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Cavity spectrum

The length of our cavity can be adjusted in situ using
a slip-stick piezo [1]. The length in this work is set such
that the TEMl,m modes within l+m = const. families [2]
are resolvable but far separated in frequency from other
mode families. Figure 1 shows the cavity spectra for the
two experiments discussed in this paper. For experiments
using the TEM0,0 mode, the cavity detuning is ∆c =

−4.00 MHz, while ∆̃c = −2.39 MHz due to the dispersive
shift (see the section on derivation of cavity-mediated
spin-spin interaction below). Similarly, for the TEM1,0

mode, ∆c = −0.96 MHz and ∆̃c = −0.79 MHz. That is,
the detuning is blue of the TEM0,1 mode, though red of
the TEM1,0 mode. We observe dominant coupling to the
TEM1,0 mode and no instability from proximity to the
blue of the TEM1,0 mode. The splitting of approximately
50 MHz between adjacent families of modes is at least an
order of magnitude larger than these detunings.

Frequency content

The frequency content of the laser beams is schemati-
cally summarized in Fig. 2. Both 780-nm Raman beams
are derived from frequency-doubled 1560-nm light. The
relative frequency between the two 1560-nm seed lasers
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FIG. 1. Transmission spectra of the cavity in use, at the
l + m = 0 family and the l + m = 1 family. The lock
points are indicated by dashed lines, giving ∆c = −4 MHz
and −0.96 MHZ for the experiments involving TEM0,0 and
TEM1,0 respectively.
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FIG. 2. Schematic for the laser system used in this experi-
ment. Green lines represent electrical signals. The two 780-
nm Raman beams are derived using second harmonic gener-
ation (SHG) from two 1560-nm fiber lasers, whose relative
frequency is stabilized at ωHF with a beat-note lock referenc-
ing seed 2 to seed 1. After SHG, the frequencies of the two
doubled light beams are separated by 2ωHF. AOMs placed in
the path of the beams allow for additional frequency adjust-
ments and intensity control. The science cavity is stabilized
at ωc using 1560-nm light from seed 1 through the Pound-
Drever-Hall (PDH) technique. The same rf source used to
lock the fiber lasers is used to drive an electro-optic modula-
tor (EOM) for the purpose of generating the local oscillator
beam at ωLO. The correct sideband is isolated by a filter
cavity.
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are stabilized with respect to a stable frequency source
calibrated via microwave spectroscopy to oscillate at the
frequency difference ωHF between |1,−1〉 and |2,−2〉.
ωHF includes the Zeeman shift associated with the ap-
plied magnetic field. This frequency difference is con-
trolled using a proportional-integral loop filter with feed-
back applied on seed 2. Additional 1560-nm light from
seed 1 is used to stabilize the science cavity using the
Pound-Drever-Hall (PDH) technique. The cavity res-
onance frequency ωc is detuned from the 52S1/2|2,−2〉
to 52P3/2 transition by 154 GHz. The resulting Raman
pump beams have atomic detunings of 160 and 147 GHz,
resp. Using a fiber electro-optic modulator (EOM), side-
bands at ωHF are added onto the ω− Raman beam in a
separate path to derive the cavity probe (for use in tak-
ing the data in Fig. 1) and local oscillator beam. The
drive signal to the EOM is split off from the same source
that locks the seed lasers. We further isolate the correct
sideband from the EOM output using a filter cavity; the
resulting beam is at the mean frequency ω̄ of the two Ra-
man beams and phase stable with respect to the cavity.
Additional acousto-optic modulators (AOMs) provide in-
tensity stabilization and additional frequency-shifting ca-
pabilities to symmetrically adjust the Raman detuning δ.

All rf signals used in the experiment are stabilized with
respect to the same 10-MHz Rb clock.

Holographic reconstruction

Above threshold, the superradiant cavity emission at
frequency ω̄ observed on our EMCCD camera can have
both amplitude and phase fluctuations in space. In
the most general case, this field may be expressed as
Ec(r) = |Ec(r)|eiφc(r). The amplitude and phase of this
field is measured using a holographic technique based on
the spatial Fourier demodulation analysis of the fringes
of a spatial heterodyne measurement; see Ref. [3] for an-
other recent demonstration of this technique. A large lo-
cal oscillator (LO) beam at frequency ω̄+ δLO is incident
on the EMCCD camera with a wavevector ∆k relative
to the cavity emission. This LO beam is derived from
the output of the filter cavity in Fig. 2 and the AOM
provides a controllable frequency shift δLO. The interfer-
ence between the cavity emission Ec(r) and the LO field
ELO(r) produces an image with an intensity Ih(r) on the
EMCCD camera; see Fig. 3(a). This may be expressed
as

Ih(r) = |Ec(r)|2 + |ELO(r)|2 + 2χ(δLO)|Ec(r)ELO(r)| cos (∆k · r + ∆φ(r)) , (1)

where ∆φ(r) = φc(r) − φLO(r) is the phase difference
between the cavity and LO wavefronts. Both |Ec(r)|
and φc(r) are inferred from the amplitude and phase of
the fringes produced by the oscillatory term of Eq. 1.
Reduction of fringe contrast is characterized by the fac-
tor χ(δLO). Several factors contribute to this reduction.
For example, mismatch in the spatial and polarization-
mode overlap of the cavity and LO reduces contrast. The
contrast can also appear smaller due to a frequency dif-
ference between the LO and cavity emission: the fringe
signals spatially average during the EMCCD camera’s 2-
ms integration time because the fringes have a non-zero
phase velocity. This spatial averaging effect allows us to
determine the cavity emission via measuring fringe con-
trast versus δLO, as shown in Fig. 3. Noise in the relative
frequency between the cavity emission and LO also leads
to spatial averaging.

In order to accurately extract |Ec(r)| and φc(r), the
image must first be corrected to account for inten-
sity and phase variations of the LO beam. An inde-
pendent measurement of the local oscillator intensity
ILO(r) = |ELO(r)|2 allows us to create a corrected field
image Ecorr(r) whose fringe amplitude solely depends on

|Ec(r)|:

Ecorr(r) =
Ih(r)− ILO(r)√

ILO(r)

=
|Ec(r)|2

|ELO(r)|
+ 2χ(δLO)|Ec(r)| cos (∆k · r + ∆φ(r)) .

(2)

See Fig. 3(b) for plot of Ecorr(r). Assuming the cavity
field varies slowly over the fringe wavelength 2π/|∆k|,
we may extract |Ec(r)|, shown in Fig. 3(c), and ∆φ(r),
shown in Fig. 3(d), by demodulating Ecorr at the fringe
wavevector ∆k.

Finally, the phase of the cavity field may be extracted
from ∆φ(r) by correcting for phase variations φLO(r) of
the local oscillator wavefront. The TEM0,0 mode of the
cavity is used to calibrate these variations since it has
a uniform phase over its transverse profile. Measuring
φLO(r) in this manner allows us to calculate the phase of
the cavity wavefront as φc = ∆φ+φLO and consequently
visualize the complex electric field of higher-order modes
as shown in Fig. 4(b).
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Spin-selective imaging

At the end of the experimental sequence, atoms can be
in either |↓〉, |↑〉, or a superposition of the two. To selec-
tively detect these states, we perform absorption imag-
ing on the cycling transition between 52S1/2|2,−2〉 and
52P3/2|3,−3〉. Only the atoms in |↑〉 are imaged due to
the absence of repumping light. We verified that there is
negligible depumping with circularly polarized light that
drives purely σ− transitions. Following this initial imag-
ing pulse, an intense pulse of light resonant with the
transition is applied, which results in the expulsion of
the |↑〉 population from view. Next, the atoms in |↓〉 are
transferred to 52S1/2|2,−2〉 using microwave adiabatic
rapid passage and imaged using the same cycling tran-
sition. These atoms are subsequently also removed from
the field of view, after which ‘bright’ and ‘dark’ images
are taken for completing the absorption imaging process.
The extracted optical densities from the first and sec-
ond imaging pulse are then overlaid to produce spin-full
absorption images such as those presented in Figs. 2(b),
(c) and 4(b). The spherical scattering halos are due to
two-body contact interactions.

Derivation of cavity mediated spin-spin interaction

The Hamiltonian of a single cavity mode a with spatial
profile Ξ(r) interacting with atoms can be written as in

0 1Normalized |E|2 

x

z

FIG. 3. Holographic reconstruction of cavity fields. (a) Cam-
era image Ih(r) generated by the interference between cavity
emission from a TEM0,0 mode and the local oscillator beam.
(b) The corrected image Ecorr(r) generated from (a) using
the procedure described in Eq. 2. (c) The intensity |Ec(r)|2
of the cavity emission extracted from (b). (d) The phase of
the cavity emission extracted from (b). (e) A visualization
of the complex electric field constructed using the amplitude
from (c) and phase from (d). (f) Color legend for panels (c)
and (e). Color wheel is for panel (e) while color bar is for
panel (c).

Ref. [4]:

H = ωcâ
†â+Hatom +Htrap +Hkinetic +Hint, (3)

where ωc is the optical frequency of the cavity mode,
Hatom is the energy of the atomic internal states, and
Htrap and Hkinetic capture the potential and kinetic en-
ergy of atoms in different internal states. Hint describes
the coupling introduced by the pump beams (with optical
frequency ω+ and ω−) and cavity:

Hint =

∫
d3r

1√
2

(
Ω+(r)e−iω+t + Ω−(r)e−iω−t

)
×
∑
FF ′

(
Â+1
FF ′(r)− Â−1

FF ′(r)
)

+

∫
d3g0Ξ(r)â

∑
FF ′

Â0
FF ′(r) + H.c., (4)

where

Â
(q)
FF ′(r) =

∑
m

c(F,m→ F ′,m+ q)ψ̂†F ′,m+q(r)ψ̂F,m(r)

(5)
is the atomic raising operators connecting different hy-
perfine levels of the ground ψ̂F,m and excited ψ̂F ′,m+q

states. The Clebsch-Gordon coefficients c(F,m →
F ′,m + q) are the relative strengths of the transitions.
We apply a bias magnetic field along ẑ. Both pump
beams are linearly polarized along the cavity axis. The
additional factor of 1/

√
2 for the Rabi frequency of the

two pump beams Ω+ and Ω− comes from the fact that
the beams couple to both σ+ and σ− transitions, though
only one is close to resonant for each beam due to Zeeman
shifts.

The spatial profile of mode Ξ results in a spatially
dependent single-photon Rabi frequency g0Ξ(r)/Ξ0,0(0),
where Ξ0,0 is the profile of a TEM0,0 mode. Given the
large detunings of the pumps from the atomic excited
states compared to the excited-state hyperfine splittings,
all the excited states are assumed to be at the same en-
ergy ωa. In the ground states, the Zeeman shift pushes
|F = 2,mF = 0〉 out of resonance, so we only con-
sider the spin components |F,mF 〉 = |1,−1〉 ≡ |↓〉 and
|F,mF 〉 = |2,−2〉 ≡ |↑〉 of the atom’s hyperfine states
as the coupled two-level system. All energy levels are
defined with respect to the energy of |↓〉, and the bare
energy splitting ωHF (hyperfine splitting plus additional
Zeeman shift) between |↑〉 and |↓〉 is set by the bias
magnetic field along ẑ of ∼ 2.82 G. We use microwave
spectroscopy to calibrate the field and estimate a field
fluctuation-induced frequency noise of 2.4 kHz on ωHF.

To obtain the effective Hamiltonian, we transform
Eq. 3 into a rotating frame defined by the unitary trans-
formation Û = exp(−iĤtt), where

Ĥt =
1

2
(ω+ + ω−)â†â+

1

2
(ω+ − ω−)

∫
d3r ψ̂†↑(r)ψ̂↑(r).

(6)
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Here, the coupled spin-spatial atomic states are repre-
sented by the spinor ψ̂(r) = [ψ̂↑(r), ψ̂↓(r)]ᵀ. Before writ-
ing the resulting Hamiltonian, we define the detunings
∆+ and ∆− from the atomic excited state for each of the
Raman transitions, the detuning ∆c of the mean pump
frequency from the cavity frequency ωc, and the two-
photon detuning of the cavity-assisted Raman transition
resonance δ as:

∆+ = ω+ − ωa
∆− = ω− + ωHF − ωa

ω̄ =
1

2
(ω+ + ω−)

∆c =
1

2
(ω+ + ω−)− ωc

δ =
1

2
(ω+ − ω−)− ωHF. (7)

We set δ ≈ −10 kHz, while the detuning for other al-
lowed Raman processes, e.g., the coupling between |↓〉
and |F = 2,mF = 0〉, is on the order of a few MHz due
to Zeeman splitting. After adiabatically eliminating the
atomic excited states and ignoring the s-wave interaction
and external harmonic trapping potential, the resulting
Hamiltonian H = H↑ + H↓ + Hcavity + HRaman in the
rotating frame is given by

H↑ =

∫
d3rψ̂†↑(r)

[
− p̂2

2m
+

(
Ω2

+

6(∆+ + ωHF)
+

Ω2
−

6∆−

)
cos2(krx) +

[g0Ξ(x, z)]2

∆+
cos2(kry)â†â− δ

]
ψ̂↑(r)

H↓ =

∫
d3rψ̂†↓(r)

[
− p̂2

2m
+

(
Ω2

+

6∆+
+

Ω2
−

6(∆− − ωHF)

)
cos2(krx) +

[g0Ξ(x, z)]2

∆−
cos2(kry)â†â

]
ψ̂↓(r)

Hcavity = −∆câ
†â

HRaman =

∫
d3r
[√3g0Ξ(x, z)Ω+

12∆+
ψ̂†↑(r)ψ̂↓(r)â† cos(krx) cos(kry) +

√
3g0Ξ(x, z)Ω−

12∆−
ψ̂†↓(r)ψ̂↑(r)â† cos(krx) cos(kry) + H.c.

]
,

(8)

where we have separated out the longitudinal dependence
of the cavity mode and kr = 2π/λ. In the regime of large
cavity detuning ∆c, the dynamics of the cavity mode is
faster than other dynamics, and therefore we adiabati-
cally eliminate the cavity mode to obtain an atom-only
Hamiltonian. To do so, we define local spin operators

σ̂z(r) =
[
ψ̂†↑(r)ψ̂↑(r)− ψ̂†↓(r)ψ̂↓(r)

]
/2

σ̂x(r) =
[
ψ̂†↑(r)ψ̂↓(r) + ψ̂†↓(r)ψ̂↑(r)

]
/2. (9)

The two cavity-assisted Raman couplings are set to have
the same strength

√
3g0Ω−
12∆−

=

√
3g0Ω+

12∆+
≡ η, (10)

allowing the effective Hamiltonian to be written as

Heff =

∫
d3rd3r′

η2

∆c
Ξ(x, z)Ξ(x′, z′)×

cos(krx) cos(krx
′) cos(kry) cos(kry

′)σ̂x(r)σ̂x(r′)

+

∫
d3r(Ĥk − δ)σ̂z(r), (11)

where

Ĥk =− p̂2

2m
+

[
Ω2

+

6(∆+ + ωHF)
+

Ω2
−

6∆−

]
cos2(krx)

−
[

Ω2
+

6∆+
+

Ω2
−

6(∆− − ωHF)

]
cos2(krx). (12)

We have ignored the small Stark shift term proportional
to 1/∆+,− due to the cavity field. Our system therefore
realizes a transverse-field Ising model of the form

HIsing ∝
∑

Jij cos krxi cos krxj cos kryi cos kryj σ̂
i
xσ̂

j
x

+hσ̂iz, (13)

with direct spin-spin interaction mediated through the
cavity mode. We are able to describe the system with an
effective Ising Hamiltonian because, unlike in Ref. [5], we
operate in the large-∆c dispersive regime.

Mapping to the Dicke model

To understand the threshold at which organization
occurs, it is useful to map our system onto a Dicke
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model [6, 7]. The experiment begins with a condensate in
|↓〉 and when the cavity-mediated Raman process causes
a spin flip, a momentum kick is also imparted onto the
atoms. Within the single-recoil limit, the dynamics can
be captured by two atomic modes

ψ̂↓ = ĉ↓ψ0

ψ̂↑ = ĉ↑ψ1, (14)

where, for simplicity,

ψ0 = 1

ψ1 = 2 cos(krx) cos(kry). (15)

Since the pump lattice potential is retained in the Hamil-
tonian, the differential Stark shift on ψ↑ and ψ↓ due to
the lattice beams has been taken into account. Taking
advantage of the λ = 2π/kr periodicity along both the
pump and cavity direction, shifting the energy of the c↓
mode to zero, and performing the integrals, the Hamil-
tonian is evaluated to be

H =−∆câ
†â+

{
2ωr +

3

4

[
Ω2

+

6(∆+ + ωHF)
+

Ω2
−

6∆−

]
− 1

2

[
Ω2

+

6∆+
+

Ω2
−

6(∆− − ωHF)

]
− δ
}
ĉ†↑ĉ↑

+

[√
3

24

g0Ω+

∆+
ĉ†↑ĉ↓ +

√
3

24

g0Ω−
∆−

ĉ†↓c↑

](
â† + â

)
+

g2
0

2∆−
ĉ†↓c↓â

†a+
3g2

0

4∆+
ĉ†↑c↑â

†a. (16)

The bare energy of the c↑ mode is shifted due to the
differential Stark shift

ωS =
3

4

[
Ω2

+

6(∆+ + ωHF)
+

Ω2
−

6∆−

]
−1

2

[
Ω2

+

6∆+
+

Ω2
−

6(∆− − ωHF)

]
,

(17)
which is a dynamic quantity during the linear ramp of the
Raman-beams’ power. The Raman detuning δ is there-
fore chosen such that the bare energy of the ĉ↑ mode is
always positive during the experiment sequence.

As mentioned above in Eq. 10, the Raman couplings
are chosen to be equal, and in anticipation of standard
Dicke model notation [8], we define this coupling as

√
3N

24

g0Ω+

∆+
=

√
3N

24

g0Ω−
∆−

≡ ηD, (18)

where N = ĉ†↑ĉ↑+ ĉ†↓ĉ↓ is the total number of atoms. We
now define the collective pseudospin-1/2 operators

Ĵz =
1

2
(ĉ†↑ĉ↑ − ĉ

†
↓ĉ↓)

Ĵ+ = ĉ†↑ĉ↓

Ĵ− = ĉ†↓ĉ↑, (19)

where the Ĵ operate on the coupled pseudospin-1/2 spin-
spatial degree of freedom. The Hamiltonian can then be

rewritten as

H =

(
−∆c +

Ng2
0

2∆−

)
â†â+ (2ωr + ωS − δ)Ĵz

+
ηD√
N

(Ĵ+ + Ĵ−)(â† + â)

+
N(2ωr + ωS − δ)

2
+

(
3g2

0

4∆+
− g2

0

2∆−

)
ĉ†↑c↑â

†â.

(20)

The first term in the third line is simply a energy off-
set, while the second term can be ignored as long as the
population of ĉ†↑ĉ↑ is small, which is consistent with the
single-recoil limit. The Hamiltonian therefore realizes the
Dicke model, and the usual threshold expression applies:

ηc =
1

2

√
(−∆c +Ng2

0/∆−)(2ωr + ωS − δ). (21)

Note that unlike in Refs. [9–12], our Raman scheme
does not produce (dynamical) spin-orbit-coupling be-
cause this excited motional state has zero net momen-
tum. However, since all parameters of this Dicke model
realization are tunable, dynamical phenomena such as
chaos and limit cycles are observable [4, 8, 13–17].

Lattice calibration and Raman coupling balancing

We calibrate the lattice depth of pump beams by per-
forming Kapitza-Dirac diffraction of the BEC [18] pre-
pared in either |↑〉 or |↓〉. This also allows us to char-
acterize the differential Stark shift in the experiment.
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The retroreflection mirror shared by the pump beams
is mounted on a translation stage. Measuring the lattice
depth of the combined pump beams, we adjust the trans-
lation stage to match the phases of the pump lattices at
the position of the atoms. We note that the beat length
of the two pump lattices (separated in optical frequency
by 13.6 GHz) is ∼5 mm, much larger than the atomic
cloud size; therefore, small mechanical fluctuations from
the mirror mount will not cause the lattice to become
out-of-phase at the atoms.

To match each beam’s coupling strength, we linearly
ramp up the Ω+ (Ω−) beam intensity for atoms prepared
in |↓〉 (|↑〉) while monitoring cavity emission. Above
a certain pump strength, atoms are transferred to the
other spin state with an accompanying brief cavity emis-
sion pulse. The long-lived superradiance we observe in
the main experiments of the text is distinct from the
brief cavity emission from this single-beam spin-flip situ-
ation [4]. The critical Raman coupling strength at which
this pulse occurs is given by:

ηc,single =

√√√√ γκ

2N

[
1 +

(
−∆c + 2ωr + ω′S − δ

γ + κ

)2
]
, (22)

where κ is the cavity decay rate and γ is a phenomeno-
logical parameter describing the collective spin decay
rate [4]. Since only one beam is involved, ω′S denotes the
differential Stark shift on |↑〉 and |↓〉 due to a single pump
beam. Matching the threshold for a single-beam spin-flip
then balances the two Raman coupling processes. We
perform the calibration with ∆̃c = −1.4 MHz. This is
significantly larger than the two-beam Stark-shift contri-
bution, 2ωr+ω′S−δ ≈ 10 kHz. Therefore, the additional
Stark shift from the simultaneous presence of both beams
does not alter the matching condition considerably.

Relevance to Mivehvar et al. [19]

Our experiment is very similar to that proposed in the
recent theoretical study of Ref. [19]. Indeed, our observa-
tion confirms salient features of coupled spin-spatial orga-
nization as predicted in the aforementioned paper: λ/2
periodicity of condensate density and spatially varying
relative condensate phase. However, some important dif-
ferences exist. In particular, in Ref. [19], the authors con-
sidered a thermal equilibrium situation, in which the en-
ergy of a state determined its probability. In contrast, our
experiment and the simulations in Ref. [19] correspond to
the nonequilibrium steady state that can be reached by
dynamics starting from an initial prepared state. Specif-
ically, since the initial state involves spin-down atoms at
zero momentum, this means subsequent dynamics always
involves spin-down states with even multiples of recoil
momentum and spin-up states with odd multiples. De-
spite this locking, there remains a single Z2 symmetry

(the sign of the spin-up wavefunction) which is sponta-
neously broken at the transition. Since the numerical re-
sults in Ref. [19] were derived using imaginary time prop-
agation with an initial spin-polarized state, their results
are similar to those for the case of the nonequilibrium
steady state.

In addition to the above, we note that Reference [19]
termed the symmetry breaking effect as a ‘disorder-
induced’ or ‘order-by-disorder’ transition. This was on
the basis that the Raman field has a zero average. As
such, one could consider this zero-average field-inducing
spin-spatial order as analogous to random magnetic-field-
induced order [20]. However, we prefer to view this tran-
sition as simply a type of polariton-condensation phase
transition. That is, rather than regard the spatially vary-
ing vacuum cavity field as a disordered field that induces
a transition, we prefer to reserve the term ‘disorder-
induced’ for non-periodic potentials, and the term ‘order-
by-disorder’ for situations that more closely match the
original use of that term for either enhanced entropy due
to order [21], or the quantum extension of that concept
where order is driven by enhanced phase space for fluc-
tuations that lower the energy [22].
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