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‘Radical interpretations’ preclude the use of clima tic wiggle 

matching for resolution of event timings at the hig hest levels of 

attainable precision.  Response: Comment on Mark et al. (2017): High-precision 

40Ar/39Ar dating of Pleistocene tuffs and temporal anchoring of the Matuyama-

Brunhes boundary. Quaternary Geochronology, 39, 1-23. Channell & Hodell (2017). 
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Abstract: An age model (Mark et al., 2017) for ODP 758 and the Matuyama-Brunhes 

boundary transition and Termination IX in the equatorial Indian Ocean is robust and 

accurate. No significant magnetic lock-in delay is evident at the depth of the 

Matuyama-Brunhes boundary and the study highlights that 40Ar/39Ar geochronology 

is critical for dissection of the Pleistocene at the highest levels of temporal precision 

and minimal model-dependence. Testing of leads and lags in global-scale climate 
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response requires independently dated timescales to reveal the fine-detail recorded 

by the various climate archives. 

 

We thank Channell & Hodell (2017) for their interest in our recent study. 

Although low sedimentation rate cores are not the ideal target for constraining 

complexities in the geomagnetic timescale or ∂18O isotope stratigraphies (as 

highlighted by Mark et al., 2017; Valet et al., 2016), the data we present are 

exceptionally robust and our conclusions are supported by other datasets (Bronk 

Ramsey et al., 2012; Lisiecki and Raymo, 2009, 2005, Mark et al., 2014, 2013, 

Sagnotti et al., 2016, 2014; Skinner and Shackleton, 2005; Valet et al., 2014). Much 

of these data have been ignored by Channell & Hodell (2017) in their critique of our 

work, but are essential for accurate interpretation of our results. Clearly the age of 

the last full reversal of the Earth’s magnetic field (the Matuyama-Brunhes 

geomagnetic reversal, MBB) is important and as such, data suggesting inaccuracies 

in previous ages (and indeed other approaches that have attempted to constrain the 

event in time) (e.g., Mark et al., 2017) require scrutiny and when required, 

clarification. We provide such clarification here. 

The MBB age that we calculate using Bayesian modelling combined with a 

tephrochronology and radio-isotopic dating approach is within uncertainty of the MBB 

age defined by the high-resolution Sulmona basin palaeo-lake record from Italy 

(Sagnotti et al., 2016, 2014), as well as the MBB age defined by numerous terrestrial 

North American sections and a re-interpretation of the transitionally magnetised 

40Ar/39Ar dated lava flows that are associated with the geomagnetic reversal (Mark et 

al., 2017). Channell & Hodell (2017) do not discuss these records. The MBB age 

determined from ODP 758 is thus not a single datum or anomaly, but a robust and 
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critical component of a growing data set that is re-defining the age and structure of 

this geomagnetic polarity reversal. We submit that dismissing high-quality data which 

appear to conflict with complex models imperils our ability to improve the accuracy of 

these models. 

The geomagnetic and ∂18O isotope data presented by Valet et al. (2014) show 

more complexity to the MBB transition than the equivalent data from ODP 758 owing 

to the higher sedimentation rate in core MD90-0961, as expected. The age model for 

this core is an order of magnitude lower precision than our age model (± 5 ka versus 

± 0.6 ka, respectively) and shows that the relative palaeo-intensity (RPI) drop 

associated with the MBB occurred at 784 ± 5 ka, which is indistinguishable from the 

global average age for the MBB that we calculate, 783.4 ± 0.6 ka. The key issue to 

highlight here is that in a slow sedimentation record the MBB transition displays as 

essentially instantaneous in time, represented by a spike in the RPI or a rapid 

transition in palaeo-magnetic direction (Figure 2, Mark et al., 2017). When comparing 

such records to a high sedimentation record (Valet et al., 2014), which show a more 

complex and protracted history (Figure 2, Valet et al., 2014), the instantaneous event 

is equivalent to the onset of the MBB transition in the high sedimentation core and 

not the mid-point of the transition. As such, there is no discrepancy between the 

timing of the MBB in both the ODP 758 and MD90-0961 records. Therefore, 

providing there is no magnetic lock-in delay, and such phenomena are not common 

at the relatively shallow depths of the MBB (Tauxe et al., 1996; Bleil and von 

Dobeneck, 1999; Horng et al., 2002), low sedimentation cores that define short lived 

excursions in palaeo-magnetic and proxy data are adequate to establish the age of 

geomagnetic events, whereas fast sedimentation rates facilitate interrogation of the 

complexities of geomagnetic reversals, including reversal durations. 
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Our data are further supported by the fact that Valet et al. (2014) place the 

Australasian Tektites at 790 ± 5 ka, which is indistinguishable from the age we 

propose for the same tektite horizon in ODP 758 (786 ± 2 ka, Mark et al., 2017), and 

the age of Termination IX at 788-789 (± 5 ka) (Valet et al., 2014) is also 

indistinguishable from our reported Termination IX age (785.6 ± 0.8 ka, Mark et al., 

2017). The temporal alignment of three data points between two local records with 

different sedimentation rates, albeit one record at considerably higher precision, as 

well as data from Italy (Sagnotti et al., 2016, 2014) and North America (Mark et al., 

2017), is compelling and should not be disregarded.  

The temporal correlation indicates that downward bias (magnetic lock-in 

delay) of the MBB transition is not significant within ODP 758 (and certainly not 

significant at the level of precision we obtain using 40Ar/39Ar dating) and that the ∂18O 

isotope stratigraphy placement is accurate. However, the timeline of MBB-related 

events in the Indian Ocean (Mark et al., 2017) is not compatible with the age of the 

MBB at ca. 773 ka in the Atlantic Ocean (Channell et al., 2010). Again, we highlight 

that the age uncertainty reported with the ca. 773 ka age for the MBB by Channell et 

al. (2010) is not accurate (Mark et al., 2017) and this uncertainty is at least ± 5 ka 

(Lisieki & Raymo, 2005). 

In attempting to align the records from the Atlantic Ocean with ODP 758 and 

MD90-0961, it is necessary to consider that previous studies detail leads and lags in 

the response of the Earth system between different climate archives (e.g., 

cryosphere, terrestrial and marine realms, (Bronk Ramsey et al., 2012; Mark et al., 

2014, 2013) and within the same climate archives (e.g., marine-marine, Lisiecki and 

Raymo, 2009; Skinner and Shackleton, 2005). We (Mark et al., 2017) asked the 

question as to whether the level of dispersion in the location of the MBB within the 
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∂
18O record, and the age of Termination IX between the Atlantic and the equatorial 

Indian Ocean could be due to such processes. Such an interpretation should not be 

unexpected given the lag in response between the Atlantic and Pacific Oceans 

(Lisiecki and Raymo, 2009). Our contribution is thus not the first study to suggest 

(and demonstrate) such ‘radical interpretations’ (Channell & Hodell, 2017) that 

preclude the use of climatic wiggle matching for resolving event timings at the 

highest levels of precision. Lisiecki and Raymo (2009) in fact identified that such 

problems are manifested in the LR04 stack (Lisiecki and Raymo, 2005) and 

highlighted that such recorda are only accurate to within ca. ± 5 ka as a 

consequence.  

Finally, we highlight that although there exist various calibrations of the 

40Ar/39Ar system, which for the Alder Creek sanidine standard have actually 

converged in recent years (Niespolo et al., 2017), a rapidly cooled mineral (e.g., 

sanidine) only has a single 40Ar/39Ar eruption age, or more specifically a single 

40Ar*/40K ratio. It is the conversion of this ratio to an age (using a decay constant and 

mineral standard of ‘known’ age) that leads to confusion in the appropriate use of the 

different 40Ar/39Ar calibrations. This is exemplified by Channell & Hodell (2017), who 

suggest that different calibrations account for the 10 ka discrepancy between the 

MBB age of (Mark et al., 2017) and (Channell et al., 2010). This is not so. 

It is useful that Channell & Hodell (2017) highlight, as we begin to sequence 

the Quaternary at unprecedented levels of precision, that the previous chronological 

tools of choice can become incapable of resolving the fine detail needed for accurate 

dissection of the geological record (e.g., K-Ar dating). With respect to the level of 

temporal resolution and accuracy attainable by the 40Ar/39Ar technique throughout 

the Quaternary (Mark et al., 2017), we need to be increasingly aware of the 
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assumptions (e.g., synchronicity in the global system) that underpin our dating 

techniques and the limitations associated with such techniques. For example, Simon 

et al. (2017) recognize that numerous potentially inaccurate assumptions underpin 

the hybrid tuning-40Ar/39Ar dating approach that they adopt, and construction of a 

chronology for the MBB from the Montalbano Jonico marine succession includes the 

extrapolation of age data and linear sedimentation rates, which are ‘probably an 

oversimplified solution and that sedimentation rates might have varied 

correspondingly with the large MIS 19a oscillations’ (Simon et al., 2017). 
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