
Querying Metric Spaces with Bit Operations

Richard Connor1 and Alan Dearle2

1 Department of Computing Science, University of Stirling, FK9 4LA, Scotland
2 School of Computer Science, University of St Andrews, KY16 9SS, Scotland

richard.connor@stir.ac.uk

alan.dearle@st-andrews.ac.uk

Abstract. Metric search techniques can be usefully characterised by the
time at which distance calculations are performed during a query. Most
exact search mechanisms use a “just-in-time” approach where distances
are calculated as part of a navigational strategy. An alternative is to use
a “one-time” approach, where distances to a fixed set of reference objects
are calculated at the start of each query. These distances are typically
used to re-cast data and queries into a different space where querying is
more efficient, allowing an approximate solution to be obtained.
In this paper we use a “one-time” approach for an exact search mech-
anism. A fixed set of reference objects is used to define a large set of
regions within the original space, and each query is assessed with re-
spect to the definition of these regions. Data is then accessed if, and only
if, it is useful for the calculation of the query solution.
As dimensionality increases, the number of defined regions must increase,
but the memory required for the exclusion calculation does not. We show
that the technique gives excellent performance over the SISAP bench-
mark data sets, and most interestingly we show how increases in dimen-
sionality may be countered by relatively modest increases in the number
of reference objects used.

1 Context

To set a formal context, we are interested in searching a (large) finite set of
objects S which is a subset of an infinite set U , where (U, d) is a metric space:
that is, an ordered pair (U, d), where U is a domain of objects and d is a total
distance function d : U×U → R, satisfying postulates of non-negativity, identity,
symmetry, and triangle inequality [20]. The general requirement is to efficiently
find members of S which are similar to an arbitrary member of U given as a
query, where the distance function d gives the only way by which any two objects
may be compared. There are many important practical examples captured by
this mathematical framework, see for example [16, 20]. The simplest type of
similarity query is the range search query: for some threshold t, based on a
query q ∈ U , the solution set is R = {s ∈ S| d(q, s) ≤ t}.

The essence of metric search is to spend time pre-processing the finite set
S so that solutions to queries can be efficiently calculated using only distances
among objects. In all cases therefore, distances between the data and selected

CORE Metadata, citation and similar papers at core.ac.uk

Provided by St Andrews Research Repository

https://core.ac.uk/display/161931991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Connor and Dearle

reference or “pivot” objects are calculated during pre-processing, and at query
time distances between the query and the same pivot objects can be used to make
deductions about which data values may, or may not, be candidate solutions to
the query.

Mechanisms for metric search can be divided into two main categories, which
we define as using “just-in-time” and “one-time” distance calculations between
the query and these pivot objects. With “just-in-time” solutions, the manner in
which data is stored reflects proximity within the data set, and indexing struc-
tures attempt to allow navigation towards subsets where possible solutions may
exist. As navigation occurs, distances to objects related to these local subsets
are calculated. The idea is that as the computation progresses, subsets of the
data which are geometrically distant from the query are never accessed.

With “one-time” solutions, a selection of pre-determined reference objects
is used, and distances to all these are calculated for every element during con-
struction. These distances are used to re-cast the original space into some other
space where indexing properties are better, distance calculations are cheaper, or
both. Typically the main tradeoff is that the extra query efficiency is achieved in
return for a loss of semantic query effectiveness, so such mechanisms are either
approximate, or produce candidate sets of results from within which the true
results must be determined by re-accessing the original data.

2 Introduction

In this paper, we present a combination which we believe is completely novel,
and which is robust in the face of increasing dimensionality. We use a “one-
time” approach for an exact search mechanism, and thus characterise the original
search space by the distances between each element and a fixed set of reference
objects. However, instead of using this information to re-cast the data into some
cheaper space, we instead assess queries in terms of the original metric space.

Our initial characterisation is used to define a large set of binary partitions
over the original space; the data is stored as a set of bitmaps according to
containment with these regions. At query time, the query is assessed against
all of the regions, but without reference to the data representation. For each
region, one of three possible conditions may be determined: (a) the solution set
to the query must be fully contained in the region, or (b) there is no intersection
between the region and the solution set, or (c) neither of these is the case. In
either case (a) or (b), the containment information stored may be useful with
respect to solving the query, and will be fetched from disk as part of the solution
computation. In case (c) however the containment information is of no value,
and is not accessed as a part of the computation. This approach maximises the
effectiveness of memory used for calculation against the data representation.
Indeed the amount of memory required depends on the size of the data but,
critically, not its dimensionality.

As dimensionality increases, then ever more regions will fail to contribute
knowledge towards the possible solution set. Since these regions are not involved

Querying Metric Spaces with Bit Operations 3

in the exclusion computation, they do not significantly impact upon the memory
or time required to perform it. Thus whilst an increase of dimensionality will
require a larger representation of the data in secondary storage to remain effec-
tive, it does not increase the memory requirement for performing the exclusion
calculation.

2.1 Illustrated Example

q t
p1 p2

p3 p4

a

b

c

d

e

f

A B C D E F

q t

Fig. 1. Any solution to the query q with threshold t must be in the circle centred
around p2, and above the dashed horizontal line; it cannot be in the circles centred
around p1 or p4. No information is available wrt the circle around p3 nor the vertical
line; these partitions take no part in the exclusion calculation as the region boundaries
intersect the query solution boundary. The shaded area shown on the right shows the
possible loci of query solutions with respect to these regions.

Figure 1 shows a simple example within the 2D plane, comprising four ref-
erence objects p1 to p4 and a set of six regions defined by them. The regions are
respectively: A, the area to the left of the hyperplane between p1 and p2; B, the
area above the hyperplane between p1 and p3; and the areas within the variously
sized circles drawn around each p1 to p4, labelled C, D, E and F respectively.
Note that each regional boundary defines a binary partition of the total space,
such that each element of the space is either in, or out, of the region, and that this
membership is defined only in terms of distances from defined reference objects.
Thus in Figure 1, A = {u ∈ U |d(u, p1) ≥ d(u, p2)}, C = {u ∈ U |d(u, p1) ≤ µ}
for some value of µ, etc.

Note that the number of regions that can be defined from a fixed set of refer-
ence objects is potentially very large; for example in the experiments described

4 Connor and Dearle

Table 1. The data representation according to containment of regions (see Figure 1).
The representation of the query Q is equivalent to the CNF expression B∧¬C∧D∧¬F

Point Regions

A B C D E F

a true true false true true false
b true false false false true true
c false false false false false false
d false false false true false true
e false true false true false false
f true true false true false false

Q ∩ true false true ∩ false

in this paper, for n reference objects, we define
(
n
2

)
+ 5n regions for n reference

objects, by using all hyperplane boundaries and defining five hypersphere radii
per object.

Figure 1 also shows a range query q drawn with a threshold t. It can be seen
that all solutions to this query must lie within the area highlighted on the right
hand side of the figure. The hypersphere around the query intersects with two
regional boundaries, and so no information is available with respect to these;
however it is completely contained within two of the defined regions, and fails
to intersect with the final two. Such containment and intersection is derivable
only from the measurement of distances between the query and the reference
objects, the definition of the regions, and the search radius. Here for example
the possible solution area shown is determined using only the four distance
calculations d(q, p1).. d(q, p4).

Table 1 shows how the example data objects a to f are stored in terms of
their regional containment. The row labelled Q shows the containment relation
between the entire query ball and each defined region. Where the boundaries
intersect, a ∩ is shown; where they do not, a Boolean value shows whether the
query ball is contained or otherwise. Therefore, the only possible solutions to
the query are those which match on all non-intersecting fields; in this case, the
objects a, e and f . Note that this is equivalent to the Conjunctive Normal Form
(CNF) expression B ∧ ¬C ∧D ∧ ¬F . This expression therefore covers the set of
all possible solutions to the query.

The full set of query solutions can therefore be evaluated in three phases as
follows: (a) the query is checked against the region definitions; (b) the useful
information from this phase is used to conduct a series of bitwise operations to
identify a set of candidate solutions for the query; and (c) the candidates are
checked against the original set. This gives interesting performance tradeoffs;
phase (b) should be almost constant cost, as a set of log n orthogonal, balanced
partitions should exclude almost all incorrect solutions from the candidate set.
The cost of phase (c) directly depends on how well this can be achieved, and will
always be better with a larger number of regions which will require an increase
in the cost of phase (a).

Querying Metric Spaces with Bit Operations 5

As dimensionality increases, then so will the proportion of intersections be-
tween the query and region boundaries. This can be countered by defining more
regions, which will increase the storage cost of the index structure, and the cost
of computing phase (a) of the query, but need not consequentially require any
increase in memory or time for the ensuing phases of the computation.

2.2 Contribution

The contribution of this paper lies in the combination of using a fixed set of
reference objects to characterise the data, followed by their use in an exact met-
ric search algorithm which maximises the efficacy of memory use. There are
many mechanisms which use similar fixed sets of reference objects (see for ex-
ample Section 5); our mechanism is particularly well-suited to exact search as
the dimensionality of the underlying data increases, by minimising the memory
footprint required for the search algorithm. Furthermore our algorithm is inher-
ently decomposable and parallelisable, and is well-suited to implementation on
modern processors, including GPUs.

In this paper we give the basic mechanism, show its feasibility with respect to
some well-known (relatively small and low-dimensional) data sets, and also show
its performance as intrinsic dimensionality increases. This is an early exposition
of these ideas, and there are many more aspects to study.

3 Core Mechanism

3.1 Data structures

Before describing the algorithm in more detail, we describe the data structures
used in the algorithm and their initialisation. We refer to a finite space (S, d)
which is a subset of an infinite metric space (U, d).

A set P of enumerated reference objects p0 to pm is first selected from the
finite metric space S. Based on this, we define a set of surfaces within U , defined
according to the distance function d, each of which divide U into two parts.
Surfaces within U are either balls, for example {u ∈ U | d(u, pi) = µ} for some
values i, µ, or sheets, for example {u ∈ U | d(u, pi)) = d(u, pj)} for some values
i, j. For each such surface, it is easy to categorise any element of ui of U as being
inside or outside an associated region, according to whether it is on the same
side of the surface as pi or otherwise. Note that there are many more regions
than reference objects; for example a set of m reference objects immediately
defines

(
m
2

)
hyperplane regions, and can be used to define many more than

this. In Section 3.3 we discuss further the selection of regions from the available
reference objects.

We now define the notion of an exclusion zone as a containment map of
S based on a given region; this is the information we will use at query time
to perform exclusions and derive a candidate set of solutions. We impose an
ordering on S, then for each si map whether it is a member of the region or

6 Connor and Dearle

otherwise. This logical containment information is best stored in a bitmap of n
bits, where n = |S|. One such exclusion zone is generated per region and stored
as the primary representation of the data set.

It is worth noting that an essential difference between our mechanism and
others that use the same characterisation of the data (see Section 5) is that each
of our bitmaps represents the containment of the whole data set within an indi-
vidual region, rather than those regions which contain an individual object. The
same information is thus divided with the opposite orientation; with reference
to Table 1, we store the columns rather than the rows.

3.2 Query

The query process comprises three distinct phases as mentioned above:

Phase 1 Initially, the distance from the query q to each reference object pi is
measured. For each region, it can be established if the boundary of the solu-
tion ball intersects with the boundary of the region. For a ball region defined
by reference object pi and a radius µ, then the condition for intersection is

|d(pi, q)− µ| ≤ t

For a sheet region, the condition depends on whether the metric d has the
supermetric property (see Section 5) or otherwise: if it does, the intersection
condition is

|d(pi, q)
2 − d(pj , q)

2|
2d(pi, pj)

< t

otherwise the condition is

|d(pi, q)− d(pj , q)|
2

< t

If the intersection condition holds, then the exclusion zone related to the
region is not considered further; if it does not, then the exclusion zone is
brought into the query calculation in one of two sets, depending on whether
the query solutions are fully contained within, or without, the region in
question. We will name these two sets of bitmaps Bin and Bout.

Phase 2 The second phase comprises the manipulation of the bitmaps deriv-
ing from the first phase to identify a set of candidate solutions. This may
be efficiently achieved by a series of bitwise operations over these bitmaps.
The solution to the query is guaranteed to lie within the intersection of the
inclusion sets (derived by bitwise and operations) and not in the union of
the exclusion set (derived by bitwise or). Thus any solution is guaranteed to
be identified by the bitmap deriving from the following logical expression:(∧

b∈Bin

b

)
∧

(
¬

(∨
b∈Bout

b

))
Phase 3 The last phase consists of filtering the result sets derived in phase 2

against the original space and distance metric in order to produce an exact
solution to the query.

Querying Metric Spaces with Bit Operations 7

3.3 Efficiency considerations

No data is considered during Phase 1, and n distance calculations can be used
to generate a great many judgements. With increasing dimensionality, a larger
number of reference objects will be required to usefully characterise the space,
as more queries will intersect with each region, and therefore a greater number
of regions is required to maintain the size of Bin ∪ Bout. However this adds no
further cost to the second and third phases of the query.

If each bitmap used in the Phase 2 calculation is balanced, i.e. it contains the
same number of 0s and 1s, and orthogonal, i.e. there is no logical dependency
among them, then only log2 n bitmaps (where n = |S|) are required to exclude
almost all non-relevant data. As each bitmap is n bits long, this gives a space
requirement of O(n log n), and a time requirement of O(log n). In this sense, the
solution can not be said to be scalable. However it is important to look more
deeply than this: the space requirement is literally n log2 n bits, which cannot
cause any real problem for any context where any n objects are being stored
- even if n is huge, log2 n bits is unlikely to approach the size of a single data
object. If the bitmaps are huge, as there is no logical internal dependency they
can be partitioned and accessed in parallel. Furthermore the time requirement
on modern hardware is likely to approximate to a small constant time even with
relatively large values of log2n.

Phase 3 is essentially optional, and required only for exact search. Alterna-
tively, the first two phases can be considered as an approximate search technique.
Whether this is desirable or not depends on how well the data is characterised
according to the selected regions; in Section 4 we show an example where the
number of false positives is so small this phase is hardly required.

Finally it can be noticed that each of the three phases of the computation are
inherently parallelisable, and in particular Phase 2 should be extremely efficient
on modern hardware, comprising as it does only parallelisable bitwise operations.

Balancing In our initial experiments, we have tried both balanced and unbal-
anced bitsets. Balancing can be achieved by selecting a set of witness objects
from the finite space S and finding a median distance or offset for these, so that
the regional boundary divides the finite set into two equal parts. A large enough
set of witness objects will give a good statistical approximation to the distri-
bution of S. For ball partitions, the median distance to the centre is used; for
sheet partitions, an offset can be selected left or right of the central hyperplane
[5, 11]. Furthermore, for supermetric spaces, the XY plane can also be rotated
to maximise the spread of values as described in [8].

We still have much to investigate in terms of finding the best parameters
for a given data set. In the meantime we note that balancing does increase
performance with lower-dimensional spaces and smaller query thresholds, but
that it starts to have a detrimental effect as either of these increases - the tradeoff
being that balancing will increase the effectiveness of the second phase algorithm,
but decrease the effectiveness of the first phase. In general, as query radius or

8 Connor and Dearle

dimensionality increases, we perceive that this is best offset by an increase in
reference objects but also some controlled rebalancing of regional offsets.

4 Experiments and Results

Experiment 1 In the first experiment we investigate the efficacy of the algo-
rithm by running queries against the SISAP nasa and colors data sets [9]. The
metric used for both datasets is Euclidean distance. The number of reference
objects is varied from 10 to 60 in steps of 5 and queries comprising 10% of the
dataset are made against the remaining 90%. Thresholds of t0 = 0.12, t1 = 0.285,
and t2 = 0.53 are used for nasa and t0 = 0.052, t1 = 0.083, t2 = 0.13 for colors.
In this set of experiments the number of ball radii is set to 5 with the radii being
set to a mean radius of 1.813 and mean ± 0.3 and mean ± 0.6. We report resid-
ual distance calculations, which are the number of calculations made in phase 3
of the algorithm, excluding reference object distance calculations. The results of
this experiment are shown in Figure 2, with the figures for 60 reference objects
(the right hand side of the graph) given in Table 2. To put these figures into
the metric indexing context, the top two rows of the table give the number of
distance calculations per query reported in [8] for the Distal SAT operating with
both normal metric and supermetric exclusion mechanisms.

Table 2. Residual distance calculations required when 60 reference objects are used
(the numbers reported do not include the 60 distance calculations required for these.)
The top two rows give comparable figures for the state-of-the-art Distal SAT.

colors nasa

t0 t1 t2 t0 t1 t2
DiSAT: metric 4049 9112 19745 554 2176 6448
DiSAT: supermetric 2015 5737 16199 320 1300 5444

metric, unbalanced 4207 14930 42139 14 1120 9202
metric, balanced 2246 9610 30250 11 822 7671
supermetric, unbalanced 544 3114 13045 3 296 4122
supermetric, balanced 518 3259 17512 1 91 2204

The three sets of graphs shown in Figure 2 illustrate a number of interesting
facets of the algorithm. As would be expected, increasing the number of reference
objects has a significant effect of the number of distance calculations performed.
However the number of reference objects used in these experiments is really
quite small, much smaller than has been reported for other regional approaches
eg [13, 1] given the accuracy shown by the relatively small number of residual
distance calculations required. In particular we have the quite stunning result

3 For balanced versions (see Section 3.3) the central radius is reset, but the same
increments are applied

Querying Metric Spaces with Bit Operations 9

Fig. 2. Queries against SISAP colors and NASA datasets

10 Connor and Dearle

that, using 60 reference objects, the supermetric property, and balancing the
data structures, we have an almost perfect characterisation of the nasa data set,
with less that one false positive result per query.

Fig. 3. Residual distances per query vs Euclidean dimensions vs number of reference
objects: 1000 random queries against 10000 objects; all queries callibrated to return
one-millionth of the space

Experiment 2 The second experiment is designed to show how the algorithm
can combat increasing dimensionality by using increased numbers of reference
objects. In this experiment we use evenly-distributed generated Euclidean spaces
of increasing dimensions, ranging from 6 to 20. The intention is to increase
the intrinsic dimensionality [4] of the data being manipulated, up to 27.5 in
the last case. The query threshold at each dimension represents the radius of
a hypersphere that contains one-millionth of the space in which the data is
generated4. In all cases the number of points in the space is ten thousand and

4 For dimension n, radius rn =
Γ (
n
2
+1)

π
n
2

, where Γ is Euler’s gamma function

Querying Metric Spaces with Bit Operations 11

one thousand random queries are made against this data set. The number of
reference objects ranges from 20 to 400. Results are shown in Figure 3.

The surface shown in the image reports the number of residual distance
calculations required per query plotted on a logarithmic scale, as both dimensions
and number of reference points increase. Notice that the mid-point of the Z-axis
(the number of residual calculations) represents accessing only 0.1% of the data,
thus the figure demonstrates highly tractable search all the way to 20 dimensions.
We do not believe that this has been demonstrated previously for any exact
search mechanism.

Furthermore it can be seen that much of the surface has has a z-value of
substantially less than 1; in these cases, the space is effectively being perfectly
characterised by the regions derived from the reference points. For example this
occurs with less than 200 reference points for 10 dimensions, a space normally
considered to be at the bounds of tractability for most exact search mechanisms.

5 Related Work

5.1 Search using Fixed Reference Objects

There are a number of well-known mechanisms in which the distances between a
query and a fixed set of reference objects are used to guide a first phase of search.
All such mechanisms may either be regarded as approximate, or subsequently
checked against the original data set for accuracy.

LAESA [14] has typically been used for metric filtering, rather than approx-
imate search. For each element of the data, distances to a fixed set of reference
points are recorded in a table. At query time, the distances between the query
and each reference point are calculated; the table can then be scanned row at a
time, and each distance compared; if, for any reference object pi and data object
sj the absolute difference |d(q, pi)− d(sj , pi)| > t, then it is impossible for sj to
be within distance t of the query, and the distance calculation can be avoided.
LAESA can be used as an efficient pre-filter for exact search when memory size
is limited. The same data can be re-cast into a metric space using the Chebyshev
metric but this does not typically result in any significant performance increase.

The best known mechanisms which use a fixed partition of the original data
for approximate search are based on permutation orderings [1, 10, 15]. There is a
significant variety of techniques, but the essence of the approach is to characterise
each element of the data in terms of its distances to a set of pre-selected reference
objects, and then to compare elements using various aspects of similarity in this
ordering. The approach is similar in that this effectively creates a large number
of regions within the universal space, one for each ordering. However in all cases
that we know of, an approximate search mechanism is created based on some
cost function over the resulting orderings; there does not seem to be any clear
mechanism for using the regions thus defined as an exact search mechanism.
Especially in higher dimensional spaces, two very similar objects in the original
space may lie on opposing sides of a number of the important boundaries, which
then appear as distant objects and fail to appear in the search results.

12 Connor and Dearle

The approach with Sketches [13] is more like our own, and the characteri-
sation of the data as a set of bitmaps is almost identical. The approach differs
however as it proceeds to use each bitmap as an object proxy with other search
techniques, the underlying notion being the probabilistic mechanism that two
close objects in the original space will result in two very similar bitmaps; thus the
Hamming distance over these bitmaps should give a good proxy to the distance
in the original space. The technique suffers from the same probabilistic issues as
permutation orderings, in that for any two very similar objects there is a finite
probability that they will appear very different in the proxy space.

Other probabilistic mechanisms have also been proposed, for example [2, 17,
18]. These are all quite similar in outline but with different ways of defining
regional boundaries and treating the proxy space. Our work differs significantly
in that we describe a mechanism which is guaranteed to give all correct results
from the original space, and in the way that the increased cost of increasing
dimensionality or query threshold can be controlled.

5.2 Metrics and Supermetrics

Much work on finite isometric embeddings was conducted in the 20th century,
by e.g. Blumenthal [3], Wilson [19] and Menger [12]. Blumenthal uses the phrase
four-point property to mean a space that is 4-embeddable in 3-dimensional Eu-
clidean space: that is, that for any four objects in the original space it is possible
to construct a distance-preserving tetrahedron.

This simple property has been shown to have profound consequences in metric
search. Connor and Vadicamo have applied these results in theoretical mathe-
matics to this more practical domain [6–8] and the term supermetric is now used
to refer to metrics with the property. For this context, the important result is
that the four-point property applies to many commonly-used distance metrics,
including Euclidean, Cosine5, Jensen-Shannon, Triangular and Quadratic Form
distances, all of which can be safely used in conjunction with the mechanisms
described here.

Use of the supermetric property gives better exclusion conditions, as detailed
in Section 3.2. The concepts given in this paper are equally applicable to both
metric and supermetric spaces; as would be expected from a space with tighter
geometric properties, however the results we show using the four-point property
are significantly better than results relying only on the three-point property.

6 Conclusions and further work

This paper presents a novel exact search mechanism which gives excellent perfor-
mance compared with other exact methods. It is especially well suited to higher
dimensional data, in cases where indexing methods become intractable. The first
phase of the algorithm is evaluated independently of the data set, and its cost is

5 for the correct formulation, see [6].

Querying Metric Spaces with Bit Operations 13

approximately O(m2) where m is the number of reference objects selected; how-
ever this cost has a low constant factor and the cost of the phase is dominated
by the m distance calculations.

The actual selection computation requires as few as log2 n bits per datum, in
which context the space required, although proportional to O(n log n), is unlikely
to cause a practical problem. Even when n is 109 the computation still fits
comfortably within the memory of a modern laptop computer.

The algorithm is inherently decomposable and parallelisable. Every phase
of the computation is parallelisable: the distances between queries and reference
objects, the assessment of queries against regions, the bitwise operations over the
data representation, and finally the filtering of the candidate results. Amdhal’s
law applies to the end to end pipeline but we believe that great speedups are
possible by exploiting parallel hardware resources due to the nature of the algo-
rithm. We have begun experimenting with GPUs to perform the bit operations
but it is premature to report any results at this time.

The algorithm exhibits many opportunities for tuning which are yet to be
explored. We have already demonstrated the effect of changing the number of
reference objects and how this may help in combating increasing dimensionality.
However it may be possible to employ techniques to choose pivots which could
enable queries to perform a number of distance calculations that are closer to
the theoretical minimum. We have already experimented with choosing pivots
to optimise sheet exclusions but reporting on this work here would also be pre-
mature. The size, number and uniformity of the radii used for ball exclusions is
also worthy of exploration.

7 Acknowledgements

This work was supported by ESRC grant ES/L007487/1 “Administrative Data
Research Centre—Scotland”. We would like to thank Tom Dalton for his help
with preparation of the data and creating R scripts for rendering results, and
Peter Christen along with the anonymous reviewers for helpful comments on
earlier drafts.

References

1. Giuseppe Amato, Claudio Gennaro, and Pasquale Savino. Mi-file: using inverted
files for scalable approximate similarity search. Multimedia Tools and Applications,
71(3):1333–1362, Aug 2014.

2. José Maŕıa Andrade, César A. Astudillo, and Rodrigo Paredes. Metric space search-
ing based on random bisectors and binary fingerprints. In Agma Juci Machado
Traina, Caetano Traina, and Robson Leonardo Ferreira Cordeiro, editors, Simi-
larity Search and Applications, pages 50–57, Cham, 2014. Springer International
Publishing.

3. L. M. Blumenthal. A note on the four-point property. Bull. Amer. Math. Soc.,
39(6):423–426, 06 1933.

14 Connor and Dearle

4. Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis Marroqúın.
Searching in metric spaces. ACM Comput. Surv., 33(3):273–321, September 2001.

5. Richard Connor. Reference point hyperplane trees. In Laurent Amsaleg, Michael E.
Houle, and Erich Schubert, editors, Similarity Search and Applications, pages 65–
78, Cham, 2016. Springer International Publishing.

6. Richard Connor, Franco Alberto Cardillo, Lucia Vadicamo, and Fausto Rabitti.
Hilbert Exclusion: Improved metric search through finite isometric embeddings.
ACM Transactions on Information Systems, 35(3):17:1–17:27, December 2016.

7. Richard Connor, Lucia Vadicamo, Franco Alberto Cardillo, and Fausto Rabitti.
Supermetric Search with the Four-Point Property, pages 51–64. Springer Interna-
tional Publishing, Cham, 2016.

8. Richard Connor, Lucia Vadicamo, Franco Alberto Cardillo, and Fausto Rabitti.
Supermetric search. Information Systems, 2018.

9. Karina Figueroa, Gonzalo Navarro, and Edgar Chávez. Metric spaces library.
Online http://www. sisap. org, 2007.

10. E. Chavez Gonzalez, K. Figueroa, and G. Navarro. Effective proximity retrieval
by ordering permutations. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30(9):1647–1658, Sept 2008.

11. Jakub Lokoč and Tomáš Skopal. On applications of parameterized hyperplane
partitioning. In Proceedings of the Third International Conference on SImilarity
Search and APplications, SISAP ’10, pages 131–132, New York, NY, USA, 2010.
ACM.

12. Karl Menger. New foundation of euclidean geometry. American Journal of Math-
ematics, 53(4):721–745, 1931.

13. Vladimir Mic, David Novak, and Pavel Zezula. Improving sketches for similarity
search. In Proceedings of MEMICS 2015, pages 45–57, 2015.

14. Maŕıa Luisa Micó, José Oncina, and Enrique Vidal. A new version of the nearest-
neighbour approximating and eliminating search algorithm (aesa) with linear pre-
processing time and memory requirements. Pattern Recogn. Lett., 15(1):9–17, Jan-
uary 1994.

15. Hisham Mohamed and Stéphane Marchand-Maillet. Quantized ranking for
permutation-based indexing. Information Systems, 52:163 – 175, 2015. Special
Issue on Selected Papers from SISAP 2013.

16. Laura C. Rivero, Jorge Horacio Doorn, and Viviana E. Ferraggine, editors. Ency-
clopedia of Database Technologies and Applications. Idea Group, 2005.

17. Eliezer Silva, Thiago Teixeira, George Teodoro, and Eduardo Valle. Large-scale dis-
tributed locality-sensitive hashing for general metric data. In Agma Juci Machado
Traina, Caetano Traina, and Robson Leonardo Ferreira Cordeiro, editors, Simi-
larity Search and Applications, pages 82–93, Cham, 2014. Springer International
Publishing.

18. Eric Sadit Tellez and Edgar Chavez. On locality sensitive hashing in metric spaces.
In Proceedings of the Third International Conference on SImilarity Search and
APplications, SISAP ’10, pages 67–74, New York, NY, USA, 2010. ACM.

19. Wallace A Wilson. A relation between metric and euclidean spaces. American
Journal of Mathematics, 54(3):505–517, 1932.

20. Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. Similarity
search - the metric space approach. In Advances in Database Systems, 2006.

