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Abstract

The short-lived radionuclide 53Mn decays to 53Cr providing a relative chronometer for
dating the formation of Mn-rich minerals in meteorites. Secondary ion mass spectrometry
(SIMS) has been extensively used for in situ dating of meteoritic olivine and carbonate by
the 53Mn-53Cr system, however a significant analytical challenge has been realising accurate
measurements of the Mn/Cr ratio in individual minerals of differing chemical compositions.
During SIMS analysis, elements are ionised with differing efficiencies and standard materials
are required to calibrate measured ion intensities in terms of relative elemental concentrations.
The carbonate system presents a particular analytical difficulty since such standards are not
naturally available due to low and variable Cr contents. Here, we utilise ion implantation
of Cr into carbonate and other phases to accurately determine the relative sensitivity factors
(RSFs) of Mn/Cr during SIMS analysis. We find significant variations in Mn/Cr RSF values
among different carbonate minerals that depend systematically on chemical composition and
we propose an empirical correction scheme that quantitatively yields an accurate RSF for
carbonates of diverse chemical compositions. Correction of previous SIMS carbonate data
for this strong matrix effect may help to reconcile some outstanding problems regarding the
timescales of aqueous alteration processes in carbonaceous chondrites. Mn-Cr ages, revised
based our new understanding of the matrix effect, are, in general, earlier than previously
thought and the duration of carbonate formation is shorter.

Preprint submitted to Geochimica et Cosmochimica Acta October 26, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/161931808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Keywords: Early Solar System chronology, 53Mn, Cr isotopes, Secondary Ion Mass
Spectrometry, Relative Sensitivity Factor, Matrix Effect

1. Introduction1

Secondary ion mass spectrometry (SIMS, or ion microprobe analysis) is a widely used2

analytical technique for in situ determination of isotopic ratios and trace element abundances.3

SIMS analysis is commonly applied to natural and synthetic samples at length-scales typically4

ranging from tens of micrometers to sub-micrometer. Compared to most other mass spec-5

trometry methods, SIMS offers significant advantages where high spatial resolution and/or6

low blanks are a major priority (see Ireland, 1995, for a review). However, due to the nature7

of the sputtering process, ion yields in SIMS vary dramatically from one element to another.8

Measured ion ratios must therefore be corrected by a relative sensitivity factor (RSF) in order9

to compute accurate inter-element ratios in the sputtered volume of a given sample. In practi-10

cal terms, this is addressed by analysing a standard material under instrumental conditions as11

similar to those used for the analysis of the unknown as is possible to achieve. The standard,12

whether natural or synthetic, must have a known concentration of the element of interest and it13

should be homogeneous at a scale larger than the scale of analysis. Ideally, it should also have14

the same bulk chemical composition and crystallographic structure as the analyte sample.15

For many applications, well characterised minerals are readily available for use as stan-16

dards, however in other cases, it can be nearly impossible to find (or difficult to produce)17

materials which are a close match to the analyte. In such cases, accuracy of analyses can18

be potentially compromised by uncalibrated differences in the RSF (for a given element or19

isotope ratio) between that determined on a standard and that appropriate for the unknown20

analyte. Such differences arise because sputtering and ionisation yields in SIMS depend on21

complex interactions of the primary ion beam with the matrix of the solid sample being anal-22

ysed and hence are generically referred to as ‘matrix effects’.23

In this contribution, we focus on a solution to a particularly troublesome matrix effect24

that has vexed an important SIMS application: the use of the short-lived radionuclide 53Mn25

(half-life of 3.7 Ma, Honda and Imamura, 1971) as a chronometer for dating the formation26

of carbonate minerals in the early solar system (Endress et al., 1994; Endress et al., 1996;27
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Hutcheon et al., 1998; Hoppe et al., 2007; de Leuw et al., 2009; Petitat et al., 2011; Fujiya28

et al., 2012; Jilly et al., 2013; Fujiya et al., 2013). In general, the analytical requirement for de-29

termining the former abundance of any short-lived (now-extinct) radionuclide in an early solar30

system object is the demonstration of a spatial correlation of excesses of the daughter isotope31

with the parent to daughter elemental ratio (see McKeegan and Davis, 2003, for a discussion).32

Because 53Mn decays to 53Cr, the inference of the initial 53Mn abundance in a carbonate min-33

eral is based on the slope of the correlation line between the 53Cr/52Cr isotope ratio and the34

55Mn/52Cr elemental ratio. Here we show that SIMS measurements of this elemental ratio35

may be inaccurate by up to a factor of two over the range of carbonate compositions found in36

meteorites. This large matrix effect has not been previously documented because of the lack of37

availability of carbonate minerals with known, homogeneously distributed Cr impurities that38

can serve as standards. We quantify Mn/Cr relative sensitivity factors for a range of carbonate39

mineral compositions by the method of ion implantation (Leta and Morrison, 1980; Burnett40

et al., 2015) and suggest implications for early solar system chronology.41

1.1. SIMS Relative sensitivity factors for Mn/Cr ratios42

The RSF is defined here as the scaling factor that multiplies measured ion ratios to derive43

relative concentrations:44

RSF =
Ca/Cb

Ia/Ib
(1)

where the subscripts a and b denote elements a and b, respectively, and Cx represents the45

true concentration of the element and Ix the measured signal intensity during SIMS analysis.46

This factor must be measured under the same conditions as the measurement of the unknowns,47

but once determined to sufficient precision it does not need to be repeated as long as the condi-48

tions of analysis are stable. There were early efforts to theoretically determine the sensitivities49

for analyses, however, due to the complexity of the sputtering process, these were found to be50

less accurate than empirical determination based on calibrated standards (Smith and Christie,51

1978).52

1.2. Previous studies of Mn/Cr RSF for Mn-Cr dating53

In order to maximise the isotopic shift due to decay of the radiogenic parent isotope,54

materials with very high parent to daughter ratios are chosen for analysis. Thus, for Mn/Cr55
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dating minerals are chosen which preferentially incorporate Mn, possibly as a major lattice56

forming element, and exclude Cr from the crystal structure.57

Numerous studies have examined the Mn/Cr chronologies of meteoritic olivine (Glavin58

et al., 2004; Sugiura et al., 2005; Ito and Ganguly, 2006; Matzel et al., 2009; McKibbin et al.,59

2013a,b) and carbonate (Endress et al., 1994; Endress et al., 1996; Hutcheon et al., 1998;60

Hoppe et al., 2007; de Leuw et al., 2009; Petitat et al., 2011; Fujiya et al., 2012; Jilly et al.,61

2013; Fujiya et al., 2013). These studies provide a good illustration of the problems asso-62

ciated with RSF calibration and the different approaches employed to obtain relative Mn/Cr63

chronologies.64

Although use of the Mn/Cr chronometer in meteoritic olivine has a long history (e.g.65

Hutcheon et al., 1998) a systematic investigation of the Mn/Cr RSF in olivine has been un-66

dertaken only recently (Matzel et al., 2009; McKibbin et al., 2013b). McKibbin et al. (2013b)67

investigated the variation in Mn/Cr RSF in olivine using the SHRIMP-RG (Ireland et al.,68

2008) by analysing Mn/Cr ratios in different olivines ranging from forsteritic to more fayalitic69

compositions. Interestingly, McKibbin et al. (2013b) and Doyle et al. (2016) found significant70

variation in the Mn/Cr RSF, up to ∼50 %, between different compositions of olivine. This71

underlines the importance of systematically investigating the variation in the Mn/Cr RSF in72

meteoritic carbonates, which generally exhibit more compositional complexity than does the73

Fe-Mg solid solution series in olivine. Unfortunately, for the reasons discussed below, appro-74

priate natural standards do not exist and synthesis of carbonates with uniform Cr contents is75

difficult so the approach of McKibbin et al. is not generally viable for carbonates.76

1.3. Mn/Cr RSF in carbonates77

Some carbonates preferentially incorporate Mn as a matrix element at percent levels, while78

excluding Cr to only trace amounts, resulting in ratios that can reach the 106 range. This mag-79

nitude of parent/daughter ratios yields large anomalies in the Cr isotope composition meaning80

that the age, or (53Mn/55Mn)0 ratio, can generally be determined very precisely by SIMS.81

Hoppe et al. (2007) attempted to determine the Mn/Cr RSF by direct measurement of syn-82

thetic carbonates, and while the Cr concentration could be precisely determined by bulk meth-83

ods, individual carbonate grains were found to be highly heterogeneous on the scale of a few84

microns when examined by SIMS, leading to a significant imprecision in the resulting RSF.85
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Thus, determining a Mn/Cr ratio that is appropriate for SIMS corrections by a bulk method86

is extremely challenging because of the low and highly heterogeneous Cr concentration of87

available carbonates (e.g. Hoppe et al., 2007). This means that the imprecision in determining88

RSF values can mask potential systematic uncertainties due to matrix effects. Regardless of89

the precision achieved for an isochron measured on a series of grains of a given carbonate90

mineral, even if they vary widely in Mn/Cr ratios, unless the RSF is accurately known, the91

ages deduced from these isotopes may be systematically incorrect.92

More significantly though, there may be variations in the matrix effect between carbonates93

of different bulk composition. This would mean that currently only ages from carbonates with94

the same bulk composition could be considered together. Because of the lack of suitable car-95

bonate standards from which to determine a RSF, many previous studies used the Mn/Cr RSF96

determined from silicate standards (principally olivine) to estimate that of carbonate. Clearly,97

the use of a single RSF to correct Mn/Cr matrix effects not only ignores the possibility of98

a different matrix effect between carbonates and silicate, but also variation in RSF between99

carbonates of different compositions. This problem was appreciated by previous investigators100

(e.g. Endress et al., 1996; Hutcheon et al., 1998), but it was hoped that matrix effects between101

olivine and carbonate would be relatively small (tens of percent at most) and constant among102

carbonates of various composition. If the latter condition applied, then it was reasoned, that103

all carbonate ages might be inaccurate relative to silicate ages by some fixed factor, but among104

carbonates the timescales deduced would have relative accuracy. That is, carbonates of dif-105

ferent compositions would have ages that were inaccurate by the same scaling factor (e.g.,106

Petitat et al., 2011). Documented variations in the Mn/Cr RSF between different carbonate107

compositions would therefore call into question the accuracy of such ages.108

2. Relative sensitivity factors by ion implantation109

The fundamental requirement for any standard useful for SIMS is that abundances of the110

elements in question be known as a function of spatial coordinate. For major elements (e.g.,111

Mn), concentrations and possible zonation can be determined by electron microprobe meth-112

ods, however, this is typically not possible for Cr in carbonates because of detection limits.113

Thus, what is required is a suite of samples with known, homogeneously distributed Cr con-114
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centrations. Such samples can be readily produced by the method of ion implantation (Zinner115

and Walker, 1975; Leta and Morrison, 1980; Burnett et al., 2015). In effect, ion implantation116

is analogous to isotope dilution for determining concentrations (Inghram, 1954). A series117

of sample materials can be implanted simultaneously which results in a single concentration118

for the implant. The major requirements with this approach are that the concentration of the119

implanted isotope must be significantly greater than the natural impurity levels in the stan-120

dard material and the implant fluence must be accurately known, otherwise the errors will121

propagate directly into the RSF determination. Here we review some factors to consider in122

optimising the accuracy and utility of this method of standard development.123

2.1. Choosing the optimum implant characteristics124

There are several considerations when choosing the conditions under which the implant125

will be made. The first is which isotope to implant. From an analytical perspective it is126

preferable to implant a minor isotope because the precision of a background subtraction based127

the natural isotopic composition is thereby enhanced. However, for certain elements it is128

difficult to obtain an ion beam of high enough intensity to make ion implantation practical,129

meaning that a minor isotope may make the implant prohibitively time consuming (and thus130

expensive). However, implanting a major isotope, for which it is easier to achieve the required131

fluence, does not produce a net advantage because the required fluence also increases by132

the same fraction as the increase in the implanting signal in order to overcome the naturally133

occurring background abundance of the implanted isotope. Therefore, the most important134

consideration when choosing the implanted isotope is that it not be significantly interfered by135

unresolvable isobaric interferences during SIMS analysis.136

The next considerations are the conditions of the implant itself: What energy should be137

used? What fluence is required to achieve the required precision? The energy of the implanted138

ions is an important factor because this controls the depth of the implant distribution. If the139

energy is too low, and the implant peak is in the top ∼50 nm of the sample, then contamination140

from the surface will likely interfere with, and possibly swamp, the measured implant profile.141

On the other hand, if the energy is too high the peak of measured implant profile will be very142

deep, >800 nm, resulting in an impractically long SIMS measurements. The depth of the143

implant peak can be chosen by modelling the implantation process for different ion energies144
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by using the SRIM-2003 code (Ziegler, 2004). The energy of the implanted ion beam will be145

constrained by the energy limits of the implanting instrument. If the limit is too low doubly146

charged ions may be considered, however, the ion source brightness may be lower resulting147

in an excessively long implantation time.148

Two considerations apply when choosing the desired fluence. Firstly, the peak of the im-149

plant should be at least an order of magnitude above the natural concentration of the element150

in the materials of interest. This is required in order to completely overprint the naturally151

abundance of the element of interest which may be heterogeneous and could otherwise dis-152

turb the implant measurement. This method will achieve the best results when applied to153

materials with very low abundances of the element of interest. Secondly, it is also important154

to independently calibrate the implant fluence because the ion implanting instruments have155

low mass resolution so minor interferences can affect the dose measured during the implant156

such that the nominal fluence can only be considered 10-20% accurate (Heber et al., 2014;157

Burnett et al., 2015). The fluence of the implant can be calibrated by comparison with a stan-158

dard of known concentration and ideally ought to exceed this concentration by a factor of 2 to159

10 to enable good precision during SIMS analysis.160

2.2. Determining the implanted fluence161

Following the approach of Leta and Morrison (1980), consider two sputtered regions, j and162

k, of the same mineral which have different, but homogeneous, concentrations of an element.163

As the concentrations are different, the measured count rates will be different. However, ratio164

of the count rate (I) over the concentration (C) will be equal.165

I j

C j
=

Ik

Ck
(2)

If instead of a single homogeneous concentration, one of the regions were an implant, the166

concentration and resulting intensity would change continuously through the implant profile.167

The profile will grow to a maximum and then decay to the natural background level of the168

material. The integrated counts over an implant profile can be considered equivalent to the169

counts over a hypothetical region of constant concentration, Ai = Ahe as seen in figure 1.170

Therefore, these two regions may be compared as before in the homogeneous case, see figure171
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Figure 1: Schematic diagram of an implant profile in a glass with a known concentration of the element of
interest. Ib is the intensity of the background, Cb is the concentration of the background, Ai is the integrated
area of the implant profile, Ahe is a hypothetical region with the same area integrated implant profile, Ihe is
the intensity of a hypothetical region with the same area as the implant profile, Che is the concentration of a
hypothetical region with the same area as the implant profile.

1.172

As the fluence of the implant (F) is the number of atoms implanted per square cm, the173

concentration of the hypothetical region, and so the implant, is equal to174

Ci or he =
F
D
, (3)

where D is the total depth of the analysis, and the intensity the hypothetical region will yield175

is given by176

Ii or he =
Ai

t
, (4)

where t is the total time of the analysis. Substituting equations 3 and 4 into equation 2, and177

rearranging, the fluence of the implant can be determined by178

F =
CbDAi

Ibt
. (5)

Note that if the daughter element has more than one isotope the concentration Cb, or Ib, must179

be normalised for its isotopic abundance.180
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Once the implant fluence has been independently calibrated it is possible to determine the181

RSF of any material that was implanted during the same implanting session, and so with the182

same fluence, as the standard material.183

2.3. Determining the RSF of an unknown material184

The RSF of an unknown sample may be determined using the same principles. Taking185

equation 1 we can replace the term for the true concentration of the daughter (Cd) with equa-186

tion 3 and the term for the count rate of the ion probe measurement (Id) with equation 4. After187

simplifying this yields188

RSF =
CpDAi

IpFt
. (6)

Note that if the parent element has more than one isotope the concentration Cp, or Ip, must be189

normalised for its isotopic abundance.190

2.4. Effects of implanting on crystal structure191

One of the concerns of using an ion implanting technique to investigate matrix effects is192

that the ion implanting itself may change the RSF for a given material. This may occur either193

by changing the composition or structure of the mineral. Firstly, assuming that the implant194

is deposited in the top 250 nm of the carbonate, the fluence that is used in our implantation195

experiments amounts to an addition of ∼50 ppm averaged over the entire implant depth. Even196

if the entire fluence were deposited in only the top 50 nm the concentration would not exceed197

250 ppm. Because this represents such a small change in the matrix, we can assume that any198

effect on the RSF from the implant due to alteration of the matrix composition is negligible.199

A further concern could, in principle, be that the implantation process may alter the matrix200

effect of the minerals by disrupting the crystal structure. It is helpful here to illustrate just how201

low the intensity of the implanting ion beam is. During every second of the 30 - 60 minute202

ion probe analysis, under typical running conditions, the fluence of the primary beam is ∼30203

- 40 times higher than the total fluence of the implant.204
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Figure 2: Ternary diagrams showing the compositions of the implanted carbonate standards and the range of
eventual carbonate unknown samples from primitive meteorites.

3. Methods205

3.1. Samples and Standards206

The ultimate aim of this work is to investigate the variation in RSF of a range of carbon-207

ate minerals in order to determine the accuracy of Mn/Cr ages of carbonates from primitive208

meteorites. The meteoritic samples have a wide range of compositions (Endress et al., 1996)209

covering dolomites (CaMg[CO3]2) and breunnerites ([Mg, Fe]CO3), shown as green stars in210

fig 2. We have chosen a suite of carbonate standards that span the entire compositional range211

of the major carbonates. Manganese-Cr data for two of these breunnerites from the CI chon-212

drite Orgueil are reported below.213

The end-member carbonate compositions which we implanted were calcite, dolomite,214

siderite, magnesite, rhodocrosite and ankerite, see fig. 2. We attempted to directly measure215

the breunnerite RSF, however, the breunnerite grains that were implanted were very small and216

due instrumental limitations in the size of the primary beam are not reported in this study. In217

addition, we implanted San Carlos olivine for comparison with the carbonates and the NIST218

standard glasses SRM 610, SRM 612 and SRM 614 for calibrating the implant fluence.219
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3.2. Ion implantation220

The standards were mounted in 1 inch diameter epoxy mounts. The mounts were polished221

for ion probe analysis by using SiC and diamond polishing cloths and finally 1 μm Al2O3.222

The standard mounts were then coated with ∼15 nm of carbon to avoid charging during ion223

implantation. These mounts were fixed on a Si wafer (10 cm in diameter) using carbon tape224

and graphite paint. Several Si wafer chips were fixed at the same height as carbonate and glass225

mounts spread over a larger area of the implant target. The Si wafer chips were subsequently226

examined to estimate the homogeneity of the implant as described below.227

The Si wafer, with the carbonate and silicate standards and Si wafer chips attached, was228

then implanted with a 185 keV 52Cr+ ion beam. The beam was rastered over a 12 x 12 cm229

grid exceeding the area of the wafer surface. Faraday cups located at the four corners of the230

rastered area monitored the implant dose and homogeneity. The nominal implanted fluence231

was 4×1013 cm−2. The implanting was carried out by CuttingEdge Ions, Anaheim California.232

3.3. Secondary ion mass spectrometry233

Ion implanted standards were analysed using the CAMECA IMS 1270 at UCLA. Depth234

profiles were measured in both the NIST glasses, to calibrate the implant fluence, and the235

carbonates to determine the range of Mn/Cr RSFs according to the methods described above.236

After ion implantation the samples were gold coated and sputtered with a 22.5 keV O primary237

ion beam. In order to minimise impact energy and therefore improve depth resolution, we in-238

vestigated use of an O−2 primary ion beam. This primary beam yielded a 60 % higher intensity239

(cps·nA−1) Cr+ secondary ion beam than O− did under identical instrumental conditions and240

so was used for all analyses. Primary beam currents ranged from ∼2 to 10 nA. The primary241

beam was tuned to a ∼20 μm spot and was rastered over a ∼100 μm by ∼100 μm area of242

each implanted sample. A rectangular field aperture was inserted into an imaged field plane243

to restrict transmitted ions to the central 20 by 20 μm. The exact raster and field aperture244

size varied slightly between analytical sessions based on the conditions of the primary beam245

but the relative sizes were kept constant from one sample to another and between analytical246

sessions. Secondary ions were collected with both an electron multiplier (EM) for the implant247

profile and trace elements and Faraday cup (FC) for matrix elements. The EM and FC were248

inter-calibrated by measurement of a single ion beam tuned to 0.5×106 cps and 1×106 cps.249
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Figure 3: Plots showing a characteristic 52Cr implant profile measured in an ankerite. The left panel is shows a
linear scale to illustrate the true shape of the implant profile and the right panel shows a log scale to demonstrate
that a stable background is reached. The initial 400 s of the depth profile are characterised by an enhanced
Cr signal due to contamination from the surface of the mount ’gardened’ in by the primary beam and non-
equilibrium sputtering. These surface features can be removed by either peak stripping based on the measured
surface contamination of 53Cror by using a SRIM (Ziegler, 2004) to model correct the shape of the implant
profile to replace the affected data. Experiments show that both techniques yield essentially identical results
(much better than the reproducibility between measurements).

The deadtime correction of the EM was adjusted by the duty cycle of the raster which was250

determined by measuring the beam with the dynamic transfer lens of the instrument set to251

transmit the entire beam through the field aperture or only the analytical area or interest.252

We examined the energy distributions of Mn and Cr and found there was no discernible253

offset between them. In order to minimise the chances of a difference in energy distribution254

inducing a matrix effect, a wide energy window of 50 eV was set and sample charging was255

monitored every 10 measurement cycles (∼3-4 minutes), adjusting the accelerating voltage as256

needed to keep the initial kinetic energy of transmitted secondary ions as constant as possible.257

The samples and standards were sputtered through the peak of the profile until the signal258

had decayed and reached a stable background, see fig. 3. The time that this required varied259

significantly from session to session and mineral to mineral, ranging from 45 mins to 3 hours,260

though most depth profiles concluded within 1 to 1.5 hours.261

Two breunnerite grains from the primitive carbonaceous chondrite Orgueil were analysed262

with almost identical analytical parameters. The most significant difference was the use of263

a spot rather than a raster, the implications of this for the instrumental RSF are discussed in264
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section 5.3. Corrections for instrumental mass dependent fractionation in Cr isotopes were265

made by sample standard bracketing using San Carlos Olivine and NIST glasses 610 and266

612. Potential for inaccuracy in the measured ratios resulting from statistical bias due to low267

denominator count rates (Ogliore et al., 2011; Coath et al., 2013) was examined. Correction268

using the ratio of sums method (Ogliore et al., 2011) and the method of (Coath et al., 2013)269

were found to yield identical result with error.270

3.4. Electron Microprobe Analysis271

Major element compositions of the carbonates and olivine were determined using the272

UCLA JEOL JXA-8200 Superprobe. Samples were analysed using a 15 kV accelerating273

potential and 10 nA beam defocused to a 10 μm spot to limit sample damage. The measure-274

ment counting times were 20 s with a 5 s background measurement. An in house rhodocrosite275

standard was used for MnO and standards from the Smithsonian National Museum of Natural276

History were used for Ca (calcite), Fe (siderite) and Mg (dolomite). Standard ZAF corrections277

were used to obtain cation abundances and CO3 anion contents were calculated by difference.278

3.5. Depth Measurements279

It is important to accurately know the ion probe raster pit depths in order to determine280

either the fluence of the implant or the RSF of carbonates, see section 2 and equations 5 and281

6. The depths were determined using a Bruker DektakXT stylus profilometer at the Molecular282

Materials Research Center, Caltech. The instrument has a vertical resolution of 0.1 nm and283

was calibrated with certified step height standards before and after every analytical session.284

Slight deviation from the certified values (∼1 %) was observed in the step height standard data.285

This deviation was never outside error of the certified values, however, it was consistently in286

the same direction for all step height standards which is extremely unlikely to occur due to287

chance. The deviation was corrected in the unknowns with a linear interpolation through288

the step height standard data. Based on a pooled dataset of every analysis of step height289

standards and unknown SIMS pits the external reproducibility is estimated to be 4.2 % at 2290

standard deviations (2 S.D.) for a single analysis. Unknowns were measured between 2 and 9291

times. Depth measurements were also made by using a ADE Phase Shift MicroXAM Optical292

interferometer, however, for some samples this method proved unreliable due to the difference293
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in reflectivity between the pit depth and the gold coated surface. No depth measurements294

determined using the MicroXAM were used for the RSF analyses reported here295

4. Results296

4.1. Implant Fluence297

The NIST standard glass SRM 612 with a chromium concentration of 36.26 ±1.16 ppm298

(Jochum et al., 2011) was used to calibrate the fluence of the implant (note in their paper299

Jochum et al. report uncertainty as the relative standard deviation in percent, here we have300

converted this into 2 SD absolute error). This standard was chosen because it has the ap-301

propriate concentration relative to that of the implant; the peak of the implant is ∼10 times302

higher than the background signal. This glass was measured six times under the conditions303

described above and yielded an average value of 4.31 ±0.09×1013 cm−2 (±2.1 % 2 standard304

errors (2 S.E.)) for the fluence. We estimate the overall uncertainty by summing in quadra-305

ture the analytical reproducibility with the contribution due to the uncertainty in the NIST306

glass concentration; the propagated errors yield a final uncertainty of 0.16×1013 (3.8 %). The307

calibrated value is approximately 10 % higher than the nominal implanted fluence given by308

the ion implanter. This discrepancy is somewhat puzzling. Ion implanting offers significant309

challenges for accurate fluence determination, however, where errors occur it is typical for310

implanted fluences to be too low rather than too high. This is because an interference in311

the implanting ion beam will increase the apparent dose causing the integrated current to be312

reached too soon. A fluence that is too high suggests that either the currents measured by313

the Faraday cups were not calibrated accurately, or when the beam was rastered across the314

sample it did not fully enter the Faraday cups. Both of these would act to reduce the apparent315

dose, and so increase the time exposure to achieve the desired nominal fluence. Regardless of316

the reason for the discrepancy, the fluence of the implant has been independently calibrated317

by measurement of the SRM 612 NIST glass standard and so this can have no effect on the318

Mn/Cr RSFs determined in this work. Moreover, the homogeneity of the implant was mea-319

sured by examining the Si wafer chips and showed that the implant is homogeneous to within320

1.8 % across the entire implanted area, which is less than the analytical uncertainties on the321

fluence or RSF measurements.322
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4.2. Variation in the Mn/Cr RSF in carbonates323

Our depth profiles reveal significant variation in the Mn/Cr RSF in the implanted carbonate324

standards, see table 1 and figure 4. As can be seen in figure 4, these RSF results broadly325

correlate with the composition of the carbonates as indicated by the FeO+MnO content. A326

similar, though positive, correlation is observed between CaO+MgO vs. RSF, though it is not327

clear to what extent this is simply due to the decreasing Fe and Mn concentrations (or vice328

versa). The measured Mn/Cr RSFs extend considerably below 1 with the lowest value being329

found in the samples which have the highest concentrations of Fe and Mn, the siderite and330

the rhodocrosite. The samples with intermediate concentrations of Fe and Mn, for example331

dolomite and ankerite, show RSF values between ∼0.7 and 0.8, respectively. Calcite has the332

lowest concentration of FeO+MnO and, somewhat surprisingly, has a Mn/Cr RSF greater than333

1. The correlation of the RSF with composition is not perfect, and its range from ∼0.2 to ∼1.2334

is large and denotes a very significant matrix effect.335
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Measured Predicted

RSF 2se RSF 2se CaO 2se MgO 2se MnO 2se FeO 2se

Ank 0.69 0.03 0.78 0.06 50.92 0.64 17.19 1.46 1.77 0.60 30.12 1.55
Cal 1.16 0.20 1.03 0.14 99.13 0.19 0.48 0.06 0.13 0.07 0.25 0.17
Dol 0.74 0.04 0.89 0.07 54.83 0.41 32.58 0.34 0.68 0.13 11.92 0.45
Mag 0.81 0.08 0.85 0.05 1.69 0.81 95.08 1.00 0.25 0.09 2.99 0.37
Ol 0.91 0.06 0.78 0.05 0.12 0.05 84.75 0.26 0.21 0.03 14.92 0.25
Rho 0.25 0.02 0.25 0.02 8.35 1.28 2.61 0.13 86.40 1.28 2.64 0.20
Sid 0.39 0.07 0.36 0.03 0.62 0.29 4.56 0.49 5.84 0.40 88.98 0.58

Table 1: Table showing the measured and predicted RSF and compositions major elements (wt.%) of a range of
carbonates and San Carlos Olivine.

4.3. Uncertainties on RSF measurements336

The reported Mn/Cr RSFs are the product of several different measurements including: the337

depth profile of the 52Cr implant fluence, the calibration of the implanted 52Cr, the depth mea-338

surement of the ion probe pit and the electron probe measurement of the Mn concentration.339

All of these measurements have associated uncertainties that must be propagated into the final340

RSF uncertainty. The external reproducibility of an RSF measurement has been estimated341

as 7 % from a pooled dataset of repeat measurements of the ankerite, dolomite and siderite342

using a method described by Steele et al. (2011). This was summed in quadrature with the343

other measurement errors that contribute to the overall uncertainty. In this way an individual344

uncertainty for each measurement of an RSF was produced. The Mn/Cr RSF and analytical345

uncertainty for each carbonate and the olivine were then determined as the weighted mean346

of repeat measurements and its associated uncertainty. Finally these were combined with347

the error contribution from the fluence measurement to yield a final uncertainty including all348

contributions.349

4.4. Comparison to previous data350

There are two reasons for comparing our new RSF data with previously determined Mn/Cr351

RSFs. Firstly, we want to assess the agreement of our study with previous work on similar352

materials. The second reason is that we have measured a wider range of samples than has353
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previously been possible and our new data may have implications for previously published354

Mn/Cr ages which we discuss below.355

Only two of the minerals that we have measured, calcite and olivine, have been previously356

analysed in other studies. The most widely studied mineral is olivine; many investigators357

have used San Carlos olivine when determining a Mn/Cr RSF. In a recent study, McKibbin358

et al. (2013b) have shown the true complexity of this endeavour by demonstrating that there359

is significant variation in the RSF of olivine depending on composition along the Mg-Fe solid360

solution. Interestingly, in common with this study, McKibbin et al. (2013b) also observe a361

relationship between the Mn/Cr RSF and the Fe concentration. Previously reported values for362

the Mn/Cr RSF of San Carlos olivine are summarised in figure 5. As can be seen in this figure363

there is significant variation outside of analytical error.364

Two of the data, at the high and low extreme values, may not be directly comparable with365

the remaining majority of the data. The majority of the instruments used were variations of the366

0.4 0.8 1.2 1.6
Mn/Cr RSF (True/SIMS)

This Study

Mckibbin et al.

Sugiura et al.

Jogo et al.

Hoppe et al.

Hutcheon et al.

Jilly et al.

Petitat et al.

Doyle et al.

Figure 5: Figure summarising literature data for the Mn/Cr RSF of San Carlos olivine. Data from Hutcheon
et al. (1998); Hoppe et al. (2007); Jogo et al. (2009); Petitat et al. (2009); Sugiura et al. (2010); McKibbin et al.
(2013b); Jilly et al. (2014); Doyle et al. (2016). Note Hoppe et al. (2007) did not give an uncertainty on their
RSF and Hutcheon et al. (1998) did not state if they used the measured/true or true/measured definition of the
RSF so both are plotted.

17



CAMECA ion probe. However, the data reported by McKibbin et al. (2013b) were collected367

with the SHRIMP-RG, which has somewhat different impact geometry and transmission char-368

acteristics to the CAMECA instruments. In addition, the highest RSF is that reported by Jogo369

et al. (2009) who analysed high energy ions (offset voltage of 100 V), whereas the rest of the370

data represent only measurements of secondary ions sputtered with low initial kinetic ener-371

gies.372

Even excluding these extreme data, which represent distinct analytical conditions, there373

still exists significant variation (∼30 %) outside analytical uncertainties. This could be ex-374

plained as being due to the range of different instruments and specific analytical conditions375

used among the various studies. On average, San Carlos olivine, when analysed with a for-376

ward geometry CAMECA ion probe with minimal energy filtering, yields an RSF of around377

1. The RSF we measure for San Carlos olivine (0.91 ±0.06) is on the lower side of those378

reported in the literature, however, small differences might be expected between instruments.379

The range of RSFs values in carbonates is therefore striking since these were measured by380

one technique, on one instrument, under the same analytical conditions.381

The other mineral that has been previously studied by multiple laboratories is calcite. The382

calcite grown by Sugiura et al. (2010) has also been measured by Jilly et al. (2014). While383

Sugiura et al. (2010) investigated the Mn/Cr RSF using the CAMECA NanoSIMS, Jilly et al.384

(2014) used a CAMECA ims 1280, a similar instrument to the one used in this study. The two385

studies yielded similar results 1.27 ±0.08 (Sugiura et al., 2010) and 1.42 ±0.36 (Jilly et al.,386

2014). It must be noted that Jilly et al. (2014) measured profiles across the calcite using an387

electron probe and found the Mn and Cr concentration to be higher in the centre. Though388

the measured Mn/Cr ratio did not show the same trend, both the Mn/Cr ratio and the RSF389

varied outside analytical uncertainties. The error reported by Jilly et al. (2014) is the standard390

deviation of this variation. The calcite Mn/Cr RSF determined by Jilly et al. (2014) and391

Sugiura et al. (2010) is within error of the value determined by our ion implantation method,392

1.16 ±0.20. Thus, our results for the Mn/Cr RSF for the two minerals (San Carlos olivine and393

calcite) which have been previously reported are broadly consistent with literature values.394

The second reason to compare our results with previous data is to see if our new results395

are within the range of RSFs previously applied to carbonates. The range of RSFs previously396
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used for correcting the Mn/Cr matrix effect in carbonates is shown by the grey area in figure397

4. Almost all of our data fall outside the range of previously used RSFs, though of course we398

have measured the RSF of a much larger range of carbonate minerals than previous studies.399

This range in RSFs has significant implications for the Mn/Cr ages obtained by these studies,400

see section 5.5 below for a discussion.401

4.5. Mn/Cr data for Meteoritic Carbonates402

To illustrate the process and the effect of the correction we present Mn/Cr ages for two403

breunnerites from the primitive carbonaceous chondritic meteorite Orgueil, see table 2 and404

figure 6. The data were collected under identical analytical conditions to the depth profiles405

with the exception that a raster was not used (due to the small grain size). The data have been406

corrected for the matrix effect by using the olivine RSF of 0.78 ±0.06 and RSFs estimated407

from equation 7, 0.55 ±0.08 for Breun-33 and 0.60 ±0.04 for Breun-25, see section 5.2. As408

can be seen from figure 6 there is a significant change in the slope of the isochron. The data409

for Breun-25 are shifted from an age 6.6 +1.2
−1.0 Ma after CAI based on the olivine RSF to 3.5410

+1.2
−1.0 Ma corrected using the breunnerite RSF. Though the 2 standard deviation (s.d.) errors411

overlap, largely due to the significant analytical uncertainty for Mn/Cr measurement of this412

carbonate, this represents a shift of >2 σ. The data for Breun-33 are more precise and yield413

a better resolved shift. Using the olivine RSF the data yield 3.6 +0.5
−0.5 Ma after formation of414

CAIs, whereas with the breunnerite RSF calculated using equation 7 the data yield an age415

of 1.8 +0.5
−0.4 Ma. Due to the more precise isochron, primarily due to the large range in Mn/Cr416

ratio, this produces a well-resolved change of >4.6 σ. These ages, and those in figure 9, are417

anchored to the D’Orbigney angrite by 207Pb-206Pb age 4563.37 ±0.25 Ma from Brennecka418

and Wadhwa (2012) and the Mn/Cr data from McKibbin et al. (2015) that yield (53Mn/55Mn)0419

= 3.54 ±018 ×10-6. Importantly, Brennecka and Wadhwa (2012) directly measured the U420

isotope composition of D’Orbigney and so the Pb-Pb age for D’Orbigney has been corrected421

for U isotope fractionation. The age of calcium, aluminium rich inclusion (CAI) formation422

was estimated from the two studies which have published U-corrected Pb-Pb ages of CAI423

(Amelin et al., 2010; Connelly et al., 2012) as 4567.30 ±0.16 (Connelly et al., 2012). Implicit424

in this anchoring process is an estimate of the (53Mn/55Mn)0 of the Solar System which yields425

7.4 ×10-6 which is within the range of recent previous estimates (6.28 ×10-6 to 9.1 ×10-6
426
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Trinquier et al., 2008; Nyquist et al., 2009, respectively). The implications of these data for427

early Solar System chronology and aqueous alteration on the CI parent body are discussed428

below, see section 5.5.429

Also included in table 2 are 1/52Cr data. These may be used to examine to what extent430

the correlations are controlled by variation in Mn or Cr concentration. In both cases the431

correlation between 53Cr/52Cr and 55Mn/52Cr is better than the correlation between 53Cr/52Cr432

and 1/52Cr (Breun-25 MSWD = 1.42 and 5.28 while Breun-33 MSWD = 2.90 and 4.83). It is433

clear, however, that the Cr concentration plays the dominant role in controlling the variation434

of the 55Mn/52Cr, but this is not unexpected. Manganese is a matrix element in breunerite and435

so is relatively homogeneous in concentration. Chromium on the other hand is excluded from436

the crystal structure and known to by highly heterogeneous (Hoppe et al., 2007). Therefore,437

the variation in the 55Mn/52Cr is controlled primarily by regions with anomalously high Cr. It438

must be remembered that this in no way precludes in situ decay, it simply does not prove that439

the correlations are not mixing lines.440

Sample 55Mn/52Cr 2se 55Mn/52Cr 2se 53Cr/52Cr 2se ρ 1/52Cr 2se
Ol RSF Carb RSF

Breun-25-1 1120 88 736 56 0.11342 0.00100 -0.07 1.32×10−5 8.71×10−7

Breun-25-2 1013 80 666 51 0.11402 0.00100 0.08 1.34×10−4 1.05×10−5

Breun-25-3 1543 121 1014 77 0.11522 0.00102 0.28 2.01×10−4 1.00×10−5

Breun-25-4 1320 103 868 66 0.11361 0.00100 -0.27 1.43×10−4 4.08×10−6

Breun-25-5 1922 151 1264 96 0.11490 0.00101 -0.04 2.14×10−4 6.22×10−6

Breun-25-6 2072 171 1362 109 0.11673 0.00103 0.42 2.19×10−4 1.41×10−5

Breun-25-7 4511 354 2966 226 0.12010 0.00119 0.27 4.85×10−4 2.10×10−5

Breun-25-8 1531 120 1006 77 0.11437 0.00101 0.46 1.74×10−4 8.02×10−6

Breun-25-9 1343 105 883 67 0.11377 0.00100 0.12 2.85×10−4 5.52×10−6

Breun-25-10 2230 305 1466 198 0.11647 0.00413 0.27 3.36×10−4 3.94×10−5

Breun-33-1 22530 7589 13561 4568 0.18343 0.01900 0.96 1.36×10−3 4.17×10−4

Breun-33-2 461 121 278 73 0.11388 0.00811 0.30 3.26×10−5 8.09×10−6

Breun-33-3 68218 16717 41061 10062 0.35767 0.02546 0.93 2.78×10−3 1.49×10−4

Breun-33-4 52195 12791 31416 7699 0.26946 0.03132 0.99 2.26×10−3 3.82×10−4

Table 2: Mn/Cr data for breunnerites from Orgueil. The data are presented corrected for the Mn/Cr matrix effect
using an RSF from olivine and one estimated for the breunnerite composition based on equation 7. Uncertainties
from the RSF correction have been propagated into the uncertainties from the measurement. Also shown is the
correlation coefficient (ρ) between the errors in 55Mn/52Cr and 53Cr/52Cr. Errors are 2 σ and represent the internal
error or the external error, whichever is larger.
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Figure 6: Mn/Cr data for breunnerites from Orgueil. The data are presented corrected for the Mn/Cr matrix
effect using an RSF from olivine (stars) and one estimated for the breunnerite composition based on equation 7
(circles). The data corrected for the Mn/Cr matrix effect using the breunnerite RSF yield older ages by 2-3 Ma.

5. Discussion441

5.1. Variation in RSF442

We observe a systematic and large variation in the Mn/Cr RSF of carbonates from ∼0.2 for443

rhodocrosite to 1.2 for calcite. This is reminiscent of the range in Mn/Cr RSF found in olivine444

by McKibbin et al. (2013b), although larger by a factor of 2. As noted by McKibbin et al.445

(2013b), and supported by all the olivine data summarised above, when similar analytical446

conditions are used, minerals of similar chemical composition have Mn/Cr RSFs that are447

comparable, even if measured on different instruments. All data in this study were taken on448

the same instrument using similar conditions, however, we did conduct a series of tests to449

investigate the effects of varying analytical conditions on the Mn/Cr RSF values. Tuning to450

higher mass-resolving power and employing oxygen flooding yielded essentially no variation451

in measured Mn/Cr RSFs. We conclude that the most likely explanation for the variation in452

measured Mn/Cr RSF is due to differences in the surface chemistry of each sample occurring453

during the sputtering process. This conclusion is supported by the correlation between the454

measured RSF and the chemical composition of the carbonate minerals (figure 4). Though it455

is not clear exactly what chemical processes, or characteristics, are controlling the change in456

RSF, the involvement of Fe suggests it could be related to the conductivity of the minerals.457

In support of this hypothesis we note a correlation between the resistivity (the reciprocal of458
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conductivity) and the measured Mn/Cr RSF (figure 7). Although intriguing, this relationship459

is difficult to investigate further due to the lack of published resistivity data for the full range460

of minerals for which Mn/Cr RSF values have been measured.461

The correlation with resistivity potentially raises a concern that our results were some-462

how perturbed by the minerals with higher resistivity (e.g. calcite) charging more during ion463

implantation and, thus, receiving a lower implant dose than more conductive minerals (e.g.464

siderite). However, this goes counter to the observations and is unlikely for several reasons.465

Firstly, we note that our measured RSF for calcite is within error of those previously deter-466

mined by other studies (e.g. Sugiura et al., 2010; Jilly et al., 2014), strongly suggesting that467

they received the same fluence as the standard glass. Secondly, the samples and standards468

were carefully carbon coated and each mount was grounded with carbon tape and paint to the469

Si wafer in order to minimise charging. Finally, if the fluence used to determine the RSF (as470

calibrated in the glass) was lower than the actual implanted fluence, as would be the case for a471

more conductive mineral, this would lead to an erroneously high RSF (equation 6). For these472

reasons we are confident that the calibrated fluence is appropriate for all implanted standards.473
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5.2. Predicting the appropriate RSF for an unknown carbonate474

We conclude that the variations we observe in RSF are due to a systematic matrix effect475

with mineral chemistry. This means is should be possible to find a method to correct for476

variations in mineral matrix so as to predict the appropriate RSF to use for a given carbonate477

sample. This will avoid having to directly determine the RSF on a standard of exactly the478

same composition, which in many cases is not available. Our purely empirical approach has479

the advantage that the composition of a carbonate mineral may be easily and accurately deter-480

mined by electron probe. While the relationship we observe between the measured RSF and481

the Fe+Mn concentration is significant, the correlation is not perfect. Therefore, we sought a482

better way to accurately predict the Mn/Cr RSF for the full range of carbonate compositions.483

One method to improve the empirical correlation between the RSF and the proxy for484

matrix is to vary the coefficients which describe the weighting of the chemical components.485

Simply adding the concentrations of Mn and Fe weights them equally. We used the linear486

model fitting package lm of the R statistical programming language (R Core Team, 2013;487

Chambers, 1992; Wilkinson and Rogers, 1973) to examine the effects of varying the weights488

on the different matrix elements in carbonates on the correlation with measured RSF. We489

used the stepAIC function of the MASS package (Venables and Ripley, 2002) to assess the490

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Measured RSF

P
re

di
ct

ed
 R

S
F

Range of Previous
RSFs

Dolomite
Ankerite
Siderite
Rhodocrosite
Calcite
Magnesite
Olivine

Figure 8: Figure showing the correlation of the measured RSF versus the predicted RSF from equation 7. These
data show good correlation close to unity with a slope of 0.97 ±0.06.
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improvements, or lack of improvement, of each addition to the system. The results of this491

process yield,492

Predicted RSF = −0.0017 · [MgO] + −0.0088 · [MnO] + −0.0069 · [FeO] + 1.0349. (7)

After finding the combination which gave the best fit, a Monte Carlo simulation was made493

to estimate the uncertainty on the predicted RSF using the new weights. These predicted RSFs494

and their uncertainties are given in table 1. The same process may be used to estimate the RSF495

of an unknown based on the MgO, MnO and FeO concentrations and their uncertainties.496

5.3. RSF Future Directions497

We now turn to two questions regarding application of the empirical calibration that we498

have found in this experiment: (1) what future SIMS studies are needed to test how robust are499

the Mn/Cr matrix effects? and (2) is it possible to correct previous Mn/Cr data for matrix ef-500

fects. Regarding the first, the best approach would be to repeat the method we have described501

here with a variety of SIMS instruments to investigate how consistent the matrix effect shifts502

are in carbonates measured by different instruments and under different tuning conditions. We503

would be interested in collaborating on such projects and can provide implanted samples. A504

key question is whether the relative matrix effect we observe between two carbonates is con-505

stant, even if absolute RSF values are shifted, when using a different instrument or analytical506

setups.507

Based on the currently available data, this seems to be the case. For example, Doyle et al.508

(2016) investigated the effects of different tuning parameters, such as spot size and primary509

beam intensity, on the RSF in olivine. They found that there was a small effect on RSF510

induced by different tuning parameters but that the dominant control on variation in RSFs was511

differences in mineral chemistry. Moreover, two recent studies have determined the RSF of512

calcite; using a rastered beam, Sugiura et al. (2010) found an RSF = 1.26 ±0.08, whereas using513

a spot analysis, Jilly et al. (2014) found an RSF = 1.41 ±0.26. Importantly, these are within514

error of each other, and of our estimate (1.16 ±0.20), suggesting that differences between spot515

and raster mode analyses are of secondary importance. Doyle et. al also concluded that the516
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relative changes in RSF between different mineral compositions were constant but that they517

may be shifted by a small amount in an absolute sense by tuning conditions.518

Having said this, the variation in RSF observed in San Carlos by different studies across519

a wide variety of instruments is small by comparison to the matrix effects observed between520

carbonates. This suggests that while the RSFs we have measured are likely not absolute, they521

may accurately describe relative variation in the matrix effect between different carbonates.522

Therefore, the relationship we describe in RSFs may be applied to other studies by normalis-523

ing the relative deviation to a common sample, e.g., the widely available San Carlos olivine,524

to adjust the relative variation to the absolute matrix effect of each individual instrument and525

set of tuning conditions. Future studies can use the relationship we describe here to estimate526

the RSF of unknowns.527

For comparison with literature data an isochron may be corrected directly since any change528

in the Mn/Cr ratio, caused by changes in the RSF, will have a proportional effect on the slope.529

For example, if the Mn/Cr ratio is halved by a change in the RSF the slope of the isochron will530

become steeper by a factor of two. We can correct literature data for the variation we observe531

between different carbonate minerals using the relation532

(53Mn/55Mn)corrected = (53Mn/55Mn)original ×
RSForiginal material

RSFtrue material

. (8)

For example, if the original study determined an RSF using olivine and reported data for533

a dolomite, the slope should be multiplied by 0.78/0.74 = 1.05, resulting in a 5 % steeper534

isochron. The resulting ages will only be an estimate of the true ages since there may be535

subtle variations between instrument and tuning conditions, however, it is likely the general536

variation in RSF between different minerals will remain.537

5.4. Outstanding Problems with the Mn/Cr System538

By accurately correcting the matrix effect more accurate relative ages may be achieved for539

different carbonate minerals. However, the accuracy of absolute Mn/Cr ages is also reliant540

on the accuracy and precision of several other measurements. Firstly, there are uncertainties541

associated with the anchoring of the relative Mn-Cr system to an absolute chronometer. This542

is normally achieved using a precisely determined 207Pb-206Pb age for an angrite for which the543

25



Mn-Cr age has also been determined.544

Another consideration is the accuracy of the 53Mn half-life. Several recent studies have545

significantly revised the half-lives of two important early Solar System short-lived radionu-546

clide, 60Fe (1.5 (Kutschera et al., 1984) to 2.6 Ma (Rugel et al., 2009)) and 146Sm (103 Ma547

(Friedman et al., 1966; Meissner et al., 1987) to 68 Ma (Kinoshita et al., 2012). A more recent548

measurement of the 53Mn half-life placed it a 3.00 ±0.15 Ma (Yoneda et al., 2002) which is549

shorter than the previous estimate of 3.7 ±0.37 (Honda and Imamura, 1971). These changes550

highlight the need to reassess these important natural constants.551

5.5. Implications for early Solar System chronology and parent body processes552

The finding of a large matrix effect on the Mn/Cr RSF of carbonates has implications for553

early Solar System chronology and the aqueous alteration history of Solar System bodies.554

We have demonstrated this with our new data for two breunnerite grains from the CI Orgueil555

accurate correction for the Mn/Cr matrix effect shifts the formation ages of two breunnerite556

grains from the CI chondrite Orgueil to significantly earlier times. To illustrate the potential557

significance of accurately correcting for the matrix effect, we consider previously published558

Mn/Cr data that used RSF values determined from silicate and carbonate minerals and adjust559

those data according to equation 8. Depending on the carbonate mineral, and the material560

used in the original study for matrix correction (usually San Carlos olivine), relative ages561

may get older, younger or stay the same (figure 9). Clearly, these data are only schematic562

and not a substitute for new data which accurately correct for the matrix effect under given563

analytical conditions. However, they demonstrate the likely shifts in the carbonate formation564

ages due to the matrix effect and may present a more reliable overall picture of secondary565

carbonate formation on meteorite parent asteroids than the scenarios that were previously566

based on incorrect RSF values.567

There are several interesting features of the corrected data (figure 9) which may offer so-568

lutions to previous problems. Firstly, the spread of carbonate formation ages is significantly569

reduced, from ∼9 Ma to ∼5 Ma and the ages are significantly closer to the start of the Solar570

System (formation of CAIs). These earlier ages are more compatible with formation by aque-571

ous alteration with fluids produced from heating by 26Al on a small parent body. Secondly,572

the distribution of formation ages of dolomite and breunnerite grains overlap significantly573

26



Time after CAI (Ma)

F
re

qu
en

cy

−2 −1 0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5
(a) Original RSFBreunnerite, n = 10

Dolomite, n = 14
Calcite, n = 3

1 × 105 6 × 106 4 × 106 2 × 106
(53Mn/55Mn)0

Time after CAI (Ma)

F
re

qu
en

cy

−2 −1 0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6 (b) Corrected RSF

1 × 105 6 × 106 4 × 106 2 × 106
(53Mn/55Mn)0

Figure 9: Figure showing Mn/Cr ages after CAI for meteoritic carbonates from the literature (Hutcheon and
Phinney, 1996; Hoppe et al., 2007; Petitat et al., 2009; Hutcheon et al., 1999; Fujiya et al., 2013; Petitat et al.,
2011; Jilly et al., 2014; Fujiya et al., 2012, and this study). The data are presented as originally reported (a) and
corrected for the observed variation in Mn/Cr matrix effect using equation 8. Data for dolomites and breunnerites
are shifted to early ages whereas calcite yield younger ages.

whereas previously, when matrix effects between these carbonates were not understood, it ap-574

peared that there was a gap or lull in carbonate formation between the early dolomite and later575

breunnerite populations (Petitat et al., 2009). The implications of carbonate formation for576

the timescales of accretion of carbonaceous chondrite parent bodies were examined by Fujiya577

et al. (2012, 2013). Based on their models, the revised narrower range of carbonate formation578

ages suggests either lower water ice content or smaller asteroidal radii of ∼30 km for the579

meteorite parent bodies. The size constraint of the body on which the carbonates formed may580
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be relaxed somewhat if the body incorporated lower amounts of 26Al due to heterogeneous581

26Al/27Al.582

6. Conclusions583

We used ion implantation to quantify the SIMS matrix effects on the Mn/Cr RSF in car-584

bonate of varying composition. Measured RSFs can be determined by an empirical calibration585

with carbonate major element chemistry. This correlation may be used to predict the RSF of586

unknown samples thereby removing the need to directly measure the RSF in every sample587

of interest. The relationship we describe in equation 7 may be used to estimate the RSF of588

unknowns in other studies when adjusted by normalisation to a common sample, e.g. San589

Carlos olivine.590

The RSFs predicted for dolomite and breunnerite are less than 1, and fall outside the range591

previously used for correcting the measured Mn/Cr ratios. This suggests that the Mn/Cr ages592

previously determined for meteoritic dolomites and breunnerites are likely not accurate and593

should be adjusted by 3-5 Ma to older ages, while the formation ages of meteoritic calcite may594

move to younger ages by ∼2 Ma. Of course new measurements are required which accurately595

correcting for the Mn/Cr RSF in a specific instrument under constant analytical conditions.596

Because the adjustment is greater for breunnerite than dolomite, previous suggestions of a597

gap in formation times require reconsideration. The shifts in the carbonate ages that are598

suggested by corrections for the matrix effect that we document here, makes it more likely599

that short-lived 26Al can serve as the primary heat source for early aqueous alteration events600

that precipitated carbonates on the parent asteroids of CI and CR carbonaceous chondrites.601
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