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Summary 12 

Interspecific brood parasitism occurs in several independent lineages of birds and social insects, 13 

putatively evolving from intraspecific brood parasitism. The cuckoo catfish, Synodontis 14 

multipunctatus, the only known obligatory non-avian brood parasite, exploits mouthbrooding 15 

cichlid fishes in Lake Tanganyika, despite the absence of parental care in its evolutionary 16 

lineage (family Mochokidae). Cuckoo catfish participate in host spawning events, with their 17 

eggs subsequently collected and brooded by parental cichlids, though they can later be 18 

selectively rejected by the host. One scenario for the origin of brood parasitism in cuckoo catfish 19 

is through predation of cichlid eggs during spawning, eventually resulting in a spatial and 20 

temporal match in oviposition by host and parasite. Here we demonstrate experimentally that, 21 

uniquely among all known brood parasites, cuckoo catfish have the capacity to re-infect their 22 

hosts at a late developmental stage following egg rejection. We show that cuckoo catfish 23 

offspring can survive outside the host buccal cavity and re-infect parental hosts at a later 24 

incubation phase by exploiting the strong parental instinct of hosts to collect stray offspring. 25 

This finding implies an alternative evolutionary origin for cuckoo catfish brood parasitism, with 26 

the parental response of host cichlids facilitating its evolution. 27 

 28 
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Introduction 33 

Brood parasitism provides some of the best examples of coevolutionary arms races in nature. 34 

Brood parasites avoid costs associated with reproduction by exploiting the parental care of their 35 

hosts, whereas hosts are selected to avoid the loss of fitness imposed by brood parasites through 36 

evolving defences against exploitation. The study of avian brood parasite systems in particular 37 

has illustrated a number of mechanisms by which host defences and subsequent parasite 38 

counteradaptations can evolve [1,2]. For example, hosts recognize parasitic eggs and chicks on 39 

the basis of visual [3,4] and olfactory [5] cues and can reject parasitic eggs [6,7] and chicks 40 

[8,9]. In turn, avian brood parasites show the evolution of sophisticated behavioural repertoires 41 

[10], morphological adaptations [11], and egg and chick mimesis [12,13] to overcome host 42 

defences. 43 

The wealth of information available on avian brood parasitism [1,2,10,14,15] is in sharp 44 

contrast with the scarcity of data on the only recognized obligatory non-avian vertebrate brood 45 

parasite, the cuckoo catfish Synodontis multipunctatus Boulenger 1898. The cuckoo catfish is 46 

endemic to African Lake Tanganyika where it coexists with many species of mouthbrooding 47 

cichlid fishes [16]. Mouthbrooding is an advanced mode of parental care in fishes in which the 48 

eggs are incubated in the buccal cavity of a parent and where hatched offspring are subsequently 49 

protected. The spawning rituals of mouthbrooding cichlids involve elaborate courtship and 50 

repeated release of small batches of eggs that are quickly collected in the buccal cavity of one 51 

or both parents (typically the female) [17]. In Lake Tanganyika, spawning by cichlids can be 52 

interrupted by groups of cuckoo catfish, which join the spawning pair of cichlids and deposit 53 

their own eggs [16]. In the subsequent mêlée, the parental cichlid frequently collects the eggs 54 

of the cuckoo catfish together with its own (e.g. Movie S2 in [18]). Catfish eggs are nonmimetic 55 

and typically smaller and rounder than the eggs of Tanganyikan mouthbrooders [19]. Cichlid 56 

and catfish eggs are subsequently incubated together in the buccal cavity of the parental cichlid 57 
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where they are protected from predators. Cichlid eggs hatch within one week but remain in the 58 

buccal cavity for an additional 1-2 weeks until they deplete their yolk sacs and start exogenous 59 

feeding [20]. The hatching of catfish eggs precedes that of the host cichlid. Once young catfish 60 

deplete their yolk, at about 6 days post fertilisation [18], they start feeding on the host embryos. 61 

By preying on the young cichlids, the catfish compromises the reproductive success of the host, 62 

often consuming the host clutch entirely. Thus, a final outcome of incubation may be a mixed 63 

brood comprising both cuckoo catfish and cichlids, but more typically just catfish [18]. 64 

While the contribution of avian systems to our understanding of brood parasitism is 65 

substantial, the opportunity to research a system with a different evolutionary origin may 66 

provide a broader understanding of how selection shapes host-parasite coevolution [14]. The 67 

catfish-cichlid system is also much more amenable to laboratory research, enabling substantial 68 

experimental manipulation [18,21,22]. Like many avian brood parasites, cuckoo catfish 69 

eliminate host progeny, though in the case of the cuckoo catfish this is achieved through direct 70 

predation [22]. Indeed, the cichlid host provides the parasite with both food and protection while 71 

incubation itself appears less critical compared to egg incubation in birds. Because of the 72 

necessity of simultaneous spawning with the host, cryptic infestation [14] is impossible and 73 

adult cuckoo catfish are always exposed to potential aggression from the host. Unlike in birds, 74 

however, where obligatory brood parasitism likely evolved from intra-specific brood parasitism 75 

[14,23], the cuckoo catfish (and its related species) perform no parental care, implying that the 76 

origin of brood parasitism in the cuckoo catfish may differ markedly from that in birds.  77 

In a recent laboratory study, we demonstrated that females of a sympatric host cichlid 78 

Simochromis diagramma (Günther 1894) can selectively eliminate cuckoo catfish eggs by 79 

ejecting them from their buccal cavity while retaining their own brood, with rejection rates of 80 

parasite eggs extremely high (90%) [18]. In contrast to avian egg incubation, in which 81 

temperature is a limiting factor for survival of eggs and nestlings outside the nest, the aquatic 82 
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environments inside and outside the mouth of a host cichlid are similar and mouthbrooding 83 

primarily protects offspring from predation [20]. In many mouthbrooding cichlids, parents 84 

frequently release their offspring from their buccal cavity to forage and collect them back into 85 

their mouth upon sighting a predator [17]. Consequently, we hypothesized that rejected cuckoo 86 

catfish eggs may have the capacity to survive and hatch in the external environment and 87 

subsequently infect their host when collected as a stray offspring by a brooding parent. We 88 

conducted three experiments that tested: (1) the ability of cuckoo catfish to develop outside the 89 

host buccal cavity, (2) whether hatched cuckoo catfish offspring actively seek a host after 90 

rejection, and (3) the propensity of host females to accept the early and late incubation stages 91 

of cuckoo catfish from the environment. 92 

 93 

Material and Methods 94 

Experimental fish 95 

Four fish species were used in experiments and were maintained under identical 96 

conditions (water temperature 26-28 °C, water conductivity 550 µS cm-1, 13:11 light:dark 97 

photoperiod). Cuckoo catfish eggs and early juveniles originated from 10 pairs of adults 98 

imported from Lake Tanganyika in 2012 and 40 pairs of their F1 progeny. We used in vitro 99 

fertilisation (see [18]) to produce catfish eggs. The fertilised eggs were either directly used in 100 

the experiment or incubated in plastic incubators (tumblers representing an artificial buccal 101 

cavity and made of 120 x 15 mm tubing with an inflow rate of 0.25 l min-1) to obtain 102 

experimental juveniles (see below). Juveniles were fed live Artemia sp. nauplii once each day. 103 

 A sympatric natural host of cuckoo catfish [16], the mouthbrooding Lake Tanganyika 104 

cichlid Simochromis diagramma, were obtained from a commercial seller. All adult fish (N = 105 

72) were individually marked with Passive Integrated Transponder tags 106 

(www.oregonrfid.com), housed in three 350 l mixed sex tanks (4M:20F) and fed with dry and 107 
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frozen commercial fish food. Aquaria were checked daily for the presence of recently mated 108 

(<24 h) females; readily identified by their extended buccal cavity. Brooding females were 109 

gently transferred into a 54 l treatment aquarium equipped with an air-driven sponge filter and 110 

a 150 mm ceramic cave as a refuge. There the female either underwent an experimental 111 

treatment (see below) or served as a source of experimental embryos for control replicates. 112 

The Lake George mouthbrooding cichlid Haplochromis aeneocolor Greenwood 1973 113 

was used as an experimental allopatric host and were obtained from a commercial seller. The 114 

allopatric host was used as a control to isolate evolved host responses resulting from the 115 

coevolution between the cuckoo catfish and its sympatric hosts. They were housed in three 350 116 

l aquaria at a sex ratio of 6M:20F (N = 78) and were otherwise treated in the same way as S. 117 

diagramma in terms of individual tagging, feeding, brooding female checks and subsequent 118 

experimental procedures. 119 

Allopatric South American Sterba’s corydoras Corydoras sterbai Knaack 1962 were 120 

obtained from a commercial seller and were used as a taxonomically and geographically 121 

unrelated control to the juvenile cuckoo catfish. Parental fish were housed in 140 l aquarium 122 

where they spawned naturally. The eggs were removed from the aquarium and briefly raised on 123 

an Artemia nauplii diet until their use in the experiment (see below). 124 

 125 

Experiment 1: Host and parasite egg survival outside the female buccal cavity 126 

 127 

We experimentally tested the survival of cichlid and cuckoo catfish eggs outside their 128 

normal incubation environment; i.e. the buccal cavity of a parental cichlid. Based on our 129 

previous finding on the ability of the sympatric cichlid host S. diagramma to reject catfish eggs 130 

[18] we predicted that selection could favour cuckoo catfish to hatch and commence feeding 131 
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after rejection by a host. In contrast, we predicted high pre-hatching mortality of the cichlid 132 

eggs. 133 

A total of 1,448 cuckoo catfish eggs were obtained through in vitro fertilisations (IVF) (see 134 

[18] for details on the IVF). Each IVF event involved multiple parental fish (2-5 females, 3-5 135 

males) to produce genetically variable offspring. Fertilised eggs were split into two groups. The 136 

treatment group eggs (599 eggs) were transferred to 64 L aquaria equipped with a 400 l h-1 137 

power filter and 0.75 l min-1 aeration. Each egg was placed into a single cell (20 by 20 mm, 20 138 

mm deep) of a 5 x 5 compartmentalised plastic dish on a 5 mm layer of fine sand in each 139 

compartment and observed daily. A total of 24 independent replicates (clutches) were 140 

completed, using 25 eggs per each replicate (with a single exception of 24 eggs in one replicate). 141 

In the first 10 replicates (250 eggs in total), we recorded survival to the age of 72 h (to 142 

standardise comparison with host development), time to hatching (duration of pre-hatching 143 

development) and survival to hatching (hatching success). The same data were recorded in an 144 

additional 14 clutches (349 eggs in total) but with a follow-up observation on the first day of 145 

external feeding to measure the proportion of juveniles that started to feed successfully. Control 146 

cuckoo catfish eggs originated from the same IVFs as the first 10 replicates, with 27-191 eggs 147 

per replicate (849 control eggs in total). Control eggs were placed in artificial incubators that 148 

ensured constant movement of the eggs to imitate conditions in the buccal cavity of a host. The 149 

eggs that were found not to be developing during the first inspection; i.e. 24 h after fertilisation, 150 

were regarded as unfertilised. Mean fertilisation rate did not differ between incubators and 151 

aquaria (p = 0.89) and was 45.6% and 44.0% in the incubators and aquaria, respectively.  152 

Cichlid eggs were incubated using the same protocol as for catfish eggs. A total of 317 S. 153 

diagramma eggs (14 replicates) and 595 H. aeneocolor eggs (24 replicates) that originated from 154 

natural spawning (see Experimental fish) were tested. Brooding females of each species that 155 

had spawned within the previous 6 h were gently stripped of their fertilised eggs [18]. As for 156 
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the cuckoo catfish eggs, survival until hatching was scored from the eggs that were alive after 157 

24 h, accounting for unfertilised eggs. The rate of fertilisation (after 24h) was 79.4% in S. 158 

diagramma and 73.3% in H. aeneocolor. 159 

The survival of cuckoo catfish and host embryos outside the buccal cavity until hatching 160 

were expressed as a bivariate vector (ratio of surviving to fertilised eggs for each clutch) and 161 

differences between cuckoo catfish and sympatric and allopatric cichlids were tested using a 162 

Generalized Linear Model with binomial error distribution and log-link function in the glm 163 

package in the R statistical environment [24]. Given that hatching in cichlids occurred later than 164 

hatching in the cuckoo catfish (3 vs. 6 days), as an additional control we tested survival over 165 

the first 3 days of incubation to accommodate this disparity in time to hatching. We also 166 

compared the hatching success of cuckoo catfish eggs between a sand substrate (treatment) and 167 

incubator (control) using a Generalized Mixed Model with binomial error in the lme4 package. 168 

This analysis included clutch ID as a random term to account for a paired design in the data, 169 

since clutches were split between the two incubation methods. Duration of pre-hatching 170 

development was tested on the same dataset, using the same GLMM procedure but with a 171 

Poisson error distribution (number of days).  172 

 173 

Experiment 2:  Behaviour of parasite offspring in the presence of a brooding host female 174 

 175 

We tested the behavioural response of free-swimming cuckoo catfish offspring to the 176 

presence of a brooding cichlid female. We predicted that juvenile catfish would actively seek 177 

brooding host females to increase the probability of being collected and brooded, manifested as 178 

a positive spatial association between brooding female and the free-swimming parasite juvenile. 179 

   A 120 l aquarium (750 x 400 x 400 mm) was divided into three equally-sized sections 180 

along its longitudinal axis. Both sides of the aquarium were equipped with air driven filters and 181 
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separated from the central section with transparent plastic dividers. A female S. diagramma that 182 

had recently spawned (<24 h) was placed in either the left or right lateral section. The dividers 183 

restricted the female from entering the central section but enabled full olfactory contact between 184 

the test fish through 30 holes (10 mm in diameter) and by positioning the divider 20 mm above 185 

the bottom of the tank. A single cuckoo catfish (4-8 days old, median = 6 days, N = 30, mean 186 

total length, measured through digital imaging (95% confidence limits) = 13.5 (13.0-14.0 mm)) 187 

or a control corydoras catfish (10-20 days old, N = 30, mean body size (95% confidence limits) 188 

= 13.6 (13.1-14.1 mm)) was placed in the middle of the test aquarium and covered with a 189 

transparent pot and allowed to acclimatize. After 5 min, the pot was gently removed and the 190 

catfish released. The arrangement of the tank enabled unrestricted movement of the 191 

experimental juveniles while time spent in respective sections of the test aquarium was recorded 192 

for a period of 45 min. Three individual juvenile cuckoo catfish and three corydoras catfish 193 

were tested with each of 10 host females, providing 30 cuckoo catfish replicates and 30 control 194 

corydoras replicates. 195 

To test whether juvenile cuckoo catfish preferred to associate with the host cichlid, we used 196 

a Generalized Linear Mixed Model with Gamma error distribution and identity-link function in 197 

the lme4 package. We tested whether juvenile cuckoo catfish associated with the brooding host 198 

female more often than control corydoras juveniles, and whether the cuckoo catfish spent more 199 

time in the preference compartment than would be expected at random (i.e. 33% of time). The 200 

analysis included female ID as a random term to account for repeated use of the same females 201 

over six successive replicates.  202 

 203 

Experiment 3: parasite re-infection of the host 204 

 205 
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We tested the potential of juvenile cuckoo catfish to re-infect brooding females of their 206 

sympatric and allopatric cichlid hosts. We predicted that small, free-swimming cuckoo catfish 207 

that were rejected by the host (see [18]) might be able to return to the buccal cavity of a brooding 208 

host cichlid by exploiting their strong parental response to recover dropped or stray offspring. 209 

Naturally spawned brooding females of both sympatric S. diagramma and allopatric H. 210 

aeneocolor were transferred to treatment aquaria (see Experimental fish). These fish were 211 

presented with cuckoo catfish and conspecific offspring for a period of 48 h. After exposure, 212 

all offspring were gently washed out of the buccal cavity of the host to determine whether the 213 

female had accepted the experimentally exposed offspring or consumed them. In order to 214 

disentangle the effect of host brooding stage on host response, experimental exposure took place 215 

before hatching (i.e. at the egg incubation phase, with trials starting 0-1 day post fertilisation in 216 

both cichlid species) or after hatching (embryo incubation phase, S. diagramma: starting 14-15 217 

days post fertilisation; H. aeneocolor: starting 8-9 days post fertilisation given its more rapid 218 

development).  219 

At the host egg incubation phase, a total of 20 S. diagramma and 20 H. aeneocolor brooding 220 

females were used. Each female was used only once. We presented 10 females of each host 221 

species with five juvenile cuckoo catfish (age 1-6 days post hatching) and an additional 10 222 

females with 4-6 non-swimming embryos of their own species, obtained from a non-223 

experimental female (age 2-8 and 2-7 days post hatching in S. diagramma and H. aeneocolor, 224 

respectively). Experimental aquaria were visually isolated from external cues for a period of 48 225 

h. During trials juvenile catfish were provided with 2 ml of live Artemia nauplii suspension 226 

once each day. 227 

At the embryo incubation phase, the same protocol was used but high acceptance rates of 228 

conspecific and parasitic offspring (see Results) prompted inclusion of an additional, 229 

geographically and taxonomically unrelated control group. Thus, an additional 10 S. 230 
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diagramma and 10 H. aeneocolor females were presented with five juvenile corydoras (aged 231 

10-20 days post hatching to match the cuckoo catfish body size) following an identical protocol 232 

to that for cuckoo catfish. 233 

Each host female was only used once at a particular incubation phase, though there was 234 

partial overlap (65%) of females used between incubation phases. To distinguish conspecific 235 

experimental offspring from the test female’s own offspring at the embryo incubation phase, 236 

experimental offspring were lightly stained using a 1 hour bath in Alizarin Red solution, freshly 237 

prepared before each replicate by diluting 150 mg of Alizarin Red dye in 1 litre of tank water 238 

at 26°C.  239 

After 48 h each experimental host cichlid female was gently netted out of the aquaria and 240 

the entire contents of her buccal cavity washed out [18]. The number of juveniles and embryos 241 

inside the buccal cavity was recorded. The offspring that remained in the aquarium (i.e. those 242 

not accepted by the experimental female) were also netted and counted. For conspecific 243 

treatments, all embryos were inspected using a binocular microscope under fluorescent light 244 

(wave length 532 nm). Alizarin-stained individuals were identified from their fluorescently red 245 

skeletal structures [25]. 246 

To compare re-infection rates between sympatric and allopatric host species and among 247 

young stages of cuckoo catfish, conspecific control and catfish control (corydoras), we used a 248 

Generalized Linear Model with binomial error distribution and log-link function. Given the 249 

repeated use of a subset of females for the egg and embryo incubation phases (but while 250 

incubating different clutches), we analysed the two datasets separately. Re-infection rates were 251 

calculated as a bivariate vector (ratio of accepted offspring to offered offspring); the number of 252 

offered offspring was typically 5 but varied between 4 (5 replicates) and 6 (1 replicate). A quasi-253 

binomial error structure was used for data from the egg incubation phase given a high incidence 254 

of zero acceptance rates. Saturated models included host species (sympatric, allopatric) and 255 
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offspring species (cuckoo catfish, conspecific and corydoras in the embryo incubation phase 256 

dataset) and their interactions. Interactions between host and offspring were always non-257 

significant and were removed from the final models. For each treatment group, the proportion 258 

of embryos accepted by a female and the proportion of host females that collected at least a 259 

single embryo (acceptor hosts) were calculated.  260 

 261 
Results 262 

Experiment 1: Host and parasite survival outside the female buccal cavity 263 

The success of incubation on a sand substrate was good for cuckoo catfish but poor in 264 

cichlids (Figure 1). Hatching success in cuckoo catfish was 78%, but only 1.5% in both 265 

sympatric and allopatric hosts (GLM with binomial distribution: c2 = 33.1, df = 2, p < 0.001, N 266 

= 61 clutches). This difference remained after controlling for an unequal embryo developmental 267 

time in cuckoo catfish and cichlids; on day 3 post fertilisation on a sand substrate catfish egg 268 

survival was 78.5% but only 15% for allopatric and 3.5% for sympatric host eggs (c2 = 87.7, 269 

df = 2, p < 0.001). All hatched cuckoo catfish started to feed exogenously (at day 7 post 270 

fertilisation, N = 152 fish from 14 clutches), as did all cichlids (the day of first feeding not 271 

recorded). 272 

There was no difference in cuckoo catfish egg survival to hatching on sand in comparison 273 

with eggs raised in an artificial incubator (GLMM with binomial error: z = 0.60, p = 0.269, n = 274 

10 paired samples) and no difference in the time to hatching (GLMM with a Poisson error: z = 275 

0.14, p = 0.89, n = 10). Catfish eggs typically hatched in 3-4 days (day 3: 16 clutches, day 4: 276 

16 clutches), with a single clutch hatching on day 2. All eggs from the same clutch always 277 

hatched synchronously on the same day. 278 

 279 

Experiment 2:  Parasite juvenile behaviour in the presence of a brooding host female  280 
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 Juvenile cuckoo catfish were not attracted by brooding sympatric host females. There 281 

was no difference in association with brooding host females between the cuckoo catfish and 282 

corydoras juveniles (GLMM with Gamma distribution, z = 0.60, p = 0.547, N = 30 juveniles 283 

per treatment). Time spent by cuckoo catfish juveniles in each compartment was similar, while 284 

corydoras showed a tendency to avoid the central compartment (Fig. 2). 285 

 286 

Experiment 3: Parasite re-infection of the host 287 

Both cichlid species accepted hatched heterospecific and conspecific offspring, though 288 

sympatric females did so at a higher rate. Host females showed a greater propensity to collect 289 

offspring at the embryo brooding stage than at the earlier egg brooding stage (Fig. 3). 290 

While incubating their own unhatched eggs, acceptance rates of heterospecific and 291 

conspecific offspring were low, with no difference between sympatric and allopatric cichlids 292 

(GLM with quasibinomial error, z = 0.01, p = 0.994), nor between unrelated conspecific and 293 

parasite offspring (z = 1.30, p = 0.194). Sympatric females accepted 22% of cuckoo catfish 294 

juveniles (3 out of 10 females accepted at least a single juvenile; i.e. were acceptors) and 10% 295 

of conspecific embryos (a single acceptor out of 10). No allopatric females accepted any 296 

conspecific or parasitic offspring at the egg incubation stage (Fig. 3a). 297 

When incubating their own hatched embryos, the acceptance rate was significantly higher in 298 

sympatric females (GLM with binomial error, z = 3.14, p = 0.002) and differed among offspring 299 

species (z = 5.49, p < 0.001). Acceptance was low in corydoras catfish (sympatric hosts: 14% 300 

offspring collected, 40% acceptor females; allopatric hosts: 6% offspring, 20% acceptors), but 301 

high in parasitic cuckoo catfish (sympatric hosts: 94% offspring collected, 100% acceptor 302 

females; allopatric hosts: 38% offspring, 50% acceptors) and conspecific embryos (sympatric 303 

hosts: 84% offspring collected, 100% acceptor females; allopatric hosts: 58% offspring, 100% 304 

acceptors) (Fig. 3b). 305 
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 306 

Discussion 307 

We showed that the eggs and embryos of parasitic cuckoo catfish are capable of surviving 308 

at high rates outside the buccal cavities of their hosts, at least in a laboratory setting. Further, a 309 

strong parental response by both allopatric, but especially sympatric, hosts (Fig. 3), provided 310 

actively swimming cuckoo catfish offspring (1-6 days post hatching) with an opportunity to 311 

parasitize hosts long after oviposition. Parental females of both tested cichlid species readily 312 

collected cuckoo catfish offspring, as well as control conspecific embryos and, to a lesser 313 

extent, offspring of geographically distinct corydoras catfish when incubating their own 314 

hatched embryos. Acceptance rate was much lower during the egg incubation phase. In contrast 315 

to our predictions, we detected no directional behavioural response by cuckoo catfish offspring 316 

to brooding host females, suggesting that they do not actively seek potential hosts. 317 

The implications of our study are that, uniquely among all known brood parasites, cuckoo 318 

catfish have the capacity to infect hosts at two qualitatively different ontogenetic stages; as an 319 

egg and later as an actively swimming juvenile. Hence, even after rejection at the egg stage, 320 

juvenile cuckoo catfish could complete development to the free-swimming stage and return to 321 

the buccal cavity of a host, at least under the conditions imposed in this study. Indeed, the ability 322 

to reject parasitic eggs, but not to discriminate against juvenile parasites (but see [26,27]) 323 

resembles the situation seen in many avian brood parasite systems. This situation can be 324 

explained under a number of alternative hypotheses (reviewed by [28]), but probably arises 325 

through low selection pressure imposed by a low frequency of occurrence of parasite offspring 326 

following frequent rejection [28,29]. 327 

The ability of juvenile cuckoo catfish to re-infect hosts appears to derive primarily from a 328 

parental response of the hosts to collect stray offspring, rather than from juvenile cuckoo catfish 329 

actively seeking to re-infect the host. The presence of non-swimming embryos and, notably, 330 
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unrelated non-parasitic corydoras in the mouth of brooding females strongly suggests that re-331 

infection is accomplished by the host actively collecting free-swimming juveniles. Our data 332 

also show that the motivation to collect the fish is higher when the offspring in the buccal cavity 333 

have already hatched. This finding suggests that mouthbrooding females can reference the 334 

developmental status of their broods and modify their behaviour in response. The cost of 335 

parasitism at this later stage can be either lower or higher than when the brood is infected at the 336 

time of spawning and depends on the timing of acceptance and the number and size of the 337 

accepted parasitic offspring. In many cases, parental host cichlids may be unable to distinguish 338 

their own offspring from unrelated or even heterospecific young. Mobile young stages often 339 

stray from their parents, or are displaced when predators attack a parent or brood. The 340 

inadvertent adoption of such young by unrelated parents is probably not uncommon in teleost 341 

fishes [20,21]. The costs of policing care by parents, including expelling unrelated offspring, is 342 

potentially expensive if the error rate in discriminating genetically related and unrelated young 343 

is significant. In addition, if the fitness cost to a parent of caring for small numbers of genetically 344 

unrelated offspring is trivial, the strength of selection to evolve mechanisms to discriminate and 345 

expel unrelated young may be limited. Parasite infection facilitated by the host itself is also 346 

known in the butterfly Phengaris arion whose larvae parasitise ant colonies. However, P. arion 347 

larvae manipulate the ants into carrying them to their nest using chemical and acoustic signals 348 

[30] whereas the propensity to accept offspring of other cichlid species is a general feature of 349 

many mouthbrooders [21,31,32]. Our tests demonstrated sympatric S. diagramma to be a 350 

relatively stronger acceptor than the allopatric H. aeneocolor but this finding has limited general 351 

application as the comparison only included two species. Whether cuckoo catfish similarly use 352 

behavioural, visual, olfactory or auditory signals to manipulate hosts into retrieving them is an 353 

intriguing possibility that remains to be tested.  354 
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The active compliance by hosts in their own infection by cuckoo catfish as a by-product of 355 

parental care also offers a hypothetical trajectory for the origin of this brood–parasitic 356 

relationship. While the evolution of obligatory brood parasites in birds is believed to originate 357 

from intra-specific brood parasitism (e.g. [23,33]), this scenario is not plausible in Synodontis 358 

catfishes since they belong to a lineage that lacks parental care. One scenario for the evolution 359 

of brood parasitism in cuckoo catfish could be through predation of cichlid eggs during 360 

spawning, which might eventually result in a spatial and temporal match of spawning by both 361 

the parasite and its host. The results of the present study, however, suggest an alternative 362 

evolutionary pathway, with the relationship potentially evolving through accidental incubation 363 

of ancestral cuckoo catfish juveniles by brooding cichlids, with the fitness benefits of 364 

mouthbrooding reinforcing a spatial and temporal association of the catfish with cichlid hosts. 365 

This hypothesised evolutionary pathway is analogous to the widely accepted theory for the 366 

evolution of trophically transmitted parasites from free-living species (e.g. [34]).  367 

Cuckoo catfish eggs and juveniles showed high survival rates outside the buccal cavity of 368 

the host, potentially weakening reliance by the parasite on the host, especially in comparison 369 

with the negligible survival of cichlid embryos. Simultaneous spawning by cuckoo catfish and 370 

cichlids involves aggressive behaviour by the spawning cichlid pair with the catfish often forced 371 

away from the spawning site [21]. Even in the confines of an aquarium setting, catfish and 372 

cichlid eggs can be swept away from the spawning arena during aggressive disputes (M. 373 

Polačik, R. Blažek pers. obs.). Under these conditions, some uncollected cuckoo catfish eggs, 374 

as well as the eggs rejected by a host female, may be able to survive, hatch and develop along 375 

an alternative, non-parasitic developmental pathway. Cuckoo catfish are considered an obligate 376 

brood parasite in the scientific literature (e.g. [16,18, 21,22]), though evidence from the wild is 377 

indeterminate being based solely on the failure, thus far, to detect juvenile cuckoo catfish 378 

outside the care of their hosts [16]. Our own observations from captivity (M. Polačik, R. Blažek 379 
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pers. obs.) and anecdotal information from fish hobbyists suggest that cuckoo catfish can 380 

occasionally reproduce without parasitizing cichlids, though whether outcomes in the benign 381 

environment of the aquarium necessarily translate to nature is clearly a question that needs to 382 

be addressed. Obligate brood parasitism is believed to typically evolve along a trajectory 383 

starting with facultative parasitism (e.g. [23]) and it is conceivable that cuckoo catfish have yet 384 

to complete the transition to the full, obligate brood parasitism. There is also a possibility that 385 

different populations of the cuckoo catfish, which is widespread across Lake Tanganyika [35] 386 

may express different levels of reliance on their hosts. 387 

In conclusion, the relationship between the cuckoo catfish and mouthbrooding cichlids 388 

represents a unique example of a versatile vertebrate brood-parasitic system that is unusually 389 

amenable to experimental manipulation. We present data suggesting that cuckoo catfish 390 

offspring can complete development without exploiting a host, at least in a laboratory setting 391 

when predation is excluded. In addition, a strong parental response by mouthbrooding cichlids 392 

to collect stray offspring may facilitate re-infection of hosts by cuckoo catfish juveniles after 393 

rejection at the egg stage, and may even represent an evolutionary pathway for brood parasitism 394 

by cuckoo catfish with the strong parental instinct of host cichlids facilitating the origin of brood 395 

parasitism. 396 

 397 
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Fig. 1. Hatching success of parasite and host eggs when incubated outside female 
buccal cavity. Proportion of cuckoo catfish and host eggs that successfully hatched 
on a sand substrate and at artificial buccal cavity (incubator). Median, interquartile 
range and non-outlier range are shown, along with replicate-specific values clutches 
of 25 eggs (black circles). The number of replicates (clutches) is shown for each 
treatment. 
 

 
 
  



Fig. 2. Catfish behaviour towards brooding host female. Median time spent in each 
compartment (preference, neutral and avoidance zones), with interquartile range 
(box) and non-outlier range (whiskers). Individual values are shown as black circles. 
 
 

 
 
  



Fig. 3. Acceptance of embryos by host females at egg (left panels) and embryo 
(right panels) incubation phases. Median, interquartile range and non-outlier range 
are shown for each tested combination of host and parasite species, with replicate-
specific values for each trial (consisting of 4-6 embryos) (black circles). 
 

 


