
SYNTHESIS, CHARACTERISATION AND OPTOELECTRONIC 

PROPERTIES OF PHOSPHORESCENT IRIDIUM COMPLEXES: 

FROM FIVE TO SIX-MEMBERED RING CHELATES 

Claus Hierlinger 

A Thesis Submitted for the Degree of PhD 
at the 

University of St Andrews 
 

  

2018 

Full metadata for this thesis is available in                                                      
St Andrews Research Repository 

at: 
http://research-repository.st-andrews.ac.uk/ 

 
 
 

Please use this identifier to cite or link to this thesis: 
http://hdl.handle.net/10023/16126  

 
 

 
This item is protected by original copyright 

 
This item is licensed under a 
Creative Commons License 

https://creativecommons.org/licenses/by-nc-nd/4.0 

http://research-repository.st-andrews.ac.uk/
http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/16126
http://hdl.handle.net/10023/16126
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0


 

 

 

 

 

Synthesis, Characterisation and Optoelectronic Properties  

of Phosphorescent Iridium Complexes: 

from five to six-membered ring chelates.  

  

 

 

 

 

 

 

 

 

 

 

Claus Hierlinger 

 

 

 

 



 

 

  



 

i 

 

 

Candidate's declaration 

I, Claus Hierlinger, do hereby certify that this thesis, submitted for the degree of PhD, which is 
approximately 50,000 words in length, has been written by me, and that it is the record of work 
carried out by me, or principally by myself in collaboration with others as acknowledged, and 
that it has not been submitted in any previous application for any degree. 

I was admitted as a research student at the University of St Andrews in September 2015. 

I confirm that no funding was received for this work. 

 

02/07/2018 

Date       Signature of candidate  

  

Supervisors’ declaration 

We hereby certify that the candidate has fulfilled the conditions of the Resolution and 
Regulations appropriate for the degree of PhD in the University of St Andrews and that the 
candidate is qualified to submit this thesis in application for that degree. 

 02/07/2018  

Date       Signatures of supervisors 

  

Permission for publication 

In submitting this thesis to the University of St Andrews we understand that we are giving 
permission for it to be made available for use in accordance with the regulations of the 
University Library for the time being in force, subject to any copyright vested in the work not 
being affected thereby. We also understand, unless exempt by an award of an embargo as 
requested below, that the title and the abstract will be published, and that a copy of the work 
may be made and supplied to any bona fide library or research worker, that this thesis will be 
electronically accessible for personal or research use and that the library has the right to 
migrate this thesis into new electronic forms as required to ensure continued access to the 
thesis. 

I, Claus Hierlinger, have obtained, or am in the process of obtaining, third-party copyright 
permissions that are required or have requested the appropriate embargo below. 

The following is an agreed request by candidate and supervisor regarding the publication of 
this thesis: 

 



 

ii 

 

 

Printed copy 

Embargo on all of print copy for a period of 1 year on the following ground(s): 

• Publication would preclude future publication 

Supporting statement for printed embargo request 

Some of the work presented is unpublished at present. 

  

Electronic copy 

Embargo on all of electronic copy for a period of 1 year on the following ground(s): 

• Publication would preclude future publication 

Supporting statement for electronic embargo request 

Some of the work is unpublished at present. 

  

Title and Abstract 

• I agree to the title and abstract being published. 

  

02/072018 

Date       Signature of candidate  

  

02/07/2018 

Date       Signatures of supervisors  

  



 

iii 

 

Underpinning Research Data or Digital Outputs 

Candidate's declaration 

I, Claus Hierlinger, understand that by declaring that I have original research data or digital 
outputs, I should make every effort in meeting the University's and research funders' 
requirements on the deposit and sharing of research data or research digital outputs.  

 

 02/07/2018 

Date       Signature of candidate  

  

Permission for publication of underpinning research data or digital outputs 

We understand that for any original research data or digital outputs which are deposited, we 
are giving permission for them to be made available for use in accordance with the 
requirements of the University and research funders, for the time being in force. 

We also understand that the title and the description will be published, and that the 
underpinning research data or digital outputs will be electronically accessible for use in 
accordance with the license specified at the point of deposit, unless exempt by award of an 
embargo as requested below. 

The following is an agreed request by candidate and supervisor regarding the publication of 
underpinning research data or digital outputs: 

Embargo on all of electronic files for a period of 1 year on the following ground(s): 

• Publication would preclude future publication 

Supporting statement for embargo request 

Some work is unpublished at present.  

 02/072018                                         

Date       Signature of candidate  

 

 02/07/2018 

Date       Signatures of supervisors   



 

iv 

 

Abstract 

Here, the design, synthesis and characterisation and the optoelectronic properties of 

Ir(III) complexes for application in nonlinear optical and electroluminescent devices are 

described. The type of complexes varies from those of the form [Ir(C^N)2(N^N)]+ with 

conjugated and nonconjugated ligands (where C^N = cyclometalating ligand and N^N = neutral 

ligand) to those of the form [Ir(C^N^C)(N^N)Cl] (where C^N^C = tridentate tripod ligand). 

Chapter 1 gives an introduction into photophysics occurring in transition metal 

complexes and possible applications in visual displays. The background of nonlinear optical 

(NLO) properties and the use of transition metal complexes as NLO chromophores is described. 

In Chapter 2, the impact of the use of sterically congested cyclometalating ligands on 

the photoluminescence properties of cationic iridium(III) complexes and their performance in 

light-emitting electrochemical cells is investigated.  

Chapter 3 explores the use of electron donors on the cyclometalating ligand towards 

modulating the NLO properties of the complexes. Combining strongly electron-donating 

substituents on the C^N ligand and electron-accepting substituents on the N^N ligand results in 

strong NLO activity.  

Chapter 4 summarises a new series of cationic iridium(III) complexes bearing 

benzylpyridinato as cyclometalating ligands. The methylene spacer in the C^N ligands provides 

flexibility, resulting in two conformers. NMR studies combined with density functional theory 

(DFT) studies show how the fluxional behaviour is influenced by the choice of the ancillary 

ligand.  

In Chapter 5, Ir(III) complexes bearing an unusual nonconjugated bis(six-membered) 

tridentate tripod ligand of the form [Ir(C^N^C)(N^N)Cl] are introduced. Depending on the 



 

v 

 

substitutions of the C^N^C ligand phosphorescence ranging from yellow to red was obtained. 

Substitution of the N^N results in a panchromatic NIR dye, suitable for DSSC applications.  

In Chapter 6, the concept of a nonconjugated ligand was expanded to the N^N ligand. 

Blue-green and sky-blue emission was obtained, demonstrating a strategy to successfully tune 

the emission to the blue.  
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Chapter 1 

Introduction 

The photophysical and photochemical properties of transition metal complexes have 

been investigated in detail over the last decades and have lead them to play a key role when 

designing luminescent materials for a wide range of applications. One of the most investigated 

classes of transition metal complexes are those bearing polypyridyl ligands. The inter-

disciplinary popularity of this class of transition complexes can be explained by their 

straightforward synthesis and chemical stability, combined with great redox properties as well 

as excited state reactivity and excited state lifetimes.1 One of the first and possibly the most 

famous complexes of this class is tris-2,2’-bipyridinerutheniunim(II) chloride [Ru(bpy)3]Cl2 

(where bpy is 2,2’-bipyridine), reported in 1959 by Paris and Brandt, with the characteristic 

metal-to-ligand charge transfer (MLCT) excited state.2 Especially second and third row 

transition metal complexes typically having low energy metal-to-ligand charge transfer 

(MLCT) processes, show very interesting properties.1–9 Their good light absorbing capabilities 

are exploited in a wide range of applications like in solar cells,10–13 as excited-state electron-

transfer agent14 and photocatalyst15,16 and in molecular switches,17,18 wires19,20 and motors.20 

These complexes are also characterised by strong emission and therefore they are popular 

candidates for light-emitting devices,8,21–23 in bioimaging,24–26 and in sensors.27 Exploiting their 

nonlinear optical properties has also become of great interest for applications in optical 

communications, optical data processing and storage and in photonic devices such as frequency 

doublers and electrooptic modulators.17,28–30 

Despite the price and scarcity of iridium, complexes based on this metal have been very 

popular when designing luminescent materials and are widely used in for example 

optoelectronic applications.22,23,31–34 Cyclometalated Iridium complexes are a highly attractive 

class of luminescent materials thanks to their highly efficient emission, multiple charge transfer 
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transitions with easy colour tunability ranging from blue to red, covering the whole visible 

spectrum.5,33 Next to their excellent photophysical properties, Ir(III) complexes also stand out 

due to their  high electrochemical, chemical and thermal stability. 

A profound understanding of how these excellent photophysical properties arise is 

necessary to be able to study them in detail. Therefore, in this first chapter, optical phenomena 

in which these photoactive complexes are involved are discussed, starting with the role of light, 

the absorption of light and then processes of light emission. Selected synthesis routes of Ir(III) 

complexes and possible phosphorescence tuning by ligand design will be introduced, followed 

by a discussion of the popularity of Ir(III) complexes as a phosphor in light-emitting devices. 

The first part will be completed by an outline of different kind of lighting devices and a brief 

presentation of strategies to improve device performances through ligand design. 

This chapter finishes with an introduction to nonlinear optical (NLO) properties 

explaining first the background and applications. A brief review of NLO chromophores based 

on transition metal complexes will be presented and the impact of the metal and the geometry 

of the complex will be discussed. Having established the importance of the choice of the metal, 

the excellent NLO properties of cyclometalated Ir(III) complexes will be outlined followed by 

strategies for designing new NLO chromophores. 
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Optical Phenomena 

Light 

The dual nature of light is essential to photochemistry.35,36 For instance, light can be 

described as a wave moving through space or can behave like a particle, known as a photon, 

with a specific energy, E. The colour of light can be described by its wavelength, . The relation 

between the two aspects that are of great importance in photochemistry can be expressed by: 

 where  is the wavelength in m, E is the energy in Joules per photon, h is Plank’s 

constant (6.625 x 10–34 J∙s) and c is the speed of light (2.998 x 108 m/s). The range of visible 

light for the human eye is from about 400 – 700 nm. 

Absorption of Light 

When an atom or a molecule absorbs light of particular energy, it will be excited from 

its ground state S0 to an excited state Sn with a characteristic energy. Atoms show sharp lines 

in their absorption spectra, related to the distinct transitions between ground and excited states. 

The absorption spectra of polyatomic molecules show however broad bands, which is due to 

different vibrational and rotational states with different energy levels. The intensity of bands is 

described by the Franck-Condon-principle.35 This principle is based on the approximation that 

the electronic motion is much faster compared to the nuclear motion, due to the large mass 

difference. The transition of an electron to a different energy state takes place on an almost 

negligible short time scale compared to the motion of the nuclei. This results in different 

geometries of the molecule depending on the electronic states.  

 

𝐸 =  
ℎ ∙ 𝑐

𝜆
 

(1) 
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Figure 1: Franck-Condon effect for absorption (blue arrows) and emission (green arrows) 

transitions between ground state S0 and Excited State Sn. (a) for excited state and ground state 

of the same internuclear distance and/or bond angles (b) for a molecule with different geometry 

in excited and ground state. 

Absorption can be described by the Beer-Lambert law, which is expressed in the equation (2): 

 

where Abs is absorbance, I0 and I1 in W·m−2 are the intensities of incident and 

transmitted light, respectively, c is the concentration of the absorbant in M and l is the length 

of the light path in cm. The molar extinction coefficient  in M-1 cm-1 describes how strong a 

substance absorbs light at a given wavelength. 

Possible transitions can be described as spin-allowed or parity allowed transitions. Spin-

allowed transitions obey the general electron spin selection rule of S = 0. Absorption takes 

place without a change in electron spin, meaning that a transition between a singlet and a triplet 

state is spin-forbidden. Secondly, the Laporte-rule (or parity rule) also needs to be considered. 

This selection rule states that transitions from an orbital with a centre of inversion to another 

orbital with a centre of inversion is “forbidden”, when the molecule also has an inversion centre. 

𝐴𝑏𝑠 = 𝑙𝑜𝑔
𝐼0
𝐼1

= 𝑐 ∙ 𝑙 ∙  𝜀 
(2) 
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Thus, d-d transitions in octahedral transition metal complexes are Laporte-forbidden in 

centrosymmetric systems. This means these transitions can only take place in systems that are 

not always centrosymmetric. For example, in transition metal complexes in which the ligands 

may induce fluxional distortions these transitions can be observed but typically appear with low 

intensities in the absorption spectrum. For allowed transitions however higher intensities are 

characteristic. 

For transitions in transition metal complexes that are forbidden by the spin-selection 

rule,  is usually small (10-5 – 10-3 M-1 cm-1) but can also be higher (10-2 – 10-1 M-1 cm-1). For 

spin-allowed but parity forbidden transitions like a d-d transition in octahedral transition metal 

complexes  is of the order of 100 – 103 M-1 cm-1. The coefficient  is large (in the range of 103 

– 105 M-1 cm-1) for transitions that are spin- and Laporte-allowed (e.g. ligand centred -* 

transitions in octahedral transition metal complexes). 

Charge transfer processes 

In octahedral transition metal complexes like Ir(III) complexes of the form 

[Ir(C^N)2(N^N)]+ (where C^N is a mono-anionic bidentate chelated ligand such as 2-

phenylpyridinato, ppy, and N^N is a neutral bidentate diimine ligand such as 2,2′-bipyridine 

(bpy)), electronic transitions can be classified into three categories: (1) transitions between the 

energy levels mainly located on the metal such as d-d transitions, (2) transitions mostly located 

on the ligands such as −* transitions of aromatic ligands or from one ligand to another ligand 

and (3) transitions where an electron is transferred from the ligand to the metal or vice versa.37 

It is important to state that the electron is not being transferred from one atom to another, but is 

moved from one molecular orbital (MO) to another. Multiple electronic states are generated in 

a complex multi-atomic structure like mixed-ligand Ir(III) complexes containing a heavy metal, 

anionic -donating ligands (such as a C^N ligand) and a -accepting ligand (such as a neutral 

N^N ligand), resulting in a complex range of occurring electronic transition processes. Often it 
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is a challenging task to identify clearly all the bands in the absorption spectra reflecting the 

complexity of the occurring electronic states. Figure 2 shows schematically the characteristic 

transitions in octahedral transition metal complexes and are described in more detail in the 

following.  

 

Figure 2: Molecular orbital diagram for an octahedral transition metal complex. The blue arrows 

indicate four types of transitions based on localised MO configurations.38 

One possible scenario is that an electron is promoted from a molecular orbital primarily 

located on metal orbitals to a molecular orbital primarily located on ligand orbitals and is termed 

metal-to-ligand charger transfer (MLCT).37,39 If an oxidisable ligand, e.g. anionic, is bound to 

a metal which is electron-poor, ligand-to-metal charge transfer (LMCT) can be observed.37 The 

more the ligand is electron-rich the more the ligand-to-metal transfer may occur at lower 

energies. A third metal centred electron transition (MC) may be observed involving only 

orbitals that are based on the metal. In a similar way, an electron can be promoted between 

molecular orbitals that are both ligand based such as intraligand charge transfer (ILCT) or 

ligand-to-ligand charge transfer (LLCT). For instance, ligand-centred -* transitions are 
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typically highly absorptive. Metal-centred transitions at low energies are typical for first row 

transition metal complexes.  

In Figure 3, the experimentally obtained absorption spectrum for 

[Ir(ppy)2(dtBubpy)]PF6 1 (where ppy is 2-phenylpyridinato and dtBubpy is 4,4′-ditertbutyl-

2,2′-bipyridine) is shown.  

 

Figure 3: Room-temperature UV-vis Absorption spectrum of 1 in acetonitrile (c = 1.8 x 10-5 M) 

With the help of time-dependent density functional theory (TD-DFT) calculations, the 

bands can be assigned to their respective electronic transitions. The band of high intensity in 

the range of  = 5-6 x 104 M-1 cm-1 at 255 nm are assigned to spin-allowed 1π–π* ligand-centred 

(1LC) transitions on both the ppy and dtBubpy ligands. The intensity of the absorption spectrum 

drops off with other bands lower in intensity (1-3 x 104 M-1 cm-1) in the ultraviolet, which can 

be attributed to an admixture of spin-allowed charge-transfer (1CT) transitions consisting of d-

*
dtBubpy metal-to-ligand (1MLCT) and ppy-

*
dtBubpy ligand-to-ligand (1LLCT) transitions. Low 

intensity bands are observed in the visible at 408 nm ( = 3 x 103 M-1 cm-1) and the spectrum 
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tails out with other low intense transitions to the red of 466 nm ( = 4 x 102 M-1 cm-1). These 

poorly absorptive bands can be best described as spin-forbidden 3MLCT and 3LLCT transitions 

that can be accessed due to the large spin-orbital coupling in Ir(III) complexes. This absorption 

profile is very characteristic for many Ir(III) complexes of the form [Ir(C^N)2(N^N)]+.40,41 

Luminescence 

Excitation 

Historically, in traditional lighting, light is generated through the process of 

incandescence, which comes along with a rise of temperature. Luminescence, however, is a 

phenomenon of light production, which is not necessarily linked to a rise of temperature. 

Possible origins of luminescence can be electroluminescence, which occurs after an electric 

field is applied42 and photoluminescence, where light is the source of energy.43  

The process of photoluminescence is initiated when a molecule in the ground state S0 

absorbs light (or a photon) of particular energy. The absorbed photon excites an electron from 

the ground state to a higher energy level generating an excited state Sn; in other words, the 

excited state needs to be populated. Now, a variety of deexcitation pathways are possible (see 

Figure 4). In principle, transitions between energy states of the same spin multiplicity are 

allowed and those between states with different multiplicity are forbidden.  

Relaxation pathways 

Firstly, according to Kasha’s rule,44  which states that emission only occurs from the 

lowest excited state of a given multiplicity, the excited electron undergoes a rapid 100% 

efficient deactivation via non-radiative pathways resulting in a metastable species in the lowest 

spin-allowed singlet excited state S1. This process, called internal conversion (IC), occurs on a 

femtosecond timescale. From this populated state S1, the electron can undergo different 

relaxation pathways to return to the ground state. 
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Figure 4: Simplified Jablonski45 diagram showing distinct energy levels. The colour coded 

arrows show the possible transitions between the electronic states (blue = Absorption, black = 

internal conversion (IC, non-radiative deexcitation), green = fluorescence, purple = inter-

system crossing (ISC), red = phosphorescence). 

In case the energy is transferred into vibrational, translational or rotational energy, the 

electron undergoes a non-radiative decay to return to Sn, releasing heat to the environment. 

When a photon with the energy corresponding to the difference between the energy levels of 

the excited state and the ground state is emitted, the decay is radiative. If the spin multiplicity 

is conserved, the spin selection rule is adhered. According to George Gabriel Stokes this 

transition can be termed fluorescence46 and is a fast process that is on the order of nanoseconds.  

A competing non-radiative pathway, intersystem crossing (ISC), can occur in systems 

where the electron moves fast enough to interact with its own spin to change the spin 

multiplicity. This process is termed spin orbit coupling (SOC) and another excited state, a triplet 

state Tn, is generated. Similar to the processes of the Sn states, deactivation to the lowest excited 

state T1 occurs. Again, the energy can be transformed into vibrational, translational or rotational 

energy to generate non-radiative deexcitation. In the case of a radiative decay a change of spin 



Chapter 1 – Introduction 

- 10 - 

 

is necessary. This emission process is called phosphorescence.38 In case of organic molecules, 

the lifetime of this spin-forbidden radiative transition is typically much longer compared to 

other competing relaxation pathways and so phosphorescence is typically not observed. 

When a heavy metal is incorporated in the system, like in the case of metal complexes, 

the electron is accelerated by the metal leading to strong spin-orbit coupling and mixing of the 

singlet and triplet excited states removing the spin-forbidden nature of the triplet state. Efficient 

intersystem crossing is now possible, which is much faster than other competing deexcitation 

pathways from the singlet states. The lifetime of the triplet state is significantly shortened and 

therefore high phosphorescent efficiencies can be obtained.23,47–49 For both radiative pathways 

the emitted photon is lower in energy than the absorbed photon and emission occurs at longer 

wavelengths compared to the incident light absorbed. 

Quantum yield and lifetime 

The quantum yield of a process, , is defined as the ratio of photon absorption and of 

any deactivation processes and states the efficiency of an emitter.50 For instance, the 

photoluminescence quantum yield is the ratio of emitted photons to absorbed photons by the 

system and can be expressed by: 

where kr is the radiative rate constant and knr is the non-radiative rate constant. This 

equation refers to a first-order decay, assuming no nonradiative decay is occurring that is caused 

by external processes, like self-quenching or quenching through impurities or oxygen. In very 

dilute concentration (10-5 M) and a vigorously degassed and sealed environment both self-

quenching and quenching through oxygen can be minimised. To obtain very high quantum 

yields two strategies are possible. Either increase efficiency of radiative transitions and 

therefore kr. Or decrease the non-radiative relaxation pathways. 

𝛷 =
𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑒𝑚𝑖𝑡𝑡𝑒𝑑

𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑
=  

𝑘𝑟

𝑘𝑟 + 𝑘𝑛𝑟
 

(3) 
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The lifetime of highly efficient fluorescence can range up to a few ns. In systems where 

spin orbital coupling does not occur phosphorescence lifetimes can be as longs hours. For 

systems with a heavy metal and strong SOC the phosphorescence lifetime may be in the 

microsecond (s) to millisecond (ms) regime.51 In other words, SOC influences kr for 

phosphorescence. Efficient SOC can lead to efficient phosphorescence. SOC is stronger for 

heavier metals and in fact the SOC constant, , is proportional to Z4 (where Z is the atomic 

number). The SOC constant increases rapidly with atomic number and therefore heavier 

elements generally have higher SOC.51 In fact, transition metals with one of the highest SOC 

constants are iridium ( = 3909 cm-1), platinum ( = 4480 cm-1) and gold ( =  5104 cm-1), 

which is a reason why complexes based on these metals are typically highly luminescent and 

has made them popular in a wide range of applications.52  
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Ir(III) complexes 

Photoactive Ir(III) complexes have found application in a wide range of techniques such 

as emitters in electroluminescent devices,22,23,53,54 as chromophores in nonlinear optics,55–57 as 

dyes in solar cells,58,59 as solar fuels,60 as photoredox catalysts61,62 and in bioimaging.25,26 Ir(III) 

complexes generally have high photoluminescence quantum efficiency, easy access colour 

tunability and highly efficient emission. The availability of strongly luminescent triplet emitters 

has made complexes based on Iridium(III) highly popular candidates for solid-state lighting 

(SSL).23,52,63,64 The following focusses on the design, synthesis of Ir(III) complexes and their 

optoelectronic properties for further application. 

Synthesis strategies for cyclometalated Ir(III) complexes 

Cyclometalated Ir(III) complexes bearing three bidentate ligands form a very popular 

class of Ir(III) complexes. There are many synthetic routes for Ir(III) complexes; a selection of 

utilised strategies to synthesise cyclometalated Ir(III) complexes is depicted in Figure 5.  

 

Figure 5: Scheme of selected synthetic routes used for cyclometalated Ir(III) complexes 

By far the most followed synthesis procedure is to form a -dichloro-bridged 

cyclometalated iridium dimer in a first step, refluxing a mixture of IrCl3.nH2O and the 
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cyclometalating ligand (C^N) in a high boiling alcoholic solvent such as 2-ethoxyethanol, as 

first reported by Nonoyama using Na3[IrCl6] as the Iridium source.65 In this case, the ligands 

are identical and are coordinating to Ir(III) in a 5-membered metallacycle forming very strong 

quasi-covalent bonds between the Ir(III) and the carbon atom of the C^N ligand.66 Typical C^N 

examples are 2-phenylpyridine (ppyH) and its derivatives. In the second step, the dimer can 

then be cleaved in the presence of a bidentate ligand to form the desired complex.5,21–23,67,68 

Homoleptic complexes are obtained when using the identical cyclometalating C^N 

ligand. The thermodynamically favoured facial-configuration (fac) is obtained at high 

temperatures from the dimer in the presence of 1 equivalent of the C^N ligand and a base in 

glycerol at 200 °C.69 Another strategy to obtain the fac-isomer is to react Ir(acac)3 (where acac 

is acetylacetonate) with 3 equivalents of the C^N ligand in glycerol at 200 °C. To obtain the 

kinetically favoured meridional-complex (mer) from the dimer, a careful control of the 

synthetic conditions and the reaction temperature is needed. The mer-isomer can be thermally 

or photochemically converted into the fac-isomer.70,71 

Upon reaction of the dimer with an ancillary ligand, heteroleptic complexes (see Figure 

5) are obtained where the C^N ligands are in trans-N,N configuration.57,72–75 The ancillary 

ligand can be negatively-charged or charge-neutral, directly influencing the charge of the 

heteroleptic complex. Neutral complexes are obtained upon reaction of the dimer at higher 

temperatures (e.g. in refluxing 2-ethoxyethanol) in the presence of a base with ancillary ligands 

such as picolinates N^O76–78 or acetylacetonates O^O.57,77,79–82 The reaction of the dimer in mild 

conditions (e.g. in a refluxing mixture of 1:1 MeOH and CH2Cl2) with diimine N^N ligands 

(such as 2,2-bipyridines5,23,56,83–85 and 1,10-phenanthrolines34,58,86,87) leads to cationic 

complexes. The many possibilities of ligands and conformations result in a large variety of 

electronic properties, that can be tuned by ligand design and influence the dominating pathways 

for excitation and deactivation.5,22,23,66,88 
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Tuning the phosphorescence wavelength of Ir(III) complexes 

The nature of the excited states of Ir(III) complexes is generally a mixture of mixed 

ligand-centred (LC) and metal-to-ligand charge transfer (MLCT). Thus, changing the ligand 

environment can have drastic impact on the energy of the excited states. Density Functional 

Theory (DFT) calculations of a typical cationic Ir(III) complex of the form [Ir(C^N)2(N^N)]+ 

state that the highest occupied molecular orbital (HOMO) is a combination of the metal and the 

phenyl rings of the C^N ligands.5,21,23,33,66,86 Generally, the lowest unoccupied molecular orbital 

(LUMO) is based only on the N^N ligand. Thus, by appropriate substitution, the energies can 

be altered and emission ranging from deep red to the blue can be obtained. However, the 

photoluminescence quantum yield (PL) of these complexes can decrease drastically when the 

energy is tuned towards the extremities of the visible spectrum. For example, according to the 

energy gap law by decreasing emission energy the rate of non-radiative decay increases as the 

vibrational modes of ground state and excited state match more closely.89  

A strategy to tune the emission energy of Ir(III) complexes is the selective stabilisation 

and/or destabilisation of the frontier orbitals of the complex. Mixed-ligand Ir(III) complexes 

(e.g. of the form [Ir(C^N)2(N^N)]+) are particularly suitable in this context since the two 

different ligands can independently be introduced. With a careful design and the right choice 

of substitution the desired colour tuning can be obtained.90,91 For instance, electron-

withdrawing substituents decrease the donation of electron-density onto the orbitals leading to 

stabilisation of the frontier orbitals. On the other hand, when adding electron-donating groups 

destabilisation of the frontier orbitals through an increase of electron-density onto the orbitals 

is obtained.  

The principles of colour tuning will be explained with the following three complexes 

shown in Figure 6: [Ir(dFppy)2(dmabpy)]PF6 (2)91 (where dFppy = 2-(2’,4’-

difluorophenyl)pyridinato and dmabpy = 4,4’-N,N-dimethylamino-2,2’-bipyridine), 
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[Ir(ppy)2(dtBubpy)]PF6 (1)84 and [Ir(topy)2(debpy)]PF6 (where topy = 2-para-tolylpyridinato 

and deeb = diethyl [2,2'-bipyridine]-4,4'-dicarboxylate) (3).91 

 

Figure 6: Schematic representation of the effect of electron-withdrawing and donating groups 

on HOMO and LUMO levels of 1-3.Complex 2 exhibits a λem = 581 nm (PL = 23%, PL = 560 

ns) in acetonitrile solution. A blue shift of 118 nm (5721 cm-1) for complex 2 is achieved by 

adding electron-withdrawing fluorine atoms onto the phenyl of the C^N ligands, which stabilise 

the HOMO, and by substituting the di-tert-butyl groups with electron-rich di-methyl-diamine 

groups, which leads to a destabilisation of the LUMO. To obtain a bathochromic shift of 106 

nm (5721 cm-1) compared to 1 electron-donating methyl groups were added to the phenyl unit 

of the C^N ligands of 3 and the N^N ligand has been substituted with electron-accepting 

diethyl-ester groups. 
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The above examples of Ir(III) complexes all display ligands (C^N as well as N^N) 

forming five-membered rings around the Ir centre. Investigating the impact of going from a 

five-membered ring to a six-membered ring is much less explored. Cyclometalating ligands 

forming a six-membered ring are rare and belong to two categories depending on the presence 

of conjugated92–94 or nonconjugated bidentate chelating ligands.95–97  

The impact of a conjugated C^N ligand forming a six-membered chelate can be 

demonstrated when comparing complex [Ir(pq)2(acac)]98 4 (where pq is 2-phenylquinolinate) 

and [Ir(8-pq)2(acac)]92 5 (where pq is 8-phenylquinolinate, see Figure 7). 

 

Figure 7: Schematic representation of five-membered and six-membered chelated Ir(III) 

complexes 

Complex 4, bearing a five-membered ring, exhibits a em of 597 nm in 2-MeTHF 

solution with a PL  of 10% (PL = 2000 ns).98 The cyclometalating ligand of 5 is an isomer of 

the C^N ligand of 4 and forms a six-membered chelating ring. The effect on the photophysical 

properties is that a drastic red-shift is observed (em = 680 nm, PL = 1769 ns in MeCN 

solution),92 reflecting the extension of the -conjugation of the C^N ligand. The PL of 5% is 

notably lower compared to 4, which can be explained by the emission in the red where 

nonradiative processes are more pronounced and by the nonrigid nature of the six-membered 

C^N ligand leading to flexibility.92 
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The other category of six-membered chelated Ir(III) complexes comprises 

nonconjugated cyclometalating ligands that bear a spacer between the two coordination 

moieties. The impact on the photophysical properties of disruption the electronic crosstalk can 

be illustrated with complexes [Ir(dFppy)2(fptz)]99 6 (where fptzH is 3-trifluoromethyl-5-(2-

pyridyl)-1,2,4-triazole] and [Ir(dfbpz)2(fptz)]96 7 (where dfbpz is 1-(2,4-difluorobenzyl)-1H-

pyrazolato, see Figure 8). 

 

Figure 8: Schematic representation of five-membered and six-membered chelated Ir(III) 

complexes  

The cyclometalating ligand of complex 6 forms a five-membered ring around the Ir 

centre. In CH2Cl2 solution, 6 exhibits a em = 460, 489 (s) nm.99 Complex 7 however is bearing 

a six-membered chelating C^N ligand. Compared to 6 a small blueshift is observed with 7 (em 

= 437 (s), 460 nm in CH2Cl2).
96 The introduction of the CH2 spacer into the C^N ligand is 

successfully breaking the -conjugation of the chelating ligand. As a consequence, the  orbital 

energies are lowered and the respective * orbitals are destabilised.96 

These findings demonstrate clearly how emission colour tuning of Ir(III) complexes is 

not only limited on modifying the substituents on the ligands but can also easily be achieved 

through expanding from a five-membered ring to a six-membered ring chelating ring.  
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Applications of luminescent material 

Solid-state lighting 

One of today’s most pressing challenge is the increasing demand of energy. Energy 

production is mostly based on limited fossil fuels and nuclear power, but renewable energies 

have been widely introduced. Innovative concepts to cut energy consumption have been 

introduced on regional and global level. However, with a growing world population the demand 

will keep increasing. In the medium term (by 2020), the European Union (EU) declared in 2007 

the aim (1) to decrease the energy consumption in the EU by 20%, (2) to reduce greenhouse 

gas emission by 20%, (3) to ensure a transition to low-carbon, renewable energy-based energy 

sources supplying 20% of the consumed energy and (4) to improve energy efficiency by 

20%.100–102 This is an ambitious undertaking giving how much energy is currently being used 

in transport, industry and households. 

One major energy consumption section is the lighting. In 2014, 19% of the worldwide 

consumed electricity was consumed by lighting with a slightly smaller fraction used in the EU 

(14%).103 Most of the lighting technologies that are used nowadays can be tremendously 

improved, presenting a huge potential for energy savings. One of the most energy-efficient and 

environmentally friendly state-of-the-art technology is solid state lighting (SSL). SSL 

technology is quickly evolving and has reached high efficiency levels of more than 276 lm/W 

(compared to 40-100 lm/W for fluorescent lamps).103 

Compared to traditional lighting technologies, SSL reduces heat production and other 

unused emission in the non-visible spectrum.104,105 SSL technologies are, for example, light-

emitting diodes (LED) and organic light-emitting diodes (OLEDs). A LED is a device based 

on a semiconductor and generates light from electricity. The device architecture corresponds to 

a p-n junction diode, where the “p” side contains an excess of holes and “n” contains an excess 

of electrons. When electricity is applied, electrons can recombine with the electron holes 
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releasing energy in form of photons. The wavelength of the emitted light, and therefore its 

colour, is determined by the band gap of the semiconductor. LEDs are typically based on 

inorganic semiconductor materials. For example, blue LEDs that are used utilise the 

semiconductors GaN (gallium nitride) and InGaN (indium gallium nitride).106 Thanks to their 

simple architecture, easy colour tunability and high efficiency, LEDs have shown to be a 

promising candidate replacing traditional lighting devices.107,108 However, there are still 

challenges for this lighting technique. A trade-off between surface area and power density exists 

for this technology that yet has limited its potential for industrial scale lighting.109 One of the 

major disadvantages is the materials used not being environment friendly. Hence, there is a 

motivation towards the use of greener materials.107 

Replacing the inorganic semiconductors in LEDs through organic semiconductors 

adding an organic component to obtain organic light-emitting diodes (OLEDs) is of great 

academic and commercial interest. OLEDs have many advantages with respect to traditional 

lighting technologies. OLEDs are light and thin and can therefore find application in lightweight 

panels and curved or foldable screens. Other advantages are durability, fast switching times, 

higher colour quality and higher contrast ratios.110 

Efficiency and in general the performance of light-emitting devices is evaluated by their 

external quantum efficiencies (EQE, the ratio of emitted photons per injected electron), current 

efficiency (emitted light per electric flux in candela per ampere) and power efficiency (emitted 

flux per electric input in lumens per electrical watt).111 The lifetime t1/2 (in h, time to reach half 

of the maximum luminance) and the total emitted energy Etot (in J, the integration of the radiant 

flux vs. time from t = 0 (application of bias) to t = t1/5)
112 indicate the device stability. In the 

following OLEDs are discussed in more detail, highlighting their architecture and utilised 

emitters.  
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Organic light-emitting diodes (OLEDs) 

Organic light-emitting diodes (OLEDs) are a display technology typically based on 

photoactive organic molecules. The luminescent material is sandwiched in a multilayer stacking 

between two conductors (see Figure 9). 

 

Figure 9: Schematic representation of a typical architecture of an OLED.  

The typical thickness of an OLED is of few hundred nm. Generally, two types of 

materials are used as emitters: polymers and small organic or organometallic molecules. When 

a potential is applied (between 3 and 12 V), electrons are injected from the cathode into the 

electron transfer layer. At the same time holes, positive charges, are injected from a transparent 

anode. In the applied electric field, the holes and the electrons migrate through the layers and 

generate excited states, known as excitons, upon recombination in the emissive layer. Ideally 

the excited states relax to the ground state by emitting photons, generating light. This process 

is called electroluminescence (EL). In PL, as described above, the S1 is always populated first. 

The EL mechanism, however generates through the recombination of holes and electrons the 

excited state in a bimolecular fashion, meaning that even in systems possessing only atoms with 

low SOC (e.g. conjugated organic molecules) triplet excitons are generated. In fact, 75% of the 
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excitons generated in OLED are in the triplet spin state. When using an emitter that is purely 

fluorescent a statistical limit of 25% on their internal quantum efficiencies (IQE, the internal 

ratio of photons generated from electrons input into the device) is imposed, which generally 

does not make them a desirable candidate for OLEDs.   

An efficient solution to the problem is the use of phosphorescent emitters in which the 

triplet states can be harvested.113 Systems consisting of for example heavy transition metal 

complexes with strong SOC are suitable candidates with a theoretic internal quantum efficiency 

of 100%. This concept was first applied with the bright red emitting metal complex 

octaethylporphyrin platinum(II)113 8 (em = 641 nm, PL = 60%, PL = 6500 ns; see Figure 10). 

 

Figure 10: Structure of the phosphorescent metal complex Platinum(II) octaethylporphyrin 8 

and Iridium(III) complex used 9 used as dopant in OLEDs. 

This complex was doped into Alq3 (tris(8-hydroxyquinolinato)aluminium(III)) and the 

device exhibited an internal  quantum efficiency (IQE) of 23%, whilst the Alq3 transferred 90% 

of its energy to the complex. With a different host the device was further optimised resulting in 

an IQE of 32%.114 However, the efficiency was found to drop drastically at higher currents, 

which is needed for higher brightness. This can be explained by triplet-triplet annihilation 

(TTA).115 The lifetime of the triplet excited state of this platinum(II) complex is so long (PL = 

6500 ns) that as concentration of the excited molecules increases they have time to get close to 

one another to undergo a process that competes with phosphorescence.116 
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Shortly after this work, Ir(III) complexes were introduced as dopants in OLEDs. One of 

the most well-known is fac-Ir(ppy)3 (complex 9, see Figure 10) bearing three phenylpyridinato 

ligands coordinated to the Ir(III) centre orientated in a facial arrangement. This neutral complex 

exhibits green phosphorescence (em = 510 nm) in toluene solution with a very high 

photoluminescence quantum yield, PL, of 97%.50 The lifetime of 1.9 s is short enough to 

ensure there is no significant triplet-triplet annihilation (TTA) when doped into a host in an 

OLED, as was shown previously for complex 8. The device performance of 9 gave an external 

quantum efficiency of 8.0%, proving the great potential Ir(III) complexes employed in solid 

state lighting application. 

A sky-blue emitter widely used for vacuum sublimed OLEDs is FIrpic54,76,99,117,118 (10) 

(bis[2-(4,6-difluorophenyl)pyridinato-C2,N]-(picolinato)iridium(III), Figure 11). 

 

Figure 11: Structure of FIrpic (10) and mesitylated analogue (11).  

However, it is not a highly suitable candidate for solution-processed OLEDs due to its 

poor solubility.76 A strategy to improve the performance of emitters based on 10 is to decorate 

the ligand with bulky hydrophobic substituents. This concept was investigated with the charge 

neutral complex [Ir(dFmesppy)2(pic)]76 (11, where dFmesppy is 2-(2,4-difluorophenyl)-4-

mesitylpyridine and pic is picolinate, Figure 11) carrying a mesityl-substituent on the 4-position 
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of the pyridine of the C^N ligand, it was used as emitter in solution processed phosphorescent 

OLEDs (PhOLEDs).76 

The bulky mesityl groups lead to (1) higher solubility of the complex in organic solvents 

having a positive impact on film morphology, (2) an increase of the steric bulk around the Ir(III) 

hindering intermolecular quenching processes, leading to higher photoluminescence quantum 

yields in solution and frequently in the device, (3) a mutual orthogonality of the mesityl groups 

compared to the pyridine of the C^N preventing an extension of the π-conjugation-system of 

the C^N ligand, impeding unwanted red-shifting in emission. 

As a consequence, in toluene complexes 10 and 11 emit in the same region (em = 469 

nm and 473 nm, respectively) but with a drastic improvement in photoluminescence quantum 

yield (PL = 54% and 92%, respectively).76 

Since the first report of 8 in an OLED, the device architecture of OLEDs has been 

improved enormously reaching EQEs of 40%.21,119 Sophisticated encapsulated air-free 

multilayer systems are necessary to ensure a balanced injection of the charges across the device. 

State-of-the-art OLEDs may sometimes be comprised of up to 15 layers.120 This multilayer 

architecture is typically prepared by vacuum sublimation, where only sublimable compounds 

can be used narrowing down the choice of luminescent materials significantly.23 Another 

architecture that has been attracting considerable interest in the area of solid-state lighting is 

the light-emitting electrochemical cell (LEEC),64,84,120 which has a potential in SSL technology. 

Light-emitting electrochemical cells (LEECs) 

Due to the above-mentioned limitations of OLEDs, new concepts have been emerging 

to minimise the complex multilayer systems. A device architecture that has shown to exhibit 

promising results is the light-emitting electrochemical cell (LEEC).64,84,120 Simply speaking, 

only one main layer is needed for LEECs (Figure 12). 
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Figure 12: Schematic representation of a typical architecture of a LEEC containing only one 

optoelectronically active layer. The ionic luminescent material enables the injected charge to 

migrate across the device.  

The emissive layer, typically a neat film or highly concentrated film, is sandwiched 

between a cathode and an anode, which is deposited on a glass substrate. In contrast to OLEDs 

generally using a charge neutral emitter, LEECs are based on intrinsically charged emitters. 

The charged nature of the emitter permits more facile charge injection and transport and permits 

the device to work under lower working voltage. These devices can operate with air-stable 

electrodes allowing them to be solution processed giving rise to a complete different type of 

emitters compared to OLEDs. This simpler architecture and much milder working conditions 

leads to much lower production costs and makes LEECs a potential candidate for 

commercialisation.64 One family of LEECs is based on charged ionic transition metal 

complexes.64 A second family of LEECs is based on semiconducting polymers as emitting 

material and additional ion conduction polymers and inorganic salts.121–123 

Efficiency & Stability 

The emissive layer is generally a neat film of the emissive material and the molecules 

tend to aggregate. In such a closely packed system, excited state quenching is likely to occur, 

which has a direct effect on lowering the EQE values of the devices.124 Therefore, it is not only 
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important to tune the emission colours, but incorporate features that may suppress self-

quenching to successfully improve device performance.125 To circumvent the issue of self-

quenching in LEECs the emitting complexes can be decorated with bulky, hydrophobic 

substituents, which act to increase the intermolecular distance.111 The hydrophobic substituents 

not only increase the solubility in organic solvents leading to a better dispersion in solution-

processed devices, but also hinder the disadvantageous attack from small molecules leading to 

quenching.42,76,84,126–128 

LEECs based on Ir(III) complexes 

A simple design 

As discussed above, the heavy metal containing Ir(III) complexes exhibit excellent 

photophysical properties making them suitable candidates as emitter in light-emitting devices. 

One of the simplest examples of Ir(III) complexes is the unsubstituted analogue 

[Ir(ppy)2(bpy)]PF6 (complex 12, Figure 13) and is investigated intensively in LEECs.21,23,86 

 

Figure 13: Structures of [Ir(ppy)2(bpy)]PF6; a widely used Ir(III) complexes in LEECs. 

Complex 12 is in acetonitrile solution an orange-yellow phosphorescent emitter (with em = 

585, PL = 14%, PL = 430 ns, Table 1).86 The emission origins from a CT triplet state 

comprising 3MLCT and 3LLCT transitions.40 In LEECs, complex 12 reaches t1/2 = 70 h and Etot 

= 2 J with and EQE of 2.1%.86 Evidently, these results are not satisfactory and cannot compete 

with state-of-the-art lighting applications. 
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Table 1: Summary of complexes 1,12-20 

Complex Photophysicsa Device data Ref. 

em / nm PL / % PL / ns t1/2 / h Etot / J EQE / % PE / lm . W-1 

1 581 24 557   5 10 84 

12 585 14 430 70 2 2.1 6.1 86 

13 512 70 1400 9  14.9 39.8 129 

14 605 23 330 54 - 7.1 22.6 125 

15 472 (sh), 

494 

54 3990   7.6 18.0 130 

16 623 17 575 110  0.3 0.46 72 

17  2  0.5    87 

18 595 3 500 1290 13.6 4.0 10.1 131 

19 574 2 600 2000 18.7   132 

20 579  98 1300 6.9 1.0 3.3 133 

a The reported photophysical data were obtained in deaerated acetonitrile solution at 298 K. 

However, given its simple design, it is a promising result, showing the great potential 

of emitters based on iridium. Generally, Ir(III) complexes of the form [Ir(C^N)2(N^N)]+ with a 

spatial distribution of the frontier orbitals allow an almost independent tuning of the ground 

level and excited state levels. Therefore, two approaches are possible: incorporating 

substituents on the C^N or the N^N ligand. Strategies to especially increase the efficiency are 

of particular interest to improve the overall device performance.23,42,63,64,66,84,111,134–136 

The use of sterically congested substituents 

It has been demonstrated that by adding sterically congested substituents onto Ir(III) complexes, 

the performance of LEECs could significantly be improved42,83,138,84,111,124–126,130,131,137 (see 

Figure 14 for selected examples and Table 1 for the summary of data). 



Chapter 1 – Introduction 

- 27 - 

 

 

Figure 14: Structures of cationic Ir(III) complexes (1 and 13-15) of the form 

[Ir(C^N)2(N^N)]PF6 bearing sterically congested substituents on the ancillary ligand   

For instance, the cationic Ir(III) complex 14125 ([Ir(ppy)2(4,5-diaza-9,9’-

spirobifluorene)](PF6) bearing a sterically demanding ancillary ligand exhibits orange-yellow 

emission (with em = 605) and excited state lifetimes of PL = 330 ns with a PL = 23% in 

acetonitrile solution, which increases to 32% in neat film. LEECs based on complex 14 revealed 

high maximum external quantum efficiencies of 7.1% and power efficiencies of 26.2 lm W-1. 

With the choice of this ancillary ligand the properties could be improved in solution as well as 

in device compared to the unsubstituted analogue complex 12 (Figure 13). A higher 

performance could be obtained with the complex [Ir(dFppy)2(dtBubpy)]PF6 13129 with electron-

withdrawing fluorine atoms on the C^N ligand and large electron-donating tert-butyl groups on 

the N^N ancillary ligand. The emission colour is blue-shifted (em = 512 nm) compared to 12 

and 14, due to both stabilisation of the HOMO with the fluorine atoms and destabilisation of 

the energy level of the LUMO thanks to the presence of the tert-butyl groups. The 

photoluminescence quantum yield in acetonitrile solution is significantly increased (PL = 

70%) as well as the lifetime (PL = 1400 ns) compared to both complexes 12 and 14. In neat 

films complex 13 exhibits an impressive PL of almost unity (PL = 96%). High peak external 

quantum efficiencies of 14.9% and power efficiencies of 39.8 lm W-1 with half of the maximum 

luminance (t1/2) of 9h at 3 V can be obtained for LEECs using complex 13 as emitter.  
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An approach to tune the electronic states of Ir(III) complexes is to modify the nature of 

the heterocycle in the ligand systems. Complex 15130 bears pyrazoles instead of pyridines on 

the C^N ligand and an imidazole bearing a sterically demanding substituent replacing one of 

the pyridines of the N^N ligand to produce the structure [Ir(dfppz)2(tp-pyim)]PF6 (where 

dfppzH is 1-(2,4-difluorophenyl)-1H-pyrazole and tp-pyim 2-(1-(4-tritylphenyl)-1H-imidazol-

2-yl)pyridine). The emission energy in acetonitrile with em = 472 (sh), 494 is notably blue 

shifted (18 nm) compared to 13, the PL however is lower (PL = 54%), which may be explained 

by fluxional motion coming from the sterically demanding substituent, leading to non-radiative 

decay. However, 15 is still significantly brighter than the reference complex 12. The lifetime is 

significantly higher (PL = 3990 ns) than that of 13. In LEECs complex 15 afforded a peak EQE 

of 7.6% and power efficiencies of 18.0 lm W-1, which is a good result, but notably lower than 

the results for 13.  

Another strategy is obtained with the functionalised 5,5’-diphenyl-2,2’-bipyridine 

(dpbpy) as ancillary ligand. The emission of complex [Ir(ppy)2(dpbpy)]PF6, 1672 (Figure 15 and 

Table 1) is red-shifted in MeCN solution (em = 623 nm) by 18 nm compared to 12. The 

quantum yield is slightly lower PL = 17% with lifetime (PL = 575 ns) higher than 1. The 

performance in LEECs are, very impressive with a superior figure of t1/2 = 110 h (with a peak 

of EQE = 0.3% and power efficiencies of 0.46 lm W-1).65 The substituents on the ancillary 

ligand shield efficiently the excited state centre leading to long device lifetimes. At first sight, 

more and more steric bulk might sound an attractive strategy to follow. One example is the 

sterically demanding complex 1787 bearing bulky 9,9-dihexylfluorene side groups on the N^N 

ligand. 
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Figure 15: Second set of structures of cationic Ir(III) complexes (16 and 17) of the form 

[Ir(C^N)2(N^N)]PF6 bearing sterically congested substituents on the ancillary ligand   

In acetonitrile solution this complex exhibits a low PL of 2%, which is significantly 

increased in neat film (38%). The LEECs based on 17 showed device lifetimes of not even 30 

min, which is a disappointing result. Consequently, the steric bulk cannot be just increased 

infinitely.  

To conclude, one strategy to increase device performance is indeed adding sterically 

demanding hydrophobic substituents. It will increase the solubility of the complex leading to a 

better dispersion, the inter-nuclear distance will be increased suppressing excited state 

quenching when agglomerated and the excited state centre is slightly protected. On the other 

hand, too much steric bulk like in 17 can lower the ion mobility, especially of the emissive 

Ir(III) complex, resulting in a tremendous reduction of device performance.  

Shielding through cage effect 

One big issue during device operation is the degradation of the emitter through the attack 

of small nucleophiles.126 It has been demonstrated that with complex [Ir(ppy)2(pbpy)](PF6) 

(with 6-phenyl-2,2’-bipyridine as pbpy) 18131 (Figure 16) this issues can be suppressed through 

shielding the centre of the complex. The substituted N^N ligand forms a face-to-face π-stacking 



Chapter 1 – Introduction 

- 30 - 

 

with the phenyl group of the ppy C^N ligand resulting in a cage effect, which shields the excited 

state centre of the complex efficiently. This orientation is kept in the ground state as well as in 

the excited triplet state.131 In acetonitrile solution, the emission energy of 18 (em = 595 nm) is 

minimally red-shifted (5 nm) compared to 12. 

 

Figure 16: Structures of shielded cationic Ir(III) complexes (18-20) of the form 

[Ir(C^N)2(N^N)]PF6 bearing phenyl groups on the ancillary ligand to generate cage effect 

through intra-molecular π-stacking  

The photoluminescence quantum yield in solution of PL = 3% is low in general and 

lower than the value for complex 1 (PL = 9%). In 5 wt% PMMA film, however there is an 

enhancement of the quantum yield (PL = 34%). The lifetime (PL = 500 ns) is slightly increased 

with respect to 12. Another example is the complex [Ir(dmppz)2(pbpy)](PF6) 19132 (where 

dmppz is 3,5-dimethyl-1-phenylpyrazole, Figure 16). Complex 19 exhibits a blue shift in 

acetonitrile of 21 nm (em = 574 nm) with respect to 18. Similar to 18, the quantum yield in 

solution (PL = 2%) is low. The lifetime (PL = 600 ns) is in the similar range, too. 

When employing complex 18131 and 19132 in LEECs improved device stability can be 

obtained. The device based on 18 showed power efficiencies of 10 lm W-1 and more impressive 

high stability with t1/2 = >1290 h and Etot = 13.6 J, which was an enormous improvement 

compared to the performance of LEECs based on complex 1 and 12. Even more as with 

complex 19, LEECs with t1/2 = 2000 h and Etot = 18.7 J can be obtained surpassing the 

performances of 18, which can be explained by the sterically more congested C^N ligand with 
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the methyl groups acting as an additional shield resulting in increased shield effect. Comparing 

these results with complex 12 (t1/2 = 70 h and Etot = 2 J), the cage effect on device performance 

is clearly distinct. A logical step appears to add a second phenyl unit on the ancillary ligand to 

obtain a symmetrical molecule and shield two sides leading to the complex 

[Ir(ppy)2(dpbpy)](PF6) 20133 (where dpbpy is 6,6'-diphenyl-2,2'-bipyridine, Figure 16). 

However, it turns out the cage effect is not improved in complex 20. The opposite is the case 

as the second π-stacking interaction distorts the planarity of the N^N ligand causing sterically 

stress. The shielding of the complex centre is less efficient than in 18. Still, LEECs employing 

complex 20 as emitter show excellent results (t1/2 = 1300 h and Etot = 6.9 J). 

The above discussed examples show the impact of sterically congested substituents on 

the device performance. However, the trend in the studies focusses on substitution on the 

ancillary ligand. The impact of sterically congested substituents on the cyclometalated ligand 

of cationic Ir(III) complexes has not been investigated in as much detail as for the ancillary 

ligand.23,111 Especially with the cationic complexes 13 and 14 and the neutral complex 11 it has 

been demonstrated how increasing the steric congestion is improving photophysical properties 

and solution processed device performances.76 
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Objectives 

This part of the introduction has explored different approaches of improving the 

properties of cationic Ir(III) complexes through incorporation of bulky sterically congested 

substituents. These findings are the basis of the aim of part of this present work. One objective 

of this work is to design new cationic Ir(III) complexes with increasing steric bulk incorporated 

onto the cyclometalated ligands to investigate their impact on the optoelectronic properties. 

Expanding the chelating ring from a five-membered ring to a six-membered ring appears to be 

a largely unexplored strategy to modifying the electronics of Ir(III) complexes. This work aims 

to study the effects of six-membered ring chelates on C^N ligands as well as N^N ligands in 

more detail. Especially in the motivation of achieving blue emission, the use of nonconjugated 

chelates is investigated.  
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Chromophores in Nonlinear Optics (NLO) 

Background 

The field of “nonlinear optics” is the study of optical phenomena caused by the 

interactions of an applied electromagnetic field on a material and the generation of emission of 

new electromagnetic fields with altered photophysical properties (e.g. frequency, phase).139–143 

Typically lasers are used as light sources, since the applied field must be very strong to 

successfully modify the optical properties of the material. NLO is a process of transmitting and 

processing signals through photons instead of electrons. Simply speaking, it is a tool to 

manipulate photons.144 

When an electric field, produced by incident radiation, is exposed to a material, an effect 

of polarisation can be observed, expressed by: 

where 𝑃0
⃗⃗⃗⃗  is the intrinsic polarity, 𝑃𝑖𝑛𝑑

⃗⃗ ⃗⃗ ⃗⃗  ⃗ the induced polarisation, and χ(1) the electrical 

susceptibility. In the case of very high electric field strengths, 𝐸⃗ , as it happens when laser pulses 

are used, the perturbation is not linear, and the induced polarisation is expressed by: 

where χ(2), χ(3) and χ(n) are, the second-, third-, and nth-order electrical susceptibilities, 

respectively, describing the nonlinear response of the material.  

If the electric field interacts with a molecule then the polarisation can be expressed by: 

where 0 is the molecular ground state electric dipole moment,  is the linear 

polarizability tensor,  and  are the nonlinear quadratic and cubic hyperpolarizability tensors, 

𝑃⃗ =  𝑃0
⃗⃗⃗⃗ +  𝑃𝑖𝑛𝑑

⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  𝑃0
⃗⃗⃗⃗ +  𝜒(1)𝐸⃗   (4) 

𝑃⃗ =  𝑃0
⃗⃗⃗⃗ +  𝜒(1)𝐸⃗ + 𝜒(2)𝐸2⃗⃗ ⃗⃗  + 𝜒(3)𝐸3⃗⃗ ⃗⃗  + ⋯+ 𝜒(𝑛)𝐸𝑛⃗⃗⃗⃗  ⃗  

(5) 

𝑃⃗ =  𝜇0 +  𝛼𝐸⃗ +  𝛽𝐸2⃗⃗ ⃗⃗  + 𝛾𝐸3⃗⃗ ⃗⃗  + ⋯ (6) 
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respectively, and describe the second- and third-order NLO effects. In a centrosymmetric 

environment both χ(2) and  vanish. Thus, to obtain a second-order NLO response the medium 

must be non-centrosymmetric.28  

One important second-order NLO phenomenon is the process of second-harmonic 

generation (SHG), where an input wave with frequency , is converted into an output wave 

with twice the input frequency 2 (Figure 17).145 

 

Figure 17: Schematic representation of Second Harmonic Generation (SHG) , with frequency, 

, second-order electrical susceptibilities, χ(2) and nonlinear quadratic hyperpolarizability,  

One of the most famous examples for this process is the conversion of the fundamental 

infrared radiation of a Nd:YAG (neodymium-doped yttrium aluminium garnet; Nd:Y3Al5O12) 

laser by a NLO material (e.g. Beta Barium Borate, BaB2O3)
146 to green light. To obtain a bulk 

material or a molecule with a significant NLO effect the tensors χ(2) and , must both be high. 

Theoretical methods can be used to calculate the molecular quadratic hyperpolarizability, . 

One experimental determination of  of an NLO chromophore in solution uses the electric field 

induced second harmonic generation (EFISH) method, where the centrosymmetry of the liquid 

by a dipolar orientation of the molecules can be broken by a high-voltage electromagnetic 

field.147,148 Through the EFISH technique 𝛾 +  𝜇 ∙ 𝛽/5𝑘𝑇 can be determined, where  is the 

cubic hyperpolarizability of the molecule,  is the dipole moment, and  the molecular 

quadratic hyperpolarizability along the dipole moment axis. For many molecules the third order 

contribution is very low and can be neglected. It is necessary to determine the ground state 
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dipole moment , which can be independently measured using the Guggenheim model; a 

procedure to compute electric dipole moments.149 

Extrapolation to zero frequency (L = 0.0 eV;  = ∞) allows an estimation of the static 

quadratic hyperpolarizability β0, a useful figure of merit to evaluate the basic second-order NLO 

properties of a molecule, which can be expressed by: 

where βλ is the quadratic hyperpolarizability value at the incident wavelength λ 

(typically 1.907 m) and λmax is the absorption wavelength of the charge-transfer transition 

considered.143 This is a simple way to estimate the frequency-dependant quadratic 

hyperpolarizability spectroscopic data, in cases when only one single charge-transfer dominates 

the NLO response.143 

Requirements for large hyperpolarizabilities are non-centrosymmetry of the molecule 

and highly polarisable electrons, which means the ability to respond to an applied electric field. 

Through conjugation, where  electrons can be delocalised and easily move, large polarizability 

can be achieved. Push-pull molecules, in which electron-donating and accepting groups are 

incorporated at each end of the molecule, are non-centrosymmetric and therefore display a 

strong permanent dipole moment, as a result of induced moments. Consequently, the 

hyperpolarizabilities of dipolar compounds are controlled by the strength of the donor and 

acceptor groups and the nature of the π-conjugated bridge of the system.140,150 

Important factors for NLO-phores  

Compounds with second-order nonlinear optical (NLO) properties have attracted great 

interest as materials for optical communications, optical data storage, or electrooptical devices. 

In the last 25 years, coordination and organometallic complexes showing second-order NLO 

activity have become more and more popular as NLO-phores.28,29,41,140,151,152 Coordination 

𝛽0 = 𝛽λ [1 − (
2λ max

λ 
)
2

] [1 − (
λ max

λ 
)
2

] 
(7) 
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compounds containing polypyridyl ligands are of special interest as they possess low-lying 

charged transfer transitions, such as metal-to-ligand charge-transfer (MLCT) or intraligand 

charge-transfer (ILCT) transitions, that can be exploited for NLO.  

The metal centre can for example act as a “donor push system” to the * orbitals of the 

ligand,153 that acts as an acceptor “pull system”, which is typical of complexes with MLCT 

absorption bands. On the other hand, LMCT transitions and ILCT can be exploited where the 

metal acts as the acceptor and the ligands as the donor. Finally, the metal can act as a bridge 

between two independent ligands, one acting as the donor and the other as the acceptor.34 The 

metal in this final case is used as a template to control the geometry of the complex. The nature, 

coordination sphere and oxidation state of the metal and the ligand influences the electron 

density of the complex and by extension the nature of the CT transitions.153  

There are two main approaches for NLO-active compounds. One concept comprises 

one-dimensional dipolar structures. Dipoles, however, have certain limitations e.g. the 

difficulty to achieve noncentrosymmetry to reach maximum bulk effect in the solid state due to 

head-to-tail arrangements.154 The other approach is widened to encompass a more diversified 

range of molecules employing three dimensional octupolar molecules, a concept introduced by 

J. Zyss in 1994.142 Octupolar molecules can offer advantages of better nonlinearity/transparency 

trade-off and are typically characterised by multidirectional charge transfer excitations.155 

Especially for potential second-order applications octupolar compounds are suitable 

candidates.28,30,156  

Many systems have been investigated. In the case of octupolar molecules the Hyper-

Raleigh Scattering (HRS), also termed Harmonic Light Scattering (HLS), method is employed 

to determine  experimentally.28,157 Those based on octupolar tris[4,4′-

bis[(dialkylamino)styryl]- 2,2′-bipyridine]metal(II) complexes with Fe, Zn, Ru, Ni and Cu have 

all shown large molecular first hyperpolarizability coefficients .29,153,158 
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An archetype of an octupolar system is a cube with alternating donor and acceptor 

groups on the edges. From this general form pure octupolar symmetries can be derived (Figure 

18). For example, projection along a C3 axis gives rise to D3 or D3h symmetry, or by fusion of 

one type of charge in the barycentre D3h, D3, Td, or D2d symmetry can be obtained (Figure 18). 

The superiority of octupoles with respect to dipoles can be demonstrated by the three Zn(II) 

complexes Zn1-Zn3 controlled by the number of 4,4′-bis(dialkylaminostyryl)-[2,2′]-bipyridine 

ligands coordinated to the metal centre (Figure 18 and Table 2).159 

 

Figure 18: Dipolar and octupolar (D2d and D3 symmetry) architectures based on metal 

complexes bearing 4,4′-bis(dialkylaminostyryl)-[2,2′]-bipyridine ligands 
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Table 2: Linear and nonlinear optical properties of dipolar and octupolar metal complexes 

Complex Solvent abs 

/ nm 

 

/ M-1 cm-1 

 x 10-30 

/ esu 


 a x 10-30 

/ esu 

Zn1 CHCl3 459 6 2000 172b 62 

Zn2 CH2Cl2 529 125 000 245c 157 

Zn3 CH2Cl2 466 17 5000 340c 241 

Cu2 CH2Cl2 436 

484 

106 000 

45 000 

113c 86 

Ru3 CH2Cl2 446 

520 

142 000 

150 000 

340c -d 

a Corrected at λ → ∞ using the extrapolation model see equation (7).160 b By working at 10-3 M; the 

error of EFISH measurements is ±10%, with incident wavelength of 1.34 μm. . = 1830 x 10-30 esu 

with  = 10.65 D. c Measured by HLS (precision ±15%) in a (1-5)x10-2 M with incident wavelength 

of 1.91 μm. d0 value not determined because of the presence of two different ILCT and MLCT 

transitions 

 

The dipolar complex [Zn(4,4′-bis(dibutylaminostyryl)-[2,2′]-bipyridine)Cl2] Zn1 bears 

one substituted bipyridyl ligand. The cationic zinc(II) complex Zn3 ([Zn(4,4′-

bis(dibutylaminostyryl)-[2,2′]-bipyridine)3]
2+) is octupolar with a D3 symmetry thanks to the 

three bipyridyl ligands coordinated around the metal centre. To ensure pseudotetrahedral D2d 

symmetry i.e. an octupolar structure, the ,’methyl substituted bipyridyl ligand was used to 

obtain the cationic complex Zn2 [Zn(4,4’-bis(dibutylaminostyryl)-6,6’-dimethyl-2,2’-

bipyridine)2]
2+ bearing two bipyridyl ligands. All three complexes exhibit strong absorption 

bands ( = 6-18 x 104 M-1 cm-1, see Table 2) in the visible spectrum assigned to intraligand 

charge transfer transitions (ILCT) from the NBu2 groups to the bipyridine.159 Metal-to-ligand 

charge transfer (MLCT) processes are not observed, which can be explained by the high third 

ionisation potential of Zn(II).29,159 

On going from the dipolar Zn1 to the octupolar Zn3 the absorption maximum does not 

change notably ( = 7 nm) but the absorption intensity is largely increased for Zn3 ( = 17.5 x 
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104 M-1 cm-1) compared to Zn1 ( = 6.2 x 104 M-1 cm-1), thanks to the two extra bipyridyl 

ligands. Complex Zn2 is significantly red shifted with respect to Zn1 ( = 70 nm) and the 

intensity is doubled ( = 12.5 x 104 M-1 cm-1), but not as high as for Zn3. 

The tetrahedral complex Cu2161 [Cu(4,4’-bis(dibutylaminostyryl)-6,6’-dimethyl-2,2’-

bipyridine)2]
2+ and the octupolar complex Ru3 ([Zn(4,4′-bis(dibutylaminostyryl)-[2,2′]-

bipyridine)3]
2+)  (Figure 18) are selected to investigate the role of the metal ion.29,153 Cu2 

exhibits an ILCT band with abs at 436 nm ( = 10.6 x 104 M-1 cm-1), that is slightly weaker in 

intensity with respect to Zn2. The absorption band is characterised by a shoulder at 480 nm 

which is attributed to metal-to-ligand charge transfer (MLCT) bands [Cu(I) → *N^N].29 The 

absorption spectrum of complex Ru3 is dominated by a broad band in the visible, attributed to 

the overlap of ILCT (abs at 424 nm;  = 14.2 x 104 M-1 cm-1) and higher intense MLCT [Ru(II) 

→ *N^N] (abs at 520 nm;  = 15.0 x 104 M-1 cm-1) bands.29 The ILCT of Zn3 and Ru3 are 

roughly similar.29,153 

The molecular hyperpolarizability coefficient  and the corresponding dispersion-free 

hyperpolarizability 0 for compounds Zn1-Zn3 are summarised in Table 2. The  value of 

Zn1 was measured by the EFISH method and  was then deduced by measuring the dipole 

moment  according to the Guggenheim model.149 The EFISH technique requires dipolar 

orientation in solution and hence is not suitable for purely octupolar molecules. The  values 

for the octupolar molecules were measured by the harmonic light scattering (HLS) method.133 

The 0 values increase from Zn1 to Zn3 with respect to the number of N^N ligands coordinated 

to the metal centre (0 = 62, 157 and 241 x 10-30 esu, respectively). The 

transparency/nonlinearity trade-off for the octahedral Zn3 is improved with respect to the 

tetrahedral Zn2. These results demonstrate the superiority of octupolar systems, since the 0 

value of Zn3 is approximately four times larger compared to the dipolar complex Zn1, without 

and significant bathochromic shift of the ILCT transition. 



Chapter 1 – Introduction 

- 40 - 

 

As described above, the central metal ion has a significant impact on the linear optical 

properties. For instance, the red-shift of the ILCT transition using the same ligand system but 

different metal ions, can be attributed to the Lewis acidity of the central metal. The nonlinear 

optical properties also strongly depend on the nature of the metal, since Zn2 exhibits a 0 value 

(0 = 157 x 10-30 esu), that is approximately 2-fold larger than that of the related tetrahedral 

Cu2 bearing the same ligands (0 = 86 x 10-30 esu), reflecting the better acceptor strength of 

Zn(II) compared to Cu(I). The complex Ru3 exhibits a strong ILCT and a strong MLCT, this 

latter however has no significant influence on the nonlinear optical response. Ru3 and Zn3 both 

show the same value of  (340 x 10-30 esu with incident wavelength of 1.91 μm). The presence 

of the MLCT transition, however, does not permit the determination of 0 following the 

extrapolation model described by equation (7).160 

In summary, these results demonstrate that coordination chemistry is a powerful tool to 

elaborate octupolar (tetrahedral or octahedral) nonlinear optically active chromophores. The 

molecular quadratic hyperpolarizability () values are strongly affected by the symmetry of the 

complex. Increasing the coordination number, hence increasing the ligand-to-metal ratio, 

results in a significant enhancement of  The nature of the central metal also has an important 

role controlling the symmetry of the complex. Additionally, the NLO activity is significantly 

enhanced by increasing the Lewis acidity of the metal.  

This concept is not only limited to transition metal complexes, the nonlinear optical 

behaviour of chromophores featuring lanthanide metals has been investigated, too. These 

metals have been of particular interest because of their high coordination number and strong 

Lewis acidity, which induce strong intra-ligand charge transfer (ILCT) transitions and their 

ability to form a variety of coordination geometries.41,162,163 Then studies extended to 

cyclometalating metal complexes and the following section is focussing on NLO activities of 

bis- and tris-cyclometalated Ir(III) complexes, neutral and cationic species.  
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Cyclometalated iridium(III) complexes as NLO chromophores 

As discussed above, organometallic compounds have attracted great interest as they 

display strong NLO activities.143 The use of iridium(III) as the metal centre has been far less 

explored and only in the last ten years, Ir(III) complexes bearing cyclometalated ligands have 

received increasing attention as chromophores for NLO.143,152 In the following sections, the 

structure/property relationship is ascertained for cyclometalated Ir(III) complexes bearing 

substituted charge-neutral ancillary ligand of the form [Ir(C^N)2(N^N)] (where C^N is the 

cyclometalated ligand based on ppy and its derivatives and N^N is a diimine) or substituted 

with negatively charged ancillary ligands of the form [Ir(C^N)2(O^O)] (where O^O is an 

substituted acetylacetonate). 

Neutral cyclometalated Ir(III) complexes as NLO chromophores 

The neutral Ir(III) complex Ir1a [Ir(ppy)2(acac)]164 (where acac = acetylacetonate) 

(Figure 19) has been shown to have promising linear photophysical properties,165 which 

provided the motivation to investigate the second-order NLO activity of this complex. The 

absorption data of complex Ir1a are summarised in Table 3. 

Complex Ir1a exhibits a typical absorption spectrum for cyclometalated Ir(III) 

complexes with a characteristic high intense band ( = 4.5 x 104 M-1 cm-1) below 300 nm, which 

is attributed to ligand-centred (1LC) (1π–π*) transitions based on ppy ligands. The low energy 

portion of the spectrum (until 300 nm) is dominated by metal-to-ligand charge transfer 

processes from the Ir(III) with contributions from the ppy to both π*acac and π*ppy.
164 
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Figure 19: Neutral Ir(III) complexes of the form [Ir(C^N)2(acac)] 

Table 3: Absorption data and EFISH  of complexes Ir1a and Ir1b-Ir1e in dichloromethane 

Complex Absorption maxima 

/ nm, [ / M-1 cm-1] 

1.907EFISH
a x 

10-48 / esu 

Ir1a 260 [45000], 345 [38000], 412 [34000], 460 [33000], 497 [30000] -910 

Ir1b 265 [40000], 410 [23000], 433 [26000], 480 sh [5500] -550 

Ir1c 270 [62000], 330 [45000], 373 [39000], 415 sh [21000], 475 [5300] -570 

Ir1d 268 [44000], 306 [45000], 370 [25000], 410 sh [12000], 468 [4700] -408 

Ir1e 263 [38000], 282 [36000], 332 [48000], 400 [33000], 442 sh [18000], 518 [5200] -895 

a By working at 10-3 M; the error of EFISH measurements is ±10%, with incident wavelength of 1.907 μm. 

 

The absorption data of Ir1a164 and Ir1b-Ir1e57,82 (Figure 19) are summarised in Table 

3. The EFISH method was used to measure the second-order NLO response of Ir1a and Ir1b-

Ir1e and the data are shown in Table 3. Complex Ir1a exhibits a negative value of , which 

is typical for MLCT and is in agreement with a negative value of  (the difference of the 

dipole moment in the excited and ground state) upon excitation. The excited state dipole 
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moment is directed along the pseudo C2 axis within the molecule. The computed dipole moment 

is generated by a charge transfer from the C^N ligands to the acac ligand originating from a 

charge asymmetry in which donation from the negatively charged C^N ligands to Ir(III) 

predominates the donation from the charged acac ligand.164 The  value of Ir1a (-910 x 10-48 

esu) is significantly higher compared to its Pt analogue ([Pt(ppy)(acac)] with  = -535 x 10-48 

esu).164 

The second-order NLO response in Ir1a is only partially dominated by metal-to-ligand 

charge transfer (MLCT) and ligand-to-ligand charge transfer (LLCT) processes with 

contributions of ppy and acac, since there is also significant contributions of the –* LC 

transitions based on the ligands (mainly C^N), with only a limited amount of metal character.164 

Therefore a careful choice of substituents on the C^N ligands can be a tool to control the 

nonlinear activity of this complex that is characterised by a good transparency. These results 

provided the motivation to design complexes Ir1b-Ir1e in which the substituents on the bpy 

ligand used in the octupolar systems (see above) are incorporated into the cyclometalating 

ligands of the Ir(III) complexes with the goal to investigate the effect of the ppy ligand 

containing an increase of the -delocalisation decorated with electron-withdrawing or electron-

donating substituents (Figure 19) on the second-order nonlinear optical activity. 

The absorption profiles of Ir1b-Ir1e show similar features with respect to Ir1a, 

displaying a high intense band (in the range of  = 3.8 - 6.2 x 104 M-1 cm-1) below 280 nm, 

attributed to ligand centred (1LC) (1π–π*) transitions based on C^N and ancillary ligands. These 

absorption profiles, however are dominated by characteristic intraligand charge transfer (ILCT) 

bands lower in energy compared to LC transitions with similar intensities ( = 2.3 – 4.8 x 104 

M-1 cm-1). At lower energy (450 nm to 650 nm) moderately intense bands are observed for all 

complexes ( = 2.5 - 3.9 x 104 M-1 cm-1) and are assigned to mixed charged transfer transitions. 
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The absolute value of , measured by the EFISH technique, for Ir1b, Ir1c and Ir1d 

are all in the similar range, whereas Ir1e exhibits a slightly higher value, which is comparable 

to the unsubstituted analogue Ir1a. As with the case of Ir1a, the second-order NLO response 

is a result of various charge-transfer transitions only partly dominated by MLCT processes, 

making it difficult to rationalise the trends. 

Cationic 1,10-phenanthroline Ir(III) complexes 

A second class of iridium complexes, namely cationic cyclometalated Ir(III) complexes 

bearing -delocalised diimine ligands have shown intriguing properties for nonlinear optical 

activities. One of the earliest Ir(III) complexes investigated in NLO bore substituted 

phenanthrolines such as [Ir(ppy)2(5-R-1,10-phen)]+ (R = H, Me, NMe2, NO2, with phen = 

phenanthroline) and [Ir(ppy)2(4-R’,7-R’-1,10-phen)]+ (R’ = Me, Ph)55 with the goal of 

investigating the role of the substituents on the 1,10-phenanthroline and of the nature of the 

cyclometalated moiety on the NLO properties of the complex. Density functional theory (DFT) 

calculations revealed that the HOMO of this class of Ir(III) complex are primarily comprised 

of a combination of metal-based orbitals and orbitals of the cyclometalated ligand and the 

LUMO is localised on the orbitals of the coordinated 1,10-phenanthroline. 

Consequently, HOMO-LUMO transitions have a significant charge-transfer character. 

Figure 20 shows examples of cationic Ir(III) complexes bearing phenanthroline ancillary 

ligands. Relevant absorption bands and the values of EFISH  are reported in Table 4. 

Generally, for these ionic NLO chromophores, ion pairing in solvents (e.g. dichloromethane or 

chloroform) may be relevant. The goal of the study is to demonstrate how the nonlinear 

response is affected by the concentration and the choice of the counterion, such as C12H25SO3
- 

or PF6
-. 
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Figure 20: Cationic Ir(III) complexes of the form [Ir(C^N)2(substituted-1,10-phen)]Y (Y = PF6
– 

or C12H25SO3
-, Table 4) 

In this study the EFISH technique was used for the first time to measure the NLO 

response of cationic Ir(III) complexes.34,55 All complexes show strong absorption bands in the 

ultraviolet before 290 nm, which is typical for cationic Ir(III) complexes of this form.40,41 These 

bands can be assigned to - ligand centred (LC) transition of the -system of the substituted 

1,10-phenanthrolines and the cyclometalated ligands. At longer wavelength between  = 300 - 

450 nm weaker bands are observed, that can be assigned to mixed charge transfer (CT). This 

band is sensitive to the substitution on the phen ligand. The iridium complexes in this study 

bearing ancillary ligands with a donor group show additional bands in the region of 350-450 

nm originating from intraligand charge transfer (ILCT) based on the phen ligand.55 
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Table 4: Absorption data and EFISH  in dichloromethane for Ir (III) complexes of the form 

[Ir(C^N)2(substituted-1,10-phen)]Y 

Complex Y- abs
a / nm,  

[ / M-1 cm-1] 

1.907EFISH
b 

x 10-48 / esu 

1a PF6
– 255 (sh), 268 [60300], 333 (sh), 377 [8070] -1565 

1a C12H25SO3
- 251(sh), 270 [39400], 333(sh), 376 [8270] -1350 

1b PF6
– 254 (sh), 264 [86900], 378 [12400] -2230 

1b C12H25SO3
- 253(sh), 261 [52700], 378 [7200] -1430 

1c PF6
– 252 (sh), 264 [58500], 377 [9130] -1270 

1d PF6
– 252 (sh), 264 [81400], 334 (sh) -1330 

1e PF6
– 255 (sh), 265 [73000], 375 (sh) -1454 

1f PF6
– 269 [51300], 282 (sh) 385 [9020] -1997 

2a PF6
– 256 [55000], 325 [17000], 417 [6600] -1680 

2a C12H25SO3
- 256 [67000], 321 [20900], 415 [7940] -1219 

2b PF6
– 256 [107000], 313 [34800], 408 [12900] -1905 

2b C12H25SO3
- 255 [69500], 310 [16000], 408 [7400] -1389 

2c PF6
– 255 [77700], 325 [22100], 417 [7250] -1588 

2c C12H25SO3
- 255 [70300], 321 [21700], 420 [8980] -1140 

2d PF6
– 259 [68300], 283 (sh), 333 [28200], 418 [8580] -1720 

2d C12H25SO3
- 259 [117000], 280 [80500], 325 [42200] -1298 

3a PF6
– 273 [70400], 329 [20700], 347(sh), 431 [4750] -2090 

3b PF6
– 268 [81100], 324 [27600], 430 [6930] -1720 

3c PF6
– 269 [95000], 330 [41300], 433 [14700] -1850 

4a PF6
– 260 [44500], 319(sh), 396 [17378] -1320 

4b PF6
– 257 [62300], 315 [28100], 397(sh) -1640 

5a PF6
– 261 [48000], 272(sh), 358 [9400] -1414 

5a C12H25SO3
- 265 [59400], 356 [12800] -1220 

5b PF6
– 262 [67200], 357 [15200] -1780 

a All complexes possess a band tailing between  = 400 nm and  = 500–550 nm. b By working at 10-3 M; the 

error of EFISH measurements is ±10%, with incident wavelength of 1.907 μm. 
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Not all complexes show strong bands above 450 nm, meaning a second harmonic 

generation may be obtained without any significant cost in transparency, which is crucial when 

designing second-order NLO chromophores. The second-order nonlinear optical response of 

complexes 1a-5b (Figure 20, Table 4) was determined to investigate the effect of the nature of 

the substituent of the 1,10-phenanthroline and the cyclometalating ligand on  values.  

In the case of the series bearing the unsubstituted ppy ligand, the highest  value was 

for complex 1b.PF6 in which a nitro group has been introduced at the 5-position of the ancillary 

ligand ( = -2230 x 10-48 esu). The influence of added methyl substituents is negligible on the 

absolute  values, since similar values can be obtained for complexes 1a.PF6 (bearing one 

methyl group on the N^N ligand,  = -1565 x 10-48 esu) and 1e.PF6 (bearing two methyl groups 

on the N^N ligand, = -1454 x 10-48 esu).  Replacing the methyl groups (1e.PF6) with phenyl 

units (1f.PF6), results in an increase of the absolute value  (-1997  x 10-48 esu), because of an 

increased  conjugation on the 1,10-phenanthroline. By contrast, adding a -extended system 

on the cyclometalating ligand through using benzo[h]quinoline ( = -1680, -1905 and -1588  

x 10-48 esu for 2a.PF6, 2b.PF6, and 2c.PF6, 2d.PF6, respectively) or 2-phenylquinoline ( = -

2090, -1720 and -1850  x 10-48 esu, 3a.PF6 – 3c.PF6, respectively) does not lead to a significant 

change in the absolute  value with respect to the ppy analogues bearing the same 1,10-

phenanthroline. When using the C^N ligands 2-([2,2':5',2''-terthiophen]-3'-yl)pyridinato (ttpy) 

in complexes 4a,b.PF6 ( = -1320 and -1640  x 10-48 esu, respectively) and 2-methyl-4,5-

diphenylthiazolate (dpmt) in 5a,b.PF6 ( = -1414 and -1780  x 10-48 esu, respectively) the 

absolute value of  was likewise not changing significantly. DFT and TD-DFT calculations 

provide insight into the electronic origins to explain the above trends.34 

Throughout the series a common characteristic is observed. In all cases, the HOMO 

comprises a mixture of metal-based orbitals and  orbitals of the C^N ligand. Typically for 
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cationic Ir(III) complexes of this form, the LUMO is composed of * antibonding orbitals of 

the N^N ligand. For the complex 1b bearing a nitro group on the 1,10-phenanthroline, the * 

antibonding orbitals of the N^N ligand intensely mix with the antibonding orbitals of NO2. This 

leads to the lowering of the energy of 1,10-phenanthroline orbitals resulting in a significant 

reduction of the HOMO-LUMO gap compared to 1d containing an electron-donating NMe2 

substituent on the ancillary ligand. Here, the NLO response is mainly controlled by metal-to-

ligand charge transfer (MLCT) processes. The opposite trend can be observed for complexes 

4a and 4b. The HOMO level in 4a and 4b is notably more stabilised compared to 1a and 1b. 

The metal character in the HOMO is significantly lower due to the extended  conjugation in 

the C^N ligand. The LUMO level is, however, not notably affected. This lowers the metal 

character in the HOMO. The contribution of MLCT will be reduced, which has detrimental 

effects on the absolute value of . 

The roles of the counterion and the concentration 

Although, the cationic Ir(III) complex is the photoactive unit, the nature of the 

counterion plays an important role in ion-pairing, which can have a significant effect on the 

NLO response. Secondly, the concentration of the complex also affects the absolute value of 

 in dichloromethane. For example, the complexes 1a, 1b, 2a, 2b, 2c, 2d, and 5a (see Table 

4 and Figure 20) exhibit notably higher absolute values for  in dichloromethane at lower 

concentrations and when the counterion is C12H25SO3
- instead of PF6

-.34 These results prompted 

a more detailed investigations on how the counterion and concentration may have an effect on 

the ion pairing. To probe this, complex 1b that gave a high absolute  value in its PF6
- salt 

was investigated in detail, with different counterions and at various concentrations (Table 5). 

In dichloromethane solution, the absolute value for  of 1b.PF6 almost doubles when 

decreasing the concentration from 10-3 M to 10-4 M reaching a value of ca. -5000 x 10-48 esu. 



Chapter 1 – Introduction 

- 49 - 

 

The response is not notably as sensitive to concentration with the counterion C12H25SO3
- as well 

as I- but falls drastically off compared to the PF6
- analogue. 

Table 5: EFISH  values x 10-48 esu of 1b in CH2Cl2 

Y- C = 1 x 10-3 M C = 5 x 10-4 M C = 1 x 10-4 M 

PF6
–a -2230 -2390 -4990 

C12H25SO3
- -1430 -1520 -1770 

I- -1160 -1370 -1370 

a at concentrations of 3 x 10-4 M and 5 x 10-5 M values of -3670 x 10-30 and -5012 x 10-48 esu were obtained, 

respectively.34  

The results suggest that the absolute value of  is both counterion- and concentration-

dependant.  High absolute  can be obtained with a weakly interacting anion (e.g. PF6
-) at low 

concentration (1 x 10-4 M in dichloromethane). With a counterion like C12H25SO3
- or I- that 

form tight ion-pairs,  is, however, lower and does not vary significantly by concentration. 

This  trend is partially due to the perturbation of the LUMO * levels of the N^N ligand by 

the counterion. The correlation between the  value and dilution shows that the effect of 

concentration is a factor that must be taken into careful consideration.34 

Cationic 2,2-bipyridine Ir(III) complexes  

This work on cationic Ir(III) complexes was extended to a series of complexes 

containing a substituted styryl bipyridine ligand. As mentioned above 4,4’--conjugated-[2,2’]-

bipyridines are suitable precursors for dipolar and octupolar metal complexes. It has been 

shown that modification of the -linker and the donor groups generate tuneable chromophores 

and luminophores.29,30,153,158 A series of Ir(III) complexes [Ir(ppy-R’)2(bpy-CH=CH-Ar-R]Y, 

656 (a, Ar-R = C6H4-NEt2 and R’ = Me; b, Ar-R = C6H4-O-Oct and R’ = Me; c, Ar-R = C6H4-

NO2 and R’ =C6H13; d, Ar-R = 2-methylthiophenyl-Me) and 6e (with R’ = Me and 4,4’-

dimethyl-2,2-bipyridine as ancillary ligand), containing extended Ar-vinyl π-systems on the 

bipyridine ligand, have been studied (Figure 21). The effect of the substituent R and the aryl-
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substituent on the nonlinear optical (NLO) properties was investigated. The main absorption 

bands of complexes 6a-6e are summarised in Table 6. 

 

Figure 21: Cationic Ir(III) complexes of the form [Ir(substituted-ppy)2(substituted-bpy)]Y (Y = 

PF6
– or C12H25SO3

-, Table 6) 

Table 6: Electronic Absorption Spectral Data (298 K) and EFISH  in dichloromethane 

Complex Y- Absorption maxima / nm,  

[ / M-1 cm-1] 

1.907EFISH
a 

x 10-48 / esu 

6a PF6
– 390 [35 500], 473 [59 000] -2770 

6a C12H25SO3
- - -1015 

6b PF6
– 360sh [47 600], 388 [51 400] -2430 

6c PF6
– 338 [52 500], 390 [32 200] -2770 

6c C12H25SO3
- - -1250 

6d PF6
– 360 [39 200], 406 [48 400] -2386 

6e PF6
– 300sh [21 000], 345sh [12 000], 380 [6900], 420 [4100], 470 

[1000] 

-1420 

a By working at 10-3 M; the error of EFISH measurements is ±10%, with incident wavelength of 1.907 μm 

 

The assignments of the bands have been confirmed by time-dependent-DFT (TD-DFT) 

calculations.56 The absorption spectra of 6a-6d show high intense bands above 300 nm, 

decreasing in energy in the order 6c > 6b > 6d > 6a. Typically for cationic Ir(III) complexes, 

mixed CT transition bands that are very low in intensity (at least around one order of magnitude 
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with respect to the bands observed in this study) are found in this region of the spectrum.40,41 

These bands are assigned to ligand centred (LC) transitions within the styryl-substituted 

bipyridine ancillary ligand and are likely to obscure the low intensity bands like MLCT and 

LLCT transitions.56 However, there is evidence in the spectra of 6b-6d of weak bands tailing 

out at 420 – 650 nm, which is typically observed in cationic Ir(III) complexes and can be 

assigned to triplet metal-to-ligand CT (3MLCT) states.40,41 Complex 6a bearing the 

diethylamino groups generates a low-energy band at 473 nm, that can be attributed to a mixture 

of IL transitions located on the bpy-styryl-NEt2 ligand, with major contributions of ILCT 

character. The assignments of the bands have been confirmed by time-dependent-DFT (TD-

DFT) calculations.56 

To determine the second-order NLO response of the complexes 6a-6e (with Y- = PF6
-) 

and 6a,6c (with Y- = C12H25SO3
-) the EFISH technique was used, the values of which are 

reported in Table 6. Complex 6e bearing only methyl groups on the ancillary ligand was used 

in this study as a reference and exhibits an absolute  value of -1420 10-48 esu, which is almost 

unchanged compared to complex 1a (Figure 20, Table 4) bearing a substituted 1,10-

phenanthroline. This suggests that the use of either bpy or phen-based ancillary ligands and the 

methyl group on the ppy ligand in Ir(III) complexes of the form [Ir(C^N)2(N^N)]+ do not have 

significant changes in the second-order NLO responses. However, the increase of  

delocalisation of the 2,2’-bipyridine with styryl substituents results in an increase of the 

absolute  value. The PF6
- salts of complexes 6a-6d all show higher values than 1b. Similarly, 

to the previous studies (see above), the values increase as concentration decreases, and the 

response is weaker with C12H25SO3
- as the counterion. 

In the case of a strong electron-withdrawing group (e.g. NO2) the EFISH quadratic 

hyperpolarizability is the sum of negative contributions, originating mainly from LLCT/MLCT 

excitations where the phenanthroline acts as acceptor. When R is an electron-donating group 
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(e.g. NMe2) there are counteracting positive (ILCT) and negative (LL’CT/MLCT) contributions 

to the EFISH quadratic hyperpolarizability, with the latter controlling the negative sign of the 

final value.34,55 Thus, the second-order NLO response does not depend on the nature of the 

substituent on the styryl itself.  These cationic complexes display large second-order (NLO) 

responses, which can be increased by extended Ar-vinyl π-systems and are controlled by the 

nature of the counterion as well as the concentration.  

In summary, the above studies show that metal complexes are excellent NLO 

chromophores, including cyclometalated cationic and neutral Ir(III) complexes. The second 

order NLO response measured by the EFISH technique of cationic complexes has been fully 

investigated for the first time. These studies demonstrate that different features control the 

EFISH second-order NLO response: 1) design modification of the ligands (N^N as well as C^N 

ligands), 2) strength of the ion pairing mediated through the nature of the counterion, the solvent 

and the concentration. DFT and TD-DFT calculations indicate that  is mainly controlled by 

MLCT transitions involving the C^N ligand in the role as the donor and the * system of the 

ancillary ligand as the acceptor. It has been shown that the absolute  value can be increased 

by weak ion pairing and diluting in dichloromethane. This point is confirmed since the absolute 

 value strongly depends on the nature of the counterion. A loose ion pair increases the dipole 

moment  and might also enhance the second-order NLO response.  

This short overview illustrates the excellent nonlinear optical properties of transition 

metal complexes exhibiting large second-order NLO responses. Many organometallic 

compounds with various ligands (such as substituted bipyridines, phenanthrolines, 

acetylacetones or phenylpyridines) have been investigated as chromophores. It has been 

demonstrated that the metal centre of an organometallic complex is a flexible tool to tune the 

second-order NLO response. Through modulation of the electronic nature of the metal and the 

coordination sphere through the number and nature of the ligands the NLO response can be 
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enhanced significantly. The metal can also act as a bridge enabling electron-transfer processes 

between different coordination sites such as in cyclometalated chromophores. Theoretical 

approaches through TD-DFT calculations help to understand better the electronic origin of the 

NLO activity of transition metal complexes. The theoretical understanding may allow the 

design of new and efficient NLO chromophores based on metal complexes. The second-order 

NLO response increases by the extent of charge transfer, and therefore, the nature of the donor-

acceptor pair becomes crucial. To optimise the push-pull system, strong acceptors and donors 

need to be introduced that are efficiently connected through a conjugation bridge. Among the 

various examples, neutral and cationic heteroleptic cyclometalated Iridium(III) complexes 

show excellent NLO properties. 

In cationic Ir(III) complexes of the form [Ir(C^N)2(N^N)]+ the NLO response is 

controlled by charge transfer processes in which the cyclometalating ligand acts as the donor 

and the ancillary ligand as the acceptor and the metal centre as the conjugation bridge. This 

class of complexes is worthwhile to be further explored to understand better the involved 

electronic processes. 

This overview of transition metal complexes demonstrates the high potential of Ir(III) 

complexes as NLO chromophores. Part of this present work deals with the nonlinear optical 

properties of cationic Ir(III) complexes of the form [Ir(C^N)2(N^N)]PF6
 bearing -delocalised 

triphenyl amino (TPA) substituents on the cyclometalating ligands. The effect of the position 

of the TPA moiety (meta or para to the Ir-CC^N bond or the Ir-NC^N bond) on the NLO properties 

has also been discussed within this study. The EFISH technique,166,167 working with a non-

resonant incident wavelength of 1907 nm, is used to determine the NLO response. 
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Impact of the Use of Sterically Congested 

Cyclometalated Ligands on the Optoelectronic Properties 

and Device Performances in Light-Emitting 

Electrochemical Cells of Cationic Iridium(III) Complexes 
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Introduction 

Chapter 1 gave an overview of the remarkable photophysical properties of Iridium(III) 

complexes,88,168,169 that make them the go-to emitter class in solid-state electroluminescence 

(EL) devices, such as organic light-emitting diodes (OLEDs)170 and in light-emitting 

electrochemical cells (LEECs).21,171–173 LEECs possess a much simpler design, with fewer 

layers, compared to OLEDs, as they typically employ an ionic emissive material that is dually 

responsible for charge mobility and the emission of light within the device. The most popular 

and widely studied class of emitters for LEECs is the heteroleptic cationic Ir(III) complex of 

the form [Ir(C^N)2(N^N)]PF6 (C^N is a cyclometalating ligand, N^N is a diimine ancillary 

ligand).  

Unlike in OLEDs where the emissive compound is present in only small concentrations 

as a dopant within a higher bandgap host, in LEECs the emissive layer is frequently composed 

either of a homogenous layer of emitter molecules or the emitter is the major component within 

the layer. As a consequence, one issue that can limit device performance is excited state self-

quenching during device operation.125 In Chapter 1 a strategy to circumvent this issue was 

discussed. Decorating the complexes with bulky, hydrophobic substituents that serve to 

increase the intermolecular distance while simultaneously hindering the disadvantageous attack 

of small molecules can hinder excited state self-quenching during device operation.6 Figure 22 

shows representative literature examples of iridium complexes bearing bulky substituents that 

have been used as emitters in light-emitting electrochemical cells.  
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Figure 22: Ir(III) complexes bearing bulky substituents. 

In Chapter 1 the use of sterically congested N^N ancillary ligands in cationic iridium 

complexes was discussed. A successful molecular design that was applied to charge-neutral 

Ir(III) complexes for OLEDs was the incorporation of mesityl substituents at the C(4) position 

of the pyridyl ring of the ppy ligands in [Ir(dFmesppy)2(pic)] (dFmesppyH = 2-(4,6-

Difluorophenyl)-4-(mesityl)-pyridine and pic = picolinate). An increase in the 

photoluminescence quantum yield, PL, was observed, which also translated into enhanced 

external quantum efficiencies of the OLED devices compared to that employing the well-

known [Ir(dFppy)2(pic)], FIrpic (dFppyH = 2-(4,6-difluorophenyl)pyridine).174 The 

enhancement in EQE compared to the FIrpic-based devices was attributed to reduced 

concentration quenching and increased solubility in organic solvents and therefore better 

dispersion during the fabrication of the solution-processed device. Notably, the mesityl group 

adopts an orthogonal conformation relative to the pyridine ring, resulting in a disruption of the 
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conjugation between these two aryl groups, minimizing the impact on the emission energy. 

Such an approach has been applied to cationic iridium complexes by us, where we have 

observed an enhancement of solution- and solid-state PL compared to the non-decorated 

analogue complex.73,175,176 

 

A comparison of 1 and 21 of the form [Ir(C^N)2(dtBubpy)]PF6 (where C^N is ppy or 

mesppy for 1 and 21, respectively and dtBubpy is 4,4ʹ-di-tert-butyl-2,2ʹ-bipyridine) reveals the 

impact of the mesityl group on the photophysical properties in cationic complexes.175 In 

CH2Cl2, the same emission maximum (PL = 577 nm) is observed for both complexes while the 

PL is moderately enhanced for the mesitylated complex (PL = 35 and 40% for 1 and 21, 

respectively). The LEECs fabricated with 1,175 showed a lifetime of t1/2 = >1300 h and an EQE 

of 2.5%. Surprisingly and in contrast to the above-mentioned impact of the mesityl group, for 

LEECs based on 21 there was a reduction in the device lifetime (t1/2 = 0.6 h) and EQE (1.4%) 

upon incorporation of the mesityl groups on the C^N ligands. However, with 21 faster response 

times could be achieved in devices compared to those based on 1, as the mesityl groups induce 

a more efficient electronic communication and recombination within the device, which results 

in faster turn-on times. The related complex [Ir(dPhPy)2(bpy)]PF6, 22 (where dPhPy is 2,4-

diphenylpyridine and bpy is 2,2ʹ-bipyridine) bears a phenyl group on the 4-position of the 

pyridine of the C^N ligand in lieu of a mesityl group and contains a bpy N^N ligand in lieu of 

the dtBubpy ligand.27 In CH2Cl2, complex 22 exhibits yellow phosphorescence (em = 598 nm) 

with a PL of  21% . A single-layer LEEC based on 22 containing a lithium salt additive showed 

improved device performance compared to the unsubstituted analogue. The device with 22 

displayed a short response time (ton
 = 5 min), favourable lifetime (extrapolated lifetime 

calculated at 100 cd m-2, t1/2L100 of 3800 h), and a peak luminance of 5500 cd m-2  (with ton
 = 

191 min, t1/2L100 = 4752 h and a peak luminance of 2753 cd m-2 for the unsubstituted analogue). 
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The authors ascribed the improved LEEC performance to the bulky, hydrophobic nature of the 

phenyl substituent, which they asserted impeded self-quenching pathways of the the Ir(III) 

complex. Another analogous complex is [Ir(Phppy)2(bpy)]PF6, 23 (where Phppy is 2-([1,1'-

biphenyl]-3-yl)pyridine), bearing a phenyl group trans to the Ir-CC^N bond. Complex 23 exhibits 

a yellow-orange emission with a PL of 13% in CH2Cl2. LEECs based on 23 are likewise highly 

stable with t1/2 = 2800 h and also are very bright with a maximum luminance of 1024 cd m-2.177  

 

The use of the sterically congested the dtBubpy in 13178,179 coupled with dFppy ligands 

contributed to a record maximum external quantum efficiency in the LEEC of 15%,178 

significantly higher than that reported for the LEECs with 13, with EQE values ranging from 

0.6 - 5.0%.83,175,180 LEECs fabricated with 1683 incorporating a bulky ancillary ligand (5,5ʹ-

diphenyl-2,2ʹ-bipyridine, dpbpy) showed long device lifetimes of 110 h (LEEC operating at 4 

V), particularly compared to [Ir(ppy)2(dtBubpy)]PF6, 1 (1.3 h). Using 14,125 which contained 

the 4,5-diaza-9,9ʹ-spirobifluorene ancillary ligand, resulted in LEECs with a maximum external 

quantum efficiencies of 7.1% at a device lifetimes of 12 h and luminance value of 52 cd m-2.  

Very stable LEECs have been fabricated employing emissive complexes where there is a 

phenyl ring positioned adjacent to one of the coordinating nitrogen atoms of the ancillary ligand 

as exemplified in [Ir(dmppz)2(pbpy)]PF6, 19, (where dmppz is 3,5-dimethyl-1-phenylpyrazole 

and pbpy is 6-phenyl-2,2ʹ-bipyridine).132 The phenyl ring of the pbpy forms a face-to-face π-

stacking with the pyrazole unit of the C^N ligand, which insulates the complex from 

adventitious attack from small molecules.181 High stability LEECs were fabricated with the 

complex [Ir(ppy)2(Meppbpy)]PF6, 24,182 (where Meppbpy is 4-(3,5-dimethoxyphenyl)-6-

phenyl-2,2’-bipyridine) with a device lifetime of over 950 h and high luminance and current 

efficiency (183 cd m-2 and 8.2 cd A-1, respectively). In the majority of cases, decorating the 

complex with bulky, hydrophobic substituents greatly improves the stability of LEECs.  



Chapter 2 – Ir(III) complexes bearing sterically congested substituents 

- 60 - 

 

 

These previous findings prompted us to design a family of cationic Ir(III) complexes of 

the form [Ir(C^N)2(dtBubpy)]PF6 in which the sterics about the C^N ligands are systematically 

modified via a combination of decoration at the 4-position of the pyridine ring and/or the 3-

position of the phenyl ring in order to ascertain how the steric requirements the photophysics 

of the complexes and the corresponding LEEC device performance (Figure 23). Complexes 1 

and 21 were included into this study to serve as references.   
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Figure 23: Synthesised cationic Ir(III) complex bearing bulky substituents investigated in this 

chapter 

Complexes 1,175,180 26183 and 21175 have previously been reported and included into this 

study as a reference. 1175 and 21175 have previously been employed as emitter in LEECs. 

Results and Discussion 

Ligand Synthesis 

The family of substituted 2-phenylpyridine (ppyH) cyclometalating C^N ligands 

bearing R1 (at the 4-pyridine position) and R2 (at the 4-phenyl position) can be divided into two 

classes: 4-substituted 2-phenylpyridine derivatives L25, L21, L27 and L28 [with R1 = tert-

butyl (tBu), mesityl (mes), manisyl (man – 2,6-dimethyl,4-methoxyphenyl), and 3,5-di-tert-

butylphenyl (dtBuphen), respectively, and R2 = H), and the substituted arylpyridine L26 (where 

R1 = R2 = tert-butyl). The unsubstituted ppyH, L21, serves as a reference. (Figure 23). 

Compounds L25 and L26 are accessible as colourless oils via direct C-H arylation of 4-tert-

butylpyridine with arylboronic acid184 in moderate yields (45 and 46%, respectively, Figure 

23), while L1 was commercially available.  

For L21, L27 and L28, a two-step Suzuki-Miyaura cross-coupling strategy was adapted 

from 2-chloro-4-iodopyridine (Figure 24).11c The mono-arylated 2-chloro-4-substituted 

compounds Cl21, Cl27 and Cl28 were isolated in excellent yields (94 – 96%) after purification 

by column chromatography. Key to the high yields is the use of excess R1B(OH)2, which led to 

easier purification of the intermediate 4-aryl-2-chloropyridines. A second Suzuki-Miyaura 

reaction with PhB(OH)2 afforded L21, L27 and L28 in excellent yields (86 – 90%) (Figure 24). 

The boronic acid bearing Ar1 of L28 [(3,5-di-tert-butylphenyl)boronic acid] was prepared 

following a modified method185 in advance through subsequently reacting 1-bromo-3,5-di-tert-
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butylbenzene with n-BuLi at -78 °C and triisopropyl borate followed by an acid treatment with 

1M HCl. The obtained product was used without further purification.   

 

 

Figure 24: Two step synthesis of the ligands. a) tert-butylpyridine, phenylboronic acid, 

trifluoroacetic acid, AgNO3, K2S2O8, CH2Cl2/H2O (1/4), r.t., 6 h; b) Ar1B(OH)2, K2CO3 

Pd(PPh3)4, dioxane/H2O (4/1), 95 °C, 3 d; c) phenylboronic acid, K2CO3, Pd(PPh3)4, 

dioxane/H2O (4/1), 95 °C, 18 h; d) i) 1-bromo-3,5-di-tert-butylbenzene, n-BuLi, THF, N2, -80 

°C, 45 min; ii) triisopropyl borate, -80 °C – r.t., 18 h; iii) aqueous HCl (1 M). 

Complex Synthesis 

Complexes 1, 21, 25 – 28 were obtained in a two-step synthesis following standard 

reaction conditions (Figure 25).65 In the first step, the [Ir(C^N)2Cl]2 dimer were quantitatively 

obtained as a yellow solid by treatment of the corresponding ligand (L1, L21, L25 – L28) with 

IrCl3.6H2O in a 3:1 mixture of 2-ethoxyethanol/H2O (125 °C, 24 h). This dimer was then 

cleaved with dtBubpy.  
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The corresponding [Ir(C^N)2Cl]2 was reacted with dtBubpy in a 1:1 mixture of 

CH2Cl2/MeOH (40 °C, 18 h) to afford the cationic Ir(III) complexes as their chloride salts. After 

column chromatography on silica (eluent: 5% MeOH in CH2Cl2) followed by an ion exchange 

with aqueous NH4PF6, complexes 1, 21, 25 – 28 were isolated in good yields (75% – 92%) as 

their hexafluorophosphate salts. 

   

Figure 25: Procedure for the synthesis of target complexes (1, 21, 25 – 28) in this study. a) 

IrCl3
.6H2O, corresponding C^N ligand, 2-ethoxyethanol/water (3:1), 125 °C, 24 h; b) 1. 

Corresponding Ir(III) dimer, dtBubpy, MeOH/CH2Cl2 (1:1), 40 °C, 18 h. 2. aq. NH4PF6. 

All complexes were characterized by 1H, 13C and 31P NMR spectroscopy in CDCl3, HR-

ESI mass spectrometry and elemental analysis. The 1H-NMR spectra show the expected number 

of resonances displaying symmetrical C^N ligands and characteristic singlets at around 8.38 

ppm integrating as two hydrogens arising from the 3 position of the bpy based ancillary ligand 

and the singlet at around 1.43 ppm integrating as 18 hydrogens originating from the tert-butyl 

groups of the ancillary ligand. The Ir-C resonances in the 13C NMR spectra appear typically at 

around 135 – 130 ppm. The 31P-NMR spectra show the characteristic heptet at -144 ppm for 

the PF6
- counterion. The characterised ion in HR-ESI mass spectrometry corresponds to the 

cationic species without a counterion. In elemental analysis, the characterising species includes 

the counterion.   
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Crystal Structures 

Single crystals of sufficient quality of 25, 26, 21 and 27 were grown from CH2Cl2/Et2O. 

The determined space groups are P1̅ (for 25) and P21 (for 26, 21 and 26). The crystal structure 

of 21 has been previously reported.175 The crystal structures are presented in Figure 26 selected 

crystallographic parameters are summarised in Table 7. 

In all complexes the pyridine rings of the C^N ligands are disposed in a mutually trans 

arrangement while the cyclometalating carbon atoms are trans to the nitrogen atoms of the N^N 

ligand, presenting an analogous binding mode to the majority of cationic Ir(III) complexes. 

Bond lengths and bond angles are as expected for this class of iridium complex.85,86,175,176,186–

188  

 

Figure 26: Representation of the crystal structures 25, 26, 21 and 27. The hydrogen atoms, 

solvent molecules, minor disorder as well as the counter ion PF6
- are omitted for clarity. C = 

light grey, N = blue, O = red and Ir = magenta. 
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Table 7: Selected crystallographic parameters for complexes 25, 26, 21 and 27. 

 Bond Length / Å Bond Angle / ° Torsion Angle / °a 

 Ir-CC^N Ir-NC^N Ir-NN^N C-Ir-NC^N N-Ir-N  

25 2.007(6) 

2.010(7) 

2.051(3) 

2.049(4) 

2.127(5) 

2.140(5) 

80.0(2) 

79.7(2) 

75.9(2) - 

26 2.036(7) 

2.034(8) 

2.059(8) 

2.060(8) 

2.143(8) 

2.141(5) 

80.2(3) 

80.4(3) 

76.3(3) - 

21 2.024(9) 

2.015(7) 

2.051(6) 

2.044(6) 

2.124(9) 

2.142(6) 

80.6(3) 

80.5(3) 

75.9(2) 78.32 

88.70 

27 2.06(1) 

2.01(1) 

2.05(1) 

2.05(4) 

2.14(1) 

2.148(9) 

80.9(5) 

80.2(5) 

75.7(4) 81.58 

89.97 

a Angle of torsion between plane of the pyridine of the C^N ligands and the phenyl bound to the 

pyridine. 

 

The torsion angles between the R1 and the pyridyl unit of the two C^N ligands in 21 and 

27 range from 77(1)° to 81(2)°, respectively, similar to those previously reported for arylated 

C^N ligands in charged complexes,73 but are notably larger to those found in 23 for which an 

average torsion angle of 26° between the phenyl and the pyridine rings of the C^N ligands is 

observed.17 

The steric hindrance provided by the substituents on the C^N ligands modulates the 

inter-nuclear distance in the solid state. The shortest inter-iridium distance between adjacent 

complexes is approximately 7.24 Å in 25 and increases significantly in 21 and 27 (~10.55 and 

10.97 Å, respectively). A similar Ir…Ir distance is observed when both R1 and R2 are tert-butyl 

groups in 26 (~10.86 Å). In 1 the distance 7.897 Å is notably higher The inter-iridium distance 

for 2227 is with 8.87 Å, which is significantly shorter compare to the distance in 21 and 25. 
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Cyclic Voltammetry 

The electrochemical behaviour of 1, 21, 25 – 28 was investigated by cyclic voltammetry 

(CV) in deaerated MeCN solution at 298 K with n-Bu4NPF6 as the supporting electrolyte at a 

scan rate of 100 mV s-1 and using ferrocene/ferrocenium (Fc/Fc+) as the internal reference. All 

potentials are referenced with respect to SCE (Fc/Fc+ = 0.38 V in MeCN).189 The cyclic 

voltammograms are shown in Figure 27 and the electrochemistry data are given in Table 8. 

Each complex displays a quasi-reversible oxidation wave attributed to an admixture of the 

Ir(III)/Ir(IV) redox couple and contributions from the aryl ring of C^N ligands.187 The addition 

of tert-butyl groups in 25 and 26 renders the oxidation somewhat less reversible compared to 

the reference 1 though the oxidation potentials remain essentially unchanged, despite the 

inductively electron-donating character of this substituent.  

 

Figure 27: Cyclic voltammograms of 1, 21, 25 – 28 measured in a deaerated MeCN with 0.1 M 

nBu4NPF6 at a scan rate of 100 mV s-1 in the positive scan direction and Fc/Fc+ as the internal 

standard and are referenced with respect to SCE (Fc/Fc+ = 0.38 V in MeCN). 
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Upon addition of aryl groups to the 4-pyridyl position, the oxidation waves are 

anodically shifted, a reflection of the moderately strong electron-withdrawing character of these 

groups.  This anodic shifting is somewhat mitigated by the conjugation present between the 

3,5-di-tert-butylphenyl substituent and the coordinating pyridine in 28, while in 21 and 27 the 

aryl groups are oriented perpendicular as a function of the o-methyl substituents on the arene; 

the magnitude of the inductively electron-withdrawing character of the aryl group is further 

modulated by the presence of the more strongly electron-donating methoxy substituent in 27 

(Eox = 1.29 V) compared to the mesityl substituent in 21 (Eox = 1.35 V). In CH2Cl2, it has been 

previously shown that 21 possesses an oxidation wave at 1.14 V.190 

Table 8. Electrochemical data and orbital energies for complexes 1, 21, 25 – 28. 

Thus, the solvent has an unusually large influence on the oxidation potential of this 

complex. All complexes display a single quasi-reversible reduction wave within the 

electrochemical window of MeCN. Despite the consistent assignment that the reduction is 

 
Electrochemistrya 

 
𝑬𝟏/𝟐

𝒐𝒙   / V 𝑬𝒑
 / mV 𝑬𝟏/𝟐

𝒓𝒆𝒅 / V 𝑬𝒑
 / mV 𝑬𝒓𝒆𝒅𝒐𝒙

b / V 𝑬𝑯𝑶𝑴𝑶
c / eV 𝑬𝑳𝑼𝑴𝑶

c / eV 

1 1.13 90 -1.61 70 -5.93 -3.20 2.74 

25 1.13 180 -1.54 100 -5.93 -3.26 2.67 

26 1.15 70 -1.52 90 -5.95 -3.29 2.67 

21 1.35 90 -1.37 80 -6.16 -3.43 2.72 

27 1.29 
90 -1.43 70 -6.10 -3.38 2.72 

28 1.21 100 -1.49 120 -6.01 -3.37 2.70 

a in degassed MeCN at a scan rate of 100 mV s-1 with Fc/Fc+ as internal reference, and referenced with respect 

to SCE (Fc/Fc+ = 0.38 V in MeCN);
189

 b ΔEredox is the difference (V) between first oxidation and first reduction 

potentials; c EHOMO/LUMO = -[Eox/red vs Fc/Fc+ + 4.8] eV;191 
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localized on the ancillary dtBubpy ligand, the reduction potential varies over a moderately large 

range from -1.37 V for 21 to -1.61 V for 1. In CH2Cl2 21 exhibits an irreversible reduction at -

1.15 V.190 The most inductively electron-withdrawing substituents on the C^N ligands induce 

the greatest shift to less negative potentials in 21 and 27, this via modulation of the electron 

density on the iridium centre. Analogous to that observed for the oxidation potentials, this effect 

is counteracted by the increased conjugation present in 28. Surprisingly, despite the electron-

donating nature of the tert-butyl groups, the reduction potential is not further cathodically 

shifted, but instead is -1.54 V for 25 and -1.52 V for 26.  

Photophysical properties 

The absorption spectra for 1, 21, 25 – 28 recorded in aerated MeCN at 298 K are shown 

in Figure 28 and the data summarized in Table 9. 

 

Figure 28: UV-Vis absorption spectra of 1, 21, 25 – 28 recorded at 298 K in aerated acetonitrile.   

The acquired absorption data for 1,187 26183 and 21190 match those previously reported. 

For all complexes, the electronic absorption spectra show intense ( on the order of 5.5 × 104 
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M-1 cm-1) high-energy absorption bands between 255 – 272 nm that are assigned to 1π–π* 

ligand-centred (1LC) transitions on both the C^N and N^N ligands. Complex 28 shows a modest 

red-shift of the 1LC band with respect to 1 that is due to capacity for the 3,5-di-tert-butylphenyl 

ring to conjugate with the pyridine ring while a similar red-shifting of this band is observed for 

26, also due to LUMO stabilization of the C^N ligands. The profiles of the low-energy bands 

are found to be insensitive to the nature of the substituents on the C^N ligands. 

Table 9. UV-vis absorption data of the investigated Ir(III) complexes 

 

 

 

 

 

 

 

 

 

 

All complexes show moderately intense absorption bands in the range of 300 to 340 nm, 

which are assigned to spin-allowed mixed metal-to-ligand charge transfer transitions (1MLCT) 

and ligand-to-ligand charge transfer transitions (1LLCT). Weaker absorption bands are 

observed beyond 400 nm, tailing to 490 nm. These bands are assigned to spin-forbidden 

(3MLCT/3LLCT) transitions.187  

 abs / nm [ / M-1cm-1]a 

1 255 [56 853], 286 [34 421], 309 [28 841],  

329 [16 244], 408 [3 757], 466 [663] 

25 258 [55 115], 309 [22 533], 323 [12 442],  

340 [10 817], 374 [7 397], 410 [3 976], 448 [941]   

26 272 [53 237], 310 [22 321], 329 [12 109], 377 [7477],  

397 [5 357], 410 [4 408], 429 [2 455], 470 [837] 

21 267 [54 540], 310 [24 832], 331 [13 504],  

344 [12 153], 385 [6 752], 419 [3 826], 471 [675] 

27 265 [53 788], 296 [33 350], 310 [28 049],  

343 [14 195], 385 [7 269], 419 [4 019], 467 [855] 

28 272 [56 407], 311 [29 765], 327 [23 945],  

350 [17 179], 402 [6 388], 439 [2 460], 472 [993] 

a recorded in aerated MeCN at 298 K. 
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 The photoluminescence (PL) spectra of 1, 21, 25 – 28 in degassed MeCN are shown in 

Figure 29a and the data are summarized in Table 10. Upon excitation at 400 nm, all complexes 

show moderately intense yellow emission over a narrow range between 588 to 611 nm and 

show a broad and unstructured profile, indicative of an emission with mixed CT character. An 

increasing red-shifting of the emission spectra is observed upon addition of tert-butyl groups 

(5 nm, 140 cm-1 for 1 to 25 and 19 nm, 530 cm-1 for 25 to 26). This trend is also observed for 

the LC band in the absorption spectra and correlates as well with a slightly smaller Eredox gaps. 

The effect of the addition of electron-donating groups on the phenyl rings of the C^N ligands 

has been shown to induce a red-shift of the emission.192 

A red-shift of 6 nm (169 cm-1) in the emission spectrum is also observed for 28 

compared to 1, which is due to stabilization of the triplet state as a result of the increased 

conjugation within the C^N ligands. Given the orthogonal conformation of the aryl groups in 

21 and 27 there is expectedly no significant change in the emission energy, consistent with 

previous studies.175,176 This design approach permits a modulation of the bulkiness of the 

resulting complexes without substantially affecting the emission energy. The 

photoluminescence quantum yield (PL) values in deaerated MeCN solution at room 

temperature of all complexes are approximately in the same range (ΦPL ~ 24 – 30%), except for 

26, which shows a lower ΦPL of 11%. These values are comparable to those obtained for related 

cationic iridium complexes emitting in the same energy region.128,175,176,180  
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Figure 29: Emission spectra of 1, 21, 25 – 28. a) recorded at 298 K in deaerated MeCN, with 

λexc = 400 nm, b) dropcast thin films at 298 K, with λexc = 400 nm. 
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Table 10. Photophysical data of 1, 21, 25 – 28.  

The emission decays are monoexponential and the lifetimes (PL) are all in the sub-

microsecond regime. The addition of increasing numbers of tert-butyl groups on the C^N 

ligands result in a decrease in the PL values, a consequence of an increase in the non-radiative 

decay rate, knr. Over the series of substituted complexes, the radiative decay rate, kr, remains 

similar, though lower than the reference complex 1. 

In order to emulate the emissive layer in the LEEC devices, neat films of 1, 21, 25 – 28 

were prepared by drop-casting a dichloromethane solution onto a glass substrate, which was 

then dried under vacuum. The emission spectra of the neat films were recorded at 298 K open 

to air (Figure 29b and Table 10). All complexes display blue-shifted, broad and unstructured 

 MeCN 
Neat film 

 
λPL

a 

 / nm 

τPL
a 

 / ns 

ΦPL
a,b 

 / % 

kr
 c × 10-5 

 / s-1 

knr
d × 10-5  

/ s-1 

λPL
e    

/ nm 

τPL
e,f 

/ ns 

ΦPL
g 

 / % 

1  592 581 30 3.61 13.60 578 

5 (11.7%) 

29 (30.6%) 

 180 (57.7%) 

23 

25  597 497 24 3.42 16.70 579 

9 (13.7%) 

 40 (33.2%)  

200 (53.1%) 

40 

26  611 250 11 3.20 36.80 565 

8 (7.7%) 

 43 (23.4%)  

225 (68.9%) 

27 

21  592 643 27 2.95 12.60 565 

10 (16.4%)  

42 (37.5%)  

171 (46.1%) 

15 

27  588 623 28 3.05 13.00 564 

10 (14.4%) 

 42 (35.5%)  

179 (50.1%) 

16 

28  598 501 24 3.39 16.57 570 

8 (13.8%)  

36 (34.3%)  

183 (51.9%) 

40 

a recorded at 298 K in deaerated MeCN, with λexc = 400 nm; b [Ru(bpy)3]Cl2
.6H2O was used as reference (ΦPL 

= 0.04 in 10-5 M  aerated H2O);24 c kr = τPL / ΦPL. d knr = 1/(τPL - kr) = [(1 - ΦPL)/ τPL]; e values refer to dropcast 

thin films at 298 K, with λexc = 400 nm; f with contribution of component in parentheses; g values refer to 

dropcast thin films at 298 K using an integration sphere under an N2 environment. 
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emission spectra (~ 30 nm, 820 cm-1) compared to the MeCN solution measurements. Multi-

exponential emission decay kinetics are observed for all complexes, with the longest component 

in each being significantly shorter than the PL found in MeCN solution. Photoluminescence 

quantum yields for 1, 21 and 27, remain essentially unchanged compared to solution 

measurements while those of 25, 26 and 28 are enhanced, a function of reduced non-radiative 

decay in the neat film. 

LEEC Devices 

LEECs were prepared and the electroluminescence properties of complexes 1, 21, 25 – 

26 are shown in Figure 30a-c while Figure 30d describes the device architecture. The LEEC 

data are summarized in Table 11. The devices were built on ITO-patterned substrates, where a 

poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer (80 nm) was 

deposited by spin-coating. The LEEC active layer (100 nm) was deposited from MeCN by spin-

coating, which contained the emitting complex mixed with the ionic liquid (IL) 1-butyl-3-

methylimidazolium hexafluorophosphate, [Bmim][PF6], in a 4:1 molar ratio (complex:IL). 

Aluminium was evaporated as a top contact electrode.  

For simplicity, the LEECs are referred as D1, D21 and D25 to D26 containing complex 

1, 21, 25 – 26. LEECs were characterized by applying a bias and monitoring the emitted light 

over time. Unlike LEECs measured at constant voltage (DC), pulsed-current LEECs show 

faster response and improved device lifetime.26 The devices were characterized under an inert 

atmosphere by applying an average pulsed current (1 kHz, 50% duty cycle) of 100 A m-2. 
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Figure 30: Device performance of the LEEC. Luminance versus time (D1 and D25 in a) and 

D26 and D21 in b)) operated with a pulsed current of 100 A m-2 (1KHz, 50% duty cycle and 

block wave). c) Electroluminescence spectrum. d) LEEC architecture.  

The yellow electroluminescence of the devices consists on one peaks centred at 582 nm 

for D1 and 577 – 578nm for D25, D26 and D21 (see Figure 30c). The electroluminescence 

spectra are narrower than the thin film photoluminescence spectra. The solubility of the D27 

and D28 was poor (<15 mg mL-1) in both MeCN and CH2Cl2, which led to poor morphology 

quality of the spin-coated films and devices with high leakage currents. Even if the solution is 

filtered (200 nm porous size), the saturated solutions form grains during the solvent evaporation 

by spin-coating, which was confirmed by optical microscopy. 
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Table 11: Device performance of the LEEC: ITO/PEDOT:PSS/Complex:[Bmim][PF6]/Al 

operated with a pulsed current of 100 A m-2 (1KHz, 50% duty cycle and block wave). 

Device Lummax / cd m-2 tmax / s  t1/2 / h Efficacy / cd A-1 PE / lm W-1 EQE / % EL / nm 

D1 432 2400 62 4.3 2.3 1.8 582 

D25 737 25 14 7.4 3.7 2.6 577 

D26 353 <5 1.3 3.4 1.4 1.2 578 

D21 557 54 0.3 5.6 2.1 2 578 

a Maximum luminance; b Time to reach maximum luminance; c Time to reach one-half of the maximum luminance; d 

Maximum efficacy; e Maximum power efficiency; fMaximum external quantum efficiency; gWavelength emission in 

electroluminescence.  

 

The LEECs D1, D21, D25 – D26 exhibit instantaneous luminance that increases rapidly 

leading to short turn-on time (ton) of less than one minute, which is defined as the time to reach 

the maximum luminance, except D1 where ton is 2400 s. The devices are bright, with maximum 

luminance values in the same order of magnitude, between 350 and 750 cd m-2 across all 

devices. The devices are moderately efficient, with a maximum efficacy of 7.4 cd A-1 in the 

case of D25. Lower efficiencies are achieved for D26, D1 and D21, following the trend in the 

photoluminescence quantum yield of the thin film. However, the LEECs differ in terms of their 

stability, defined as time to reach half of the maximum luminance. D1 has a lifetime above 62 

hours, which makes it the most stable device within this study, maintaining almost constant the 

luminance over the time about 300 cd m-2. D25 has a higher luminance (737 cd m-2) although 

it is achieved only during few seconds and then proceeds to drop to ~600 cd m-2, lasting for 

only 14 h. D26 and D21 present low stabilities. Initially D26 displays luminance values around 

350 cd m-2 but is stable for 1.3 h. D21 shows higher turn-on luminance (~550 cd m-2) however, 

the emission drops fast and the t1/2 only 0.3 h. 

 

 



Chapter 2 – Ir(III) complexes bearing sterically congested substituents 

- 76 - 

 

Conclusions 

In summary, we successfully synthesized and characterized a series of cationic Ir(III) 

complexes of the form [Ir(C^N)2(dtBubpy)]PF6 incorporating bulky substituents on the C^N 

ligand in order to develop new emissive materials for light-emitting electrochemical cells. The 

syntheses are straightforward allowing the introduction of tert-butyl, mesityl, manisyl, and 3,5-

di-tert-butylphenyl groups into the C^N ligand. This systematic study revealed that the 

solubility of the complexes in standard organic solvents increased. At high concentrations (>15 

mg mL-1) complexes 27 and 28 however did not show good solubility in MeCN and CH2Cl2. 

All complexes have been structurally characterised and the single crystal structure 

determinations of complexes 25, 26, 21 and 27 confirm that by increasing the sterical 

congestion of the substituent the inter-nuclear distance between adjacent complexes increased 

in the solid state.  

All complexes show bright yellow luminescence in MeCN, with moderate 

photoluminescence quantum yields. The yellow phosphorescence of the parent complex 1 is 

retained, due to a twisted conformation of the bulky aromatic substituents (in 21, 27 and 28) as 

they do not extend the π-conjugated system of the C^N ligand. Neat film photoluminescence 

quantum yields of up to 40% could be obtained. Complexes 1, 25, 26 and 21 were successfully 

employed in LEECs, showing yellow luminescence with moderate external quantum 

efficiencies. 
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Chapter 3 

 

 

An investigation on the second-order nonlinear optical 

response of cationic bipyridine or phenanthroline 

iridium(III) complexes bearing two cyclometalated 2-

phenylpyridines with a triphenylamine substituent. 
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Introduction 

Chapter 1 gave an outline to second-order nonlinear optics (NLO), and how and why 

molecular structures with NLO properties are useful as materials acting as building blocks for 

application in optical communications, optical data processing and storage, or optoelectronic 

devices.143,193 In particular, coordination compounds are of great interest because they provide 

additional flexibility, when compared to organic compounds, due to the presence of charge-

transfer transitions between a combination of the metal and the ligands, typically at low energy 

and of high intensity. These conditions can induce large NLO responses and can be tuned by 

the nature, oxidation state and coordination sphere of the metal centre.28,143,153,159,161,194  

As presented in Chapter 1, cationic cyclometalated iridium(III) complexes with -

delocalised ligands such as bipyridines56,195 or phenanthrolines34,55,194,196 can have a large 

second-order NLO response. Thus, [Ir(C^N)2(5-R-1,10-phenanthroline)]PF6 (C^N is a 

cyclometalated ligand such as ppy and R = H, Me, NMe2, NO2) show a large negative second-

order response (EFISH ranging from -1270 to -2230 x 10-48 esu).55 The highest absolute EFISH 

value reported within this series is that of the complex carrying the phenanthroline with the 

strong electron-withdrawing NO2 group, in accordance with the increased acceptor properties 

of the * antibonding orbitals of the ancillary ligand (Figure 31).  

 

Figure 31: Cationic Ir(III) complex [Ir(ppy)2(5-R-1,10-phenanthroline)]PF6 with a high 

absolute EFISH value reported to date (EFISH ranging -2230 x 10-48 esu).  
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An SOS-TDDFT investigation confirmed that the second-order NLO response of these 

Ir(III) complexes is mainly controlled by the MLCT/LLCT transitions from the HOMO located 

on the phenyl ring and Ir-based donor orbitals of the C^N ligands to the LUMO localised on 

the * acceptor orbitals of the phenanthroline.55 Similarly, the use of variously substituted 2,2’-

bipyridines instead of 1,10-phenanthrolines leads to a high NLO response due to their 

analogously tuned LUMO * acceptor orbitals.195,197 In this kind of cationic iridium(III) 

complex, substitution of the ppy ligands with the more −delocalised 2-phenylquinolinato (pq) 

ligands does not affect significantly the NLO properties, while a lower NLO response is 

observed for the related complexes with 3’-(2-pyridyl)-2,2’:5’,2’’-terthiophene (ttpy) C^N 

ligands since the structure of ttpy induces a significant stabilisation of the HOMO energy, 

compared to the complexes bearing ppy and pq.196 Cationic Ir(III) complexes bearing two -

delocalised cyclometalated 4-R-2-phenylpyridines (R = CH=CH-C6H4NEt2) and a 4,4’-R’,R’-

2,2’-bipyridine ancillary ligand are characterised by a EFISH value (-960 x 10-48 esu),195 almost 

twice that reported198 for the related cyclometalated complex with acetylacetonate as the 

ancillary ligand, suggesting that substitution of acetylacetonate with a 2,2'-bipyridine is a 

valuable strategy to increase the second-order NLO properties of the Ir(III) complexes.195 

These results prompted us to investigate the second-order NLO properties of a family 

of cationic Ir(III) complexes with cyclometalated 2-phenylpyridines bearing a −delocalised 

triphenylamino (TPA) substituent, partnered with 4,4’-ditertbutyl-2,2’-bipyridine (dtBubpy) 

and 5-NO2-1,10-phenanthroline (NO2-phen) as the ancillary ligands. We were also curious to 

know the effect of the position of the TPA moiety (meta or para to Ir-CC^N bond or Ir-NC^N 

bond) on the NLO properties. The NLO responses of the prepared and characterised complexes 

29 – 31 (a = dtBubpy, b = NO2-phen) (Figure 32) were determined by the EFISH 

technique,166,167 working with a non-resonant incident wavelength of 1907 nm, whose second 

harmonic (953 nm) is in a transparent region of the absorption spectra of the complexes. 
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Figure 32: Cationic Ir(III) complex investigated for their second-order nonlinear optical 

properties in this study 

The nano-organisation of this kind of complex in a polymeric matrix was also 

investigated as well to obtain insight regarding the solid state response, used in technological 

applications.143 
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Results and Discussion 

Ligand Synthesis 

The ligands L29 – L31 were obtained in a two-step synthesis (Figure 33). In the first 

step the bromo-substituted phenylpyridines, 2-(4-Bromophenyl)pyridine, 29Br,185  2-(3-

bromophenyl)pyridine), 30Br185 and 4-bromo-2-phenylpyridine, 31Br199 were synthesised 

through a cross-coupling reaction following a modified previously reported method, wherein 

the substituted 2-bromo-pyridine was reacted with the aryl boronic acid. In the second step, the 

corresponding bromo-phenylpyridine (29Br – 31Br) was reacted with (4-

(diphenylamino)phenyl)boronic acid to give the Ligands L29 – L31. (4-

(diphenylamino)phenyl)boronic acid was prepared following a modified method185 in advance 

through subsequently reacting 4-bromo-N,N-diphenylaniline with n-BuLi at -78 °C and 

triisopropyl borate followed by an acid treatment with 1M HCl. The obtained product was used 

without further purification.   

 

Figure 33: Two step synthesis of the ligands L29 – L31. a) 2-bromo-pyridine, corresponding 

boronic acid, K2CO3, Pd(PPh3)4, 1,4-dioxane/water (4/1), N2, 95 °C, 3 days; b) 2,4-dibromo-

pyridine, phenylboronic acid, KOH, Pd(PPh3)4, 1,4-dioxane/water (4/1), N2, 95 °C, 2 days; c) 

i) 4-bromo-N,N-diphenylaniline, n-BuLi, THF, N2, -80 °C, 45 min; ii) triisopropyl borate, -80 

°C – r.t., 18 h; iii) aqueous HCl (1 M). d) Corresponding substituted bromo-phenylpyridine, 

TPA-boronic acid, K2CO3, Pd(PPh3)4, 1,4-dioxane/water (4/1), N2, 95 °C, 18 h.   
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Complex Synthesis 

Complexes 29 – 31 were obtained in a two-step synthesis following standard reaction 

conditions (Figure 34).64,65 In the first step, the [Ir(C^N)2Cl]2 dimer (Di29 – Di31) were 

quantitatively obtained as a yellow solid by treatment of the corresponding ligand (L29 – L31) 

with IrCl3.6H2O in a 3:1 mixture of 2-ethoxyethanol/H2O (125 °C, 24 h). This dimer was then 

cleaved with 4,4’-ditertbutyl-2,2’-bipyridine (dtBubpy, Procedure A) or with 5-nitro-

phenthroline (NO2-phen, Procedure B). 

    

Figure 34: Procedure for the synthesis of target complexes (29 – 31) in this study . a) IrCl3
.6H2O, 

corresponding C^N ligand, 2-ethoxyethanol/water (3:1), 125 °C, 24 h; b) 1. Corresponding 

Ir(III) dimer (Di29 – Di31), dtBubpy, MeOH/CH2Cl2 (1:1), 40 °C, 18 h. 2. aq. NH4PF6; c) 

Corresponding Ir(III) dimer (Di29 – Di31), NO2-phen, MeOH/CH2Cl2 (1:2), 40 °C, 6 h. 2. aq. 

NH4PF6. 
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In Procedure A, [Ir(C^N)2Cl]2 was reacted with dtBubpy in a 1:1 mixture of 

CH2Cl2/MeOH (40 °C, 18 h) to afford the cationic Ir(III) complexes as their chloride salts. After 

column chromatography on silica (eluent: 5% MeOH in CH2Cl2) followed by an ion exchange 

with aqueous NH4PF6, complexes 29a – 31a were isolated in excellent yield (82% – 92%) as 

their hexafluorophosphate salts. The General Procedure B was carried out to obtain 29b – 31b, 

wherein a solution of [Ir(C^N)2Cl]2 and NO2-phen in a 2:1 mixture of CH2Cl2/MeOH was 

heated under reflux. After 6 h, a 10-fold excess of NH4PF6 was added. After filtration and 

recrystallisation in CH2Cl2/Et2O at 0 °C complexes 29b – 31b were collected as precipitates. 

All complexes were characterised by 1H, 13C and 31P NMR spectroscopy in CDCl3, HR-ESI 

mass spectrometry and elemental analysis. The NMR spectra show the expected number of 

resonances characteristic for Ir(III) complexes based on ppy and bpy ligand systems. With 

respect to the complexes in Chapter 2 these complexes behave in a comparable way in HR-ESI 

mass spectrometry and elemental analysis. The structure of complexes 31a was determined by 

single crystal X-ray diffraction. 

Crystal Structures 

Single crystals of sufficient quality were grown by slow vapor diffusion of hexane into 

a CH2Cl2 solution of complex 31a. The structure of 31a was determined by single-crystal X-

ray diffraction (Figure 35, Table 12). Complex 31a possess a distorted octahedral geometry. 

The pyridine rings of the C^N ligands are disposed in a mutually trans arrangement while the 

cyclometalating carbon atoms are trans to the nitrogen atoms of the N^N ligand, presenting an 

analogous binding mode to the majority of cationic Ir(III) complexes. Bond lengths and bond 

angles are as expected for this class of iridium complex.85,86,175,176,186–188 The Ir-CC^N bonds are 

in average noticeably shorter [1.99(1) Å] than the Ir-NN^N bonds [2.035(4) Å]. These bond 

lengths are all similar to the bond lengths in analogous complexes. The bite angle of the N^N 

ligand in 31a is 76.0(4). The bite angles of the C^N ligands are 80.0(5) and 81.3(5)°.  
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The torsion angles between the plane of the pyridine of the C^N ligands and the phenyl 

bound to the pyridine are 16.5(6)° and 41.4(3)°, respectively, which is notably different to 

[Ir(dPhPy)2(bpy)]PF6, 22 (where dPhPy is 2,4-diphenylpyridine and bpy is 2,2ʹ-bipyridine)128 

with an average torsion angle of 26° between the phenyl and the pyridine of the C^N ligands. 

 

Figure 35: Solid-state structures of complexes 31a. Hydrogen atoms, PF6
-
 counterions and 

solvent molecules are omitted for clarity. Colour codes for atoms are: C = light grey, N = blue 

and Ir = magenta. 

Table 12: Selected crystallographic parameters for complexes 31a. 

 Bond Length / Å Bond Angle / ° Torsion Angle / 

°a 

 Ir-CC^N Ir-NC^N Ir-NN^N C-Ir-NC^N N-Ir-N  

31a 1.99(1) 

1.99(1) 

2.027(9) 

2.042(9) 

2.13(1) 

2.13(1) 

81.3(5) 

80.0(5) 

76.0(4) 16.5(6)° 

41.4(3)° 

a Angle of torsion between plane of the pyridine of the C^N ligands and the phenyl bound to 

the pyridine. 
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Photophysical properties 

The UV-Vis absorption spectra of complexes 29 – 31 were recorded in CHCl3 at 298 K 

are shown in Figure 36 and the data are summarised in Table 13. 

 

Figure 36: UV−vis absorption spectra in CHCl3 at 298 K of all complexes 29 – 31. 

All complexes show intense high-energy ( on the order of 5.0 – 5.9 × 104 M-1 cm-1) 

absorption bands below 300 nm, which are attributed to –* ligand-centred (1LC) transitions 

localised on the N^N and C^N ligands. A distinguishing feature of each complex is the presence 

of an intense band at low energy, which is attributed, thanks to calculations, to an intraligand 

charge transfer (ILCT) from the TPA moiety to the phenyl and pyridyl rings of the C^N ligands 

bonded to the metal. For complexes 30a and 30b, this band is significantly less intense 

compared to the other complexes and appear as weak absorptions, the first intense absorption 

peaking at abs of 333 and 327 nm ( ~ 5.2 × 104 M-1 cm-1), respectively. Complexes 29a and 

29b show similar profiles, with the broad and intense ILCT band found at abs at 384 and 381 

nm ( ~ 4.0 × 104 M-1 cm-1), respectively. 
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Table 13: Selected photophysical data for complexes 29 – 31. 

 

 

 

 

 

  

 

 

 

 

The ILCT maxima are even further bathochromically shifted for complexes 31a (abs = 

403 nm) and 31b (abs = 413 nm) and the intensity of the band enhanced with   5.4 × 104 M-

1 cm-1. As stated above, complexes 30a and 30b show much less intense ILCT bands at 435 nm 

(with intensities of  = 3.2 and 5.13 × 104 M-1 cm-1, respectively).  For all complexes, weak 

absorption bands are observed beyond 450 nm, tailing to 590 nm. These bands are assigned to 

spin-forbidden transition to the triplet excited states (3MLCT/3LLCT). 

We have used TD-DFT to provide insights into the nature of the low-lying excited-states 

of the different complexes. As can be seen in Figure 37, the general shape provided by theory 

matches the experimental one, with in particular much less intense long-wavelength band for 

30a than for 29a and 31a. For 29a, theory returns the two three significantly dipole-allowed 

(f>0.1) excited-states at 440, 433, and 411 nm. These three states correspond to the broad band 

in the visible domain experimentally.  

Complex Absorptiona λmax / nm   

[ε / M–1 cm–1] 

EFISH
a,b 

x 10-48 / esu 

c 

 / D 

EFISH
d 

x 10-30 / esu 

29a 280 [55 393], 294 [55 813],  

384 [43 488], 426 [19 538] 

-1260 19.8 -64 

29b 270 [56 011], 293 [50 418],  

381 [38 389], 426 [20 927] 

-1370 14.2 -96 

30a 279 [50 209], 333 [52 526], 

435 [3 200] 

-1560 23.6 -66 

30b 271 [59 488], 327 [53 387], 

435 [5 133] 

-1730 19.6 -88 

31a 295 [53 726], 403 [54 042] -1880 12.0 -157 

31b 273 [59 105], 413 [54 816] -1890 6.4 -295 

a In CHCl3; b at 1.907 m; estimated uncertainty in EFISH measurements is ±10%; c 

computed dipole moments of the cationic iridium complex using PCM-DFT. (d) EFISH was 

calculated using the computed  value 
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Figure 37. Simulated UV spectra for complexes 29a, 30a and 31a. Broadening Gaussian 

HWHM used: 0.15 eV. 

In 29b, theory returns excited-states at 449, 445, and 440 nm, slightly red shifted 

compared to 29a, which is consistent with experiment. In 31a and 31b, TD-DFT returns a strong 

excited-state (f larger than 1) at 428 nm and 430 nm, other states presenting significantly smaller 

oscillator strength. This is rather consistent with experiment that shows slightly less broad 

bands in 31 than in 29. In 30a and 30b, only one state significantly dipole-allowed appears 

above 400 nm, but the oscillator strength is much smaller than in the other dyes.  

As can been seen from Table 14 and Figure 38, the low-lying bands in 29a, 30a and 

31a, all correspond to HOMO to LUMO+1 transition, both being localised on the C^N ligand 

and displaying a very significant CT character. The LUMO, localised on the ancillary ligand is 

not involved in these (allowed) transitions, as HOMO to LUMO transitions present a vanishing 

oscillator strength due to the non-overlapping densities (Figure 38). 
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Table 14. TD-DFT data for complexes 29 – 31: first three significantly allowed excited-states. 

Compound /nm f Dominant MO composition 

29a 

440 

433 

411 

0.86 

0.35 

0.25 

H to L+1 (0.63) 

H-1 to L+1 (0.61) 

H-1 to L+2 (0.49); H-2 to L+1 (0.48) 

29b 

449 

445 

440 

0.39 

0.57 

0.28 

H to L+2 (0.49); H to L+3 (0.37) 

H to L+3 (0.51); H to L+2 (0.34) 

H-1 to L+3 (0.59); H to L+4 (0.21) 

30a 

458 

386 

366 

0.06 

0.35 

0.31 

H to L+1 (0.61) 

H-4 to L (0.60); H-2 to L (0.30) 

H to L+5 (0.57); H-2 to L+1 (0.21) 

30b 

472 

361 

360 

0.14 

0.21 

0.15 

H-5 to L+2 (0.56); H-3 to L (0.21) 

H-2 to L+2 (0.33); H-16 to L (0.31) 

H-18 to L (0.63) 

31a 

428 

416 

388 

1.52 

0.46 

0.08 

H to L+1 (0.44); H-2 to L+1 (0.42); H-1 to L+2 (0.32) 

H-2 to L (0.54); H to L+1 (0.29); H-1 to L+2 (0.29) 

H-3 to L+1 (0.62); H-5 to L (0.22) 

31b 

433 

430 

356 

0.12 

1.80 

0.08 

H to L+3 (0.45); H-1 to L+4 (0.37); H-2 to L+3 (0.21) 

H to L+6 (0.56); H to L+7 (0.21) 

H-1 to L+3 (0.59); H to L+4 (0.21) 

Figure 38. Frontier orbitals of 29a (top) 30a (middle) and 31a (bottom). 

      

      

      

H-2 H-1 H L L+1 L+2 
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In solution (CHCl3 and MeCN) the complexes show very weak emission, except for 

complex 31a. For this reason, only the emission properties of 31a are discussed. Figure 39 

shows the normalised photoluminescence (PL) spectrum of 31a in degassed MeCN and the data 

are summarised in Table 15.  

 

Figure 39: Photoluminescence spectrum of complex 31a in deaerated MeCN at 298 K.  

Upon photoexcitation at 420 nm, complex 3a exhibits a broad and featureless emission, 

indicative of an emission with mixed CT character, with a maximum at em = 573 nm and a 

photoluminescence quantum yield (PL) of 7%. Compared to the unsubstituted analogue 

[Ir(ppy)2(dtBubpy)]PF6 (em = 591 nm, PL = 29%) a blue-shift of 18 nm (532 cm-1) and a 

notable lowering of the PL is observed. 
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Table 15: Photophysical properties of complex 31a. 

 

NLO studies 

We used the EFISH method in order to study the second-order NLO response in solution 

of the complexes. This technique166,167 provides direct information on the intrinsic molecular 

NLO properties, through 

EFISH = (EFISH5kT) +  (−   )  

where EFISH/5kT is the dipolar orientational contribution to the molecular nonlinearity, and 

(−   ) the second order polarizability, is a purely electronic cubic contribution to 

EFISH, which can usually be neglected when studying the second-order NLO properties of 

dipolar molecules, dominated by the first hyperpolarizability. EFISH  is the projection along the 

dipole moment axis of  vec, the vectoral component of the tensor of the quadratic 

hyperpolarizability, working with an incident wavelength of a pulsed laser. To obtain the value 

of EFISH, it is therefore necessary to determine the ground state dipole moment  of the 

molecule. To avoid overestimations of the  value due to resonance enhancements, it is essential 

to choose an incident wavelength whose second harmonic is remote from any absorption of the 

molecule investigated. It is worth noting that, although it has traditionally been used to study 

charge-neutral molecules, the EFISH technique can be applied to the determination of the 

 

 em
a / nm PL

a,b / % PL
c / ns 

31a 573 7 

77 (28%) 

671 (42%) 

5107 (30%) 

b Recorded at 298 K in deaerated MeCN solution (exc = 420 nm); c [Ru(bpy)3](PF6)2 in MeCN as 

the reference (PL = 1.8% in aerated MeCN at 298 K);9 c exc = 378 nm.  
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second-order NLO response of ionic species by working in a solvent of low dielectric constant 

like CHCl3, which favours ion-pairing.200,201  

We found that all the investigated complexes are characterised by a negative value of 

EFISH (Table 13), in agreement with a negative value of Δμ (difference of the dipole moment 

in the excited and ground state) upon excitation,202 as reported for other cyclometalated Ir(III) 

complexes.34,55,57,194–198,203 

Complex 29a, is characterised by a large second-order NLO response (EFISH = -1260 

× 10-48 esu). A slightly higher absolute value of EFISH is observed for the related complex 

with the TPA substituent in position para to the Ir-CC^N bond, 29a. This enhancement is due to 

an increase of the dipole moment of the complex (Table 13). A much higher NLO response is 

reached with 31a (EFISH = -1880 × 10-48 esu), where TPA is para to the Ir-NC^N bond, due to 

a much higher quadratic hyperpolarizability, EFISH, which prevails over the decrease of the 

dipole moment. 

Complex 29a, where TPA is meta to the Ir-CC^N bond, is characterised by a large second-

order NLO response (EFISH = -1260 × 10-48 esu). A slightly higher absolute value of EFISH 

is observed for the related complex with the TPA substituent in position para to the Ir-CC^N 

bond, 30a. This enhancement is due to an increase of the dipole moment of the complex (Table 

1). A much higher NLO response is reached with 31a (EFISH = -1880 × 10-48 esu), where TPA 

is para to the Ir-NC^N bond, due to a much higher quadratic hyperpolarizability, EFISH, which 

prevails over the decrease of the dipole moment. This decrease is due to the more symmetric 

arrangement of the donating groups around the metallic centre that lead to vector contributions 

to the dipoles in opposite directions. 

Complexes 29b-31b possess a smaller dipole moment than their 29a-31a analogues but 

they are characterised by a higher second-order NLO response due to an increase of the 

quadratic hyperpolarizability, as expected for the strong acceptor properties of 5-NO2-1,10-
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phenanthroline (Table 13). Remarkably, their EFISH values are much higher than that 

previously reported for the related Ir(III) complex with 5-NO2-1,10-phenanthroline but with 

two unsubstituted cyclometalated phenylpyridines (-79 x 10-30 esu). 

Although the NLO responses of molecular systems are important to study, a further step 

is to obtain organised molecular materials showing a high second-order solid-state NLO 

response.143,193 While some neutral organometallic compounds have been incorporated into 

polymeric films affording rather large second-harmonic generation (SHG) responses, 

143,193,204,205 to the very best of our knowledge no NLO-active polymeric films based on ionic 

organometallic complexes has been reported. This observation prompted us to investigate the 

second-order NLO properties of 30b incorporated in a polymeric film. This cationic complex 

was chosen because it is simultaneously characterised by one of the largest EFISH and a 

significant dipole moment (Table 13) which should facilitate the orientation of the complex by 

poling. 

Thus, we have prepared thin films of 30b dispersed in a polymethylmethacrylate 

(PMMA) or polystyrene (PS) matrix, as reported in the experimental section. It turned out that 

the second-harmonic generation signal of films in PMMA rapidly faded due to the loss of 

orientation of the dyes. A much better behaviour was obtained by using polystyrene as matrix 

(Figure 40).  
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Figure 40: Poling of the 30b/polystyrene film. SHG (black line), temperature (red line) and 

electric field (blue line). 

The SHG was negligible before applying the corona voltage and it quickly increased 

after application of the electric field. When the temperature was increased up to 70 – 80 °C, a 

large increase of the SHG occurred, due to the decrease of the viscosity of the polymeric matrix 

which allowed an easier orientation of the NLO-active complex. When a stable SHG was 

reached, the sample was cooled at room temperature and the electric field switched off. By 

fitting the Maker fringe measurements, the three nonzero coefficients of the second-order 

susceptibility tensor 𝜒33
(2)

, 𝜒31
(2)

 and 𝜒15
(2)

 for the poled film were found to be 1.7, 0.46 and 0.50 

pm/V, respectively. Although this 𝜒33
(2)

 value is lower than that previously reached for a neutral 

cyclometalated Ir(III) complex (3.0 pm/V),57 it remains an interesting result because it 

represents the first demonstration of SHG properties of a cationic organometallic complex 

embedded in a polymeric film. 
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Conclusions  

In summary, this work has shown the good EFISH values of six new and well 

characterised cationic iridium(III) complexes bearing either 4,4’-ditertbutyl-2,2’-bipyridine or 

5-NO2-1,10-phenanthroline along with three cyclometalated 2-phenylpyridines substituted with 

a triphenylamine in position meta or para to Ir-CC^N bond or para to Ir-NC^N bond. The best 

values are obtained with 5-NO2-1,10-phenanthroline as ancillary ligand, due to the excellent 

acceptor properties of its * orbitals, and when the triphenylamine is in position para to the Ir-

NC^N bond.  

Remarkably, polymeric film based on this kind of cationic iridium complexes can 

exhibit a good second-harmonic generation response which is particularly stable by using 

polystyrene as polymeric matrix. These results will stimulate further studies on polymeric films 

incorporating cationic complexes for NLO applications.
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Introduction 

As mentioned in Chapter 1, one of the most widely studied class of iridium complexes 

are heteroleptic bis-cyclometalated complexes of the form [Ir(C^N)2(L^X)]n+, where C^N is the 

cyclometalating ligand and L^X is either a monoanionic ligand such as acetylacetonate (acac, 

n = 0), or a neutral diimine ligand such as 2,2'-bipyridine (bpy, n = 1).5,31,206 The main strategies 

for tuning the emission energy of these complexes are the decoration of the ligands with either 

electron-withdrawing or electron-donating substituents, and the modification of the 

coordinating heterocycles.5,33,207 The C^N ligands nearly always form five-membered chelates, 

typically based on 2-phenylpyridine (ppyH). Strategies involving interruption of the 

conjugation in these C^N ligands, such as going from a five-membered chelate to a six-

membered chelate that incorporates a CH2 spacer, are far less explored.  

Indeed, photoactive iridium complexes bearing a six-membered cyclometalating chelate 

are very rare, and the few reported examples can be categorised into two families of complexes: 

those containing conjugated92,94,208,209 or non-conjugated95–97 bidentate cyclometalating ligands. 

For instance as mentioned in Chapter 1, Song et al.96 reported in 2008 a phosphorescent Ir(III) 

complex [Ir(dfbpz)2(fptz)], 7 (where (dfbpz)H is 2,4-difluorobenzyl-N-pyrazole and fptz is 3-

trifluoromethyl-5-(2-pyridyl) triazole) bearing a non-conjugated N-benzylpyrazole ligand 

forming a six-membered chelated framework (Figure 41).  

 

Figure 41: Schematic representation of five-membered and six-membered chelated Ir(III) 

complexes. 
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This complex is a blue emitter in dichloromethane solution (em = 437, 460 nm, PL = 

10% and PL = 0.10 µs). The CH2 spacer of the cyclometalated ligand effectively disrupts the -

conjugation to produce a blue shift, compared to [Ir(dFppy)2(fptz)], 6 [where (dFppy)H = 2-

(2,4-difluorophenyl)pyridine and fptz = 3-trifluoromethyl-5-(2-pyridyl) triazole], containing a 

five-membered ring chelate C^N ligand and the same ancillary ligand (em = 460, 489 nm in 

dichloromethane, Figure 41. 99 By contrast, Zhu et al.94 reported in 2005 the iridium(III) 

complex [Ir(bis[2-(N-carbazolyl)pyridinato-N,C3’)picolinate], 32  ([Ir(cpy)2(pic)], Figure 42) 

containing a six-membered chelating framework where the ligand is fully conjugated leading 

to yellow luminescence in the recrystallised solid state with (em =  538 nm, PL = 5%).  

 

Figure 42: Schematic representation of an Ir(III) complexes containing a fully conjugated six-

membered chelating framework. 

To date, to the best of our knowledge, all iridium complexes employing nonconjugated 

six-membered chelate C^N ligands have included either a pyrazole96,97 or benzyl-derived N-

heterocyclic carbene95 coordinating moiety as part of the ligand.  

Surprisingly, the use of pyridine, such as with 2-benzylpyridinato (bnpy), has not yet 

been explored in the design of photoactive iridium complexes; this ligand has only been 

reported for iridium complexes used in catalysis.210,211 The two C^N-coordination moieties in 

bnpy are separated by a CH2 spacer, which fully disrupts the -conjugation within the C^N 

ligands. This allows the decoration of the pyridine without influencing the electronic properties 
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of the phenyl ring and therefore the HOMO level of the complex; the HOMO being typically 

located on the phenyl rings of the C^N ligands and the iridium d-orbitals.33  

This chapter deals about the study of a series of four new cationic Ir(III) complexes 

(Figure 43) of the form [Ir(bnpy)2(N^N)](PF6), where the N^N ligand is a neutral diimine 

chelate, with the goal to evaluate whether breaking the conjugation within the C^N ligands can 

aid in pushing the emission to the blue. 

 

Figure 43: Synthesised and characterised complexes (33, 34, 35 and 36) and the corresponding 

reference complexes (12, 1, 37 and 38) in this study. 

Complexes 33 and 34 contain bipyridine-based ancillary ligands [33, N^N = bpy; 34 = 

4,4'-di-tert-butyl-2,2'-bipyridine (dtBubpy)] while complexes 35 and 36 each contain two 5-

membered heterocycles in the electron deficient 2,2'-bithiazole (bthz) and the electron-rich 

1H,1'H-2,2'-biimidazole (biim) ligands, respectively. The motivation for the choice of N^N 

ligands was to have a series of ligands that (1) spanned a wide electronic range and (2) whose 

bite angles varied in order to assess what impact, if any, this has in conjunction with the C^N 

ligands. The optoelectronic properties of these complexes are explored and compared with 
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benchmark complexes (12, 1, 37 and 38, Figure 43) where the bnpy ligands have been replaced 

with ppy; 12, 1 and 37 have been previously reported,187,188 while 38 is new. The physical and 

photophysical properties of these complexes are corroborated by density functional theory 

(DFT) and time-dependent DFT (TD-DFT) investigations. 

Results and Discussion 

Synthesis 

Complexes 33, 34, 35 and 36 were obtained as their hexafluorophosphate salts from the 

chloro-bridged dimer [Ir(bnpy)2Cl]2, upon reaction with the corresponding N^N ancillary 

ligand and subsequent anion exchange with NH4PF6 following standard reaction conditions 

(Figure 44); complex 38 was obtained analogously using [Ir(ppy)2Cl]2.
64,65 In the first step, 

[Ir(bnpy)2Cl]2 was quantitatively obtained as a yellow solid by treatment of bnpyH with 

IrCl3.6H2O in a 3:1 mixture of 2-ethoxyethanol/H2O (125 °C, 24 h). This dimer was then 

cleaved with the appropriate N^N ligand in a 1:1 mixture of CH2Cl2/MeOH (40 °C, 18 h) to 

afford the cationic Ir(III) complexes as their chloride salts. After column chromatography on 

silica (eluent: 5% MeOH in CH2Cl2) followed by an ion exchange with aqueous NH4PF6, the 

complexes were isolated in excellent yield (78 – 91%) as their hexafluorophosphate salts. All 

complexes were characterised by 1H, 13C and 31P NMR spectroscopy in CDCl3, HR-ESI mass 

spectrometry, elemental analysis, and melting point determination. The 1H-NMR spectra of 33 

and 34 show the expected number of resonances. Characteristic signals for the CH2 of the C^N 

ligand appear around 4.0 – 3.0 ppm. Complexes 35 and 36 show more resonances as expected. 

Characteristic signals are discussed below. With respect to the complexes in Chapter 2 these 

complexes behave in a comparable way in HR-ESI mass spectrometry and elemental analysis. 

The structures of complexes 33, 34, 35 and the chloride salt of 38, 38.Cl, were 

determined by single crystal X-ray diffraction.  
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Figure 44: Procedure for the synthesis of target complexes 33, 34, 35 and 36 in this study. a) 

IrCl3
.6H2O, 2-benzylpyridine (bnpyH), 2-ethoxyethanol/water (3:1), 125 °C, 24 h. b) 1. 

Corresponding N^N ligand, MeOH/CH2Cl2 (1:1), 40 °C, 18 h. 2. aq. NH4PF6. 

Crystal Structures 

Single crystals of sufficient quality of 33, 34, 35 and 38.Cl were grown from vapor 

diffusion of a CH2Cl2 or acetone solution of the complex with diethyl ether acting as the anti-

solvent. The structures of 33, 34, 35 and 38.Cl were determined by single-crystal X-ray 

diffraction (Figure 45, Table 16). All three (33, 34, 35) complexes possess a distorted octahedral 

geometry, with the two bnpy ligands in complexes 33, 34, 35 coordinated to iridium to form a 

six-membered chelate ring. The pyridine rings of the C^N ligand are disposed in a mutually 

trans arrangement while the cyclometalating carbon atoms are trans to the nitrogen atoms of 

the N^N ligand, presenting an analogous binding mode to the majority of cationic Ir(III) 

complexes such as 12, 1, 37 and 38.Cl. In 33, 34, 35 the Ir-CC^N bonds are noticeably shorter 

[2.021(4) – 2.052(8) Å for 33, 34, 35; 1.988(6) – 2.016(7) for 38.Cl] than the Ir-NN^N bonds, 

which range from 2.148(4) to 2.203(6) Å [2.153(5) – 2.184(5) Å for 38.Cl]. These bond lengths 

are all similar to the analogous bond lengths in the reference complexes 12, 1 and 37.187,188  
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Figure 45: Solid-state structures of complexes 33, 34, 35 and 38.Cl. Hydrogen atoms, PF6
-
 

counterions and solvent molecules are omitted for clarity. Note the different orientations of the 

bnpy ligand in 33, and 34 vs 35. Colour codes for atoms are: C = light grey, N = blue, S = 

orange and Ir = magenta. 

Table 16: Selected crystallographic parameters for complexes 33, 34 and 35. 

Complex Bond Length / Å Bond Angle / ° 

 Ir-CC^N Ir-NC^N Ir-NN^N N-Ir-N C-Ir-NC^N 

33 2.052(8) 

2.04(2) 

2.09(1) 

2.10(1) 

2.153(8) 

2.16(1) 

77.8(4) 88.1(3) 

88.3(6) 

34 2.032(6) 

2.041(7) 

2.083(5) 

2.074(7) 

2.148(4) 

2.154(5) 

76.5(2) 88.8(2) 

89.2(3) 

35 2.021(4) 

2.032(6) 

2.079(4) 

2.069(5) 

2.199(3) 

2.203(6) 

75.2(1) 87.97(13) 

87.98(13) 

38 1.988(6) 

2.016(7) 

 2.153(5) 

2.184(5) 

76.1(2) 80.1(3) 

80.7(2) 

 

The bite angles of the N^N ligands in 33, 34 and 35 vary from 75.2(1) – 77.8(4)° 

[76.1(2)° for 38.Cl], which are again similar to the reference complexes 12, 1 and 37.187,188 The 

bite angles of the bnpy ligands vary between 87.97(13) and 87.98(13)° for 35, 88.1(3) and 

88.3(6)° for 33, and 88.8(2) and 89.2(3)° for 34; reflecting the increasing steric demand of the 
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different N^N ligands. These bite angles are in the same range as those observed in a related 

complex using a different nonconjugated C^N ligand with a CH2 spacer, 

[Ir(dFbpz)2(pymbi)]PF6 [where dFbpzH is 1-(2,4-difluorobenzyl)-1H-pyrazole and pymbi 3-

methyl-1-(2-pyridyl)-benzimidazolin-2-ylidene-C,C2], the bite-angle across the dFbpz ligand 

being 88.80°.97 As expected, the bite angles of the bnpy ligands are significantly larger than 

those seen in the reference complexes, which contain five-membered ring C^N chelates [12: 

80.00°, 1: 80.42°, 37: 80.60° and 38.Cl: 80.1(3) – 80.7(2)°]. 

In the X-ray structures, the conformation of the bnpy ligands in complexes 33 and 34 

differs from that in 35. Complexes 33 and 34 are found solely as one conformer where the 

pyridine rings of the C^N ligand are orientated towards the N^N ligand, whereas, in 35, the 

other conformer, where the CH2 groups point towards the N^N ligand, is observed, despite this 

being the minor conformer observed by 1H NMR (see below). Given the small differences 

between the conformer free energies computed in solution for 35 (see below), it is not surprising 

that packing effects can affect the equilibrium and that the most favoured conformer differs in 

solution and in the solid-state. Complex 33 crystallises in the polar space group P21, so 

individual crystals could be enantiopure, resulting from conglomerate crystallisation; however, 

the Flack parameter [0.305(7)] indicates the likelihood of individually racemic crystals being 

present. Complexes 34 and 35 crystallise in centrosymmetric space groups (P3̅ and P1̅, 

respectively), so exist as racemates in the crystalline state. 

Solution-State NMR studies 

The room temperature 1H NMR spectra in CDCl3 of 33, 34, 35 and 36 are depicted in 

Figure 46. Complexes 33 and 34 each show one set of two doublets in the region of  = 4.80 – 

3.30 ppm, corresponding to the diastereotopic CH2 protons of the C^N ligand, the result of 

magnetic non-equivalence imparted by the proximal iridium stereocentre. 
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Figure 46: 1H-NMR spectra of complexes 33, 34, 35 and 36 in CDCl3 at room-temperature. 

By contrast, there are two sets of two doublets with an integration ratio of 1:1.2 in the 

same region of 1H NMR spectrum of 35. Furthermore, two sets of aromatic signals are also 

apparent, which implies the presence of two conformers (designed as a and b, see below) in 

solution. Two conformers, in a ratio of 1:0.2 for conformer a:conformer b, are also present in 

36 as observed by 1H NMR. This phenomenon was previously reported in related neutral Ir(III) 

complexes containing 1-(2,4-difluorobenzyl)-1H-pyrazole (dFbpzH) as the C^N ligands and 

was associated with restricted conformational flexibility of six-membered C^N chelates.96 

This presence of two conformers prompted us to perform DFT calculations. For each of 

the complexes, we could optimise stable structures for both conformers, differing in orientation 

of the CH2 bridge of the C^N ligand, as shown in Figure 47 for complex 35. The conformer 

35a has the same orientation of the CH2 bridge as found in the solid state by X-ray 

crystallography, whereas the geometry of 35b is analogous to those found in the crystal 

structures of 33 and 34 (see above). 
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Figure 47: DFT-optimised geometry of conformers 35a (left) and 35b (right). Hydrogen atoms 

are omitted for clarity. 

For all complexes, both conformers belong to the C2 point group. Given that DFT 

calculations have been performed in MeCN solution, the DFT-determined bond lengths 

reasonably match their experimental counterparts, e.g., the Ir-CC^N bonds are 2.02 Å long by 

DFT and 2.022(5) – 2.052(7) Å for 33, 34 and 35 in the X-ray, whereas the Ir-NC^N distances 

are 2.10 Å according to the calculation and 2.069(4) – 2.098(11) Å for 33, 34 and 35 in the 

solid-state structure. The chemical exchange cross-peaks (red highlighted) in the 2D ROESY 

NMR spectrum indicate the existence of a dynamic equilibrium between conformers 35a and 

35b in solution (Figure 48). Furthermore, the ROESY enables assignment of 1H resonances to 

each of the conformers. The NOE cross-peak (blue highlighted) between doublets at 4.54 and 

8.18 ppm is only possible for conformer 35a that has one proton of the CH2 bridge close (2.56 

Å according to DFT) to the aromatic proton of the N^N ligand (Figure 47). 
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Figure 48. 2D ROESY spectrum of 35 in CDCl3 at room temperature. The blue and red cross-

peaks indicate magnetisation transfer due to  NOE and chemical exchange, respectively.  The 

cross-peak between doublets at 4.54 and 8.18 ppm enables assignment of those resonances to 

conformer 35a.  

By contrast, this NOE enhancement is not observed for conformer 35b due to a longer 

distance between the CH2 bridge and the N^N ligand (5.12 Å according to DFT). DFT 

computed relative free energies and theoretical Boltzmann distribution can be found in Table 

17. As can be seen, there is a remarkable agreement between the ratio of the two conformers 

determined by theory and experimentally from the relative integral intensities of CH2 group 1H 

resonances (Table 17). There seems to be a global trend that the steric stress, that decreases in 

the 33~34 > 35 > 36 series, makes conformer a more accessible in the latter compounds (35a 

and 36a) than in the former (33a and 34a). 
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Table 17: Comparison of relative DFT Gibbs energies of the conformers b with respect to 

conformers a, respectively (Go), Boltzmann ratio, corresponding equilibrium constant, K, at 

298 K and ratio of conformers derived from relative integral intensities of CH2 group 1H 

resonances. 

 33 34 35 36 

Go / kJ.mol-1 -13.4 -9.6 -2.1 5.4 

Boltzmann ratio (a:b) 0.004:1 0.02:1 0.43:1 1:0.11 

K 223 48.2 2.33 0.113 

Ratio of conformers a:b 0:1 0:1 0.83:1 1:0.17 

 

The DFT determined distances between the (closest) hydrogen atoms of the methylene 

and N^N ligand are: 2.15, 2.14, 2.23 and 2.28 Å, in 33a, 34a, 35a and 36a, respectively. For 

35, we attempted to optimise by DFT a mixed conformer with one of the ligands in each 

conformation, but this induces a steric clash and the optimisation process led back to one of the 

two conformers. This clearly suggests that the transition from one conformation to the other 

should be a concerted process in which the two ligands simultaneously change their 

conformation. We therefore searched for the corresponding transition state, and we could locate 

it 66 kJ.mol-1 above the most stable 35b structure on the free energy scale. This indicates that 

while thermal equilibration between the two conformers is attainable at room temperature, the 

interconversion will not be rapid, which is consistent with the fact that two separate sets of 

signals could be detected on the NMR timescale. The interconversion of conformers 35a and 

35b was also studied by variable temperature NMR spectroscopy from 280 to 315 K in CDCl3 

and deuterated dimethyl sulfoxide. In DMSO, decomposition of the complex was observed 

upon heating over 305 K. The variable-temperature 1H NMR studies in CDCl3 showed 

considerable dependence of equilibrium constant, K, on the temperature (Figure 49). 
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Figure 49: Colour coded expansion for conformer 35a (blue) and 35b (red) in the temperature-

dependent 1H-NMR spectra of 35 in CDCl3 between 280 to 314 K.  

Analysis of the Van’t Hoff plot yielded the following thermodynamic parameters Go
298 

= -0.63 ± 0.05 kJ.mol-1, Ho = 7.3 ± 0.4 kJ.mol-1 and So = 26.6 ± 1.5 J.mol-1.K-1, indicating that 

at 298 K 35b is moderately more stable than 35a. The rate constants of interconversion between 

the two conformers were derived from the intensity of the exchange cross peaks in the ROESY 

spectra (Figure 50).  

The activation energy obtained experimentally for 35b to 35a (72.2 ± 3.2 kJ.mol-1) is in 

very good agreement with the DFT calculation (66.6 kJ.mol-1). Surprisingly both Eyring and 

Van’t Hoff plot analysis suggest large positive entropy for the isomerisation of 35a to 35b. 

These significant entropic changes were not reproduced by DFT calculations, but we note that 

the entropic term is the most approximated thermodynamic term in the traditional DFT 

calculations of total and reaction (free) energies. 
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Figure 50: ROESY-NMR spectrum of 35 in CDCl3 at room temperature. 

The corresponding activation parameters determined from an Eyring analysis are 

summarised in Table 18. 

Table 18: Activation parameters for the interconversion for complex 35  between conformers 

35a and 35b obtained by Eyring plot analysis of the rate constants for conformer 

interconversion at various temperatures. 

Conformer 𝜟𝑮𝟐𝟗𝟖 𝑲
‡

 

/ kJ.mol-1 

𝜟𝑯‡  

/ kJ.mol-1 

𝜟𝑺‡  

/ J.mol-1.K-1 

a 70.6 ± 4.9 80.0 ± 2.4 31.6 ± 8.1 

b 72.2 ± 3.2 71.9 ± 1.6 -0.8 ± 5.5 
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Electrochemical properties 

The electrochemical behaviour for 33, 34, 35 and 36 and 38 was evaluated by cyclic 

voltammetry (CV) and differential pulse voltammetry (DPV) in deaerated MeCN solution 

containing n-Bu4NPF6 as the supporting electrolyte and ferrocene/ferrocenium (Fc/Fc+) as the 

internal reference obtained at a scan rate of 100 mV s-1. The potentials are referenced with 

respect to SCE (Fc/Fc+ = 0.38 V in MeCN)189  at 298 K. The voltammograms for 33, 34, 35 

and 36 are shown in Figure 51 and the electrochemistry data can be found in Table 19. 

 

Figure 51: Cyclic voltammograms (in solid lines) and differential pulse voltammetry (in dotted 

lines) for 33, 34, 35 and 36 carried out in degassed MeCN at a scan rate of 100 mV s-1, with 

Fc/Fc+ as the internal reference, referenced to SCE (0.38 V vs. SCE).189 

All complexes show a quasi-reversible single electron oxidation peak, which is 

attributed to the Ir(III)/Ir(IV) redox couple with contributions from the phenyl rings of the bnpy. 

Throughout the series, complexes 33, 34, 35 and 36 are easier to oxidise than their 

corresponding reference complexes with cathodic shifts ranging from 0.09 to 0.40 V as the 

result of the interruption of the -conjugation. 
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Table 19: Electrochemical properties of 33, 34, 35 and 36 and 12, 1, 37 and 38. 

 

The absence of a conjugated coordinating pyridine results in a destabilised HOMO, 

compared to the analogous ppy reference complexes; for instance, according to DFT the HOMO 

is 0.24 eV lower in 12 than in 33 (Figure 52). 

 
Electrochemistrya 

 
𝑬𝟏/𝟐

𝒐𝒙   / V 𝑬𝒑
 / mV 𝑬𝟏/𝟐

𝒓𝒆𝒅 / V 𝑬𝒑
 / mV 𝑬𝒓𝒆𝒅𝒐𝒙

b / V 𝑬𝑯𝑶𝑴𝑶
c / eV 𝑬𝑳𝑼𝑴𝑶

c / eV 

33 1.12 78 -1.38 74 2.50 -5.54 -3.04 

34 0.91 75 -1.58 77 2.49 -5.33 -2.84 

35 1.15 140 

-1.11, 

-1.81d 

80 2.26 -5.57 -3.31 

36  1.05 75 n.d.e - - -5.47 - 

12f 1.27 56 -1.38 55 2.65 -6.07 -3.42 

1f 1.31 106 -1.40 87 2.71 -6.11 -3.40 

37g 1.24 - -1.15 - 2.39 -5.85 -2.76 

38 1.15 91 

-1.95,d 

-2.29d 

- 3.10 -5.57 -2.47 

a in degassed MeCN at a scan rate of 100 mV s-1 with Fc/Fc+ as internal reference, and referenced with respect 

to SCE (Fc/Fc+ = 0.38 V in MeCN);
189

 b ΔEredox is the difference (V) between first oxidation and first reduction 

potentials; c EHOMO/LUMO = -[Eox/red vs Fc/Fc+ + 4.8] eV;191 d irreversible; e not detectable in MeCN; f from ref 187; 
g from ref 188. 
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Figure 52: Comparison between the MO diagrams of 33 and 12 (solvent: CH2Cl2). 

For instance, the oxidation potential of 33 at 1.12 V is significantly shifted to less 

positive potential than that of 12 (𝐸1/2
𝑜𝑥  = 1.27 V).15 A more dramatic cathodic shift of 400 mV 

is observed for 34 (𝐸1/2
𝑜𝑥  = 0.91 V) compared to 1 (𝐸1/2

𝑜𝑥  = 1.31 V).16 The oxidation potential of 

35 at 1.15 V is similar to 33 and, likewise is easier to oxidise than its reference complex 37 

(𝐸1/2
𝑜𝑥  = 1.24 V).24 The oxidation potential of 36 at 1.05 is modestly cathodically shifted by 7 

mV compared to 33 and by 10 mV compared to 38 (𝐸1/2
𝑜𝑥  = 1.15 V). The cathodic shifting of 

the complexes 34 and 36 compared to that of 33 reflect the more electron-rich nature of the 

ancillary ligand, which serves to modulate the electronics of the iridium centre. 

Complexes 33, 34 and 35 show monoelectronic reversible first reduction waves, 

reflecting a reduction of the ancillary ligand in each case. No reduction wave was detected for 

36, a feature also found for related biim-containing cationic Ir(III) complexes such as 

[(dFppy)2Ir(biim)](PF6) (where dFppy = 2-(2,4-difluorophenyl)pyridinato).20 The 

voltammograms for 38 however show two irreversible reduction waves at -1.95 V and -2.29 V. 

The reversible reduction potentials for 33, 34 and 35 are in a similar range to those of 12, 1, 37 
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and other related cationic Ir(III) complexes where N^N-based reduction is well-documented.84 

The reduction potential of 33 at -1.38 V is the same as that found for 12.187 Complex 34, bearing 

the electron-rich dtBubpy N^N ligand, is more difficult to reduce than 33, with 𝐸1/2
red = -1.58 V.  

This reduction potential is significantly cathodically shifted however compared to 1 (𝐸1/2
red = -

1.40 V). In contrast the reduction potential for 35 is shifted anodically by 270 mV to -1.11 V 

compared to 34, which is similar to that of 37 (𝐸1/2
red = -1.15 V).188 A second, irreversible 

reduction wave at -1.81 V is observed for 35, also present in the voltammogram of 37. 

In acetonitrile, the DFT-computed HOMO levels in acetonitrile of the major conformer 

of complexes 33, 34, 35 and 36 are -5.67 eV (33b), -5.63 eV (34b), -5.69 eV (35b), -5.74 eV 

(36a), respectively. The HOMO levels inferred from the CV data are systematically slightly 

higher in energy compared to the DFT data at -5.54 eV (33), -5.33 eV (34), -5.57 eV (35) and 

-5.47 eV (36). A notable destabilisation of the experimentally determined HOMO of 33 and 34 

is observed compared to their respective reference complexes 12 (-6.07 eV) and 1 (-6.11 eV); 

the same trend is found but is less pronounced when comparing the HOMO energies of 35 and 

36 to 37 (-5.85 eV) and 38 (-5.57 eV). This destabilisation is consistent with the interruption of 

the electronic communication between the phenyl ring and the electron-withdrawing pyridine 

in the C^N ligands. The DFT computed LUMO energies in acetonitrile of 33, 34, 35 and 36 are 

-2.42 eV (33b), -2.23 eV (34b) and -2.82 eV (35b); the calculated LUMO energy for 36a is -

1.59 eV. The LUMO levels for 33, 34 and 35 could be straightforwardly estimated from the CV 

data and the experimental results are in line with the computed trends. The experimentally 

inferred LUMO of 3 (𝐸LUMO = -2.84 eV) is destabilised compared to 33 (𝐸LUMO = -3.04 eV) as 

a result of the presence of the electron-donating t-butyl substituents on the N^N ligand. This 

effect is more pronounced than that observed between 12 and 1 (𝐸LUMO = -3.42 eV and -3.40 

eV, respectively). The presence of the strongly -accepting bithiazole N^N ligand in 35 leads 

to a significant stabilisation of the LUMO (𝐸LUMO = -3.31 eV) compared to those of 33 and 34. 
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Complex 35, however, exhibits a more stabilised LUMO level (𝐸LUMO = -3.31 eV) than 37 

(𝐸LUMO = -2.76 eV). The HOMO-LUMO gap of complexes 33 and 34 (experiment: 2.50 and 

2.49 eV, theory: 3.25 and 3.40 eV for 33 and 34, respectively) are larger than that of 35 

(experiment 2.26 eV, theory: 2.87 eV) but are all smaller compared to their reference complexes 

12, 1, and 37 (experiment 2.65, 2.71 and 2.39 eV, respectively).  

Photophysical properties 

The UV-Visible absorption spectra of 33, 34, 35 and 36, recorded in MeCN at 298 K, 

are shown in Figure 53 and the data are summarised in Table 20.  

 

Figure 53: UV−vis absorption spectra of complexes 33, 34, 35 and 36 in MeCN at 298 K. 

All complexes show intense high-energy ( on the order of 2.0 – 3.5 × 104 M-1 cm-1) 

absorption bands below 280 nm that are attributed to 1–* ligand-centred (1LC) transitions 

localised on the ancillary ligand, analogous to the corresponding bands found for their reference 

complexes.187,188  
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Table 20: Selected photophysical data for complexes 33, 34, 35, 36 and 38. 

The UV-vis spectrum of 35 is dominated by a moderately intense energy band at 322 

nm ( = 1.7 × 104 M-1 cm-1) and a second less intense band at 374 nm ( = 0.5 × 104 M-1 cm-1). 

This absorption profile is similar to that for its reference complex 37188 and those observed in 

related systems containing thiazole-based ancillary ligands.212,213 Complex 36 shows 

moderately intense bands at 386 nm ( = 0.4 × 104 M-1 cm-1), which are also present in 38. 

Similar to the bands observed for the reference complexes, 33, 34, 35 and 36 show weak bands 

( on the order of 103 M-1 cm-1) in the region of 440 – 490 nm and tailing to 550 nm. To probe 

the nature of the low-lying transitions in these complexes, we have used TD-DFT. For 33, the 

TD-M06 calculations yield the four lowest singlet excited-states at 534 nm (f=0.003), 426 nm 

(f=0.002), 413 nm (f=0.010) and 399 nm (f=0.083). The former corresponds to a HOMO to 

LUMO transition (see Figure 54) and can therefore be ascribed to a CT from the phenyl rings 

of the C^N ligand and the metal atom to the bipyridine. The second involves a HOMO-2 to 

LUMO transition and is clearly MLCT. The third is a HOMO-1 to LUMO+1 transition and can 

therefore be characterised as mainly an ILCT, the electronic density moving from the phenyl 

(and in part the metal) to the pyridyl rings of the C^N ligands.   

 abs / nm [ / M-1cm-1]a 

33 250 [30 295], 298 [15 137], 365 [3 290], 451 [230] 

34 246 [24 756], 273 [24 373], 312 [14 619], 357 [5 230], 444 [1 070] 

35 320 [17 353], 373 [5 824], 481 [832] 

36 246 [26 791], 386 [4 367], 447 [419] 

38 261 [39 180], 389 [4 223], 444 [1 559] 

a recorded in aerated MeCN at 298 K. 
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Figure 54: a) Representation of the Kohn-Sham molecular orbitals for 33. b) spin density 

difference of the lowest triplet state in its optimal geometry (two views). 

The fourth transition is characterised by HOMO-1 to LUMO character and is also CT 

in nature, similar to the first band. For the 12 molecule, the two lowest TD-DFT singlets are 

located at 483 nm (f=0.0004) and 404 nm (f=0.064). In 12, the HOMO and LUMO have the 

same electronic distribution as in 33, but both HOMO-1 and LUMO+1 are more delocalised 

than in 33 (see Figure 54), which is the consequence of breaking of the -conjugation due to 

the methylene unit. For 34, the four lowest singlet excited-states are calculated at 500 nm 

(f=0.003), 415 nm (f=0.008), 406 nm (f=0.007) and 385 nm (f=0.098). There is therefore a 

moderate hypsochromic displacement of the transitions between the ground state and the first, 

second and fourth singlet excited states as a consequence of the presence of the more electron-

rich dtBubpy N^N ligand in 34, and a smaller shift for the third state, which is itself consistent 

with the fact that this transition does not involve the bipyridine in 33 nor in 34. 

a  

 

 b 

LUMO LUMO+1 LUMO+2  
    

  

 

 

HOMO HOMO-1 HOMO-2 Spin density diff. 
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Figure 55: Left: Representation of the Kohn-Sham molecular orbitals around the HOMO-

LUMO gap for 35b. Right: View of the spin density difference for the lowest triplet state at its 

optimal geometry. 

Indeed, the nature of the states and the shapes of the orbitals in 34 are essentially 

unchanged compared to 33. In 35, the four lowest-lying singlet excited-states are at 638 nm 

(f=0.002), 486 nm (f=0.002), 443 nm (f=0.096) and 413 nm (f=0.014), and they mainly 

correspond to HOMO to LUMO, HOMO-2 to LUMO, HOMO-1 to LUMO and HOMO to 

LUMO+1 transitions, respectively. In 35, the strongest low-lying transition is therefore 

significantly bathochromically shifted compared to 33, which fits experimental trends (Figure 

53). The frontier MOs of 35b are displayed in Figure 55 and the same nature as in 33 is found 

but for the LUMO+2 that is centred on the pyridyl of the C^N ligand in 35 rather than ancillary 

ligand in 33.  
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Figure 56: Left: Representation of the Kohn-Sham molecular orbitals around the HOMO-

LUMO gap for 36b. Right two views of the spin density difference for the lowest triplet state 

at its optimal geometry. 

In 36, TD-DFT locates the lowest singlet states at higher energy than in 33, 34 and 35: 

392 nm (f=0.001, HOMO-LUMO), 380 nm (f=0.001, HOMO-LUMO+1), 359 nm (f=0.007, 

HOMO-LUMO+2) and 353 nm (f=0.165, HOMO-1-LUMO+1). The topology of the MOs of 

36b are displayed in Figure 56 and it is notable that the LUMO and LUMO+1 are inverted 

compared to 35, but the nature of the most intense low-lying intense CT band is conserved.  

The photoluminescence properties of 33, 34, 35 and 36 were investigated at 298 K in 

degassed MeCN and in polymethyl methacrylate (PMMA) doped films (5wt% of complex in 

PMMA). The spectra are shown in Figure 57a, whereas Figure 57b shows the spectra in 2-

methyltetrahydrofuran (2-MeTHF) glass at 77 K. The photophysical data of 33 – 36 and their 

reference complexes are summarised in Table 21. 
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Figure 57: Photoluminescence spectra of complexes 33 – 36. a) recorded in MeCN (dotted 

lines) and PMMA doped films (5wt% of complex in PMMA) in solid lines (exc = 420 nm for 

33 – 35 and exc = 400 nm for 36). b) recorded in 2-MeTHF at 77 K. exc = 420 nm for complexes 

33 – 35 and exc = 380 nm for 36. 
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Table 21: Photophysical properties of 33, 34, 35 and 36 and 12, 1, 37 and 38. 

 

 

 MeCNa Filmb Glassc  

 
em

d
 

/ nm 

PL
e 

 / % 

PL
f  

/ ns 

em
d

 

/ nm 

PL
g 

 / % 

PL
f  

/ ns 

em
d

 

/ nm 

PL
f 

/ ns 

kr
h 

 × 10-5 / s-1 

knr
i   

× 10-5 / s-1 

33 602 3 

26 (25%) 

110 (60%) 

346 (15%) 

Average: 124 

600 15 

124 (11%) 

316 (56%) 

646 (33%) 

Average: 404 

544, 

572 (sh) 
2088 2.41 77.97  

34 585 8 

52 (29%) 

215 (58%) 

1038 (13%) 

Average: 275 

584 21 

99 (4%) 

318 (43%) 

695 (53%) 

Average: 509 

528, 

536, 

552 

2120 2.91 33.49  

35 655 3 

54 (79%) 

95 (19%) 

532 (2%) 

Average: 71 

655 7 

93 (16%) 

254 (57%) 

605 (27%) 

Average: 323 

604 2363 4.20 135.95  

36  580j  0.5 

17 (3%) 

131 (60%) 

420 (37%)  

Average: 235 

 565j  1 

 49 (2%) 

361 (23%) 

1482 (75%) 

Average: 1196 

428, 

458, 

484, 

534 (sh)k 

4423 0.21  42.43 

12l 602 9 275   - 542 4770m 3.4 33 

1l 591 27 386   - 473 4550m 7.0  19  

37n 658 2 81   - - - 2.12  121.33  

38 

489, 

512 

(sh) 

66 

361 (27%) 

720 (51%) 

1761 (22%)  

Average: 852 

  - - - 7.75 3.99 

a In deaerated MeCN at 298 K; b at 298 K, spin-coated from a 2-methoxyethanol solution of 5wt% of the complex 

in PMMA on a quartz substrate; c in 2-MeTHF at 77 K, if not specified differently; d exc = 420 nm, if not specified 

differently; e [Ru(bpy)3](PF6)2 in MeCN as reference (PL = 1.8% in aerated MeCN at 298 K);9 f exc = 378 nm, 

average weighted lifetimes were determined according to equation PL,avg= Aii (Ai = pre-exponential factor of 

the ith lifetime i); g Measured using an integrating sphere; h kr = ΦPL,MeCN / τPL; i knr = [(1 - ΦPL, MeCN)/ τPL]; j exc 

= 400 nm; k exc =  380 nm; l from ref 187; m Measured in 1/1 MeOH/EtOH glass state at 77 K; n from ref 188. 
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Upon photoexcitation (exc = 420 nm for 33 – 35 and 400 nm for 36) each of the 

emission profiles observed at room temperature is broad and unstructured, which is consistent 

with an emission from a mixed MLCT/LLCT state (Figure 57a), similar in character to that 

observed for their reference complexes. In solution, the emission maxima are ordered from 580, 

585, 602 and 655 nm for 36, 34, 33 and 35, respectively. The emission energy of 33 is the same 

as that for 12 (em = 602 nm in MeCN).187 Complexes 34 and 35 are very slightly shifted (6 nm, 

174 cm-1, and 3 nm, 70 cm-1) compared to 1 and 37 (em = 591 nm in MeCN187 and em = 658 

nm in MeCN).188 Comparing 36 to 38 (em = 489 nm) a much larger shift of 91 nm (3208 cm-

1) is observed.  

The photoluminescence quantum yields in MeCN (PL, MeCN) for 33 – 36 are low 

(<10%) and each complex shows a PL that is reduced compared to the corresponding reference 

complexes, except complex 35. For instance, the PL, MeCN for 33 and 34, at 3% and 8%, are 

lower than that of 12 and 1, at 9% and 27%, respectively.187 The PL, MeCN for 35 is 3%, which 

is similar to that for 37 (2%).188 Complex 36 is very weakly emissive with a PL, MeCN smaller 

than 1%, significantly lower than its 38 counterpart (PL, MeCN = 66%), showing the deleterious 

effect of the bnpy ligand in this case. Note that 36 is the only complex in the series for which 

conformer a is the most stable in the ground electronic state at room temperature, and this 

specific arrangement has an influence on the resulting photophysical properties as shown by 

DFT studies (see below). The increased conformational flexibility of the C^N ligands is the 

likely culprit for the reduced PL values in 33 – 36 compared to the reference complexes. To 

gain more insights, we performed DFT optimisations of the lowest triplet excited-states. We 

computed a 0-0 phosphorescence wavelength of 654 nm, 620 nm, 793 nm and 510 nm for 33, 

34, 35 and 36, respectively. Despite the obvious fact that the absolute DFT values do not 

perfectly match the experimental values (ca. 0.22 eV average error compared to the em maxima 

in solution), we note that the theoretical 36 < 34 < 33 < 35 ranking does match the experimental 
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trend. More importantly, in the triplet state, DFT predicts that conformer b is always the most 

stable, even for 36. This suggests that, after intersystem crossing, which is generally very 

efficient in Ir-complexes, 36 might change conformation before phosphorescence takes place, 

which would obviously be detrimental for the photoluminescence quantum yield. In turn, this 

might explain why 36 is the poorest emitter of the series. 

Complexes 33, 34, 35 and 36 all exhibit a three-component decay in the sub-

microsecond regime (Table 21). The weighted average lifetimes, PL, for 33 – 36 are 124, 275, 

71 and 235 ns, respectively, and are shorter compared to their reference complexes (PL = 275, 

386, 81, 852 ns for 12, 1, 37 and 38, respectively).187,188 From these values, radiative and non-

radiative rate constants in MeCN can be estimated. The radiative rate constants, kr, for 33 (2.41 

× 105 s-1) and 34 (2.91 × 105 s-1) are similar and much larger than that for 36 with kr = 0.21 × 

105 s-1. These complexes (33, 34 and 36) all possess much smaller kr than their reference 

complexes (12, 1 and 38). Complex 35 shows the highest radiative rate constant with kr = 4.2 × 

105 s-1, which is also higher than 37 (kr = 2.12 × 105 s-1). However, complex 35 also shows the 

highest non-radiative rate constant knr value (135.95 × 105 s-1), and which is slightly higher than 

the value of 37 (knr = 121.33 × 105 s-1). Complex 33 (knr = 77.97 × 105 s-1) shows a higher knr 

than 34 (33.49 × 105 s-1), which can be explained in part by the red-shifted emission of 33 

compared to that of 34. Compared to their reference complexes, both 33 and 34 shows much 

higher knr values (knr = 33 × 105 s-1 for 12 and knr = 19 × 105 s-1 for 1). The poorly emissive 

complex 36 possesses a knr of 42.43 × 105 s-1, which is much higher than the value for 38 (3.99 

× 105 s-1). 

The emission energies in PMMA-doped films (5wt% of complex in PMMA) are not 

significantly changed compared from those in MeCN. The emission maxima in 33 – 35 remain 

essentially unchanged whereas complex 36 shows a modest blue shift of 15 nm (458 cm-1) in 

the film. The photoluminescence quantum yields of the films (PL,PMMA) are expectedly 
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significantly increased compared to the solution-state measurements and range from 1% (for 

36) to 7% (for 35) to 15% (33) to 21% (34). The increase in PL in the doped films is attributed 

mainly to a reduction in knr due to the expected limitations of the conformational motion of the 

C^N ligands. Each of 33, 34, 35 and 36 in doped films exhibit a three-component emission 

decay in the sub-microsecond regime. The weighted average lifetimes for 33, 34, 35 and 36 are 

404, 509, 323 and 1196 ns, respectively, which are on average longer than in those measured 

in solution-state. 

The low-intensity emission spectra at 77 K in 2-MeTHF glasses of 33, 34, 35 and 36 

are noisy. Figure 57b shows the smoothed emission profiles. A significant hypsochromic shift 

is observed compared to the measurements at 298 K, both in MeCN and as doped films. For 

instance, the profile for complex 33 shows an emission maximum at 544 nm and a shoulder at 

572 nm resulting in a blue shift of 58 nm (900 cm-1) for the E0,0 peak compared to the spectrum 

in MeCN at 298 K with almost no shift compared to the emission of 12 in the 2-MeTHF glass 

(em = 542 nm). The blue shift is less pronounced for 34 (33 nm, 1022 cm-1), with peaks at 528, 

552 and 536 (em = 552 nm). However, compared to 1 the highest intensity emission peak of 

complex 34 shows a significant red shift of 79 nm (3026 cm-1). For complex 35 the normalised 

profile is centred at 604 nm (blue shift of 51 nm, 1289 cm-1 compared to the spectrum in MeCN). 

Complex 36 (exc = 380 nm) is also very poorly emissive and the profile shows two moderately 

intense bands at 428 nm and 484 nm (and a shoulder at 534 nm) and the em located at 458 nm 

shows significant blue shift compared to the spectrum in MeCN (122 nm, 4593 cm-1). The 

monoexponential emission lifetimes at 77 K in the microsecond regime are significantly longer 

compared to both sets of room-temperature measurements and range from 2088 ns (33), to 2120 

ns (34), to 2363 ns (35) and 4423 ns (36). Compared to the reported emission lifetimes at 77 K 

of 12 (4770 ns) and 1 (4550 ns),187 33 and 34 show significantly shorter lifetimes. 
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Conclusions 

A new series of four cationic Ir(III) complexes bearing nonconjugated C^N ligands, 

using the bnpy ligand for the first time in luminescent Ir(III) complexes, have been synthesised 

and fully characterised. Comparative studies with the related series of ppy-based complexes 

show the impact of the methylene spacer present within the cyclometalated ligand on the 

electrochemical and photophysical properties. Analysis of the X-ray crystal structures for three 

of the complexes clearly illustrates the existence of two possible conformations. Depending on 

the nature of the ancillary ligand, phosphorescence ranging from yellow to deep red is observed 

in MeCN as well as in 5wt% PMMA doped films. Variable-temperature 1H and 2D ROESY-

NMR studies show the presence of two conformers for complex 35 as a result of the fluxional 

behaviour of the bridging methine group of the cyclometalated bnpy ligand, which is consistent 

with DFT calculations yielding a small free energy difference but a rather large barrier to 

interconversion between the two conformers. DFT calculations suggest that the transition from 

one conformation to the other is a concerted process in which the two ligands simultaneously 

change their conformation. A similar behaviour is observed 36, but for this complex the major 

conformer is the opposite to the one observed for 35. Under the same conditions, however, 

complexes 33 and 34 only show one conformer in the 1H NMR at room temperature. All four 

complexes show quasi-reversible oxidation waves. Complexes 33 – 35 show quasi-reversible 

reduction waves while no reduction wave was detected within the solvent window for 36. 

Compared to their reference complexes, 33 – 36 emit at similar energies but show much lower 

photoluminescence quantum yields and shorter emission lifetimes. DFT calculations predict 

that conformer b is the most stable in the triplet state for 33, 34, 35 and 36. Breaking the 

conjugation of the C^N ligands did not change the triplet energy of the complexes despite 

reducing the electrochemical gap. This detailed joint theoretical and experimental study 

provides a better understanding of the role of the methine spacer in the 2-benzylpyridinato 

cyclometalating ligands within this new series of Ir(III) complexes. 
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Chapter 5 

 

Neutral Ir(III) complexes bearing an unusual bis(six-

membered) chelating tridentate tripod ligand of the form 

[Ir(C^N^C)(N^N)Cl] 

 

 

Cover picture: TOC graphics of publications arising from this chapter 
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Introduction 

As mentioned in Chapters 1 and 4, nearly all of the photoactive iridium(III) complexes 

that are used as emitters in electroluminescent devices,22,23,53,54,214 as dyes in solar cells,59,215,216 

in non-linear optics (NLO),34,151,217 as photoredox catalysts,61,62 as solar fuels60 and in 

bioimaging25,26 contain conjugated five-membered chelated ligands, such as the commonly 

used 2-phenylpyridine (ppyH), 2,2'-bipyridine (bpy), acetylacetonate (acac) and picolinate 

(pic). Photoactive iridium complexes bearing a six-membered cyclometalating chelate are very 

rare, and the few reported examples can be categorised into two families of complexes: those 

containing conjugated92,94,208,209 or non-conjugated95–97 bidentate cyclometalating ligands. As 

mentioned in Chapter 1 disrupting the conjugation of the C^N ligand may lead to a blue shift 

of the emission energy. 

In an on-going effort in our group to develop charged blue-emitting phosphors for 

solution-processed light-emitting electrochemical cells (LEECs) and organic light emitting 

diodes (OLEDs), we investigated the coordination of 2-benzhydrylpyridine (bhpyH2) 

derivatives with Ir(III) to access six-membered chelate complex T1-T3 (Figure 58).  

 

Figure 58: Synthetic pathway for the synthesis of the initial target T39-T41 . a) i) IrCl3.6H2O, 

2-ethoxyethanol/H2O (3:1), reflux, 19 h; ii) dtBubpy, reflux, 6 h. b) aq. NH4PF6.  
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Surprisingly given the prior art, upon sequential treatment of IrCl3.6H2O with bhpyH2 

and then 4,4’-ditert-butyl-2,2’-bipyridine (dtBubpy) in a one-pot reaction,187 T39 was not 

obtained. Instead, neutral complex [Ir(bhpy)(dtBubpy)Cl], 39, was isolated (Figure 59).  

 

Figure 59: Synthetic pathway for the synthesis of complexes 39-41 a) i) IrCl3.6H2O, 2-

ethoxyethanol/H2O (3:1), reflux, 19 h; ii) dtBubpy, reflux, 6 h. 

The formation of 39 arises from a highly unusual double C-H bond activation of the 

bhpyH2 ligand, which binds to the iridium in a tripodal fashion. Following a similar synthetic 

protocol, analogues 40 and 41, functionalised with either electron-donating tert-butyl or 

electron-withdrawing trifluoromethyl groups meta to the Ir-C bonds were obtained (Figure 59). 

To the best of our knowledge, this is the first report of an iridium complex of the form 

[Ir(C^N^C)(N^N)Cl] and one in which the tridentate bis-cyclometalated C^N^C ligand is a 

tripod featuring two six-membered metallacycles.218 Indeed, the complex with the closest 

binding motif is [Ir(bppy)(bpy)Cl],219 42 where bppy is 2-([1,1'-biphenyl]-3-yl)pyridine (Figure 

60).  

 

Figure 60: Ir(III) complex of the form [Ir(C^C^N)(N^N)Cl] with a planar C^C^N ligand 
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This previous complex possesses a related [Ir(C^C^N)(N^N)Cl] structure but the bppy 

ligand coordinates to the iridium in the more commonly observed planar five-membered chelate 

fashion; it is a very poorly luminescent near-IR emitter in CH2Cl2 (em = 725 nm, PL = 

0.084%).219 Ir(III) complexes bearing monocyclometalating planar tridentate bis(five-

membered) chelate ligands (e.g., N^N^C219 or N^C^N220–225) and a cyclometalating bidentate 

ligand, C^N, have on the other hand been more widely explored while Kozhevnikov have 

reported dinuclear Ir(III) complexes with a bridging ligand featuring two N^C^N motifs.226,227  

Modification of the cyclometalating ligand 

Results and Discussion 

Ligand Synthesis 

Compounds L39, L40 and L41 (Figure 61) were synthesised in two steps via a Grignard 

reaction228 followed by a reduction step228 and obtained as solids in good yields. In the first step 

elemental Mg was reacted with the corresponding bromo-arene followed by the addition of half 

of an equivalent of methyl picolinate to obtain the intermediate alcohols A39-A41 (Figure 61). 

  

Figure 61: Synthetic pathway for the synthesis of intermediates A39-A41 and target ligands 

L39-L41. a) 1. Mg, 1,2-dibromoethane, THF, N2, reflux, 4 h. 2. methyl picolinate, THF, 0 °C 

- r.t., 90 min; b) 1. HOAc, 57% HI, 100 °C, 4 h. 2. NaOHaq., 0 °C - r.t.; c) 1. PBr3, reflux, 2 h. 

2. Zn, HOAc, 3. NaOHaq., 0 °C - r.t. 

Compounds L39 and L40 were obtained in good yields in HOAc and in the presence of HI 

(57%) according to a procedure for similar molecules.228 However, the hydroxyl group in 
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intermediate A41 could not be reduced under these conditions. The compound L41 was 

obtained in moderate yields from A41 by a bromination with PBr3 followed by reduction with 

zinc in HOAc at room-temperature (Figure 61).229 

Complex Synthesis  

Initially, the complexes were synthesised following Nonoyama’s method,65 in which a 

dimer complex is obtained from refluxing IrCl3.6H2O in 2-ethoxyethanol mixture of the 

corresponding proligand followed by a dimer cleavage reaction in a CH2Cl2/MeOH mixture 

(1:1) with a slight excess of the ancillary ligand.187 However, we found the intermediate species 

to be difficult to characterise through NMR spectroscopy and HR-ESI mass spectra due to very 

low solubility. For instance, the intermediate species to obtain complex 39 is green and is not 

soluble in organic solvents (e.g. CH2Cl2, CHCl3, MeOH or MeCN) nor H2O. Besides, this 

intermediate is characterised through low stability compared to classical Ir-dimer species. In 

DMSO solution this intermediate complex decomposed quickly (within 2 days). Adding the 

tert-butyl groups on the ligand increased the solubility in organic solvents (such as CH2Cl2 or 

CHCl3) of the intermediate species significantly but did not increase stability in solution.  

Nevertheless, the isolated intermediate was used as such and the reaction was carried on 

following the cleavage reaction obtaining the desired complexes 39-41 in however unknown 

yields in this two-step synthesis. To address the issue of unknown yields, complexes 39-41 were 

prepared in a one-pot synthesis as follows: A mixture of the corresponding proligand and 

IrCl3.6H2O in 2-ethoxyethanol/H2O (3:1) was refluxed. After 19 h, the ancillary ligand 4,4′-di-

tert-butyl-2,2′-bipyridine was added at once and heating was continued for 6 h to give the 

neutral complexes 39-41 as solids in 45%, 51% and 55% yield, respectively.  

Complexes 39-41 were characterised by 1H, 13C and, for 41, 19F NMR spectroscopy in 

CD2Cl2, HR-ESI mass spectra, elemental analysis and melting point determination. A 

characteristic signal in the 1H NMR is the C-H of the bridging carbon in the C^N^C ligand 
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appearing as a singlet around 5.5 – 5.0 ppm. Depending on the substitution, this bridging carbon 

gives rise to a signal at around 69.0 ppm in the 13C NMR spectra. Two quartets are detectable 

in the 13C NMR arsing from the CF3 and the 5 position of the phenyl of the C^N^C ligand. In 

the 19F NMR the CF3 are detected as a singlet at – 61.58 ppm. The detected characterising ion 

in HR-ESI mass spectroscopy corresponds to the structure with a removed Cl- ion. The detected 

species in elemental analysis includes the Cl- monodentate ligand. 

Crystal Structures 

Single crystals of sufficient quality of 39-41 were grown from CH2Cl2/Et2O at -18 °C. 

The structures of 39-41 were determined by single-crystal X-ray diffraction (Figure 62, Table 

22).  

 

Figure 62: X-ray crystal structure of 39-41. Hydrogen atoms and solvent molecules have been 

removed for clarity. Colour codes for atoms are: C = light grey, N = blue, F = yellow, Cl = 

green and Ir = magenta. 

All three complexes possess a distorted octahedral geometry with the tridentate tripod 

ligand coordinated to the iridium to form three six-membered chelated rings. Both 

cyclometalating carbon atoms are trans to the pyridine rings of the dtBubpy and the pyridyl 

unit of the bhpy-type ligands is trans to the chloride. This contrasts with the configuration of 

the Ir-Cl bond in previously reported Ir(III) complexes,219–221,226,227,230 where an Ir-C bond is 

trans to the chloride ligand. 
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Table 22: Selected crystallographic parameters for complexes 39-41. 

Complex  Bond Length / Å Bond Angle / °  

 Ir-CC^N^C Ir-NC^N^C Ir-NN^N Ir-Cl N-Ir-N C-Ir-C 

39 2.048(13) 

2.064(6) 

2.055(11) 

 

2.158(10) 

2.159(11) 

2.375(3) 75.60(4)  85.60(5) 

40 2.028(4) 

2.031(3) 

 

2.044(3) 2.127(3) 

2.140(3) 

2.3612(8) 75.85(12) 85.65(15) 

41 2.017(7) 

2.027 

2.032(7) 2.122(6) 

2.133(5)  

2.369(2) 76.1(2) 84.(3) 

    

For 39-41 the Ir-Cl bond [2.375(3) Å for 39, 2.3612(8) Å for 40 and 2.369(2) Å for 41] 

is in the same range as that found for [Ir(tpy)(dmbpy)Cl]2+ (2.357 Å, where tpy = 2,2':6',2''-

terpyridine and dmbpy = 4,4'-dimethyl-2,2'-bipyridine)231 but is significantly shorter (by ca. 0.1 

Å) than the Ir-Cl bond in other cyclometalated tridentate Ir(III) complexes.219–221,226,227,230 

Given the short Ir-CC^N^C bonds [2.048(13) and 2.064(6) Å for 39, 2.028(4) and 2.031(3) Å for 

40 and 2.017(7) and 2.027 Å for 41], this leads also to a correspondingly shorter Ir-NC^N^C bond 

[2.055(11) Å for 39, 2.044(3) for 40 and 2.032(7) Å for 41] compared to the Ir-NN^N bonds 

[2.158(10) and 2.159(11) Å for 39, 2.127(3) and 2.140(3) Å for 40 and 2.122(6) and 2.133(5) 

Å for 41]. The bite angle of the N^N ligand is unremarkable at 75.60(4)° for 39, 75.85(12)° for 

40 and 76.1(2)° for 41 and in line with cationic Ir(III) complexes of the form 

[Ir(C^N)2(N^N)]+.133,232,233 Owing to the presence of the six-membered chelates, the C-Ir-C 

bond angle is significantly larger [85.60(5)° for 39, 85.65(15)° for 40 and 84.(3) for 41] than 

the NN^N-Ir-NN^N bond angle.  
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Electrochemical properties 

The electrochemical behaviour for 39-41 was evaluated by cyclic voltammetry (CV) 

and differential pulse voltammetry (DPV) in deaerated CH2Cl2 solution at 298 K at a scan rate 

of 50 mV s-1 using Fc/Fc+ as the internal reference and referenced with respect to SCE (0.46 V 

vs. SCE).234 The voltammograms are shown in Figure 63 and the electrochemistry data can be 

found in Table 23.  

 

Figure 63: Cyclic voltammograms (in solid lines) and differential pulse voltammetry (in dotted 

lines) for 39 – 41 carried out in degassed CH2Cl2 at a scan rate of 50 mV s-1, with Fc/Fc+ as the 

internal reference, referenced to SCE (0.46 V vs. SCE).234
  

All complexes exhibit a quasi-reversible single electron oxidation peak, which is assigned to 

the Ir(III)/Ir(IV) redox couple with contributions from the bhpy-type ligand. Complex 40 

displays a lower oxidation potential (0.80 V) than 39 (0.87 V), both of which are notably lower 
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than [Ir(mesppy)2(dtBubpy)]PF6, 21 (E1/2;ox. = 1.17 V in deaerated CH2Cl2, where mesppy is 2-

phenyl-4-mesityl-pyridinato).235 Conversely, 40 shows a significantly anodically shifted 

oxidation potential at 1.14 V. 

Table 23: Selected electrochemical data for complexes 39-41. 

 
Electrochemistrya 

 
𝑬𝟏/𝟐

𝒐𝒙   / V 𝑬𝒑
 / mV 𝑬𝟏/𝟐

𝒓𝒆𝒅 / V 𝑬𝒓𝒆𝒅𝒐𝒙
b / V 𝑬𝑯𝑶𝑴𝑶

c / eV 𝑬𝑳𝑼𝑴𝑶
c / eV 

39 0.87 99 -1.82d 2.69 -5.21 -2.52 

40 0.80 101 -1.81d 2.61 -5.14 -2.53 

41 1.14 143 -1.62d 2.76 -5.84 -2.72 

a in degassed CH2Cl2 at a scan rate of 50 mV s-1 with Fc/Fc+ as internal reference, and referenced with respect to SCE 

(0.46 V vs. SCE);234 bΔEredox is the difference (V) between first oxidation and first reduction potentials; c EHOMO/LUMO 

= -[Eox/red vs Fc/Fc+ + 4.8] eV;191 d irreversible. 

The CVs of 39-41 show irreversible reduction waves that are monoelectronic as inferred 

from the respective DPVs. DFT calculations (Figure 64a) indicate that both the HOMO and 

HOMO-1, which are close in energy (Figure 65) involve the iridium and chloride atoms and 

the two phenyl rings of the bhpy ligand. The LUMO is almost exclusively localised on the 

dtBubpy ligand while the LUMO+1 is primarily on the pyridyl ring of the bhpy ligand. 

Therefore, we conclude that the reduction is based on the ancillary ligand. The reduction 

potentials of 39 and 40 are each found at -1.82 V while the reduction wave of 41 at -1.62 V is 

anodically shifted by 200 mV compared to 39 and 40. All three complexes are significantly 

more difficult to reduce than [Ir(mesppy)2(dtBubpy)]PF6 (E1/2;red. -1.15 V), which also shows an 

irreversible reduction in CH2Cl2.
235 
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Figure 64: Computed representations of 39 of a) the four frontier MOs. b) side and top views 

of the spin density distribution for the lowest triplet state (T1). 

 

Figure 65: Energy orbital diagram for 39, 40 and 41 with representation of the key MOs for 39 

and 41. The blue and red bars represent occupied and unoccupied levels, respectively. 
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Photophysical properties 

The UV-Vis absorption spectra of 39-41 recorded in CH2Cl2 at 298 K are depicted in 

Figure 66 and the data summarised in Table 24.  

 

Figure 66: The UV-Vis absorption spectra of 39-41 in CH2Cl2 at 298 K. 

All complexes show similar absorption profiles. The invariance of the intense high-

energy ( on the order of 1 – 1.5 × 104 M-1 cm-1) absorption bands below 300 nm are ascribed 

to 1–* ligand-centred (1LC) transitions localised on the dtBubpy ligand. Two moderately 

intense bands ( on the order of 3 – 5 x 103 M-1 cm-1) in the region of 340-360 nm and 390-405 

nm are assigned to mixed charge-transfer transitions with the former consisting of more metal-

to-ligand/ligand-to-ligand charge-transfer (1MLCT/1LLCT) character while the latter, 

according to TD-DFT calculations, implicate an intraligand CT (1ILCT) from the phenyl rings 

to the pyridyl heterocycle of the bhpy-type ligand (Figure 65).  
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Table 24: Photophysical properties of complexes 39-41. 

 abs
a / nm, 

[ / M-1cm-1] 

em
b 

/ nm 

PL
b,c  

/ % 

PL
d 

/ ns 

kr
e 

 × 10-5 / s-1 

knr
f   

× 10-5 / s-1 

39 294 [12 008], 355 [3 624], 404 [2 

704], 500 [696] 

619 8 318 2.52 28.93 

40 295 [14 123], 359 [4 697], 405 [3 

336], 510 [1 114] 

630 6 239 2.51 39.33 

41 293 [15 433], 343 [4 989], 393 [4 

206], 468 [1 131] 

581 26 718 3.62 10.31 

a in CH2Cl2; b exc = 420 nm, recorded at 298 K in deaerated CH2Cl2; c [Ru(bpy)3](PF6)2 in MeCN as reference 

(PL = 1.8% in aerated MeCN at 298 K);9 d exc = 378 nm; e kr = ΦPL / τe;  f knr = [(1 - ΦPL)/ τe].   

 

Weak bands ( on the order of 103 M-1 cm-1) with onsets between 470-510 nm and tailing 

to 580 nm are attributed to a mixture of (1MLCT/1LLCT) and spin-forbidden (3MLCT/3LLCT) 

transitions involving the dtBubpy ligand. Introduction of the tert-butyl groups in 41 results in 

only a small red-shift of the CT bands below 340 nm whereas the trifluoromethyl groups in 41 

produce a significant blue-shift of these bands, trends that are corroborated by TD-DFT 

calculations (Figure 67).  

 

Figure 67: Theoretical absorption spectra for 39 – 41 computed in the vertical approximation 

and convoluted with a Gaussian of FWHM of 0.2 eV. 
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The normalised photoluminescence (PL) spectra of 39-41 in degassed CH2Cl2 are 

shown in Figure 68 and the data are summarised in Table 24. Upon photoexcitation at 420 nm, 

all complexes show a broad and unstructured profile, indicative of an emission with mixed CT 

character. In line with the trends observed in the absorption spectra and the oxidation potentials 

in the CVs, the emission maxima are 581, 619 and 630 nm for 41, 39 and 40, respectively.  

 

Figure 68: Normalised emission spectra of complexes 39-41 in deaerated CH2Cl2 at 298 K.  

These emission maxima match very closely to the vertical phosphorescence energies 

calculated by spin-unrestricted DFT, which predicts emissions at 573, 613 and 622 nm, 

respectively. The calculations reveal that the emissive triplet state is localised on the iridium, 

chlorine and dtBubpy but does not include significant contributions from the bhpy ligand 

(Figure 64b and Figure 69). 
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Figure 69: Density difference plots for 39 – 41 obtained for the lowest triplet state. We show 

both the top (top) and side (bottom) views. A contour threshold of 0.002 au has been used for 

all complexes. 

The photoluminescence quantum yield (PL) of 39 is 8%, which is lower than that of 

the yellow-emitting [Ir(ppy)2(dtBubpy)]PF6 (PL = 64% in CH2Cl2, em = 570 nm, where ppyH 

is 2-phenylpyridine).236 The PL of 40 is 6% while that of 41 is 26%. All three complexes show 

emission lifetimes, e, in the sub-microsecond regime. The radiative rate constants, kr, for 39 

and 40 are similar (2.52 vs. 2.51 × 105 s-1, respectively). However, 40 exhibits a significantly 

larger nonradiative rate constant, knr, (39.33 × 105 s-1) compared to 39 (28.93 × 105 s-1). Complex 

41 possesses both the largest kr (3.62 × 105 s-1) and the smallest knr values (10.31 × 105 s-1) in 

accordance with the energy gap law. 

Summary 

In summary, a new family of luminescent iridium(III) complexes bearing an 

unprecedented tripodal bis(six-membered) chelate tridentate ligand has been prepared through 

a highly unusual double cyclometalation reaction. The electrochemical and spectroscopic 

properties can easily be tuned through substitution on the cyclometalating aryl rings. Through 

the electron withdrawing groups in 41 a blue shift in the emission energy is observed and 

oxidation is shifted to higher potentials. The opposite effect is observed when introducing 
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electron donating groups in 40. DFT calculations support a mixed charge-transfer emission. 

Efforts are focused on further modulating the electronics through a combination of 

modifications of the ancillary diimine and the monodentate chloride ligands.  

This unprecedented tripodal ligand will open new perspectives for the design of 

tridentate Ir luminophores. 

Substitution attempts of Ir-Cl bond 

After the preparation and full characterisation of complexes 39-41, efforts were 

focussed on further modulating the electronics through substitution of the monodentate chloride 

ligand. In 2006, Haga220 and co-workers reported a complex of the form [Ir(Mebib)(ppy)X] 

[where Mebib is bis(N-methyl-2-benzimidazolyl)benzene and X = Cl for complex 42,  and X = 

CN for complex 43, Figure 70]. In CH2Cl2 solution, 42 exhibits a em = 555 nm. Upon 

substitution of Cl- by CN- a significant blue-shift of 29 nm (993 cm-1) was obtained (em = 526 

nm for complex 43). Another recent example of substitution of a monodentate chloride ligand 

was demonstrated by Hanan et al. with ruthenium polypyridyl complexes of the form 

[Ru(pytpy)(bpy)X]237 (where pytpy is 4,4''-di-tert-butyl-4'-(pyridin-4-yl)-2,2':6',2''-terpyridine, 

Figure 70). Through substitution of the Cl- by neutral MeCN or pyridine the single positively 

charged complex 44 was converted into the twice positively charged 45, which was used as a 

precursor for self-assembly to form squares, or 46, which was used as a model complex.237  
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Figure 70: Structural presentation of transition metal complexes bearing planar tridentate and 

bidentate ligands and a monodentate ligand. a) KCN, microwave irradiation (650 W), ethylene 

glycol, 5 min; b) 1. MeCN, AgOTf, ; 2. aq. KPF6.; c) 1. Pyridine, AgOTf, 5 days, . 2. aq. 

KPF6.   

Inspired by this work, we designed different targets. For complexes T1-T4 we targeted 

to substitute the chloride with another negatively charged monodentate ligand and in case of 

T5-T6 the monodentate ligand was neutrally charged to form a positively charged complex 

(Figure 71).  
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Figure 71: Structural presentation of complex 39 and designed target complexes bearing 

different monodentate ligands. 

Results and Discussion 

Several attempts were carried out to obtain target complexes T1-T4 using various 

conditions (Figure 72, Table 25) 

 

Figure 72: Synthetic pathway for substitution Ir-Cl. a) reaction conditions see Table 25. 
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 Table 25: Reaction conditions carried out for the synthesis of T1-T4.  

 

For targets T1-T4, a mixture of complex 39 and the corresponding inorganic salt was 

stirred in the mentioned solvent mixture (Figure 72, Table 25). The silver salt was added and a 

resulting colour to change from red to yellow was observed along with the appearance of a 

white precipitate. After the reaction time, the mixture was filtered, and the solvent was 

evaporated leaving a brown solid. These reactions were also performed without the addition of 

any silver salt. NMR spectroscopy and Mass spectrometry of the residue did not show the 

presence of the target complexes, but there was decomposition of the starting material. A stable 

product could not be isolated. Another strategy was to only reduce the volume of the solvent 

after filtration followed by the addition of hexane. Recrystallisations at -18 °C or at room 

temperature in the dark did not yield the target compounds. When heating 39 and NaSCN in 

Entry Target Complex 

with X 

Starting Material for 

Monodentate Ligand X 

Solventb 

 

T 

/ °C 

Time 

/ h 

Silver salt 

1 T1 X = Br NaBr CH2Cl2 / MeOH 40 2 AgPF6 

2 T1 X = Br NaBr CH2Cl2 / MeOH 40 18 AgPF6 

3 T2 X = CNa NaCNa CH2Cl2 / MeOH 40 0.5 AgPF6 

4 T2 X = CNa NaCNa CH2Cl2 / MeOH 40 2 AgPF6 

5 T2 X = CNa NaCNa CH2Cl2 / MeOH r.t. 18 AgPF6 

6 T3 X = SCN NaSCN MeCN 40 96 AgOTf 

7 T3 X = SCN NaSCN MeCN / CH2Cl2 40 96 AgOTf 

8 T5 X = PhC2 Li-CCPh THF 50 18 - 

9 T5 X = MeCN MeCN MeCN 40 96 AgOTf 

10 T6 X = pyridine Pyridine pyridine 100 18 AgPF6 

a  NaCN is highly toxic. Do not use in the presence of acids; b in case of solvent mixture (Entry 1-5 and 7) the ratio 

is 1/1; 
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MeCN / CH2Cl2 in the presence of AgOTf (Entry 7, Table 25), the 1H-NMR did not show 

decomposition of the starting material, but instead the formation of another product. However, 

after several careful attempts at purifications, decomposition of complex 39 was observed 

again, and the unknown product could not be isolated. A mixture of complex 39 and only AgPF6 

also led to the characteristic colour change from red to yellow. From this mixture, a stable 

compound could not be isolated either after the addition of the monodentate ligand.  

Summary 

The isolation of a stable product after substitution reaction was not successful. Two key 

steps are involved 1) removal of the Cl and 2) coordination of the target monodentate ligand. 

The successful removal of the chloride may be indicated by the presence of a colour change 

after the addition of the silver salt and the observation of a white precipitate (AgCl). However, 

it may be difficult to substitute the Ir-Cl due to the trans-influence of the weaker Ir-N bond 

trans to the Ir-Cl. In Ir-Complex 42, the Ir-Cl is trans to the strong Ir-C bond leading to a weaker 

Ir-Cl bond. It was not possible to find out if the target complex was formed but lacked stability 

or if the formation of the target complex was not successful.  

Modification of the diimine ancillary ligand  

Miscellaneous ancillary ligands  

Other possibilities to modify the ligand system is to change the nature of the ancillary 

ligand. Inspired by heteroleptic Ir(III) complexes bearing ancillary ligands based on 2,2′-

bipyridine (bpy),5,238 acetylacetonate (acac),214,238,239 picolinate (pic)238 and their derivatives, 

targets with different ancillary ligands were designed. For complexes T7-T8 (Figure  73), we 

targeted negatively charged ancillary ligands [picolinate (pic) and acetylacetonate (acac), 

respectively] to form a negatively charged complex, while in case of T9-T10 the ancillary 

ligand was charge neutral [1,2-bis(diphenylphosphino)ethane (Dppe), 2,2'-bibenzo[d]thiazole 
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(bbthz), 1H,1'H-2,2'-biimidazole (biim)] to form neutrally charged complexes (Figure 73). We 

also opted for 2,2'-(phenylmethylene)dipyridine (pmdp, Figure 73) in the hope to access two 

new targets T12 and T13. In T12, pmdp coordinates to iridium as a bidentate N^N ligand 

forming a six-membered ring chelate. In T13 pmdp forms another tripod tridentate ligand 

chelating as a N^C^N ligand replacing the chloride monodentate ligand.  

 

 

Figure 73: Synthetic pathway for the synthesis of targets T7-T13. a) IrCl3.6H2O, 2-

ethoxyethanol/H2O (3:1), reflux, 19 h; b) corresponding X^Y ligand, Na2CO3 reflux, 6h. c) 

corresponding X^Y ligand, reflux, 6 h – 96 h. 

Results and Discussion 

Several attempts were carried out to obtain target complexes T7-T13 using the two-

step-one-pot protocol introduced above wherein a mixture of bhpyH2 and IrCl3.6H2O in 2-
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ethoxyethanol/H2O (3:1) was heated at reflux for 19 h and the formation of the intermediate 

was confirmed by NMR and by the the observation of the characteristic green product.  The 

ancillary ligand was added followed by a further reaction time of 6 h, 24 h or 96 h. For targets 

T7 and T8, Na2CO3 was added concomitant with the addition of the ancillary ligand.  After the 

reaction time, the solvent was evaporated leaving a brown solid. NMR spectroscopy and mass 

spectrometry of this residue did not show the presence of the target complexes but did reveal 

decomposition of the ligand as well as the intermediate species.  

Summary 

It appears this C^N^C ligand system is highly selective to the nature of the ancillary 

ligand and so we targeted diimines based on 2,2-bipyridine (like in complexes 39-41) to tune 

the electronics of this system. 

2,2’-bypridine based ancillary ligand 

As discussed in Chapters 1 and 4 addition of tert-butyl groups on the bpy ancillary 

ligand has been shown to lead to a blue shift of the emission, through destabilisation of the 

LUMO.187 This effect can be studied when comparing the yellow-emitting complex 1187 with 

the orange-emitting complex 12187 (Figure 74), where a blue-shift of 11 nm (309 cm-1) is 

observed.  

 

Figure 74: Structural presentation of Ir(III) complexes bearing different substituents on the bpy 

ancillary ligand. 
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Comparing 12187 and  [Ir(ppy)2(deeb)]PF6, 47240 (where deeb is diethyl [2,2'-bipyridine]-

4,4'-dicarboxylate, Figure 74) shows the impact of adding electron-withdrawing ethyl-ester 

groups onto the bpy ancillary ligand. A large red-shift of 78 nm (1906 cm-1) is observed 

combined with a slight decrease in both the photoluminescence quantum yield and lifetime 

from 9% and 275 ns for 12 to 5% and 115 ns for 47, which is a logical consequence of the 

energy gap law, which states that the nonradiative decay rate increases with decreasing emission 

energy.89,241 The above study of complexes 39-41 demonstrated that through the addition of the 

tert-butyl groups on the C^N^C ligand (leading to the ligand 2-(bis(4-(tert-

butyl)phenyl)methyl)pyridinato, dtBubhpy), a red shift of 11 nm (282 cm-1) is obtained, which 

is due to a destabilisation of the HOMO. With complex 40 red emission is achieved with an 

emission maximum of em = 630 nm. 

With the above findings, we designed complex 48 (see Figure 75) bearing the C^N^C 

ligand of complex 40 (dtBubhpy) and the ancillary ligand of complex 47, both chosen to red 

shift the emission even further than 2 resulting in complex 48, that is panchromatic and 

therefore a potential candidate for application in a dye-sensitized solar cell DSSC.242 

 

Figure 75: Structural presentation of Ir(III) complex 48. 

Dye-sensitized solar cells (DSSCs) 

Dye-sensitized solar cells (DSSCs) represent a promising solar cell 

technology.12,59,215,216 The majority of champion DSSCs, those showing power conversion 

efficiencies (PCE) greater than 10%, are based on ruthenium(II) polypyridyl complexes. 

Iridium(III) complexes, dominant as emitters in electroluminescent devices,21,152,218 have to 
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date fared poorly as dyes in DSSCs.58,203,248,215,216,242–247  This is mainly because most 

iridium(III) complexes are not panchromatic, having absorption spectra that tail off by 550 nm. 

This induces low short circuit currents in the DSSC and consequently poor PCE; typically, less 

than 4%. Indeed, there are very few examples of iridium(III) complexes with significant 

absorption bands going up to the red or NIR parts of the visible spectrum.59,197,249–252 Complex 

48 shows panchromatic absorption, employing an electron-poor ancillary ligand (diethyl [2,2’-

bipyridine]-4,4’-dicarboxylate, deeb), and its use as a DSSC dye is discussed. 

Results and Discussion 

Synthesis 

The compound diethyl [2,2'-bipyridine]-4,4'-dicarboxylate (deeb) was prepared 

quantitatively according to literature methods253 (Figure 76). 

 

Figure 76: Scheme for the synthesis of compound deeb. a) H2SO4, Ethanol, 70 °C, 4 days.  

Complex 48 was obtained as a black solid in 52% yield using a two-step-one-pot 

protocol wherein a mixture of dtBubhpyH2 and IrCl3.6H2O in 2-ethoxyethanol/H2O (3:1) was 

heated at reflux for 19h followed by the addition of deeb and a further reaction time of 6h 

(Figure 77). Complex 48 was characterised by 1H and 13C NMR spectroscopy in CD2Cl2, HR-

ESI mass spectrometry, elemental analysis and melting point determination. Complex 48 shows 

the expected number of resonances in the NMR with the characteristic singlet at 5.30 ppm in 

the 1H NMR spectrum for the H on the bridge of the C^N^C ligand. With respect to the 

complexes 39 – 41 this complex behaves in a comparable way in HR-ESI mass spectrometry 

and elemental analysis.   
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Figure 77: Scheme for the one-pot synthesis of complex 48. a) i) IrCl3.6H2O, 2-

ethoxyethanol/H2O (3:1), reflux, 19 h; ii) deeb, reflux, 6 h. 

Crystal Structures 

Single crystals of sufficient quality of 48 were grown from CH2Cl2/Et2O at -18°C, and 

the structure of 48 was determined by single-crystal X-ray diffraction (Figure 78, Table 26).  

 

Figure 78: Solid-state structure of complex 48. Hydrogen atoms and solvent molecules are 

omitted for clarity. Colour code: C = light grey, N = blue, O = red, Cl = green and Ir = blue. 

Table 26: Selected crystallographic parameters for complexes 48. 

Complex  Bond Length / Å Bond Angle / °  

 Ir-CC^N^C Ir-NC^N^C Ir-NN^N Ir-Cl N-Ir-N C-Ir-C 

48 2.027(7) 

2.026(7) 

2.038(8) 2.134(6) 

2.134(6) 

2.346(3) 76.1(3) 85.2(4) 
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Complex 48, [Ir(dtBubhpy)(deeb)Cl], lies in a mirror plane; the pyridyl ring of 

dtBubhpy, the iridium(III) and the chloride all lying directly in the plane. The tridentate C^N^C 

ligand dtBubhpy shows a tripodal chelation motif. The remaining coordination sphere of 48 

consists of the deeb N^N ligand and a chloride anion. Bond lengths and angles are in the same 

range as observed for complexes 39-41.  

Electrochemical properties 

The electrochemical properties of 48 were evaluated by cyclic voltammetry (CV) and 

differential pulse voltammetry (DPV) in deaerated CH2Cl2 solution at 298 K at a scan rate of 

100 mV s-1 using Fc/Fc+ as the internal reference and referenced with respect to NHE (0.70 V 

vs. NHE).191 The voltammograms are shown in Figure 79 and the electrochemical data are 

summarised in Table 27.  

 

Figure 79: Cyclic voltammograms (in blue solid lines) and differential pulse voltammetry (in 

dotted black lines) of complex 48  carried out in degassed CH2Cl2 at a scan rate of 100 mV s-1, 

with Fc/Fc+ as the internal reference, referenced to NHE (0.70 V vs. NHE).191  
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Table 27: Selected electrochemical properties of complex 48.  

 
Electrochemistrya 

 
𝑬𝟏/𝟐

𝒐𝒙   / V 𝑬𝒑
 / mV 𝑬𝟏/𝟐

𝒓𝒆𝒅 / V 𝑬𝒑
 / mV 𝑬𝒓𝒆𝒅𝒐𝒙

b / V 𝑬𝑯𝑶𝑴𝑶
c / eV 𝑬𝑳𝑼𝑴𝑶

c / eV 

48 1.21 88 -0.97 99 2.18 -5.31 -3.13 

a in degassed CH2Cl2 at a scan rate of 100 mV s-1 with Fc/Fc+ as internal reference, and referenced with respect to 

NHE (Fc/Fc+ = 0.70 V in CH2Cl2);191 bΔEredox is the difference (V) between first oxidation and first reduction 

potentials; c EHOMO/LUMO = -[Eox/red vs Fc/Fc+ + 4.8] eV.191 

 

Complex 48 exhibits a quasi-reversible single electron oxidation wave at 1.21 V, which 

is assigned to the Ir(III)/Ir(IV) redox couple, with contributions from the two phenyl rings of 

dtBubhpy and the chloro ligand. Compared to [Ir(dtBubhpy)(dtBubpy)Cl], 2, the oxidation 

potential in 48 is significantly anodically shifted by 170 mV, reflecting the electron-

withdrawing capacity of the ethyl ester groups of the N^N ligand, which modifies the electron 

density on iridium. However, the oxidation potential of 48 is less positive than that of 

[Ir(ppy)2(deeb)]PF6, 47,240
 (E1/2

ox.
 = 1.57 V in deaerated MeCN vs NHE). Upon scanning to 

negative potential, 48 shows a single quasi-reversible reduction wave at -0.94 V, which is 

monoelectronic as inferred from the DPV. The electron-withdrawing effect of the ethyl ester 

groups of the N^N ligand results in a large anodic shift of 610 mV in the reduction wave of 48 

compared to 40 (E1/2
red.

 -1.58 V vs NHE). Complex 47 showed two reversible reduction waves 

in MeCN. The first reduction located at -0.76 V is assigned to the reduction of the deeb ligand 

while the second one at -1.30 V is due to the reduction of the phenylpyridinato.240 Thus, the 

reduction of the deeb ligand in 48 is shifted to more negative potentials compared to the same 

reduction in 47. DFT calculations of 40 indicated that both the HOMO and HOMO-1 are close 

in energy and involve the iridium and chlorine atoms and the two phenyl rings of dtBubhpy. As 

can be seen in Figure 80 the same electron density distribution is found in 11. DFT calculations 

also show that the three lowest unoccupied orbitals are exclusively localised on the deeb ligand 
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in 11 (Figure 80), while the LUMO+1 is primarily on the pyridyl of dtBubhpy in 40, illustrating 

the stronger accepting character of deeb. The 𝐸redox for 48 (2.18 eV) is markedly smaller than 

that of 47 (𝐸redox = 2.33 V).240 

 

Figure 80: Frontier molecular orbitals of 48  computed through DFT (M06 functional) and 

represented using a contour threshold of 0.03 au. 

Photophysical properties 

The photophysical data for 48 recorded in CH2Cl2 at 298 K are shown in Figure 81 and 

the data summarised in Table 28. The absorption profile of 48 differs significantly from that of 

40. Complex 48 shows intense high-energy absorption bands ( on the order of 3.5 × 104 M-1 

cm-1) below 250 nm, which are ascribed to 1–* ligand-centred (1LC) transitions localised on 

the deeb ligand. A moderately intense band ( on the order of 1.5 × 104 M-1 cm-1) at 319 nm is 

attributed to a ligand-centred (LC) transition on the deeb with a small CT character (see below).  

Weaker bands ( on the order of 5 – 6 × 103 and 2 × 103 M-1 cm-1) in the region of 380 – 440 

nm and tailing to 500 – 600 nm are assigned to a mixture of (1MLCT/1LLCT) and spin-

forbidden (3MLCT/3LLCT) transitions involving the deeb ligand. Iridium(III) complexes often 

do not show absorption onsets lower in energy than 550 nm;188,212,254 though, there are known 

examples of neutral Ir(III) complexes showing absorption bands beyond 550 nm.80,221,255,256  
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Figure 81: The absorptivity and photoluminescence spectra of 48 in CH2Cl2 at 298 K. 

Table 28: Photophysical properties of complex 48.  

 abs / nm, [ / M-1cm-1]a em
b / nm PL

b,c / % PL
d / ns 

48 237 [34 819], 319 [14 647], 384 [5 105],  

434 [5 607], 504 [2 176], 597 [1 925]. 

731 0.5 36 (73 %) 

78 (19 %) 

392 (8 %) 

a Recorded in aerated CH2Cl2 at 298 K; b Recorded at 298 K in deaerated CH2Cl2 solution (exc = 420 nm); c 

[Ru(bpy)3](PF6)2 in MeCN as the reference (PL = 1.8% in aerated MeCN at 298 K);9 d exc = 378 nm.  

 

The assignments for complex 48 were confirmed by TD-DFT calculations. The two 

lowest singlet states, computed at 623 and 611 nm, present relatively small intensities (oscillator 

strengths, f, of 0.010 and 0.056, respectively) and mainly correspond to HOMO-1 to LUMO 

and HOMO to LUMO transitions. This corresponds to a mixed CT process from the metal and 

the phenyl rings of the C^N^C ligand towards the deeb. The following significant vertical 

absorption are predicted by TD-DFT at 496 nm (f=0.071), 456 nm (f=0.027) and 443 nm 

(f=0.084) and these bands can be ascribed to HOMO-2 to LUMO, HOMO to LUMO+1 and 
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HOMO-1 to LUMO+1 transitions, respectively, and therefore all involve strong CT character 

towards the deeb moiety. The more intense and resolved band at 319 nm experimentally (see 

Table 28) is computed at 315 nm by TD-DFT (f=0.162) and corresponds to a more LC 

excitation from a low-lying orbital centred on the deeb (and partly on chlorine atom) towards 

the LUMO centred on the deeb as well.  

Upon photoexcitation at 420 nm, 48 exhibits a broad featureless profile, indicative of 

an emission with mixed CT character, with a maximum at em = 731 nm, an emission that is 

significantly redshifted (99 nm, 2194 cm-1) compared to 40 (em = 630 nm). The red-shifted 

luminescence is due to the presence of the presence of the -accepting deeb. The emission of 

48 is likewise red-shifted (51 nm, 2194 cm-1) compared to that of [Ir(ppy)2(deeb)]PF6, 47 (em 

= 680 nm).240 The DFT calculations returns an emission of the T1 state at 762 nm, close to the 

experimental value, confirming emission from the lowest triplet excited state. The topology of 

this state, in terms of localisation of the excess  electrons, is displayed Figure 82.  

  

Figure 82: DFT computed spin density difference plots for the lowest triplet state of 48. Both 

side and top views are shown, and they have been drawn with a contour threshold of 3 × 10-3 

au. 
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As can be seen, the spin density is mostly localised on the Ir and Cl atoms and on the 

ancillary ligand, the tridentate ligand playing only a minor role in this state. This localisation is 

consistent with the observed red-shift in emission compared to 40 and 47. The measured 

photoluminescence quantum yield (PL) of 48 is 0.5%, lower than those of 40 (6%) and 47 

(5%), a logical consequence of the energy gap law.89,241 Among near-infrared emissive cationic 

Ir(III) emitters with em beyond 700 nm bearing diimines as ancillary ligand, most examples 

exhibit PL values less than 4%.188,255,257–259 However, NIR-emitting neutral Ir(III) complexes 

of the form [Ir(C^N)2(O^O)] (where O^O a substituted -diketonate ancillary ligand) 

employing highly conjugated C^N ligands have reached PL of up to 16%.80,81,260 Complex 48 

exhibits a multiexponential emission decay, a reflection of the large non-radiative decay rate 

constant.  

Performance in Dye-sensitized solar cells (DSSCs) 

Sandwich-type solar cells were assembled using 48-sensitised nanocrystalline TiO2 as 

the working electrodes, platinised conducting glass as the counter electrode and iodide/triiodide 

in acetonitrile as electrolyte. The photovoltaic performances of solar cells based 48 and N719, 

as benchmark sensitizer (Figure 83), are summarised in Table 29.  

 

Figure 83: Structure of the N719 dye. 
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Table 29. Photovoltaic performance of 48 and N719. 

DYE JSC
a / mA cm-2 VOC

 a / V FF a η a / % 

48 0.995 0.67 0.74 0.49 

N719 8.84 0.81 0.61 4.4 

aJsc is the short-circuit current density at the V = 0 intercept, Voc is the open-circuit voltage at the J = 0 

intercept, FF is the device fill factor, η is the power conversion efficiency.  

Figure 84 shows the current–voltage characteristics of the dyes under AM 1.5 simulated 

sunlight (100 mW cm-2) and in the dark. The photovoltaic efficiency (η = 0.26%) obtained with 

48 is low, but comparable with results for iridium sensitizers reported elsewhere.58,215,248,261 

Both charge injection from the excited dye into TiO2 and regeneration by the electrolyte are 

thermodynamically favourable. We therefore attribute the reason for the low efficiency for 48 

compared to the benchmark Ru dye to be the weak absorption in the visible region, compared 

to ruthenium-based photosensitizers such as N719. The absorption spectrum of the TiO2 

electrode after immersion in the dye solution is provided in Figure 85 and the spectral response 

of the DSSC is given in Figure 86.  

 

Figure 84: Current-voltage curves for DSSCs constructed using 48 (yellow) and N719 (red) in 

the dark (dashed line) and under simulated sunlight (solid line, AM1.5, 100 mW cm-2). 
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Figure 85: Absorption spectrum of 48-sensitized TiO 

 

Figure 86: IPCE spectra for DSSCs incorporating 48.  

The low incident photon-to current conversion efficiency (IPCE < 2%) is consistent 

with the poor light-harvesting at λ > 500 nm. While these dyes absorb broadly across the visible 

spectrum, the low ε (ε ~ 2 000 M-1 cm-1) compared to ruthenium dyes (ε > 10 000 M-1 cm-1) is 

a limitation to their solar cell performance.   
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Summary 

In summary, a new panchromatically absorbing, NIR luminescent iridium(III) 

complexes bearing a tripodal tris(six-membered) chelate ligand has been obtained and 

comprehensively characterised, including by single crystal X-ray diffraction.  

The absorption spectrum tails off at 700 nm, much further than most neutral iridium 

complexes while the emission is significantly shifted into the NIR, with a maximum of 731 nm. 

DSSCs using 48 as the dye achieved only modest efficiency of 0.49%, comparable to other 

Ir(III) dyes. This was attributed to the modest absorption coefficient, which leads to weak light 

harvesting in the visible region and low short-circuit current.  

Conclusions 

In conclusion, the development of tripodal C^N^C ligands, 2-benzhydrylpyridine 

(bhpyH2) and its derivatives, which can coordinate to iridium, forming three six-membered 

chelate rings through a double C-H bond activation are reported. When combined with a 

bidentate diimine ligand such as 4,4'-di-tert-butyl-2,2'-bipyridine (dtBubpy), a family of 

orange-to-red emitting neutral [Ir(C^N^C)(dtBubpy)Cl] complexes was formed with 

absorption bands tailing off at 600 nm. X-ray crystal structures reveal an unstrained geometry 

thanks to the formation of three six-membered chelate rings. The substitution of the Ir-Cl was 

not successful, and a stable product could not be isolated. Replacing the bpy-based N^N 

ancillary ligand with other well-established ancillary ligands for Ir(III) complexes did not lead 

to the desired target complexes, with only starting material decomposition observed. An 

analogous complex, employing the electron-poor ancillary ligand diethyl [2,2'-bipyridine]-4,4'-

dicarboxylate (deeb) shows panchromatic absorption and NIR emission. Its use as a dye in dye-

sensitized solar cells (DSSC) reveals moderate performances comparable to other Ir(III) dyes. 

A full understanding why this system is sensitive and limited to bpy-type ancillary ligands and 
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why the replacement of the Ir-Cl is so delicate may help to design more targets for a successful 

synthesis. Identifying the intermediate species may provide further insight into this system.  

This new unprecedented six-membered chelate tridentate tripod C^N^C ligand resulting 

from an unusual C-H bond activation of 2-benzhydrylpyridine (bhpyH2) opens access to a new 

class of cyclometalated Ir(III) luminophores. 
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Chapter 6 

 

Phosphorescent Cationic Iridium(III) Complexes 

Bearing a Nonconjugated Six-Membered Chelating 

Ancillary Ligand: A Strategy for Tuning the Emission 

Towards the Blue 
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Introduction 

As outlined in the previous chapters, Iridium(III) complexes are attractive phosphors 

because of their excellent photophysical properties and the facile and wide emission colour 

tunability as a function of ligand identity.5,207 In electroluminescent devices such as organic 

light emitting diodes (OLEDs)170,262 and light-emitting electrochemical cells (LEECs),21,23,172 

blue emissive materials are critical components for full-colour displays and for the generation 

of white light in the context of solid-state lighting.238 Charged complexes are particularly 

germane for LEECs. Typically, heteroleptic cationic Ir(III) complexes of the form 

[Ir(C^N)2(N^N)]+ consist of two cyclometalating C^N ligands typically based on a 2-

phenylpyridinato (ppy) scaffold and one five-membered chelating diimine N^N ancillary ligand 

such as 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen) or their derivatives.238 The emission 

energy is normally tuned through substituent decoration about these ligand moieties, with 

electron-withdrawing groups attached to the C^N ligands and electron-donating groups 

incorporated onto the N^N ligand used in concert to increase the HOMO-LUMO gap, and by 

extension the energy of the emissive triplet state. As discussed in Chapters 1, 4 and 5, much 

less attention has been devoted to the effect of changing the chelate ring size on the emission 

energy, particularly in the context of the incorporation of a nonconjugating methylene space 

group between the coordinating rings.  

The use of six-membered chelate ancillary ligands on cationic iridium(III) complexes 

is more common, though there are only a handful of reports here as well (Figure 87). Examples 

include the use of a di(pyridin-2-yl)methane (dpm)263 that incorporates a methylene spacer to 

interrupt the -conjugation of the ligand such as [Ir(ppy)2(dpm)]PF6, 49; no photophysics was 

reported.  
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Figure 87: Structural representation of iridium(III) complexes bearing conjugated and 

nonconjugated ancillary ligands reported in the literature.  

Other studies have focused on the functionalisation of this methylene bridge. For 

instance, the complexes [Ir(ppy)2(dpyOH-R)]Cl [with R = H, 50 and CH2CN, 51 and dpyOH-

R is di(pyridin-2-yl)methanol and 3-hydroxy-3,3-di(pyridine-2-yl)propanenitrile, respectively] 

have been investigated.264 The effect of successfully interrupting the direct electronic crosstalk 

between the coordination moieties can be demonstrated by comparing the photophysical 

properties of 50 (with PL = 477, 507 and 547 nm, PL = 10% in MeCN) and the reference 

complex 12, [Ir(ppy)2(bpy)]PF6, (PL = 602 nm, PL = 9% in MeCN),187  where a large blue-

shift of 125 nm (4353 cm-1) is observed. The complex 51264 (with PL = 535 nm, PL = 49% in 

MeCN) is a bright emitter exhibiting predominantly MLCT emission. The two complexes 

[Ir(ppy)2(dpy-R)]Cl [with R = O, 52 and N-NH2, 53 and dpy-R is di-2-pyridylketone and 2,2’-

(hydrazonomethylene)dipyridine, respectively] are poorly emissive in acetonitrile, with PL < 

0.5%. The former exhibits an unstructured emission centred at 678 nm, whereas the latter 

displays a blue-shifted, structured emission profile (PL = 480, 510 nm).264 
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A more widely studied six-membered chelate N^N ligand is di(pyridin-2-yl)amine 

(dpa).263,265–268 With [Ir(ppy)2(dpa)]PF6, 54 (PL = 483, 514 (sh) nm, PL = 43% in CH2Cl2, 

Figure 87) a significant blue-shift and increase in PL can be observed with respect to 12, which 

in this case is due to the presence of the electron-releasing central amine.265  

Through sulfur-bridged six-membered chelate N^N ligands (di(pyridine-2-yl)sulfane 

and its oxidised derivatives), the emission energy could be tuned as a function of the oxidation 

state of the central sulfur atom.269 Ligand-centred (3LC) emission was observed when the sulfur 

was in the +2 (55, with PL = 478, 510, 548 (sh) nm, PL = 4% in CH2Cl2), and +4 oxidation 

states (56, with PL = 478, 510, 548 (sh) nm, PL = 1% in CH2Cl2). Through oxidation of the 

sulfur atom to the +6 oxidation state (57, with PL = 552 nm, PL = 3% in CH2Cl2) a red-shift 

and emission with 3MLCT character was observed.  

Examples of nonconjugated six-membered chelate ancillary rings employing 

coordinating heterocycles other than pyridine include those using bis(tetrazolate)270,271 (e.g., 

NBu4[Ir(ppy)2(b-trz)], 58 where b-trzH2 is di(1H-tetrazol-5-yl)methane, with PL = 498, 520 

(sh) nm, PL = 75% in MeCN), and bis(pyrazole)272,273 (e.g., [Ir(ppy)2(bpm)]PF6, 59 where bpm 

is bis(pyrazol-1-yl)methane, with PL = 477 nm, PL = 21% in MeCN, Figure 87) or bis-

NHC274–279 (e.g., [Ir(ppy)2(dmdiim)]PF6, 60 where (dmdiimH2)I2 is 1,1’-dimethyl-3,3’-

methylenediimidazolium diiodide, with PL = 475, 503 nm, PL = 38% in MeCN) complexes. 

Recently, Chi and co-worker reported a nonplanar tetradentate N^N^N^N chelate bearing a 

pyrazole unit and a nonconjugated tripodal arranged terpyridine, which can coordinate to 

iridium forming a six-membered ring.280 They obtained sky blue efficient OLEDs using this 

complex as the dopant emitter. In each of these literature examples the spacer disrupts the 

conjugation across the coordinating moieties, enabling a blue-shifted emission. The strongly 

donating character of the coordinating heterocycle contributed to the blue-to-sky-blue emission 

of these complexes.  
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The work presented in this chapter deals about the development of charged blue-

emitting iridium(III) complexes for solution-processed OLEDs and LEECs. Here we 

investigate the coordination of the nonconjugated diimine 2,2'-(phenylmethylene)dipyridine 

(pmdp, Figure 88) to iridium as the N^N ligand, in combination with either 2-(2,4-

difluorophenyl)-4-mesitylpyridinato (dFmesppy) or 4-mesityl-2-phenylpyridine (mesppy) as 

C^N ligands to form complexes [Ir(dFmesppy)2(pmdp)]PF6, 61 and [Ir(mesppy)2(pmdp)]PF6, 

62, respectively (Figure 88).  

 

Figure 88: Structural representations of 2,2'-(phenylmethylene)dipyridine (pmdp), and 

complexes 61 and 62 and their reference complexes 63 and 21 respectively.  

The mesityl group was incorporated onto the C^N ligands to increase the solubility of 

the resultant complexes in organic solvents (e.g. MeCN and CH2Cl2), without affecting their 

emission energy due to the mutually orthogonal conformation between the mesityl substituent 

and the pyridine of the C^N ligands, thereby disrupting any formal conjugation.174  The impact 

of the use of the pmdp ligand is studied through comparison with two reference complexes 63 

and 21 bearing the same C^N ligands and a conjugated N^N ancillary ligand [4,4'-di-tert-butyl-

2,2'-bipyridine (dtBubpy)]. The photophysical properties of these complexes are corroborated 

by density functional theory (DFT) and time-dependent DFT (TD-DFT) investigations. 
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Results and Discussion 

Synthesis 

The ancillary ligand (pmdp) was obtained in 40% yield as a beige solid following a 

modified procedure281 wherein 2-benzylpyridine was treated with n-BuLi at -78 °C and 

subsequently reacted with 2-fluoropyridine under SNAr conditions (Figure 89). 

 

Figure 89: Synthesis route for 2,2'-(phenylmethylene)dipyridine; (a) i) THF, n-BuLi, N2, -78 

°C, 1 h; ii) 2-fluoropyridine, THF, -78 °C to r.t., 18 h. (3) reflux, 3 h.  

 Complexes 61 and 62 were obtained as their hexafluorophosphate salts in a two-step 

synthesis following our previously reported protocol (Figure 90).174 In the first step, the bis(µ-

Cl) dimer was obtained in high yields (91% and 94% for R = H and R = F, respectively) as a 

yellow solid by treatment of the corresponding C^N ligand with IrCl3.6H2O in a 3:1 mixture of 

2-ethoxyethanol/H2O (125 °C, 24 h). This dimer was then cleaved with 2,2'-

(phenylmethylene)dipyridine in a 1:1 mixture of CH2Cl2/MeOH (40 °C, 18 h) to afford the 

cationic Ir(III) complexes as their chloride salts. After column chromatography on silica 

(eluent: 8% MeOH in CH2Cl2) followed by an ion exchange with aqueous NH4PF6 and 

recrystallisation, complexes 61 and 62 were isolated as yellow solids in excellent yield (81% 

and 89%, respectively) as their hexafluorophosphate salts.   
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Figure 90: Procedure for the synthesis of target complexes (61 and 62) in this study. a) 

IrCl3
.6H2O, corresponding C^N ligand, 2-ethoxyethanol/water (3:1), 125 °C, 24 h. b) 1. 2,2'-

(phenylmethylene)dipyridine, MeOH/CH2Cl2 (1:1), 40 °C, 18h. 2. aq. NH4PF6. 

Complexes 61 and 62 were characterised by 1H, 13C and 31P NMR spectroscopy and, 

for 61, 19F NMR spectroscopy in CDCl3; ESI-HR mass spectrometry, elemental analysis, and 

melting point determination. Due to the phenyl group on the N^N ligand, the two C^N ligands 

are no longer symmetrical as in the above examples of Chapter 2 – 4. This translates into the 

double amount of resonances for the C^N ligand. A characteristic signal in the 1H NMR spectra 

is the singlet at around 5.90 – 5.30 ppm arising from the C-H on the bridge of the N^N ligand. 

As expected the 13C NMR also shows a higher number of resonances compared to the examples 

from Chapter 2 – 4. For 61, a splitting of resonances for the C-F carbons is detected leading to 

not well resolved doublets. With respect to the complexes in Chapter 2 these complexes behave 

in a comparable way in HR-ESI mass spectrometry and elemental analysis. The structure of 

complex 61 was determined by single crystal X-ray diffraction. 
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Crystal Structure 

Single crystals of sufficient quality of 61 were grown from vapor diffusion of a CH2Cl2 

solution of the complex with hexane acting as the anti-solvent. The structure of 61 was 

determined by single-crystal X-ray diffraction (Figure 91, and Table 30). Complex 1 shows a 

distorted octahedral coordination environment around the iridium with the two N atoms of the 

C^N ligands in the typical trans configuration. The Ir-CC^N bond lengths of [2.005(4) and 

2.005(5) Å] and the Ir-NC^N bond lengths [2.049(3) and 2.057(4) Å] are expectedly in the same 

range as the respective average bond lengths in 63 [Ir-CC^N = 2.000 Å and Ir-NC^N = 2.035 Å]. 

The Ir-NN^N bonds [2.200(4) and 2.197(4) Å], are notably longer than those of a related complex 

[Ir(ppy)2(dpa)]PF6 (average Ir-NN^N = 2.171 Å). 

  

Figure 91: Solid-state structures of complex 61. Hydrogen atoms, PF6
-
 counterions and solvent 

molecules are omitted for clarity. C = light grey, N = blue, F = yellow, Ir = magenta. 
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Table 30: Selected crystallographic parameters for complexes 61. 

 Bond Length / Å Bond Angle / ° Plane Angle / °a 

 Ir-CC^N Ir-NC^N Ir-NN^N C-Ir-NC^N N-Ir-N C-Cmethylen-Cb  

61 2.005(4) 

2.005(5) 

2.049(3) 

2.057(4) 

2.200(4) 

2.197(4) 

80.3(2) 

80.5(2) 

88.01 117.3(4) 71.4(2) 

78.8(2) 

a Angles between the planes of mesityl ring and the pyridine of the C^N ligands; b Bond angle within ancillary 

ligand between the two pyridines occupying a mutually V-shape orientation. 

 

Compared to the average bond lengths in 63 (2.125 Å), the Ir-NN^N bonds in 61 are 

significantly longer.176 The bite angles of the C^N ligands in 61 are 80.3(2)° and 80.5(2)°, 

which are in the same range as the corresponding bond angles in 63 (average CC^N-Ir-NC^N = 

80.8°). The bite angle of the ancillary ligand in 61 is 88.0(1)°, which is slightly increased 

compared to that in [Ir(ppy)2(dpa)]PF6
 [86.0(2)°].265 Expectedly, compared to the ancillary 

ligand bite angle found in 63 [76.2(4)°], a significant enlargement can be observed. The angles 

between the planes of mesityl ring and the pyridine of the C^N ligands in 61 are 71.4(2)° and 

78.8(2)°, which are slightly smaller than analogous inter-planar angles in 63 [84.5° and 85.0°], 

while being larger than those found in the racemic form of 21 [57.3°], but falling between the 

angles found in the enantiopure forms of 21 [74.9° and 89.4°].175,190 

A noticeable feature revealed by the crystal structure of 61 is the configuration of the 

spacer group, which orients the phenyl substituent in an axial position. The two N^N pyridines 

are not co-planary but occupy a mutually V-shape orientation with a bond angle of 117.3(4)°, 

which is significantly larger than that expected for bond angles on a pure tetrahedral carbon. 

Electrochemical Properties 

The electrochemical behaviour of 61 and 62 was evaluated by cyclic voltammetry (CV) 

and differential pulse voltammetry (DPV) in deaerated MeCN solution at 298 K at a scan rate 

of 100 mV s−1 using Fc/Fc+ as the internal reference and referenced with respect to SCE (0.38 
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V vs. SCE).189 The voltammograms are depicted in Figure 92 and the electrochemistry data are 

found in Table 31. Both complexes exhibit a quasi-reversible single electron oxidation, which 

can be attributed to the Ir(III)/(IV) redox couple with contributions from the C^N ligands.22 

Complex 61, bearing the dFmesppy C^N ligands, displays a notably more positive oxidation 

potential (1.79 V) than 62 (1.36 V) as a function of the presence of the electron-withdrawing 

fluorine atoms, a trend that can be also seen in the comparison of 63 (1.59 V) and 21 (1.17 V 

in CH2Cl2). Both 61 and 62 are more difficult to oxidise compared to their respective reference 

complexes 63 and 21, demonstrating that the less-conjugated pmdp ligand influences less 

strongly the oxidation potential of the complex than the more -accepting dtBubpy ligand used 

in the reference complexes. Upon scanning to negative potential, surprisingly no reduction 

wave is observed for complex 61. Complex 62 exhibits three reduction waves, with the first 

being irreversible (-1.90 V), while the second (-2.15 V) and third (-2.42 V) being quasi-

reversible. 

 

Figure 92: Cyclic voltammetry (in solid line) and differential pulse voltammetry (in dotted line) 

of 61 and 62 carried out in degassed MeCN at a scan rate of 100 mV s-1, referenced to SCE 

(Fc/Fc+ = 0.38 V vs. SCE).189  
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Table 31: Electrochemical properties of complex 61 and 62 and their reference complexes. 

Electrochemistrya 

 
𝑬𝟏/𝟐

𝒐𝒙   / V 𝑬𝒑
 / mV 𝑬𝟏/𝟐

𝒓𝒆𝒅 / V 𝑬𝒑
 / mV 𝑬𝒓𝒆𝒅𝒐𝒙

b / V 𝑬𝑯𝑶𝑴𝑶
c / eV 𝑬𝑳𝑼𝑴𝑶

c / eV 

61 1.79 80 n.d.d - n.d. d -6.21 - 

62 1.36 78 -1.90e, 

-2.15, 

-2.42, 

-, 

120, 

98 

3.26 -5.78 -2.52 

63f 1.59 - -1.36 - 2.95 -6.01 -3.06 

21g 1.17 - -1.15e - 2.32 - - 

a in degassed MeCN at a scan rate of 100 mV s-1 with Fc/Fc+ as internal reference, and referenced with respect to 

SCE (Fc/Fc+ = 0.38 V in MeCN);
189 ΔEredox is the difference (V) between first oxidation and first reduction 

potentials; c EHOMO/LUMO = -[Eox/red vs Fc/Fc+ + 4.8] eV;191 d not detectable; e irreversible; f from ref. 
176

; g in CH2Cl2 

from ref 175.  

 

Compared to 21 (-1.15 V in CH2Cl2),
175 the first reduction wave of 62 is significantly 

shifted to more negative potential (by 0.75 V), reflecting the disruption of the conjugation of 

the N^N ligand, making a reduction more difficult. Based on a comparison with the 

electrochemistry reported by Thompson et al.273 for the related complex 

[Ir(topy)2(pz3CH)]CF3SO3 [where topy is 2-para-tolylpyridinato and pz3CH is −tri(1H-

pyrazol-3-yl)methane], the first two reduction waves are the result of successive reductions of 

the pyridyl rings of the two C^N ligands while the third reduction wave corresponds to the 

reduction of the ancillary ligand.  
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Photophysical Properties 

UV-vis absorption spectra for 61 and 62 are shown in Figure 93 with the data 

summarised in Table 32. 

 

Figure 93: UV-vis absorption and photoluminescence spectra of 61 and 62 in MeCN at 298 K.  

Complexes 61 and 62 both exhibit similar absorption profiles to their respective 

reference complexes. High intensity bands below 270 nm ( on the order of 39 – 45 × 103 M-

1cm-1) are observed for 61 and 62 and are assigned as ligand-centred –* transitions, which is 

a typical feature for associated complexes of the form of [Ir(C^N)2(N^N)]+.187 Complexes 61 

and 62 both exhibit similar absorption profiles to their respective reference complexes. High 

intensity bands below 270 nm ( on the order of 39 – 45 × 103 M-1cm-1) are observed for 61 and 

62 and are assigned as ligand-centred –* transitions, which is a typical feature for associated 

complexes of the form of [Ir(C^N)2(N^N)]+.187   
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Table 32: Photophysical properties of 61 and 62 and their reference complexes.  

 
MeCNa PMMA Filmb Neat Filmc Glassd 

 

PL
e
 

/ nm 

PL
f 

 / % 

PL
g  

/ ns 

PL
e
 

/ nm 

PL
h 

 / % 

PL
g  

/ ns 

PL
e
 

/ nm 

PL
h 

 / % 

PL
g 

/ ns 

PL
e
 

/ nm 

PL
g 

/ ns 

61 

460,  

488 

(sh) 

30 

186 (15 %) 

445 (85 %) 

459 (sh), 

488 

46 

325 (5%) 

1260 (35%) 

3260 (60%) 

464 (sh), 

490, 

527 (sh) 

21 

75 (12%) 

263 (46%) 

755 (42%) 

455,  

487 (sh) 

516 (sh) 

20 (1%) 

2920 (99%) 

62 

481,  

509 

(sh) 

11 

95 (16 %) 

206 (84 %) 

478,  

512 (sh) 

26 

162 (4%) 

770 (31%) 

2000 (65%) 

485 (sh), 

514, 

581 (sh) 

9 

71 (33%) 

210 (63%) 

1195 (4%) 

473,  

508 (sh), 

539 (sh), 

200 (1%) 

2800 (99%) 

63i 515 80 1370 

474 (sh),  

502 

97 16300 508 54 

390 (68%) 

1230 (34%) 

- - 

21j 577 40 757 - - - 

478, 

516, 

550 

18 

25 (6%) 

211 (0.42) 

672 (0.52) 

- - 

a In deaerated MeCN at 298 K; b at 298 K, spin-coated from a 2-methoxyethanol solution of 5 wt% of the complex in 

PMMA on a pristine quartz substrate; c at 298 K, spin-coated from a 2-methoxyethanol solution; d in 2-MeTHF at 77 

K; e exc = 360 nm; f Quinine sulfate used as the reference (PL = 54.6% in 0.5 M H2SO4 at 298 K);24 g exc = 378 nm; 
h Measured using an integrating sphere; i from ref. 17a; j in CH2Cl2 from ref 18.  

 

Moderately intense bands ( on the order of 9 – 20 × 103 M-1cm-1) in the region of 310 

–  345 nm are assigned to a combination of spin-allowed singlet metal-to-ligand and ligand-to-

ligand charger transfer (1MLCT/1LLCT) transitions, and appear as a shoulder and are blue-

shifted by 31 nm (2879 cm-1) for 61 compared to 62, which is due to the electron-withdrawing 

fluorine atoms present in the former. At lower energies both complexes exhibit low intensity 
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bands ( on the order of 0.5 – 6 × 10-3 M-1cm-1) in the region of 360 – 450 nm that are attributed 

to a combination of spin-forbidden 3MLCT/3LLCT transitions.  

The photoluminescence properties of 61 and 62 were investigated at 298 K in degassed 

MeCN (Figure 93), as polymethyl methacrylate (PMMA) doped films (5 wt% of complex in 

PMMA) and as spin-coated neat films (Figure 94a). The spectra of 61 and 62 in a 2-

methyltetrahydrofuran (2-MeTHF) glass at 77 K are depicted in Figure 94b. The photophysical 

data of 61 and 62 and the reference complexes are summarised in Table 32.  

Upon photoexcitation at 360 nm in MeCN, 61 and 62 show structured emission profiles, 

indicative of a ligand-centred emission, with maxima at 460 and 480 nm for 61, and 481 and 

509 nm for 62, the former being more intense in both cases. The emission maxima of 61 is blue-

shifted by 55 nm (2322 cm-1) compared to that of 63 (PL = 515 nm),176  which itself presents 

an unstructured mixed charge-transfer emission profile. The same trend is observed when 

comparing the emission of 62 to 21 (PL = 577 nm in CH2Cl2).
175 Comparison of the 

photophysical properties of 62 with the archetype complex [Ir(ppy)2(bpy)]PF6, 12 (PL = 602 

nm, PL = 9%)187 reveals an even more pronounced blue-shift ( = 121 nm, 4179 cm-1). A 

comparison with the structurally related complex 50 (with PL = 477, 507 (sh) nm, PL = 10% 

in MeCN) reveals an essentially similar photophysical profile.264 The photoluminescence 

quantum yield (PL,MeCN) of 61 is 30%, which is notably higher than that of 62 (PL,MeCN = 

11%), a trend that is also observed in 63 and 21. 
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Figure 94: Photoluminescence spectra of 61 and 62 a) recorded in PMMA doped films (5 wt% 

of complex in PMMA) in solid lines and in neat film (spin-coated from 2-methoxyethanol) in 

dotted lines (exc = 360 nm); b) recorded in 2-MeTHF Glass at 77 K (exc = 360 nm). 
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Compared to their reference complexes 63 (PL = 80%) and 21 (PL = 40%), 61 and 62 

show much lower PL values, which can be rationalised by the flexibility of the N^N ancillary 

ligand leading to increased non-radiative decay. Both complexes exhibit bi-exponential 

emission lifetimes, PL, in the sub-microsecond regime.  

The emission energies and profiles of 61 and 62 in 5 wt% PMMA-doped films are not 

significantly changed compared to those in MeCN. The photoluminescence quantum yields of 

the PMMA-films are increased (PL, PMMA = 46 and 26% for 61 and 62, respectively) compared 

to the solution-state measurements. This behaviour of an increase in PL in doped films is also 

observed in 63 and is attributed mainly to a reduction in knr due to the expected reduction of the 

conformational motions of both the mesityl groups, and in the case of 61, the N^N ligand. Both 

complexes exhibit a three-component emission decay in the sub-microsecond regime in doped 

films, with the longest component significantly longer than the corresponding long component 

of PL in MeCN.  

In spin-coated neat films the structured emission profiles are likewise not significantly 

changed compared from those in MeCN; however, they exhibit a more pronounced shoulder at 

527 and 581 nm, respectively. Compared to the neat films, the PMMA-doped films show a 

slight blue-shift (PL, PMMA =
 459 (sh), 488 nm and PL, PMMA = 478, 512 (sh) nm for 61 and 62, 

respectively). The photoluminescence quantum yields of the neat films (PL, Neat) are lower 

(PL, Neat = 21 and 9% for 61 and 62, respectively) compared to the solution-state measurements. 

The decrease in PL in neat films was also observed in 63 and 21 and can be explained by π-

stacking intermolecular interactions between mesityl rings on adjacent complexes, providing 

an avenue for aggregation-caused quenching.  

Both complexes exhibit a three-component emission decay in the sub-microsecond 

regime in neat films, which are significantly shorter compared to the measurements in PMMA 

films. There is no significant shifting in the emission energy at low temperature compared to 
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measurements at 298 K, a reflection that the emission under both sets of conditions remains 

ligand-centred. The emission decay profiles for both 61 and 62 are biexponential in the glass, 

with an expected much longer emission lifetime compared to those in MeCN.  

Theoretical calculations 

To gain more insights into the nature of the excited-states in both 61 and 62, we have 

performed DFT and TD-DFT calculations in acetonitrile. First, for 61 the DFT optimized 

geometry present Ir-CC^N, Ir-NC^N and Ir-NN^N bond lengths of 2.003 and 2.003 Å, 2.058 and 

2.065 Å, and 2.223 and 2.242 Å, respectively. These values are close to the ones obtained from 

the crystal structure (vide supra) with a mean absolute deviation of 0.018 Å. The bite angles 

are 80.2° and 80.5° for the C^N ligands, and 86.9° for the ancillary ligand, are likewise close 

to their experimental counterparts. This indicates that the selected theoretical protocol is 

physically sound for the considered complexes. The DFT calculations indicate that when going 

from 61 to 62, the energy of the HOMO increases by 0.34 eV, which is rather consistent with 

the electrochemical value (0.43 eV, see Table 31), whereas the energy of the LUMO is shifted 

to higher energy by 0.11 eV, resulting in a HOMO-LUMO gap that is smaller by 0.23 eV in the 

fluorine-free complex. As can be seen in Figure 95, the HOMO is mainly centred on the metal 

and the cyclometalating aryl rings of the C^N ligands, whereas the LUMO is principally 

localized on the pyridyl rings of the C^N ligand that is the furthest away from the ancillary 

phenyl ring. This holds for both compounds, so that the observed electrochemical differences 

are mainly due to the inductive effects of the fluorine atoms and not to a change in shape of the 

frontier orbitals. These MO topologies are also consistent with the fact that the energy of the 

HOMO significantly varies from 61 to 62, whereas the LUMO energy is less affected.  
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Figure 95: Representation of the six frontier orbitals of 61 (top) and 62 (bottom). A contour 

threshold of 0.03 au is used, and the hydrogen atoms have been omitted for clarity. 

TD-DFT calculations return several low-lying triplet states, the lowest being located at 

442 nm in 61 and 463 nm in 62. The lowest dipole-allowed singlet excited states are computed 

at 373 nm (f=0.054) in 61 and 399 nm (f=0.063) in 62, corresponding to a blue-shift of 26 nm 

between the two complexes, in line of the experimental value (31 nm, vide supra) though the 

computed wavelengths are slightly longer than their experimental counterparts. These singlet 

transitions are mainly ascribable to a HOMO-LUMO electronic promotion, and therefore 

present a mixed 1MLCT/1LLCT character, L being the C^N ligand(s), with the N^N ligand not 

being involved in these transitions. In 61, the next singlet transitions presenting significant 

oscillator strengths are located at 340 nm (f=0.012), 337 nm (f=0.025) and 329 nm (f=0.202). 

These three absorptions mainly correspond to HOMO-1 to LUMO+1, HOMO-2 to LUMO and 

HOMO-2 to LUMO+1 electronic transitions, indicating that the first and the third present a 

significant CT character towards the N^N ligand. 
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In 61, the DFT computed 0-0 phosphorescence wavelength is 476 nm, a value that takes 

into account the zero-point vibrational effects. In 62, the computed value is 501 nm, at lower 

energy in agreement with experimental data. In both 61 and 62, the spin density plot of the 

lowest triplet excited-state shows contributions from the metal and C^N ligand residing the 

closest to the phenyl ring of the ancillary ligand, confirming the mixed nature of the emitting 

state (Figure 96). We would therefore make the hypothesis that the interaction with the phenyl 

ring of the ancillary ligand tends to stabilize the spin density on the closest C^N ligand. Indeed, 

for 62, we have been able to locate a triplet state presenting a more uniform delocalization of 

its density on both C^N ligands, but it is higher in energy than the one represented in Figure 96. 

 

Figure 96: Representation of the spin density difference plot for 1 (left) and 2 (right). Contour 

threshold: 0.0008 au. 
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Conclusions 

Two new cationic blue and blue-green-emitting iridium complexes of the 

[Ir(C^N)2(N^N)]PF6 form bearing mesitylated C^N ligands and a six-membered chelate 

methine bridged N^N are reported. The ancillary ligand pmdp (2,2'-

(phenylmethylene)dipyridine) consists of two pyridyl rings, whose electronic crosstalk is 

disrupted by a phenyl substituted methylene group. For both complexes we performed the 

synthesis, characterization and optoelectronic properties. The crystal structure of 61 reveals that 

the phenyl substituent on the ancillary ligand adopts a pseudo-axial configuration. By using 

such an ancillary ligand, a significant blue-shift in the emission is observed for 61 and 62 

compared to their reference complexes. Adding the non-conjugated spacer in the ancillary 

ligand results in a switching of the nature of the emissive state from 3MLCT/3LLCT to 

3MLCT/3ILCT when compared to bpy-based reference complexes. The photoluminescence 

quantum yields were lower compared to the reference complexes as a consequence of the 

increased fluxional motion of the ancillary ligand. Photoluminescence studies were also 

performed in neat films and the PMMA-doped films showing similar structured emission 

profiles.  

It has been demonstrated that employing the nonconjugated N^N ligand 2,2'-

(phenylmethylene)dipyridine, is a successful strategy to blue-shift the emission of Ir(III) 

complexes.
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Chapter 7 

Concluding Remarks 

Phosphorescent Ir(III) complexes have attracted tremendous interest for their 

application in lighting and visual displays thanks to their excellent photophysical properties, 

which depend strongly on the ligand design. This work described the design, synthesis and 

characterisation as well as the optoelectronic properties of Ir(III) complexes for application in 

nonlinear optical and electroluminescent devices. Physical and photophysical properties of 

these complexes are corroborated by theoretical studies employing density functional theory 

(DFT) and time-dependent DFT (TD-DFT) calculations. 

The structure of the complexes varies from the [Ir(C^N)2(N^N)]+-type (where C^N  and 

N^N are five- or six-membered ring chelates) to the more unusual structure of 

[Ir(C^N^C)(N^N)Cl] [where C^N^C is a bis(six-membered)chelate tridentate tripodal ligand]. 

Two challenges for electroluminescent devices are the efficiency and stability, both of 

which can be improved by decorating the ligands with bulky substituents. Cationic complexes 

of the form [Ir(C^N)2(dtBubpy)]PF6 with hydrophobic bulky substituents were designed. The 

emission energy was essentially unchanged upon incorporation of various substituted aryl 

groups on the 4-position of the pyridine of the C^N ligand, due to the orthogonal orientation of 

the two aromatic substituents, a feature demonstrated by crystallographic studies. Selected 

complexes were tested in light-emitting electrochemical cells, resulting in bright yellow-

emitting devices. For devices fabricated with complexes bearing bulky substituents, the devices 

were moderately efficient and with rather short lifetimes. The most stable devices were obtained 

for the complex without any substituents on the C^N ligands. The device with the complex 

substituted with a tert-butyl group at the 4 position of the pyridine of the C^N ligands showed 

the highest efficiency. Paradoxically, given what was previously reported in the literature the 



Chapter 7 – Conclusion 

- 180 - 

 

concept of using bulky aromatic substituents was not successful since complexes with aromatic 

substituents generally showed very poor device performances.   

Ir(III) complexes of the form [Ir(C^N)2(N^N)]+ can also show excellent NLO activity. 

In order to improve further their NLO activity triphenylamine (TPA) substituents were 

introduced at various positions onto the C^N ligands, which introduced intra-ligand charge 

transfer (ILCT) transitions. Cationic complexes bearing either 4,4’-ditert-butyl-2,2’-bipyridine 

or 5-NO2-1,10-phenanthroline along with cyclometalated 2-phenylpyridines substituted with 

TPA meta or para to the Ir-CC^N bond or para to Ir-NC^N bond exhibited very good EFISH 

values. These results are amongst the best for cationic Ir(III) complexes. One of the prepared 

iridium compounds was incorporated into a polystyrene film, affording the first example of a 

second-order NLO active polymeric film based on a cationic organometallic complex 

exhibiting satisfactory results. Future studies may envisage using two TPA units on the C^N 

ligands coupled with other ancillary ligands bearing other acceptor groups designed to enhance 

LLCT. Molecular structures with second-order nonlinear optical (NLO) properties are useful 

as materials acting as building blocks for application in optical communications, optical data 

processing and storage, or optoelectronic devices. 

 

Figure 97: Envisaged future study for NLO 

We were also interested in investigating new ligand designs. Typically, cationic Ir(III) 

complexes consist of ligands (C^N and N^N ligands) that form a five-membered ring around 
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the metal centre. Expanding the ring size from a five- to six-membered chelate is rare. Using 

the nonconjugated benzylpyridinato as cyclometalating ligand resulted in a new series of 

cationic iridium(III) complexes containing six-membered chelate rings. The methylene spacer 

in the C^N ligands provided conformational flexibility leading to the formation of two 

conformers. The fluxional behaviour was investigated through NMR and detailed density 

functional theory (DFT) studies. Depending on the nature of the N^N ligand, phosphorescence 

ranging from yellow to red and marked variations of the ratio of the conformers was observed. 

Future studies may focus on trying to hinder conformational flexibility by incorporating bulky 

substituent on the CH2 bridge forcing the system to stay in one conformation (Figure 98). 

 

Figure 98: Envisaged future study for bidentate six-membered ring chelates 

 An unusual double C−H bond activation of 2-benzhydrylpyridine (bnpyH2) by 

complexation to iridium gave rise to an unprecedented tridentate tripod C^N^C ligand. The X-

ray crystal structure reveals an unstrained geometry thanks to the formation of three six-

membered chelate rings. Yellow to red phosphorescence could be obtained through changing 

the nature of the substituent on the C^N^C ligand. Many examples of tridentate ligands were 

successfully used in Ir chemistry, but the use of tripodal ligand in the field of luminescence is 

quite rare giving rise to a new class of Ir(III) complexes. Modification of the ancillary ligand 

and the monodentate ligand posed problems. Prospective studies may focus on overcoming the 

synthetic hurdles to substitute the monodentate ligand with other inorganic (e.g. bromide, iodide 

and isocyanate) or organic (phenylacetylide) monodentate ligands and altering the ancillary 
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ligand by other substituted diimines bearing electron-donating or electron-withdrawing groups 

to obtain new complexes of this class. 

Substitution of the N^N with electron-withdrawing ester substituents resulted in a 

panchromatic NIR dye, suitable for DSSC applications. Only modest efficiency of 0.49% could 

be achieved, which is however comparable to other Ir(III) dyes.  This can be attributed to the 

modest absorption coefficient, which lead to weak light harvesting in the visible region and low 

short-circuit current. Through a further investigation of this ligand system a better 

understanding of the relation between the structure and properties may be possible to explore 

further the field of Ir dyes for DSSC application. Future work may involve using other ligand 

systems to redshift the emission (Figure 99). 

 

 

Figure 99: Envisaged future study with a modified tripod ligand 

In the last decade blue-emitting iridium(III) complexes have been successfully 

employed for solution-processed OLEDs and LEECs. However, it is still an ongoing challenge 

to develop blue-colour purity, high efficiency and good stability. One strategy to blue-shift the 

emission is to decorate the C^N ligand with electron-withdrawing groups or the N^N with 

electron-donating. Another successful approach to tune the emission towards the blue is to 

employ a nonconjugated ancillary ligand and some examples have been previously reported. 

We employed the nonconjugated diimine 2,2'-(phenylmethine)dipyridine, whose pyridine rings 

are separated by a phenyl-substituted methine bridge can form a six-membered ring when 

coordinated to iridium. The chelating motif was confirmed by single-crystal X-ray diffraction. 
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With C^N ligands based on 4-mesityl-2-phenylpyridinato blue-green and sky-blue emission 

can be obtained. A current challenge while developing blue emitters is to do without the use of 

fluorine substituents which have shown to lead to degradation during device operation. Our 

approach using this ligand is a strategy to successfully tune the emission to the blue. This study 

also shows the impact of the substituent on the methine spacer, on the photophysical 

characteristics, compared to reported related examples. Future studies may involve 

disubstituting the methine bridge to rigidify the system and reduce motional flexibility of the 

ancillary ligand (Figure 100).  

 

 

Figure 100: Envisaged future study to rigidify the methine bridge 
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Chapter 8 

Experimental 

General Synthetic Procedures 

Commercial chemicals were used as supplied. All reactions were performed using 

standard Schlenk techniques under inert (N2 or Ar) atmosphere with reagent-grade solvents. 

Flash column chromatography was performed using silica gel (Silia-P from Silicycle, 60 Å, 40-

63 µm). Analytical thin layer chromatography (TLC) was performed with silica plates with 

aluminium backings (250 µm with indicator F-254). Compounds were visualised under UV 

light. 1H, 13C, 19F and 31P solution-phase NMR spectra were recorded on a Bruker Avance 

spectrometer operating at 11.7 T (Larmor frequencies of 400, 500; 100, 101, 126; 376 and 162 

MHz, respectively). The following abbreviations have been used for multiplicity assignments: 

“s” for singlet, “d” for doublet, “t” for triplet and “m” for multiplet. 1H and 13C NMR spectra 

were referenced to the solvent peak. Melting points (Mps) were recorded using open-ended 

capillaries on an electrothermal melting point apparatus and are uncorrected. High-resolution 

mass spectra were recorded at the EPSRC UK National Mass Spectrometry Facility at Swansea 

University on a quadrupole time-of-flight (ESI-Q-TOF), model ABSciex 5600 Triple TOF in 

positive electrospray ionisation mode and spectra were recorded using sodium formate solution 

as the calibrant. Elemental analyses were performed by Mr. Stephen Boyer, London 

Metropolitan University. 
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Syntheses of Ligands and organic Intermediates 

Borylation Reactions 

General Procedure 

A solution of Bromo-aryl (1.00 equiv.) in dry THF was cooled to -80 °C in an 

EtOH/N2,liq bath and n-BuLi (1.80 equiv.) was added dropwise at -80 °C. The reaction mixture 

was kept at this temperature under stirring. After 45 min triisopropyl borate (3.00 equiv.) was 

added dropwise to the solution at -80 °C. The mixture was allowed to warm to room 

temperature. After 14 h of stirring without cooling the reaction mixture was poured onto ice 

water (50 mL), acidified with HCl until pH 2 and extracted with Et2O (40 mL). The combined 

organic layers were washed with an aqueous NaHCO3 solution till pH 6, washed with brine (10 

mL), dried over MgSO4, and concentrated in vacuum giving a crude residue which was used as 

such. 

(3,5-di-tert-butylphenyl)boronic acid 

 

The synthesis of this compound was carried out using 1-bromo-3,5-di-tert-

butylbenzene. 

(4-(diphenylamino)phenyl)boronic acid 

 

The synthesis of this compound was carried out using 4-bromo-N,N-diphenylaniline. 
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Suzuki-Miyaura Cross-Coupling Reactions 

General Procedure 

A mixture of the aryl halide (1.00 equiv.), aryl boronic acid (1.50 equiv.) in the presence 

of a base (5.00 equiv.) and 1,4-dioxane/water (4/1) was degassed via three purging cycles of N2 

and vacuum. Pd(PPh3)4 (0.05 equiv.) was added, and the reaction mixture was heated to 95 °C 

and kept at reflux. After the specific time, the reaction mixture was allowed to cool to room 

temperature and the solvent was removed leaving a residue which was dissolved in organic 

solvent and washed with water and brine. After layer separation, the combined organic layers 

were dried over MgSO4. The solvent was evaporated leaving a residue, which was purified by 

column chromatography on silica. 

2-chloro-4-mesitylpyridine  

 

The synthesis of this compound was carried out using 2-chloro-4-iodopyridine (1.00 

equiv.), 2,4,6-trimethylphenylboronic acid (1.50 equiv.) and K2CO3 (5.00 equiv.). The reaction 

mixture was kept at reflux for 3 days. The crude was dissolved in toluene. The compound was 

purified by column chromatography (20% of EtOAc in petroleum ether on silica) yielding a 

colourless oil (0.685 g). Yield: 94%. Rf: 0.42 (10% EtOAc in petroleum ether on silica). 1H 

NMR (400 MHz, CDCl3) δ (ppm): 8.37 (d, 1H), 7.10 (s, 1H), 6.97 (dd, 1H), 6.92 (s, 2H), 2.29 

(s, 3H), 1.97 (s, 6H). 13C{1H} NMR (101 MHz, CDCl3) δ (ppm): 159.2, 152.7, 151.8, 149.7, 

136.6, 130.3, 125.5, 124.0, 113.0, 55.2, 20.9. HR-MS (FTMS+): [M-H]+ Calculated: 

(C14H14ClNH): 232.0888 Found: 232.0882. The characterisation matches that reported.76  

 



Chapter 8 – Experimental 

- 188 - 

 

2-chloro-4-(4-methoxy-2,6-dimethylphenyl)pyridine  

 

The synthesis of this compound was carried out using 2-chloro-4-iodopyridine (1.00 

equiv.), (4-methoxy-2,6-dimethylphenyl)boronic acid (1.50 equiv.) and K2CO3 (5.00 equiv.). 

The reaction mixture was kept at reflux for 3 days. The crude was dissolved in toluene. The 

compound was purified by column chromatography (15% of EtOAc in petroleum ether on 

silica) yielding a colourless oil (0.995 g). Yield: 94%. Rf: 0.32 (10% EtOAc in petroleum ether 

on silica). 1H NMR (400 MHz, CDCl3) δ (ppm): 8.44 (d, J=5.0, 1H), 7.15 (m, 1H), 7.04 (d, 

J=5.0, 1H), 6.95 (s, 2H), 2.33 (s, 3H), 2.00 (s, 6H). 13C{1H} NMR (126 MHz, CDCl3) δ (ppm): 

159.2, 152.7, 151.8, 149.7, 136.6, 130.4, 125.5, 124.0, 113.1, 55.2, 20.9. HR-MS (FTMS+): 

[M-H]+ Calculated: (C14H15ClNOH): 248.0837 Found: 248.0837. CHN: Calcd. for 

C14H14ClNO: C, 67.88; H, 5.70; N, 5.65. Found: C, 67.76; H, 5.59; N, 5.57. 

2-chloro-4-(3,5-di-tert-butylphenyl)pyridine 

 

The synthesis of this compound was carried out using 2-chloro-4-iodopyridine (1.00 equiv.), 

(3,5-di-tert-butylphenyl)boronic acid (1.50 equiv.) and K2CO3 (5.00 equiv.). The reaction 

mixture was kept at reflux for 3 days. The crude was dissolved in toluene. The compound was 

purified by column chromatography (15% of EtOAc in petroleum ether on silica) yielding a red 

solid (1.613 g). Yield: 96%. Rf: 0.40 (10 vol.% EtOAc in petroleum ether on silica). Mp: 68 

°C.  1H NMR (400 MHz, CDCl3) δ (ppm): 8.42 (d, 1H), 7.54 (d, 2H), 7.41 (m, 3H), 1.38 (s, 
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18H). 13C{1H} NMR (101 MHz, CDCl3) δ (ppm): 152.8, 152.0, 151.9, 149.8, 136.4, 123.8, 

122.3, 121.4, 120.8, 35.0, 31.4. HR-MS (FTMS+): [M-H]+ Calculated: (C19H25ClNH): 

302.1670 Found: 302.1668. CHN: Calcd. for C19H24ClN: C, 75.60; H, 8.01; N, 4.64. Found: 

C, 75.41; H, 7.93; N, 4.61. 

2-(4-bromophenyl)pyridine 

 

The synthesis of this compound was carried out using 2-bromo-pyridine (1.00 equiv.), 

(4-bromophenyl)boronic acid (1.50 equiv.) and K2CO3 (5.00 equiv.). The reaction mixture was 

kept at reflux for 3 days. The crude was dissolved in toluene. The compound was purified by 

column chromatography (10% of EtOAc in petroleum ether on silica) yielding a colourless 

liquid (1.915 g). Yield: 72%. Rƒ: 0.29 (10% of EtOAc in petroleum ether on silica). Mp: 60 – 

63 °C. Lit: 60 – 65 °C.282 1H NMR (400 MHz, CDCl3) δ (ppm): 8.69 (d, J = 4.3 Hz, 1H), 7.88 

(d, J = 8.6 Hz, 2H), 7.80 – 7.68 (m, 2H), 7.60 (d, J = 8.6 Hz, 2H), 7.28 – 7.23 (m, 1H). 13C{1H} 

NMR (126 MHz, CDCl3) δ (ppm): 156.4, 149.9, 138.3, 132.0, 128.6, 123.6, 122.6, 120.5, 

117.5. HR-MS (FTMS+): [M]+ Calculated: (C11H8BrNH): 233.9913; Found: 233.9915. The 

characterisation matches that reported.282  

2-(3-bromophenyl)pyridine 

 

The synthesis of this compound was carried out using 2-bromo-pyridine (1.00 equiv.), 

(3-bromophenyl)boronic acid (1.50 equiv.) and K2CO3 (5.00 equiv.). The reaction mixture was 

kept at reflux for 3 days. The crude was dissolved in toluene. The compound was purified by 
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column chromatography (10% of EtOAc in petroleum ether on silica) yielding a colourless 

liquid (0.560 g). Yield: 48%. Rƒ: 0.52 (10% of EtOAc in petroleum ether on silica). 1H NMR 

(400 MHz, CDCl3) δ (ppm): 8.69 (d, J = 4.5 Hz, 1H), 8.17 (s, 1H), 7.90 (d, J = 7.8 Hz, 1H), 

7.78 – 7.66 (m, 2H), 7.53 (d, J = 7.9 Hz, 1H), 7.33 (t, J = 7.9 Hz, 1H). 13C{1H} NMR (126 

MHz, CDCl3) δ (ppm): 155.8, 149.8, 141.4, 136.9, 131.9, 130.3, 130.0, 125.4, 123.1, 122.7, 

120.6. HR-MS (FTMS+): [M]+ Calculated: (C11H8BrNH): 233.9913; Found: 233.9910. The 

characterisation matches that reported.185 

4-bromo-2-phenylpyridine  

 

The synthesis of this compound was carried out using 2,4-dibromopyridine (1.00 

equiv.), phenylboronic acid (1.50 equiv.) and KOH (5.00 equiv.). The reaction mixture was kept 

at reflux for 2 days. The crude was dissolved in toluene. The compound was purified by column 

chromatography (10% of EtOAc in petroleum ether on silica) yielding a colourless liquid (0.475 

g). Yield: 32%. Rƒ: 0.30 (10% of EtOAc in petroleum ether on silica). 1H NMR (400 MHz, 

CDCl3) δ (ppm):  8.50 (d, J = 5.3 Hz, 1H), 7.96 (dd, J = 8.1, 1.4 Hz, 2H), 7.90 (d, J = 1.6 Hz, 

1H), 7.52 – 7.41 (m, 3H), 7.39 (d, J = 5.3 Hz, 1H). 13C{1H} NMR (126 MHz, CDCl3) δ (ppm): 

156.2, 150.1, 141.8, 137.3, 132.2, 130.6, 130.4, 125.8, 123.4, 123.1, 121.0. HR-MS (FTMS+): 

[M]+ Calculated: (C11H8BrNH): 233.9913; Found: 233.9915. The characterisation matches 

that reported.199 
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4-mesityl-2-phenylpyridine 

 

The synthesis of this compound was carried out using 2-chloro-4-mesitylpyridine (1.00 

equiv.), phenylboronic acid (1.50 equiv.) and Na2CO3 (5.00 equiv.). The reaction mixture was 

kept at reflux for 24 h. The crude was dissolved in CH2Cl2. The compound was purified by 

column chromatography (5% of EtOAc in petroleum ether on silica) yielding yellow oil (0.331 

g). Yield: 90%. Rf: 0.39 (10 vol.% EtOAc in petroleum ether on silica). 1H NMR (400 MHz, 

CDCl3) δ (ppm): 8.71 (d, J = 4.8 Hz, 1H), 8.02 – 7.97 (m, 2H), 7.56 (s, 1H), 7.50 – 7.37 (m, 

3H), 7.07 (dd, J = 4.8 Hz, 1H), 6.99 (s, 2H), 2.48 (s, 3H), 2.19 (s, 6H). 13C{1H} NMR (101 

MHz, CDCl3) δ (ppm): 157.7, 150.4, 150.0, 139.4, 137.7, 136.6, 135.3, 129.1, 128.9, 128.5, 

127.0, 123.3, 121.6, 21.2, 20.7. HR-MS (FTMS+): [M-H]+ Calculated: (C20H19NH): 

247.1590. Found: 247.1590. The characterisation matches that reported.76   

4-(4-methoxy-2,6-dimethylphenyl)-2-phenylpyridine 

 

The synthesis of this compound was carried out using 2-chloro-4-(4-methoxy-2,6-

dimethylphenyl)pyridine (1.00 equiv.), phenylboronic acid (1.50 equiv.) and Na2CO3 (5.00 

equiv.). The reaction mixture was kept at reflux for 24 h. The crude was dissolved in CH2Cl2. 

The compound was purified by column chromatography (5% of EtOAc in petroleum ether on 

silica) yielding colourless oil. Yield: 89%. Rf: 0.25 (10 vol.% EtOAc in petroleum ether on 



Chapter 8 – Experimental 

- 192 - 

 

silica). 1H NMR (400 MHz, CDCl3) δ (ppm): 8.70 (dd, J=4.9, 1H), 8.00 (m, 2H), 7.55 (s, 1H), 

7.46 (m, 3H), 7.06 (dd, J=4.9, 1H), 6.72 (s, 2H), 3.93 (s, 3H), 2.21 (s, 6H). 13C{1H} NMR (101 

MHz, CDCl3) δ (ppm): 158.9, 157.6, 150.2, 149.8, 139.3, 136.8, 131.9, 129.0, 128.7, 126.9, 

123.6, 121.9, 113.0, 55.2, 21.0. HR-MS (FTMS+): [M-H]+ Calculated: (C20H19NOH): 

290.1539 Found: 290.1538. CHN: Calcd. for C20H19NO: C, 83.01; H, 6.62; N, 4.84. Found: 

C, 82.89; H, 6.56; N, 4.73. 

4-(3,5-di-tert-butylphenyl)-2-phenylpyridine 

 

The synthesis of this compound was carried out using 2-chloro-4-(3,5-di-tert-

butylphenyl)pyridine (1.00 equiv.), phenylboronic acid (1.50 equiv.) and Na2CO3 (5.00 equiv.). 

The reaction mixture was kept at reflux for 24 h. The crude was dissolved in CH2Cl2. The 

compound was purified by column chromatography (5% of EtOAc in petroleum ether on silica) 

yielding a colourless solid. Yield: 85%. Rf: 0.22 (5 vol.% EtOAc in petroleum ether on silica). 

1H NMR (400 MHz, CDCl3) δ (ppm): 8.73 (d, 1H), 8.05 (d, 2H), 7.90 (s, 1H), 7.52 (m, 5H), 

7.45 (d, 2H), 1.40 (s, 18H). 13C{1H} NMR (101 MHz, CDCl3) δ (ppm): 158.0, 151.7, 150.7, 

149.9, 139.6, 138.2, 129.0, 128.8, 127.1, 123.2, 121.5, 120.8, 119.2, 35.0, 31.5. HR-MS 

(FTMS+): [M-H]+ Calculated: (C25H29NH): 344.2371 Found: 344.2373. CHN: Calcd. for 

C25H29N: C, 87.41; H, 8.51; N, 4.08. Found: C, 87.31; H, 8.43; N, 4.14. 
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N,N-diphenyl-4'-(pyridin-2-yl)-[1,1'-biphenyl]-4-amine 

 

The synthesis of this compound was carried out using 2-(4-bromophenyl)pyridine (1.00 

equiv.), (4-(diphenylamino)phenyl)boronic acid (1.50 equiv.) and K2CO3 (5.00 equiv.). The 

reaction mixture was kept at reflux for 18 h. The crude was dissolved in toluene. The compound 

was purified by column chromatography (10% of EtOAc in petroleum ether on silica) yielding 

a grey solid (0.613 g). Yield: 73%. Rƒ: 0.34 (10% of EtOAc in petroleum ether on silica). Mp: 

171 – 175 °C. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.71 (d, J = 4.8 Hz, 1H), 8.06 (d, J = 8.4 

Hz, 2H), 7.77 (s, 2H), 7.69 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 8.6 Hz, 2H), 7.29 (d, J = 8.3 Hz, 

3H), 7.23 (dt, J = 6.1, 2.5 Hz, 1H), 7.16 (d, J = 2.3 Hz, 5H), 7.04 (t, J = 7.3 Hz, 2H). 13C{1H} 

NMR (126 MHz, CDCl3) δ (ppm): 157.2, 149.8, 147.7, 147.5, 141.2, 137.8, 136.8, 134.4, 

129.4, 127.8, 127.4, 127.0, 124.6, 123.9, 123.1, 122.1, 120.5. HR-MS (FTMS+): [M]+ 

Calculated: (C29H22N2H): 399.1856; Found: 399.1851. The characterisation matches that 

reported.283 

N,N-diphenyl-3'-(pyridin-2-yl)-[1,1'-biphenyl]-4-amine 

 

The synthesis of this compound was carried out using 2-(3-bromophenyl)pyridine (1.00 

equiv.), (4-(diphenylamino)phenyl)boronic acid (1.50 equiv.) and K2CO3 (5.00 equiv.). The 

reaction mixture kept at reflux for 18 h. The crude was dissolved in toluene. The compound 
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was purified by column chromatography (10% of EtOAc in petroleum ether on silica) yielding 

a brown solid (0.798 g). Yield: 94%. Rƒ: 0.28 (10% of EtOAc in petroleum ether on silica). 

Mp: 93 – 96 °C. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.75 (dt, J = 4.8, 1.5 Hz, 1H), 8.25 (t, 

J = 1.9 Hz, 1H), 7.96 (dt, J = 7.7, 1.5 Hz, 1H), 7.86 – 7.74 (m, 2H), 7.69 – 7.52 (m, 4H), 7.33 – 

7.26 (m, 5H), 7.19 (td, J = 6.9, 3.4 Hz, 6H), 7.11 – 7.03 (m, 2H). 13C{1H} NMR (101 MHz, 

CDCl3) δ (ppm): 157.6, 149.8, 147.8, 147.4, 141.4, 139.9, 136.9, 135.1, 129.4, 129.3, 128.4, 

127.4, 125.6, 125.5, 124.5, 124.1, 123.1, 122.3, 120.9. HR-MS (FTMS+): [M]+ Calculated: 

(C29H22N2H): 399.1856; Found: 399.1846. CHN: Calcd. for C29H22N2x1/5CH2Cl2: C, 84.41; 

H, 5.43; N, 6.74. Found: C, 84.28; H, 5.79; N, 6.55. 

N,N-diphenyl-4-(2-phenylpyridin-4-yl)aniline 

 

The synthesis of this compound was carried out using 4-bromo-2-phenylpyridine (1.00 

equiv.), (4-(diphenylamino)phenyl)boronic acid (1.50 equiv.) and K2CO3 (5.00 equiv.). The 

reaction mixture was kept at reflux for 18 h. The crude was dissolved in toluene. The compound 

was purified by column chromatography (10% of EtOAc in petroleum ether on silica) yielding 

a brown oil (0.513 g). Yield: 95%. Rƒ: 0.63 (20% of EtOAc in petroleum ether on silica). 1H 

NMR (400 MHz, CDCl3) δ (ppm):  8.70 (d, J = 5.2 Hz, 1H), 8.07 – 8.00 (m, 2H), 7.90 (d, J = 

1.6 Hz, 1H), 7.61 – 7.55 (m, 2H), 7.53 – 7.46 (m, 2H), 7.46 – 7.38 (m, 2H), 7.35 – 7.27 (m, 

5H), 7.21 – 7.11 (m, 6H), 7.12 – 7.03 (m, 2H). 13C{1H} NMR (126 MHz, CDCl3) δ (ppm): 

158.0, 150.0, 148.9, 148.6, 147.2, 139.6, 131.4, 129.4, 128.9, 128.7, 127.7, 127.0, 124.9, 123.5, 

122.9, 119.5, 118.1. HR-MS (FTMS+): [M]+ Calculated: (C29H22N2H): 399.1856; Found: 

399.1844.  
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Direct C-H Arylation with Arylboronic Acids 

General Procedure 

The synthesis is similar to a previously reported method.184 A solution of tert-

butylpyridine (1.00 equiv.) in CH2Cl2 was stirred at room temperature. Trifluoroacetic acid 

(1.00 equiv.) was added followed by arylboronic acid (1.50 equiv.), water (12 mL), a solution 

of silver(I) nitrate (0.20 equiv.) in 8 mL of water and potassium persulfate (3.00 equiv.). The 

solution was stirred vigorously for 6 h. The reaction was quenched with water (10 mL), 

extracted with CH2Cl2 (50 mL) and washed with conc. aqueous NaHCO3 (10 mL). After layer 

separation, the organic layer was dried over MgSO4 and the solvent was evaporated under 

vacuum leaving a residue which was purified on silica (10% of EtOAc in petroleum ether). The 

desired fractions were combined and reduced until dryness yielding the desired compound. 

4-(tert-butyl)-2-phenylpyridine 

 

The synthesis of this compound was carried out using phenylboronic acid (1.50 equiv.) 

to give colourless oil (0.351 g). Yield: 45%. Rƒ: 0.32 (10% of EtOAc in petroleum ether on 

silica).  1H NMR (400 MHz, CDCl3) δ (ppm):  8.62 (d, 1H), 8.02 – 7.93 (m, 2H), 7.74 – 7.69 

(m, 1H), 7.48 (q, J = 7.4 Hz, 2H), 7.41 (q, J = 7.4 Hz, 1H), 7.25 – 7.22 (m, 1H), 1.36 (s, 9H). 

13C{1H} NMR (101 MHz, CDCl3) δ (ppm): 160.8, 157.6, 149.6, 140.1, 128.8, 128.7, 127.1, 

119.4, 117.9, 35.0, 30.7. HR-MS (FTMS+): [M-H]+ Calculated: (C15H17NH): 212.1434 

Found: 212.1428. The characterisation matches that reported.184 
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4-(tert-butyl)-2-(4-(tert-butyl)phenyl)pyridine 

 

The synthesis of this compound was carried out using (4-(tert-butyl)phenyl)boronic acid 

(1.50 equiv.) to give colourless oil (1.000 g). Yield: 46%, Rƒ: 0.36 (10% EtOAc in petroleum 

ether on silica). 1H NMR (400 MHz, CDCl3) δ (ppm): 8.55 (d, 1H), 7.89 (d, J = 8.3 Hz, 2H), 

7.68 (s, 1H), 7.49 (d, J = 8.3 Hz, 2H), 7.22 – 7.20 (m, 1H), 1.52 (s, 18H). The characterisation 

matches that reported.284 

General Procedure for Grignard Reaction 

The synthesis is similar to a previously reported method.285 An oven-dried flask was 

charged under a nitrogen atmosphere with magnesium turnings (5.00 equiv.) and dry THF (80 

mL) followed by 2 mL of 1,2-dibromoethane and was gently heated to 30 °C. After the 

observation of gas evolution, a solution of the arylbromide (3.00 equiv.) in dry THF (40 mL) 

was added dropwise. The reaction mixture was heated under stirring and kept at reflux for 4 h. 

The reaction mixture was then cooled in an ice bath and a solution of methyl picolinate (1.00 

equiv.) in dry THF (40 mL) was added carefully. The solution was allowed to warm to room 

temperature and was stirred for 2 h. The reaction mixture was quenched with aqueous NH4Cl 

(5 mL) and extracted with Et2O (50 mL). The combined organic layers were dried over MgSO4 

and the solvent was evaporated leaving a residue, which was purified over silica (10% EtOAc 

in petroleum ether). The desired fractions were combined and reduced until dryness yielding 

the desired compound.  
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Diphenyl(pyridin-2-yl)methanol 

 

The synthesis of this compound was carried out using bromobenze (3.00 equiv.) to give 

a colourless solid (1.686 g). Yield: 86%. Rf: 0.51 (10% EtOAc in petroleum ether on silica). 

Mp: 101 – 104 °C. Lit: 102 – 103 °C.285 1H NMR (400 MHz, CDCl3) δ (ppm): 8.60 (d, J = 

4.7 Hz, 1H), 7.64 (td, J = 7.8, 1.8 Hz, 1H), 7.40 – 7.21 (m, 11H), 7.12 (d, J = 7.9 Hz, 1H), 6.28 

(s, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ (ppm): 163.2, 147.7, 146.1, 136.4, 128.1, 127.9, 

127.3, 122.9, 122.3, 80.8. HR-MS (FTMS+): [M-H]+ Calculated: (C18H15NOH): 262.1226 

Found: 262.1226. CHN: Calcd. for C18H15NO: C, 82.73; H, 5.79; N, 5.36. Found: C, 82.68; 

H, 5.73; N, 5.41. The characterisation matches that reported.285 

Bis(4-(tert-butyl)phenyl)(pyridin-2-yl)methanol 

 

The synthesis of this compound was carried out using 1-bromo-4-(tert-butyl)benzene 

(3.00 equiv.) to give a colorless solid (1.994 g). Yield: 71%. Rf: 0.39 (10% EtOAc in petroleum 

ether on silica). Mp: 156 °C. Lit: 156 °C.286 1H NMR (400 MHz, CDCl3) δ (ppm): 8.58 (d, J 

= 3.2 Hz, 1H), 7.67 – 7.60 (m, 1H), 7.33 – 7.28 (m, 4H), 7.24 – 7.12 (m, 6H), 6.19 (s, 1H), 1.30 

(s, 18H). 13C{1H} NMR (101 MHz, CDCl3) δ (ppm): 163.8, 150.1, 147.7, 143.3, 136.4, 127.9, 

124.9, 123.1, 122.3, 80.6, 34.6, 31.5. HR-MS (FTMS+): [M-H]+ Calculated: (C26H31NOH): 

374.2478 Found: 374.2476. CHN: Calcd. for C26H31NO: C, 83.60; H, 8.37; N, 3.75. Found: 

C, 83.45; H, 8.51; N, 3.88. The characterisation matches that reported.286 
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Pyridin-2-ylbis(4-(trifluoromethyl)phenyl)methanol 

  

The synthesis of this compound was carried out using 1-bromo-4-

(trifluoromethyl)benzene (3.00 equiv.) to give a colorless solid (1.994 g). Yield: 64%. Rf: 0.26 

(10% EtOAc in petroleum ether on silica). Mp: 164 °C. 1H {19F} NMR (400 MHz, CDCl3) δ 

(ppm): 8.64 (d, J = 7.4 Hz, 1H), 7.75 – 7.69 (m, 1H), 7.60 (s, 4H), 7.44 (s, 4H), 7.31 (d, J = 

8.5 Hz, 1H), 7.13 (d, J = 9.7 Hz, 1H), 6.50 (s, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ (ppm): 

161.5, 149.4, 148.2, 136.9, 129.9 (q, J = 32.3 Hz), 128.5, 125.5, 125.1 (q, J = 4.0 Hz), 123.1, 

122.7, 80.4. 19F {1H} NMR (376 MHz, CDCl3) δ (ppm):  -62.59 (s, 6F). HR-MS (FTMS+): 

[M-H]+ Calculated: (C20H13F6NOH): 398.0974 Found: 398.0965. CHN: Calcd. for 

C20H13F6NO: C, 60.46; H, 3.30; N, 3.53. Found: C, 60.51; H, 3.36; N, 3.59. 

Reduction of Hydroxyl Group 

Procedure for 2-benzhydrylpyridine & 2-(bis(4-(tert-butyl)phenyl)methyl)pyridine  

The synthesis is similar to a previously reported method.285 A mixture of the substituted 

methanol (1.00 equiv), aqueous 57% HI (2.5 mL), and HOAc (13 mL) was heated to 100 °C 

for 4 h. The resulting mixture was then cooled to 0 °C and basified to pH 9 with an aqueous 

NaOH solution (2 M). Ethyl acetate (100 mL) was added and the mixture was washed 

successively with an aqueous NaHSO3 solution and brine. The combined organic layers were 

dried over MgSO4 and the solvent was evaporated leaving a residue, which was purified over 

silica (10% EtOAc in petroleum ether). The desired fractions were combined and reduced until 

dryness yielding the desired compound.  
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2-benzhydrylpyridine 

  

The synthesis of this compound was carried out using diphenyl(pyridin-2-yl)methanol 

(1.00 equiv.) to give a beige solid (0.788 g). Yield: 74%. Rf: 0.30 (10% EtOAc in petroleum 

ether on silica). Mp: 95 °C. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.64 (d, J = 4.1 Hz, 1H), 

7.66 – 7.59 (m, 1H), 7.33 (t, J = 7.3 Hz, 4H), 7.24 (dd, J = 21.8, 7.2 Hz, 6H), 7.18 – 7.10 (m, 

2H), 5.76 (s, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ (ppm): 163.2, 149.5, 142.7, 136.4, 

129.4, 128.4, 126.5, 123.8, 121.4, 59.4. HR-MS (FTMS+): [M-H]+ Calculated: (C18H15NH): 

246.1277 Found: 246.1277. The characterisation matches that reported.287 

2-(bis(4-(tert-butyl)phenyl)methyl)pyridine 

 

The synthesis of this compound was carried out using bis(4-(tert-butyl)phenyl)(pyridin-

2-yl)methanol (1.00 equiv.) to give a beige solid (0.788 g). Yield: 76%. Rf: 0.33 (10% EtOAc 

in petroleum ether on silica). 1H NMR (400 MHz, CDCl3) δ (ppm): 8.62 – 8.56 (m, 1H), 7.62 

– 7.56 (m, 1H), 7.31 (s, 4H), 7.10 (s, 6H), 5.62 (s, 1H), 1.29 (s, 18H). 13C{1H} NMR (126 MHz, 

CDCl3) δ (ppm): 163.8, 149.6, 149.2, 139.9, 136.5, 129.0, 125.4, 123.9, 121.4, 58.7, 34.5, 31.5. 

HR-MS (ASAP+): [M-H]+ Calculated: (C26H32NH): 358.2535 Found: 358.2534. 
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2-(bis(4-(trifluoromethyl)phenyl)methyl)pyridine 

  

The synthesis is similar to a previously reported method.229 A mixture of pyridin-2-

ylbis(4-(trifluoromethyl)phenyl)methanol (0.500 g, 1.26 mmol, 1.00 equiv.) and PBr3 (25 mL) 

was vigorously stirred and heated and kept at 110 °C for 2 h. The mixture was then cooled to 

r.t. and was carefully poured onto ice and aqueous NaOH (2 M) was added till pH neutral. The 

organic layer was dried over MgSO4 and the solvent was evaporated leaving a residue which 

was dissolved in acetic acid (50 mL) and zinc dust (0.799 g, 12.60 mmol, 10.00 equiv.) was 

added. The mixture was stirred at r.t. After 1 h, 20 mL of water was carefully added and aqueous 

NaOH (2 M) was added till pH neutral. The organic layer was dried over MgSO4 and the solvent 

was evaporated leaving a residue which was purified over silica (10% EtOAc in petroleum ether 

as the solvent). The desired fractions were combined, and the solvent was evaporated leaving 

colourless oil (0.117 g). Yield: 24% Rf: 0.55 (20% EtOAc in petroleum ether on silica). 1H 

{19F} NMR (400 MHz, CDCl3) δ (ppm): 8.63 (ddd, J = 4.9, 1.9, 0.9 Hz, 1H), 7.66 (td, J = 7.7, 

1.9 Hz, 1H), 7.57 (d, J = 8.2 Hz, 4H), 7.30 (d, J = 8.1 Hz, 4H), 7.20 (ddd, J = 7.6, 4.8, 1.1 Hz, 

1H), 7.10 (dt, J = 7.9, 1.1 Hz, 1H), 5.75 (s, 1H). 13C{1H} NMR (126 MHz, CDCl3) δ (ppm): 

161.4, 150.1, 146.0, 137.0, 129.8, 129.3 (q, J = 32.8 Hz), 125.7 (q, J = 3.8 Hz), 125.3, 124.0, 

122.2, 58.9. 19F {1H} NMR (376 MHz, CDCl3) δ (ppm): -62.50 (s, 6F). HR-MS (FTMS+): 

[M-H]+ Calculated: (C20H14F6NH): 382.1030 Found: 382.1023.  
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Diethyl [2,2'-bipyridine]-4,4'-dicarboxylate 

 

The synthesis is similar to a previously reported method.253 A mixture of 2,2'-

bipyridine-4,4'-dicarboxylic acid (500 mg, 2.00 mmol, 1.00 equiv.) in ethanol (40 mL) was 

stirred and concentrated sulfuric acid (95%) (0.5 mL) was added. The mixture was heated and 

kept at reflux. After 4 days the solution was cooled to room temperature. Distilled water was 

added (40 mL). A sodium hydroxide solution (5%) was added to reach pH 7. A precipitate was 

formed with was filtered and washed with distilled water, leaving a white solid (0.660 g). Yield: 

91%. Mp: 159 – 162 °C Lit: 159 – 160.5 °C.288 1H NMR (400 MHz, CDCl3) δ (ppm): 8.95 

(dd, J = 1.6, 0.9 Hz, 2H), 8.87 (dd, J = 5.0, 0.9 Hz, 2H), 7.91 (dd, J = 5.0, 1.6 Hz, 2H), 4.46 (q, 

J = 7.1 Hz, 4H), 1.44 (t, J = 7.1 Hz, 6H). 13C{1H} NMR (126 MHz, CDCl3) δ (ppm): 165.3, 

156.6, 150.2, 139.13, 123.4, 120.7, 62.0, 14.4. HR-MS (FTMS+): [M+H]+ Calculated: 

(C16H16N2O4H): 301.1183 Found: 301.1185. The characterisation matches that reported.253 

2,2'-(phenylmethylene)dipyridine  

 

The synthesis is similar to a previously reported method. A solution of dry THF (80 

mL) and 2-benzylpyridine (1.00 equiv.) was cooled down in an Acetone/dry ice bath to -78 °C. 

n-BuLi (1.20 equiv.) was added carefully resulting in the colour to change immediately to red. 

The solution was stirred at that temperature for 1 h. 2-fluoropyridine (1.50 equiv.) was then 

added carefully. After 1 h the cooling bath was removed and stirring was continued. After 18 h 

the reaction mixture was heated and kept at 60 °C. After 3 h, the mixture was allowed to cool 
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to room temperature and was quenched carefully with water (20 mL) followed by the addition 

of 1 M HCl until pH neutral. The mixture was extracted with Et2O (40 mL) and the organic 

layer was washed with brine (5 mL) and dried over MgSO4. The solvent was evaporated leaving 

a residue which was purified over silica (10-100% EtOAc in hexanes). The desired fractions 

were combined, and the solvent evaporated leaving a beige solid (1.038 g). Yield: 40%. Rƒ: 

0.45 (100% EtOAc on silica). Mp: 94 – 98 °C. Lit: 95 – 97 °C.289 1H NMR (400 MHz, CDCl3) 

δ (ppm): 8.58 (s, 2H), 7.61 (s, 2H), 7.29 (s, 4H), 7.24 (s, 3H), 7.14 (s, 2H), 5.82 (s, 1H). 13C{1H} 

NMR (126 MHz, CDCl3) δ (ppm): 162.2, 149.4, 141.7, 136.6, 129.4, 128.6, 126.8, 124.1, 

121.6, 61.7. HR-MS (FTMS+): [M]+ Calculated: (C17H14N2H): 247.1230; Found: 247.1230. 

The characterisation matches that reported.289 

Complex Synthesis 

General procedure for the Synthesis of bis(µ-Cl) Ir(III) dimer 

The synthetic protocol is a modified version of that originally reported.65 The 

IrCl3.6H2O (1.00 equiv.) and the corresponding C^N ligand (2.50 equiv.) were suspended in a 

mixture of 2-ethoxyethanol/water (75/25). The mixture was heated and kept at 125 °C under 

stirring. After 24 h, it was allowed to cool to r.t. and distilled water (5 mL) was added. A 

precipitate was observed. It was washed with Et2O, H2O and then dried under vacuum to give 

the intermediate [Ir(C^N)2Cl]2 dimer complex, which was used as such. 
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Tetrakis[4-(tert-butyl)-2-phenylpyridinato-N,C2’]-bis(µ-chloro)diiridium(III) 

 

This compound was prepared following the general procedure for bis(µ-Cl) Ir(III) 

dimer. Yellow solid. Yield: 92%. 1H NMR (400 MHz, CDCl3) δ (ppm): 9.09 (d, J = 5.9 Hz, 

1H), 7.85 (d, J = 1.8 Hz, 1H), 7.48 (d, J = 6.8 Hz, 1H), 7.26 (s, 2H), 6.82 (dd, J = 5.9, 2.1 Hz, 

1H), 6.73 (t, J = 6.9 Hz, 1H), 6.56 (t, J = 6.7 Hz, 1H), 5.86 (d, J = 7.2 Hz, 1H), 3.58 (q, J = 6.8 

Hz, 4H), 1.68 (d, J = 9.2 Hz, 12H), 1.37 (t, J = 6.8 Hz, 6H). 

Tetrakis[4-(tert-butyl)-2-(4-(tert-butyl)phenyl)-pyridinato-N,C2’]-bis(µ-

chloro)diiridium(III) 

 

This compound was prepared following the general procedure for bis(µ-Cl) Ir(III) 

dimer. Yellow solid. Yield: 92%. 1H NMR (400 MHz, CDCl3) δ (ppm): 9.23 (d, J = 5.9 Hz, 

4H), 7.77 (d, J = 1.9 Hz, 4H), 7.37 (d, J = 8.0 Hz, 4H), 6.81 (dd, J = 6.0, 2.1 Hz, 4H), 6.75 (dd, 

J = 8.0, 1.7 Hz, 4H), 5.89 (d, J = 1.8 Hz, 4H), 1.62 (s, 36H), 1.06 (m, 36H). 
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Tetrakis[2-(phenyl)-4-(2,4,6-trimethylphenyl)pyridinato-N,C2’]-bis(µ-

chloro)diiridium(III) 

 

This compound was prepared following the general procedure for bis(µ-Cl) Ir(III) 

dimer. Yellow solid. Yield: 94%. 1H NMR (400 MHz, CDCl3) δ (ppm): 9.64 (d, J=5.9, 4H), 

7.65 (d, J=1.8, 4H), 7.41 (m, 4H), 7.01 (d, J=11.5, 8H), 6.79 (dd, J=5.9, 1.8, 4H), 6.73 (m, 4H), 

6.59 (td, J=7.5, 1.4, 4H), 5.93 (m, 4H), 2.41 (s, 12H), 2.13 (d, J=11.4, 24H). 
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Tetrakis[4-(4-methoxy-2,6-dimethylphenyl)-2-phenylpyridinato-N,C2’]-bis(µ-

chloro)diiridium(III) 

 

This compound was prepared following the general procedure for bis(µ-Cl) Ir(III) 

dimer. Yellow solid. Yield: 91%. 1H NMR (400 MHz, CDCl3) δ (ppm): 9.62 (m, 4H), 7.65 

(m, 4H), 7.41 (s, 4H), 6.74 (m, 16H), 6.60 (m, 4H), 5.94 (m, 4H), 3.88 (s, 12H), 2.14 (m, 24H). 

Tetrakis[4-(3,5-di-tert-butylphenyl)-2-phenylpyridinato-N,C2’]-bis(µ-

chloro)diiridium(III) 

 

This compound was prepared following the general procedure for bis(µ-Cl) Ir(III) 

dimer. Yellow solid. Yield: 88%. 1H NMR (400 MHz, CDCl3) δ (ppm): 9.37 (d, 4H), 8.07 (s, 

4H), 7.59 (d, 5H), 7.52 (s, 13H), 7.02 (m, 4H), 6.78 (t, 4H), 6.60 (t, 4H), 6.04 (d, 4H), 1.34 (s, 

72H). 
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Tetrakis[N,N-diphenyl-4'-(pyridin-2-yl)-[1,1'-biphenyl]-4-amine-N,C2’]-bis(µ-

chloro)diiridium(III) 

 

This compound was prepared following the general procedure for bis(µ-Cl) Ir(III) 

dimer. Yellow brown solid. Yield: 86%. 1H NMR (400 MHz, CDCl3) δ (ppm): 9.32 (d, J = 

6.1 Hz, 4H), 8.06 (d, J = 8.1 Hz, 4H), 7.88 (d, J = 2.7 Hz, 5H), 7.52 (s, 9H), 7.31 – 7.27 (m, 

9H), 7.21 (dd, J = 8.5, 7.3 Hz, 24H), 7.16 – 7.12 (m, 13H), 7.03 (s, 36H), 7.02 – 6.96 (m, 19H), 

6.91 (d, J = 8.7 Hz, 10H), 6.78 (s, 5H), 6.20 (s, 5H). 

Tetrakis[N,N-diphenyl-3'-(pyridin-2-yl)-[1,1'-biphenyl]-4-amine-N,C2’]-bis(µ-

chloro)diiridium(III) 

 

This compound was prepared following the general procedure for bis(µ-Cl) Ir(III) 

dimer. Yellow brown solid. Yield: 92%. 1H NMR (400 MHz, CDCl3) δ (ppm): 9.31 (d, J = 

5.7 Hz, 4H), 7.98 (d, J = 8.2 Hz, 4H), 7.80 – 7.77 (m, 4H), 7.69 (d, J = 2.0 Hz, 4H), 7.31 (d, J 

= 8.5 Hz, 8H), 7.22 (d, J = 7.7 Hz, 16H), 7.09 (d, J = 8.0 Hz, 16H), 7.03 (s, 8H), 6.98 (d, J = 

7.3 Hz, 8H), 6.86 – 6.80 (m, 8H), 6.05 (d, J = 8.1 Hz, 4H). 
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Tetrakis[N,N-diphenyl-4-(2-phenylpyridin-4-yl)aniline-N,C2’]-bis(µ-

chloro)diiridium(III) 

 

This compound was prepared following the general procedure for bis(µ-Cl) Ir(III) 

dimer. Yellow brown solid. Yield: 92%. 1H NMR (400 MHz, CDCl3) δ (ppm): 9.27 (d, J = 

6.1 Hz, 4H), 8.07 (d, J = 2.1 Hz, 4H), 7.60 (d, J = 9.4 Hz, 12H), 7.32 (d, J = 7.7 Hz, 12H), 7.17 

– 7.11 (m, 37H), 6.94 (dd, J = 6.1, 2.0 Hz, 4H), 6.79 (d, J = 7.4 Hz, 4H), 6.61 (t, J = 7.5 Hz, 

4H), 6.13 (d, J = 7.8 Hz, 4H). 

Tetrakis[2-benzylpyrdinato-N,C2’]-bis(µ-chloro)diiridium(III) 

 

This compound was prepared following the general procedure for bis(µ-Cl) Ir(III) 

dimer. Yellow solid. Yield: 96%. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.65 (dd, J = 6.1, 1.5 

Hz, 4H), 7.37 (td, J = 7.5, 1.6 Hz, 4H), 7.17 – 7.13 (m, 4H), 6.96 – 6.92 (m, 4H), 6.69 (td, J = 

7.3, 1.3 Hz, 4H), 6.61 – 6.53 (m, 5H), 6.26 (td, J = 7.3, 1.4 Hz, 5H), 5.81 (d, J = 15.4 Hz, 4H), 

5.03 (dd, J = 7.8, 1.3 Hz, 4H), 3.84 (d, J = 15.7 Hz, 4H). 
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General procedure A: for the Synthesis of cationic Ir(III) complexes 

A suspension of the corresponding bis(µ-Cl) Ir(III) dimer (1.0 equiv.) and the 

corresponding ancillary ligand (2.2 equiv.) in a mixture of CH2Cl2/methanol (1:1) was degassed 

for 15 min and then heated and kept at reflux for 18 h under stirring. The solvent was then 

evaporated leaving a residue, which was purified over silica with dichloromethane and 

increasing percentages of methanol (0% - 10%). The desired fractions were collected and 

reduced till dryness, giving a solid that was then dissolved in methanol. An aqueous NH4PF6 

solution (0.6 M) was added dropwise resulting in a precipitate. The suspension was stirred 

vigorously for 2 h and subsequently filtered. The solid was dissolved in CH2Cl2 and washed 

with water. The layers were separated, and the organic layer was reduced till dryness leaving a 

solid, which was recrystallised (CH2Cl2/hexane, 1/4) at -18 °C as precipitant. After filtration, 

the target complexes were obtained as solids. The spectroscopic data for complex 1 will be 

discussed and signals will be assigned. Selected NMR spectra are shown for complex 1. 

Bis[2-phenylpyridinato-N,C2’]-N,N’-(4,4'-di-tert-butyl-2,2'-bipyridine)iridium(III) 

hexafluorophosphate 

 

This complex was synthesised using the general method A. Yellow solid (0.102 g). Yield: 

89%. Mp: 216 – 220 °C. Lit: 219 °C.187 1H NMR (400 MHz, CDCl3) δ (ppm): 8.38 (s, 2H, 

HC3), 7.88 (d, J = 8.0, 2H, HC6), 7.82 (d, J = 5.8, 2H, HB3), 7.74 (t, J = 8.0, 2H, HC5), 7.66 (d, J 

= 7.4, 2H, HA6), 7.61 (d, J = 5.8, 2H, HB4 ), 7.37 (d, J = 5.8, 2H, HB5), 7.08 (m, 2H, HB6), 7.01 

(t, J = 7.4, 2H, HA5), 6.89 (t, J = 7.4, 2H, HA4), 6.29 (d, J = 7.4, 2H, HA3), 1.43 (s, 18H, HtBu). 
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13C{1H} NMR (126 MHz, CDCl3) δ (ppm): 167.5, 163.8, 155.7, 150.8, 149.6, 149.1, 143.6, 

137.9, 131.7, 130.6, 125.2, 124.5, 123.5, 122.3, 121.7, 119.3, 35.7, 30.2. 31P NMR (162 MHz, 

CDCl3) δ (ppm): -144.4 (hept, J = 711.4 Hz). HR-MS (FTMS+): [M]+ Calculated: 

(C40H40IrN4): 767.2853 Found: 767.2836. CHN: Calcd. for C40H40F6IrN4Px1/4CH2Cl2: C, 

51.69; H, 4.37, N, 5.99. Found: C, 52.04; H, 4.26; N, 5.83.  The characterisation matches that 

reported.187 

 

 

Figure 101: 1H NMR spectrum in CDCl3 of complex 1 
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Bis[4-(tert-butyl)-2-phenylpyridinato-N,C2’]-N,N’-(4,4'-di-tert-butyl-2,2'-

bipyridine)iridium(III) hexafluorophosphate 

 

This complex was synthesised using the general method A. Yellow solid (0.094 g). 

Yield: 82%. Mp: 340 °C (decomp.). 1H NMR (400 MHz, CDCl3) δ (ppm): 8.39 (d, J = 1.9, 

2H), 7.90 – 7.81 (m, 4H), 7.67 (dd, J = 7.5, 1.3 Hz, 2H), 7.47 – 7.35 (m, 4H), 7.09 (dd, J = 6.2, 

2.2 Hz, 2H), 7.00 (td, J = 7.5, 1.3 Hz, 2H), 6.90 (td, J = 7.5, 1.3 Hz, 2H), 6.28 (dd, J = 7.5, 1.3 

Hz, 2H), 1.43 (s, 18H), 1.36 (s, 18H). 13C{1H} NMR (126 MHz, CDCl3) δ (ppm): 167.0, 

163.8, 162.3, 155.8, 151.0, 149.8, 148.3, 144.0, 131.8, 130.4, 125.1, 124.2, 122.1, 121.7, 121.2, 

116.1, 35.7, 35.2, 30.4, 30.3. 31P NMR (162 MHz, CDCl3) δ (ppm): -144.8 (hept, J = 712.8 

Hz).  HR-MS (FTMS+): [M]+ Calculated: (C48H56IrN4): 879.4105 Found: 879.4093. CHN: 

Calcd. for C48H56F6IrN4P: C, 56.18; H, 5.50, N, 5.46. Found: C, 56.09; H, 5.36; N, 5.44. 
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Bis[4-(tert-butyl)-2-(4-(tert-butyl)phenyl)-pyridinato-N,C2’]-N,N’-(4,4'-di-tert-butyl-2,2'-

bipyridine)iridium(III) hexafluorophosphate 

 

7.49 (d, J = 6.1 Hz, 2H), 7.38 (s, 2H), 7.10 (d, J = 6.9 Hz, 2H), 7.01 (d, J = 7.9 Hz, 2H), 

6.22 (s, 2H), 1.60 (s, 19H), 1.51 (s, 19H), 1.23 (s, 18H). 

This complex was synthesised using the general method A. Yellow solid (0.109 g). 

Yield: 85%. Mp: 345 °C (decomp.). 1H NMR (400 MHz, CDCl3) δ (ppm): 8.35 (s, 2H), 7.79 

(s, 4H), 7.54 (s, 2H), 7.49 (d, J = 6.1 Hz, 2H), 7.38 (s, 2H), 7.10 (d, J = 6.9 Hz, 2H), 7.01 (d, J 

= 7.9 Hz, 2H), 6.22 (s, 2H), 1.60 (s, 18H), 1.51 (s, 18H), 1.23 (s, 18H). 13C{1H} NMR (126 

MHz, CDCl3) δ (ppm): 167.6, 163.6, 162.3, 156.0, 153.3, 149.1, 148.6, 141.6, 127.8, 127.7, 

125.2, 123.8, 121.6, 120.5, 119.5, 115.7, 35.8, 35.2, 34.6, 31.2, 30.5, 30.4. 31P NMR (162 MHz, 

CDCl3) δ (ppm): -144.5 (hept, J = 712.8 Hz).  HR-MS (FTMS+): [M]+ Calculated: 

(C56H72IrN4): 991.5357 Found: 991.5339. CHN: Calcd. for C48H56F6IrN4Px3/4CH2Cl2: C, 

53.72; H, 5.32, N, 5.14. Found: C, 53.44; H, 5.26; N, 5.14. The characterisation matches that 

reported.183  
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Bis[4-mesityl-2-phenylpyridinato-N,C2’]-N,N’-(4,4'-di-tert-butyl-2,2'-

bipyridine)iridium(III) hexafluorophosphate 

 

This complex was synthesised using the general method A. Yellow solid (0.125 g). 

Yield: 79%. Mp: 263 – 267 °C. Lit: 264 – 268 °C.175 1H NMR (400 MHz, CDCl3) δ (ppm): 

8.56 (d, J = 1.9 Hz, 2H), 7.96 (d, J = 5.8 Hz, 2H), 7.73 – 7.67 (m, 4H), 7.63 (d, J = 7.8 Hz, 2H), 

7.45 (dd, J = 5.8, 1.9 Hz, 2H), 7.11 – 6.90 (m, 11H), 6.44 – 6.37 (m, 2H), 2.36 (s, 6H), 2.14 (s, 

6H), 1.96 (s, 6H), 1.47 (s, 18H). 13C{1H} NMR (126 MHz, CDCl3) δ (ppm): 167.6, 164.1, 

155.9, 151.8, 151.0, 149.7, 149.0, 143.8, 138.2, 135.0, 131.6, 130.7, 128.5, 128.5, 125.1, 12f4.8, 

124.5, 122.3, 122.2, 120.4, 35.8, 30.2, 29.7, 21.0, 20.5, 20.4. 31P NMR (121 MHz, CDCl3) δ 

(ppm): -144.6 (hept, J = 710.3 Hz). HR-MS (FTMS+): [M]+ Calculated: (C58H60IrN4): 

1003.4418 Found: 1003.4411. CHN: Calcd. for C58H60F6IrN4P: C, 60.56; H, 5.26, N, 4.87. 

Found: C, 60.49; H, 5.13; N, 5.04. The characterisation matches that reported.175 
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Bis[4-(4-methoxy-2,6-dimethylphenyl)-2-phenylpyridinato-N,C2’]-N,N’-(4,4'-di-tert-

butyl-2,2'-bipyridine)iridium(III) hexafluorophosphate 

 

This complex was synthesised using the general method A. Yellow solid (0.185 g). 

Yield: 75%. Mp: 330 °C (decomp.).  1H NMR (400 MHz, CDCl3) δ (ppm): 8.49 (s, 2H), 7.96 

(d, J = 5.9 Hz, 2H), 7.71 – 7.62 (m, 6H), 7.45 (dd, J = 5.9, 1.9 Hz, 2H), 7.04 (t, J = 7.4 Hz, 2H), 

6.97 – 6.90 (m, 4H), 6.71 (d, J = 14.4 Hz, 4H), 6.41 (d, J = 7.4 Hz, 2H), 3.85 (s, 6H), 2.17 (s, 

6H), 1.99 (s, 6H), 1.47 (s, 18H). 13C{1H} NMR (126 MHz, CDCl3) δ (ppm): 167.5, 159.3, 

155.9, 151.6, 149.7, 149.0, 131.7, 130.6, 130.5, 125.2, 124.5, 122.3, 122.0, 120.8, 113.1, 77.2, 

55.2, 35.7, 30.2, 20.8. 31P NMR (162 MHz, CDCl3) δ (ppm): -144.5 (hept, J = 712.8 Hz). HR-

MS (FTMS+): [M]+ Calculated: (C58H60IrN4O2): 1035.4317 Found: 1035.4294. CHN: Calcd. 

For C58H60F6IrN4P: C, 58.92; H, 5.12, N, 4.74. Found: C, 59.00; H, 5.22; N, 4.67. 
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Bis[4-(3,5-di-tert-butylphenyl)-2-phenylpyridinato-N,C2’]-N,N’-(4,4'-di-tert-butyl-2,2'-

bipyridine)iridium(III) hexafluorophosphate 

 

This complex was synthesised using the general method A. Yellow solid (0.163 g). 

Yield: 89%. Mp: 365 °C (decomp.). 1H NMR (400 MHz, CDCl3) δ (ppm): 8.48 (d, J = 1.6, 

2H), 8.09 (d, J = 1.6, 2H), 7.92 (d, J = 6.0, 2H), 7.80 (d, J = 6.9, 2H), 7.64 (d, J = 6.0, 2H), 7.55 

(m, 6H), 7.43 (dd, J = 6.0, 1.9, 2H), 7.35 (d, J = 1.9, 2H), 7.08 (m, 2H), 6.97 (t, J = 6.8, 2H), 

6.47 (d, J = 6.8, 2H), 1.47 (s, 18H), 1.41 (s, 36H). 13C{1H} NMR (126 MHz, CDCl3) δ (ppm): 

167.4, 163.9, 155.8, 151.9, 151.2, 151.1, 149.7, 148.9, 143.8, 136.2, 131.9, 130.5, 125.2, 124.4, 

124.2, 122.2, 121.8, 121.4, 121.4, 117.0, 35.7, 35.1, 31.4, 30.2. 31P NMR (121 MHz, CDCl3) 

δ (ppm): -144.5 (hept, J = 710.3 Hz).  HR-MS (FTMS+): [M]+ Calculated: (C68H80IrN4): 

1143.5954 Found: 1143.5983. CHN: Calcd. for C68H80F6IrN4P: C, 63.28; H, 6.25, N, 4.34. 

Found: C, 63.23; H, 6.15, N, 4.40 
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Bis[N,N-diphenyl-4'-(pyridin-2-yl)-[1,1'-biphenyl]-4-amine-N,C2’]-N,N’-(4,4'-di-tert-

butyl-2,2'-bipyridine)iridium(III) hexafluorophosphate 

 

This complex was synthesised using the general method A. Yellow brown solid (0.178 

g). Yield: 92%. Mp: 248 – 253 °C. 1H NMR (400 MHz, CDCl3) δ (ppm):  8.43 – 8.38 (m, 

2H), 7.89 (t, J = 7.4 Hz, 4H), 7.77 – 7.67 (m, 4H), 7.63 (d, J = 5.9 Hz, 2H), 7.37 (dd, J = 5.9, 

1.8 Hz, 2H), 7.26 – 7.21 (m, 14H), 7.11 – 7.05 (m, 10H), 7.04 – 6.98 (m, 8H), 6.55 (d, J = 1.6 

Hz, 2H), 1.43 (s, 18H). 13C{1H} NMR (126 MHz, CDCl3) δ (ppm): 167.5, 164.0, 155.9, 151.3, 

149.9, 149.2, 147.7, 147.5, 142.6, 142.1, 138.1, 134.5, 129.4, 129.2, 127.6, 125.5, 125.1, 124.7, 

123.6, 123.4, 123.2, 121.8, 121.1, 119.5, 35.8, 30.4. 31P NMR (162 MHz, CDCl3) δ (ppm): -

144.6 (hept, J = 714.4 Hz). HR-MS (FTMS+): [M]+ Calculated: (C76H66IrN6): 1255.4980; 

Found: 1255.4974. CHN: Calcd. for C76H66F6IrN6PxCH2Cl2: C, 62.26; H, 4.61; N, 5.66. 

Found: C, 61.88; H, 4.35; N, 5.89. 
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Bis[N,N-diphenyl-3'-(pyridin-2-yl)-[1,1'-biphenyl]-4-amine-N,C2’]-N,N’-(4,4'-di-tert-

butyl-2,2'-bipyridine)iridium(III) hexafluorophosphate 

 

This complex was synthesised using the general method A. Yellow brown solid (0.152 

g). Yield: 86%. Mp: 185 – 190 °C. 1H NMR (400 MHz, CDCl3) δ (ppm): 8.40 (d, J = 2.0 Hz, 

2H), 7.99 (d, J = 8.0 Hz, 2H), 7.92 – 7.82 (m, 4H), 7.78 (td, J = 7.8, 1.4 Hz, 2H), 7.66 (dd, J = 

5.7, 1.4 Hz, 2H), 7.49 – 7.42 (m, 4H), 7.39 (dd, J = 5.8, 1.9 Hz, 2H), 7.25 (d, J = 8.4 Hz, 10H), 

7.17 – 7.08 (m, 14H), 7.01 (d, J = 8.9 Hz, 4H), 6.39 (d, J = 8.0 Hz, 2H), 1.43 (s, 18H). 13C{1H} 

NMR (126 MHz, CDCl3) δ (ppm): 167.6, 164.1, 155.9, 149.8, 149.7, 149.5, 147.8, 146.9, 

144.4, 138.1, 135.5, 135.1, 132.3, 129.4, 129.3, 127.3, 125.5, 124.4, 124.3, 123.9, 123.0, 122.9, 

122.0, 119.6, 35.9, 30.4. 31P NMR (162 MHz, CDCl3) δ (ppm): -144.56 (hept, J = 714.4 Hz). 

HR-MS (FTMS+): [M]+ Calculated: (C76H66IrN6): 1255.4980; Found: 1255.4969. CHN: 

Calcd. for C76H66F6IrN6P: C, 65.18; H, 4.75; N, 6.00. Found: C, 64.97; H, 4.59; N, 6.17. 
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Bis[N,N-diphenyl-4-(2-phenylpyridin-4-yl)aniline-N,C2’]-N,N’-(4,4'-di-tert-butyl-2,2'-

bipyridine)iridium(III) hexafluorophosphate 

 

This complex was synthesised using the general method A. Yellow brown solid (0.082 

g). Yield: 82%. Mp: 250 °C (decomp.). 1H NMR (400 MHz, CDCl3) δ (ppm): 8.45 – 8.42 

(m, 2H), 8.07 – 8.04 (m, 2H), 7.89 (d, J = 5.9 Hz, 2H), 7.79 – 7.74 (m, 2H), 7.60 (t, J = 7.5 Hz, 

6H), 7.42 – 7.39 (m, 2H), 7.35 – 7.32 (m, 6H), 7.18 – 7.10 (m, 20H), 7.06 – 7.02 (m, 2H), 6.96 

– 6.90 (m, 2H), 6.44 (d, J = 7.5 Hz, 2H), 1.46 (s, 18H). 13C{1H} NMR (126 MHz, CDCl3) δ 

(ppm): 167.6, 164.1, 155.9, 151.3, 149.9, 149.9, 149.2, 149.0, 147.0, 143.9, 132.0, 130.6, 

129.6, 128.9, 128.0, 125.4, 125.3, 124.5, 124.1, 122.4, 122.3, 122.1, 120.5, 115.9, 35.9, 30.4. 

31P NMR (162 MHz, CDCl3) δ (ppm): -144.55 (hept, J = 714.4 Hz). HR-MS (FTMS+): [M]+ 

Calculated: (C76H66IrN6): 1255.4980; Found: 1255.4976. CHN: Calcd. for C76H66F6IrN6P: 

C, 65.18; H, 4.75; N, 6.00 Found: C, 64.90; H, 4.68; N, 5.91. 
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Bis[2-benzylpyridinato-N,C2’]-N,N’-(2,2’-bipyridine)iridium(III) hexafluorophosphate 

 

This complex was synthesised using the general method. Red solid (0.124 g). Yield: 

78%. Mp: 244 – 248 °C. 1H NMR (500 MHz, CDCl3) δ (ppm): 9.01 (d, J = 8.2 Hz, 2H), 8.32 

(d, J = 5.4 Hz, 2H), 8.25 (td, J = 7.9, 1.6 Hz, 2H), 7.64 (s, 4H), 7.38 (t, J = 6.6 Hz, 2H), 7.32 

(s, 2H), 7.00 (s, 4H), 6.92 (t, J = 6.5 Hz, 2H), 6.87 (t, J = 6.6 Hz, 2H), 6.61 (d, J = 7.6 Hz, 2H), 

3.93 (d, J = 15.6 Hz, 2H), 3.56 (d, J = 15.7 Hz, 2H). 13C{1H} NMR (126 MHz, CDCl3) δ 

(ppm): 163.3, 155.9, 150.8, 150.6, 139.7, 139.2, 138.3, 136.4, 135.8, 127.3, 127.1, 127.0, 

126.9, 126.1, 123.8, 123.3, 49.1. 31P NMR (162 MHz, CDCl3) δ (ppm): -144.34 (hept, J = 

712.8 Hz). HR-MS (FTMS+): [M]+ Calculated: (C34H28IrN4): 685.1939; Found: 685.1936. 

CHN: Calcd for (C34H28F6IrN4P): C, 49.21; H, 3.40; N, 6.75 Found: C, 49.06; H, 3.28; N, 

6.68. 

Bis[2-benzylpyridinato-N,C2’]-N,N’-(4,4'-di-tert-butyl-2,2'-bipyridine)iridium(III) 

hexafluorophosphate 

 

This complex was synthesised using the general method. Yellow solid (0.186 g). Yield: 

91%. Mp: 252 – 257 °C. 1H NMR (500 MHz, CDCl3) δ (ppm): 8.84 – 8.75 (m, 2H), 8.15 (d, 

J = 5.9 Hz, 2H), 7.71 (d, J = 7.0 Hz, 2H), 7.57 (td, J = 7.6, 1.4 Hz, 2H), 7.31 (dd, J = 5.9, 1.7 
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Hz, 2H), 7.25 (m, 2H), 7.03 – 6.89 (m, 6H), 6.82 (td, J = 7.6, 2.9 Hz, 2H), 6.61 (d, J = 7.3 Hz, 

2H), 3.92 (d, J = 15.5 Hz, 2H), 3.51 (d, J = 15.5 Hz, 2H), 1.48 (s, 18H). 13C{1H} NMR (126 

MHz, CDCl3) δ (ppm): 163.9, 163.1, 156.0, 151.2, 150.0, 139.4, 138.0, 137.4, 136.0, 126.8, 

126.5, 125.8, 124.7, 123.9, 123.6, 122.9, 49.2, 35.8, 30.3. 31P NMR (162 MHz, CDCl3) δ 

(ppm): -142.42 (hept, J = 714.4 Hz). HR-MS (FTMS+): [M]+ Calculated: (C42H44IrN4): 

797.3192; Found: 797.3188. CHN: Calcd. for C42H44F6IrN4Px1/2CH2Cl2: C, 51.85; H, 4.61; 

N, 5.96. Found: C, 51.89; H 4.28; N 5.51. 

Bis[2-benzylpyridinato-N,C2’]-N,N’-(2,2'-bithiazole)iridium(III) hexafluorophosphate 

 

This complex was synthesised using the general method. Deep red solid (0.103 g). 

Yield: 85%. Mp: 235 °C (decomp.). 1H NMR (500 MHz, CDCl3) δ (ppm): 8.14 (d, J = 3.3 

Hz, 2H), 8.05 (d, J = 3.3 Hz, 2H), 7.99 (d, J = 5.4 Hz, 2H), 7.86 (d, J = 3.3 Hz, 2H), 7.65 – 7.57 

(m, 6H), 7.55 (d, J = 6.0 Hz, 2H), 7.38 (d, J = 7.3 Hz, 2H), 7.28 (d, J = 7.4 Hz, 2H), 7.22 (d, J 

= 7.4 Hz, 2H), 7.02 (t, J = 6.2 Hz, 2H), 6.99 – 6.88 (m, 6H), 6.81 (dt, J = 14.1, 7.2 Hz, 4H), 

6.59 (d, J = 7.4 Hz, 2H), 6.53 (t, J = 7.1 Hz, 2H), 5.39 (d, J = 7.7 Hz, 2H), 4.51 (d, J = 16.2 Hz, 

2H), 4.13 (d, J = 16.3 Hz, 2H), 3.87 (d, J = 15.4 Hz, 2H), 3.52 (d, J = 15.5 Hz, 2H). 13C{1H} 

NMR (126 MHz, CDCl3) δ (ppm): 163.5, 163.4, 162.5, 161.3, 155.4, 150.4, 143.2, 142.6, 

140.3, 139.1, 138.6, 138.3, 136.8, 136.6, 135.4, 132.6, 126.8, 126.1, 126.5, 126.4, 126.2, 126.0, 

125.9, 125.0, 123.9, 123.4, 123.4, 53.5, 49.1, 48.4.31P NMR (202 MHz, CDCl3) δ (ppm): -

144.41 (hept, J = 711.0 Hz). HR-MS (FTMS+): [M]+ Calculated: (C30H24IrN4S2): 697.1067; 
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Found: 697.1049. CHN: Calcd. for C30H24F6IrN4PS2: C, 42.80; H, 2.87; N, 6.66. Found: C, 

42.43; H 2.82; N 6.55. The NMR data correspond to the mixture of two conformers at 298 K. 

Bis[2-benzylpyridinato-N,C2’]-N,N-(1H,1'H-2,2'-biimidazole)iridium(III) 

hexafluorophosphate 

 

This complex was synthesised using the general method. Beige solid (0.081 g). Yield: 

80%. Mp: 259 °C (decomp.). 1H NMR (400 MHz, CDCl3) δ (ppm):  8.13 (d, J = 6.9 Hz, 2H), 

7.59 (td, J = 7.6, 1.5 Hz, 2H), 7.36 – 7.32 (m, 3H), 7.24 (s, 2H), 7.17 (d, J = 7.7 Hz, 2H), 6.95 

– 6.84 (m, 3H), 6.80 – 6.74 (m, 2H), 6.53 (t, J = 7.4 Hz, 2H), 5.43 (d, J = 8.7 Hz, 2H), 4.73 (d, 

J = 16.3 Hz, 2H), 4.04 (d, J = 16.0 Hz, 2H). 13C{1H} NMR (126 MHz, CDCl3) δ (ppm): 

162.82, 156.23, 141.86, 140.51, 138.47, 137.85, 137.74, 128.59, 126.13, 125.84, 124.40, 

122.88, 122.50, 120.15, 48.54. 31P NMR (202 MHz, CDCl3) δ (ppm): -143.81 (hept, J = 713.1 

Hz). HR-MS (FTMS+): [M]+ Calculated: (C30H26IrN6) 663.1844; Found: 663.1834. The 

NMR data correspond only to the major conformer at 298 K.  
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Bis[2-(4’,6’-difluorophenyl)-4-(2,4,6-trimethylphenyl)pyridinato-N,C2’]-N,N’-(2,2'-

phenylmethylene)-dipyridine)iridium(III)hexafluorophosphate 

 

This complex was synthesised using the general method. Yellow solid (0.142 g). Yield: 

81%. Mp: 282 °C (decomp.). 1H {19F} NMR (400 MHz, CDCl3) δ (ppm): 8.40 (d, J = 5.8 Hz, 

1H), 8.16 (d, J = 8.7 Hz, 2H), 8.07 – 7.95 (m, 5H), 7.35 (dt, J = 18.3, 5.5 Hz, 3H), 7.19 – 7.13 

(m, 4H), 7.02 – 6.95 (m, 5H), 6.68 (d, J = 7.1 Hz, 2H), 6.51 (dd, J = 16.8, 9.2 Hz, 2H), 6.36 – 

6.30 (m, 2H), 5.64 (dd, J = 8.6, 2.3 Hz, 1H), 5.23 (dd, J = 8.8, 2.3 Hz, 1H), 2.35 (s, 6H), 2.13 

(d, J = 3.2 Hz, 6H), 2.01 (s, 3H), 1.96 (s, 3H). 13C{1H} NMR (126 MHz, CDCl3) δ (ppm): 

164.1 (d, J = 6.3 Hz), 163.8 (d, J = 6.3 Hz), 163.7, 162.4, 162.3, 158.2, 157.9, 153.5, 152.7, 

152.5, 152.4, 152.3, 151.7 (d, J = 6.3 Hz), 151.4 (d, J = 6.3 Hz), 150.4, 149.1, 140.3, 139.9, 

139.6, 138.5, 138.4, 134.9 (d, J = 6.3 Hz), 134.7 (broad-s), 134.5, 130.4, 130.3, 129.3, 128.7, 

128.1, 125.8, 125.3, 125.2, 125.1, 124.5, 124.3, 123.9, 114.1 (d, J = 17.6 Hz), 113.1 (d, J = 17.6 

Hz), 99.5, 59.8, 21.0, 20.7, 20.6, 20.5, 20.3. 19F {1H} NMR (126 MHz, CDCl3) δ (ppm):  

-72.20, -73.71, -105.23 (dd, J = 33.5, 28.6 Hz), -107.28 (d, J = 23.3 Hz), -107.98 (d, J = 23.4 

Hz). 31P NMR (162 MHz, CDCl3) δ (ppm): -144.55 (hept, J = 713.1 Hz). HR-MS (FTMS+): 

[M]+ Calculated: (C57H46F6IrN4): 1055.3287; Found: 1055.3272. CHN: Calcd. for C57H46F-

10IrN4P: C, 57.04; H, 3.86; N, 4.67. Found: C, 57.12; H, 4.04; N, 4.58. 
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Bis[2-(phenyl)-4-(2,4,6-trimethylphenyl)pyridinato-N,C2’]-N,N’-(2,2'-phenylmethylene)-

dipyridine)iridium(III) hexafluorophosphate 

 

This complex was synthesised using the general method. Yellow solid (0.084 g). Yield: 

89%. Mp: 260 °C (decomp.). 1H NMR (400 MHz, CDCl3) δ (ppm): 8.50 (d, J = 6.2 Hz, 1H), 

8.16 – 8.10 (m, 2H), 8.08 – 7.96 (m, 3H), 7.74 (d, J = 1.8 Hz, 1H), 7.62 (d, J = 1.9 Hz, 1H), 

7.58 (td, J = 8.0, 1.3 Hz, 2H), 7.38 (t, J = 6.2 Hz, 2H), 7.28 – 7.24 (m, 1H), 7.19 (q, J = 7.2, 6.2 

Hz, 3H), 7.10 (ddd, J = 7.3, 5.9, 1.3 Hz, 1H), 7.05 – 6.99 (m, 5H), 6.99 – 6.94 (m, 2H), 6.94 – 

6.90 (m, 1H), 6.84 (td, J = 7.7, 1.1 Hz, 1H), 6.73 (d, J = 7.1 Hz, 2H), 6.35 – 6.29 (m, 2H), 6.29 

– 6.25 (m, 1H), 5.91 (d, J = 7.6 Hz, 1H), 2.38 (s, 6H), 2.16 (d, J = 11.3 Hz, 6H), 2.06 (s, 3H), 

1.98 (s, 3H). 13C{1H} NMR (126 MHz, CDCl3) δ (ppm): 167.8, 167.3, 167.2, 158.5, 158.2, 

153.3, 152.8, 152.4, 151.2, 150.4, 149.0, 148.2, 147.7, 144.2, 144.0, 139.9, 139.5, 138.6, 138.4, 

135.1, 135.0, 134.9, 134.8, 134.7, 131.9, 130.9, 130.8, 130.7, 129.9, 129.8, 129.3, 128.8, 128.7, 

128.4, 128.1, 125.6, 125.5, 125.1, 124.9, 124.8, 124.5, 123.7, 122.9, 122.8, 121.1, 120.7, 60.1, 

21.2, 20.8, 20.7, 20.5. 31P NMR (162 MHz, CDCl3) δ (ppm): -144.46 (hept, J = 714.4 Hz). 

HR-MS (FTMS+): [M]+ Calculated: (C57H50IrN4): 983.3664; Found: 983.3656. CHN: Calcd. 

for C57H50F6IrN4Px5/2CH2Cl2: C, 53.31; H, 4.14; N, 4.18. Found: C, 53.08; H, 4.27; N, 4.45.  
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General procedure for the one-pot Synthesis of neutral Ir(III) complexes 

A mixture of the corresponding C^N^C ligand (1.2 equiv.) and IrCl3.6H2O (1 equiv.) in 

2-ethoxyethanol (15 mL) and H2O (5 mL) was heated under stirring to 125 °C. After 19 h, the 

corresponding N^N ancillary ligand (1.5 equiv.) was added and heating was continued. After 6 

h, the solvent was evaporated leaving a solid, which was purified over silica (0 - 8% MeOH in 

CH2Cl2). The desired fractions were combined, and the solvent was evaporated leaving a solid 

which was washed with diethyl ether. After filtration, the desired complex was obtained as a 

solid. The 1H NMR spectrum for 39 is shown. 

(2-benzhydrylpyridinato-C2’’,N,C2’)-N,N’-(4,4'-di-tert-butyl-2,2'-bipyridine)iridium(III) 

chloride 

 

This complex was synthesised using the one-pot synthesis procedure. Red solid (0.127 

g). Yield: 45%. Mp: 320 °C (decomp.). 1H NMR (400 MHz, CD2Cl2) δ (ppm): 8.75 (d, J = 

5.8 Hz, 2H), 8.42 (d, J = 1.7 Hz, 2H), 7.70 (dd, J = 7.2, 1.5 Hz, 2H), 7.53 (d, J = 7.5 Hz, 1H), 

7.49 (dd, J = 5.9, 1.9 Hz, 3H), 7.24 (dd, J = 7.2, 1.5 Hz, 2H), 7.19 (d, J = 5.9 Hz, 1H), 6.90 

(dtd, J = 26.4, 7.3, 1.5 Hz, 4H), 6.45 – 6.39 (m, 1H), 5.28 (s, 1H), 1.50 (s, 18H). 13C{1H} NMR 

(126 MHz, CD2Cl2) δ (ppm): 165.4, 162.6, 157.4, 151.8, 151.3, 143.9, 141.4, 138.7, 137.0, 

125.8, 124.0, 123.8, 123.4, 122.7, 122.1, 120.8, 69.7, 35.9, 30.8. HR-MS (ASAP+): [M-Cl]+ 

Calculated: (C36H37IrN3): 704.2618 Found: 704.2618. CHN: Calcd. for C36H37ClIrN3x3/2 

H2O: C, 56.42; H, 5.26; N, 5.48. Found: C, 56.45; H, 5.24; N, 5.28. 



Chapter 8 – Experimental 

- 224 - 

 

 

Figure 102: 1H-NMR spectrum in CD2Cl2 of complex 39 

[2-(bis(4-(tert-butyl)phenyl)methyl)pyridinato-C2’’,N,C2’]-N,N’-(4,4'-di-tert-butyl-2,2'-

bipyridine)iridium(III) chloride 

 

This complex was synthesised using the one-pot synthesis procedure. Red solid (0.129 

g). Yield: 51%. Mp: 331 °C (decomp.). 1H NMR (400 MHz, CD2Cl2) δ (ppm): 8.79 (d, J = 

5.9 Hz, 2H), 8.42 (d, J = 2.0 Hz, 2H), 7.80 (d, J = 2.1 Hz, 2H), 7.49 – 7.42 (m, 4H), 7.13 (d, J 

= 7.7 Hz, 3H), 6.89 (dd, J = 7.7, 2.1 Hz, 2H), 6.38 (ddd, J = 7.0, 5.9, 2.0 Hz, 1H), 5.22 (s, 1H), 

1.51 (s, 18H), 1.32 (s, 18H). 13C{1H} NMR (126 MHz, CD2Cl2) δ (ppm): 166.0, 162.6, 157.5, 

151.7, 151.3, 147.8, 141.1, 140.4, 136.8, 135.9, 123.7, 123.6, 122.7, 122.4, 120.8, 118.8, 68.6, 
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35.9, 34.9, 32.1, 30.9. [M-Cl]+ Calculated: (C44H53IrN3): 816.3869 Found: 816.3867. CHN: 

Calcd. for C44H53ClIrN3: C, 62.06; H, 6.27; N, 4.93. Found: C, 61.96; H, 6.31; N, 5.02. 

[2-(bis(4-(trifluoromethyl)phenyl)methyl)pyridinato-C2’’,N,C2’]-N,N’-(4,4'-di-tert-butyl-

2,2'-bipyridine)iridium(III) chloride, 

 

This complex was synthesised using the one-pot synthesis procedure. Yellow solid 

(0.096 g). Yield: 55%. Mp: 324 °C (decomp.). 1H {19F} NMR (400 MHz, CD2Cl2) δ (ppm): 

8.59 (d, J = 5.8 Hz, 2H), 8.44 (d, J = 2.0 Hz, 2H), 7.98 (d, J = 2.0 Hz, 2H), 7.62 – 7.48 (m, 4H), 

7.37 (d, J = 7.7 Hz, 2H), 7.20 – 7.15 (m, 3H), 6.50 (ddd, J = 7.5, 5.9, 1.7 Hz, 1H), 5.46 (s, 1H), 

1.51 (s, 18H). 13C{1H} NMR (126 MHz, CD2Cl2) δ (ppm): 163.5, 163.3, 157.3, 151.9, 151.1, 

147.4, 142.2, 137.6, 134.7, 127.6 (q, J = 30.2 Hz), 126.7, 124.5, 124.3, 123.5, 123.4, 121.2, 

119.4 (q, J = 3.8 Hz), 69.2, 36.0, 30.8. 19F {1H} NMR (376 MHz, CD2Cl2) δ (ppm): -61.58 (s, 

6F). [M-Cl]+ Calculated: (C38H35F6IrN3): 840.2364 Found: 840.2379. CHN: Calcd. for 

C38H35F6IrN3: C, 52.14; H, 4.03; N, 4.80. Found: C, 52.10; H, 4.16; N, 4.74. 
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[2-(bis(4-(tert-butyl)phenyl)methyl)pyridinato-C2’’,N,C2’]-N,N’-(Diethyl[2,2'-bipyridine]-

4,4'-dicarboxylate)iridium(III) chloride 

 

This complex was synthesised using the one-pot synthesis procedure. Dark green solid 

(0.031 g). Yield: 52%. Mp: 305 °C (decomp.). 1H NMR (500 MHz, CDCl3) δ (ppm): 9.14 (d, 

J = 5.7 Hz, 2H), 9.07 (s, 2H), 7.99 – 7.92 (m, 2H), 7.83 (d, J = 1.9 Hz, 2H), 7.50 (d, J = 7.8 Hz, 

1H), 7.39 (t, J = 7.6 Hz, 1H), 7.22 (s, 2H), 7.00 – 6.92 (m, 3H), 6.29 (t, J = 6.4 Hz, 1H), 5.30 

(s, 1H), 4.57 (q, J = 7.1 Hz, 4H), 1.52 – 1.48 (m, 6H), 1.34 (s, 18H). 13C{1H} NMR (126 MHz, 

CDCl3) δ (ppm): 165.7, 164.3, 158.2, 152.5, 151.5, 148.1, 140.8, 139.7, 139.5, 137.5, 135.6, 

126.0, 124.0, 123.8, 122.9, 122.7, 119.4, 68.3, 63.3, 34.9, 32.0, 14.6. HR-MS (ASAP+): [M-

Cl]+ Calculated: (C36H37IrN3): 848.3042 Found: 848.3039. CHN: Calcd. for C42H45ClIrN3O4 

x1/3CH2Cl2: C, 55.76; H, 5.05; N, 4.61. Found: 55.86; H, 5.29; N, 4.58. 
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Electrochemistry 

Cyclic and differential pulse voltammetry measurements were performed on an 

Electrochemical Analyzer potentiostat model 600D from CH Instruments. Solutions for cyclic 

voltammetry were prepared in MeCN or CH2Cl2 and degassed with solvent-saturated nitrogen 

by bubbling for about 10 min prior to scanning. Tetra(n-butyl)ammoniumhexafluorophosphate 

([TBA](PF6); ca. 0.1 M in MeCN or CH2Cl2) was used as the supporting electrolyte. Two 

Ag/Ag+ electrode (silver wire in a solution of 0.1 M KCl in H2O) were used as the 

pseudoreference electrode and counter electrode, respectively; a platinum electrode was used 

for the working electrode. The redox potentials are reported relative to a saturated calomel 

electrode electrode (SCE) or a normal hydrogen electrode (NHE) with a ferrocene/ferrocenium 

(Fc/Fc+) redox couple as an internal reference (0.38 V189 vs. SCE and 0.70191 vs. NHE). 

Photophysical data 

All samples were prepared in HPLC grade MeCN with varying concentrations in the 

order of micromolar. Absorption spectra were recorded at room temperature using a Shimadzu 

UV-1800 double beam spectrophotometer. Molar absorptivity determination was verified by 

linear least-squares fit of values obtained from at least four independent solutions at varying 

concentrations ranging from 10−4 to 10−6 M.  

The sample solutions for the emission spectra for complexes (Chapter 3-6) were 

prepared in HPLC grade MeCN and degassed via three freeze−pump−thaw cycles using an in-

house designed quartz cuvette. Steady-state and time-resolved emission spectra were recorded 

at room temperature using Gilden photonics Fluorimeter. For steady-state measurements at 

room temperature the complexes were excited at 360 – 400 nm. The excited-state lifetimes of 

the complexes were obtained by time correlated single photon counting (TCSPC) at an 

excitation wavelength of 378 nm using an Edinburgh Instruments FLS980 fluorimeter using a 
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pulsed diode laser, and PL emission was detected at the corresponding steady-state emission 

maximum for each complex. The room temperature PL decays were fitted with a mono, bi- or 

multi exponential decay function. The PL decays at 77 K were fitted with a single exponential 

decay function. Emission quantum yields were determined using the optically dilute method.290  

A stock solution with absorbance of ca. 0.2 was prepared, and then four dilutions were prepared 

with dilution factors between 2 and 20 to obtain solutions with absorbances of ca. 0.100, 0.075, 

0.050, and 0.025, respectively. The Beer−Lambert law was found to be respected (linear 

dependency) at the concentrations of the solutions. The emission spectra were then measured. 

For each sample, linearity between absorption and emission intensity was verified through 

linear regression analysis, and additional measurements were acquired until the Pearson 

regression factor (R2) for the linear fit of the data set surpassed 0.9. Individual relative quantum 

yield values were calculated for each solution, and the values reported represent the slope value. 

The s = r(Ar/As)(Is/Ir)(ns/nr)
2 equation was used to calculate the relative quantum yield of 

each of the sample, where r is the absolute quantum yield of the reference, n is the refractive 

index of the solvent, A is the absorbance at the excitation wavelength, and I is the integrated 

area under the corrected emission curve. The subscripts s and r refer to the sample and 

reference, respectively. A solution of [Ru(bpy)3](PF6)2 in aerated MeCN (PL = 1.8%)9 or 

Quinine sulfate in 0.5 M H2SO4 (PL = 54.6%)291 was used as a reference at 298 K.  

The excitation source for emission lifetime measurements for complexes from Chapter 2 

was the 400 nm output (third harmonic) of a Quanta-Ray Q-switched GCR-150-10 pulsed Nd-

YAG laser. Luminescence quantum yields were measured by the optically dilute method292 

using an aerated aqueous solution of [Ru(bpy)3]Cl2 (ΦPL = 4%)293 as the reference. 

Luminescence decay signals from a Hamamatsu R928 photomultiplier tube were converted into 

potential changes by a 50 Ω load resistor and then recorded with a Tektronix Model TDS 620A 

digital oscilloscope. 
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EFISH measurements 

EFISH measurements were carried out in CHCl3 solutions at a concentration of 10–3 M, 

with a non-resonant incident wavelength of 1.907 m, obtained by Raman-shifting the 

fundamental 1.064 m wavelength produced by a Q-switched, mode-locked Nd3+:YAG laser 

manufactured by Atalaser.  The μEFISH values reported are the mean values of 16 

measurements performed on the same sample.  

 

Preparation of composite films.  

Thin films of complex 30b (5% w/w relative to the polymer) dispersed in poly(methyl 

methacrylate) (PMMA) or polystyrene (PS) were prepared by spin-coating a few drops of a 

dichloromethane solution on ordinary non-pretreated glass substrates (thickness 1 mm), 

previously cleaned with water/acetone. The spinning parameters were set at the following 

values: RPM 1 = 800; ramp 1 = 1 s, time 1 = 5 s; RPM 2 = 2000; ramp 2 = 4 s, time 2 = 83 s.  

 

Corona Poling Setup and SHG measurements. 

The fundamental incident light was generated by a 1064 nm Q-switched Nd:YAG laser. 

The output pulse was attenuated to 0.5 mJ and was focused on the sample, placed over the hot 

stage. The fundamental beam was polarised in the incidence plane (p-polarised) with an 

incidence angle of 55° respect to the sample. A corona-wire voltage (up to 10 kV across a 10 

mm gap) was applied. After rejection of the fundamental beam by an interference filter and a 

glass cutoff filter, the p-polarised SHG signal at 532 nm was detected with a UV-vis 

photomultiplier (PT). The output signal from the PT was set to a digital store oscilloscope and 

then processed by a computer. Then, in the Maker fringe experiment, the second harmonic (SH) 

intensity was detected as a function of the incidence angle of the fundamental beam and 

normalised with respect to that of a calibrated quartz crystal wafer (X-cut) 1 mm thick whose 
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d11 is 0.46 pm/V. The incidence angle was changed by rotating the poled film, while the 

polarisation of the fundamental and SH beam could be changed by a half-wave plate and a cube 

beam splitter, respectively. In order to determine the nonzero independent components of the 

susceptibility tensor for poled films Maker fringe measurements were conducted with 

polarisations p → p, s → p, and 45 → s (where p and s indicate the polarisation of the beam in 

the plane parallel and orthogonal to the incident one, respectively).294,295 

 

DFT and TD-DFT calculations 

To perform DFT and TD-DFT calculations, we have used the Gaussian09 program. Our 

calculations consisted in geometry optimization vibrational spectra determinations and TD-

DFT calculations of the different structures. We have applied default procedures, integration 

grids, algorithms and parameters, except for improved energy (typically 10-10
 a.u.) and internal 

forces (10−5
 a.u.) convergence thresholds and the use of the ultrafine integration DFT grid. The 

ground-state geometrical parameters have been determined with the M06 functional.296
 The 

vibrational spectrum has been subsequently determined analytically at the same level of theory 

and it has been checked that all structures correspond to true minima of the potential energy 

surface. At least, the first forty low-lying excited-states have been determined within the 

vertical TD-DFT approximation using the same functional that is suited for optical 

spectra.297,298 Phosphorescence wavelengths were obtained by first optimizing the lowest triplet 

excited-state with unrestricted DFT (M06 functional) and next computing the singlet ground-

state energy on that structure. For all nuclei, we have used the LanL2DZ(5d,7f) basis set and 

pseudopotential augmented by additional d and f functions of contraction length one. During 

all steps, a modelling of bulk solvent effects (here CH2Cl2) through the Polarizable Continuum 

Model (PCM),299
 using the liner-response approach for the TD-DFT part of the calculation.
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