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Abstract 

 

Isotopic enrichment of 29Si and DNP-enhanced NMR spectroscopy are combined to 

determine the detailed surface structure of a silicated alumina catalyst. The significant 

sensitivity enhancement provided by DNP is vital to the acquisition of multinuclear and 

multidimensional experiments that provide information on the atomic-level structure of 

the species present at the surface. Isotopic enrichment not only facilitates spectral 

acquisition, particularly given the low (1.5 wt%) Si loading, but also enables spectra with 

higher resolution than those acquired using DNP to be obtained. The unexpected 

similarity of conventional, CP and DNP NMR spectra is attributed to the presence of 

adventitious surface water that forms a sufficiently dense 1H network at the silica surface 

so as to mediate efficient polarization transfer to all Si species regardless of their chemical 

nature. Spectra reveal the presence of Si-O-Si linkages at the surface (identified as Q4(3Al)-

Q4(3Al)), and confirm that the anchoring of the surface overlayer with the alumina occurs 

through AlIV and AlV species only. This suggests the presence of Q3/Q4 Si at the surface 

affects the neighbouring Al species, modifying the surface structure and making it less 

likely AlVI environments are in close spatial proximity. In contrast, Q1/Q2 species, bonded 

to the surface by fewer covalent bonds, have less of an effect on the surface and more AlVI 

species are consequently found nearby. The combination of isotropic enrichment and DNP 

provides a definitive and fully quantitative description of the Si-modified alumina surface, 

and we demonstrate that almost a third of the silicon at the surface is connected to another 

Si species, even at the low level of coverage used, lowering the propensity for the 

formation of Brønsted acid sites. This suggests that a variation in the synthetic procedure 

might be required to obtain a more even coverage for optimum performance. The work 

here will allow for more rigorous future investigations of structure-function relationships 

in these complex materials.  
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Introduction 

 

Silicated aluminas are commonly employed as solid acid catalysts, with applications in a 

number of processes ranging from ethanol dehydration to hydrocarbon cracking and 

skeletal isomerization.1-4 The presence of both Si and Al at the surface generates the mild 

acidity that is essential to catalytic behaviour,1 but the exact structure of these acidic 

environments is still debated.2-4 Early studies of catalytic cracking postulated that 

Brønsted acidity is attributable to aluminol groups in close proximity to silanols5 or 

protons that compensate for the negative charge at the surface.6-7 More recent 

investigations (primarily using IR spectroscopy, probe molecule adsorption and 1H MAS 

NMR spectra) propose that the catalytic acid sites are bridging Si-OH-Al groups8-10 or 

silanols in the vicinity of AlIII, AlIV or AlV.2,3 Identifying the true origins of the catalytic 

response demands an atomic-level description of the reactive surface, but this is far from 

trivial. The difficulty lies partly in the diverse range of possible surface structures and the 

typically amorphous character of the materials - for example, the catalytic surface does not 

display sufficient long-range order to permit structure determination via diffraction-based 

methods.11 Vibrational spectroscopy can provide information on the presence of various 

structural motifs, using molecular probes, but the spectra obtained are often highly 

complex, leading to difficult and subjective data interpretation. Furthermore, the 

connectivity between Si and Al is not easily assessed using this approach.12-14 

 

While solid-state NMR spectroscopy is ideally suited to investigating the Si-Al 

connectivity, as it has no requirement for long-range order and is sensitive to small 

changes in local chemical environments,15-18 the technique suffers from several practical 

drawbacks. The inherently low natural abundance of 29Si (4.7%) requires extended 

acquisition times to obtain spectra with acceptable sensitivity. For many silicated 

aluminas, this problem is compounded by the low amount of Si, presenting an additional 

challenge for the implementation of more complex multinuclear and multidimensional 

experiments.19 Furthermore, the suitability of conventional 27Al NMR spectroscopy for the 

characterization of alumina-based catalysts is debatable, since the majority of signals 
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reflect coordination geometries of the bulk rather than the nature of the surface that is 

responsible for the reaction chemistry.20 

 

 Recent years have seen a step change in the sensitivity of NMR experiments 

through the introduction of dynamic nuclear polarization (DNP), where magnetization is 

transferred from unpaired electrons to nearby nuclei.21-22 In typical, modern DNP 

experiments for materials, an exogenous solution of a nitroxide biradical in a glass-

forming solvent is introduced as a polarization source using incipient wetness 

impregnation.23-24 Saturation of the EPR transitions using continuous microwave 

irradiation polarizes the protons in the solvent, typically via the cross effect.25-26 Proton 

spin diffusion distributes this enhanced nuclear polarization across the solvent phase, 

from where it can be transferred to less receptive nuclei using conventional cross 

polarization (CP). This greatly enhances the polarization of surface species relative to the 

bulk, leading to this approach being referred to as DNP Surface-Enhanced NMR 

Spectroscopy or DNP-SENS.23-24 Owing to the high signal enhancements available (over 

two orders of magnitude in favourable cases), DNP can overcome the inherently poor 

sensitivity of many NMR experiments and is being applied increasingly to probe the 

detailed surface structure of a diverse range of materials.  

 

In recent years, the sensitivity of DNP has provided some new insights into the 

nature of the interface between Si and Al in catalytically important amorphous silicated 

aluminas.27-30 This has included the observation (using 29Si NMR) of isolated SiOH species 

on the surface,27,28 the presence of Brønsted acid sites (and the determination of the O-H 

bond lengths)29 and some insight into the Al/Si connectivity using two-dimensional 

correlation experiments.30 However, the determination of true structure-function 

relationships requires a fully quantitative description of surface structure, which has not 

yet been able to be demonstrated, and is the focus of the present work. The DNP 

enhancement factor, , is determined from the ratio of signal intensities with and without 

microwave irradiation, and is dependent on temperature, microwave power, 

concentration of the exogenous radical source and the extent of surface wetting.21-22 
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However, proton density also has a significant effect on the absolute amount of signal 

observed, a direct consequence of the complex pathway of polarisation transfer from the 

electron to the target nucleus. Given the expected dependence of the 1H-29Si CP transfer 

efficiency on the local proton density it would be expected that signal intensities would be 

highly dependent on the proximity of a nucleus to hydroxyl groups at the sample 

surface.24 Resonances from lower-order Qn species (where Qn denotes a species of 

structure Si(OT)n(OH)4–n), which possess a higher local proton density, are expected to be 

amplified to a greater extent than higher-order Qn analogues. This potential variation in 

signal enhancement should, therefore, limit DNP (and similarly CP) measurements to a 

qualitative, or at best semi-quantitative, description of surface structure, which in turn 

places limitations on the determination of accurate structure-function relationships. Such 

effects of proton proximity are clearly demonstrated by the work of Lelli et al., who 

investigated phenol functionalised silica surfaces.24 At very short contact times, only 29Si 

centres in close proximity to 1H were enhanced. Signal intensity associated with Qn sites 

that are further removed from 1H increased with longer CP mixing times as polarisation 

was transferred from more distant spins. 

 

While the expected variation in CP and DNP signal intensity with local proton 

density may limit these approaches to providing a more qualitative description of surface 

structure it would, nonetheless, offer important and detailed information on the atomic-

scale environment, which can be vital for spectral assignment. Ideally, therefore, spectra 

edited on the basis of spatial proximity would be compared to more quantitative spectra 

(i.e., using conventional experiments that do not rely on any polarization transfer and have 

sufficiently long recycle intervals to account for any differences in relative relaxation). The 

obvious solution here is to exploit isotopic enrichment, improving the sensitivity of the 

conventional NMR experiment to such an extent that spectra can be acquired on a 

reasonable timescale, and spectral lineshapes can then be compared to those acquired 

using CP/DNP. Enrichment also has additional advantages for the sensitivity of 

heteronuclear, and particularly homonuclear, two-dimensional correlation NMR 
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experiments, made possible using DNP but ultimately limited by the low abundance of 

NMR-active Si species.  

 

 In this work, we exploit both isotopic enrichment of 29Si and DNP enhancement to 

determine the detailed surface structure of a Si-γ-Al2O3 material with 1.5 wt% Si doping. 

This combined strategy enables us not only to obtain the quantitative NMR spectra that 

are so key to understanding surface structure, but also to exploit the significant sensitivity 

advantages offered by DNP and acquire multidimensional experiments that simply would 

not be possible otherwise. The combination of these two approaches enables a confident 

spectral assignment and the determination of the type and more importantly, the 

proportion, of surface species present. The understanding we have gained here will be 

used to direct future synthetic approaches for surface modification of similar materials, 

confident that subsequent quantitative analysis will be possible using the approaches 

introduced in this work, and insight into the structure-function relationships for alumina-

based catalysts can then be unveiled.  

 

Experimental Details 

 

Synthesis: Si--Al2O3 (1.5 wt% Si) materials were synthesized by a conventional wet 

impregnation procedure. -Al2O3 (Sasol, 98%) was impregnated with either conventional 

(Sigma-Aldrich, 98%) or 99% 29Si-enriched (Cortecnet, >95%) tetraethyl orthosilicate 

dissolved in dry ethanol, in an inert (Ar) atmosphere. Samples were then dried at 60 °C in 

vacuo and subsequently calcined in air at 520 °C for 2 h (ramp rate of 10 °C min−1). The 

final composition was confirmed by elemental analysis (ICP OES, see Supporting 

Information). The initial alumina contained spherical particles with an average diameter of 

75 m. The silicated aluminas were characterised using N2 adsorption measurements (see 

Supporting Information). Dehydrated 29Si-enriched Si--Al2O3 was dried in vacuo (150 °C, 

~12 h) and subsequently packed into a 4 mm ZrO2 rotor in an inert (N2) atmosphere.  
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NMR spectroscopy: NMR spectra were acquired using a Bruker Avance III spectrometer, 

equipped with a 9.4 T widebore magnet operating at Larmor frequencies of 400.13 MHz 

for 1H, 104.3 MHz for 27Al and 79.46 MHz for 29Si. Powdered samples were packed into 4 

mm ZrO2 rotors and rotated at magic angle spinning (MAS) rates of 10 to 14 kHz, using a 

conventional 4 mm HX probe. Spectra were acquired using radiofrequency field strengths 

of ~90 kHz for 1H, ~110 kHz for 27Al and ~80 kHz for 29Si. Typical recycle intervals were 1 

s for 1H, 3 s for 27Al and 120 s for 29Si. (For 29Si NMR, T1 values were estimated to be much 

longer than 120 s, as discussed in a later section, but little difference in relative relaxation 

was observed). 1H spectra were acquired using the DEPTH pulse sequence for probe 

background suppression.31 29Si spectra were acquired using either single pulse excitation 

(DP), DEPTH pulse sequences or cross polarization. For CP spectra, transverse 

magnetization was obtained from 1H using contact pulse durations of between 0.1 and 10 

ms (ramped 90-100% for 1H) and a recycle interval of 1 s. TPPM 1H decoupling (~90 kHz)32 

was applied during acquisition. For 1H–29Si CP HETCOR NMR spectra, contact pulse 

durations of 0.5 and 3 ms were used. Sign discrimination in the indirect dimension was 

achieved using the quadrature detection method of Marion et al.33 27Al spectra were 

obtained using either single pulse excitation or CP. For CP spectra, transverse 

magnetization was obtained from 1H using a contact pulse duration of 0.8 ms (ramped for 

1H) and a recycle interval of 1 s. Chemical shifts are shown (quoted in ppm) relative to 

(CH3)4Si for 1H and 29Si and 1 M Al(NO3)3 (aq) for 27Al, measured using secondary 

references of L-alanine for 1H (NH3 δ = 8.5 ppm), octakis(trimethylsiloxy)silsesquioxane 

(Q8M8) for 29Si (OSi(CH3)3 δ = 11.5 ppm) and aluminium acetylacetonate for 27Al (δiso = 0.0 

ppm, CQ = 3.0 MHz, ηQ = 0.16).  

 

 DNP NMR experiments were performed using a Bruker Avance I spectrometer, 

equipped with a 9.4 T widebore magnet operating at Larmor frequencies of 400.21 MHz 

for 1H, 104.29 MHz for 27Al and 79.50 MHz for 29Si. A 9.7 T gyrotron magnet was utilized 

for the generation of microwaves, operating at a frequency of 263 GHz. The field of the 

main (9.4 T) magnet was set such that microwave irradiation occurred at the 1H positive 

enhancement maximum of nitroxide biradicals. Incipient wetness impregnation of 
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powdered samples (~25 mg) was performed with a solution (16-24 l) of the nitroxide 

biradical polarizing agent TEKPol in 1,1,2,2-tetrachloroethane (TCE) (14-16 mM).34-35 

Impregnated samples were packed into 3.2 mm sapphire or ZrO2 rotors, and frozen at 100 

K inside a 3.2 mm low-temperature MAS probe using dry N2 as the bearing and drive gas. 

Samples were typically subjected to multiple thawing cycles by ejecting the sample into 

the catcher in the room temperature region of the probe, in order to minimize the amount 

of oxygen in the biradical solution (which would decrease DNP enhancements).36 Samples 

were rotated at MAS rates between 8 and 12.5 kHz. Ramped (90-100 or 80-100%) CP was 

used to transfer polarization from 1H to 29Si or 27Al. SPINAL 1H decoupling37 was applied 

during acquisition. For 1H−27Al CP experiments, a low-power 27Al radiofrequency field 

was used to ensure efficient spin locking of the quadrupolar nucleus.38-39 Typical DNP 

enhancements (calculated by comparing spectra acquired with and without microwave 

irradiation) were  = 92 (29Si) and  = 112 (27Al). Two-dimensional (2D) 29Si−29Si double-

quantum correlation spectra were acquired using a refocused INADEQUATE 

experiment40 using τJ intervals of between 3.2 and 16 ms. 2D 29Si−27Al scalar (through-

bond) correlation spectra were acquired with a refocused J-INEPT experiment,41 and a τJ 

interval of 6 ms. 2D 29Si−27Al dipolar (through-space) correlation spectra were acquired 

with a dipolar refocused D-INEPT experiment,42 using REDOR43 for heteronuclear 

29Si−27Al dipolar recoupling. In all cases, initial 29Si polarization was generated via 1H−29Si 

CP with contact pulse durations of between 3 and 3.5 ms. For all 2D experiments, the 

quadrature detection method of States et al.44 was used to achieve sign discrimination in 

the indirect dimension. Chemical shifts are shown (quoted in ppm) relative to (CH3)4Si (1H 

and 29Si) and 1.0 M Al(NO3)3 (aq) (27Al), measured using an internal reference of TCE (1H δ 

= 6.2 ppm). Lineshape fitting was carried out using dmfit.45 

 

Results and Discussion 

 

Figure 1 shows 29Si MAS NMR spectra of 99% 29Si enriched Si--Al2O3 (1.5 wt% Si), 

acquired using direct polarization (DP), CP and DNP. All DP and CP experiments were 

carried out at room temperature (298 K) on samples with no radical added, while DNP 
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experiments were carried out at low temperature (100 K). Given the inherently non-

quantitative nature of CP and the additional surface sensitivity of DNP, the spectral 

lineshapes are remarkably similar (as shown in the Supporting Information (Figure S1), 

where the lineshapes are overlaid). The DP and CP spectra exhibit better resolution than 

the DNP spectrum (although the DP spectrum has poorer sensitivity), as a result either of 

increased relaxation arising from the presence of the radical or, more likely, owing to the 

lower temperature of the experiments (and reduced molecular motion), leading to a 

broader distribution of shifts. Despite the much greater sensitivity of the DNP spectrum, it 

is not possible to decompose the lineshape unambiguously into individual components. 

However, four distinct environments are discernable in the DP and CP NMR spectra - 

three sharp components at high frequency and a lower intensity, broader resonance at 

lower frequency. It is worth noting that the DP spectrum would have taken ~311 days to 

acquire at natural abundance (see Supporting Information Figure S2). Figure 2 shows the 

variation in the spectrum as a function of the CP contact time, τCP. In contrast to the 

materials studied in Ref. 24, there are only very small differences in the spectral lineshape 

as τCP increases. It is not clear if this result suggests that no Q4 species are present (i.e., all 

Si are connected to at least 1 OH group), certainly possible at the low weight loading 

considered here.46-47 It is difficult to assign species in this spectrum simply on the basis of 

, as the expected –10 ppm change with the number of coordinated bridging oxygen 

species is complicated in aluminosilicates by an additional shift to higher frequency of 5 to 

8 ppm per next nearest neighbor (NNN) Al.48-49 Therefore, it is not possible to 

unambiguously confirm the presence, or absence, of Q4 species in the spectra of Si--Al2O3, 

although the signal observed extends over the region expected for these species. 

 

The features in the DP and CP spectral lineshapes in Figure 1 do suggest that 

different Qn species are present, making it all the more surprising that little variation in the 

lineshape is observed either between the two experiments or as a function of the CP 

contact time. It is clear from Figure 2 that the polarization transfer in CP remains equally 

efficient for all species, irrespective of the number of hydroxyl groups attached. However, 

it is possible that the presence of adventitious surface water, known to form extensive and 
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strong H-bonding with silanols,50-51 could affect the spectral intensities observed. To 

determine if this adventitious water is playing a role in the CP dynamics the 29Si enriched 

Si-γ-Al2O3 was dehydrated in vacuo at 150 °C and packed into a ZrO2 rotor in a glovebox. 

Relatively mild conditions were used for dehydration to avoid any surface 

dehydroxylation. Verification of dehydration was obtained using 1H MAS NMR, as shown 

in the Supporting Information, Figure S3. Figure 2b compares the 29Si CP MAS spectra of 

hydrated and dehydrated Si-γ-Al2O3 and reveals a change in the relative intensities of the 

spectral components, with an increase in signal intensity of the peak at  = –78 ppm, 

confirming the higher density of OH groups. The DP and CP spectra of dehydrated Si-γ-

Al2O3 are less similar, as shown in Figure S4 of the Supporting Information, with a relative 

increase in the intensity of the signal at higher  in the CP spectrum. Crucially, the DP 

NMR spectrum remains largely unaffected by dehydration, an indication that surface 

structure has remained intact following the high temperature treatment (Supporting 

Information, Figure S5). From these observations, it is clear in this case that the H-bonded 

water forms a sufficiently dense 1H network at the silica surface as to mediate efficient 

polarization transfer to all Si species regardless of their chemical nature and OH 

functionality. 

 

Figure 3a compares 1H-29Si CP HETCOR NMR spectra of hydrated and dehydrated 

Si-γ-Al2O3 materials, and shows appreciable differences in the extent of correlation 

between 29Si and 1H upon the removal of water. When dehydrated, higher-order Qn 

species no longer correlate with surface protons because, in the absence of surface water, 

the 29Si spectrum is influenced more significantly by local proton (hydroxyl) density. It is 

clear from Figure 3b that dehydration also results in a more significant variation in the 

spectral lineshape with contact time. At sufficiently long contact times, correlations to all 

Si species are observed, but intensity is lost from the region between –85 and –100 ppm as 

contact time is reduced. Therefore, we conclude that Q4 species are, most likely, present at 

the silicated surface and, importantly, that the extent of signal amplification remains 

constant, irrespective of local hydroxyl density, by virtue of adventitious adsorbed water 

when the sample is hydrated (or stored under ambient conditions). Thus, perhaps 
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surprisingly, as long as the surface remains sufficiently hydrated, as is the case here, DNP 

NMR spectra of such materials may be interpreted quantitatively and an accurate 

description of structure-function relationships can be obtained.  

 

The combination of 29Si isotopic enrichment and DNP NMR spectroscopy results in 

a significant signal enhancement that provides access to two-dimensional experiments that 

may otherwise require prohibitively long acquisition times. In particular, correlations 

exploiting through-bond J couplings can be valuable sources of information on the nature 

of the surface structure. Figure 4a shows a 29Si CP MAS INADEQUATE40 DNP SENS 

spectrum of hydrated Si-γ-Al2O3 (1.5 wt% Si). Despite the low Si content, the use of 

isotopic enrichment combined with DNP permits spectral acquisition in only 4 hours. 

Signal is observed between –80 and –100 ppm, suggesting that only higher-order Qn 

species are connected to Si, i.e., the three sharper peaks at more positive shift result from 

isolated Qn(nAl) species. Signal is observed over a range of ~20 ppm in 1, possibly 

indicating that this results from more than one chemical species, e.g., Q3 and Q4 species. 

However, the correlation peak lies primarily along the 1 = 22 diagonal in the two-

dimensional spectrum, confirming that Si species are only covalently connected to those 

with very similar shift and, hence, very similar environments. This would suggest the 

signal probably arises from only Q4/Q4 or Q3/Q3 correlations (rather than Q4/Q3 for 

example), and the loss of signal at –90 ppm at longer CP times in the 1H-29Si HETCOR 

spectrum in Figure 3b supports a more likely assignment of Q4/Q4 species for this peak. 

Spectra acquired with a variety of J evolution times (shown in the Supporting Information, 

Figure S6) also show only autocorrelation signal. Projections of the spectra onto the 2 axis 

(shown in Figure 4b) show that signal shifts to higher  as J increases, indicating a 

positive correlation between 29Si nuclear shielding and the homonuclear J coupling. Such a 

correlation has also been observed for other (alumino)silicate materials, and was related to 

changes in the Si-O- Si bond angle using ab initio cluster calculations.52-53 While it was 

shown that the exact values of  and J vary with the cations present (and so cannot be 

directly related to the materials studied here), it seems likely that the same structural 

change is likely to be responsible, thus suggesting that the Si-O-Si bond angle is 
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decreasing (by ~7-8°) between the signals seen at –93 ppm (when J = 3.2 ms) and –85 ppm 

(when J = 16 ms). 

 

To understand the interfacial chemistry between the silica surface overlayer and the 

γ-Al2O3 structure upon which it resides, heteronuclear correlation experiments (29Si-27Al 

refocused INEPT41) were performed, again exploiting DNP to improve sensitivity. This 

experiment can probe scalar (through-bond) connectivity, or can be adapted in the solid 

state to actively recouple the dipolar interaction and provide information on through-

space proximities. Figure 5a shows a 29Si-27Al dipolar INEPT DNP NMR spectrum of 

hydrated Si-γ-Al2O3, acquired using REDOR to recouple the dipolar interaction.43 This 

reveals that Si is close in space to four-, five and six-coordinate Al (i.e., AlIV, AlV and AlVI). 

As Si is present only as a surface overlayer, the spectrum contains only Al species that are 

close to the surface. As shown in the Supporting Information, the 27Al spectrum of bulk -

Al2O3 contains signals that can be attributed to AlIV and AlVI species only.54-55 However, 

the surface of -Al2O3 has been shown to contain AlV species. These can be seen using CP, 

where magnetization is transferred from surface-based 1H species, resulting in additional 

signal at   35 ppm (see Supporting Information). DNP NMR spectra have also 

demonstrated the presence of AlV at the surface of -Al2O3.56 Using a filtration experiment, 

where signals close to the surface dephase owing to their stronger dipolar couplings to 1H, 

Lee et al. demonstrated that AlV resides only in the first surface layer. The 27Al MAS NMR 

spectrum of Si-γ-Al2O3, shown in the Supporting Information, reveals a similar picture, 

with resonances corresponding to AlIV and AlVI in the bulk material, while the CP 

spectrum also shows the presence of AlV at the surface, in agreement with recent work 

probing the nature of Brønsted acid sites.57 Although AlV species are found at the surface 

of unmodified γ-Al2O3, it has been suggested that additional AlV is formed at the interface 

between the Si and alumina, with the proportion of these varying with the Si content. 

Through-bond connectivity can be probed using the 29Si-27Al INEPT DNP NMR spectrum 

acquired without dipolar recoupling (Figure 5b). In contrast to the spectrum in Figure 5a, 

this reveals that Si is covalently connected via AlIV and AlV anchor points. Thus, only a 

spatial proximity to AlVI exists. It is also interesting to note from Figure 5a that AlIV/V 
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species show the strongest (through-space) correlation with Si signal near –84 ppm, while 

AlVI species are more strongly correlated with signal at higher  (i.e., lower-order Qn 

species), suggesting these are more frequently found in close proximity at the surface.  

 

Extracting quantitative information from the broadened 29Si resonance observed 

using DNP NMR is non trivial. The conventional 29Si MAS NMR spectrum of the 29Si-

enriched material exhibits better resolution and, when combined with the information 

obtained from CP spectra, and particularly from the projection of the single-quantum 

dimension of the INADEQUATE spectra, a more robust deconvolution is possible, as 

shown in Figure 6, with parameters given in Table 1. Sharp components can be identified 

at –77, –80 and –83 ppm (where constraints on the positions and lineshapes were 

determined using variable contact time CP experiments), with a broader component 

centred at ca. –89 ppm. The position and lineshape of the latter is determined from the 

INADEQUATE spectra. From previous literature,15,48-49 the three sharp signals can be 

assigned as Q1(1Al) (resonance 1), Q2(2Al) (resonance 2) and Q3(3Al)/Q4(4Al) (resonance 

3) species. The opposing shifts that are induced by increased condensation of Si-O 

tetrahedra and substitution of Si with Al lead to an inevitable overlap of resonance 

frequencies for some species. For this reason, it is difficult to discriminate between Q3(3Al) 

and Q4(4Al) on the basis of chemical shift alone, and it is possible that both species 

contribute to the signal at −83 ppm. However, the presence of signal at –83 ppm in the 1H-

29Si HETCOR spectrum in Figure 3b at short contact times suggests a significant 

contribution to the intensity at this point must arise from Q3(3Al) Si centres. The projection 

of the 29Si DNP NMR INADEQUATE spectrum in Figure 4b confirms that the component 

at –89 ppm contains primarily Si species within Si-O-Si linkages. As discussed above, the 

observation of signal along the autocorrelation diagonal, and the loss of this signal in the 

1H-29Si HETCOR spectrum, suggests it results principally from interconnected Q4(3Al) 

species, i.e., (OAl)3Si-O-Si(OAl)3 linkages at this loading. At first sight, it is not perhaps 

clear why most Q4 Si species are linked to a second Si centre. The low loading of Si in these 

samples ensures that most Si species are bonded only to Al (i.e., Q1(1Al), Q2(2Al) and 

Q3(3Al)). As Si forms a surface layer on the alumina it is less likely that it embeds to make 



 14 

four bonds to the surface Al, and that Q4 Si species form (primarily, but perhaps not 

exclusively) when they are able to bond via a bridging oxygen to a second Si species on the 

surface.57-58 As shown in Table 1, from the spectrum in Figure 6 we find Q1(1Al) ≈ 22%; 

Q2(2Al) ≈ 14%; Q3(3Al)/Q4(4Al) ≈ 34% and Q4(3Al) ≈ 30%, suggesting that almost a third 

of the silicon at the surface is connected to another Si species, even at the low level of 

coverage used. As the Si-O-Si connectivity increases, the propensity for the formation of 

Brønsted acid sites will diminish. Thus, a variation in the synthetic procedure might be 

required to obtain a more even coverage for optimum performance. It should be noted 

that, although the recycle interval used for the 29Si DP MAS spectrum was 120 s, the T1 

value was estimated later to be on the order of ~1.5 h, making acquisition of a truly 

quantitative spectrum practically unfeasible. Although this may result in some uncertainty 

in the exact proportion of each species present, little difference was observed in the 

relative relaxation of the different Si species at shorter recycle intervals. Deconvolution of 

the 29Si spectrum and assignment of the contributions of the component resonances would 

have been almost impossible using conventional NMR spectroscopy, and difficult by 

either DNP (owing to the lower resolution) or isotopic enrichment (owing to the lower 

sensitivity) alone.  

 

Conclusions 

 

We have exploited a combination of isotopic enrichment and DNP to provide a 

definitive and fully quantitative description of the surface structure of Si-modified 

alumina catalysts. Comparison of DP, CP and DNP 29Si NMR spectra surprisingly reveal 

very similar lineshapes, demonstrating that 1H-29Si CP transfer efficiency, and the extent of 

signal enhancement, is constant and independent of the proximity of a nucleus to surface 

hydroxyl groups. We have attributed this unexpected behaviour to the presence of 

adventitious surface water in these highly hygroscopic materials. This H-bonded water 

forms a sufficiently dense 1H network at the silica surface as to mediate efficient 

polarization transfer to all Si species regardless of their chemical nature and OH 

functionality. Upon dehydration, this network is disrupted, and the transfer efficiency 
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becomes more dependent on the chemical nature of the species present. This leads to the 

unforeseen conclusion that, if sufficiently hydrated, CP (and DNP) NMR spectra of the Si-

modified alumina surface can be interpreted essentially quantitatively, allowing for 

accurate and detailed determination of structure-function relationships.  

 

Despite the significant sensitivity advantage afforded by DNP, spectra exhibit 

comparatively lower resolution, most likely as a result of the lower temperature at which 

experiments are performed. To obtain an accurate deconvolution of the spectral 

lineshapes, and to determine the relative proportion of each species present, isotopic 

enrichment, and the acquisition of non DNP-enhanced spectra at the low Si loading 

present, is vital. However, the combination of DNP and isotopic enrichment provides 

access to two-dimensional experiments that would otherwise require prohibitively long 

acquisition times given the low Si content. 29Si INADEQUATE experiments facilitate the 

identification of Si-O-Si units in the Si--Al2O3 structure as interconnected Q4(3Al) species. 

Heteronuclear 29Si-27Al INEPT experiments confirm that Si is present only as a surface 

overlayer, and reveal that the reaction of TEOS with γ-Al2O3 occurs via condensation 

reactions at AlIV and AlV anchoring points. Furthermore, the corresponding dipolar INEPT 

spectrum suggests that the presence of Q3/Q4 Si at the surface affects the neighbouring Al 

species, modifying the surface structure and making it less likely AlVI environments are in 

close spatial proximity. In contrast, the presence of Q1/Q2 species, bonded to the surface 

by fewer covalent bonds, has less effect and more AlVI species are then found nearby. 

 

The combination of the increased amount of information available as a result of the 

DNP enhancement, and the ability to obtain quantitative spectra using isotopic 

enrichment, affords a more rigorous quantitative interpretation of 29Si spectra and a 

detailed understanding of the nature of Si-alumina interface. The ability to accurately 

describe surface structure will allow for more rigorous investigations of structure-function 

relationships and the future design of synthetic protocols that permit a tailoring of surface 

sites and, ultimately, catalytic performance.  
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Table 1. 29Si chemical shifts (iso), relative intensities and assignments for the contributions 

to the 29Si MAS NMR spectrum of 99% 29Si-enriched Si--Al2O3 (1.5 wt% Si) shown in 

Figure 6.  

 

Component iso (ppm) Relative intensity (%) Assignment 

1 –77 (1) 22 (2) Q1(1Al) 

2 –80 (1) 14 (3) Q2(2Al) 

3 –83 (1) 34 (2) Q3(3Al)/Q4(4Al) 

4 –89 (2) 30 (2) Q4(3Al) 
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Figure captions 

 

Figure 1. 29Si and 1H-29Si (9.4 T, 10-14 kHz MAS) NMR spectra of 99% 29Si-enriched Si--

Al2O3 (1.5 wt% Si), acquired using (a) direct polarization (DP), (b) cross polarization (CP) 

and (c) DNP. DP and CP spectra were acquired at room temperature on samples that had 

no radical added. The DNP spectrum was performed at 100 K. Spectra are the result of 

averaging (a) 504, (b) 14400 and (c) 32 transients with recycle intervals of (a) 120, (b) 1 and 

(c) 3 s. For CP and DNP spectra, a contact pulse duration of 3 ms was used.  

 

Figure 2. (a) 1H-29Si (9.4 T, 10 kHz MAS) CP NMR spectra of 99% 29Si-enriched Si--Al2O3 

(1.5 wt% Si), acquired by averaging 14400 transients separated by a recycle interval of 1 s, 

using CP values between 0.1 and 10 ms. (b) Comparison of 1H-29Si (9.4 T, 10 kHz MAS) CP 

NMR spectra of hydrated (black line) and dehydrated (red line) 99% 29Si-enriched Si--

Al2O3 (1.5 wt% Si). Spectra are the result of averaging 14400 (hydrated) and 34000 

(dehydrated) transients separated by a recycle interval of 1 s. Polarization transfer (from 

1H) was achieved using τCP values of 3 ms. In each case, the spectral intensities have been 

normalized.  

 

Figure 3. 1H-29Si (9.4 T, 10 kHz MAS) CP HETCOR NMR spectra of 29Si-enriched Si--

Al2O3 (1.5 wt% Si), demonstrating the effect of (a) the hydration level of the sample and (b) 

τCP on the dehydrated material. In (a), the spectrum of the hydrated material is the result 

of averaging 880 transients separated by a recycle interval of 1 s, for each of 20 t1 

increments of 100 μs. The spectrum of the dehydrated material is the result of averaging 

1600 transients separated by a recycle interval of 1 s, for each of 18 t1 increments of 50 μs. 

A CP contact time of 0.5 ms was employed in both instances. In (b), both spectra were 

acquired by averaging 1600 transients separated by a recycle interval of 1 s, for each of 18 

t1 increments of 50 μs. 

 

Figure 4. 29Si (9.4 T, 12.5 kHz MAS) refocused CP INADEQUATE DNP NMR spectrum of 

hydrated 29Si-enriched Si--Al2O3 (1.5 wt% Si). The spectrum is the result of averaging 96 
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transients separated by a recycle interval of 3 s for each of the 48 t1 increments of 80 μs, 

with a J value of 9.6 ms. Polarization transfer was achieved using a CP value of 3 ms. (b) 

Overlay of (2) projections of two-dimensional refocused INADEQUATE DNP NMR 

spectra (shown in the Supporting Information) as a function of J time. The 1H-29Si CP 

DNP NMR spectrum is also shown for comparison.  

 

Figure 5. 29Si-27Al (9.4 T, 10 kHz MAS) CP INEPT DNP NMR spectrum of hydrated 29Si-

enriched Si-γ-Al2O3 (1.5 wt% Si), with transfer via the (a) dipolar and (b) scalar coupling. 

Spectra are the result of averaging (a) 48 and (b) 224 transients separated by a recycle 

interval of 2 s for each of 32 t1 increments of 100 s. In (b), recoupling of the dipolar 

interaction was carried out using 4 REDOR blocks of 8 rotor cycles (of 100 s) in duration. 

Polarization transfer was achieved using a τCP value of 3 ms. 

 

Figure 6. (a) 29Si (9.4 T, 14 kHz MAS) experimental (blue) and simulated (red) NMR 

spectra of hydrated 29Si-enriched Si-γ-Al2O3 (1.5 wt% Si). Also shown are the individual 

components of the fit (green). The experimental spectrum is the result of averaging 504 

transients separated by a recycle interval of 120 s. (b) Assignment of the proposed 

structural motifs present.  
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