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A flow platform for degradation-free CuAAC
bioconjugation
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Glenn A. Burley 1 & Allan J.B. Watson 3

The Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is a cornerstone method for

the ligation of biomolecules. However, undesired Cu-mediated oxidation and Cu-

contamination in bioconjugates limits biomedical utility. Here, we report a generic CuAAC

flow platform for the rapid, robust, and broad-spectrum formation of discrete triazole bio-

conjugates. This process leverages an engineering problem to chemical advantage: solvent-

mediated Cu pipe erosion generates ppm levels of Cu in situ under laminar flow conditions.

This is sufficient to catalyze the CuAAC reaction of small molecule alkynes and azides,

fluorophores, marketed drug molecules, peptides, DNA, and therapeutic oligonucleotides.

This flow approach, not replicated in batch, operates at ambient temperature and pressure,

requires short residence times, avoids oxidation of sensitive functional groups, and produces

products with very low ppm Cu contamination.
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The Cu-catalyzed azide-alkyne cycloaddition (CuAAC)
reaction (Scheme 1a) is a method of widespread utility
throughout medicinal chemistry, chemical biology, and the

material sciences1–6. The pervasiveness of this methodology can
be attributed to the rapid, chemo- and regiospecific generation of
1,2,3-triazole products and bioconjugates.

A significant limitation of the CuAAC reaction conducted
under batch conditions is the need for a Cu catalyst; this can be
problematic in a number of applications5,6. Cu-mediated oxida-
tive damage of sensitive functional groups can result in product
mixtures, which may complicate purification or lead to issues
with bioassays due to the need for deconvolution of data or
unknown pharmacology (Fig. 1b). In biomolecule tagging
CuAAC modification of azide/alkyne biomolecules requires
(super)stoichiometric loadings of Cu catalyst due to the presence
of a number of Cu-chelating sites (e.g., N/S sites of peptides7, N7
of purines in nucleic acids8), which can result in catalyst inhibi-
tion and the need for higher concentrations of Cu in the reaction
(Fig. 1b)6. In addition, oxidative damage of biomolecules is a
significant issue associated with current CuAAC-based bio-
conjugation strategies, severely limiting development9–11. These
issues have inspired the development of a series of alternative Cu-
free click approaches such as strain-promoted azide-alkyne
cycloadditions (SPAAC)12 and inverse electron demand Diels-
Alder (IEDDA) approaches using tetrazines13. Despite their
moderate to fast kinetics14, these processes have their own issues;
for example, lacking the chemo- and regiospecificity afforded by
the CuAAC reaction due to the reactive (electrophilic) nature of
the requisite cyclic alkynes/alkenes15–21, which are susceptible to
side reactions with nucleophilic residues (e.g., thiol residues in
glutathione). Furthermore, the installation of these large lipo-
philic groups has a significant impact on the overall physico-
chemical properties of the bioconjugate (Fig. 1c)22.

Whilst efforts have been made to overcome the oxidation and
Cu contamination issues of the CuAAC reaction by the develop-
ment of bespoke ligands, conducting these reactions under anae-
robic conditions, the addition of oxidation inhibitors, and Cu
scavengers, these issues extend from the requirement for high [Cu]
to overcome slow catalytic turnover as a result of the numerous
Lewis-basic groups typically found in proteins and nucleic acids23.

Here we describe the development of a rapid flow-assisted
CuAAC reaction that overcomes these problems (Fig. 1d). Our
operationally simple strategy couples solvent-induced erosion

of a copper tube with the formation of a highly active CuAAC
catalyst under laminar flow conditions. This enables the facile
formation (tR ca. 1–10 min) of discrete ligation products and
bioconjugates not possible using conventional batch conditions.
Significantly, the level of Cu present in products is well below the
reported mammalian cellular toxicity thresholds (e.g., <20 μM for
DNA)5,11,24 with no associated oxidative damage observed on a
series of representative labile biomolecules, including peptides
and DNA strands.

Results
Reaction design. Flow-based technologies offer distinct advan-
tages over batch, such as enhanced mass transfer, which is par-
ticularly advantageous for large molecular weight biomolecules
where accessibility of functional groups is significantly compro-
mised in the batch regime25–29. Despite these advantages, appli-
cation of flow-based CuAAC bioconjugation has not been
reported due to the need for (i) excess Cu catalyst, which pro-
motes biomolecule degradation, (ii) ionic scavengers, which can
result in residual Cu trapped in bioconjugates, (iii) elevated
temperatures, which promotes biomolecule degradation, and (iv)
organic solvents, which typically limits biocompatibility. This has
limited flow CuAAC applications to small molecules and pre-
vented the widespread development of flow-assisted synthesis of
discrete bioconjugates30–41.

Whilst elemental Cu is an effective catalyst for flow CuAAC,
elevated temperature and pressures are required, likely in order to
solubilize some Cu in the eluent. However, H2O/organic mixtures
are extremely effective and biocompatible solvent mixtures for
CuAAC-mediated bioconjugation. In addition, the surface of Cu
pipes is typically covered in a protective oxide layer, which are
generally poorly soluble in organic solvents but more soluble in
H2O. Indeed, erosion of Cu tubes with H2O is a well-studied
engineering phenomenon, with Cu leaching a known problem in
flow chemistry31.

Based on this, we hypothesized that an aqueous/organic
mixture (for example, H2O/MeCN) would offer a blend of
sufficient solubility of the (bio)organic components while
promoting controlled erosion of surface Cu salts under laminar
flow conditions, with in situ Cu(I)/Cu(II) disproportionation
providing the mechanistically essential Cu(I) required for the
CuAAC reaction. Whilst the level of solubilized Cu was likely to
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be very low; the increased circulation established under the flow
set up would enhance mass transport to provide reaction
efficiency not possible in batch26.

This hypothesis was found to be valid. Three benchmark
CuAAC reactions, using three alkynes (1a–1c), with known
differences in reactivity with benzyl azide (2) were evaluated in a
laminar flow system comprising a pump and copper reactor at
ambient temperature and pressure (Fig. 2a). The reaction does
not proceed in pure MeCN or pure H2O and [Cu] in the eluent
(10 mL collected, 1 mL/min under ambient conditions) was
extremely low (<20 ppm). However, the addition of small
amounts of H2O to the bulk MeCN resulted in the formation
of triazole 3a–c, which peaked at 5:1 solvent mixture. Control
experiments with an unused Cu reactor (Fig. 2b, red bars) vs. a
reactor used for CuAAC reactions (Fig. 2b, blue bars) demon-
strated greater erosion in the used reactor, consistent with a more
exposed surface due to repeated chemistry; however the solvent
composition/erosion trend was comparable, peaking at 1:1 H2O/
MeCN. The addition of small percentages of H2O to the carrier
solvent (MeCN) enabled the CuAAC reaction of equistoichio-
metric ynamine 1a and BnN3 (2) effectively at 5:1 MeCN:H2O (tR
= 10 min; Fig. 2a). Whilst ynamine 1a exhibits faster batch-
reaction kinetics based on a pKa modifying Cu-ligation42, the
mixed solvent system was also effective at enabling the CuAAC
reaction of more standard alkynes 1b and 1c at the same flow
rate. Analysis of the eluent by ICP-MS revealed that [Cu] was
~14 ppm, which is well below the limit required for use in in vivo
applications5,11. Importantly, control experiments identified a
flow phenomenon. Attempting the CuAAC reaction of alkynes
1a–1c in flask experiments at 14 ppm Cu was unsuccessful for 1b
and 1c and only moderately successful for the more reactive
ynamine 1a (53% yield after 72 h), whereas the flow system
results in quantitative conversion in 10 min (Fig. 2c). Residence
times were also shortened significantly to ca. 1 min for more
reactive substrates.

Scope of the flow platform. The scope of the flow CuAAC
process was both broad and reproducible using three different
alkyne classes (1a–1c) across a series of azide substrates (3–20;
Fig. 3). Triazole products derived from simple azides, azido
fluorophores, and azide possessing specific functions for down-
stream applications, were all isolated in high yield after a single
pass. Importantly, ICP-MS analysis of the products again found
the residual [Cu] was <20 ppm (see Supporting Information for
full details).

We also examined the compatibility of the flow process with
regards to established CuAAC chemoselectivity profiles (Fig. 3).
Diyne 18, containing aliphatic alkyne and aromatic ynamine sites,
underwent sequential CuAAC ligation, firstly with the coumarin
azide 19 at the ynamine site followed by ligation with the
nucleobase azide 20 at the aliphatic alkyne site; complete
chemoselectivity was observed throughout. This demonstrates
that established reactivity profiles43 are replicated in the flow
format and that our system enhances not only overall reaction
kinetics but does so at very low [Cu].

The biomedical utility of the CuAAC reaction lies primarily in
the ligation of bio-relevant molecules. We assessed the flow
CuAAC process as a method for the ligation of representative
alkyne-derivatives of nucleic acids and peptides, which
have known susceptibility to form oxidized byproducts in the
presence of a Cu catalyst (Fig. 4)8,10. Installation of a fluorinated
residue onto a marketed PARP inhibitor44, and a common
fluorophore onto a series of peptides and DNA strands
containing oxidizable functionality produced triazole products
with minimal formation of side-products. These include
CuAAC ligations with oligodeoxyribonucleotides (ODNs) and
the core ApoliproteinE (ApoE) peptide sequence (27)45, which
has demonstrated utility as a delivery vehicle across the blood
brain barrier46. Residues with known oxidative susceptibility
(27a–e) under conventional CuAAC batch conditions were
installed on the N-terminus to report any potential degradation
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by reactive oxygen species and formed the expected triazole
products (1 mL/min; tR= 8 min), with trace Cu contamination
and no associated degradation.

Bioconjugation. Finally, we explored applying our flow-based
CuAAC ligation approach to prepare therapeutic bioconjugates.
Phosphoramidate morpholino oligonucleotides (PMOs) are a
class of oligonucleotides with established therapeutic impor-
tance47–49. An essential requirement for in vivo efficacy of this
class of biologics is the need conjugate a cell penetrating peptide
sequence onto one of the termini to enable effective delivery to
the central nervous system. The bioconjugate triazole 28 was
prepared from precursors derived from a PMO azide with known

in vivo efficacy as a splice-switching oligonucleotide for the
treatment of Spinal Muscular Atrophy (SMA) and a peptide
fragment derived from a portion of the ApoE protein50. Under
flow conditions, the ApoE-PMO bioconjugate (28) was formed in
60% yield after 15 passes (1 mL/min; total tR= 30 min). No
reaction was observed after 24 h under equivalent batch condi-
tions, with only only 26% yield of 28 obtained in batch after 48 h
using 100 equiv Cu.

Discussion
In summary, we have developed a rapid and operationally simple
flow-based platform for the CuAAC reaction that operates at
ambient temperature and pressure. Solvent-induced erosion of a
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Cu pipe provides catalytically competent Cu to promote the
CuAAC reaction of a range of both small molecules and bio-
molecules without oxidative damage to labile functional groups
and with trace Cu contamination. We have demonstrated the
dependency of the system on the composition of the medium and
that the observed effect is unique to the flow conditions with
comparable isolated experiments of low efficiency. We expect that
these findings will significantly increase the utility of flow-assisted
CuAAC across a series of academic and industrial applications.

Methods
General methods. See Supplementary Methods for further details supporting
experiments, Supplementary Tables 1–11 for additional data, and Supplementary
Figures 1–125 for spectra.

General procedure for the flow CuAAC process. Alkyne (0.2 mmol) and azide
(0.2 mmol) were dissolved in 10 mL of MeCN/H2O (5/1). The CuAAC reactions
were carried out in a commercial chemical flow reactor equipped with a 10 mL
copper reactor (easy-Scholar from Vapourtec). The reaction mixture was
flowed through a copper tube (diameter= 1 mm, volume= 10 mL, surface area=
400 cm2) at a flow rate of 1 mL/min at rt (25 °C, tR= 10 min). The reaction mixture
was then collected and concentrated in vacuo to afford the crude product. Where
necessary, purification was achieved by flash silica column chromatography (for
small molecule products) or preparative HPLC (for peptide/DNA-based products).

Data availability
All data generated or analyzed during this study are included in this published article
(and its supplementary information files). These data are also available from the author
upon request.
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