstances, implementing an efficient MCMC
sampler requires the design of adequate conditional
proposal densities, which is not trivial for nonlinear
non-Gaussian models (Andrieu, Doucet and Holen-
stein, 2010; Kantas et al., 2014). In addition, the model
presented in Section 5.3 is a discretized version of a
continuous time model, where the discretization error
was limited by using a large number of intermediate
states between each pair of observations. Sampling this
enlarged state space using standard MCMC methods
would be challenging because the convergence rate of
such schemes can be arbitrarily slow if the amount
of augmentation is large (Roberts and Stramer, 2001).
With the exception of Parameter Cascading, all the
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methods described in our work are less affected by
this problem because the intermediate states are sim-
ply simulated forward using p(nt |nt−1, θ). This “plug-
and-play” property is one of the reasons behind the
popularity of these methods (Ionides et al., 2011).

Apart from PMCMC and MCMC algorithms, the
methods proposed by Kitagawa (1998) and Liu and
West (2001) could also be used to sample the poste-
rior distribution of θ . Analogously to IF, these filters
include the parameters in the state space, and perturb
them using an artificial noise process. Even though Liu
and West (2001) counteract the resulting overdisper-
sion of the posterior by shrinking the perturbed param-
eters toward their mean, this does not entirely elimi-
nate the information loss, if the posterior is far from
Gaussian. Hence, in this work we preferred to target
p(θ |y1:T ) using PMMH because of the convergence
guarantees detailed in Andrieu and Roberts (2009).
However, the computational cost of PMMH is fairly
high, and the filter of Liu and West (2001) might be
able to sample a close approximation to p(θ |y1:T ), us-
ing far fewer filtering operations.

Finally, the versions of IF and PMMH used here are
based on the SIR algorithm, as described in Gordon,
Salmond and Smith (1993) and Doucet, Godsill and
Andrieu (2000). More sophisticated filters, such as
those proposed by Pitt and Shephard (1999) and Klaas,
De Freitas and Doucet (2012), might provide more ac-
curate estimates of the likelihood or of ∇p(y1:T |θ)

in the context of IF. Similarly, it might be possible
to improve upon the MCMC implementation of ABC
and SL used in Section 5 by using more sophisticated
SMC samplers (Toni et al., 2009) or Gaussian Pro-
cesses (Meeds and Welling, 2014), respectively. We do
not explore these possibilities here, because doing so
would increase the complexity of this work, without
adding much to its main results.

4. MULTIMODALITY AND STATE SPACE METHODS

If the presence of process noise smooths the likeli-
hood sufficiently, then methods that discard informa-
tion should be outperformed by those that retain it.
However, we cannot generally prove that the likelihood
for any particular model is smoothed and, as shown
in Section 2, there exist models for which smoothing
is only partial, and may be inadequate, when process
noise is low. In this section we further investigate the
impact of multimodality on state space methods and
show that information reduction methods can reduce
the associated problems.

FIG. 4. Top: average difference between the full likelihood and
the estimated full (solid) or synthetic likelihood (dashed) as a func-
tion of σ , obtained using respectively the SIR filter and SL. Bot-
tom: ratio between the sample variance of estimated full (solid) or
synthetic (dashed) likelihoods and the true likelihood for several
values of σ .

In order to evaluate the accuracy of the likelihood
estimates given by the SIR algorithm for different lev-
els of noise, we used the discretized SSM described in
Section 2 and in the supplementary material (Fasiolo,
Pya and Wood, 2016). We chose ten levels of process
noise in the interval σ ∈ [0.01,0.3]. For each level
we simulated 1000 paths using the Ricker map, with
log(r) = 3.8, φ = 0.5, and evaluated the likelihood of
each of them at the true parameters. Figure 4 shows the
results.

The plot on the top shows that, as the process noise
decreases, the average bias of the likelihood estimated
by the filter (solid) increases in absolute value. Indeed,
while the true log-likelihood (not shown) is roughly
constant (≈ −70) for different levels of σ , the mean
filter’s estimates drop from −65 for σ = 0.3 to −140
for σ = 0.01. The strong dependence between likeli-
hood bias and σ suggests that a sampler using these
likelihood estimates will never explore areas of the pa-
rameter space where σ is low. In addition, any model
comparison criterion based on the biased likelihood es-
timates is unreliable.

On the bottom of Figure 4 we plotted the ratios be-
tween sample variance of the likelihood estimated by
the filter and the sample variance of the true likelihood
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for each value of σ , that is,

V̂ar{log p̂(y1:50|θ)}
V̂ar{logp(y1:50|θ)} .

From the plot we see that the variance of the estimated
log-likelihood increases exponentially as σ decreases,
suggesting that Monte Carlo variability of the integra-
tion procedure dwarfs sampling variation for low σ .
This has implications for algorithms based on parti-
cle filters: with such noisy likelihood estimates, the
PMMH algorithm will have an extremely low accep-
tance rate (Doucet et al., 2012), while the IF procedure
will become quite unstable, due to the high variability
of the estimated gradients.

The broken lines in Figure 4 show corresponding
quantities for the synthetic likelihood, obtained using
the set of 13 summary statistics proposed by Wood
(2010) and reported in the supplementary material
(Fasiolo, Pya and Wood, 2016). Interestingly, both the
average and the variance of the synthetic likelihood es-
timates remain roughly constant for different degrees
of process noise. This suggests that the SL approach is
quite robust to the level of process noise in the system,
as it gives stable estimates also when the process dy-
namics are near-deterministic. On the other hand, the
variance of the synthetic likelihood is lower than that
of the true likelihood for any σ , which might be a con-
sequence of the information loss.

Note that to use a synthetic likelihood when the
system is (close to) deterministic, the initial values
of the simulated paths have to be randomized [N1 ∼
Unif(0.1,5)], otherwise the variances of the summary
statistics can be close to zero for very low process
noise. Random initial values are consistent with the
information reduction philosophy: inference should be
robust to the particular values of the hidden states. In
this context, we are confident that ABC, being based
on summary statistics, would perform similarly to SL.

Figure 5 shows why the SIR algorithm is struggling
to estimate the log-likelihood when σ is very low. Each
of the 20 columns in the top image represents the true
filtering density p(nt |y1:t , θ) at each time step, when
σ = 0.3. Areas of high density are represented in yel-
low, while areas of lower density are colored in red.
With this level of process noise, the filtering densities
are smooth and unimodal, so the filter places the parti-
cles around each mode, thus providing a reliable esti-
mate of the likelihood. In contrast, the image on the
bottom of Figure 5 shows that for very low process
noise the filtering densities are unimodal in the first
couple of time steps, but then they break into narrow

FIG. 5. Filtering densities p(nt |y1:t , θ) for a single Ricker path
generated using log(r) = 3.8, φ = 10 and σ = 0.3 (top) or
σ = 0.01 (bottom).

multiple modes. Because of the irregularity of the fil-
tering densities, the quality of the particle approxima-
tion is poor in this case (see time 19 in particular). The
filter struggles to explore all the important modes of the
filtering distributions, and hence the resulting estimates
of the log-likelihood are very variable.

So Figure 5 helps to explain the variability in perfor-
mance of the particle filter approach seen in Figures 3
and 4 as the process noise level changes. For models
capable of showing chaotic or near-chaotic dynamics,
there will be areas of the parameter space where the
likelihood is highly multimodal. In these areas particle
filtering methods will struggle to estimate the likeli-
hood. In such situations most of the likelihood-based
asymptotic theory will not be applicable, and even if
it was possible to sample the corresponding parame-
ter posterior exactly, it would not be obvious how the
results should be interpreted. Hence, we argue that in
such situations the use of approaches based on infor-
mation reduction, which can provide a smooth proxy
to likelihood, might be preferable from both a method-
ological and practical point of view.

To emphasize that the issue of multimodality is
generic to the state space approach, rather than being
specific to filtering, or a particular filtering implemen-
tation, or our discretized state space example, we il-
lustrate how Parameter Cascading can encounter simi-
lar problems on the unmodified Ricker model. Figure 6
shows transects of the parameter fitting objective func-
tion, H(θ |nθ

1:T , λ) (see Section 3.2.3), with respect to
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FIG. 6. Transects of H(θ |n1:T ,λ) w.r.t. log(r), as λ increases.

log(r) for four values of λ, and shows that this func-
tion becomes more irregular as λ increases. For large
λ, which is appropriate when σ is low, this hinders the
optimization and makes estimating θ problematic. In
the following we illustrate that jumps in the objective
function correspond to transitions between modes of
the objective function for the state, J (n1:T |θ , λ).

The upper plot of Figure 7 shows other transects
of H(θ |nθ

1:T , λ), for λ = 65. The solid line was ob-
tained using the same initial value nθ

1:T = y1:T /φ

for each value of log(r). The dashed lines show the
H(θ |nθ

1:T , λ) curves corresponding to two different
modes of J (n1:t |θ , λ) and have been obtained by care-
fully tracking the modes. We refer to these modes as
A and B. The plots on the bottom of Figure 7 repre-
sent the estimated hidden states nθ

1:T corresponding to
two values of log(r) and to each mode. This shows that
the same value of log(r) leads to two different modes

FIG. 7. Top: transects of H(θ |λ,nt ) with respect to log(r). Bot-
tom: paths corresponding to two points 1 or 2 along the log(r) axis
and to modes A or B in the state space.

in the state space, depending on the initialization. The
similarity between the pairs A1–A2 and B1–B2 shows
that these initialization-dependent modes are persistent
along log(r).

5. PERFORMANCE COMPARISON

In the last section we saw that state space methods
for highly nonlinear dynamic models can encounter
difficulties in some regions of parameter space. In-
formation reduction approaches might then be prefer-
able, if they show little practical reduction in infer-
ential performance when the dynamics are less prob-
lematic. This section therefore compares the relative
performance of the statistical approaches presented by
employing them to fit several models, using both sim-
ulated and real data sets.

5.1 Example 1: Simple Chaotic Maps with
Sufficient Noise

Here we consider the models summarized in Table 1,
in addition to the Ricker map. The parameter values
of each model, reported in the supplementary material
(Fasiolo, Pya and Wood, 2016), have been chosen so
that the simulated paths show similar chaotic dynamics
(Figure 8).

The data consist of 50 simulated paths y1:T , where
T = 50, from each model. All paths were used to esti-
mate the parameters using each method. For SL and for
the ABC-MCMC algorithm of Marjoram et al. (2003)
we have used 3 × 104 iterations to sample the posterior
of each path. The PMMH algorithm had an extremely
low acceptance rate unless the likelihood of the lat-
est accepted position was re-estimated at each MCMC

FIG. 8. Trajectories simulated using the four models described in
Table 1.
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step. This doubled the computational effort, and hence
we used only 1.5 × 104 iterations for this method. To
check if recomputing the likelihood was biasing the re-
sults in favor of PMMH, we have implemented a ver-
sion of SL (labeled SL-R) that uses the same approach.
For SL and ABC we have discarded 5000 iterations
as burn-in, while for PMMH and SL-R 2500 iterations
were discarded. For IF we have used 3000 optimization
steps.

At each MCMC step, SL and PMMH estimated the
(synthetic) likelihood by using 500 simulations from
the model, while IF used 5000 simulations at each step
of the optimization step. ABC simulates only one sam-
ple at each step, but we stored an iteration every 500.
Notice that, with this setup, SL, SL-R, PMMH and
ABC used the same number of simulations (1.5 × 107)
from the model in order to fit each of the 250 simulated
data sets. Given that the methods have very different
implementation, basing the comparison on the number
of simulations from the model, rather than CPU time,
ensures fairness.

We used proper uniform priors for all parameters. IF
does not support the use of priors, so we interpreted
the priors as box constraints for the optimization. All
methods were initialized at the same starting values
which, together with the priors and other details, are
included in the supplementary material (Fasiolo, Pya
and Wood, 2016).

To choose the tolerance and the distance measure
used by ABC-MCMC, we employed the following ap-
proach. For each model, we simulated L = 105 param-
eter vectors, θ1, . . . , θL, from p(θ) and the correspond-
ing statistics vectors, s1, . . . , sL, from p(s|θ). As dis-
tance measure d(s, s0) we used (s − s0)T Q−1(s − s0),
where Q = diag(�̂), with �̂ being the empirical co-
variance matrix of the simulated statistics. We then cal-
culated the distances d(si , s0), for i = 1, . . . ,L, and we
chose ε so that only 0.1% of the distances fell below
this threshold.

We evaluated the accuracy of different approaches in
term of squared errors between point estimates and the
true parameters. While IF provided point estimates di-
rectly, ABC, SL and PMMH give dependent samples
from the (approximate) parameter posteriors. Hence,
for the latter group of methods we have used the poste-
rior means as point estimates.

The supplementary material (Fasiolo, Pya and Wood,
2016) reports the median squared errors for each
model-method-parameter combination. Here we have
summarized the results in Figure 9 which represents,

for each model and method, the median and Inter-
Quartile Range of the squared errors, averaged geo-
metrically across the parameters. Letting m, k, j and i

be the indexes of model, method, data set and param-
eter respectively, the average squared errors are then
given by

ē
m,k
j =

{pm∏
i=1

(
θ̂

m,k
j,i − θm

i

)2
}1/pm

,

where pm is the parameter count for model m.
Figure 9 shows that, on this set of simple models,

methods based on particle filtering consistently out-
perform methods based on information reduction. The
performance of IF and PMMH is quite similar, and
the differences in average squared errors between these
two methods might be due to the different type of point
estimates used. ABC-MCMC seems to perform better
that either SL or SL-R for all models. This performance
gap might be attributable to the normal approximation
used by SL, to the bias entailed by estimating p(s0|θ)

using a finite sample or simply to the particular setup
we have used for the experiment.

Tuning the tolerance and the scaling matrix of ABC-
MCMC required little extra effort for the simple mod-
els used here. However, the tuning tends to be much
more laborious under more complex models, such as
described in the following sections. In particular, when
the number of unknown parameters is high, training ε

and Q using simulations from the prior can be very
inefficient, especially if the prior contains little infor-
mation. Hence, for complex models, tuning ε and Q
might require a more sophisticated approach, possibly
involving some degree of manual intervention. From
this practical perspective, SL is at an advantage be-
cause the summary statistics are scaled automatically
using �̂θ , while no tolerance needs to be chosen.

The clear result here is that, given sufficient noise,
the information reduction methods have noticeably
worse performance than the state space methods for
these simple toy models. In the next subsections we
turn to more realistic examples. In order to limit the
computational and programming effort, we will restrict
our attention to PMMH and SL, that is, one method
from each of the two inferential philosophies. We
chose SL rather than ABC because the former method
requires much less tuning, as discussed above. We se-
lected PMMH over IF because PMMH and SL have
very similar MCMC implementations, which should
limit the influence of other implementational con-
founders on the results of the comparison.
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FIG. 9. Medians and Inter-Quartile Ranges of the averaged squared errors for each model and method.

5.2 Example 2: Nicholson’s Blowflies

In this section we consider the results, reported by
Nicholson (1954) and Nicholson (1957), of a series of
laboratory experiments meant to elucidate the popula-
tion dynamics of sheep blowfly Lucilia cuprina under
resource limitation. Blowflies develop in four succes-
sive stages: eggs, larvae, pupae and adults. Feeding oc-
curs only in the larval and adult stages. In two of the
experiments (E1 and E2) the larvae had unlimited re-
sources, while the adults had unlimited access to sugar
and water, but were provided with a limited amount
of protein, which is required for egg production. In an-
other two experiments (E3 and E4) the larvae were sup-
plied respectively with a moderately and severely re-
stricted amount of food, while adults had unlimited re-
sources. The resulting population dynamics are shown
in the left column of Figure 10.

5.2.1 The model. A model potentially capable of
explaining the observed dynamics of this population
was proposed by Gurney, Blythe and Nisbet (1980),
and it is represented by the following delayed differ-
ential equation:

dn(t)

dt
= Pn(t − τ)e−n(t−τ)/n0 − δn(t),(5.1)

where n represents the adult population, while P , τ ,
n0 and δ are parameters. In order to fit the model to the
available data sets, Wood (2010) proposed a discretized
version of equation (5.1) and added a stochastic com-
ponent to its deterministic structure. More precisely, he
proposed the following model:

nt = rt + st ,(5.2)

where

rt ∼ Pois
(
Pnt−τ e

−nt−τ /n0et

)
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FIG. 10. Left column: the data sets reported by Nicholson (1954)
and Nicholson (1957). Central and right columns: paths simulated
from model (5.1) using parameters equal to the posterior means
obtained by fitting the four data sets using SL and PMMH.

represents delayed recruitment process, while

st ∼ binom
(
e−δεt , nt−1

)
denotes the adult survival process. Finally, et and εt

are independent gamma distributed random variables,
with unit means and variances equal to σ 2

p and σ 2
d re-

spectively.

5.2.2 Comparison using simulated data. In order to
verify the accuracy of SL and PMMH for the blowfly
model, we have tested them on simulated data. Be-
fore moving to the results, notice that model (5.2) does
not include any measurement noise: the number of
blowflies nt is assumed to be perfectly observed. This
means that the model is not a SSM, hence, it cannot be
fitted using methods based on particle filtering directly.
Our solution has been to introduce an artificial mea-
surement process when fitting the model using PMMH.
More precisely, we use the following log-normal obser-
vational process:

logyt ∼ N
(
lognt , σ

2
o

)
,

where the value of σo was predetermined, not es-
timated. Notice that, because of this modification,
PMMH is fitting the wrong model and this procedure
can be seen as an importance sampling ABC proce-
dure, where σo plays the role of the tolerance. See Dean

et al. (2011) for more details about the use of ABC pro-
cedures in the context of SSMs with intractable obser-
vational processes. Despite having introduced an artifi-
cial measurement process, we have decided to avoid
estimating the initial values n1, . . . , nτ when using
PMMH, but we have fixed their values to that of the
first τ observations.

For the comparison we have simulated 24 data sets
of length T = 200, using parameter values δ = 0.16,
P = 6.5, n0 = 400, σ 2

p = 0.1, τ = 14, σ 2
d = 0.1. We

have then estimated the parameters with both meth-
ods, using 2 × 104 MCMC iteration and 1000 simu-
lations from the model at each step. The choice of σo

was critical for the performance of PMMH. Obviously
we would like σo to be as small as possible, but lower-
ing it increases the variance of the importance weights
and, in turn, of the estimated likelihood. In particular, if
PMMH was initialized far from the true parameters, σo

had to be increased in order to avoid particle depletion.
Hence, we decided to include the results (PMMH0 and
SL0) obtained using a realistic initialization (δ = 0.1,
P = 4, n0 = 200, σ 2

p = 0.2, τ = 10, σ 2
d = 0.2) and the

results obtained by initializing the chains at the true pa-
rameters. In the first case σo was fixed to 0.05, while in
the second to 0.01. For all parameters we used flat pri-
ors and for SL we used the set of 16 summary statistics
proposed by Wood (2010) for this model. We report
these details in the supplementary material (Fasiolo,
Pya and Wood, 2016).

The running time of the two algorithms was very
similar. In particular, when computed on one core of
a 3.60 GHz i7-3820 CPU, single estimates of p(y0|θ)

and p(s0|θ) took around 0.25 and 0.29 seconds, respec-
tively.

The resulting Mean Squared Errors (MSEs) of the
log-parameters are reported in Table 2. The table in-
cludes the p-values for differences in MSEs, which
clearly show that PMMH is more accurate when the
lower value of σo is used. On the other hand, in the
more realistic setting the performance of the two pro-
cedures is more comparable, as PMMH underestimates
both σ 2

p and σ 2
d , while SL performs slightly worse than

PMMH on the remaining parameters.

5.2.3 Results using Nicholson’s data sets. Fitting
Nicholson’s data sets was relatively straightforward
with SL, and we used the same initial values (δ = 0.16,
P = 6.5, n0 = 400, σ 2

p = 0.1, τ = 14, σ 2
d = 0.1) for each

data set. Using this initialization was not possible for
PMMH, as we would be forced to use values of σo as
high as 0.2 in order to avoid failures in the Monte Carlo
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TABLE 2
MSEs (coverage) of the log-parameters for SL and PMMH for the blowflies model for realistic (0) and optimistic (1) starting values. The

p-values for the differences in log-absolute errors have been calculated using t-tests

δ P n0 σ 2
p τ σ 2

d

SL0 0.00598 (0.83) 0.01686 (0.83) 0.01032 (0.79) 0.05845 (1) 0.00123 (0.92) 0.18568 (0.96)
PMMH0 0.004 (0.67) 0.01176 (0.88) 0.00509 (0.88) 0.30579 (0.58) 0.00042 (0.92) 1.73206 (0.17)
p-value 0.414 0.197 0.01 0.359 0.03 <0.001
Best PMMH0 PMMH0 PMMH0 SL0 PMMH0 SL0

SL1 0.00286 (0.83) 0.01929 (0.75) 0.00836 (0.88) 0.0634 (1) 0.00088 (0.96) 0.18419 (1)
PMMH1 0.00165 (0.88) 0.00416 (0.92) 0.00069 (0.92) 0.03322 (1) 1e–05 (1) 0.02965 (0.96)
p-value 0.123 0.006 < 0.001 0.058 0.006 <0.001
Best PMMH1 PMMH1 PMMH1 PMMH1 PMMH1 PMMH1

integration step (i.e., all importance weights were go-
ing to zero). Hence, we initialized PMMH using values
obtained through preliminary runs of SL on the four
data sets. Still, we were forced to use values of σo equal
to 0.1 for the second data set and 0.05 for the others.
For each data set we used 3 × 104 MCMC iterations,
of which the first 5000 were discarded as burn-in. The
(synthetic) likelihood was estimated using 1000 parti-
cles or simulated paths at each step.

Figure 11 shows the stability diagrams for model
(5.2), for each combination of data set and fitting pro-
cedure. These plots show how the stability properties
of the system depend on the parameter combinations
Pτ and δτ . All posterior samples obtained through
SL lay strictly in the cyclic region of the parame-
ter space, indicating that observed oscillations of the
blowfly population are due to intrinsic blowfly biol-
ogy, rather than stochastic perturbation of the system
(Wood, 2010). On the other hand, the posteriors sam-
ples given by PMMH, in particular, those correspond-
ing to data sets E2 and E4, are closer to the under-
damped region, where the oscillations are driven by
the stochasticity rather than intrinsic effects. With the
exception of E1, the PMMH posteriors are more dis-
persed, which is attributable to the high estimates of
noise parameters σ 2

d and σ 2
p , as shown in Table 3.

Figure 10 compares the observed trajectories with
those simulated from the model, using parameter val-
ues equal to the posterior means estimated by SL
and PMMH. While using parameter values estimated
through SL gives trajectories that are qualitatively sim-
ilar to the observed ones in all cases, using the param-
eters estimated through PMMH gives a poor match for
data sets E2 and E4.

To understand what happened, we have run a filter-
ing operation using data set E2, 104 particles and pa-
rameters equal to the posterior mean given by SL and

PMMH. Figure 12 shows the dynamics of the Effective
Sample Size (ESS) using either parameter set. From
the top plot we see the ESS drops to practically zero
around the 25th, 95th and 250th observation, if SL esti-
mates are used. On the other hand, PMMH gives much
higher estimates of σp and σd and this keeps the ESS
from dropping to zero in those occasions. This suggests
that few idiosyncrasies or outliers in data sets E2 and
E4 might be pushing PMMH toward the underdamped
region. This is supported by the fact that, if PMMH is
run using a log Student’s t-distribution for the observa-
tional process

logyt − lognt

σo

∼ Student(ν = 2),

the resulting posterior estimates for E2 and E4 lay
strictly inside the cyclic region, as shown in Figure 13.
We comment on these results in Section 6.

5.3 Example 3: Cholera Epidemics in the Bay of
Bengal

As a final example we consider a modified version
of the Susceptible-Infected-Recovered-Susceptible
(SIRS) model used by King et al. (2008) to explain
cholera epidemics in the regions north of the Bay of
Bengal. The data set considered here corresponds to
cholera-related mortality records in the former Dacca
district of the British East Indian province of Bengal,
which is available within the pomp R-package (King,
Nguyen and Ionides, 2015). The data, depicted in Fig-
ure 14, consists of monthly deaths count occurring be-
tween 1891 and 1941. See King et al. (2008) for addi-
tional details regarding the data.

5.3.1 The model. The model proposed by King
et al. (2008) is composed of several classes, all of
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FIG. 11. Stability plots for the blowfly model, obtained by fitting Nicholson’s data sets using SL and PMMH. The black dots are 2000
values of the Pτ and δτ randomly sampled from each MCMC chain. The white circle represents the initial value used for SL.
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TABLE 3
Posterior means for model (5.2), obtained by fitting each of

Nicholson’s data sets using either SL or PMMH

δ P n0 σ 2
p τ σ 2

d

E1 SL 0.17 7.57 395.30 0.70 14.44 0.47
E1 PMMH 0.19 4.45 653.93 1.54 14.82 0.30

E2 SL 0.22 8.70 407.61 0.21 15.95 1.77
E2 PMMH 0.37 6.26 576.30 2.35 15.02 3.47

E3 SL 0.29 10.48 184.38 0.64 14.62 0.55
E3 PMMH 0.28 7.71 229.32 1.56 15.18 0.53

E4 SL 0.22 12.81 59.16 0.71 12.91 0.55
E4 PMMH 0.30 12.10 88.33 2.42 14.46 1.23

which are completely unobserved apart from the in-
fected class, which is observed indirectly through the
deaths count. In King et al. (2008) the model was repre-
sented by a system of differential equations, which was
solved numerically using a Euler–Maruyama scheme.
The main issue with their formulation is that the pos-
itivity of the states is not guaranteed. To address this
problem, we propose an alternative model formulation,
to be justified later, which results in the following sys-
tem of difference equations:

st+1 = st − so
t + ro

ktkε

kε + δ
+ yo

t ρ

ρ + δ
+ bt+1,

it+1 = it − iot + c
so
t λt

λt + δ
,

yt+1 = yt − yo
t + (1 − c)

so
t λt

λt + δ
,

r1t+1 = r1t − ro
1t + iot γ

m + γ + δ
,

FIG. 12. Dynamics of the ESS (lines) for the E2 data set (circles),
using the parameter equal to the posterior means given by SL (top)
and PMMH (bottom). For the first τ steps the ESS is equal to the
number of particles because we have set ni = yi , for i = 1, . . . , τ ,
as stated in the main text.

rit+1 = rit − ro
it + ro

i−1t kε

kε + δ
for i = 2, . . . , k,

where

bt+1 = pt+1 − pt + so
t δ

λt + δ
+ iot δ

m + γ + δ

+ yo
t δ

ρ + δ
+

k∑
i=1

ro
it δ

kε + δ
,

so
t = st

(
1 − e−(λt+δ)�t ),(5.3)

iot = it
(
1 − e−(m+γ+δ)�t ),

FIG. 13. Stability plots for data sets E2 and E4 using PMMH with log Student’s t observational error.
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FIG. 14. Cholera-related monthly deaths count in the Dacca dis-
trict between 1891 and 1941.

yo
t = yt

(
1 − e−(ρ+δ)�t ),

ro
it = rit

(
1 − e−(kε+δ)�t ), for i = 1, . . . , k.

Here bt+1 represents the number of births between
time t and t + 1, while pt is the total population of
the Dacca district at time t , characterized by a con-
stant birth–death rate δ. Susceptible individuals s are
infected by cholera at a time-varying rate λt , which
will be explained in detail later. Parameter c determines
the fraction of infected individuals that will undergo a
full-blown infection, represented by class i, rather than
an asymptomatic infection, represented by class y. In-
dividuals in i suffer from an excess death rate m and
transition to the first Recovered class r1 with rate γ .
On the other hand, individuals in y have the same death
rate as susceptible individuals and do not acquire any
long-term immunity, as they rejoin the s class directly
at rate ρ. The duration of immunity is gamma dis-
tributed, with mean 1/ε and variance k/ε2.

The rationale behind our discretized model needs
to be clarified. Consider, for instance, yt . To obtain
yt+1 we model inputs and outputs involving y in turn,
rather than simultaneously. Firstly, we obtain the num-
ber of individuals, yo

t , leaving the asymptomatic in-
fected class by solving

dys = −(ρ + δ)ys ds,

between t and t + 1. The resulting solution is an ex-
ponential decay, which ensures the positivity of yt+1.
Then yo

t is divided between bt+1 and st+1, with propor-
tions determined by the output rates δ and ρ. This so-
lution preserves the positivity of all classes and mass-
balance, both of which are essential for a realistic
model. In addition, our formulation becomes equiv-
alent to the Euler–Maruyama scheme of King et al.
(2008), as �t → 0.

The force of infection λt is given by

λt = ωt + eβtβt

it

pt

�w

�t
,(5.4)

where �w ∼ �(�t/σ 2,1/σ 2), so that �w/�t repre-
sents multiplicative gamma noise with unit mean and
variance equal to σ 2. We preferred this choice to the
additive Gaussian noise originally used by King et al.
(2008) because the multiplicative version assures the
positivity of λt .

In (5.4), ωt and βt represent respectively the environ-
mental and human feedback components of the force of
infection

ωt = exp

( 6∑
i=1

ωigi(t)

)
,

βt = exp

( 6∑
i=1

βigi(t)

)
,

where gi(t), for i = 1, . . . ,6, are a periodic B-spline
basis. Parameter β is the long-term trend in human-to-
human transmission.

The observed number of deaths registered during the
nth month is assumed to follow a negative binomial
distribution

en ∼ NB
(
qn,

1

τ 2

)
,

with mean qn and variance qn +q2
n/τ 2, where qn is the

accumulated number of cholera-related deaths between
the previous and the current month

qn =
tn∑

s=tn−1

mis.

In the original model en was normally distributed
around qn, but that choice often produces negative
death counts when the model is simulated. See King
et al. (2008) for further model details.

5.3.2 Setup and results using the dacca data set.
Similarly to King et al. (2008), we do not fit the full
model, but we consider the following:

• a seasonal model where the y class is not included
(c = 1);

• a two-path model were the environmental force of
infection is constant [ωs(t) = ωs ];

• a basic SIRS model where c = 1, ωs(t) = ωs and
βs(t) = βs .
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TABLE 4
Estimated AICs and CPU times (sec) for each model, using SL and

PMMH

Method Seasonal Two-paths SIRS

AICSL −38.4 −31.6 −34.6
AICPMMH 7458 7532.6 7528.2
CPUSL 10 10.3 9.8
CPUPMMH 9.6 10.1 9.4

We fitted each model to the Dacca data set using SL
and PMMH. For both methods we used 1.4 × 106

MCMC iterations, the first half of which was discarded
as a burn-in period, and 2000 simulations to estimate
the (synthetic) likelihood at each step. We used uni-
form or diffuse priors for all parameters. We report
them, together with the 26 summary statistics used by
SL, in the supplementary material (Fasiolo, Pya and
Wood, 2016).

Table 4 reports the estimated Akaike Information
Criterion (AIC) and the time needed to obtain a sin-
gle estimate of p(y0|θ) or p(s0|θ), on a single core of
a 3.60 GHz i7-3820 CPU, for each model and method.
SL and PMMH agree in selecting the seasonal reser-
voir model, while the two-paths mechanisms do not
improve the fit enough, relatively to the SIRS model,
to justify the additional complexity. This is in contrast
with the results of King et al. (2008), whose second-
order AIC estimate was lower for the two paths than
for the SIRS model.

Almost all the marginal posterior variances were
higher when SL was used, with a median increase
equal to 7.2, 2.6 and 2.2 for the seasonal, two-paths
and SIRS model, respectively. The variance increases
were highest for the seasonal coefficients, ω1:6, of the
force of infection, which suggest that the amount of in-
formation lost through the use of summary statistics is
sizeable.

One important hypothesis examined by King et al.
(2008) was that the mean duration of immunity, dL :=
1/ε, might be much shorter than previously thought.
Our analysis partially supports this conclusion, as
shown by Figure 15. The plots in the top row show the
marginal densities of dL under each model. Under the
seasonal model, most of the posterior mass lies close to
the lower prior boundary, corresponding to unrealisti-
cally low periods of immunity (shorter than one week).
The posterior given by SL under the SIRS model is
slightly less extreme, but it still suggests period of im-
munity of one to three months, which is much shorter

than the 3 to 10 years timescale suggested by several
sources (Cash et al., 1974; Glass et al., 1982; Koelle
et al., 2005). One surprising result is that, under the
two-paths model, dL is still estimated to be lower than
one month. This is in contrast with the results of King
et al. (2008), who estimates dL to be around 1.4 years,
under the same model and data set. The mean dura-
tion of immunity after mild infections dS = 1/ρ is es-
timated to be shorter than three weeks under PMMH,
while SL seems to have lost information regarding dS ,
as the corresponding marginal posterior is bimodal and
highly dispersed.

Figure 15 shows also the marginal distributions of
the cholera-related death probability f = m/(δ + γ +
m). Under the seasonal and the SIRS models our esti-
mates roughly agree with those of King et al. (2008),
but our fatality estimate is much higher than theirs
when asymptomatic infections are included in the
model. Similarly to King et al. (2008), we estimate the
fraction of infection that are symptomatic to be very
low under the two-path model.

Our results suggest that including asymptomatic in-
fections does not improve the fit and does not provide
more realistic estimates of immunity duration, follow-
ing full-blown infections. In addition, this model is dif-
ficult to identify because there is a trade-off between
parameters c, dS and m, which is captured by Fig-
ure 16. The correlations observed in the PMMH joint
posterior sample are explained by the fact that an in-
crease in the fraction of individuals with full infection
can be compensated by decreasing their mortality rate
or by increasing the duration of long short-term im-
munity (thus delaying individuals with mild infection
from rejoining the susceptible). Under SL this iden-
tifiability issue is more severe, and the corresponding
posteriors are bimodal and more dispersed.

Another question addressed by King et al. (2008)
is the relative importance of the environmental reser-
voir and of the human habitat for V. Cholerae persis-
tence. They found that the basic reproductive number,
R0, which quantifies the strength of human-to-human
transmission, was consistently low (around 1.5) across
model and geographic area. Figure 15 shows that our
estimates of R0 are very low under all models and
methods, thus supporting the hypothesis that humans
might be only a marginal habitat for V. Cholerae.

6. DISCUSSION

We have described some of the difficulties that can
be encountered when working with highly nonlinear
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FIG. 15. Posterior marginal distributions from PMMH (solid) and SL (dashed). The estimates of King et al. (2008) correspond to the
vertical dotted lines, substituted by annotations when out of range. The first three rows contain the marginals of immunity duration after
full-blown infections, fatality and basic reproductive number for the seasonal (a), (d), (g), two-paths (b), (e), (h) and SIRS (c), (f), (i) model.
The last row shows the marginals of immunity duration after mild infections (j) and of the fraction of severe infections (k) for the two-paths
model.

dynamical models, and we have shown how these is-
sues influence the performance of some popular infer-
ential approaches. In particular, in Section 4 we have
provided strong experimental evidence suggesting that,
when the dynamics of the system are chaotic or near-
chaotic, the likelihood function becomes increasingly
multimodal as the process noise is reduced. While this
directly undermines the performance of state space
methods aiming at estimating the full likelihood, as in
PMMH, or its derivatives, as in IF, approaches based on
information reduction are less affected. This has prac-
tical implications because, in an applied setting, it is
generally not known whether the best fitting parame-
ters lay in an area of the parameter space where the
stochasticity is too low for state space methods to work
adequately. Hence, the ability of approaches based on
information reduction to smooth the likelihood func-

tion, brought about by focusing on features of the data
that are phase-independent, is appealing.

The blowflies example in Section 5.2 highlights the
robustness of information reduction methods from a
different perspective. Indeed, careless application of
PMMH would have classified the dynamics of the sys-
tem as nearly-underdamped under two of Nicholson’s
data sets, with the corresponding simulations from the
model being clearly inconsistent with the data (see Fig-
ure 10). On the contrary, SL reliably classifies the dy-
namics as cyclic. In this example using a fat-tailed ob-
servation density mitigated the problem, but we argue
that these results have deeper practical implications.
Model (5.2) has sufficient flexibility to reproduce the
main features (quantified by the summary statistics) of
Nicholson’s data sets, as demonstrated by Figure 10.
On the other hand, the model struggles to explain cer-
tain nuances of Nicholson’s data sets, and this is de-
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FIG. 16. Joint posterior samples for fraction of symptomatic infections vs fatality and duration of short-term immunity under PMMH(a),
(c) and SL(b), (d).

tected by the particle filter, but overlooked by SL. This
suggests that, in situations in which the model has a
clear scientific interpretation but lacks the ability to ex-
plain the observed dynamics in all their complexity, fo-
cusing on some salient features of the data might be a
reasonable approach. Conversely, if the model is be-
lieved to be an accurate description of the system un-
der study, or if it is meant to be used for the purpose of
state estimation or forecasting, then it is compelling to
fit it using the full data.

Another lesson learned from the blowflies example is
that, for particle-filtering-based methods to work prop-
erly, a good initialization is often indispensable. This
is because these methods are generally based on some
form of importance sampling, hence, when the ini-
tial estimates are far from the best fitting parameters
most of the importance weights go to zero (particle
depletion). In this context, methods based on informa-
tion reduction can be useful because they are robust
to bad initializations. Methods that can provide reli-
able initial estimates, to be fed to more accurate but
less robust methods, are of high practical value, but of-
ten underrepresented in the literature. Exceptions are
Lavine et al. (2013), who, in the context of pertussis
epidemics, use SL to initialize an IF algorithm, and
Owen, Wilkinson and Gillespie (2014), who propose to

initialize PMMH using the output of preliminary ABC
runs.

One recurrent theme in our examples is that reducing
the data to a set of summary statistics generally entails
a loss of accuracy in parameter estimation. This is par-
ticularly clear in Section 5.1, where SL and ABC are
consistently outperformed by PMMH and IF in terms
of MSEs. Mild losses of accuracy are often accept-
able when parameter estimation is not the main fo-
cus of analysis, but the aim is, for example, to deter-
mine whether the dynamics of the system are stable or
oscillatory, as in the blowflies example. On the other
hand, when dealing with models that are weakly iden-
tified even under the full data, as in Section 5.3, any
further loss of information can lead to unreliable esti-
mates. Hence, an important drawback of information
reduction methods is that, in the absence of a bench-
mark, quantifying inferential inaccuracies requires run-
ning simulation studies, which can be prohibitively ex-
pensive for complex models, such as those presented
in Section 5.3. While in all the examples presented in
this study one or more benchmarks were available, this
is not always the case.

All the methods described in this work, with the ex-
ception of Parameter Cascading, are computationally
intensive. In particular, obtaining pointwise estimates
of p(y0

1:T |θ) or ∇p(y0
1:T |θ) requires MT simulations,
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where M is the number of particles, from p(nt |nt−1, θ)

under SIR and IF respectively. Similarly, SL uses N

simulations from p(y1:T |θ) to estimate p(s0|θ). Within
PMMH and the MCMC implementation of SL, this
price has to be paid at each iteration and the efficiency
of the sampler will depend on the trade-off between
the variance of likelihood estimates and the number of
simulations used to obtain them (Sherlock et al., 2015).
Similar considerations hold for IF, but the optimizer
generally needs much fewer iterations to reach conver-
gence. On the other hand, IF does not directly provide
parameter uncertainty estimates, which have to be ob-
tained through an expensive likelihood profiling proce-
dure (see Ionides, Bretó and King, 2006). On first sight,
ABC samplers seem more efficient than the above ap-
proaches because they target p(θ |s0) directly by sim-
ulating a single statistics vector at the time. However,
ABC samplers generally have a very low acceptance
rate because the latter increases with the tolerance ε,
while their accuracy is inversely proportional to it.

These computational issues are aggravated by the
curse of dimensionality. In particular, the number of
particles in a particle filter need to increase super-
exponentially with the number of hidden states in or-
der to avoid particle-depletion (Snyder et al., 2008).
This result applies directly to PMMH and IF. Analo-
gously, the computational cost of a method based on in-
formation reduction typically increases with the num-
ber of summary statistics used (d). In ABC methods,
the MSE of the posterior moments estimate decreases
at rate O(e−4/d+5), due to the nonparametric approxi-
mation used by such methods (Blum, 2010). SL scales
better with d because it requires a number of simula-
tions sufficient to estimate the O(d2) entries of �θ .
However, its Gaussian assumption might hold only ap-
proximately.

Summary statistics selection is, in our opinion, an
open problem, as many approaches proposed in the lit-
erature require the user to specify an initial set of sum-
mary statistics which can then be refined upon (see,
e.g., Blum et al., 2013; Fearnhead and Prangle, 2012
or Nunes and Balding, 2010). While some fairly gen-
eral approaches exist (Drovandi, Pettitt and Lee, 2015),
finding a set of initial statistics under which the model
is identifiable is, at the time of writing, a time con-
suming, problem dependent and largely nonautomated
process. In the context of models with several hidden
states, devising summary statistics is particularly diffi-
cult because these have to capture the relation between
all the states, while being based only on (noisy prox-
ies of) a subset of them. The two-path cholera model

is a perfect example of this problem: out of seven state
variables, only one, the number of infected, is observed
with noise.

Taken together, our results lead us to some very prac-
tical conclusions. When faced with a real nonlinear dy-
namic system for which good models are available, one
should ideally use a state space method for final pa-
rameter estimation, combined with a minimum tuning
information reduction approach for exploration of al-
ternative model structures, initialization and checking
of conclusions. Using state space methods alone may
bias conclusions toward noise-driven stable dynamics,
while using information reduction alone may lead to
inference that is less precise than it could be. If the
model is only attempting to explain some features of
the system, and not every detail of the data, then infor-
mation reduction is probably essential.
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