
ar
X

iv
:1

80
8.

09
87

0v
1

 [
cs

.P
L

]
 2

9
A

ug
 2

01
8

Memory Consistency Models using Constraints

Özgür Akgün, Ruth Hoffmann, and Susmit Sarkar

School of Computer Science, University of St Andrews, UK
{ozgur.akgun, rh347, ss265}@st-andrews.ac.uk

Abstract. Memory consistency models (MCMs) are at the heart of con-
current programming. They represent the behaviour of concurrent pro-
grams at the chip level. To test these models small program snippets
called litmus test are generated, which show allowed or forbidden be-
haviour of different MCMs. This paper is showcasing the use of constraint
programming to automate the generation and testing of litmus tests for
memory consistency models. We produce a few exemplary case studies
for two MCMs, namely Sequential Consistency and Total Store Order.
These studies demonstrate the flexibility of constrains programming in
this context and lay foundation to the direct verification of MCMs against
the software facing cache coherence protocols.

Keywords: Memory Consistency · Concurrent Programming · Litmus
Tests · Constraints Programming · Modelling.

1 Introduction

Concurrent programming is orchestrated through the software facing cache co-
herence protocols and the hardware facing memory consistency models. The
orchestration ensures that the many processors do not interfere with shared
resources or receive inconsistent data. A memory consistency model (MCM) de-
scribes the observed behaviour on the hardware between processors and memory.
While a cache coherence protocol (CCP) limits the behaviour of the program to
mimic the behaviour of the hardware. Part of the testing of MCMs and CCPs is
to check their executions of litmus tests. Litmus tests are small program snippets
used to stress particular behaviour of MCMs. These tests consist of very basic
operations between processors and the memory. Such operations are storing a
value to a variable and loading a variable into a register. Depending on the MCM
there are more operations such as fences, but for the scope of this paper we will
only consider loads and stores. Each litmus test has an initial state for all vari-
ables and registers. This can be specified, but in general all variables have the
same initial state, with value 0. Unless otherwise mentioned, we will assume this
to be true in the scope of this paper. For each processor there is a sequence of
operations given, which we will call the program of the processor. Each litmus
test has a specified final allowed (or prohibited) state of the variables and regis-
ters. A run through a litmus test is called an execution. This final state is found
through the concurrent execution of the programs for each processor. There can

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/161931761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1808.09870v1

2 Özgür Akgün, Ruth Hoffmann, and Susmit Sarkar

be many different final states of the litmus test, as they depend on the concurrent
interleaving of the programs from each processor. Another reason for the variety
of final states is the relaxation of the order of execution of the programs within
the processors. These relaxations are defined for each MCM differently, and we
will discuss them for our two chosen MCMs in Section 2.1 and Section 2.2.

Example 1 Table 1 shows a litmus test. This test is over two processors, Proc
0 and Proc 1. Each of them is executing a load and a store operation. The load
operation is written as MOV EAX ← [x] and means that the variable x is read
into the register EAX of a processor. The store operation is written as MOV

[x]← 2 and means that the value 2 is stored into the variable x. The variable x

is globally visible to all processors. The final state for this litmus test is given as
an allowed state. We can expect the variable x to contain the value 2, and the
register EAX on Proc0 will contain the value 1, while the register EAX on Proc1

will contain the value 2.

Proc 0 Proc 1

MOV [x]← 1 MOV [x]← 2

MOV EAX ← [x] MOV EAX ← [x]

Allowed final state
(x = 2 ∧ Proc0:EAX=1 ∧ Proc1:EAX=2)

Table 1. Litmus test example.

Amongst other case studies, this paper will model MCMs as constraint mod-
els, and will generate litmus tests which adhere to those models as well as finding
all possible final states of variables and registers.

There are currently tools which are approaching the litmus test generation
through simulations of MCMs [4]. The usage of the toolset provided through
diy7 and herd7 is complex and required deep knowledge of the MCMs one
wants to work with. The herd7tool set is designed to generate and test newly
designed MCMs, which are defined in terms of relations between the operations
and executions. The TriCheck tool [9] verifies the whole system from language
to the architecture level, which aids with the evaluation of the compiler. Both
approaches do not use constraint programming, which is our contribution, as the
constraint model descriptions for MCMs are short and follow the simple defini-
tions of the MCMs. The models are written in Conjure [1,2,3] and translated
to input suitable for the constraint solver Minion and the SAT solver lingeling
by Savile Row [8].

SC TSO

Fig. 1. TSO is a relaxation of SC.

Memory Consistency Models using Constraints 3

This paper will contain the sequential consistency (SC) model which we dis-
cuss in Section 2.1 and the total store order (TSO) model in Section 2.2. TSO
is a relaxation of the SC model and thus will allow for more behaviour than SC.
This is reflected in the number of allowed final states from the litmus tests and
the number of tests for a given final state. Figure 1 is an illustration of the sets
of valid final states of litmus tests depending on the MCM, comparing SC to
TSO. We build Essence models of these MCMs, and we will use them to

– simulate litmus test executions, for given allowed final state for each MCM
– generate litmus tests for given allowed final states, for each MCM
– generate all valid executions and all allowed final states, for each MCM
– compare litmus tests with allowed behaviour for a MCM against the stricter

MCM.

These case studies are a stepping stone towards using constraint models to
directly and automatically verify MCMs against CCPs.

2 Memory Consistency Model

MCMs are describing the observed behaviour of concurrent programs on the
hardware chips. The programs consist of basic load and store operations to and
from memory registers. Depending on the MCM architecture there can be more
operations, such as fences, but for our two selected MCMs (SC and TSO) it
suffices to only consider loads and stores. MCMs describe in general the ordering
of the operations on a processor level, but also on an execution level. These two
orderings are called program order and memory order respectively.

Example 2 The litmus test in Example 1 shows the program order for both
Proc0 and Proc1. It is the order that the operations are given to the processor, in
both cases that is a store followed by a load. An possible execution of that litmus
test is

Proc0 MOV [x]← 1
Proc0 MOV EAX ← [x]
Proc1 MOV [x]← 2
Proc1 MOV EAX ← [x]

x = 2 ∧ Proc0:EAX=1 ∧ Proc1:EAX=2 .

This execution results in the expected final state of x = 2 ∧ Proc0:EAX=1 ∧

Proc1:EAX=2. Another possible execution of the litmus test is

Proc0 MOV [x]← 1
Proc1 MOV [x]← 2
Proc0 MOV EAX ← [x]
Proc1 MOV EAX ← [x]

x = 2 ∧ Proc0:EAX=2 ∧ Proc1:EAX=2 .

4 Özgür Akgün, Ruth Hoffmann, and Susmit Sarkar

This execution still upholds the program order of both processors, but it vio-
lates the expected final state as stipulated in Table 1.

The set of allowed final states of litmus tests is highly dependent on the
chosen MCM. It is possible that we cannot find a valid execution that will lead
to the expected allowed final state, within the given restrictions on the ordering
of the operations.

2.1 Sequential Consistency

SC is the most restrictive MCM, as it upholds the exact order of operations from
the processors to the execution. Lamport defines in [7] sequential consistency
(SC) to be “the result of any execution [which] is the same as if the operations
of all the processors were executed in some sequential order, and the operations
of each individual processor appear in this sequence in the order specified by its
program.”

We can look at this in the following way, the order of any two operations has
to be kept in the same way as they occur in the litmus test. It will still allow
for the interleaving between the operations of different processors, but not more
than that. This means that both executions as shown in Example 2, are valid
SC executions, while having different final states, and thus failing the litmus test
in Table 1

Example 3 In addition to the two executions shown in Example 2, below are
all executions that can happen in SC when executing the litmus test in Table 1.

Proc0 MOV [x]← 1
Proc1 MOV [x]← 2
Proc1 MOV EAX ← [x]
Proc0 MOV EAX ← [x]

x = 2 ∧ Proc0:EAX=2 ∧ Proc1:EAX=2 .

Proc1 MOV [x]← 2
Proc1 MOV EAX ← [x]
Proc0 MOV [x]← 1
Proc0 MOV EAX ← [x]

x = 1 ∧ Proc0:EAX=1 ∧ Proc1:EAX=2 .

Proc1 MOV [x]← 2
Proc0 MOV [x]← 1
Proc1 MOV EAX ← [x]
Proc0 MOV EAX ← [x]

x = 1 ∧ Proc0:EAX=1 ∧ Proc1:EAX=1 .

Proc1 MOV [x]← 2
Proc0 MOV [x]← 1
Proc0 MOV EAX ← [x]
Proc1 MOV EAX ← [x]

x = 1 ∧ Proc0:EAX=1 ∧ Proc1:EAX=2 .

2.2 Total Store Order

As SC is very strict it is not observed on manufactured chip sets. A first re-
laxation of the MCM is to allow a reordering of the store and load order. This
relaxation has been first observed on the Intel Sparc architecture and is called
the Total Store Order (TSO) [6]. Similarly to SC it restricts three of the four
possible orderings of loads and stores to be the same in program order as in

Memory Consistency Models using Constraints 5

memory order but the Store → Load program order can be disregarded in the
memory order. This relaxation allows for more possible executions and more
allowed final states of litmus tests.

Example 4 As TSO is a relaxation of SC, it will still observe the same execu-
tions of the litmus test in Example 1, as listed in Example 2 and Example 3. In
addition it can observe the following execution (amongst others)

Proc0 MOV [x]← 1
Proc0 MOV EAX ← [x]
Proc1 MOV EAX ← [x]
Proc1 MOV [x]← 2

x = 2 ∧ Proc0:EAX=1 ∧ Proc1:EAX=1 .

It is impossible to find a valid SC execution of the litmus test in Example 1
that will result in this final state.

We do note that this simple, yet formal description of TSO is still stricter
than what is observed on some TSO architecture (for example x86). As we do
not implement fences in our current constraint model of TSO we will stick to
the textbook definition of TSO as given above.

3 A Generic MCM Model

Figure 2 shows the initial setup of the various components needed for any MCM
constraint model. Each constraint model that we create for any MCM is defined
over a finite number of cores (or processors), registers per core, variables and
a finite number of values for the variables. We also have to define the maximal
number of operations that we can have in a litmus test, per processor. As men-
tioned above the only operations that we consider are stores and loads. Each
store assigns a value to a global variable, and each load loads the variable into a
processor’s register. Depending on the goal of the model, we will either generate
a program (litmus test), or find an execution of a litmus test. Each program
consists of a sequence of operations for each core. Whereas an execution is a se-
quence of all operations in all cores combined. The maximal size of an execution
of a litmus test will be the number of processors times the maximal number of
operations per processors. Note that we use core and processor, and program
and litmus test synonymously here.

A program is represented as a sequence of operations per core. An operation
may either be a load or a store, so we use a variant type to denote these. A
variant type models a tagged union, in this case load and store are the tags. For
a decision variable x with the domain OPERATION, we determine whether a given
tag is active using the active operator of Essence: active(x, load) is true
if and only if x denotes a load operation. When modelling with variant types
we tend to use the active operator often together with a logical implication,

6 Özgür Akgün, Ruth Hoffmann, and Susmit Sarkar

where the left-hand-side of the implication determines which tag is active and
the right-hand-side posts a constraint assuming that particular tag to be active.
Syntactical support for a switch-case style discriminator for variant types does
not exist in Essence yet.

language Essence 1.3

given CORE new type enum

given REGISTER new type enum

given VARIABLE new type enum

given VALUE new type enum

given maxNbOperationsPerCore : int (1..)

letting MCMs be new type enum {SC , TSO}

given MCM : MCMs

letting OPERATION be domain

variant

$ load the value stored in the variable into the register

{ load : record { register : REGISTER

, variable : VARIABLE }

$ store the value into the variable

, store : record { variable : VARIABLE

, value : VALUE }

}

find program :

function (total) CORE -->

sequence (minSize 1, maxSize maxNbOperationsPerCore)

of OPERATION

letting maxNbOperationsInExec be

1 + maxNbOperationsPerCore * sum ([1 | c : CORE])

find execution :

sequence (maxSize maxNbOperationsInExec) of

(CORE , OPERATION)

Fig. 2. Initial setup of variables and programs for any MCM.

In Figure 3 we constrain that every operation in the litmus test can only
occur exactly once in the execution. Each operation in a litmus test is unique
as it has an implicit index. So should there be for example two distinct load
operations of the same variable into the same register on a core in a litmus
test, then those two load operations are treated as distinct in the execution. In

Memory Consistency Models using Constraints 7

addition, there is the implied constraint which states that when every operation
in the program is occurring exactly once in an execution then the length of the
execution is exactly the number of all operations of all cores in the program.

$ every operation in program has to exist once in execution

such that

forAll (core , operations) in program .

forAll (index , operation) in operations .

1 = (sum (indexE , (coreE , operationE)) in execution .

toInt(core = coreE /\ operation = operationE))

$ the length of execution in terms of the length of program

such that

|execution | = sum ([|ops| | (c,ops) <- program])

Fig. 3. Restrictions on execution of litmus tests.

As the execution progresses we need to keep track of the registers and vari-
ables. Each operation might alter the state of them. We also need to note that
both variables and registers start off in an independent initial state, which is why
in Figure 4 the length of the sequences of all states of variables and registers is
one longer than the execution, as the initial state exists before the execution
starts.

find state_of_registers :

sequence (maxSize maxNbOperationsInExec) of

function (total) (CORE , REGISTER) --> VALUE

find state_of_variables :

sequence (maxSize maxNbOperationsInExec) of

function (total) VARIABLE --> VALUE

such that

|execution | + 1 = | state_of_variables |,

|execution | + 1 = | state_of_registers |

Fig. 4. Registers and variables setup.

The initialisation of the variables and registers is shown in Figure 5. The
registers have a special empty/initial value given to them, which is different to
the value a variable can contain at anytime, including the initial value a variable
might contain. The initial value of a variable might be reassigned to the variables

8 Özgür Akgün, Ruth Hoffmann, and Susmit Sarkar

$ defining the state_of_registers and state_of_variables in

terms of the execution

$ define step (1) as the initial step

such that

$ initially , all registers are empty

forAll r : REGISTER . forAll c : CORE .

state_of_registers (1) ((c,r)) = initial_state_of_registers ,

$ initially , all variables are 0

forAll v : VARIABLE .

state_of_variables (1)(v) = initial_state_of_variables ,

$ variables cannot be assigned to initial_state_of_registers

forAll (index , mapping) in state_of_variables .

forAll (var , val) in mapping . val !=

initial_state_of_registers ,

$ registers cannot be assigned to initial_state_of_registers

after step 1

forAll (index , mapping) in state_of_registers .

index != 1 ->

forAll ((core , reg), val) in mapping .

$ if it takes the INITIAL value now , it must have been

INITIAL always

initial_state_of_registers = val ->

initial_state_of_registers =

state_of_registers (index -1) ((core , reg))

Fig. 5. Variable and register initialisations.

in the course of a program, whereas the initial value of the register cannot be
re-attained.

Figure 6 describes what happens to the variables and registers when an op-
eration occurs. If the operation is a load, there is no change to the variables.
Only the register on the core that the load has been called from changes. The
next state of that register will contain the variable loaded. If the operation is
a store, there is not change to any of the registers. Only the variable that the
store occurs on will change. The next state of that variable will contain the value
assigned to it in the store.

As we are interested in the different allowed final states of a program we
include parameters limiting the set of allowed final states. In Figure 7 we define
the constraints that we have to reach a given final state. We also allow for the
initial states of the variables and registers to be defined in a flexible way, but
for the set of tests in Section 4 we kept the initial states to be the same. The
include and exclude program sets are used to compare the different MCMs to

Memory Consistency Models using Constraints 9

$ defining the state_of_registers and state_of_variables

$ in terms of the execution

$ define step (index+1) in terms of step (index)

$ and execution (index)

such that

forAll (index , (core , operation)) in execution .

and ([

active(operation , load) ->

and ([state_of_registers (index+1) ((core , operation [load][

register])) =

state_of_variables (index)(operation [load][variable])

$ all other registers on this core stay the same

, forAll r : REGISTER .

r != operation [load][register] ->

state_of_registers (index +1) ((core , r)) =

state_of_registers (index)((core , r))

$ all variables stay the same

, forAll v : VARIABLE .

state_of_variables (index +1)(v) = state_of_variables (

index)(v)

])

, active(operation , store) ->

and ([state_of_variables (index+1)(operation [store][

variable]) =

operation [store][value]

$ all registers on this core stay the same

, forAll r : REGISTER .

state_of_registers (index +1) ((core , r)) =

state_of_registers (index)((core , r))

$ all other variables stay the same

, forAll v : VARIABLE .

v != operation [store][variable] ->

state_of_variables (index +1)(v) = state_of_variables (

index)(v)

])

$ all registers on other cores stay the same

, forAll c : CORE . c != core ->

forAll r : REGISTER .

state_of_registers (index +1) ((c, r)) = state_of_registers

(index)((c, r))

])

Fig. 6. Variable and register updates.

10 Özgür Akgün, Ruth Hoffmann, and Susmit Sarkar

$ a way to post constraints on the initial and the final

$ values that are stored in each register and variable

$ doesn ’t have to mention all registers .

given initial_state_of_registers , initial_state_of_variables

: VALUE

given final_state_of_registers : function (CORE , REGISTER)

--> VALUE

such that

forAll ((c,r),v) in final_state_of_registers .

state_of_registers (| state_of_registers |)((c,r)) = v

given final_state_of_variables : function VARIABLE --> VALUE

such that

forAll (var , val) in final_state_of_variables .

state_of_variables (| state_of_variables |)(var) = val

given include_programs : set of function (total) CORE -->

sequence of OPERATION

such that |include_programs | > 0 -> program in

include_programs

given exclude_programs : set of function (total) CORE -->

sequence of OPERATION

such that !(program in exclude_programs)

branching on [program]

Fig. 7. Final allowed state.

each other. We will generate a larger set of litmus tests that all hold for the
relaxed TSO and filter out the tests that do not hold in the stricter SC model.

3.1 Sequential Consistency

As introduced in Section 2.1 SC defines that any two operations of a core will
occur in an execution in the same order as they are written in the program
for each core. In Figure 8 we define the constraints which enforces SC in the
execution of a litmus test. We use the index of the execution, which is a sequence
of operations, to track the ordering of the operations in relation to their index
in the program on the core. Operations from other cores can be interleaved.

3.2 Total Store Order

In Section 2.2 we discussed TSO, which is a relaxation of SC. Figure 9 uses
the index of the operation in the program against the index in the execution
sequence. In addition it uses the active constraint to check whether we can relax
that ordering for a store load pair of operations.

Memory Consistency Models using Constraints 11

$ SC: Sequential Consistency

$ Every pair of operation from the program will have the same

order in execution

such that MCM = SC ->

forAll (core , operations) in program .

forAll index1 , index2 in defined(operations) .

index1 < index2 ->

exists indexE1 , indexE2 in defined (execution) .

indexE1 < indexE2 /\

execution (indexE1) = (core , operations (index1)) /\

execution (indexE2) = (core , operations (index2))

Fig. 8. Constraints defining sequential consistency in the execution.

$ TSO: Total Store Order

such that MCM = TSO ->

forAll (core , operations) in program .

forAll index1 , index2 in defined(operations) .

index1 < index2 /\

$ if the first is a store , and the second is a load , do

not post any constraints

!(active(operations (index1), store) /\

active(operations (index2), load)) ->

exists indexE1 , indexE2 in defined (execution) .

indexE1 < indexE2 /\

execution (indexE1) = (core , operations (index1)) /\

execution (indexE2) = (core , operations (index2))

Fig. 9. Constraints defining total store order in the execution.

12 Özgür Akgün, Ruth Hoffmann, and Susmit Sarkar

4 Case Studies

All the files generated and experiments mentioned can be found in a github
repository1 and can be reproduced using Conjure, Essence, Savile Row,
lingeling and the herd7tool sets.

4.1 Litmus Test Simulation

We used the herd7tool set [4] to generate litmus tests for TSO and SC. Figure 10
shows the commands used for the litmus test generation using diy7. The litmus
tests generated for TSO included tests with fences, which we ignored. This re-
sulted in 65 litmus tests.

SC litmus test generation

> diy7 -arch X86 -nprocs 4 -size 6 -mode uni

TSO litmus test generation

> diy7 -arch X86 -nprocs 4 -size 6 -safe Rfe ,Fre ,Wse ,PodR *,

PodWW , MFencedWR -relax PodWR ,[Rfi ,PodRR]

Fig. 10. diy7 litmus test generation commands.

We translated the litmus tests into a Essence parameter file. The litmus test
in Example 1 is the generated SB000a litmus test. The corresponding Essence

parameter file is shown in Figure 11. We set the cores, registers, variables and
available values, and we limit the maximal number of operations per core. The
initial states of both the registers and the variables are also given. We take the
final states of the registers and variables from the generated litmus test. We
can choose which MCM we want to check against. In include programs we
have the litmus test, which consists of the sequence of operations per core. The
exclude programs set is empty, as it is only used when checking a larger set of
litmus tests that can be generated and are valid in one MCM against a more
restrictive MCM.

We used these 65 tests to simulate and check our implementation of the SC
and TSO. We have found that our constraint model of SC (Figure 8) is valid
on the same 29 tests as the herd7 SC model described in terms of the relations
between operations in Figure 12.

Similarly, our TSO model in Figure 9 corresponds to a more restricted version
of the x86-TSOmodel, as we currently still restrict the ordering of stores followed
by loads from external cores. This is apparent by running the herd7 TSO model
in Figure 13 which accepts the same 51 tests as our Essence TSO model.

1 https://github.com/stacs-cp/ModRef2018-MCM

https://github.com/stacs-cp/ModRef2018-MCM

Memory Consistency Models using Constraints 13

letting CORE be new type enum {c1 , c2}

letting REGISTER be new type enum {r1 , r2}

letting VARIABLE be new type enum {x}

letting VALUE be new type enum {Initial , v0 , v1 , v2}

letting maxNbOperationsPerCore be 2

letting initial_step_of_registers be Initial

letting initial_step_of_variables be v0

letting final_step_of_variables be function

(x --> v2)

letting final_step_of_registers be function

((c1 ,r1) --> v1

, (c2 ,r2) --> v2

)

letting MCM be SC

$ letting MCM be TSO

letting include_programs be {

function (c1 --> sequence (variant {store = record {variable

= x, value = v1}}

, variant {load = record {register = r1 , variable = x}}

)

,c2 --> sequence (variant {store = record {variable = x,

value = v2}}

, variant {load = record {register = r2 , variable = x}}

))

}

letting exclude_programs be {}

Fig. 11. Essence parameter file of a litmus test.

include "fences.cat"

include "cos.cat"

(* Atomic *)

empty rmw & (fre;coe) as atom

(* Sequential consistency *)

acyclic po | fr | rf | co as sc

Fig. 12. herd7 model of SC.

14 Özgür Akgün, Ruth Hoffmann, and Susmit Sarkar

include "cos.cat"

(* Communication relations that order events*)

let com -tso = rf | co | fr

(* Program order that orders events *)

let po -tso = po & (W*W | R*M)

(* TSO global -happens -before *)

let ghb = po -tso | com -tso

acyclic ghb as tso

show ghb

Fig. 13. Strict TSO model in herd7.

4.2 Litmus Test Generation

Having shown that our SC and TSO models are correctly reflecting the be-
haviour, we have gone further to generate more litmus test using constraint
solvers. Having a greater number of litmus tests allows for a greater coverage of
possible behaviour exhibited by an MCM. We produced sets of litmus tests which
were given a static number of cores, registers, variables, values and a maximal
number of operations per core. In addition, we specified the allowed final state of
the litmus test. We let the solvers generate a set of litmus tests that had at least
one valid execution in TSO with the allowed final state. Then we filtered those
tests to see which would still have a valid execution in SC. We have done this
for two different scenarios. Both have 2 cores, 2 registers per core, 2 variables
and 2 possible values.

In the first scenario each core can have up to 2 operations, and we have set
the final state of the registers to be that one register on one core contains an
initial value and one register of the other core contains the value 1. For TSO this
resulted in a total of 160 litmus test, of which 132 have a valid SC execution.

The second scenario has for each core up to 3 operations and the final state
for the registers is restricted to the first register of both cores having the value
0 and the second register on both cores to have the value 1. We generated 1154
litmus test with a valid execution in TSO, and thereof 776 have a valid execution
in SC.

4.3 Output Generation

Any litmus test consists of a program per core and an allowed final state of
any execution. We pursued to see how many valid and distinct final states can
be found for a given program, depending on the MCM. We used the generated
litmus tests from diy7 and ignored the required final states. The solvers now
use the models for TSO and SC to find all executions with distinct allowed final

Memory Consistency Models using Constraints 15

states, which are a combination of both variables and registers and do not have
to be enforced on all variables and registers available.

We find that for all litmus tests there is always a valid execution with a valid
final state, for both SC and TSO.

The highest number of distinct final states for a litmus test is 72 (IRIW000).
This number of distinct final states is true for both TSO and SC. The litmus test
with the next highest number of possible final states (63) for TSO is 3.SB000,
which only has 7 distinct final states for SC.

For SC most litmus tests have less than 10 distinct final states. While this
observation can be also made for TSO, there are fewer litmus tests which have
only 1 distinct final state.

5 Conclusion

We have shown that using constraint programming to model MCMs and to use
them to generate litmus tests is a viable alternative to algorithms and other
tools. Constraint programming is a highly flexible way to re-use the models for
different scenarios and different uses. We also find that the models created are
a lot smaller than what can be created with model checking. As in that context
the models face the state explosion problem. Our aim with this work is to be able
to implement cache coherence protocols along side the MCMs and to directly
verify these two models against each other. Work in this direction but using
model checking and a few additional manual proofs were done in [5]. We believe
constraint programming to be an ideal contender for this problem, as our current
models suggest to be smaller than the model checking models.

References

1. Akgün, Ö.: Extensible automated constraint modelling via refinement of abstract
problem specifications. Ph.D. thesis, University of St Andrews (2014)

2. Akgün, Ö., Frisch, A.M., Gent, I.P., Hussain, B.S., Jefferson, C., Kotthoff, L.,
Miguel, I., Nightingale, P.: Automated symmetry breaking and model selection in
conjure. In: International Conference on Principles and Practice of Constraint Pro-
gramming. pp. 107–116. Springer (2013)

3. Akgün, Ö., Miguel, I., Jefferson, C., Frisch, A.M., Hnich, B.: Extensible automated
constraint modelling. In: Proceedings of theTwenty-Fifth AAAI Conference on Ar-
tificial Intelligence. pp. 4–11. AAAI Press (2011)

4. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: Modelling, simulation, test-
ing, and data mining for weak memory. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 36(2), 7 (2014)

5. Banks, C., Elver, M., Hoffmann, R., Sarkar, S., Jackson, P., Nagarajan, V.: Verifi-
cation of a lazy cache coherence protocol against a weak memory model. In: Pro-
ceedings of the 17th Conference on Formal Methods in Computer-Aided Design
(FMCAD). ACM (2017)

6. Inc, S.I., Weaver, D.L.: The SPARC architecture manual. Prentice-Hall (1994)

16 Özgür Akgün, Ruth Hoffmann, and Susmit Sarkar

7. Lamport, L.: How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979).
https://doi.org/10.1109/TC.1979.1675439

8. Nightingale, P., Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I., Spracklen, P.: Au-
tomatically improving constraint models in savile row. Artificial Intelligence 251,
35–61 (2017)

9. Trippel, C., Manerkar, Y.A., Lustig, D., Pellauer, M., Martonosi, M.: Tricheck:
Memory model verification at the trisection of software, hardware, and ISA. In: Pro-
ceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2017, Xi’an, China,
April 8-12, 2017. pp. 119–133 (2017). https://doi.org/10.1145/3037697.3037719

https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/3037697.3037719

	Memory Consistency Models using Constraints

