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This paper presents the mathematics of the systematic bias in the expected value of the ratio of two noise-corrected Poisson-
distributed variables, such as ion counting measurements. Such bias can lead to the reporting of incorrect ratios and, in some
cases, systematic correlations with other measurements which can impact the scientific interpretation. We describe a novel
method of treating such measurements which results in a negligible, exponentially-small bias. We also re-examine the conven-
tional approach deriving an exact expression for the bias including the noise correction explicitly.

1 Introduction

Analysts measuring a time series of ion beam intensities are
faced with choices of how to process the data in order to esti-
mate intensity ratios. Is it preferable, for example, to calculate
the mean of the ratios, the ratio of the means or is there a bet-
ter approach entirely? At the heart of the problem is the fact
that the mean value a ratio estimator returns, over the long
term, is biased relative to the true ratio being estimated. A
simple example serves to illustrate the phenomenon of bias as
follows. Suppose we write a 1 and a 3 on the faces of coin A
and a 3 and 5 on the faces of coin B. Clearly, the mean value
of a coin flip is 2 and 4 for coins A and B respectively. We
now flip the two coins and record the ratio, B/A, as indicated
by the upturned faces. In such an experiment, there are four
equally probable outcomes: 3/1, 3/3, 5/1, and 5/3. Hence, the
expectation value of the ratio, E(B/A) = (3+1+5+5/3)/4
or 8/3. The expectation value of B/A is the mean value of
B/A over the long term. If we had hoped to estimate the ‘true’
ratio equal to the ratio of the means for each coin, 4/2=2, then
clearly the estimator B/A is biased. We define the bias as the
relative difference between E(B/A) and the true ratio. In this
example, therefore, the bias is (8/3�2)/2 = 1/3.

The situation with ratios of ion-counting signals in isotope
ratio measurements is directly analogous. The number of ions
counted is accurately modelled by Poisson statistics which
states that the probability of detecting X ions is given by

Pois(X ; µx) = e�µx µX
x /X!, (1)
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where µx is the population mean or expectation value of X .
Note that this single parameter, µx, characterises the Poisson
distribution. An analyst may wish to calculate an estimate of
µx/µy, the ratio of the expectation values of two such signals,
X and Y . More generally, it is often the case that analyte sig-
nals are superposed on ‘noise’, whose origin may be in the
detector (darknoise), spectral or contamination during sample
preparation. Regardless of origin the mean noise is often as-
sumed to be constant, is determined empirically and the mea-
sured signals corrected for its contribution. Let the mean noise
contribution to X and Y be µx0 and µy0 respectively. The ratio
to be estimated, R, is, therefore, given by

R =
µx �µx0

µy �µy0
. (2)

In principal, any function, f (X ,Y ), may have it’s bias rela-
tive to R determined by deriving the expectation valve, E( f ),
given by the double summation over all X and Y of f (X ,Y ) ·
Pois(X ; µx) ·Pois(Y ; µy). For example, the commonly-used ra-
tio estimator,

r0 =
X �µx0

Y �µy0
, (3)

is considered in section 2 but, even without detailed analysis,
r0 is clearly problematic for any integer value of µy0, including
zero, as E(r0) does not exist due to the non-zero probability
of events where the denominator, Y �µy0, is zero. In section 3
a novel, quasi-unbiased ratio estimator is proposed, which is
well behaved for all Y and µy0.

1.1 Previous work

Coakley et al.1 and Ogliore et al.2 have shown that X/Y is a
biased estimate of R. Similar approaches by both1,2 yield

E(X/Y )⇡ µx/µy(1+1/µy +2/µ2
y ) (4)
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in the limit of large µy. As we shall show in section 2, this ap-
proximation holds providing Y = 0 events are excluded from
the distribution. Noise correction is not considered explicitly
but, since the method used by these authors is rather general,
it is straightforward to include it as a modification of the dis-
tribution. Note that equation 4 is not a solution to the bias
problem, it is only a means of estimating its magnitude. If it
can be assumed that µy is constant then µy, and hence the bias,
may be estimated and the ratio corrected but such a procedure
lacks generality.

Ogliore et al.2 compare ratio estimators r1 = x̄/ȳ (the ‘ra-
tio of the means’) and r2 = (x/y) (the ‘mean of the ratios’)
where x̄ = n�1 Ân

i=1 xi, and ȳ = n�1 Ân
i=1 yi are the means of

samples xi and yi, and (x/y) = n�1 Ân
i=1(xi/yi) by deriving ex-

pressions for E(r1) and E(r2). Note, however, that these re-
duce to a single problem as follows. Let xi and yi be instances
of independent random variables X and Y respectively where
X has a Poisson distribution with mean µx, which we shall
write X ⇠ Pois(µx), and similarly Y ⇠ Pois(µy). Since the
sum of Poisson variables is itself a Poisson variable, we have
nx̄ ⇠ Pois(nµx) and similarly for nȳ. With this nomenclature,
E(r2) = E(X/Y ) and is given by approximation 4 above and
E(r1) has the same form with µx and µy replaced by nµx and
nµy respectively (see Ogliore et al.2 equations 19 and 22). The
biases in r2 and r1 are, therefore, O(µ�1

y ) and O{(nµy)�1} re-
spectively. Note that both r1 and r2 have, to first order, biases
proportional to the reciprocal of the mean number of counts in
the denominator when the ratio is taken.

Ogliore et al.2 also consider Beale’s ratio estimator, r3,
given by

r3 = r1

✓
1+ cov(x,y)/(nx̄ȳ)

1+var(y)/(nȳ2)

◆
(5)

where cov and var return the sample covariance and vari-
ance respectively. Beale’s estimator reduces the bias to
O{(nµy)�2} but, in common with r1, all n data are reduced
to a single value so any true within-analysis variations in R,
which may be of interest, are obscured.

2 The ratio of noise-corrected poisson vari-
ables

We will assume that the distribution of the ion counts, X and Y ,
obeys Poisson statistics. Furthermore, we will consider only
cases where X and Y are independent. This latter restriction
is not so severe as it might seem since by far the most impor-
tant correlated variations in ion counting signals are common
mode ‘intensity’ fluctuations, that is, proportional changes in
both µx and µy which largely cancel by taking the ratio. Of
course, common mode variations will not be completely re-
jected on account of any intensity dependence of the bias.

Let R be defined as given by equation 2 and let Z be dis-
tributed like Y but truncated at y0, that is, the probability dis-
tribution function, Pr(Z), is given by

Pr(Z; µy,y0) =

(
0 for Z  y0

N ·Pois(Z; µy) for Z > y0
(6)

where N is a normalisation constant and y0 is an integer. To
satisfy ÂPr(Z) = 1 the normalisation constant required is

N = y0!/g(y0 +1,µy)

= 1/P(y0 +1,µy)

where g is the incomplete gamma function and P the nor-
malised incomplete gamma function3. We shall choose y0 to
be sufficiently large to ensure Z �µy0 cannot be zero or nega-
tive, i.e. y0 � bµy0c. Note that, in cases of large signal to noise
ratio, the probability of Y  µy0 may be so small as to make
excluding these events notional in practice. We shall now de-
rive an expression for the expectation value of

r =
X �µx0

Z �µy0
, (7)

which is the conventional expression for the noise-corrected
ratio but with rejections to avoid zeroes or negative values in
the denominator.

For independent random variables we can separate them
thus

E(r) = E(X �µx0) ·E(1/(Z �µy0))

= (µx �µx0) ·E(1/(Z �µy0))

reducing the problem to one in a single variable, Z, so we can
drop the subscript y, i.e. µy0 ! µ0 and µy ! µ .

The Taylor series expansion of 1/(Z �µ0) about µ0 = 0 is,

1/(Z �µ0) = (1/Z)
•

Â
k=0

(µ0/Z)k. (8)

Note that the truncation of the distribution ensures |µ0/Z|< 1,
guaranteeing convergence. To take the expectation value of
the right-hand side (RHS) of equation 8 requires an expression
for the expectation value of 1/Zk. This problem is addressed
in the appendix and given by equation 25. Substituting into
equation 8 gives,

E
✓

1
Z �µ0

◆
= N

•

Â
k=0

µk
0

•

Â
j=k+1

ak+1( j)
µ j ·P(y0 + j+1,µ),

where coefficients ak( j) are given by equation 26 (or, more
conveniently for computational purposes, using a1( j) = ( j�
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1)!, a j( j) = 1 and the recursion 11). Changing the order of
the summation,

E
✓

1
Z �µ0

◆
= N

•

Â
j=1

P(y0 + j+1,µ)
µ j

j�1

Â
k=0

ak+1( j)µk
0 . (9)

The first few values of ak( j) are,

j = 1 2 3 4 5
a1( j) 1 1 2 6 24
a2( j) 1 3 11 50
a3( j) 1 6 35
a4( j) 1 10

From the exact form equation 9, we can derive an asymp-
totic form in the limit as µ ! • and bounded µ0 by replacing
the infinite sum with a finite sum, and using P(y0+ j+1,µ)!
1, which is true so long as y0 and j are also bounded. Hence,

E
✓

1
Z �µ0

◆
=

n�1

Â
j=1

1
µ j

j�1

Â
k=0

ak+1( j)µk
0 +O(1/µn) (10)

Define the bias, B(µ,µ0), as the relative difference between
E(1/(Z �µ0)) and 1/(µ �µ0), i.e.

B(µ,µ0) = (µ �µ0) ·E(1/(Z �µ0))�1.

Substituting from equation 10 and after some cancellation we
have

B(µ,µ0) =
1
µ
+

n�1

Â
j=2

1
µ j

 
j!+

j�1

Â
k=1

µk
0(ak+1( j+1)�ak( j))

!
+

O(1/µn).

From equation 27 it follows that

ak+1( j+1)�ak( j) = j ak+1( j), (11)

hence

B(µ,µ0) =
1
µ
+

n�1

Â
j=2

1
µ j

 
j!+ j

j�1

Â
k=1

ak+1( j)µk
0

!
+O(1/µn).

For example, putting n = 3 we have

B = 1/µ +(2+2µ0)/µ2 +O(1/µ3) (12)

in agreement with Coakley et al.1 and Ogliore et al.2 for the
case µ0 = 0.

3 Quasi-unbiased ratios

Here we present an alternative ratio estimator which reduces
the bias to a factor which is exponentially small or quasi-
unbiased. Furthermore, the method does not require trunca-
tion of the distribution so all the measured data can be used.

Let Y be distributed as before. We define a new random
variable,

Y 0(Y,µ0) = (Y +1)/M(1,Y +2,µ0) (13)

where M(a,b,z) is the Kummer confluent hypergeometric
function. The series expansion of M is4

M(a,b,z) =
•

Â
k=0

(a)k

(b)kk!
zk (14)

where (a)k is the rising factorial or Pochhammer’s symbol,

(a)k =

(
1 for k = 0
a(a+1)(a+2) . . .(a+ k�1) for k = 1,2, . . .

Explicitly,

E(1/Y 0) = (µ �µ0)
�1(1� e�µ+µ0).

Proof. From equation 13 the expectation value is given by

E(1/Y 0) = e�µ
•

Â
y=0

µy

y!
· M(1,y+2,µ0)

(y+1)

= e�µ
•

Â
y=0

(1)yµy

(2)yy!
M(1,y+2,µ0).

A summation of this form is given by Prudnikov et al.5 which
is

•

Â
y=0

(b�a)yµy

(b)yy!
M(a,y+b,µ0) = eµ M(a,b,µ0 �µ).

Substituting a ! 1 and b ! 2 gives,

•

Â
y=0

(1)yµy

(2)yy!
M(1,y+2,µ0) = eµ M(1,2,µ0 �µ)

= eµ(M(1,1,µ0 �µ)�1)/(µ0 �µ)
= eµ(1� eµ0�µ)/(µ �µ0)

where we have used Gradshteyn and Ryzhik6 equation 9.212
and M(1,1,z) = ez.

Let B0 be the bias of E(1/Y 0) relative to (µ �µ0)�1,

B0(µ,µ0) = (µ �µ0)E(1/Y 0)�1

=�e�µ+µ0 .
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Therefore, noise-corrected quasi-unbiased ratios, r0, can be
computed from measurements of Poisson events X and Y with,

r0(X ,Y ) =
(X �µx0)

(Y +1)
·M(1,Y +2,µy0). (15)

Using equation 15 a ratio can be calculated at each cycle of
data collection and, if required, statistics on these such as the
mean and standard deviation. This contrasts using either the
ratio of the means, r1, or Beale’s estimator, r3, both of which
return a single ratio from a set of n measurements.

Figure 1 compares conventional and quasi-unbiased ratios
from 128 cycles of measurements on 10B and 11B. The ion
counts have been summed in ‘blocks’ of p cycles, the ratio
taken for each block and the mean over all blocks plotted. The
value of p, therefore, controls integration period and the to-
tal number of blocks, q = 128/p. Let the total counts in each
block be xi and yi for the two isotopes, where i= 1,2, . . .q. We
use p = 1,2,4,8 and 16 and plot the means of r0(xi,yi) · (ty/tx)
(red) and (xi/yi) · (ty/tx) (blue) against mean of 1/yi, where
tx and ty are the cycle integration times for the two isotopes.
The ‘ratio of the means’, equivalent to putting p = 128, is also
shown and is indistinguishable from Beale’s estimator. The
noise is negligible for these data and has been set to zero.
Both 11B/10B and its reciprocal are plotted to demonstrate
that the effect is independent of which isotope is chosen as the
denominator. The plots show that, to first order and, as pre-
dicted by theory, the conventionally-processed data, shown in
blue, plot as a straight line with equal slope and intercept. The
y-intercept, which corresponds to counts ! •, should equal
the unbiased ratio. Our novel quasi-unbiased ratio estimator
(equation 15), shown by the red data have, as expected, no bias
regardless of the number of counts.

Figure 2 shows the results of a Monte-Carlo simulation with
µx = µy = 20 and noise from 0 to 15. The simulation shows
the noise-corrected ratio calculated in four ways: (i) conven-
tionally without data rejection (equation 3), (ii) convention-
ally with rejection when the denominator is zero or negative
(equation 7), (iii) Beale’s estimator, and (iv) quasi-unbiased
(equation 15) all with µx0 = µy0 = b. The mean of 106 ra-
tio estimations is plotted for each value of the noise, which is
incremented in steps of 0.01. The simulated quasi-unbiased
ratios are closer to unity (no bias) than either of the conven-
tional ratios or Beale’s estimator over the entire range of b,
although significant scatter does occur for large b (see cap-
tion). Beale’s estimator (equation 5) on the noise-corrected
data requires, for each of the 106 simulated ratio estimations,
the variance, covariance and mean intensities to be calculated.
We calculate these statistics from a dataset of n simulated data
pairs, {xi,yi; i = 1 . . .n}, and to make the comparison with the
other estimators fair we draw these from a Poisson distribution
with mean value 20/n, from which noise of b/n is subtracted.

0.000 0.002 0.004 0.006 0.008
3.65

3.66

3.67

3.68

3.69

(mean counts of 10B in integration period)−1

1
1
B

/1
0
B

(a)

3.658  →

y=3.487 x + 3.658

0.000 0.002 0.004 0.006
0.2730

0.2735

0.2740

0.2745

0.2750

(mean counts of 11B in integration period)−1

1
0
B

/1
1
B

(b)

0.2733→ 

y=0.2493 x + 0.2733

Fig. 1 Boron isotope ratios (a) 11B/10B and (b) 10B/11B as a
function of the mean number of counts per integration period
showing the conventionally computed ratios in blue and the novel
quasi-unbiased ratios (equation 15) in red. Ratios are calculated for
each integration period in the analysis and the mean value plotted.
Note that the quasi-unbiased ratios (red) show no trend and give the
desired result regardless of the integration period. All plotted points
are computed from the same 128 cycles of data by summing the
counts in blocks of p adjacent cycles for p = 1,2,4,8, and 16,
dividing the analysis into 128/p integration periods. The greatest
bias in the blue data corresponds to p = 1 which plots at the far
right. The ‘ratio of the means’ is also shown (open blue symbol),
which is equivalent to p = 128, close to Beale’s estimator (not
shown) which lies below the open symbol in both (a) and (b) by
0.0056% and 0.0035% respectively. See main text for further
details. Data are raw secondary-ion mass spectrometry (SIMS) data
from an analysis of a foraminifera using a CAMECA IMS 1270.
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Beale’s estimator is now

r3 =
n�1 Ân

i=1 x0i
n�1 Ân

i=1 y0i

0

@
1+ cov(xi,yi)

n�1 Ân
i=1 x0i Ân

i=1 y0i

1+ var(yi)
n�1(Ân

i=1 y0i)
2

1

A , (16)

where

x0i = xi �b/n (17)

and similarly for y0i. A value of n = 10 is used for the simu-
lation of figure 2. A simplified variation on Beale’s estimator
for Poisson data, r03, which is independent of n, may be ob-
tained by substituting n ! 1, cov(xi,yi) ! 0, var(yi) ! Y,
x0i ! X �b and y0i ! Y �b giving,

r03 =

 
X �b

Y �b+ Y
Y�b

!
. (18)

These substitutions are arrived at by noting that, for in-
dependent Poisson distributions, E{cov(X,Y)} = 0 and
E{var(Y)}=E(Y). Simulations of both r3 and r03 are included
in figure 2. Note that for zero noise, r03 = X/(Y +1), i.e. iden-
tical to r0 (equation 15), and for b > 0 the (absolute) bias of r03
is marginally greater (more negative) than that of r3.

0 5 10 15
0.00

0.50

1.00

1.50

Noise, b

R
a
ti
o

µ=20

0 2 4 6

0.95

1.00

1.05

1.10

Fig. 2 Monte-Carlo simulation of (X �b)/(Y �b) (blue),
(X �b)/(Z �b) (green), Beale’s estimator (grey, see main text),
simplified Beale’s estimator r03 (cyan, equation 18) and the novel
quasi-unbiased ratio, r0 (red, equation 15) with µx0 = µy0 = b,
where X and Y are independent Poisson variables with means, µx
and µy, equal to 20 and Z = Y for Y > b and rejected otherwise. For
each data point the simulation computes the mean over 106 samples.
Rare single events where Y is small can significantly shift the mean
r0 for large values of b giving rise to the observed scatter in the red
data for b & 10. Black lines show the theoretical behaviour in the
cases of the green and red data. Much of the blue data are obscured
behind the green. The noise, b, is incremented in steps of 0.01.

Figure 3 compares the variance of r0 (equation 15) with that
of r (equation 7) as a function of mean signal, µx = µy =
µ , for three different noise to signal ratios. Over the plot-
ted parameter range the variance of r0 is always the smaller
(var(r0)/var(r) < 1) and, therefore, more efficient ratio esti-
mator.

10
0
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1
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2
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1.0
Noise / Signal

b/µ= 0%,5% and 10%

Signal, µ
V

a
r 

(r
’)
 /
 V

a
r 

(r
)

Fig. 3 Variance of quasi-unbiased ratio, r0 (equation 15), divided by
the variance of r = (X �b)/(Z �b) as a function of mean signal,
µx = µy = µ , for relative noise, b/µ = 0, 5% and 10% showing that
the variance in r0 is always smaller than that of the conventional
ratio, r, over this range of parameters.

4 Discussion

Quasi-unbiased ratios offer advantages over conventional
methods of calculating noise-corrected ratios of ion-counting
measurements, namely, (i) an exponentially small statistical
bias, (ii) no need to sacrifice within-analysis information by
summing counts over entire analysis before taking the ratio,
(iii) insensitivity to common-mode changes in signal intensity,
(iv) no mathematical singularities, and (v) good stability even
with low signal to noise ratios (& 2).

Ratio bias has increasing importance in isotope ratio mea-
surements since the scientific demands lead researchers to
strive for ever higher precisions on small quantities of sample.
This is particularly the case in secondary-ion mass spectrom-
etry (SIMS) where, because of low blanks, very low count
rates are acceptable. In studies on short-lived radionuclides
(SLRs) (e.g. see7–10) the bias is particularly insidious as it can
give rise to an apparent linear relationship between measure-
ments of the daughter nuclide and a proxy for the parent nu-
clide on a so-called ‘isochron’ plot. To illustrate, consider the
SLR 60Fe which decays to 60Ni. A suite of measurements are
made on phases with a range of Fe/Ni ratios and an isochron
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plot is made of the daughter, 60Ni, against the parent element,
Fe. Both are plotted as ratios using some stable isotope of
Ni as the denominator. A straight line with positive slope (the
isochron) indicates that 60Fe was present at the time the Fe and
Ni were fractionated between the phases. It is sometimes the
case that most or all of the variation in Fe/Ni is controlled by
the Ni content which, since it appears in the denominator on
both axes, will give rise to a linear relationship in the data as a
consequence of the bias, adding to the positive slope due to in-
growth of 60Ni. Huss et al.11 have recently reported this prob-
lem with some of their own published data on the 60Fe–60Ni
system concluding that in some, but not all, samples their pub-
lished estimates of initial 60Fe can no longer be distinguished
from zero. They also discuss the likely size of any corrections
to other published work on10Be, 26Al and 53Mn concluding
that any changes to the published conclusions are small ex-
cept for one older study on the Mn–Cr system in pallasites.

Note that, where internally-normalised ratios are calculated,
i.e. where a third isotope is used to correct for mass-bias, the
magnitude of the statistical bias can increase or decrease, de-
pending on the relative mass differences, by propagation of
the bias of the normalising ratio. For example and assuming
a linear mass bias law, in the case of 60Ni/61Ni normalised to
62Ni/61Ni the statistical bias on 60Ni/61Ni increases by a factor
of two, whereas using 62Ni as the denominator the statistical
bias on 60Ni/62Ni stays the same magnitude but changes sign
as it does in the case of 26Mg/24Mg normalised to 25Mg/24Mg.
For 53Cr/52Cr normalised to 50Cr/52Cr the statistical bias in-
creases by a factor of 1.5.

Studies where mass-bias correction is made by sample–
standard bracketing are potentially susceptible to statistical
bias in cases where there are differences in analyte concentra-
tion (ion count rate) between sample and standard. Standards
are usually chosen to have analyte concentrations high enough
that good precision can be achieved in a short time under the
same analytical conditions employed on the sample. Where
ion counts are higher on standards than samples and ratios
are calculated conventionally, the statistical bias will result in
systematically high ratios reported on samples corrected by
sample-standard bracketing. In short, sample-standard brack-
eting does not necessarily eliminate the bias.

Huss et al.11 rightly point out that ratio bias is a problem
that the community will have to be aware of to avoid this
source of systematic error in future work. However, we dis-
agree that the best solution is necessarily to sum the counts
over the entire analysis before taking the ratio (with or with-
out using Beale’s ratio estimator), or to correct for the bias
based upon equations 4 or 12, for the reasons (i) – (v) given at
the beginning of this discussion, but rather to use equation 15
to compute the ratio r0 at each measurement cycle.

It may seem laborious to have to evaluate the Kummer con-
fluent hypergeometric function for every measurement cycle

but this should not be particularly so if (i) a good library of
special functions is available to the software developers or (ii)
the signal to noise ratio is sufficiently high to be able to trun-
cate the infinite series of equation 14 to yield an approximate
value for M(1,Y + 2,µ0). The truncation error, en, using an
upper summation limit of n�1 in equation 14 is given by,

en =
•

Â
k=n

µk
0

(Y +2)k
. (19)

Let a = µ0/(Y + 2) be subject to the constraint 0  a < 1.
This constraint is not severe: it is sufficient only that the signal
is at least as large as the mean noise (and both are positive).
Since (Y +2)k � (Y +2)k we may write,

en 
•

Â
k=n

ak (20)

 an

1�a
. (21)

Making n the subject of the inequality,

n � log{en(1�a)}
log(a)

. (22)

Therefore, if we wish to calculate M(1,Y +2,µ0) with a trun-
cation error no larger than n we can use

n =

⇠
log{n(1�a)}

log(a)

⇡
(23)

and

M(1,Y +2,µ0)⇡
n�1

Â
k=0

µk
0

(Y +2)k
. (24)

E.g. n = 10�4, Y = 10 and µ0 = 0.5 gives n= 3 and truncation
error, en = 6⇥10�5, smaller than n as required.
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Appendix

A.1 The expectation value of 1/Zl

For Z distributed as a truncated Poisson distribution (equation
6) we have

E(1/Zl) = N
•

Â
j=l

al( j)P(y0 + j+1,µ)
µ j (25)
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where,

P(a,z) = g(a,z)/(a�1)! a = 1,2, . . .

is the normalised incomplete gamma function and g is the in-
complete gamma function3. The coefficients al( j) are given
by l �1 nested summations

al( j) = j! · (1/ j)
j�1

Â
j1=l�1

(1/ j1)
j1�1

Â
j2=l�2

(1/ j2) . . .
jl�2�1

Â
jl�1=1

(1/ jl�1)

(26)

or, alternatively, by al( j) = j!bl( j) and the recursion

bl+1( j) =

(
1/ j for l = 0;
(1/ j)Â j�1

k=l bl(k) for l � 1.
(27)

The proof of equation 25 can be subdivided into proofs of

1/Zl =
•

Â
j=l

al( j)
(Z +1) j

(28)

and E(1/(Z +1) j) =
N
µ j ·P(y0 + j+1,µ) (29)

where we have used Pochhammer’s symbol, (Z + 1) j = (Z +
1)(Z + 2) . . .(Z + j) . The proof of equation 29 yields easily
as follows. From the probability distribution function defined
in equation 6 it follows that

E(1/(Z +1) j) = Ne�µ
•

Â
z=y0+1

µz

(z+1) jz!

=
Ne�µ

µ j

•

Â
z=y0+1

µz+ j

(z+ j)!

=
N
µ j

 
1� e�µ

y0+ j

Â
z=0

µz

z!

!

=
N
µ j ·P(y0 + j+1,µ)

where we have used Arfken12 equation 10.70 in the final step
completing the proof.

Equation 28 yields as follows. Denote

{p} j = 1/(p) j.

Given integers s � 0 and t � s we have

Â
sz<t

{z+1} j = ({s+1} j�1 �{t +1} j�1)/( j�1) (30)

Proof: for s = t, obviously RHS = LHS = 0. For t > s, by
induction on t � s using

RHS(s, t)�RHS(s, t �1) = ({t} j�1 �{t +1} j�1)/( j�1)
= ((t + j�1){t} j � t{t} j)/( j�1)
= {t} j

= LHS(s, t)�LHS(s, t �1) ⇤

Define

hl( j) =
•

Â
jl�1= j+1

(1/ jl�1)
•

Â
jl�2= jl�1+1

(1/ jl�2) . . .

•

Â
j0= j1+1

(1/ j0){ j0 +1}n, (31)

that is, l nested summations where each lower limit is the next
outer summation variable. We have explicitly

hl( j) = 1/nl · { j+1}n. (32)

Proof: by induction on l. From the definition (equation 31)
follows the recursion

hl( j) =

(
{ j+1}n for l = 0;
Â•

k= j+1 hl�1(k)/k for l � 1.
(33)

The result is trivial for l = 0; for l > 0, substituting the RHS
value for hl�1(k) (equation 32) into the recursion (equation
33),

hl( j) =
•

Â
k= j+1

1/nl�1 · {k+1}n/k

= 1/nl�1 ·
•

Â
k= j+1

{k}n+1

= 1/nl · { j+1}n

using equation 30 with t ! •, s ! j, and j ! n+1. ⇤
Changing the order of summation and combining equations

31 and 32 gives

{ j+1}n/nl =
•

Â
j0= j+l

(1/ j0){ j0 +1}n

j0�1

Â
j1= j+l�1

(1/ j1)

j1�1

Â
j2= j+l�2

(1/ j2) . . .
jl�2�1

Â
jl�1= j+1

(1/ jl�1).

With j ! 0 and substituting using the identity n!{ j0 + 1}n ⌘
j0!/(n+1) j0 ,

1/nl =
•

Â
j0=l

j0!(1/ j0)/(n+1) j0

j0�1

Â
j1=l�1

(1/ j1)

j1�1

Â
j2=l�2

(1/ j2) . . .
jl�2�1

Â
jl�1=1

(1/ jl�1).

With n ! Z this completes the proof of equation 28 and,
hence, also of equation 25.
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