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Abstract

We consider strong external difference families (SEDFs); these are external difference
families satisfying additional conditions on the patterns of external differences that occur,
and were first defined in the context of classifying optimal strong algebraic manipulation
detection codes. We establish new necessary conditions for the existence of (n,m, k, λ)-
SEDFs; in particular giving a near-complete treatment of the λ = 2 case. For the case
m = 2, we obtain a structural characterization for partition type SEDFs (of maximum
possible k and λ), showing that these correspond to Paley partial difference sets. We also
prove a version of our main result for generalized SEDFs, establishing non-trivial necessary
conditions for their existence.

1 Introduction

Difference families are much-studied objects in combinatorial literature, and have been used to
construct a range of combinatorial objects, including designs and strongly-regular graphs. They
have also been applied in a variety of settings to provide a natural way of expressing various
desirable properties of codes and sequences.

Given an additive abelian group G, a set of disjoint subsets of G forms a disjoint difference
family (DDF), where the differences between pairs of subset elements are called external dif-
ferences if the elements lie in different subsets, and internal differences if the elements lie in
the same subset. Additional properties may be imposed: for example all subsets in the family
may be of the same size, the subsets may partition the group (sometimes, the non-zero ele-
ments of the group) or every non-zero element of G may arise as a (internal/external) difference
from the subsets of the family a constant number of times. A survey of the area is given in
[11]. Historically, the external differences have been somewhat less studied than their internal
counterparts. External difference families (EDFs) were introduced in [12] to construct optimal
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secret sharing schemes secure against cheating in the setting where the secrets are uniformly
distributed. They are a special case of both difference systems of sets [4], and (weak) algebraic
manipulation detection (AMD) codes [5]. AMD codes generalise certain known techniques for
constructing secret sharing schemes secure against cheating, and it is established in [5] that
such a code is equivalent to a type of DDF. In the setting of secret sharing schemes secure
against sets of cheating participants who know the secret (sometimes referred to as the CDV
assumption [3]) it is necessary to use a strong variant of these codes.

In this paper, we consider strong external difference families (SEDFs), introduced in [13]1.
These are external difference families satisfying an extra condition, and correspond to the strong
set-up in the AMD code situation. The existence of SEDFs is an active area of current inves-
tigation (for example, in [1], [7], [10], [15] and [16]). In this paper, we establish new necessary
conditions for the existence of (n,m, k, λ)-SEDFs; in particular this gives a near-complete treat-
ment of the λ = 2 case. For m = 2, we obtain a structural characterization of partition type
SEDFs (which have maximal possible k and λ), showing that these correspond to Paley partial
difference sets. We also prove a version of our main result for generalized SEDFs, establishing
non-trivial necessary conditions for their existence.

2 Preliminaries

The following definitions are given in [13]:

Definition 2.1. Let G be an additive abelian group. For any disjoint sets A1, A2 ⊆ G, define
the multiset

D(A1, A2) = {x− y |x ∈ A1, y ∈ A2}.

Definition 2.2 (External difference family). Let G be an additive abelian group of order n. An
(n,m, k, λ)-external difference family (or (n,m, k, λ)-EDF) is a set of m disjoint k-subsets
of G, say A1, . . . , Am, such that the following multiset equation holds:⋃

{i,j:j 6=i}

D(Ai, Aj) = λ(G \ {0}).

Definition 2.3 (Strong external difference family). Let G be an additive abelian group of order
n. An (n,m, k, λ)-strong external difference family (or (n,m, k, λ)-SEDF) is a set of m
disjoint k-subsets of G, say A1, . . . , Am, such that the following multiset equation holds for every
i, 1 ≤ i ≤ m: ⋃

{j:j 6=i}

D(Ai, Aj) = λ(G \ {0}).

An (n,m, k, λ)-SEDF is, by definition, an (n,m, k,mλ)-EDF.
Various constraints on the parameters follow from the definition. The definition requires

m ≥ 2. It is immediate that km ≤ n and, as in the case of general EDFs, double-counting of
the differences yields the necessary condition:

λ(n− 1) = k2(m− 1). (1)

Combining these yields the following lemma (see also [1]):

Lemma 2.4. For an (n,m, k, λ)-SEDF, either

1The use of the word strong in this context derives from the connection with strong algebraic manipulation
detection codes. There is no connection to the concept of a strong difference family as in [2].
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• k = 1 and λ = 1; or

• k > 1 and λ < k.

Proof. Combining the two necessary conditions above yields λ(n− 1) = k(km)− k2 ≤ kn− k2,

which rearranges to λ
k ≤

(n−k)
(n−1) , from which the result follows.

Note this implies that the k-sets Ai in an (n,m, k, λ)-SEDF {A1, . . . , Am} can be pairs of
elements only for λ = 1, triples only for λ = 1, 2, and so on.

In [13], a full description of possible parameters was obtained for the case λ = 1:

Theorem 2.5 ( [13]). There exists an (n,m, k, 1)-SEDF if and only if m = 2 and n = k2 + 1,
or k = 1 and m = n.

Constructions were given for both of these cases:

• Let G = (Zk2+1,+), A1 = {0, 1, . . . , k − 1} and A2 = {k, 2k, . . . , k2}. This is a (k2 +
1, 2; k; 1)-SEDF.

• Let G = (Zn,+) and Ai = {i} for 1 ≤ i ≤ n− 1. This is an (n, n; 1; 1)-SEDF.

Recent work by Martin and Stinson [10], using character theory, has established various
SEDF non-existence results, including the following:

Theorem 2.6. Let {D1, . . . , Dm} form an (n,m, k, λ)-SEDF. Then m 6= 3 and m 6= 4.

Theorem 2.7. If G is any group of prime order, and k > 1 and m > 2, then G admits no
{D1, . . . , Dm} which form an (n,m, k, λ)-SEDF.

3 SEDFs with λ = 2

In this section, we give a substantially complete description of the case when λ = 2. This is
based around the following non-existence result:

Theorem 3.1. Suppose there exists an (n,m, k, 2)-SEDF with m ≥ 3 and k ≥ 3. Then the
following inequality must hold:

2(k − 1)(m− 2)

k(m− 1)
≤ 1. (2)

Proof. Suppose there exists an (n,m, k, 2)-SEDF with m ≥ 3 and k ≥ 3. We will show that, if
(2) does not hold, then it is possible to find a point v in A1 and two internal differences from
v which correspond to a point v′ in some Ai for i 6= 1 and two external differences from v′, and
thereby to construct three external differences from A1 that are all equal.

Fix a point v in A1. Let I be the set of internal differences from v,

I = {v − a | a ∈ A1, a 6= v} ⊆ G \ {0}.

Then |I| = k − 1, as |A1| = k.
For x ∈ Ai with i 6= 1 let Ex be the set of external differences from x to elements of Aj for

any j 6= 1:
Ex = {x− a | a ∈ Aj , j 6= 1, i}.

Then |Ex| = (m− 2)k for any x.
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Figure 1: A point v in A1 and two internal differences from v, corresponding to a point v′ in Ai
and two external differences from v′, give rise to three equal external differences from A1.

From the definition of an (n,m, k, 2)-SEDF, each nonzero group element appears twice in
the multiset of external differences from Aj for each j = 1, 2, . . . ,m, and hence 2m times in the
multiset of all external differences

{a− b | a ∈ Ai, b ∈ Aj , j 6= i} = 2m(G \ {0}). (3)

Furthermore, since the multiset of external differences from A1 comprises two copies of each
nonzero group element, it is also the case that each nonzero group element occurs precisely
twice as an external difference from some Ai for i 6= 1 into A1 (since the multiset of such
external differences can be obtained by negating the multiset of external differences out of A1).
From this we can deduce that each nonzero group element occurs 2(m− 2) times as an external
difference between sets Ai and Aj with i 6= j and i, j 6= 1, so⋃

x∈Ai,i 6=1

Ex = 2(m− 2)(G \ {0}). (4)

Suppose we could find an element v′ ∈ Ai for some i 6= 1 for which |Ev′ ∩ I| ≥ 2.
Let δ1 and δ2 be distinct elements of Ev′ ∩ I. Let u = v − δ1 and w = v − δ2. Then u and

w are distinct elements of A1, as δ1 and δ2 are distinct elements of I. Let u′ = v′ − δ1 and
w′ = v′− δ2. Then u′ and w′ are distinct elements of ∪j 6=1,iAj as δ1 and δ2 are distinct elements
of Ev′ . (We note that u′ and w′ may lie in distinct Aj and A`, or they may both occur in a
single Aj but that does not affect the rest of this argument.) Let v − v′ = γ ∈ G \ {0}. We
observe that

u− u′ = (v − δ1)− (v′ − δ1),

= v − v′,
= γ,

and

w − w′ = (v − δ2)− (v′ − δ2),

= v − v′,
= γ.

This would contradict the assumption that each nonzero group element occurs precisely twice
as an external difference from A1. (This situation is illustrated in Figure 1.) So we have proved
that, for every v′, |Ev′ ∩ I| ≤ 1.
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Figure 2: A plot depicting values of m and k for which 2(k−1)(m−2)
k(m−1) > 1. By Theorem 3.1, if

there exists an (n,m, k, 2)-SEDF then the point (k,m) lies outside the grey region.

We now count the number N of pairs (θ,Ex) where θ ∈ I ∩ Ex and x ∈ Ai for some i 6= 1.
There are k−1 choices for θ. As each nonzero element of G occurs 2(m−2) times in

⋃
x∈Ai,i 6=1Ex,

for each of these θ there are 2(m− 2) values of x for which θ ∈ Ex, so N = 2(k − 1)(m− 2).
The number of distinct sets Ex with x ∈ Ai for some i 6= 1 is (m− 1)k. By the Pigeonhole

Principle there exists x for which the set Ex contains at least

N

(m− 1)k
=

2(k − 1)(m− 2)

(m− 1)k

elements of I. If this quantity was strictly greater than one we would have |Ev′ ∩ I| ≥ 2 for
some v′.

Theorem 3.1 eliminates a wide range of values as potential parameters of an SEDF. Let us
consider the regions in which (2) does not hold. These are illustrated in Figure 2. Theorem 3.1
applies for m ≥ 3 and k ≥ 3. When m = 3, the left-hand side of (2) evaluates to k−1

k , which is

never greater than 1. For m = 4, it becomes 22
3
k−1
k , which is greater than 1 whenever k > 4. For

m > 4, the threshold is achieved when k ≥ 4. When k = 3, the left-hand side of (2) evaluates
to 22

3
m−2
m−1 , which is greater than 1 whenever m > 5. For k > 3, the value of 1 is exceeded for

m ≥ 5.
These observations lead directly to the following corollary.

Corollary 3.2. An (n,m, k, 2)-SEDF can exist only when m = 2.

Proof. It is immediate from the discussion following Theorem 3.1 that, for an (n,m, k, 2)-SEDF
to exist, its parameters must satisfy one of the following:

• k ≤ 2;

• m ≤ 3;

• k = 3 and m = 4;

• k = 3 and m = 5;
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• k = 4 and m = 4.

By Lemma 2.4, we must have k > 2, so the cases k = 1, 2 cannot occur. By definition, m ≥ 2,
and the cases with m = 3, 4 cannot occur by Theorem 2.6. The case k = 3 and m = 5
corresponds to n = 19, and hence is ruled-out by Theorem 2.7. Hence only the case when
m = 2 remains.

In the case when λ = m = 2, equation (1) shows that n = k2

2 + 1 (note this implies n and k
are coprime). We have the following SEDF with k = 4 and n = 9:

Example 3.3. Let G = (Z3 × Z3,+), let A1 = {(0, 1), (0, 2), (1, 0), (2, 0)} and let A2 =
{(1, 1), (1, 2), (2, 1), (2, 2)}. Then {A1, A2} is a (9, 2, 4, 2)-SEDF.

The parameters (9, 2, 4, 2) are currently the only parameters for which an SEDF with λ = 2
is known to exist. Example 3.3 can be viewed as part of a family of SEDFs with k = n−1

2 (see
Section 5); however, it is the only member of this family with λ = 2.

Recent work by Jedwab and Li [7] has ruled out the existence of all (n, 2, k, 2) with n ≤ 50
except for n = 33. The general existence question for SEDFs with λ = m = 2 remains open.
There are various number-theoretic constraints; for example, prime k are ruled-out by the
following result.

Proposition 3.4. An (n, 2, p, λ)-SEDF, where p is prime, can exist only for λ = 1.

Proof. Suppose there exists an (n, 2, k, λ)-SEDF where k = p, a prime. By equation (1), λ(n−
1) = p2, and λ < p by Lemma 2.4. Since λ must divide p2, we must have λ = 1.

4 SEDF non-existence results for general λ

The approach which was successful in establishing non-existence in the λ = 2 case can readily
be generalized for larger values of λ

Theorem 4.1. Let λ ≥ 2. Suppose there exists an (n,m, k, λ)-SEDF with m ≥ 3 and k ≥ λ+1.
Then the following inequality must hold:

λ(k − 1)(m− 2)

(λ− 1)k(m− 1)
≤ 1. (5)

Proof. The proof of Theorem 3.1 can readily be adapted to the case of general λ. In this setting,
if (5) does not hold, then it is possible to find a point v ∈ A1 and λ internal differences from
v, which correspond to a point v′ in some Ai with i 6= 1 and λ external differences from v′.
This would then allow the construction of λ+ 1 equal external differences from A1 by the same
approach we used in the proof of Theorem 3.1.

The definitions and cardinalities of I and Ex carry over exactly. Equations (3) and (8)
become

{a− b | a ∈ Ai, b ∈ Aj , j 6= i} = λm(G \ {0}),

and ⋃
x∈Ai,i 6=1

Ex = λ(m− 2)(G \ {0}).

The situation illustrated in Figure 1 carries over for general λ in the natural way, and our
conclusion is that, for every v′ ∈ Ai (i 6= 1), we must have |Ev′ ∩ I| ≤ λ− 1.
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Figure 3: A plot depicting the surface consisting of values of m, k and λ for which λ(k−1)(m−2)
(λ−1)k(m−1) =

1. By Theorem 4.1, if there exists an (n,m, k, λ)-SEDF then the point (k,m, λ) lies on or above
the surface.

We count the number N of pairs (θ,Ex) where θ ∈ I ∩ Ex and x ∈ Ai for some i 6= 1.
There are k − 1 choices for θ. Since each nonzero element of G occurs λ(m − 2) times in⋃
x∈Ai,i 6=1Ex we see that for each of these θ there are λ(m− 2) values of x for which θ ∈ Ex, so

N = λ(k− 1)(m− 2). Applying the Pigeonhole Principle as before, there exists x for which Ex
contains at least

λ(k − 1)(m− 2)

k(m− 1)

elements of I. If this was strictly greater than λ−1 we would have |Ev′ ∩I| ≥ λ for some v′.

Theorem 4.1 applies for m ≥ 3 and k ≥ λ + 1. When k = λ + 1, the left-hand side of (5)

evaluates to
(

λ2

λ2−1

)(
m−2
m−1

)
, which is greater than one whenever m > λ2 + 1. For k > λ + 1,

we observe that the left-hand side of (5) can be written
(
λk−λ
λk−k

)(
m−2
m−1

)
>
(
λk−k+1
λk−k

)(
m−2
m−1

)
,

which is greater than one if m− 2 > (λ− 1)k.
As before, if m = 3 the left-hand side of (5) cannot be greater than one, as λ

λ−1 ≤ 2.

When m = 4, it evaluates to
(

2
3

λ
λ−1

)
k−1
k , which is greater than one only in the case where

λ = 2 and k > 4. For larger values of m, express the left-hand side as
(

(λm−λ)−λ
(λm−λ)−(m−1)

) (
k−1
k

)
;

we would need m − 1 > λ in order for this to be greater than one. In this case we have(
(λm−λ)−λ

(λm−λ)−(m−1)

) (
k−1
k

)
≥
(

(λm−λ)−(m−1)+1
(λm−λ)−(m−1)

) (
k−1
k

)
, and for k − 1 > (λ− 1)(m− 1) the value is

greater than one. The situation is illustrated in Figure 3.

Corollary 4.2. If there exists an (n,m, k, λ)-SEDF, then its parameters must satisfy at least
one of the following:

• λ = 1;
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• m = 2;

• k = λ+ 1 and m ≤ λ2 + 1;

• k > λ+ 1 and m ≤ (λ− 1)k + 2;

• m ≥ 5, 2 ≤ λ ≤ m− 2 and k ≤ (λ− 1)(m− 1) + 1.

Proof. The following small cases are outside the scope of Theorem 4.1 and hence cannot be
ruled out by the theorem:

• λ = 1;

• m ≤ 2;

• k ≤ λ.

However, m ≥ 2 by definition, and by Lemma 2.4, the case k ≤ λ cannot occur. By the
discussion following the proof of the theorem, we know that any (n,m, k, λ)-SEDF within the
scope of the theorem must have parameters satisfying one (or more) of the following:

• k = λ+ 1 and m ≤ λ2 + 1;

• k > λ+ 1 and m ≤ (λ− 1)k + 2;

• m = 3;

• m = 4, and either λ > 2 or k ≤ 3;

• m ≥ 5, 2 ≤ λ ≤ m− 2 and k ≤ (λ− 1)(m− 1) + 1.

The cases with m = 3 and m = 4 are ruled out by Theorem 2.6.

The number of unresolved parameter sets increases with λ. Recently, a (243, 11, 22, 20)-
SEDF was found independently by two sets of authors ([7] and [15]). Other non-existence
results have been established in numerous papers; for a summary see Jedwab and Li [7].

5 Existence results and characterizations when m = 2

In this section, we consider the m = 2 case in full generality, i.e. for all λ > 1. We consider
(n, 2, k, λ)-SEDFs with largest possible value of k (and hence λ).

For number-theoretic reasons, it is not possible to have an SEDF comprising two sets of size
k = n

2 . In this case, equation (1) would require λ(2k − 1) = k2; this cannot happen as 2k − 1
is coprime to k. The largest possible value of k is therefore k = n−1

2 (here n must be odd); this
corresponds to the largest possible value of λ = n−1

4 .
Denote by G∗ the non-identity elements of G. We consider constructions comprising two

sets, each of size n−1
2 , which partition G∗.

Example 5.1. For any prime power q with q ≡ 1 mod 4, there exists a (q, 2, q−1
2 , q−1

4 )-SEDF
in the additive group of GF (q) given by {A1, A2} where

A1 = {the set of squares in GF (q)∗}

A2 = {the set of non-squares in GF (q)∗}.
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It is known that {A1, A2} is a (q, 2, q−1
2 , q−1

2 )-EDF (see for example [17]). To see that each

non-zero element must arise q−1
4 times in the multiset A1 − A2 and q−1

4 times in the multiset
A2 − A1, we reason as follows. Let x ∈ GF (q)∗, and define D1(x) := {(g, h) : x = g − h, g ∈
A1, h ∈ A2} and D2(x) := {(g, h) : x = g − h, g ∈ A2, h ∈ A1}. We exhibit a bijection between
D1(x) and D2(x): let (x1, x2) ∈ D1(x). Then x = x1 − x2 = (−x2) − (−x1). Since −1 is a
square, we have A1 = −A1 and A2 = −A2, so that (−x2,−x1) ∈ D2(x) as required.

Definition 5.2. A k-element subset D of an additive group G of order v is a (v, k, λ, µ) partial
difference set (PDS) if the multiset D(D) = {d1 − d2 | d1, d2 ∈ D, d1 6= d2} contains each non-
identity element of D exactly λ times and each non-identity element of G \D exactly µ times.
A PDS is called abelian if the group G is abelian. A PDS D is called regular if D does not
contain the identity and D = −D. A regular PDS with parameters (v, v−1

2 , v−5
4 , v−1

4 ), where
v ≡ 1 mod 4, is said to be of Paley type.

The set of non-zero squares in GF (q) when q ≡ 1 mod 4 is known to form a partial difference
set (in fact, a Paley-type partial difference set). Further details on Paley PDSs can be found
in [9]. The approach of constructing EDFs by partitioning with PDSs is introduced in [6]; in
particular, Theorem 3.4 of [6] establishes that any set of u (v, k, λ, µ) PDSs which partition the
non-identity elements of the group G will form an EDF in G with parameters (ku+ 1, u, k, ku−
1 − λ − (u − 1)µ). We will show that the PDS approach, applied in the m = 2 setting using
Paley PDSs, will in fact yield SEDFs.

We will use the following result (details may be found in [9]):

Proposition 5.3. Let G be an additive group of order v. Let D1 be a Paley (v, v−1
2 , v−5

4 , v−1
4 )

PDS in G, and set D2 = G∗ \D1. Then D2 is also a Paley PDS with the same parameters as
D1.

Theorem 5.4. Let G be an additive abelian group of order v, let D1 be a Paley (v, v−1
2 , v−5

4 , v−1
4 )

PDS in group G and set D2 = G∗ \D1. Then {D1, D2} is a (v, 2, v−1
2 , v−1

4 )-SEDF.

Proof. Since D1 is a Paley difference set with parameters (v, v−1
2 , v−5

4 , v−1
4 ), so is D2, by Propo-

sition 5.3. The fact that {D1, D2} forms an EDF is a consequence of Theorem 3.4 of [6], and
can readily be seen directly, as each element of G∗ occurs v−5

4 + v−1
4 = v−3

2 times in the set
of internal differences, and hence (v − 2) − v−3

2 = v−1
2 times in the set of external differences.

To see that this EDF is strong, let c ∈ D1; then the number of times c occurs in the multiset
D1 −D2 is given by |D1| − 1 − v−5

4 = v−1
4 . Now let d ∈ D2; the number of times d occurs in

D1−D2 is |D1|−0− v−1
4 = v−1

4 . Thus D1−D2 comprises every element of G∗ precisely λ = v−1
4

times, and reversal yields the same property for D2 −D1.

Example 5.5. Taking the set of squares and non-squares in GF (9) yields a (9, 2, 4, 2)-SEDF
as in Example 3.3.

It transpires that Paley PDSs offer, not simply a class of examples, but a characterization
of SEDFs of partition type when m = 2.

Theorem 5.6. Let G be an additive abelian group of order v and let D1, D2 be two sets of size
v−1

2 which partition the non-identity elements of G. Then {D1, D2} is an SEDF in G if and
only if D1 (and hence D2) is a Paley PDS in G.

Proof. (⇒) Suppose {D1, D2} is an SEDF. The condition λ(v− 1) = k2(m− 1) of equation (1)
with m = 2 and k = v−1

2 yields λ = v−1
4 . Since λ ∈ N, we must have v ≡ 1 mod 4. Hence a

Paley PDS with appropriate parameters is defined for all values of v for which such an SEDF
can exist.

9



We show that if {D1, D2} is a (v, 2, v−1
2 , v−1

4 )-SEDF in G, thenD1 is a Paley (v, v−1
2 , v−5

4 , v−1
4 )

PDS. Consider the number of times an element c of D1 occurs in the multiset of internal differ-
ences of D1. In D1 − G∗, c occurs |D1| − 1 times, while in D1 −D2 it occurs v−1

4 times. Hence
in D1 − D1, it occurs v−1

2 − 1 − v−1
4 = v−5

4 times. An element d ∈ D2 occurs |D1| times in
D1 − G∗ and v−1

4 times in D1 −D2, i.e. v−1
4 times in D1 −D1, as required.

We must check that D1 is regular. By definition, 0 6∈ D1. To see that D1 = −D1, we show
that if x lies in D1 then so does −x. Note that the elements of D1 are precisely those elements
of G∗ which occur v−5

4 times as a difference in D(D1). Let x ∈ D1, and observe that every pair
(a1, b1) ∈ D1 ×D1 such that x = a1 − b1, is in correspondence with the pair (b1, a1) ∈ D1 ×D1

such that −x = b1 − a1. Since there are precisely v−5
4 pairs, −x ∈ D1.

Proposition 5.3 now implies that D2 is also a Paley PDS with the same parameters.
(⇐) This direction is established in Theorem 5.4.

This characterization tells us that an (n, 2, n−1
2 , λ)-SEDF can be constructed whenever an

abelian Paley PDS of order n can be constructed. For example, constructions are given in [8]
for groups of the form (Zpr1 )2 × (Zpr2 )2 × · · · × (Zprs )2 for r1, r2, . . . , rs ∈ Z+, and in [14] for
groups of the form Z2

3 × Z4s
p for p any odd prime.

We may ask whether there exists an (n, 2, k, λ)-SEDF with k < n−1
2 . This is answered in

the affirmative in [1] and [16] where cyclotomic constructions yield SEDFs with parameters
(q, 2, q−1

4 , q−1
16 ) and (q, 2, q−1

6 , q−1
36 ) for prime powers q of certain specific forms. It is an open

question which other parameter sets are possible.

6 Generalized SEDFs

In the definition of a strong external difference family, we may relax the condition on uniform
set size to obtain the following, introduced in [13]:

Definition 6.1 (Generalized Strong External Difference Family). Let G be an additive abelian
group of order n. An (n,m; k1, . . . , km;λ1, . . . , λm)-generalized strong external differ-
ence family (or (n,m; k1, . . . , km;λ1, . . . , λm)-GSEDF) is a set of m disjoint subsets of G,
say A1, . . . , Am, such that |Ai| = ki for 1 ≤ i ≤ m and the following multiset equation holds for
every i, 1 ≤ i ≤ m: ⋃

{j:j 6=i}

D(Ai, Aj) = λi(G \ {0}).

An (n,m, k, λ)-SEDF is, by definition, an (n,m; k, . . . , k;λ, . . . , λ)-GSEDF.
Two examples of GSEDFs were given in [13]:

• Let G = (Zn,+), A1 = {0} and A2 = {1, 2, . . . , n − 1}. This is an (n, 2; 1, n − 1; 1, 1)-
GSEDF.

• Let G = (Z7,+), A1 = {1}, A2 = {2}, A3 = {4} and A4 = {0, 3, 5, 6}. This is a
(7, 4; 1, 1, 1, 4; 1, 1, 1, 2)-GSEDF.

Recently, new constructions of GSEDFs based on cyclotomy have appeared in [16].
The proof strategy of Theorem 4.1 may be extended to obtain a necessary condition for the

existence of a GSEDF:

Theorem 6.2. Suppose {A1, . . . , Am} is an (n,m; k1, . . . , km;λ1, . . . , λm)-GSEDF, where m ≥
3. Let Λ = λ1 + · · · + λm and K = k1 + · · · + km. Then for any i ∈ {1, . . . ,m} for which
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ki > λi > 1 and λi ≤ Λ
2 , the following inequality holds:

(ki − 1)(Λ− 2λi)

(K − ki)(λi − 1)
≤ 1. (6)

Proof. Suppose, without loss of generality, that i = 1 satisfies the conditions of the theorem
statement, i.e. k1 > λ1 > 1 and λ1 ≤ Λ

2 . We will show that if (6) does not hold, then it is
possible to find a point v in A1 and λ1 internal differences from v which correspond to a point
v′ in some Ai for i 6= 1 and λ1 external differences from v′, and thereby to construct λ1 + 1
external differences from A1 that are all equal.

Fix a point v in A1. Let I be the set of internal differences from v,

I = {v − a | a ∈ A1, a 6= v} ⊆ G \ {0}.

Then |I| = k1 − 1 ≥ λ1 > 0.
For x ∈ Ai with i 6= 1 let Ex be the set of external differences from x to elements of Aj for

any j 6= 1:
Ex = {x− a | a ∈ Aj , j 6= 1, i}.

Then |Ex| = K − k1 − ki, for any x ∈ Ai.
From the definition of an (n,m; k1, . . . , km;λ1, . . . , λm)-GSEDF, each nonzero group element

appears λj times in the multiset of external differences from Aj for each j = 1, 2, . . . ,m, and
hence

∑m
j=1 λj = Λ times in the multiset of all external differences:

{a− b | a ∈ Ai, b ∈ Aj , i 6= j} = Λ(G \ {0}). (7)

Furthermore, since the multiset of external differences from A1 comprises λ1 copies of each
nonzero group element, it is also the case that each nonzero group element occurs precisely
λ1 times as an external difference from ∪i 6=1Ai into A1 (since the multiset of such external
differences can be obtained by negating the multiset of external differences out of A1). Hence
each non-zero group element ocurs 2λ1 times as an external difference involving A1. From this
we can deduce that each nonzero group element occurs Λ− 2λ1 times as an external difference
between sets Ai and Aj with i 6= j and i, j 6= 1, so⋃

x∈Ai,i 6=1

Ex = (Λ− 2λ1)(G \ {0}). (8)

Observe that Λ− 2λ1 ≥ 0 is guaranteed by the initial conditions.
Suppose we could find an element v′ ∈ Ai for some i 6= 1 for which |Ev′ ∩ I| ≥ λ1.
Let δ1, . . . δλ1 be distinct elements of Ev′ ∩ I. Let ut = v − δt for 1 ≤ t ≤ λ1. Then

u1, . . . , uλ1 are distinct elements of A1, as δ1, . . . , δλ1 are distinct elements of I. Let ut
′ = v′− δt

for 1 ≤ t ≤ λ1. Then u1
′, . . . , uλ1

′ are distinct elements of ∪j 6=1,iAj as δ1, . . . δλ1 are distinct
elements of Ev′ . (We note that the ut

′ may lie in different Aj and A`, or they may all occur in
a single Aj but that does not affect the rest of this argument.) Let v − v′ = γ ∈ G \ {0}. We
observe that, for each 1 ≤ t ≤ λ1,

ut − ut′ = (v − δt)− (v′ − δt),
= v − v′,
= γ.

So γ ∈ G \{0} occurs as an external difference from A1 a total of λ1 + 1 times - a contradiction.
Thus for all v′ ∈ Ai (i 6= 1), we must have |Ev′ ∩ I| ≤ λ1 − 1.
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We now count the number N of pairs (θ,Ex) where θ ∈ I ∩ Ex and x ∈ Ai for some i 6= 1.
There are |I| = k1 − 1 choices for θ. As each nonzero element of G occurs Λ − 2λ1 times in⋃
x∈Ai,i 6=1Ex, we see that for each of these θ there are Λ− 2λ1 values of x for which θ ∈ Ex, so

that N = (k1 − 1)(Λ− 2λ1).
The number of distinct sets Ex with x ∈ Ai for some i 6= 1 is

∑m
j=2 kj = K − k1. By the

Pigeonhole Principle there exists x for which the set Ex contains at least

N

K − k1
=

(k1 − 1)(Λ− 2λ1)

K − k1

elements of I. Whenever this quantity is at least λ1, i.e. strictly greater than (λ1− 1), we have
|Ev′ ∩ I| ≥ λ1 for some v′. Thus no such GSEDF will exist if

(k1 − 1)(Λ− 2λ1)

K − k1
> λ1 − 1.

It is clear that the same argument will hold with 1 replaced by any appropriate i ∈ {1, . . . ,m}
for which the conditions in the theorem statement are satisfied.

Observe that taking ki = k and λi = λ for all 1 ≤ i ≤ m yields Theorem 4.1, while further
setting ki = k and λi = 2 for all 1 ≤ i ≤ m yields Theorem 3.1.

7 Concluding remarks

This paper establishes various conditions under which SEDFs and GSEDFs can exist, and estab-
lishes a structural characterization of partition type SEDFs in the m = 2 case. Future directions
are two-fold; the fine-tuning of such necessary conditions, with the aim of completely charac-
terising the possible parameters sets, and the development of further construction methods and
structural characterizations. One specific open problem concerns the existence of SEDFs with
λ = m = 2 when k is less than the maximum possible size of n−1

2 . It would be desirable to gain
further understanding of the general case when m = 2. By [10], the next-smallest m for which
SEDFs may exist is m = 5; further investigation of this case would be another natural focus.
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