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ABSTRACT: The tetramisole promoted catalytic enantioselective [2,3]-sigmatropic rearrangement of quaternary ammonium salts 

bearing a (Z)-3-fluoro-3-arylprop-2-ene group generates, after addition of benzylamine, a range of β-fluoro-β-aryl-α-amino penten-

amides containing a stereogenic tertiary fluorine substituent. Cyclic and acyclic nitrogen substituents, as well as various aromatic 

substituents are tolerated, giving the β-fluoro-β-aryl-α-amino pentenamide products in up to 76% yield, 96:4 dr and 98:2 er. 

The development of methods for the selective incorpora-

tion of fluorine into amino acid derivatives has grown exten-

sively in recent years. These targets are of interest as probes in 

PET1 and NMR2 for studying the behavior of enzymes,3 and 

for incorporation into peptide structures and drug candidates.3,4 

The most common strategies to incorporate a fluorine-

containing stereogenic carbon involve either C-F or C-C bond 

formation, exploiting chiral fluorine sources, chiral starting 

materials, or prochiral fluorine-containing substrates.5 Despite 

advances in these areas, the preparation of -amino acid de-

rivatives containing a stereogenic tertiary fluorocarbon still 

represents a significant challenge in synthetic chemistry.6 

Typical methods to prepare these structures use cyclic con-

straints and enantioenriched starting materials to achieve high 

selectivity.7 The current state-of-the-art in this area has been 

developed independently by the groups of Jacobsen and Zhou, 

who demonstrated the organocatalytic construction of this 

motif. Jacobsen et al. (Figure 1a) used the thiourea 3-catalyzed 

asymmetric Mannich reaction of fluorinated 1,3-diketones 1 

and α-chloro amino esters, such as 2, to give 4.8 This approach 

gave 4 in good yield and excellent enantioselectivity, although 

with poor diastereoselectivity (67%, 98:2 er, 54:46 dr). Zhou 

investigated the organocatalyzed Mukaiyama-Mannich reac-

tion of cyclic fluorinated silyl enol ethers 5 and cyclic N-

sulfonyl ketimines 6 (Figure 1b).9 Benzosultam products 8 

were isolated in excellent yield and stereocontrol (≥78%, 

≥95:5 er, and >20:1 dr), but only 3 examples were demonstrat-

ed and prolonged reaction times were required.  

Building on previous work using isothioureas as Lewis 

bases in enantioselective catalysis,10,11 we envisaged an alter-

native approach for the synthesis of β-fluoro-β-aryl-α-amino 

acid derivatives through an organocatalyzed [2,3]-sigmatropic 

rearrangement of allylic ammonium salts.12 In this manuscript 

we demonstrate that rearrangement of ammonium salts bear-

ing a (Z)-3-fluoro-3-arylprop-2-ene substituent allows the 

enantioselective construction of functionalized β-fluoro-β-

aryl-α-amino acid derivatives containing a stereogenic tertiary 

fluorine-substituted β-carbon in up to 96:4 dr and 98:2 er. 

 

Figure 1. Context of this work. 
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The (Z)-3-fluoro-3-phenylprop-2-ene substituted ammo-

nium salt 12 was chosen as a model compound for optimiza-

tion studies. Treatment of 12 with catalysts 10, 14–16, co-

catalytic HOBt (20 mol %), and iPr2NH was initially trialled 

using a 1 hour reaction time as standard (Table 1).12 Hyper-

BTM 14 and quinidine 15 gave the rearrangement product 13 

in poor yield (23%) and in essentially racemic form in each 

case (entries 1 and 2). The use of benzotetramisole 16 and 

tetramisole hydrochloride 10 returned the product in high 

diastereo- and enantioselectivity (entries 3 and 4), with higher 

yield using 10 (62% vs 40%). Employing 10 as the optimal 

catalyst, the influence of temperature was investigated. De-

creasing the temperature to −20 °C resulted in decreased yield 

and enantioselectivity (entry 5, 23%, 84:16 er), while increas-

ing the temperature to 40 °C or 80 °C led to increased enantio-

selectivity (entries 6 and 7, up to 95:5 er). Alternative polar 

solvents were trialled at 40 °C, with ethylene carbonate (EC) 

showing high enantioselectivity (entry 8), while DMSO and 

DMF gave diminished stereoselectivity (entries 9 and 10, up to 

87:13 er). Reducing the catalyst loading to either 10 or 5 mol 

% gave reduced yield and stereocontrol (entries 11 and 12).  

Table 1. Optimization of reaction conditions.a 

 

entry catalyst solvent T [°C] yield [%] drb erc,d 

   1e 14 MeCN    20 23 90:10 55:45 

   2e 15 MeCN    20 23 92:  8 51:49 

   3e 16 MeCN    20 40 93:  7 10:90 

   4e 10 MeCN    20 62 93:  7 89:11 

   5e 10 MeCN −20 23 96:  4 84:16 

  6 10 MeCN    40 52 92:  8 95:  5 

  7 10 MeCN    80 54 91:  9 93:  7 

  8 10 EC    40 56 93:  7 97:  3 

  9 10 DMSO    40 58 88:12 87:13 

10 10 DMF    40 74 88:12 85:15 

 11f 10 MeCN    40 28 89:11 86:14 

 12g 10 MeCN    40 33 88:12 81:19 

a 0.20 mmol of substrate, b determined by 19F{1H}-NMR analysis 

of the crude reaction mixture, c determined by chiral HPLC analy-

sis after purification, d ratio of (2S,3S)-13:(2R,3R)-13, e reaction 

time overnight, f 10 mol % of 10, g 5 mol % of 10. 

With optimum conditions for the model substrate identi-

fied, the influence of nitrogen substitution upon the [2,3]-

rearrangement was investigated. Due to operational simplicity 

MeCN was chosen as the optimal solvent, although a number 

of compounds were prepared in both EC and MeCN for com-

parison (Figure 2). All starting materials were prepared using 

Sonagashira coupling and AgF-promoted hydrofluorination as 

key steps.13 Rearrangement of an N,N-diallyl ammonium salt 

gave selective [2,3]-rearrangement at the (Z)-3-fluoro-3-

phenylprop-2-ene group, giving 17 with good stereocontrol 

(64%, 92:8 dr, 87:13 er). Higher diastereo- and enantioselec-

tivity, but reduced yield, was observed in EC (54%, 95:5 dr, 

91:9 er). Further investigation showed that a wide range of 

cyclic nitrogen substituents are tolerated in this process, with 

pyrrolidinyl, piperidinyl and azepanyl derivatives 18–20 being 

prepared in good yields and with high diastereo- and enantio-

control (62 – 69%, 91:9 – 94:6 dr, 95:5 – 98:2 er). Alternative 

nitrogen heterocycles (isoindolyl, 4,5,6,7-tetrahydrothieno-

[3,2-c]pyridinyl, N-Boc piperazinyl and morpholinyl) were 

also successfully incorporated giving products 21–24 with 

generally good yields and stereoselectivity (up to 92:8 dr and 

91:9 er). However, attempted chromatographic purification of 

22 led to extensive decomposition, while trituration allowed 

its isolation but in a poor 14% yield.  

Figure 2. Substrate Scope – variation of N-substitution.a  

 

a Results in parentheses performed in EC. dr determined by 
19F{1H}-NMR analysis of the crude reaction mixture. er deter-

mined by chiral HPLC analysis after purification. b Product puri-

fied using basified silica. c Product precipitated from 

CH2Cl2/hexanes.  

The relative and absolute configuration within product 

20 was determined using X-ray crystallography, with the 

expected gauche relationship between the C-F and C-N bond 

of the secondary amine observed (Figure 3).14 All other exam-

ples were assigned by analogy.15 
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Figure 3. Molecular representation of the X-ray crystal structure 

of (2S,3S)-20. 

The influence of varying aryl substitution within the (Z)-

3-fluoro-3-arylprop-2-ene unit was also investigated (Figure 

4). Incorporating electron-deficient p-nitro and p-

trifluoromethyl substituents gave rearrangement products 25 

and 26 in good yields with marginally reduced enantioselectiv-

ity (58% and 56% respectively, 84:16 and 87:13 er). A range 

of m- and p-halogenated aryl groups was tolerated, giving 27-

29 in good yields and enantioselectivity (58 – 76%, 92:8 – 

94:6 er). Sterically challenging o-substituents were also tested, 

with o-bromo substitution giving 30 in reduced yield and 

moderate stereoselectivity, while α-naphthyl substitution gave 

31 with good stereocontrol (92:8 dr, 90:10 er). Both p-tolyl 

and m-anisyl substituents were tolerated, giving rearrangement 

pro-ducts 32 and 33 with excellent stereocontrol (92:8 dr, 94:6 

er). In addition, rearrangement of a number of N,N-diallyl 

substituted substrates was probed, giving products 34-36 in 

acceptable yield and stereocontrol (56 – 67%, up to 93:7 dr 

and 87:13 er) arising from selective [2,3]-rearrangement of the 

cinnamyl group. Notably the observed enantiocontrol was 

consistently lower in comparison to that of the corresponding 

N,N-dimethylamino analogues. Unfortunately the effect of 

incorporating an electron rich p-anisyl substituent could not be 

evaluated as this substrate proved impossible to prepare due to 

fluoride elimination.13 

The mechanism of this rearrangement process 

(Scheme 1, illustrated for the formation of 13 from 12) is 

believed to proceed via initial acylation of isothiourea 10 with 

ammonium salt 12 to give dicationic species 37. Subsequent 

deprotonation gives the ylide 38, with [2,3]-sigmatropic rear-

rangement leading to acyl isothiouronium derivative 39. The 

catalyst is regenerated either through the addition of 

1-hydroxybenzotriazole (HOBt) to 39 to form HOBt ester 40, 

with subsequent addition of p-nitrophenoxide giving 41, or 

direct acylation of p-nitrophenoxide with 39 to give 41. Addi-

tion of BnNH2 gives the isolable product 13.12b 

Figure 4. Substrate Scope – variation of aryl substitution.a  

 

a dr determined by 19F{1H}-NMR analysis of the crude reaction 

mixture. er determined by chiral HPLC analysis after purification. 

Scheme 1: Mechanistic and Stereochemical Proposal 
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The observed stereocontrol is consistent with the [2,3]-

sigmatropic rearrangement proceeding through the endo pre-

transition state assembly 42. In this arrangement, a 1,5-S•••O 

interaction16,17 serves to limit conformational flexibility, with 

the stereodirecting phenyl substituent adopting a pseudoaxial 

position to minimize 1,2-strain. [2,3]-Rearrangement proceeds 

anti- to the phenyl substituent with the cinnamyl unit partici-

pating in a stabilizing cation / -interaction with the isothiou-

ronium cation, giving rise to the observed stereocontrol.  

To conclude, a range of enantioenriched tertiary  

β-fluoro-β-aryl-α-amino amides has been successfully synthe-

sized using an organocatalytic [2,3]-sigmatropic rearrange-

ment strategy. In general, highest yields and stereoselectivity 

were obtained for substrates with N,N-dimethyl, pyrrolidinyl, 

piperidinyl or azepanyl N-substituents. Halogen substituents in 

the p- and m-position of the aryl group were well tolerated, 

whereas electron-withdrawing (p-trifluoromethyl and p-nitro) 

and o-substituted aryl groups lead to reduced enantioselectivi-

ty. Further application of this methodology, and of isothiou-

reas in enantioselective catalysis, is currently underway. 
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