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Abstract 

Our aim is to understand the significance of slope position, slope angle and the 

interplay between slopes and vegetation in influencing the ways in which tephra 

layers may be preserved, thickened or thinned within the Quaternary 

stratigraphic record. This matters because tephra layers are used to reconstruct 

volumes of past volcanic eruptions and assess both past and future risks, hazards 

and impacts. This study uses modern data to better understand the formation of 

the palaeoenvironmental record and evaluates a data set of > 5,500 tephra layer 

thickness measurements across a range of slopes and vegetation types in Iceland 

and Washington State, USA. We measured tephra layers formed in October 1918,  

March 1947, May 1980, April 2010 and May 2011 across moderate slopes (< 35 

°). Holding vegetation communities constant, location on slope had no systematic 

impact on mean tephra layer thickness. Holding slopes constant (< 5 °), we 

observed systematic modifications of initial fallout thickness in areas of different 

vegetation types, with layers both thinning and thickening in areas of partial 

vegetation cover, and thickening within taller vegetation. This has implications 

for the interpretation of Quaternary environmental record and the 

reconstruction of past volcanic fallout across areas of varied relief and strong 

vegetation gradients, where vegetation structure is patchy and topography is 

variable. Sloping sites with a consistent vegetation cover may produce the most 

reliable stratigraphic records of fallout whereas flat sites with varied vegetation 

might not.  
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Highlights (3-5 bullet points, max 85 characters per point) 

 

 Tephra layers 1–10 cm thick are stable on vegetated slopes < 35 °  

 Uniformly vegetated slopes < 35 ° produce consistent stratigraphic tephra 

records 

 Differences in vegetation type affect the thickness of preserved tephra 

layers 

 Tephra layers formed below tall shrubs may be 36 % thicker than the 

original fallout 

 Strong regional vegetation gradients can systematically modify tephra 

isopach maps 

 

1. Introduction 

 

The overall aim of this paper is to refine the reconstructions of 

Quaternary volcanic eruptions through a better understand the role that slopes 

and surface vegetation play in the preservation of tephra layers, and thus how 

the thickness of tephra layers may be modified as they transition from surface 

fallout deposits to layers within the Quaternary stratigraphic record. We focus 

on layers that are 1–10 cm thick that may cover very large areas. Understanding 

why the thickness of tephra layers may change after their initial deposition is 

important because layer thickness is used to reconstruct the volume of past 

volcanic eruptions, and thus potential risks, hazards and impacts (de Silva and 

Zielinski  1998, Larsen et al. 2001, Lowe 2011, Óladóttir et al. 2014, Bonadonna 
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and Costa 2012). The accurate measurement of tephra layers within the 

Quaternary stratigraphic record presents three major challenges. Firstly, how 

many measurements are necessary to determine the thickness at a particular 

place; secondly, how many sampling sites are needed to map the fallout 

accurately, and thirdly, what parts of the landscape to measure-or avoid because 

they contain a modified record of the original fallout. The question of how to 

select sampling sites is crucial; the measurements at each sampling site may be 

accurate and the overall density of sampling points apt, but if there is some 

systematic bias in the points chosen (for example, they are all sites in basins 

where fallout is concentrated), then the final result will be flawed.  

 

In this paper, we focus on the influence of slopes on the development of 

the tephrostratigraphic record in mid-latitude areas, while developing our 

analysis of the influence of vegetation on tephra layer preservation (Cutler et al. 

2016a, b). This paper complements a recent study by Blong et al. (2017) who use 

a contrasting methodology to report tephra measurements from sites in Alaska, 

Washington State and Papua New Guinea. Engwell and others (2013, 2015) have 

addressed the question of how best to measure thicknesses of tephra metres 

thick (m-scale) but not questions of site selection. We extend their fundamental 

analysis on how to best measure layers with data on much thinner (and 

potentially much more extensive) layers, ca. 10 cm thick. We then focus on the 

quite different question of the effects of different slope locations and vegetation 

types on the thickness of preserved tephra layers used in palaeo-environmental 

reconstruction. 
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Tephra layers between 1–10 cm thick are particularly important because 

of the continental-scale areas they can cover and the proportion of the total 

volcanic fallout they may represent (Table 1). They are, for example, the typical 

scale of deposits found across the Indian sub-continent from the youngest (ca. 

74,000 yr BP) Toba Tuff (Acharyya and Basu 1993) and the fallout from ca. 7,700 

yr BP Mount Mazama eruption found across Nevada, the Pacific Northwest and 

parts of southern Canada (Lidstrom 1971).  They also indicate the spatial extent 

of comparatively low concentrations of volcanic ash within the atmosphere, a 

hazard that can have a wide range of impacts from increased human mortality to 

the massive disruption of air travel (Davies et al. 2010, Grattan et al. 2003). 

  

The tephra layers from some modern eruptions were measured soon 

after they were formed (e.g. Thorarinsson 1954, Sarna-Wojcicki et al. 1981, 

Scasso et al. 1994, Gudmundsson et al. 2012). These records provide accurate 

data on fallout that stress the importance of thin tephra layers for reconstructing 

the volumes of past volcanic eruptions. The 1991 AD Cerro Hudson eruption, for 

example, created an onshore tephra layer > 1cm thick over an area of more than 

75,500 km2; 95 % of this area was covered by ash fall 1–10 cm deep, accounting 

for more than a third of the total volume on land (Scasso et al. 1994). When 

offshore estimates are included, the area of tephra deposition 1–10 cm thick may 

have covered ca. 160,000 km2, possibly accounting for more than 98 % of the 

total fallout zone receiving more than 1 cm of deposition and about 55 % of the 

total volume (Scasso et al. 1994).  

 

(Insert Table 1 here)  
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As a layer of tephra stabilises, compacts and becomes part of the enduring 

stratigraphic record, Earth surface processes can drive a range of changes: 1) the 

tephra layer may be buried with comparatively little modification; 2) the deposit 

may be partially eroded to produce a thinner tephra layer, or 3) the site of initial 

fallout may receive further inputs of tephra, re-mobilised from elsewhere, 

generating a thicker layer (Fig. 1).  

 

(Insert Fig. 1 here) 

 

1.1 Scientific Context 

 

Tephra layers are a very important source of  palaeoenvironmental data 

for reasons that are well-established and include the estimation of past eruption 

volumes (Pyle 1989, Engwell et al. 2015), identifying volcanic impacts, 

reconstructing past atmospheric circulation patterns (Larsen et al. 2001, Huang 

et al 2001), and establishing the isochrons which form the basis of 

tephrochronology (Thorarinsson 1944, Lowe 2011). Tephrochronology has 

uniquely powerful applications in palaeogeography that extend from local (e.g. 

Dugmore and Erskine 1994, Streeter and Dugmore 2014) to continental scales 

(e.g. Davies 2015) and include methodological developments (e.g. Kirkbride and 

Dugmore 2001). New uses of tephra layers include the utilisation of layer 

morphology as a source of data on surface resilience and proximity to threshold 

crossing events (Streeter and Dugmore 2013).  
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Observations following recent eruptions in Iceland and Chile reported by 

Lui and others (2014) show that tephra may remain mobile long after its initial 

deposition. Freshly deposited tephra layers — especially those with a fine 

particle sizes —may be highly erodible and subject to wholesale movement 

where the potential for erosion by Earth surface processes such as wind, rain 

splash and flowing water is high (Collins et al. 1983). Soil profiles, peat sections 

or other sub-aerial sequences may avoid the sediment focussing effects of 

topographic basins and while they usually preserve shorter and less complete 

palaeoenvironmental records than lakes, they are much more widespread and 

thus of key importance for the accurate mapping of fallout. Where sub-aerial 

sequences are used, a key recording principle (especially in areas of m-scale 

thicknesses of fallout) is to avoid measurements on slopes and to gather 

thickness data from flat, geomorphologically stable areas which should not 

receive either an exaggerated input from surrounding areas, or suffer from 

surface erosion (e.g. Engwell et al. 2013). In landscapes with variable local relief 

(such as the major mountain chains) it can be difficult to find a sufficiently 

widespread and frequent occurrence of stable depositional environments for 

accurate mapping. This problem complicates our understanding of tephra 

stratigraphy in mountainous areas, e.g. southern Chile and Argentina (Fontijin et 

al. 2014). Do we have to avoid all slopes when seeking to reconstruct primary 

tephra layers, or are there circumstances when slopes can produce data 

representative of the original fallout? On the one hand, it is imperative to find 

sites that best reflect the original fallout, both in terms of layer thickness/mass 

loading and internal stratigraphy; on the other hand, given the limitations of the 
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terrestrial record, it is important not to ignore sites that could contain good data, 

because fallout reconstruction gains accuracy with more data points.    

 

Where tephra is deposited on steep slopes and left exposed to sub-aerial 

processes, disturbance is likely to result in down-slope movement due to well 

understood slope processes (e.g. Selby 1982). On 25 ° slopes, for example, 95 % 

of particles dislodged by rain splash will move down-slope, and in arid 

conditions dry flows of unconsolidated sand may also occur (Summerfield 2014). 

In persistently wet conditions, compacted deposits of tephra may become 

saturated and move down shallow slopes as a result of creep or flow, and when 

precipitation exceeds surface infiltration rates, sheet wash or rill action may 

occur and move grains down-slope (Summerfield 2014).  

 

Wholesale movement of Viking Age tephra on slopes has occurred at 

Stóramörk in southern Iceland, where there is significant down-slope thickening 

of the Katla 920 AD tephra (Mairs et al. 2006). Locally the tephra layer is 

typically about 20 mm thick, but in mid-slope locations it thickens by an order of 

magnitude and the layer can reach thicknesses greater than 500 mm at the slope 

foot. These slopes were wooded before the late 9th century AD Norse settlement 

of Iceland and were abruptly cleared in the early 10th century shortly before the 

tephra deposition (Mairs et al. 2006; Vickers et al. 2011). The instabilities related 

to the major ecological changes contemporaneous with the ash fall could account 

for this extensive down-slope tephra movement (Mairs et al. 2006). In contrast, 

uniform tephra layers that reflect our best understanding of initial fallout 

thickness formed in areas that did not experience major contemporaneous 
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changes in surface vegetation (Streeter and Dugmore 2014). This implies that in 

some circumstances, such as across scales of tens to hundreds of metres within 

homogenous, short vegetation cover, tephra deposits can exhibit a noticeable 

uniformity of thickness, even in contexts where the long-term gradual 

accumulation of aeolian sediment is significantly greater down-slope and 

reduces away from localised sediment sources (Dugmore et al. 2009). 

 

The comparatively limited occurrence of down-slope thickening of tephra 

layers observed in soil sections across southern Iceland suggests that slope 

processes can be moderated by other factors. In most areas of the world this is 

likely to be the influence of vegetation cover which moderates slope processes by 

modifying near-surface winds and altering rainfall intensity at the surface (e.g. 

Furbish et al. 2009; Bochet et al. 2000). We have identified a landscape-scale 

relationship between vegetation type and tephra thickness (Cutler et al. 2016a, 

2016b), emphasising the importance of vegetation structure in the preservation 

of tephra deposits on level ground, but leaving unresolved the relative 

importance of vegetation and slope. It is possible that controls exerted by 

vegetation structures and ground cover may counteract the influence of slope 

processes and topographic location.  

 

1.2 Research Objectives 

 

Focussing on surfaces not subject to wholesale disturbance by a ground 

dwelling fauna (such as termites or gophers), we hypothesise that in the case of 

fine-grained (silt-gravel grade) tephra layers 1–10 cm thick, the principal 
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controls over the extent to which the thickness of a tephra layer is modified are 

ecological factors (e.g. vegetation architecture, percentage cover and biocrust 

formation) and these factors will outweigh the effects of slope angles and 

locations on slope (geomorphological processes).  

 

In the case of fine-grained tephra layers < 10 cm thick, we pose the 

following question: Does surface vegetation cover at the time of tephra deposition 

have a greater effect than slope locations on which areas may preserve, thicken or 

lose the initial fallout?  

 

The task of mapping extensive tephra layers is simplified if data from 

sloping sites can be used reliably, especially in areas of varied local relief. On the 

other hand, the task is made more complex if understanding the vegetation cover 

at the time of the eruption becomes important. Selecting areas with the same 

vegetation cover will make thickness data consistent, but knowing whether that 

cover has led to a simple preservation, thickening or thinning of the tephra layer 

becomes important. 

 

 

2. Approach and methods  

An analysis of modern eruptions with contemporaneous tephra 

measurements is the best way to refine our understanding of Quaternary 

stratigraphic records and palaeoenvironments. 

 

2.1 Sampling locations 
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We focus on tephra layers 1–10 cm thick within the stratigraphic record 

formed by five separate eruptions between 1918 and 2011 AD. The tephra layers 

are distributed across six different locations in two very different tree-less 

environments (Table 2, Fig. 2). In the case of our two 21st century examples (the 

layers from Grímsvötn in May 2011 (G2011) and Eyjafjallajökull in April 2010 

(Ey2010)) we made thickness measurements when the layers had stabilised 

within the root zone of the surface vegetation. Despite the 35 years that elapsed 

between the initial deposition of the Mount St Helens eruption in May 1980 

(MSH1980) and our distal measurements of thickness the stabilised tephra was 

still very close to the surface, lying below a thin (3–25 mm) biological soil crust 

(biocrust). Rates of aeolian sediment deposition in southern Iceland are rapid (in 

the order of 1 mm yr-1) so that the tephra layers from Hekla in March 1947 

(H1947) and Katla in October 1918 (K1918) are now buried up to 400 mm 

below the surface. 

 

(Insert Table 2 here) 

 

Secondary data on the tephra layers from H1947, MSH1980 and Ey2010 

came from thickness measurements made on surface deposits soon after their 

initial formation (Thorarinsson, 1954 and Sarna-Wojcicki et al., 1981, 

Gudmundsson et al., 2012, respectively). The thickness of the fallout from Katla 

in 1918 was not measured in detail at the time, but it has been identified at many 

sites since then (e.g. Kirkbride and Dugmore 2008, Streeter and Dugmore, 2014). 

There is a general understanding of the proximal thickness and the axis of fallout 
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(Larsen 2010), but as yet, no detailed isopach map of the K1918 tephra layer has 

been produced. 

 

(Insert Fig. 2 here) 

 

We are confident there has been no change in the broad categories of 

surface vegetation communities we have defined for our study sites (moss heath, 

low shrub heath, sagebrush scrub, tall shrubs; Table 3, Fig. S1) between the time 

of tephra fall and our surveys. In southern Iceland, against a backdrop of eroding 

soils, there has been a long-term stability in vegetation cover as a result of a 

consistent land management strategy of rangeland grazing over multi-century 

timescales (Vickers et al. 2011, Streeter et al., 2012, 2015). In Washington State 

we sampled the tephra in a ca. 300 m wide strip of unmanaged and undisturbed 

scrubland between the Interstate highway I-90 and a minor local road running 

parallel to it, east of the intersection with Route 21 (Fig. 2, Table 2).   

 

Our study sites in Southern Iceland experience a cool maritime climate 

with about 2000 mm of precipitation a year, average July temperatures ca. 10 C 

and average January temperatures just below freezing (Einarsson, 1984). In the 

21st century, data annual precipitation totals from local weather stations at 

Skogar and Kirkjubæjarklaustur (Fig. 2) have varied between 1206-2640mm and 

about one month a year has average temperatures below zero centigrade 

(Veðurstofa Íslands 2017). Our sampling area in Washington State, near to the 

town of Ritzville, is semi-arid, with an average annual precipitation of ca. 300 

mm and an average July temperature of ca. 20 C (US Climate Data 2017).  
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(Insert Table 3 here) 

 

We measured tephra thickness using two methods, the creation of 

exposed sections and collecting short cores with a gouge auger. Exposed cross-

sections of the tephra layers were created by digging a shallow trench with a 

sharp spade and cleaning vertical faces with a long serrated knife that could 

cleanly slice through the root mat; where necessary a fine saw was used to cut 

thicker roots. Thickness measurements were made at right angles to the base of 

the layer to an accuracy of ± 1 mm. In the case of the K1918 tephra (Site He, 

Table 2) its burial up to 400 mm below the surface made the excavation of open 

sections unrealistic, so these measurements were made from multiple cores 

extracted using a 3 cm wide gouge auger. At these depths within the andosol 

profile measurements of narrow fine grained tephra layers from the gouge are 

consistent with measurements from exposed sections, although this is not the 

case when tephras are close to the surface either within the O horizon, or at the 

O-A horizon boundary. Tephras were identified with reference to well-known 

regional tephrochronologies based on their stratigraphic location, layer and 

grain colours, particle composition, grain size and shape (e.g. Dugmore et al, 

2009; Dugmore and Erskine 1994; Kirkbride and Dugmore 2008; Waitt and 

Dzurisin, 1981).  

 

We used four complementary sampling strategies:  

1) Measurement replication tests. Two 4 – 5 m long, open section transects with 

measurements of tephra thickness at 15 mm horizontal intervals to assess 
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sample size effects combined with a meta-analysis of data from other sampling 

efforts listed below (Table S1).  

2) Slope transects created from multiple (up to 10) measurements of tephra 

thickness from 25 cm x 25 cm open sections within similar vegetation 

communities at intervals of 5 – 15 m along the dip of slopes. When coring was 

used to measure tephra layer thickness, it took place on a grid of 30 cores located 

at 6 m intervals across and down the slope (Table S2). 

3) Slope plots created from sets of 50 tephra thicknesses measurements from 75 

cm long open sections on different angle slopes, haphazardly located within a 

small area (Table S3). 

4) Vegetation plots created from sets of 50 thickness measurements from 75 cm 

long open sections on flat areas located within different vegetation types (Table 

S4).  

 

2.2 Measurement replication 

 

Two transects (Ha_t1, Ha_t2) of H1947 tephra thickness were recorded at 

neighbouring locations near the Ha study site (Fig. 2, Table 2). The Ha_t1 

transect was set within a flat area of moss heath. Ha_t1 transect was 4.8 m long 

and comprised 320 thickness measurements of the H1947 tephra taken at 15 

mm intervals. Ha_t2 was 5.16 m long and comprised 344 thickness 

measurements of H1947, also taken at 15 mm intervals. This transect was close 

to Ha_t1 and had a similar vegetation type but a sharply contrasting, uneven land 

surface where frost hummocks had broken open to expose bare soil and create a 

variable mosaic of vegetation and eroding patches of bare soil. We performed 
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bootstrap sampling of these datasets to assess the effect of sample size on the 

precision of the thickness estimate, based on 95% confidence intervals. Our 

findings informed our sampling strategies for other open sections. 

 

2.3 Slope transects 

 

Slope transects assessed the effect of slope angle and relative slope 

position. Transects were recorded at five locations (F, L, R, Ha, He, Fig. 2, Table 

S1, 2). Vegetation types ranged from low shrub heath to moss heath (Sites F, L, 

Ha, He: Table 3), and the sparsely vegetated ground surfaces within a sagebrush 

scrub (Site R). Within each transect the vegetation type was constant and slope 

angles recorded.  

 

Transects were selected to avoid ‘edge effects’, i.e. intersections between 

vegetated and non-vegetated slope sections without a topographic break (this 

would create the potential for unconsolidated tephra to move rapidly down-

slope from initial deposition on the barren area and form a thickened secondary 

deposit within the vegetation). For the H1947 and K1918 tephra layers (Sites Ha 

and He: Fig. 2, Table 2) the thickness of overlying aeolian sediment was also 

measured. This enabled us to compare geomorphic processes acting gradually 

over months and years (e.g. fine sediment added over a period of decades at a 

rate of ca. 0.3 – 1 mm yr-1), and the near instantaneous addition of tephra over 

hours or days (Dugmore et al., 2009). 

2.4 Slope plots 
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At site K (Fig. 2, Table 1, S3), 54 slope plots were recorded. These 

assessed the effect of slope angle and the area of vegetation cover on tephra 

layer thickness. Plots consisted of 50 measurements of tephra thickness taken at 

15 mm intervals from 0.75 m long open sections located parallel to the slope. 

This generated 2700 measurements. Plot characteristics (slope angle and 

percentage vegetation cover based on the DOMIN scale) were recorded and all 

plots were located within an area of 1 km radius, well within the fallout zone 

(Fig. 2) so initial deposition (from a high-altitude plume originating over 50 km 

away and with a low gradient of fallout change) was assumed to be similar. 

Linear regressions were performed to determine if slope angle predicted the 

thickness of the tephra at a site in sites with either low (< 66 %) or high (> 66 %) 

levels of vegetation cover.   

 

 

2.5 Vegetation plots 

 

Vegetation plots at Langanes and Fossdalur (Sites L and F, Fig. 2, Table 2) 

were used to assess the impact of vegetation type on tephra layer formation. We 

selected a total of 29 geomorphologically stable locations where slope angles 

were low (< 5 o) (Table S2). At each of the 29 plots, at least 50 measurements of 

tephra thickness were made across an open section at horizontal intervals of 15 

mm. This generated 1656 measurements. Botanical surveys of the plots recorded 

vascular and bryophyte species. Three ecological communities were defined. 

These communities were widespread and could be consistently identified across 

the region; we are also confident these broad groupings are temporally robust 
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because long-term patterns of land use have not changed significantly over the 

period of consideration. The ecological communities were characterised as (a) 

moss heath, (b) low shrub heath and (c) tall shrubs. Summaries of these 

vegetation types are presented in Table 3. We assigned each vegetation plot to 

one of these three communities based on visual inspection. At Langanes (Site L) 

we were able to compare our thickness measurements with the detailed Ey2010 

isopach map based on measurements of the surface deposit (Gudmundsson et al., 

2012).  

 

 

3. Results 

 

3.1 Measurement replication  

Ha_t1, taken across a moss heath, produced a mean H1947 thickness of 

9.3 mm (SE ± 0.2 mm). Ha_t2, where eroding frost hummocks had created an 

uneven mosaic of similar vegetation and eroding patches, had a mean thickness 

of 9.5 mm (SE ± 0.8 mm). Repeated areas with no surviving tephra from 1947 

(thickness = 0mm) occurred within Ha_t2, and only when these were included 

did the means converge (SI. Fig. 2). The results of a bootstrap resampling 

exercise to assess the effect of sample size on these transects was plotted against 

selected tephra measurements from slope transects and vegetation plots also 

conducted for this study (Fig. 3). Accuracy of the mean increased with sample 

size, but there was a limited gain for increasing sample numbers beyond ca. 30 

for most measurements, and ca. 50 for disturbed sections such as Ha_t2 (Fig. 3).  
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(Insert Fig. 3 here) 

 

3.2 Slope transects and initial fallout thickness 

 

The results from the slope transects (Fig. 4, Fig. S3) show that when the 

surface vegetation type is similar along a slope, position on slopes up to 35 ° 

makes no systematic difference to tephra layer thickness. This finding applies to 

tephra layers less than 10 cm thick whose grain sizes range from silts to coarse 

gravels and includes examples deposited in March, April, May and October (i.e., 

at different stages of the growing season). 

 

(Insert Fig. 4 here) 

 

In Iceland at Langanes (Site L, Table 2; Fig. 5), where Ey2010 fallout data 

is available (Gudmundsson et al., 2012), the thicknesses derived from the tephra 

layers preserved on slopes are similar to the interpolated thickness of the 

consolidated fallout. Differences in thickness between stratigraphic 

measurements of the tephra layer on slopes and estimated fallout at Langanes 

are minor, amounting to 0.2 – 3.6 mm, or 0.6 – 9.6 % of layer thickness. In cases 

where the layer thicknesses were ca. 10 % thinner than the fallout estimates 

(La_st8 and La_st9, Table S1) the measured sections lie 150 – 220 m west from 

the nearest interpolated fallout point, which is closer to the main axis of fallout, 

in an area where the tephra deposition thinned rapidly towards the margins of 

the plume.  
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In Washington State at site R (Fig. 2) our MSH1980 thickness data 

indicates an effective preservation of the tephra from 1980. The closest 

contemporary fallout measurement at the junction of Route 21 and I90 (< 1 km) 

records a thickness of 42 mm (Sarna-Wojcicki, et al, 1981). Initial fallout was 

loosely packed and bulk density soon increased twofold, implying a significant 

reduction in thickness. Our slope transect thickness means are 27 mm for Ritz 

slope A (Fig. 4) and 29 mm for Ritz slope B (Fig. S1), representing a 

‘consolidated’ tephra layer thickness between about 67 –73 % of the thickness of 

freshly fallen tephra. No systematic variation in thickness occurs down the 

slopes.  

  

 

3.3 Slope plots 

 

The G2011 tephra thickness averaged 42 mm across all the 54 separate 

slope plots, with a range of 13 – 124 mm for plot means. Figure 5 shows the 

slope plot mean tephra thickness against slope angle. A linear regression of mean 

tephra thickness in slope plots with > 66 % vegetation cover showed no increase 

in mean tephra thickness with increasing slope angle (R2 = 0.02, p = 0.47). On 

plots with lower levels of vegetation cover (0 - 66 %) there was a weak positive 

correlation of slope angle and tephra depth (R2 = 0.21, p = 0.04) but no 

significant correlation with increasing variability (R2 = 0.14, p = 0.11). 

 

(Insert Fig. 5 here) 
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3.4 Vegetation Plots 

 

We identified three consistent and widely distributed vegetation types in 

Iceland; tall shrubs, low shrub heath and moss heath (Table 3, Fig. S1). Tephra 

thickness varied with vegetation type (Table 4, Fig. 6). The lowest median 

thickness across the Fossdalur sites was found in moss heath. The median of 

thicknesses measured under low shrub heath was greater but with more 

variability across the data set; under tall shrubs median thickness was greatest 

but variability was significantly less that that found under low shrub heath. Near 

Eyjafjallajökull, sites were clustered to form the groups Langanes A and 

Langanes B; the clusters are 400–500 m apart and are assumed to have received 

similar amounts of fallout from the 2010 eruption. In both cases, tephra 

thicknesses were greatest under tall shrubs, less under low shrub heath and 

lowest in moss heath. When the thickness data from Langanes A and B were 

combined, moving from moss heath vegetation type to low shrub heath led to a 

consistent increase in thickness of 12 - 14 %; the transition from moss heath to 

tall shrubs was associated with an increase in thickness of 27 – 30 % (Table 4, 

Fig. 6).  

 

(Insert Fig. 6 here) 

 

3.5 Comparisons between vegetation plots and initial fallout 

 

We can compare our Ey2010 tephra thickness data at the Langanes site 

with the surface measurements of fallout published by Gudmundsson and others 
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in 2012 (Table 4, Fig. 6). This data was supplied in an interpolated grid from 

original thickness measurements. The grid spacing was 0.5 km.  

 

(Insert Table 4 here) 

 

Despite the limitations of the Ey2010 fallout dataset, we can still draw out 

some consistent patterns. Tephra layers preserved within moss heath exhibited 

a similar thickness (86 – 106 %) to the initial fallout measurements. Tephra 

layers within low shrub heath were slightly thicker, with values 99 – 119 % of 

the assumed initial deposit. Tephra layers within areas of tall shrubs were 

consistently thicker than the initial fallout, with values 113 – 136 % of assumed 

initial thickness.  

 

3.6 Comparisons between slope transects and vegetation plots on flat ground 

 

At site F where slope transects Fd1 and Fd2 (Table S1) are located nearby 

to vegetation plots (Fv_7 – Fv_26, Table S2), there is close correspondence 

between thicknesses recorded on slopes and level sites. A t-test showed there 

was no significant difference between tephra thickness at slope transect Fd1 

(mean = 31.9 ± 4.8 mm) and moss heath vegetation sites (mean = 31.1 ± 6.9 mm, 

t = — 1.3, df = 145.9, p = 0.17). No significant difference was observed between 

slope transect Fd2 (mean = 57.6 ± 13.8 mm) and low shrub heath sites (mean = 

61.5 ± 29.3 mm, t = 1.39, df = 164.4, p = 0.16).  
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4. Discussion 

 

Our evaluation of tephra layers 1-10 cm thick shows that comparable 

thickness data can be acquired from discrete slopes with a consistent vegetation 

cover, regardless of position on slope. Vegetation cover and plant architecture 

(stem widths, morphology, height and density per unit area) will, however, 

influence the preservation of the tephra layer, and may lead to significant layer 

thickening. Our replication experiments (Fig. 3) help constrain uncertainty and 

we are confident of the accuracy of mean thickness estimates on slope transects 

(n < = 10) and very confident in our mean thickness estimates from individual 

slope plots and vegetation plots (n = 50).   

 

Freshly fallen tephra will experience differing degrees of compaction as 

grains pack closer together, with different rates of change for fine and coarse-

grained material. This consolidation is likely to be swift, occurring over days 

rather than weeks, and will be accelerated by rainfall. Experimental data from Mt 

Hagen in Papua New Guinea show that in humid tropical conditions, freshly 

deposited tephra layers can be compacted to half of their initial thickness after 

16 days, forming layers that are essentially the same thickness 750 days later 

(Blong et al. 2017). Measurements of surface deposits are often taken in the 

weeks-months after the eruption (eg Gudmundsson, et al. 2012), and in the case 

of the Ey2010 tephra, these surface measurements reflect consolidated 

thicknesses comparable to our stratigraphic measurements.  
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The influence of the vegetation cover and surface ecological processes on 

thin (1 – 10 cm thick) tephra layers (as opposed to the impact of tephra on the 

ecology) has rarely been considered (but see Cutler et al. 2016a, 2016b, Blong et 

al. 2017). Our data confirm that in certain circumstances vegetation cover 

influences the thickness of the layer that finally becomes part of the stratigraphy, 

through capturing more or less tephra than initially fell. Furthermore, ecological 

processes can act to stabilise tephra layers rapidly. Data from Washington State 

indicated that biocrusts can form rapidly enough to effectively stabilise cm-scale 

thicknesses of fine grained tephra on slopes up to 17 °.  

 

If the thickness of shallow tephra layers varies with slope position this 

could be a reflection of changing patterns of vegetation, rather than the effect of 

topographic location. 

 

At our sites in Iceland, the initial tephra fall blanketed the surface but its 

thickness did not exceed the total height of the vegetation as defined by the 

vertical distance from the average stem height to the soil surface. The 

implication is that in these cases the stem and leaf architecture of the ground 

cover trapped tephra and enabled it to stabilise rapidly. The ubiquitous presence 

of moss is likely to have aided the process of sediment stabilisation, as could the 

irregular surface texture of grains and their resultant ability to lock together. 

 

We found a similar consistency of MSH1980 tephra thickness across 

slopes, even though the vegetation cover was quite different. The degree of 

preservation observed in the MSH1980 tephra was remarkable: around 75 % of 
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the initial deposit thickness was retained. In order to retain so much fine 

material, stabilisation of the tephra must have been rapid. In obviously vegetated 

areas (i.e. under sagebrush clumps, Artemisia sp., up to ca. 1.5 m high.), 

vegetation structure probably provided shelter, reducing wind speed and 

disrupting the effects of rainfall. The stabilisation of tephra in open areas with 

sparse vascular plant cover is best explained by the presence of a thin biocrust 

composed of mosses and lichens. Biocrusts are familiar features in many arid 

and semi-arid regions, including eastern Washington State (Johansen, 1993; 

Ponting and Belnap, 2012) and they are known to stabilise fine sediment 

(Belnap, 2001). A thin biocrust was present on all the sites we sampled and was 

clearly capable of capping-off the underlying deposit. Cyanobacteria and green 

algae can colonise suitable substrates in a matter of days to initiate biocrust 

formation; the development of biocrusts on fine substrates (like fine tephra) is 

much faster, and more homogeneous, than it is on coarse grains (Rozenstein et 

al., 2014). Rainfall shortly after the deposition of the MSH1980 layer promoted 

rapid colonisation by green algae (Rayburn et al., 1982). The formation of an 

abiotic crust after wetting may also have facilitated microbial colonisation. 

Thereafter, biological succession occurred, with increasing cover of bryophytes 

and lichens likely to have been important (Belnap and Lange, 2001).  

 

Taller vegetation has the potential to trap tephra that is mobile in the 

weeks and months following an eruption. Our Icelandic slope plots demonstrate 

that in a cool maritime climate where vegetation cover is low (< 66 %) tephra 

layer thickness can be variable and can be both much thicker and thinner than in 

comparable areas with high vegetation cover. The implication is that sparsely 
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vegetated areas could provide a crucial role in providing sources of mobile 

tephra for areas covered with deeper vegetation to trap. The data from Site L 

(Fig. 6) indicates that even short vegetation is effective at trapping the majority 

of tephra fallout, although on average there was some loss of thickness. The fact 

that we observe in most cases a greater thickness of tephra under tall vegetation 

than the initial fallout thickness suggests that taller vegetation is consistently 

better at trapping re-mobilised tephra moving laterally across the landscape. As 

a result, measurements of tephra thickness may systematically under- or over-

estimate the initial fallout thickness as vegetation cover varies across the 

landscape. We can explore the implications of this on a regional scale with a 

simple conceptual model (Fig. 7). The variations we propose should apply in 

mid-latitude environments with modest to low precipitation (annual totals 

<2000mm) and where there is a lack of bioturbation. Blong and others (2017) 

note the absence of the 15th century Mt St Helens tephra layer Wn from Alpine 

meadows on the slopes of Mt Ranier where northern pocket gophers (Thomomys 

talpoides) are very active. Distinct tephra layers may also be absent beneath 

tropical forest canopies because of ground level obstacles combined with very 

high rates of cycling and turnover (Blong et al. 2017).  

  

(Insert Fig. 7 here) 

 

While the volumes of past eruptions may be inferred from the 

extrapolation of proximal deposits (Burden et al., 2013) detailed maps are best 

produced from direct field measurement of fallout thickness. Some isopach maps 

have been produced for modern eruptions based on measurements of the initial 
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fallout (e.g. Thorarinsson 1954, Thorarinsson and Sigvaldason 1973, Scasso et al. 

1994, Sarna-Wojcicki et al. 1981, Waitt and Dzurisin 1981). However, most data 

for estimating the size of past eruptions come from measurements of tephra 

layer thicknesses within surface stratigraphy (e.g. Thorarinsson 1967, Lowe 

2011, Larsen et al. 1999). 

 

Depending on the vegetation gradients around a volcano (and along the 

axis of fallout) surface ecology may modify the fallout record and present a 

misleading impression of either a more uniform fallout pattern (with proximal 

thinning and distal thickening of the record) or vice versa. The practical 

implications of this can be demonstrated with reference to the mid-Holocene 

Monte Burney 2 eruption (Fig. 8).  

 

(Insert Fig. 8 here) 

 

In Figure 8, proximal areas of fallout 1 – 10 cm occur across vegetation 

communities that are structurally similar to those we have studied in this paper, 

along with forested zones with much taller trees. In the areas characterised by 

tall trees and a landscape mosaic that permits tephra re-working, we would 

expect to find an exaggerated version of the Icelandic woodland results: where 

the tephra layer is preserved it should be somewhat thicker than the initial 

fallout, providing there is a landscape mosaic with unstable areas to provide re- 

mobilised tephra. In addition, the tephra deposits in the forested zones are likely 

to be quite uniform as fallout is homogenised below the canopy, provided that 

there are a limited number of ground level obstacle such as fallen trees, and 
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turnover of the forest floor is limited  (Zobel and Antos 1991, Cutler et al. 2016b, 

Blong et al. 2017). Beyond the areas of low shrubs, we would expect fallout to be 

thinned in areas where biocrusts could not form rapidly. Thus, the choice of 

sampling sites could make a significance difference to both the thicknesses 

mapped and the shape of the inferred fallout footprint. 

 

In addition, understanding more about how ecological processes and the 

type and quality of surface vegetation affects tephra layer morphology could add 

important new dimensions to the suite of approaches already used to infer 

environmental data from tephra deposits. The morphology of the Dawson tephra 

in Alaska, for example, has been used to infer the seasonality of the eruption 

(Froese et al., 2006). Tephra morphology has also been used to examine 

solifluction and cryoturbation (Dugmore and Buckland 1991; Kirkbride and 

Dugmore 2005), and as an Early Warning Signal (EWS, Scheffer et al. (2012)) of 

upcoming land surface transitions (Streeter and Dugmore 2013). Thicker tephra 

layers can preserve characteristics and even the vegetation of a land surface for 

long periods (at least 25 kyr, e.g. Froese et al. (2006)). These approaches can 

complement more widely used palaeoenvironmental techniques, and can 

provide spatial data which cannot be gathered in any other way (Zazula et al. 

2006; Dugmore and Newton 2012). 

 

4.1 Recommendations for tephra layer measurement 

 

1. Thickness measurements of tephra layers on discrete slope units can be 

representative of fallout thickness where: 
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- a minimum of three averaged site measurements down-slope 

(with a spacing of metre-scale) are taken and the thicknesses 

are consistent; 

- there is a consistent vegetation community or biocrust 

formation on the slope unit; 

- the slope unit is morphologically distinct and isolated such that 

tephra cannot flow onto the slope unit from adjacent slopes; 

- tephra is not intercepted prior to reaching the ground surface, 

for example by snow cover or other ground level obstacles. 

2. Different vegetation communities at the time of fallout can introduce 

systematic and measurable differences in the preserved thicknesses of 

tephra, either increasing thickness variability or systematically reducing 

the volume of stabilized tephra. Where a tephra plumes crosses 

vegetation communities, this effect can steepen or reduce the apparent 

gradient in tephra fallout thinning from source.  

3. Tephra layer thickness can often be highly variable at sub-metre scales 

but when sampled adequately over m-scale can produce thicknesses 

which are consistent and representative of initial fallout.  

4. Tephra thickness can be uniform in thickness over m-scale but the 

average thickness may not be representative of the original fallout where: 

- tephra has been intercepted and removed from the location 

prior to contact with the ground surface; 

- tephra has been displaced from surrounding areas and the 

deposition focused. 
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Therefore, uniformity of tephra thickness, even over multiple m-scales, is 

not necessarily a reliable indicator of representativeness. This can be 

checked by having sites which are distributed between multiple 

topographic settings and comparable vegetation communities.  

 

 

 

5. Conclusions 

 

On discrete slopes up to 35 °, measurements taken under similar 

vegetation communities can produce similar estimates of tephra thickness for 

tephra layers 1–10cm thick, regardless of position on slope. Thus, sloping 

locations can produce accurate data on layer thicknesses and need not be 

shunned in mapping exercises.  

 

Differences in vegetation cover can significantly affect the thickness of 

tephra preserved in stratigraphic sequences. Tephra layers formed below tall 

shrubs may be 36 % thicker than the original fallout. Therefore, vegetation cover 

at time of eruption should be taken into account when producing estimates of 

fallout volume, especially if the fallout crosses strong vegetation gradients where 

individual plant communities are patchy and there is scope for localised tephra 

re-mobilisation.  

 

Biocrusts appear to have great potential to stabilise thin (1 – 10 cm thick), 

fine-grained tephra layers. Given the ubiquity of biocrust cover in arid and semi-
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arid areas, biocrust formation could be of great significance in volcanically active 

regions such as Central and South America, in addition to the interior of the 

American West. The early stages of biocrust formation on new tephra substrates 

are, however, unstudied. 

 

The identification of circumstances when the architecture of surface 

vegetation exerts a greater influence than topography in the reduction, 

conservation or augmentation of tephra layers < 10 cm thick is important 

because such layers are found across very large parts of the Earth’s surface. 

These types of tephra layers also typically make up over half the volume of 

fallout of a plinian eruption. This data also show that the morphology and 

thickness of visible tephra layers within stratigraphic sequences can also form an 

important environmental archive in addition to their value as isochrons. 
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Figure list 
 
Fig.1 
Possible transformations of a tephra layer after its initial deposition on a land 
surface, and the changes that may result as a layer becomes preserved in the 
stratigraphy. 
 
Fig. 2 (Colour) 
Map showing sampling locations (red points) and 1cm thickness isopachs from 
studied eruptions whose locations are indicated by the larger triangles. Isopachs 
in a) are from G2011 (Thordarson and Höskuldsson, 2014); Ey2010 
(Gudmundsson et al., 2012); Hekla 1947 (Thorarinsson, 1954). Arrow shows 
main axis of fallout from Katla 1918; the isopach from this eruption is not well 
defined (Larsen, 2010). Isopach in b) is from the 1980 eruption of Mt St Helens 
(Sarna-Wojciki et al., 1981). Sites are as follows: in a) Hamragardur (Ha), 
Langanes (L), Heidarsel (He), Kalfalfell (K) and Fossdalur (F). In b) Ritzville (R).  
In a) glaciers are white areas against the grey of the land. In b) state boundaries 
are dotted lines and interstate highways are solid lines 
 
Fig. 3 (Colour) 
The accuracy of measurements of tephra thickness based on number of 
measurements of tephra thickness observed. The stars indicate our range of 
sample sizes. 
 
Fig. 4 (Colour) 
Tephra layer thickness from selected down-slope transects from five eruptions 
in the last 100 years. Closed circles show mean thickness for each location and 
bars show 1 SE. In b) the shaded area shows the fallout thickness range at this 
location from Gudmundsson and others (2012). The overall slope angle is the 
calculated slope angle based on the start and end locations of the transect. These 
data show circumstances under which the thickness of tephra layers does not 
vary according to position on slope. At these sites (Table 2) the K1918(Site He), 
MtStH 1980 (Site R), Ey2010 (Site La) and G2011 (Site F) are all fine grained; H 
1947 (Site Ha) is a coarse sand-fine gravel; the Icelandic tephra deposits 
occurred in different months and stages of vegetation growth; H1947 fell in 
March, Ey2010 in April and G2011 in May; K1918 fell in October.  
 
Fig. 5 
Relationship between slope angle and mean Grímsvötn 2011 tephra thickness at 
Kalfafell, southern Iceland. Solid points indicate locations where vegetation cover 
was low, and a regression (solid line) shows a trend of increasing tephra 
thickness with increasing slope angle.  Semi-vegetated sites show a greater range 
of mean tephra thickness — with areas that are both thinner and thicker than 
those of neighbouring vegetated sites. 
 
Fig. 6 
Tephra thickness from areas of differing vegetation cover at sites F and La. Bold 
bars show median thickness, notches indicate 95% confidence intervals, and the 
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ends of the dashed lines indicate the highest and lowest measurements.  Initial 
fallout thicknesses are on the uncompacted layer 
 
 
Fig. 7 
Tephra re-mobilisation and re-deposition in relation to vegetation type and the 
implications for preserved tephra thickness when volcanic fallout across major 
ecotones.  
 
Fig. 8 (Colour) 
An illustration of a tephra layer that spans a large range of ecological conditions. 
Isopachs are as shown in Stern (2008) and show the >10cm, >5cm and >1cm 
thicknesses for the mid-Holocene Monte Burney 2 eruption. Vegetation cover is 
from MODIS 2001 and classification is based on a simplification of the 
International Geosphere Biosphere Programme Land Cover Classification (IGPB) 
(Belward. 1996) categories to best reflect vegetation categories used in this 
paper.  
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Tables  
 
Table 1: Examples of selected tephra layers where 49-89 % of the total fallout 
occurred as tephra layers 1-10 cm thick 
. 

 

Eruption Vtot (km
3
) 

1
 V1-10 (km

3
) 2

 V1-10 (%) Source 

Mt Burney 2  
(ca. 3830 BP) 

2.8 2.5 89 Stern (2008) 

Huaynaputina  
(1600 AD) 

19.2 14.6 76 
deSilva & Zielinski 
(1998) 

Quizapu  
(1932 AD) 

9.5 5.6 59 
Hildreth & Drake 
(1992) 

Cerro Hudson  
(1991 AD) 

7.6 4.2 56 
Scasso et al. 
(1994) 

Quilotoa  
(ca. 800 BP) 

18.3 8.9 49 
Mothes & Hall 
(2008) 

 

1 Vtot = total fallout volume (the published value);  

2 V1-10 = volume of tephra in deposits 1 – 10 cm thick, calculated following Fierstein 

& Nathenson (1992) 
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Table 2: Details of sampling locations and measurements taken.  
 

Site Location 
Tephra 

measured 
Year of 

measurement 

Original 
fallout 

thickness 
known? 

Data collected 

Fossdalur (F) 63.98° N, 
17.48° W 

G2011 2013 N 17 open sections 
in differing 
vegetation cover, 
3 slope transects 

Kalfafell (K) 63.96° N, 
17.66° W 

G2011 2012 N 54 open sections 

Langanes (L) 63.67° N, 
19.74° W 

Ey2010 2013 Y 16 open sections 
in differing 
vegetation cover, 
5 slope transects 

Ritzville (R) 47.09° N, 
118.66° W 

MSH1980 2015 Y 2 slope transects 

Hamragardur 
(Ha) 

63.62° N, 
19.94° W 

H1947 2015 Approximately 1 slope transect 
and 2 transects on 
flat ground 

Heidarsel (He) 63.80° N, 
18.18° W 

K1918 2014 N Coring at 6m 
intervals on a 30 x 
18m grid 
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Table 3: Vegetation groups used in this study 
 

Vegetation type Sites Vegetation characteristics 

Moss heath F, K, L, 
Ha, He 

Ground cover dominated by mosses; abundant 
Racomitrium spp. and feather mosses (notably Hylocomium 
splendens); occasional graminoids. Max. vegetation height 
0.2 - 0.3 m.   

Low shrub heath F, L Patchy vegetation cover with abundant dwarf shrubs 
(Betula x pubescens and Vaccinium uliginosum, occasional 
Empetrum nigrum), with ground cover of moss (abundant 
Racomitrium lanuginosum, frequent Hylocomium 
splendens), occasional graminoids.  Max. vegetation height 
0.5m. 

Sagebrush scrub R Patchy vegetation dominated by clumps of sagebrush 
(Artemisia sp.) up to ~1.5 m high; areas between sagebrush 
patches either covered with grass or lacking in vascular 
plants; the apparently bare areas were covered with a thin 
(0.3 - 2.5 cm) biocrust composed of mosses and lichens. 

Tall shrubs F, L Betula x pubescens and/or Salix phylicifolia canopy ; 
understory comprising frequent graminoid species 
(Agrostis, Poa and Festuca spp., typically) and patchy moss 
cover; occasional forbs. Vegetation height varies from 0.5 - 
4 m. 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

41 
 

 
Table 4. Stratigraphic measurements of Eyjafjallajökull 2010 tephra layer 
thickness compared to thickness of initial fallout. 
 

Site Vegetation type 

Tephra layer 
thickness as a 
percentage of 
fallout observed 
by Gudmundsson 
et al., 2012 

Tephra layer 
thickness as a 
percentage of that 
found in moss heath 
vegetation type  

Langanes A  Moss heath 106 100 

 
Low shrub heath 119 112 

 
Tall shrubs 136 127 

Langanes B Moss heath 86 100 

 
Low shrub heath 99 114 

 
Tall shrubs 113 130 
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Captions for SI Tables 
 
Table S1 - Location and details of measurement replication test sites. 
 
Table S2 - Location and details of slope transects. 
 
Table S3 - Location and details of slope plots. All sites record G2011 tephra 
thickness and were measured in June 2012. 
 
Table S4 - Location and details of vegetation plots. 
 

 
 

Captions for SI Figures 
 

Fig. S1 (Colour) - Vegetation types considered in this study (Table 2, Fig. 2).  
Photographed in June: a) Moss heath with three open sections visible at Site F: b) 
Low shrub heath on a slope transect at Site F; c) tall shrubs at Site F:  d) Trench 
through low shrub cover showing G2011 tephra (Site F), base of tephra shown 
with dashed line. Photographed in May (before start of growing season):  e) Tall 
shrubs, moss heath and shrub heath at Site L. Photographed in August, f) 
Sagebrush scrub at Site R. 

Fig. S2 – Thickness measurements of Hekla 1947 tephra at Site Ha; a) transect 
Ha_t1 over continuous moss heath b) transect Ha_t2 over partially eroded area of 
moss heath. Dashed lines indicate mean thickness estimates. 

Fig. S3 (Colour) - Slope transects of tephra layer thickness (Fig. 2, Table S1); a) 
and b) show G2011 thickness from Site F, c)-f) show Ey2010 thickness transects 
from Site L, with the nearest fallout thickness from Gudmundsson and others 
(2012) shown as a grey dashed line. g) Shows a slope transect of layer thickness 
data from MSH1980, Site R. 
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Fig. 5  
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Fig. 6  
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Fig. 7  
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Fig. 8 
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