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Abstract: The Qinling-Dabie orogenic belt was formed by the collision of the North 

and South China Cratons during the Early Mesozoic and subsequently developed 

into an intracontinental tectonic process during late Mesozoic. Field investigations 

identified the presence of late Mesozoic basalts in the Duofutun and Hongqiang 

areas in the western Qinling orogenic belt. The petrogenesis of these basalts 

provides an important constraint on the late Mesozoic geodynamics of the orogen. 

The representative basaltic samples yield the 40Ar/39Ar plateau age of about 112 Ma. 

These samples belong to the alkaline series and have SiO2 ranging from 44.98 

wt.% to 48.19 wt.%, Na2O+K2O from 3.44 wt.% to 5.44 wt.%, and MgO from 7.25 

wt.% to 12.19 wt.%. They demonstrate the right-sloping chondrite-normalized REE 

patterns with negligible Eu anomalies (1.00-1.10) and PM-normalized patterns 

enriched in light rare earth element, large ion lithophile element and high field 

strength element, similar to those of OIB rocks. These samples additionally show 

an OIB-like Sr-Nd isotopic signature with εNd(t) values ranging from +6.13 to +10.15 

and initial 87Sr/86Sr ratios from 0.7028 to 0.7039, respectively. These samples are 

geochemically subdivided into two groups. Group 1 is characterized by low Al2O3 

and high TiO2 and P2O5 contents, as well as high La/Yb ratios (>20), being the 

product of the high-pressure garnet fractionation from the OIB-derived magma. 

Group 2 shows higher Al2O3 but lower P2O5 contents and La/Yb ratios (<20) than 

Group 1, originating from asthenospheric mantle with input of delaminated 

lithospheric component. In combination with available data, it is proposed for the 

petrogenetic model of the Early Cretaceous thickened lithospheric delamination in 



  

response to the asthenospheric upwelling along the western Qinling orogenic belt.  
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1 Introduction 

The Qinling-Dabie orogenic belt was formed by the collision of the North and South 

China Cratons during the early Mesozoic, which played a fundamental role in the 

assembly of East Asia (e.g., Mattauer et al., 1985; Kröner et al., 1993; Meng and Zhang, 

1999; Zhang et al., 1995, 2001; Ratschbacher et al., 2003; Dong et al., 2011, 2012). 

Numerous attention has been paid to the early Mesozoic igneous rocks and the 

metamorphic rocks in the Qinling-Dabie orogenic belt (e.g. Wang et al., 2005; Fan et al., 

2004; Wang et al., 2007; Liu et al., 2007; Wang et al., 2014; Hu et al., 2012; Shi et al., 

2012), and the collisional process of the North and South China Cratons has been well 

understood. Available data show that the Dabie orogenic belt had experienced 240-210 

Ma collision and deep subduction of continental crust, resulting in the generation of the 

ultrahigh-pressure metamorphic rocks (e.g. Okay and Sengor 1992; Yin and Nie 1993; 

Xu et al. 1994; Ernst and Liou 1995; Hacker et al. 1996; Zheng et al. 1998; Zhang et al. 

2005; Jiang et al. 2010). The Qinling orogenic belt generally lacks the ultrahigh- 

pressure rocks with the exception of small amount of blueschists at the Bikou and North 

Wudang areas (Zhou et al., 1990). In contrast, abundant syn- and post-collisional 

granites with ages of 245-200 Ma were well developed (Dong et al., 2011a and 



  

references therein), suggestive of Mid-Late Triassic collision along the Mianlue suture 

zone. Following the collision, this orogenic belt evolved into an intracontinental tectonic 

process. Our field investigations have identified the presence of late Mesozoic basalts 

in the western Qinling orogenic belt. These basaltic rocks as the important carriers 

provide a possibility for probing the source nature and constraining the late Mesozoic 

geodynamics of the orogen. However, poor attentions have been paid to the late 

Mesozoic mafic-felsic volcanic rocks erupted in the western Qinling orogenic belt. In 

this paper, we present a set of petrographical, geochronological and geochemical data 

of the late Mesozoic basaltic rocks from the western Qinling belt, and aim to probe the 

intra-continental tectonic process. 

2 Geological background 

The western Qinling orogenic belt with northwest-southeast extension 

separates the North China Craton to the northeast from the Yangtze Block of the 

South China Craton to the southeast, and from the Tibetan Plateau to the 

southwest (Fig. 1a). It is bounded by the Qinghai Lake–Wushan–Tianshui fault on 

the north (also known as the West Qinling fault), the A’nyemaqen and Mian-Lue 

suture zone on the south, and the Wahongshan-Wenquan and Fengxian-Taibai 

strike-slip faults on the west and east, respectively (Fig. 1b; Feng et al., 2003; Meng 

et al., 2005; Zhang et al., 2004; Ratschbacher et al., 2003; Dong et al., 2011; Li et 

al., 2013a).  

The Paleozoic to Triassic marine sedimentary package is the oldest exposed 

sequence in the western Qinling orogenic belt. The Paleozoic rocks are dominated 



  

by shallow-marine carbonate rocks with the exception of the Silurian and Middle to 

Upper Devonian siltstones and sandstones. The Triassic sequence is composed of 

deep-marine siliciclastic and carbonate, accumulating in a continental slope 

environment (Meng et al., 2007). The pre-Jurassic package is overlain by the 

Jurassic and Cretaceous alluvial and fluvial red-beds (Jiang et al., 2003; Li et al., 

2013b; Zhang et al., 2012; Wu et a., 2014). The Middle Jurassic sandstone is 

overlain by the Lower Cretaceous strata by angular unconformity (Wu et al., 2014). 

The western Qinling orogenic belt has experienced strong structural 

deformation due to the Late Triassic tectonothermal event, as evidenced by folding 

and thrusting of the Paleozoic-Lower Triassic sequence (Wu et al., 2014). The 

strike-slip faults and volcanic sequences are important geological signatures during 

the late Mesozoic. The volcanic sequences are in small volumes and consist mainly 

of mafic to felsic lava, tuff and volcanic breccia (Ratschbacher et al., 2000; Feng et 

al., 2002; Zhang et al., 2012). In the central segment of the western Qinling 

orogenic belt, the volcanic sequence predominantly developed at the Laozanggou, 

Duofutun and Hongqiang areas (Fig. 1c-d) and constituted a part of the Duofutun 

and Maixiu groups (Qi et al., 2011). The Duofutun Group with the thickness of 500m 

consists of basalts, basaltic andesites, andesites, dacites, and rhyolites (Figs. 1c; 

Qinghai BGMR, 1991; Qi et al., 2011; Li et al., 2013a). The volcanic rocks in the 

Duohemao Formation of the Maixiu Group are composed of basalts with minor 

basanites and basaltic andesites (e.g., Fig. 1d; Qinghai BGMR, 1991; Lai et al., 

2014; Ding et al., 2013; Qi et al., 2011). The Maixiu Group is unconformably 



  

underlain by the pre-Cretaceous package and unconformably overlain by the 

Miocene sandy conglomerate. In this study, our samples were collected from the 

basaltic rocks of the the Duohemao Formation at the Duofutun and Hongqiang 

areas (Fig. 1). Samples are fresh and display a subaphyric to prophyritic texture 

with predominant phenocrysts being olivine and pyroxene and the matrix being 

mainly composed of fine-grained or aphanitic clinopyroxene and plagioclase.  

3 Analytical methods 

The fresh samples were crushed to millimeter-scale chips and then cleaned in 

an ultrasonic bath with deionized water. Samples TR-12B and TR-25 were selected 

for hornblende and whole rock 40Ar/39Ar dating analyses, respectively. Whole-rock 

for Sample TR-25 was hand-picked under a binocular microscope and hornblende 

for Sample TR-12B was separated by conventional heavy liquid and magnetic 

techniques. Two samples were irradiated in the central thimble position of the 

nuclear reactor (1000 kw) at the Chinese Academy of Atomic Energy Science for 

2627min with an instantaneous neutron flux of 6.63*1012n/cm2. Samples were then 

heated and degassed in steps from 400–420 °C to 1300 °C. Purified argon was 

analyzed under MM-1200 mass spectrometer at the Guangzhou Institute of 

Geochemistry (GIS), the Chinese Academy of Sciences (CAS). The concentrations 

of 36Ar, 37Ar, 38Ar, 39Ar and 40Ar were corrected for system blank, radioactive decay 

of nucleonic isotopes, and minor interference reactions involving Ca, K and Cl. The 

detailed analytical and correction techniques have been described by Sang et al. 

(1996). The internal standard biotite ZBH-2506 monitor yielded an age of 132.7 ± 



  

1.2 Ma. The 40Ar/39Ar dating results were calculated and plotted using the 

ArArCALC software (Koppers, 2002). The 40Ar/39Ar plateau age of the spectra is 

herein defined by the >75% contiguous gas fractions, at least eight contiguous 

steps of all the gas evolved from the sample, and their apparent ages agreed to the 

integrated age of the plateau segment with invariability at 1σ level of uncertainty. 

As for representative samples selected for geochemical analyses, rocks chips 

were powdered to a grain size of 200-mesh by an agate mill. Whole-rock major 

oxides and trace elemental analyses were performed at the GIG (CAS) by X-ray 

fluorescence spectrometry and a Perkin-Elmer Sciex ELAN 6000 ICP-MS, 

respectively. The analytical procedures are described in detail by Li et al. (2002b). 

Sr and Nd isotopic ratios were measured on the VG-354 mass-spectrometer at the 

GIG, CAS. Detailed analytical and correction techniques are introduced by Liang et 

al. (2003). The total procedure blanks were in the range of 200–500 pg for Sr and 

≤50 pg for Nd. 86Sr/88Sr ratios and 146Nd/144Nd ratios were normalized to 0.1194 

and 0.7219, respectively. The measured 87Sr/86Sr ratios of the (NIST) SRM 987 

standard and 143Nd/144Nd ratios of the La Jalla standard are 0.710265 ± 12 (2σ) and 

0.511862 ± 10 (2σ), respectively. The elemental and isotopic analytical results are 

listed in Table 2 and 3, respectively. 

4 Results 

4.1 Ar-Ar geochronology 

The analytical results of TR-12B and TR-25 are shown in Table 1 and Figure 2. 

Hornblende grains for TR-12B yield a plateau age of 112 ± 0.6 Ma defined by ~99 % 



  

released gas (Fig. 2a). The plateau age is comparable with its isochron age, and the 

initial 40Ar/39Ar ratio is 267.49, suggesting an insignificant excess of 40Ar or 36Ar. 

Whole- rock sample (TR-25) gives a plateau age of 112.0 ± 2.3 Ma with 92.4% 39Ar 

released gas (Fig. 2b). Its plateau age is consistent with the isochron ages, with a 

correlation coefficient of 0.994, indicative of a reliable plateau age.  

4.2 Geochemical results  

The Early Cretaceous basaltic samples are geochemically subdivided into two 

groups. Group 1 is constituted by four samples from the Duofutun area (TR-5, TR-7, 

TR-9 and TR-11), which is characterized by low Al2O3 (12.23-12.66 wt.%) and high 

TiO2 (2.69-2.87 wt.%) and P2O5(0.72-0.81 wt.%) contents. It gives high La/Yb ratios 

(>20). Group 2 from the Duofutun and Hongqiang areas shows higher Al2O3 

(14.05-16.48 wt.%) and lower P2O5 (0.41-0.67 wt.%) contents and La/Yb ratios (<20) 

than those of Group 1.  

On the plot of total alkali and SiO2 (Fig. 3), both groups have typical alkaline 

series and plot into the basalt field with the exception of two samples (TR-2 and 

TR-3) in the trachy-basalt field. On Harker diagrams, these samples are decreasing 

in CaO, TiO2, P2O5, and FeOt contents but slightly varying in MgO and Al2O3 

contents with increasing SiO2 (Fig. 4a-f). The compatible elements (e.g. Cr and Ni) 

positively correlated with MgO (Fig. 4g-h). Group 1 has higher Nb and La contents 

(61.93-71.93 and 36.63-40.12, respectively) than Group 2 (28.03-55.39 and 

18.24-33.51, respectively). 

Both groups show similar chrondrite-normalized REE patterns with enrichment 



  

in LREE ((La/Yb)n=7.07–19.48) and insignificant Eu anomalies (1.00-1.10), 

resembling to those of typical ocean island basalt (Fig. 5a; Sun and McDonough, 

1989). The Group 1 sampes has higher LREE/HREE ratios and more insignificant 

Eu anomalies than the Group 2. On the primitive mantle- normalized spidergrams 

(Fig. 5b), the Group 1 and 2 samples show OIB-like patterns (Sun and McDonough, 

1989) with enrichment in LREE, LILE and HFSE but relative depletion in HREE. 

The positive Nb, Ta and Sr but negative Rb anomalies are additionally shown. 

La/Nb ratios range from 0.56 to 0.70, Ba/La from 4.99 to 21.9 and Ba/Nb from 2.94 

to 12.4, similar to those of oceanic island basalt (0.77, 9.49 and 7.29, respectively; 

Sun and McDonough, 1989). 

The Sr and Nd isotopic compositions for the thirteen samples are listed in Table 2 

and Figure. 6. Two samples from Group 1 are analyzed for Sr and Nd isotopic 

compositions and have initial 87Sr/86Sr ratios of 0.7039 and εNd(t) values of +6.13 - 

+7.37 respectively, similar to those of the OIB rocks. Group 2 has the measured 

87Sr/86Sr ratios of 0.7028-0.7036 and 143Nd/144Nd ratios of 0.5130-0.5131, falling 

within the MORB and/or OIB fields. Group 2 exhibits lower initial 87Sr/86Sr ratios 

(0.7028 - 0.7035) and higher εNd(t) values (+7.36 - +10.15) than Group 1. Our 

Group 1 and 2 samples have lower 87Sr/86Sr but higher 143Nd/144Nd ratios than 

those of Cenozoic basalts in East China (Fig. 6).  

5 Discussion 

5.1 Low temperature alteration  

The relatively high loss on ignition (LOI) of these samples raises the possibility 



  

that the basaltic samples might have undergone post-eruption alteration. Some 

incompatible elements, e.g., Rb and Ba, are known to be mobile during weathering 

(Deniel, 1998), and show considerable variation in Figure 5b. However, the similar 

primitive-mantle normalized pattern for the majority of the incompatible elements 

(except Rb and Ba) suggests an insignificant low-temperature alteration. In addition, 

there is insignificant correlation between LOI and Sr-Nd isotopic compositions (not 

shown), further suggesting a negligible effect of low temperature alteration (Jochum 

et al., 1991; Deniel, 1998; Kerrich et al., 1999; Xu et al., 2001; Wang et al., 2004). 

Accordingly, the following discussion focuses on the immobile elements and Sr-Nd 

isotopic composition. 

5.2 Fractional crystallization and crustal contamination 

It is difficult to evaluate the role of fractionation crystallization for the Group 1 

samples due to their narrow compositional range. However, their low mg-numbers 

and compatible elemental contents might be indicative of significant differentiation. 

For the Group 2 samples, increasing Ni and Cr with increasing MgO (Fig. 4g-h) 

suggests the crystallization fractionation of olivine and clinopyroxene. This is also in 

accordance with the decrease FeOt and CaO and increasing SiO2 (Fig. 4a-c). 

Fractional crystallization of plagioclase is most likely Insignificant, as suggested by 

the insignificant Eu anomalies (Fig. 5a). The negative correlations of SiO2 with TiO2 

and P2O5 could have resulted from the fractionation of apatite and Ti-Fe-oxides. 

However, a simple fractionation model cannot explain the variable concentration of 

incompatible elements and poor correlation of SiO2 and MgO and Al2O3. 



  

Crustal contamination for mantle-derived magma is a potential process since the 

mafic magma would transit through continental crust prior to eruption. Crust-derived 

magma has generally higher Th/La and lower Nb/La ratios relative to 

mantle-derived magma (Rudnick and Gao, 2003). The Group 1 have higher Nb/La 

ratios and TiO2 and FeOt contents than those of average continental crust (Rudnick 

and Fountain, 1995). They additionally exhibit an insignificant correlation between 

SiO2 and Th/La and Nb/La. Such signatures query the significant crustal 

assimilation or AFC processes for the magma (e.g., DePaolo, 1981).  

The Group 2 exhibits a positive correlation between SiO2 and Th/La ratios (Fig. 

7a) and increasing (87Sr/86Sr)i ratios and decreasing ɛ Nd(t) values with increasing 

SiO2 (Fig. 7c-d). Such signatures suggest to some degree crustal contamination of 

mantle-derived magma. However, the analyzed samples have relatively high εNd(t) 

values and low (87Sr/86Sr)i ratios (Table 3 and Fig. 6). In addition, Sample TR-12(B) 

and TR-13 have the lowest εNd(t) values but relatively higher mg-numbers, 

contradictive to the crustal assimilation and the assimilated fractionation processes. 

In Figure 5b, our samples have insignificant Nb, Ta, P and Ti depletion. In Fig.8, 

they plot along the partial melting and/or source heterogeneity evolved trend. These 

characteristics synthetically suggest the source heterogeneity being the main 

control factor for Group 1 and 2.  

5.3 Source characteristics  

The varied LILE and HFSE contents for the Group 2 might be interpreted as the 

result of variable-degree partial melting of the mantle source. However, the ratios of 



  

highly incompatible elements with similar bulk distribution coefficients (e.g.Nb/U) are 

relatively constant during partial melting. The Group 2 have Nb/U of 27.8-67.9, 

suggestive of their derivation from a heterogeneous source.  

The Group 2 has relatively high (La/Yb)n ratios of 7.35 - 13.32 and Sr/Y ratios of 

27.39 - 46.90, but low Lu/Hf ratios of 0.05 - 0.08 (Table 2) and show the OIB-like 

multi-elemental patterns with enrichment in LILE, HFSE and LREE, as well as 

insignificant Nb-Ta anomalies (Fig. 5a-b; McDonough et al., 1985; Tibaldi et al., 2008). 

Nb/U and Ba/Ce ratios range from 27.8 to 67.9 and 2.45 to 10.71, respectively 

(Halliday et al., 1995). These ratios, along with low (87Sr/86Sr)i ratios and high εNd(t) 

values, are similar to those of an OIB-derived magma (Figs. 5b and 6; Halliday et al., 

1995; Sun and McDonough, 1989). The LREE/HREE fractionation in the alkaline 

basalts might be explained as the melting result of metasomatized amphibole-bearing 

lithosphere. Zr/Nb ratios positively correlated to Ce/Y ratios in response to the partial 

melting of an amphibole-bearing spinel or garnet lherzolite. However, negative 

correlation of La/Yb with Dy/Yb is shown when the spinel lherzolite source is partially 

melting (Beker et al., 1997). The absence of such correlations for our samples argues 

against the petrogenetical possibility. Therefore, it is inferred that the OIB-like alkaline 

volcanic rocks generated from an asthenospheric source, further evidenced by their 

low HFSE/LREE ratios. The Group 2 displays lower 143Nd/144Nd and higher 87Sr/86Sr 

ratios relative to depleted mantle, plotting into the Hawaii OIB field in Figure 6. The 

Sr-Nd isotopic systematics is distinct from that of the Cenozoic basalts in East China 

(e.g. Zou et al, 2000; Liu et al., 1996). The depleted Sr-Nd isotopic compositions for 



  

Group 2 plot in the field near to FOZO (Hart et al. 1992 and Stracke et al. 2005), 

indicative of involvement of FOZO-like component in the magma source. As shown in 

Figs. 7a-d, the Group 2 samples define a binary mixing array of the asthenospheric 

with FOZO end members, as shown in Fig. 6. 

The Group 1 samples have relatively high (La/Yb)n and Sr/Y but low Lu/Hf ratios. 

They show OIB-like multi elemental patterns, similar to Group 2 samples. The Group 

1 samples additionally show higher TiO2, P2O5 and La contents, and La/Yb (>20) and 

Sm/Yb ratios, as well as lower HREE contents than the Group 2 samples (e.g. Deniel, 

1998; Xu et al., 2001; Zhou et al., 2006). The crystallization fractionation of garnet 

with clinopyroxene can result in the increasing Sm/Yb and LREE/HREE ratios and 

TiO2 contents, as observed in the Longhai basalts in East China (Zeng et al., 2017; 

Klemme et al., 2002; Pertermann et al., 2004). As a result, the Group 1 samples 

might be the product of fractionation crystallization of garnet and clinopyroxene for 

asthenosphere-derived magma (Fig. 8).  

5.4 Tectonic implications 

The basaltic samples in the western Qinling orogenic belt occurred mainly within 

Mesozoic sedimentary basins, which are spatially associated with syn-deposited 

faulting (Qinghai BGMR, 1991). Our representative samples give the 40Ar/39Ar age 

of ~112 Ma. Li et al. (2013a) reported the 40Ar/36Ar plateau age of 103 ± 2 Ma and 

zircon U-Pb ages of 106 ± 1 Ma and 101 ± 1 Ma for the Duofutun basalt. Ding et al. 

(2013) reported the zircon U-Pb dating age of 105 ± 1 Ma for the Hongqiang 

alkaline basalts. These data indicate that the basaltic rocks erupted at Early 



  

Cretaceous. As mentioned above, these basaltic samples show typical alkaline 

affinity with low SiO2 and Al2O3 contents and high TiO2 and Na2O/K2O ratios (>1) 

(e.g., Feng et al., 2002; Li et al., 2013a; Ding et al., 2013; Qi et al., 2011), 

suggesting the derivation of asthenospheric source with input of FOZO-like 

component.  

A FOZO-like component has been commonly thought to relate to the mantle 

plume (e.g., Siebel et al., 2000; Bertrand et al., 2003). However, the Late Mesozoic 

hotspot track and related geological evidence have not been observed in the 

western Qinling orogenic belt. It is an alterative for the FOZO-like component in the 

depleted mantle source being petrogenetically related to the delaminated 

lithospheric mantle (Stracke et al., 2005). Available data show that the 

intermediate-acidic volcanic rocks at Longzanggou near Duofutun area (Fig. 1c) 

erupted at 128-130 Ma (40Ar/39Ar age) and are characterized by andesites-dacites 

(Zhang et al, unpublished data). In comparison with the basaltic rocks at the 

Duofutun and Hongqiang areas, these intermediate-acidic volcanic rocks show the 

calc-alkaline geochemical characteristics with enrichment in LILE and LREE and 

depletion in HFSE, suggestive of a mantle source with input of enriched lithospheric 

component. As a result, the Early Cretaceous volcanic rocks in the western Qinling 

belt show a compositional variation from intermediate-acidic calc-alkaline 

andesites-dacites at ~130 Ma to alkaline basalts at ~110 Ma. Such a trend in 

composition probably suggests the involvement of the detachment lithosphere, 

which results from the gravitational instability following the crustal shortening (e.g., 



  

Schott et al., 2000; Molnar et al., 1998). In the western Qinling orogenic belt, there 

developed the pre-Cretaceous transpressive structures (e.g., folds, faults and 

sheets; Dong et a., 2011, 2015, 2016), the angular unconformity between the upper 

Cretaceous and pre-Cretaceous sequences (e.g., Qinghai BGMR, 1991; Wu et al., 

2014), and a Late Jurassic compression deformation in the Huicheng basin (Li et al., 

2013b). These geological signatures suggest the development of the crustal 

shortening prior to the basalt eruption, probably at the Late Jurassic-Early 

Cretaceous period. Following the crustal shortening, the thickened lithospheric root 

was removed and the hot asthenospheric mantle uplift. In response to the 

asthenospheric upwelling (Gao et al., 2004; Hoernle et al., 2006), the softing and 

decompression melting of lithospheric mantle generated the ~130 Ma 

intermediate-acidic volcanic rocks. And then the interaction of the upwelling 

asthenospheric with lithospheric source was contributed to the ~110 Ma basaltic 

rocks in the western Qinling orogenic belt.  

6 Conclusions 

Based on our 40Ar/39Ar geochronological results, along with whole-rock 

elemental and Sr–Nd isotopic data for the basalts from the Duofutun and 

Hongqiang areas in the western Qinling orogenic belt, the following conclusions can 

be outlined. 

(1) The representative basaltic samples from the Duofutun area yield the 

40Ar/39Ar age of ~112 Ma, suggesting a magmatic event in the western Qinling 

orogenic belt during the Early Cretaceous. 



  

(2) These samples are alkaline basalts with OIB-like geochemical signatures. 

They can geochemically be subdivided into two groups with Group 1 being the 

product of the high-pressure garnet fractionation of mantle-derived magma and 

Group 2 originating from asthenosphere with an input of the delaminated 

lithospheric component.  

(3) The generation of the Early Cretaceous basalts was goedynamically related 

to the thickened lithospheric delamination in the asthenspheric upwelling setting 

along the western Qinling orogenic belt. 
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Figure Captions  

 

Fig. 1 (a) Simplified geological map of major units in China showing the Qinling 

orogenic belt (Zheng et al., 2009; Dong et al., 2011). (b) Geological map of the 

western Qinling orogenic belt (after Feng et al., 2002; Zhang et al., 2006; Li et al., 

2013b, 2015; Craddock et al., 2012; Horton et al., 2004). Geological map for the 

Duofutun (c) and Hongqiang (d) areas showing the Early Cretaceous sequence. 

The symbols refer to 40Ar/39Ar dating sampling locations. 

 

Fig. 2 The hornblende and whole-rock 40Ar/39Ar plateau age spectra and 40Ar/36Ar 

versus 39Ar/36Ar for the basaltic samples of TR-12B (a and a’) and TR-25 (b and b’) 

 

Fig. 3 Total alkali versus SiO2 (TAS) diagram (after Le Maitre, 2002) for the basaltic 

volcanics in the western Qinling orogenic belt.  

 

Fig. 4. SiO2 versus major oxides (a–f), and MgO versus Cr (g) and Ni (h). The 

oxides are normalized to 100 wt.% by volatile-free. The filled circle and square 

symbols represent the Group1 and Group 2 samples, respectively.  

 

Fig. 5 (a) The patterns of the chondrite-normalized rare-earth elements and (b) 

primitive mantle-normalized spidergram for the Group 1 and Group 2 samples. 



  

Chondrite- and primitive mantle-normalize values are from Taylor and McLennan 

(1985) and Sun and McDonough (1989), respectively. 

 

Fig. 6 Sr-Nd isotopic variations of the Early Cretaceous Group 1 and Group 2 

samples in the western Qinling orogenic belt. MORB, DM, OIB, HIMU, EMI and 

EMII fields are from Zindler and Hart (1986); FOZO field is from hart et al. (1992) 

and Hauri et al. (1994). The field of Cenozoic basalts in eastern China is from Liu et 

al. (1996) and Zou et al.(2000). 

 

Fig. 7 SiO2 versus Th/La (a), Nb/La (b), ɛ Nd(t) (c) and 87Sr/86Sr(i) (d) for the Group 1 

and Group 2 samples in the western Qinling orogenic belt. 

 

Fig. 8. Plot of La and La/Sm (a) of the Early Cretaceous mafic samples in the 

western Qinling orogenic belt. Symbols as in Fig. 3. 
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Table 1 40Ar/39Ar isotopic results of incremental heating experiments for the basaltic 

rocks from the western Qinling orogenic belt 

Temp (40Ar 

/39Ar)m 

(36Ar/ 

39Ar)m 

(37Ar/ 

39Ar)m 

(38Ar/ 

39Ar)m 

39Ark (40Ar*/ 

39Ar k) 
±1s 

39Ark  Apparent 
±1s 

(W) (10-12mol) (%)  age (Ma) 

TR-12(B) hornblende, J=0.008303 

4 8.413 0.00237 1.41181 0.00133 0.0451 7.712 0.029 32.2 111.97 0.81 

4.5 8.069 0.00111 1.642 0.00126 0.0141 7.741 0.023 10.1 112.38 0.65 

5 7.902 0.00039 1.82163 0.00121 0.0094 7.787 0.029 6.72 113.03 0.81 

5.5 7.904 0.00052 2.36228 0.00118 0.0082 7.751 0.029 5.86 112.52 0.81 

6.5 7.871 0.00074 2.20331 0.00145 0.0103 7.654 0.024 7.35 111.16 0.69 

7.5 7.869 0.0007 2.45932 0.0014 0.0093 7.663 0.025 6.67 111.29 0.69 

9 7.854 0.00072 2.19496 0.00123 0.0136 7.642 0.023 9.7 110.99 0.64 

11 7.983 0.00098 2.09465 0.00135 0.0075 7.694 0.029 5.36 111.72 0.82 

14 8.096 0.00108 1.61209 0.00111 0.0048 7.775 0.039 3.4 112.86 1.09 

19 8.116 0.00117 1.89356 0.00122 0.0056 7.77 0.029 4 112.79 0.81 

29 8.587 0.0025 0.96009 0.00091 0.0024 7.848 0.057 1.68 113.89 1.6 

50 8.017 0.00086 1.15545 0.00116 0.0098 7.761 0.032 6.97 112.67 0.89 

Inverse isochron age: 112.0± 0.6 Ma  m=0.20g 

TR-25 whole rock, J=0.008168 

5 9.671 0.00646  0.00127 0.0051 7.762 0.056 13.2 110.9 1.55 

6.5 8.588 0.00147 0 0.00107 0.0059 8.155 0.037 15.2 116.34 1.03 

7.5 8.973 0.00308 0 0.00108 0.0047 8.061 0.044 12.1 115.04 1.21 

8.5 8.699 0.0027 0 0.00115 0.0035 7.901 0.061 9.15 112.83 1.69 

10 8.218 0.0016 2.52674 0.00145 0.0045 7.745 0.042 11.7 110.67 1.17 

11 8.158 0.00161 2.43184 0.00137 0.0049 7.683 0.047 12.6 109.8 1.29 

12.5 7.903 0.00109 4.93524 0.0014 0.0045 7.58 0.054 11.7 108.38 1.5 

13.5 7.93 0.00204 4.51809 0.00121 0.0027 7.326 0.081 6.94 104.85 2.24 

14.5 7.923 0.00108 4.53445 0.00137 0.0015 7.603 0.088 3.89 108.69 2.43 

16 7.454 0.0008 5.3433 0.00114 0.0014 7.219 0.106 3.71 103.35 2.94 

Inverse isochron age: 112.0±2.3 Ma  m=0.20g 

 



  

Table 2 Major and trace elemental data of the Early Cretaceous basaltic rocks from 

the western Qinling orogenic belt  

Sample 

TR-5 TR-7 TR-9 TR-11 TR-2 TR-3 TR-12(B) TR-13 TR-15 TR-25 TR-26 

Group 1 Group 2 

SiO2 44.98  45.70  45.23  45.52  47.97  47.45  47.58  47.55  48.19  47.53  47.02  

TiO2 3.06  2.69  2.85  2.87  2.14  2.32  2.10  2.19  2.11  2.50  2.51  

 Al2O3 12.23  12.49  12.58  12.66  16.27  15.63  15.24  15.22  15.26  16.28  16.23  

Fe2O3 7.13  6.82  7.01  7.05  3.72  5.29  4.91  4.57  4.54  5.59  5.71  

FeO 5.94  5.83  5.96  6.00  6.53  5.96  6.24  6.29  6.38  4.67  4.83  

CaO 10.79  11.10  10.94  11.02  9.02  9.03  8.92  9.19  8.98  11.18  11.83  

MgO 10.98  10.59  10.58  10.65  8.15  8.33  9.34  8.43  8.93  7.90  7.25  

K2O 0.75  0.63  0.64  0.65  1.58  1.17  1.43  0.93  1.04  0.96  0.98  

Na2O 3.14  3.22  3.26  3.29  3.86  3.96  3.51  3.85  3.84  2.48  2.77  

P2O5 0.81  0.72  0.75  0.75  0.60  0.67  0.56  0.58  0.53  0.63  0.62  

LOI 4.55 2.86 3.25 3.85 2.54 4.19 3.54 3.85 4.17 4.55 4.48 

Total 99.69 99.71 99.74 99.71 99.77 99.76 99.76 99.76 99.73 99.74 99.74 

mg# 0.42  0.41  0.41  0.41  0.39  0.38  0.40  0.40  0.40  0.31  0.32  

Sc 18.6  20.4  20.7  22.2  19.8  20.8  22.5  23.1  22.6  25.0  26.0  

Ti 16390 14869 16030 17179 12391 12977 12142 13155 12384 14255 15046 

V 466 208 205 225 120 155 162 171 166 187 189 

Cr 336 418 381 399 291 208 317 334 329 373 379 
Co 51.2  51.2  51.2  51.9  40.1  44.8  47.9  47.3  45.1  47.3  46.4  

Ni 221 229 218 231 183 166 208 209 196 207 208 

Ga 19.8  19.8  19.4  20.3  15.5  18.6  18.2  18.5  17.6  17.3  18.1  

Ge 1.34  1.47  1.42  1.47  1.32  1.35  1.41  1.38  1.39  1.54  1.49  

Rb 5.17  3.60  4.18  3.66  13.66  6.45  12.66  5.44  9.52  8.63  8.98  

Sr 887 838 867 973 960 956 723 835 1091 928 897 

Y 21.6 22.2 22.1 22.7 25.1 23.5 23.2 24.0 23.3 24.0 24.4 

Zr 265 254 256 274 231 300 239 250 237 242 246 

Nb 71.9  61.9  64.8  69.1  35.6  55.4  39.9  41.9  37.7  48.0  48.0  

Ba 485  426  455  474  217  269  341  364  331  434  303  

La 40.1  36.6  37.4  39.7  24.7  33.5  27.3  27.6  26.2  27.1  27.0  

Ce 78.9  74.1  76.3  81.8  50.2  65.5  54.2  56.5  54.0  55.0  56.0  

Pr 10.1  9.5  9.7  10.3  6.3  8.0  6.8  7.1  6.8  7.0  7.1  

Nd 40.5  38.5  39.4  42.5  25.4  32.1  27.6  28.5  27.2  28.5  28.4  

Sm 8.0  8.0  7.9  8.8  5.5  6.6  5.8  6.0  5.7  6.1  5.9  

Eu 2.49 2.47 2.49 2.68 1.90 2.16 2.01 2.00 1.91 2.04 2.00 

Gd 6.87 6.80 6.86 7.47 5.57 5.97 5.88 5.80 5.68 5.85 6.05 

Tb 0.96 0.97 0.97 1.06 0.85 0.92 0.89 0.89 0.85 0.91 0.91 

Dy 4.71 4.88 4.93 5.11 4.80 4.77 4.71 4.81 4.62 4.87 4.92 

Ho 0.83 0.87 0.85 0.89 0.94 0.89 0.89 0.92 0.89 0.92 0.93 

Er 1.93 2.11 2.04 2.12 2.48 2.25 2.28 2.31 2.32 2.39 2.47 

Tm 0.26 0.28 0.28 0.29 0.38 0.32 0.33 0.34 0.35 0.35 0.36 

Yb 1.48 1.61 1.61 1.60 2.27 1.80 1.94 1.98 1.93 2.11 2.09 

Lu 0.20 0.24 0.24 0.23 0.36 0.27 0.31 0.31 0.31 0.32 0.32 



  

Hf 5.96 5.75 5.79 6.39 4.49 5.77 4.82 5.16 4.92 5.15 5.25 

Ta 3.85 3.33 3.50 3.73 1.90 2.97 2.18 2.26 2.10 2.61 2.64 

Th 4.95 4.51 4.58 4.69 2.51 3.81 3.30 3.31 3.35 2.68 2.76 

U 1.41 1.36 1.38 1.51 1.02 1.30 1.01 1.51 0.98 0.71 0.75 

(La/Yb)n 19.48  16.36  16.66  17.80  7.83  13.32  10.07  9.97  9.76  9.20  9.28  

(Gd/Yb)n 3.85  3.50  3.53  3.86  2.03  2.74  2.50  2.42  2.44  2.29  2.40  

Eu/Eu* 1.03  1.03  1.03  1.01  1.05  1.05  1.05  1.04  1.03  1.04  1.02  

Sample 

TR-27 TR-28 TR-29 TR-62 TR-64 TR-65 TR-66 TR-68 TR-70 TR-71 TR-72 

Group 2 

SiO2 47.70  46.11  46.88  46.48  45.91  46.54  45.60  46.71  45.32  46.50  46.37  

TiO2 2.41  2.16  1.88  2.53  2.18  2.45  2.45  2.75  2.33  2.47  2.39  

 Al2O3 15.92  14.41  14.05  15.67  15.44  15.57  15.33  16.28  16.48  15.38  16.32  

Fe2O3 5.72  3.90  5.06  7.82  9.24  6.65  7.21  5.81  7.48  6.78  7.11  

FeO 5.02  7.16  6.41  4.40  4.35  5.42  5.25  6.26  4.44  5.38  4.84  

CaO 10.05  10.04  9.62  9.70  10.94  9.68  10.76  9.02  12.14  9.84  10.35  

MgO 9.05  12.04  12.19  9.41  7.68  9.19  9.48  7.95  7.85  9.16  8.51  

K2O 0.98  1.47  1.14  0.83  0.87  0.97  0.81  0.64  0.55  0.92  0.51  

Na2O 2.32  2.07  2.19  2.37  2.76  2.72  2.36  3.71  2.73  2.78  2.79  

P2O5 0.62  0.47  0.41  0.63  0.42  0.60  0.61  0.67  0.55  0.60  0.56  

LOI 5.16 3.33 3.03 4.23 3.16 3.86 4.61 3.94 5.07 4.06 3.72 

Total 99.71 99.76 99.76 99.77 99.78 99.75 99.78 99.77 99.74 99.76 99.76 

mg# 0.33  0.44  0.42  0.31  0.31  0.35  0.35  0.38  0.30  0.35  0.32  

Sc 23.8  26.5  25.3  25.3  27.5  25.6  25.1  21.9  28.2  24.2  29.1  

Ti 13694 12971 11526 15210 13418 14696 14488 17349 14706 14666 15161 

V 174 190 177 187 203 180 180 176 195 179 200 

Cr 362 538 663 429 426 440 441 228 338 432 342 

Co 47.4  53.8  54.3  46.1  51.6  46.7  48.7  44.7  49.1  47.9  49.2  

Ni 216 302 271 188 217 193 203 140 161 202 170 

Ga 17.2  16.4  15.9  17.7  17.8  17.3  17.1  18.1  17.3  17.2  18.4  

Ge 1.43  1.39  1.32  1.55  1.61  1.49  1.44  1.44  1.43  1.54  1.55  

Rb 9.44  15.49  11.20  2.51  5.86  3.43  3.05  1.74  3.15  3.09  2.09  

Sr 864 639 622 817 648 762 845 942 855 791 814 

Y 23.1 23.3 21.4 22.3 21.7 22.1 21.5 23.4 23.3 22.0 24.4 

Zr 237 204 191 228 179 22 224 285 217 222 230 

Nb 46.3  35.3  28.0  43.7  30.2  42.7  43.0  48.9  35.9  42.1  38.6  

Ba 574 157  140  129  97.1  125  136  216  272  135  348  

La 26.2  21.3  19.5  25.6  18.2  25.1  24.7  29.5  22.9  25.2  24.2  

Ce 53.6  44.6  40.2  52.6  37.8  50.5  50.0  59.1  47.4  51.1  50.3  

Pr 6.7  5.8  5.1  6.5  4.9  6.4  6.3  7.3  6.0  6.4  6.4  

Nd 27.3  24.4  21.5  26.9  20.1  26.7  26.0  29.4  24.8  26.7  25.8  

Sm 5.7  5.4  4.8  5.8  4.6  5.7  5.5  6.0  5.4  5.5  5.6  

Eu 1.87 1.85 1.67 1.97 1.68 1.96 1.94 2.09 1.87 1.92 1.96 

Gd 5.75 5.40 4.90 5.60 4.90 5.39 5.36 5.62 5.37 5.51 5.70 

Tb 0.84 0.83 0.74 0.84 0.75 0.83 0.81 0.88 0.85 0.83 0.87 



  

Dy 4.66 4.55 4.14 4.61 4.29 4.48 4.31 4.68 4.62 4.37 4.83 

Ho 0.89 0.89 0.81 0.87 0.84 0.84 0.81 0.88 0.90 0.85 0.94 

Er 2.24 2.29 2.18 2.25 2.17 2.12 2.09 2.28 2.31 2.15 2.36 

Tm 0.33 0.33 0.33 0.32 0.33 0.31 0.31 0.32 0.33 0.31 0.35 

Yb 1.99 1.98 1.90 1.93 1.85 1.78 1.77 1.91 2.06 1.83 2.08 

Lu 0.32 0.31 0.30 0.30 0.31 0.27 0.27 0.29 0.32 0.28 0.33 

Hf 4.98 4.33 3.99 4.88 3.64 4.63 4.50 5.75 4.41 4.62 4.67 

Ta 2.58 1.89 1.51 2.37 1.62 2.32 2.30 2.78 1.95 2.34 2.06 

Th 2.64 2.17 1.99 2.20 1.69 2.14 2.24 2.81 2.02 2.23 2.01 

U 0.84 0.70 0.70 0.86 0.63 0.79 0.82 1.07 0.73 0.83 0.76 

(La/Yb)n 9.42  7.72  7.35  9.52  7.07  10.12  10.00  11.06  7.97  9.88  8.34  

(Gd/Yb)n 2.38  2.26  2.13  2.40  2.19  2.50  2.50  2.43  2.16  2.49  2.27  

Eu/Eu* 1.00  1.04  1.06  1.05  1.08  1.08  1.09  1.10  1.07  1.06  1.06  

            

LOI: Loss ion ignition, mg-number=Mg2+ /(Mg2+ +Fe2+ ); Reference values of AMH-1 and OU-3 international 

standard are from Thompson et al. (2000) and Potts et al. (2000). 



  

Table 3 Sr-Nd isotopic composition of early Cretaceous basaltic rocks from the western Qinling orogenic belt 

 

Sample Sm Nd Rb Sr 147Sm/144Nd 143Nd/144Nd 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)i εNd(t) 

Group 1 

TR-7 7.95  38.52  3.60  838.0  0.125  0.512886±12 0.012  0.703942±11 0.703917  6.13  

TR-9 7.90  39.37  4.18  866.9  0.121  0.512950±11 0.014  0.703922±14 0.703894  7.43  

Group 2 

TR-2 5.50  25.44  13.66  959.5  0.131  0.512989±12 0.041  0.703553±15 0.703471  8.03  

TR-12(B) 5.83  27.57  12.66  723.0  0.128  0.512953±11 0.051  0.703420±17 0.703319  7.37  

TR-13 5.96  28.50  5.44  835.1  0.126  0.512951±10 0.019  0.703441±17 0.703403  7.36  

TR-25 6.11  28.54  8.63  927.9  0.130  0.513007±12 0.027  0.703106±15 0.703053  8.40  

TR-26 5.94  28.35  8.98  897.1  0.127  0.513062±10 0.029  0.703133±14 0.703075  9.53  

TR-28 5.42  24.37  15.49  638.5  0.134  0.513094±11 0.070  0.703078±15 0.702938  10.00  

TR-64 4.63  20.14  5.86  647.6  0.139  0.513084±13 0.026  0.702818±15 0.702766  9.72  

TR-65 5.68  26.72  3.43  761.9  0.128  0.513096±13 0.013  0.702845±17 0.702819  10.15  

TR-68 6.03  29.39  1.74  941.8  0.124  0.513003±11 0.005  0.702825±17 0.702815  8.42  

TR-71 5.52  26.65  3.09  791.3  0.125  0.513067±11 0.011  0.702888±13 0.702865  9.66  

TR-72 5.61  25.82  2.09  814.3  0.131  0.513017±12 0.007  0.702935±17 0.702920  8.55  

 

Chondrite uniform reservoir values, 147Sm/144Nd=0.1967, 143Nd/144Nd=0.512638, are used for the calculation. εNd(t) is calculated by assuming 112 Ma for basaltic rocks from the 

western Qinling orogenic belt. Sm, Nd, Rb and Sr contents: ppm  
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Highlights 

► Basalts from the western Qinling orogenic belt were erupted at ~112 Ma.  

 

► These basalts were originated from asthenospheric mantle with the lithospheric 

component 

 

► A petrogenetic model is proposed for Early Cretaceous lithosphere delamination in 

response to asthenospheric upwelling. 

 

 


