
1

A Reference Architecture and Model for
Sensor Data Warehousing

Simon Dobson, Senior Member, IEEE, Matteo Golfarelli, Simone Graziani, and Stefano Rizzi

Abstract—Sensor data is becoming far more available thanks to the growth in both sensor systems and Internet of Things devices.
Much of the value of sensor data comes from examining trends that occur over long timescales, ranging from hours to years. However,
making use of data a long time after it has been collected has significant implications for the data-handling systems used to manage it.
In particular, the data must be contextualised into the environment in which it was collected to avoid misleading (and potentially
dangerous) mis-interpretation. We apply data warehousing techniques to develop an extensible model to capture contextual metadata
alongside sensor datasets, and show how this can be used to support the analysis of datasets long after collection. We present our
baseline reference framework for sensor context and derive multidimensional schemata representing different modelling and analysis
scenarios. Finally, we exercise the model with two case studies.

Index Terms—Data Warehouse, Multidimensional Modelling, Sensor Networks, Data Analytics

F

1 INTRODUCTION

THE availability of sensor data is projected to mushroom
in the coming years, fueled by growth both in “explicit”

sensor systems and in the increased “implicit” capabilities of
the Internet of Things (IoT). Sensing provides stakeholders
with data upon which to base decisions that have increasing
importance in managing a huge range of user-centred and
societal problems.

Much of the value of sensor data comes from examining
the trends and variations that occur over long timescales —
where “long” may range from hours to years, depending
on the context of data collection. This is the point at which
sensor data becomes “big data” that can be manipulated
using machine learning and other tools from data analytics.
The goal of such approaches is to extract further global
information from the time series, over and above the local
information (in space and time) that may be used opera-
tionally. That is to say, the value of a sensor dataset may
come both from short-term, tactical, operational use of the
information it contains, and also from long-term, strategic
uses that permit identification of trends and features that
are relevant to future contingency planning and post facto
analysis of operations. In many contexts these multiple
uses significantly increase the importance and value of any
data collected, making the financial case for instrumenting
environments stronger: indeed, many sensor deployments
are financially viable only when considered from the per-
spective of years-worth of data collection.

There is, however, a big challenge implicit in this sce-
nario. Making use of data a long time after it has been col-
lected implies a number of things about the data handling

• Simon Dobson is with the School of Computer Science, University of St
Andrews, St Andrews, Fife KY16 9SX UK (e-mail: simon.dobson@st-
andrews.ac.uk).

• Matteo Golfarelli, Simone Graziani, and Stefano Rizzi are with
DISI, University of Bologna, V. le Risorgimento 2, 40136 Bologna
IT (e-mail: matteo.golfarelli@unibo.it, simone.graziani2@unibo.it, ste-
fano.rizzi@unibo.it).

system used to manage it. The data must be searchable and
findable in order to be retrieved when required; it must be
parseable in terms of extracting the data types and ranges
used for representation; and —most importantly— it must
be contextualised into the environment in which it was col-
lected. By “contextualised” we mean that it must be possible
to retrieve the details of the sensors, their installation and
operation, as well as simply their data [1].

What particularly makes contextualisation important is
the “exposed” lifecycle of a typical sensor. By way of ex-
ample, consider an air-quality sensor deployed to measure
pollutant gases in an industrial setting. The data acquired
from this sensor will typically consist of a stream of num-
bers, and clearly we need to retain the units and range
of these data points for later analysis. But the sensor’s
readings also have metadata such as precision, accuracy,
sampling frequency and the like, associated both with the
specific transducer being used and the sensing framework
controlling it, which must also be recorded if we are to have
confidence in analysis. Furthermore the sensor will deteri-
orate the longer it is in the field, both through mechanical
ageing and (in many cases) chemical and physical changes
in the transducer itself, both of which lead to decalibration.
It may become occluded by plant life, biofilmed by bacterial
action, and dirtied by the actions of the very pollutants it is
deployed to measure —all of which will affect its behaviour,
and so the values in the time series dataset. Cleaning the
sensor, whether on an ad hoc basis or according to some
schedule, may re-set some of these influences and return
the sensor to (some part of) its pristine state.

These contextual changes affect both operational and
archival uses of the collected data —but archival data is less
amenable to correction. Unless we record at least a large part
(and preferably all) of this context, the dataset will become
increasingly misleading when analysed. It is important to
note that machine learning techniques struggle to address
“drift” in sensor values, and so have only a limited ability
to address these issues otherwise [2].

2

Similar challenges are well-known in database technol-
ogy, where the techniques of data warehousing have been
developed to ensure that data held for the long term re-
main robustly analysable in the context of Business Intel-
ligence (BI) applications. However, these techniques have
been applied in the context of sensor networking only to
a limited extent, and mostly with a small attention to data
modelling issues. In this paper we address this omission
by developing data warehousing schemata for sensor data.
We develop an extensible model that allows for the capture
of contextual metadata alongside sensor datasets, and show
how this can be used to support the long-term analysis of
historical datasets. While our proposal is aimed at long-term
data management with storage and explorative analyses
in mind, it is fully compatible with the adoption of other
problem-specific analytical solutions. Indeed, the proposed
architecture and multidimensional schemata are meant to
provide a foundation which other analytical modules can
rely upon in order to access integrated and consistent data.
We argue that such an approach will increase the value that
can be extracted from collected data, as well for supporting
some increased level of confidence in the strategies and
decisions such datasets are used to support.

The remainder of the paper is organized as follows.
Section 2 introduces the basics of data warehousing and
multidimensional modelling, and the necessary concepts
and technologies in sensor data representation. Section 3
presents our baseline reference framework for sensor con-
text, from which Section 4 then derives multidimensional
schemata representing different modelling and analysis sce-
narios. We exercise the model in Section 5 with two case
studies, which we then use in Section 6 to draw some
conclusions and future directions.

2 BACKGROUND

The topic of sensor network modelling has been tackled
from many different perspectives. The result is a plethora of
approaches whose main goals are either to enable interoper-
ability between processes, or to simplify the analysis of data
and the design of applications. In this section we survey the
most relevant of these approaches, after first providing some
basic notions of data warehousing and multidimensional
modelling.

2.1 Data warehouses and data lakes

Operational databases are a common feature of informa-
tion systems, where they enable long-term, language- and
application-neutral storage of large volumes of data for
running a company’s daily business operations. While a
goal of database design is to represent the data in a natural,
“normal” form, performance and other constraints often
dictate part of the data layout. This often involves compro-
mises between meeting different applications’ requirements,
as well as in issues such as performing data denormalisation
for performance reasons. While such compromises are often
necessary for production systems, they harm the ability to
access data over the long term. The danger is that data
that remains uncurated for a long period may become
inaccessible, or so inconsistent as to be useless.

Data warehousing is a process for ensuring the long-
term viability of data storage and retrieval using a single
integrated repository called a Data Warehouse (DW) that
is aimed at supporting analysis and decision-making. It
starts from the recognition that the schemata appropriate
for archival storage may differ from those needed for opera-
tional use. Rather than trying to find a compromise between
the two, dara warehousing instead develops structured pro-
cesses for transforming between them. A generic data ware-
housing architecture normally uses some of the company’s
operational databases as data sources; while these databases
are most often heterogeneous and inconsistent with each
other, a DW represents all this data within a single schema.
Between the sources and the DW is a process of Extract,
Transform, and Load (ETL) which consolidates the multiform
data in the operational databases into the uniform structure
of the DW. ETL is a periodic and incremental process that
also includes data cleansing steps to resolve inconsistencies
and remove noise —which may be tolerated in the opera-
tional databases but not in the DW.

Modern enterprise architectures are often extended with
a data lake, a repository based on low-cost technologies
that contains large quantities of raw, unstructured or semi-
structured data [3]. Intuitively, the data lake is the place
for storing, in its native form, current data that is being
produced by the various operational processes that make
up the enterprise; by contrast, the DW represents the cu-
rated set of events that occurred, that can be used by
post facto trend analysis, anomaly detection, and other non-
operational processes. This separation implies that, as the
enterprise changes, the data lake can be freely reconfigured
in support of new processes, with corresponding changes to
the ETL process to populate the DW. The challenge is then
to manage such changes in a stable way within the DW
schema.

2.2 Multidimensional modelling and OLAP

The multidimensional model is the foundation for data
representation and querying in DW and BI applications [4].
It is based on the observation that the factors affecting
decision-making processes are business-specific facts such as
sales, hospital admissions, maintenance, and so on. We refer
to these collections of facts as cubes, although they may in
fact be higher-dimensional. Data is structured as points in
an n-dimensional space, whose coordinates correspond to
categorical dimensions for analysis. Each point represents
an event that occurred and is described by a set of (usually
numerical) measures relevant to decision-making processes.
Normally, each dimension is associated with a hierarchy of
aggregation levels that allow events to be grouped in different
ways.

In relational implementations of DWs, multidimensional
cubes are normally stored using star schemata [4]. A star
schema is composed by (i) some dimension tables, one for
each hierarchy, each identified by a surrogate key (i.e., a
DBMS-generated progressive identifier) and including one
column for each level of that hierarchy, and (ii) one fact
table, whose primary key is the combination of foreign keys
referencing all dimension tables, and including one column
for each measure. To improve performance (by reducing

3

the number of joins) dimension tables in star schemata are
often denormalised (while keeping the rest of the schema
normalised).

DW schemata can be designed using any data analysis
technique, but specialised techniques also exist that are
targeted specifically at multidimensional (as opposed to
traditional relational) modelling. In this paper we make use
of the Dimensional Fact Model (DFM) [4], which structures
the schema in terms of the facts to be analysed, their
dimensions, measures, and levels.

The main paradigm for analysing and querying multi-
dimensional cubes is On-Line Analytical Processing (OLAP).
An OLAP session consists of a sequence of queries, each
obtained from the previous one by applying an OLAP
operation [4]. Each query groups measured values by some
subset of levels using an aggregation operator (e.g., sum or
average), and optionally applies a selection predicate. The
main OLAP operations are roll-up, which gives a broader
view of a fact by further aggregating data; drill-down, which
gives more detail on a fact by disaggregating data; and slice-
and-dice, which selects either a slice or a dice of the cube by
expressing a selection predicate.

2.3 Sensor network data modelling

While DW technologies are part of some proposed sensing
architectures, the details on how the data has been modelled
are mostly omitted. An example of this can be found in Huo
et alia [5], where the authors present a framework for fault-
diagnosis that employs an enterprise DW as an integrated
repository for monitoring data, but do not explain the
specific data model adopted. Scriney et alia [6] proposes a
methodology to obtain multidimensional data cubes start-
ing from XML and JSON data sources. The methodology
is composed by two main steps: converting an XML or
JSON schema definition into a novel graph structure called
StarGraph, followed by populating the data cubes with the
events coming from the network. The main limitation of
this approach is that it works only with XML and JSON
data sources that provide a schema definition. Note that the
idea of supporting (or even automating) the design of DWs
is not new: early approaches date from the 1990s [7], and
remains an on-going research effort [8]. However, the issue
with these techniques is that they are often tied with specific
types of data sources (e.g., XML/JSON for [6], data vaults for
[8]).

Among the approaches that focus on the interoperability
aspect, the SensorML [9] framework provides a set of XML
schemata to describe sensor networks from the physical
systems to the measurements and processes involved. De et
alia [10] present work aimed at improving the interoperabil-
ity aspect of IoT. The result is a semantic model approach
where the resources of the network are exposed through
web services, enabling semantic search and reasoning over
both devices and the data they provide. BOnSAI [11] takes a
more focused approach by specialising other ontologies (e.g.,
OWL-S [12]) for ambient intelligence scenarios: once again,
the goal is to create a machine-interpretable representation
of sensor networks to improve interoperability.

An interesting tool to support the design of applications
over sensor networks is SEM [13], which is a framework

that represents the sensor network through two different
metamodels: a functional metamodel and a data metamodel.
The former describes the network as a set of exposed ser-
vices, while the latter describes the available data sources.
Through these two metamodels the application designer can
obtain a high-level view of the network to better manage its
complexity.

3 REFERENCE ARCHITECTURE AND DOMAIN
MODEL

In this section we present our reference framework, which
is composed of a functional architecture (section 3.1) and
the domain model (section 3.2). This framework will then
be used as a reference for all proposed multidimensional
schemata and use cases for the rest of the paper.

3.1 Functional architecture of the analytical system

Figure 1 shows the proposed functional architecture that
we will use to contextualise the multidimensional schemata
presented in section 4 and the use cases presented in sec-
tion 5. We start by describing the processes and how they
interact, and then proceed to explain how we envision its
implementation from a technological perspective.

The architecture shown in figure 1 is separated into two
different large-scale areas by the vertical dashed line. On
the left there is the sensor network, while on the right there
are all the processes that read, elaborate, and store the data
coming from that network.

We treat the sensor network as a collection of (typ-
ically computationally-constrained) nodes collecting data
from the physical environment. The nodes often make use
of mesh or other network protocols and use spanning
trees for collecting and aggregating data to a small set
of “sink” nodes – none of the details of which affect the
current work. We simply assume that the data collected
is somehow returned to the cloud for processing. (It is
worth noting in passing that many sensor networks are
actually sensor/actuator networks that need to make local
control decisions. Our architecture supports these too, and
would probably want to record both the sensed data and the
decisions made as a result, for later analysis.)

Users and use cases
The users of the proposed architecture can be grouped into
three main agents:

• A data scientist, who has both high IT and analyt-
ical skills and can therefore exploit both the well-
structured and organised data stored in the DW and
the less consistent and structured contents of the data
lake to carry out her analyses.

• A BI user, who has broad knowledge about the do-
main of the data but needs accessible analytical BI
tools (e.g., Tableau1, MicroStrategy2, and so forth) to
accomplish her goals. The BI user typically only has
access to structured and well-organised data stored
in the DW.

1. https://www.tableau.com
2. https://www.microstrategy.com

4

Dashboard
Notebook
(S)OLAP
Analytics

Data Lake

ET
L

Stream Processing

Events Processing
(e.g., Filtering)

Real-time Analysis
(e.g., Health Monitoring)control

Sensor Network

Sink

Sink

DW

Measurement
Maintenance

Status
Message

…

processed
network events

Batch Processing

Fig. 1: Functional architecture of the analytical system for sensor networks

• A technician, who is a user who has very specific
domain knowledge but lacks IT skills. These users
include, for instance, any maintenance worker who
might be interested in monitoring in real-time the
status of the network.

The interface capabilities required for different users will
change depending on the type of final application. Typically,
data scientists and skilled domain users prefer having more
control on data and more powerful tools (e.g., Notebook
tools, OLAP interfaces, and analytics), while domain users
prefer simple and focused information such as Key Per-
formance Indicators (KPIs) that can be presented through
dashboard tools. We will not discuss in details the wide
range of possible applications the proposed architecture can
be used for: instead, in the following we will discuss in
depth the domain model that is needed to support them.

The typical data flow in the architecture sketched in
figure 1 can be described as follows. Every event sent by
a device in the sensor network to the analytical system is
processed in either a streaming or a batch fashion as appro-
priate. In the former case the results of the computation can
be both directly presented to the end user and also stored in
the data lake for future use; in the latter case the results are
simply stored in the data lake. When processing events in
real time the system might also react and respond to control
the network, thus creating a feedback loop. Once the results
of the processing have been stored in the data lake, they
can be directly accessed by users (data scientists) and ap-
plications for further analysis and elaborations. Periodically
(which might be hourly, daily, weekly, and so on) the data
in the data lake is used to feed the DW through the ETL
process. Once in the DW, the events become also available
to BI users by means of OLAP analysis tools.

Event processing and storage

Stream processing is one of the two intermediary processes
between the sensor on one end and users and storages
on the other. The typical output of the sensor network is
considered as a stream of events (e.g., temperature measure-
ments) that must be processed in a timely fashion. In our
architecture this process is decomposed into two different
subprocesses, events processing and real-time analysis. The
former includes simple operations such as filtering and

smoothing of the input events, while the latter uses the
output of the former and the historical data in the DW
to perform more complex (but still stream-based) analyti-
cal functions such as forecasting, network monitoring, and
so on. We assume that the real-time analysis process can
directly interact with the sensor network, for instance for
activity regulation purposes.

In certain scenarios it might be either necessary (for ex-
ample due to the lack of connectivity) or sufficient (because
the timeliness constraints are relaxed) to treat the events
coming from the sensor network in larger aggregates rather
than singly. In these cases the events produced are handled
by batch processing rather than by stream processing. By
relaxing timeliness constraints it is possible to perform more
complex computations that would not be possible in a real-
time scenario. For example, signal reliability techniques can
be run at this stage, possibly in conjunction with some
more advanced event classification processes [14]. Noisy
data can be either tagged or dropped [15] – the latter is
often preferable as it allows later analysis of the cleaning
processes themselves.

Of course, these styles of processing are not mutually
exclusive and, indeed, a mix of the two can be employed to
have both real-time results through stream processing and
higher quality results from batch processing. The results of
both stream and batch processing are loaded into the data
lake.

Technology choices

From a technological perspective, this architecture can be
implemented as follows. We ignore the implementation of
the sensor network other than to assume the creation of a
stream of sensed values.

Perhaps the most promising technology for the analytic
system is the Hadoop platform3, which provides distributed
storage and processing capabilities. The choice of a dis-
tributed system is almost mandated in many applications,
where a traditional centralised approach cannot accommo-
date the high data volumes that a sensor network might
produce. Furthermore, the Hadoop platform is very flexible
and can support many other frameworks that are necessary

3. http://hadoop.apache.org

5

for some of the tasks described above. For example, exam-
ple frameworks for streaming processing include Apache
Storm4, Apache Spark [16], and Apache Flink5. Spark and
Flink can also take on batch processing tasks.

For storage, the data lake must be able to handle both
unstructured and structured data. The simplest and most
general solution is accommodating all kinds of unstructured
data as simple distributed files in the HDFS filesystem [17]
and structured data through either Apache Hive, SparkSQL,
or Impala [18]. (An alternative to using HDFS for all un-
structured data is that of adopting more specialised storage
types, which generally fall into the NoSQL [19] category:
we avoid discussing these solutions as they are out of the
scope of this work.) Apache Kylin6 provides OLAP pro-
cessing on top of these (and other) storage and processing
solutions. In particular, it is the first engine in the Hadoop
ecosystem natively optimized for OLAP workload: it fully
support multidimensional schemata (see section 4), enables
incremental refresh of cubes, and provides an interactive
experience even when billions of tuples are involved [20].
Finally, there some commercial platforms (e.g., Azure IoT
Suite7) that boost the construction of IoT solutions. It is
worth noting, however, that even in this case, the problem
of accurately modelling data has still to be solved.

3.2 Domain model

We now briefly describe the main concepts represented in
figure 2, which shows the domain model of an analytical
system for sensor networks using the notation of a UML
class diagram. When feasible, we also use the SensorML
framework [9] as a reference and link the described concepts
to the corresponding ones in SensorML.

By agent [21] we mean anything that can be viewed as
perceiving its environment and that can act upon it. Agents
interact by way of messages, either unicast or multicast
between them. We distinguish the following types of agent:

Device A Physical Device is any device inherently asso-
ciated to a physical object. This concept covers
both devices with advanced computational ca-
pabilities (e.g., a face recognition camera) and
devices that have very basic computational ca-
pabilities (e.g., a temperature sensor). In the
SensorML framework, the Physical Device con-
cept corresponds to the Component and System
concepts. While a physical device represents a
physical object, a Logical Device is instead a role
that a physical device might have at a particu-
lar time. For instance, we might have a logical
device called Kitchen Temperature Sensor that can
be seen as an abstraction of all the physical
sensors that, over time, are used to measure
the temperature in the kitchen; in this example,
substituting a faulty temperature sensor S1 at
some time with a new sensor S2 would result
in two different instances of Physical Device (S1

4. http://storm.apache.org
5. https://flink.apache.org
6. https://kylin.apache.org/
7. https://azure.microsoft.com/en-us/suites/iot-suite/

and S2) both corresponding to the same in-
stance of Logical Device, the Kitchen Temperature
Sensor. Each logical device can also be a part
of another device (described through a self-
aggregation in the diagram), which is especially
useful when describing complex systems like a
smart house, where multiple sensors can coordi-
nate to achieve a common goal. Furthermore, a
logical device can be either stationary or mobile:
in the former case the device has also a reference
location, which is the location where the device
has been placed. Finally, the assignment of a
physical device to a logical device is represented
through the Assigned Device class.

Process All those agents that do not inherently have a
counterpart in the physical world. An example
of process is a monitoring application that runs
in the cloud. In the SensorML framework, the
Process concept corresponds to the ProcessModel
and ProcessChain concepts.

Person Any human agent that interacts with the envi-
ronment and other agents. A typical example is
a technician that performs maintenance over the
sensor network.

A measurement refers to an observation of a property
made at a specific time. Usually, but not necessarily, a
measurement refers to a specific location, and may be the
result of some kind of low-level transformation such as
smoothing: this aspect is modelled by the Transformation
class. A typical example of measurement is the temperature
sensed by a thermometer. Additionally, a measurement is
characterised by estimated precision and accuracy, which
define how detailed and how reliable that particular mea-
surement is. Adverse environmental conditions, wear-and-
tear, and other aspects might influence the accuracy of
sensors and so (when available) an estimate of the accuracy
of the measurement can greatly improve the quality of the
analyses. In SensorML, the definition of a measurement is
quite loose and is not explicitly modelled: however, the
underlying meaning remains the same.

A maintenance operation includes any operation such as
calibration or component substitution performed either on
a physical device or on a process by another agent. In
SensorML, maintenance operations would be included in
the general definition of event, which is used to track
the history of a device. A status check represents a check
performed by one agent over another, over either a process
or a physical device. A check can refer to many different
types of assessments, for instance, the assessment of the
battery level, the confirmation of a malfunctioning device, or
even a notification of a device that goes into power-saving
mode.

4 MULTIDIMENSIONAL SCHEMATA

Figure 3 uses the Dimensional Fact Model (DFM) to show
the four multidimensional schemata derived from the do-
main model presented in section 3.2. Boxes represent a fact
to be analysed; circles represent its dimensions and levels,
with which may have measures included in the lower part;
and arcs represent many-to-one relationships to be used for

6

Physical Device

+ID
+Nominal Accuracy

Measurement

+Reception Timestamp
+Sensing Timestamp
+Value
+Accuracy

Transformation

+Name

Stationary Mobile

Location

+Latitude
+Longitude 0..1

*

*

1

*

0..1

0..1 *

Measurement Type

+Name
+Unit

1

*

Maintenance Operation

+Value
+Timestamp

Maintenance Type

+Name
+Unit

1*

Person

+Name
+Age
+Position

Status Check

+Value
+Timestamp

Status Check Type

+Name
+Unit* 1

+performs

*

1

Message

+Sending Timestamp

+Sent by
*

1

+Received by **

Message Type

+Name* 1

Multicast

Unicast

+Received by

*

0..1 Received

+Timestamp

Agent

Process

+ID

+performs

*1

*

0..1

+performed on

*1

+performed on

*

1

Assigned Device

+AssignmentTimestamp

Logical Device

+ID

*

1

*

1

{OR}

*

0..1

Process Type

+Name

*
1

*

1

*

0..1

Fig. 2: UML class diagram that describes the domain model of an analytical system for sensor networks

aggregation. Among the concepts represented in the class
diagram in figure 2, those whose dynamic nature makes
them suitable to be modelled as facts are Measurement,
Maintenance Operation, Status Check, and Message. Before
describing these facts one by one, we make a few general
observations related to all the schemata:

• The concept of agent is represented as a dimension,
and its specialisation into persons, processes, and
devices (as of figure 2) is translated in the DFM as
an additional level Agent Type, whose domain has
values ’Person’, ’Process’, and ’Device’. The levels
that branch from Agent are optional and grouped
into three different sets, one for each type of agent.
Based on the value of Agent Type, only one group
of levels will be meaningful, e.g., if Agent Type =
’Person’, then only Age and Position will take a
value.

• For devices, the domain model shows that one as-
signed device is related to one physical and one log-
ical device. So, the agents corresponding to assigned
devices can be grouped by either Logical Device
or Physical Devices. The recursive aggregation of
logical devices is represented in the DFM using a
recursive hierarchy (the looping arrow on Logical
Device).

• As with the specialisation of Agent, the two different
types of logical devices (stationary and mobile) are
differentiated through an additional level called Log-
ical Device Type, while the Location level is optional
as it is relevant only for stationary devices.

• The Location level also deserves clarification, as it
can be used in two different ways. The simple way
is that of giving it a simple categorical domain (e.g.,
{’Rooftop’, ’Control’ Room’, ...}) to approximate the
geographical positioning of the devices and events.
The more complex – but also more expressive – way
is ro employ geographical coordinates and geome-

tries that can be fully exploited through Spatial OLAP
(SOLAP) technologies [22], which allow the user to
perform specific OLAP operations tailored for spatio-
temporal data and enable location intelligence.

The first schema we discuss is Measurement, shown
in figure 3a. Each measurement event is described by two
measures and is defined by six dimensions. The two mea-
sures are Value and Accuracy, which respectively describe
the result of the measurement and its accuracy. Dimension
Measure Type, together with the Unit level, defines the
context of the measurement. For instance, if Measure Type
= ’Temperature’ and Unit = ’Celsius Degrees’, then the
meaning of Value is precisely defined as the temperature
in Celsius degrees. The Sensing Time and Reception Time
dimensions define the temporal aspects of the measurement.
The remaining dimensions define where the measurement
has been taken (Location), who took it (Agent), and what
kind of processing has been applied to it (Transformation).

The Maintenance and Status Check schemata, shown in
figures 3b and 3c respectively, are similar to Measurement.
Here the Maintenance Type and Status Check Type levels
play the same role that Measurement Type plays in Mea-
surement.

The last schema we discuss is Message, shown in figure
3d. Unlike from the other facts, messages pertain only to
assigned devices, and so the Agent dimension used in all
the other schemata has been replaced by Assigned Device.
Furthermore, the Message fact has no measures: a message
either exists or doesn’t. Other modelling choices worth
discussing stem from the fact the not all sent messages are
actually received, and a communication can be a broadcast
where we know who sent the message but not who is
supposed to receive it. These two issues are addressed
through the addition of the Communication Type and Re-
ceived levels.

To give some examples that summarise the supported
scenarios:

7

(a) (b)

(c) (d)

Fig. 3: Multidimensional schemata for the measurement (a), maintenance (b), status (c), and message (d) events

(i) A successfully delivered message sent from a device
A to a device B is represented as an event with
Communication Type = ’Unicast’, Received = ’True’,
From Physical Device = ’A’, To Physical Device = ’B’,
with the corresponding sending and receiving times.

(ii) A failed attempt to deliver a message sent from A
to B is represented as an event with Communication
Type = ’Unicast’, Received = ’False’, From Physical
Device = ’A’, To Physical Device = ’B’, with only the
corresponding sending time.

(iii) A broadcast message sent from A and received from B
is represented as in the first example but with Commu-
nication Type = ’Broadcast’. Each message received is
represented as a separate event.

(iv) Finally, a broadcast message sent from A but not re-
ceived by any other device is represented as a single
event with Communication Type = ’Broadcast’, From
Physical Device = ’A’, and the corresponding sending
time. In this case the receiving device and time are not
specified.

4.1 Representation and completeness

For any data warehousing architecture it is important to
consider whether it can represent all the data that are
anticipated as being collected, and can be extended cleanly
to handle unexpected cases – since the goal of the DW is
to provide a stable representation unaffected by changes
in the operational architecture. How can we provide such
assurances for sensor data, where the technology changes
rapidly?

We first observe that our domain model captures in
many ways the properties of time series and the processes of
their collection, rather than sensor datasets per se. Within this
broad framework, one may use different measures and lev-
els (as discussed in section 2.2) to handle variations. There
is already a substantial body of work that can be applied
to identifying and extending these elements. One might, for
example make use of SensorML as a data model for the
individual sensors. As should be clear from the preceeding
discussion, however, SensorML in itself is insufficient for
sensor data warehousing, as it excludes many elements of
context such as maintenance and does not define either a
warehousing process or a query process. It is probably better
thought of as a component of the data model together with
an exchange format.

For sensor modelling purposes, we can map the main
SensorML concepts onto the multidimensional schemata
through the Agent attribute. Specifically, the Component
and System SensorML concepts correspond to those agents
whose Agent Type value is ’Device’. Similarly, the Process-
Model and ProcessChain concepts are represented as agents
whose Agent Type value is ’Process’. SensorML also pro-
vides a very generic Event concept, which can be used to
represent any relevant event related to sensors. However,
such generic concepts can hardly be used in analytic con-
texts without a further modelling step to specialise them
into concepts with a more specific semantics (Status Check,
Maintenance Operation, etc.).

To describe and enrich the four main concepts that
directly model different types of sensors and processes,
SensorML includes several other “meta-concepts” such as

8

MetadataGroup. While in SensorML these meta-concepts are
introduced to facilitate (automatic) processes of resource
discovery (which is out of the scope of data warehousing),
they can also be useful for analysis purposes. To this end, we
used the Specifications attribute in the Agent dimension as a
placeholder that should be replaced with the set of descrip-
tive attributes that are relevant to the analysis processes. For
example, in the case of sensors for which it is important to
know the specific model identifier, one could simply attach
to Agent a descriptive attribute named Model that can be
used for filtering and descriptive purposes.

From this discussion it is hopefully clear that (i) our
modelling approach is broader than SensorML since it
also captures aspects not strictly related to sensors, such
as mainteinance; (ii) all the concepts directly modelled in
SensorML are also modelled in our approach; and (iii) while
for several concepts we adopt the same modelling approach
of SensorML (either in direct modelling or meta-modelling),
in other cases we chose to directly model concepts that
are meta-modelled in SensorML, aimed at making a larger
number of semantically well-defined concepts available for
analyses to BI users.

5 CASE STUDIES

We now present some examples of how these models can be
used in practice to carry out several interesting analyses. We
consider the cases of air quality monitoring at an industrial
facility (see section 5.1), and of landslide risk management
in Italy [23] (see section 5.2). These two examples have
been chosen due to their rich and varied requirements, and
especially for the need to retain and re-interrogate data over
different timescales. In both cases we start by discussing
the operational requirements for a sensing system in terms
of scientific and business challenges, then we describe a
possible suite of sensors to address the problem, and finally
we show how the data from this sensor network can be
modelled in a DW.

5.1 Air quality monitoring
Many large industrial installations operate under tight safe-
guarding and permission regimes designed to protect civil-
ians near the plants as well as the broader environment.
Typically a plant is licensed to emit particular maximum
quantities of specific pollutants, and will incur fines or other
sanctions for exceeding these limits. Plants will often be
required to install systems to monitor their emissions, either
directly at point of generation, or indirectly through wider
sensing (or both). There may also be further monitoring
performed by third-party or regulatory agencies to ensure
compliance.

Requirements for air quality monitoring
The main requirements identified for this scenario are listed
in table 1. For each requirement we give a brief description
and list the related stakeholders and data sources. There are
three main types of stakeholders: the facility, the civilians
(who are not directly involved with the facility but who can
be affected by its emissions), and the regulatory agencies
that have the duty of checking whether or not the facility op-
erates in respect of environmental norms. Each requirement

can be satisfied by accessing the data stored in the DW and
in the data lake. For those requirements that need access to
the DW, we also specify which cubes are needed. Note that,
for some requirements (denoted with a star in table 1) we list
only the main required cube, however other cubes might be
useful to get contextual data: for instance for Requirement
(1) it could also be useful to know the status of the network
to better assess the accuracy of the measurements.

As well as in the obvious detection of leaks and excess
emissions, plant managers, regulators, and other agencies
have an interest in the long-term relationship of a plant to
its environment. One example would be to detect the build-
up of pollutants in the local environment even if the plant
were operating as licensed. Another would be to implement
a market for pollution with a view to encouraging plants
to invest to reduce emissions. These scenarios are covered
by Requirement (1) and (2) in table 1. Specifically, the first
requirement covers the monitoring of air quality in the long
term, while the second covers real-time needs where timely
alerts are mandatory (such as in case of leaks). Requirement
(1) does not need up-to-date data, so it draws from the
DW where data are of higher quality. On the other hand,
Requirement (2) cannot afford using stale data, thus it draws
directly from the data lake, where measurements are stored
in real-time and at the finest level of detail.

One challenge often faced in wider sensing is the prob-
lem of attribution: given that a particular situation is ob-
served, who was responsible for it? Suppose residents near
a plan wake up one morning to discover a fine white
powder coating their cars: what is the powder, where did
it come from, and who is to blame? Answering these
questions requires a combination of direct analysis (what
is the powder?) and potentially the fusion of several data
streams to determine possible causes: wind direction may
exonerate some plants from consideration, for example, but
this requires that such data is available, accessible, and
reliable. All these challenges are covered by Requirement
(3).

Alongside the challenges strictly related to the manage-
ment of measurements, the facility also needs to monitor the
sensor network itself. Indeed, failures of the network must
be detected and addressed as quickly as possible for safety
reasons. Moreover, failures imply maintenance costs, which
should be kept to a minimum. Requirements (4) and (5) re-
spectively cover the issues related to the (both real-time and
off-line) monitoring of the health status of the network and
the issues related to the maintenance operations executed to
keep the network running.

Sensing air quality
From the above scientific and business case we can syn-
thesise a set of sensors that we need to deploy in order to
address a set of scenarios:

• operational sensing, to ensure that the plant is behav-
ing correctly;

• acute event sensing, to detect unexpected emissions
as quickly as possible; and

• contextual sensing, to contextualise the other datasets.

With this in mind, we might decide to install a net-
work of sensors aimed at detecting the possible pollutant

9

TABLE 1: Requirements for the air quality scenario

Name Description Stakeholders Main Data Sources
(1) Air Quality Measurements Quantitatively measure the presence of pollutants in

the air in proximity of the facility
Facility, Civilians, Agencies DW (Measurement)*

(2) Alerts for High Pollution Detect in a timely fashion the presence of pollutants
in quantities exceeding safe thresholds

Facility, Civilians, Agencies Data Lake

(3) Environmental Conditions Monitor natural phenomena and properties such as
wind, humidity, and temperature in proximity of the
facility

Facility, Agencies DW (Measurement)*

(4) Network Health Status Detect potentially malfunctioning parts of the net-
work

Facility Data Lake, DW (Status Check)

(5) Maintenance Operations Keep track of the maintenance operations executed
on the network

Facility, Agencies DW (Maintenance Operation)

chemicals. Such sensors typically require chemical reactions
in their operation, which means that their reagents need
to be replaced on a regular basis to avoid exhaustion or
decalibration through changing chemistry. This addresses
the operational and acute scenarios.

To provide context we might also decide to record en-
vironmental data (also known as meteorological or “met”
data) such as air temperature and pressure, local wind di-
rection, local humidity, and precipitation. These time series
are not needed operationally, but might be crucial in post
facto analysis after an incident, where (for example) the
chemistry at play might be changed by strong sunlight
or an excess of water. They also suggest that we should
position sensors differently than we might otherwise, both
close to and further from the emission sites (to measure
dispersion), and in areas of particular stakeholder interest
(wetlands, residential areas, other industrial facilities) to
detect potentially dangerous interactions.

Warehousing air quality data

As noted in table 1, the data needed to satisfy the require-
ments for this scenario can be drawn from the data lake (for
real-time tasks) and from the DW, specifically from cubes
Measurement, Status Check, and Maintenance Operation.
We focus on the DW and show a practical example of how
the conceptual models of figure 3 can be implemented. Fig-
ure 4 shows a basic star schema implementation of the mul-
tidimensional schemata proposed in section 4 accompanied
by a (fictitious) sample of data. Fact tables and dimension
tables are denoted by prefixes FT and DT, respectively.

We start by commenting the implementation of the
Agent dimension, which is shared by all cubes. Each level
(except those not used in this scenario) becomes a column
in table DT AGENT. The recursive arc on Logical Device has
been ignored here as the topology of the sensor network is
quite simple and comprises only one layer of sensors. (In
case of more complicated topologies, a parent-child table
would be required [4].) Level R. Location is used to identify
a generic location but, in more complex networks, it could
also be used to refer to specific geographical coordinates.
Levels Process Type and Specifications have been omitted
as not necessary here. The sample data for DT AGENT repre-
sent how both devices and persons can be stored together:
of course, for each type of agent, only a subset of levels
are relevant and thus filled with meaningful values. The
remaining dimensions are quite straightforward, especially
the time-related ones and Transformation, which do not need

a separate table and can thus be directly included in the fact
tables.

For each multidimensional schema we have a fact table,
composed by one column for each dimension and one
column for each measure. As noted in table 1 and shown
in the sample data in figure 4, Requirements (1) and (2) are
both supported by the Measurement schema. For instance,
the first two events in table FT MEASUREMENT represent
pollution-related events (Meas. Type ID = 5) computed as
the mean of 10 measurements (Transformation = AVG10)
made by (logical) devices Indoor SO2 Gas Sensor and
Rooftop SO2 Gas Sensor (Agent ID = {5, 6}). The other
events are all contextual measurements, such as tempera-
ture, wind speed, etc. The remaining fact tables are used to
store events respectively related to the status of the network
and to the maintenance operations.

To close this section, in figure 5 we show a simple
example that combines data from different cubes to per-
form an analysis on pollution levels. The pivot table on
top shows the weekly average levels of pollution along-
side some weather measurements (average wind speed and
temperature). Since during the week from 2017/10/16 to
2017/10/22 the sensors outside the facility have measured
particularly high levels of pollution, the user might decide
to drill-down (i.e., zoom in) on this particular week and on
a particular sensor placed outside. The bottom pivot table
shows the result of the drill-down that disaggregates the
measurements of the chosen sensor on a daily basis. Assum-
ing the adoption of a denoising technique, and depending
on the adopted data processing policy, noisy measurements
could be either tagged or restored. In both cases, the user
can determine which data have been affected and evaluate
the denoising impact. Furthermore, to check for possible
calibration problems, the user also visualises the number
of days since the last calibration has been made.

5.2 Landslides risk management
Another interesting scenario is the one presented by Gior-
getti et alia [23], which describes a wireless sensor network
for the monitoring of landslides. The network, deployed
on a rockslide in central Italy, gathered both operational
data (e.g., communication statistics) and measurements of
natural phenomena (e.g., ground movement) in the time
period from February to October 2013.

Requirements for landslides risk management
Table 2 describes the requirements for this case study. The
stakeholders are geologists and network engineers. The ge-

10

DT AGENT

Agent ID Agent Agent Type Position Physical Device Logical Device R. Location Logical Device Type Nominal Accuracy

1 TH01 Device - TH000454746 Rooftop Air Thermometer Rooftop Air Thermometer 0.2%

2 TH02 Device - TH000932348 Indoor Air Thermometer Room 01 Air Thermometer 0.2%

3 AN01 Device - AN000328434 Rooftop Anemometer Rooftop Anemometer Speed 5%, Direction 4°

4 HY01 Device - HY000685347 Rooftop Hygrometer Rooftop Air Hygrometer 2%

5 SO01 Device - SO000131220 Indoor SO2 Gas Sensor Room 01 SO2 Gas Sensor 15%

6 SO02 Device - SO000642337 Rooftop SO2 Gas Sensor Rooftop SO2 Gas Sensor 15%

7 TE01 Person Field Engineer - - - - -

FT MEASUREMENT

S. Time R. Time Meas. Type ID Agent ID Transformation Accuracy Value

2017/10/13 09:00 2017/10/13 09:00 5 5 AVG10 1.2 8

2017/10/13 09:00 2017/10/13 09:00 5 6 AVG10 14.55 97

2017/10/13 09:00 2017/10/13 09:01 1 1 - 0.028 14

2017/10/13 09:00 2017/10/13 09:02 1 2 - 0.04 20

2017/10/13 09:00 2017/10/13 09:02 2 3 - 0.3 6

2017/10/13 09:00 2017/10/13 09:03 3 3 - 4 90

2017/10/13 09:00 2017/10/13 09:03 4 4 - 0.8 40

FT MAINTENANCE

Time Maint. Type ID By Agent ID On Agent ID Value

2017/10/20 09:00 1 7 5 80

2017/10/20 09:30 1 7 6 80

2017/10/20 13:00 2 7 5 40

2017/10/26 11:00 3 7 1 20

DT MEASUREMENT TYPE

Type ID Type Unit

1 Temperature Degrees Celsius

2 Wind Speed km/h

3 Wind Direction Degrees Azimuth

4 Humidity Relative (%)

5 SO2 μg/m3

DT MAINTENANCE TYPE

Type ID Type Unit

1 Calibration Cost (Euro)

2 Filter Replacement Cost (Euro)

3 Battery Replacement Cost (Euro)

FT STATUS

Time Status Type ID By Agent ID On Agent ID Value

2017/10/13 09:00 2 5 5 -

2017/10/13 09:01 1 5 5 -

2017/10/13 09:00 2 6 6 -

2017/10/13 09:01 1 6 6 -

2017/10/18 10:00 3 1 1 -

DT STATUS TYPE

Type ID Type Unit

1 Asleep None

2 Active None

3 Battery Exhausted None

Fig. 4: Star schema and sample data for the air quality scenario

TABLE 2: Requirements for the landslides scenario

Name Description Stakeholders Main Data Sources
(1) Ground Movements Monitor the behaviour of the landslide Geologists DW (Measurement)*
(2) Environmental Conditions Measure natural phenomena and properties such as wind,

temperature, and humidity
Geologists DW (Measurement)*

(3) Network Synchronization Gather statistics on the synchronization among the nodes of
the network

Engineers DW (Status Check)

(4) Communications Monitor communications between the nodes of the network Engineers DW (Message)
(5) Maintenance Operations Keep track of the maintenance operations executed on the

network
Engineers, Geologists DW (Maintenance Operation)

Daily SO2 Levels for Week 2017/10/16 and Rooftop SO2 Gas Sensor

Date SO2 Days Since Last Calibration

2017/10/16 135 15

2017/10/17 170 16

2017/10/18 192 17

2017/10/19 205 18

2017/10/20 106 0

2017/10/21 102 1

2017/10/22 98 2

Weekly SO2 Levels

Week Location SO2 Wind (km/h) Temperature

2017/10/02 – 2017/10/08
Rooftop 98 7 13

Room 01 11 - 20

2017/10/09 – 2017/10/15
Rooftop 105 9 15

Room 01 13 - 20

2017/10/16 – 2017/10/22
Rooftop 144 4 15

Room 01 16 - 20

drill-down

Fig. 5: A simple analysis performed on air quality data

ologists are mainly interested in the collected measurements
and, to better assess their validity, to the history of mainte-
nance operations. The engineers are mainly interested in the
operational data instead, to check if the network is working
as intended.

The main goal of this sensor network is to collect data
to observe and analyse landslides. To this end, both ground
movement data (Requirement (1)) and other environmental
measurements (Requirement (2)) must be taken into ac-
count. These data can be used to identify relevant factors
causing landslides, thus aiding in preventing and reducing
their negative impact.

Similarly to the air quality scenario presented in sec-
tion 5.1, during the monitoring campaign the network it-

self was observed to collect operational data. Specifically,
the network periodically collected and sent data regarding
its synchronization mechanism (Requirement (3)) and the
messages exchanged between the nodes (Requirement (4)).
These data are crucial to determine if the network is behav-
ing as intended: indeed, the network employs adaptive rout-
ing strategies designed to cope with harsh environmental
conditions (for example foliage, debris, ground movements,
and so forth). Finally, maintenance operations (Requirement
(5)) must also be recorded to enable efficient management
of the network and reduce costs.

Sensing landslide risk data
The sensor network deployed for the scenario described
above is composed of 15 wireless nodes each equipped with
3 clinometers, 4 wire extensometers, 2 bar extensometers,
and 4 soil hygrometers. One of these nodes acts as a sink
that sends data to a remote unit for further elaboration.
The sink node is also equipped with a weather station
for collwectiong met data. Sensor nodes are equipped with
lead-acid batteries and a solar cell.

The logical topology of the network is a tree where the
root is the sink node. Each node can send data only to its
parent, so the sensed data of a node can reach the sink
only through child-parent communications. Note that the
network is self-organising and has a dynamically defined
topology to improve fault tolerance and adaptability with
minimal manual intervention.

To communicate, the network adopts a synchronisation
mechanism where a given node can be in one of four
different phases: association, receive, transmit, and sleep. A
node goes in association phase when a it requests to become

11

FT MESSAGE

S. Time R. Time Communication Message Type Received From P. Device ID To P. Device ID

2013/04/08 09:00 2013/04/08 09:00 Unicast Tilt Meas. Yes 4 2

2013/04/08 09:01 2013/04/08 09:01 Unicast Tilt Meas. Yes 2 1

2013/04/16 16:00 2013/04/16 16:00 Unicast Ext. Meas. Yes 5 3

2013/04/16 16:01 - Unicast Ext. Meas. No 3 1

2013/04/16 16:15 2013/04/16 16:15 Unicast Ext. Meas. Yes 3 1

FT STATUS

Time Status Type By Agent ID On Agent ID Value

2013/04/08 07:00 Sleep 2 2 -

2013/04/08 08:58 Association 2 2 -

2013/04/08 09:00 Receive 2 2 -

2013/04/08 09:01 Transmit 2 2 -

2013/04/08 09:02 Sleep 2 2 -

Fig. 6: Star schema and sample data for the landslide risk
management scenario

part of the network. The receive and transmit phases are
related to the reception and transmission of data, respec-
tively. Finally, to save energy, a node might enter a sleep
phase where neither reception nor transmission of data are
possible.

Warehousing landslides risk data
As for the air quality case, figure 6 shows a possible rela-
tional implementation with some representative data. We
have omitted the implementations of Agent and Measure-
ment since they do not significantly differ from the ones
presented in the previous scenario. In this case we focus on
facts Message and Status Check, which are used to support
Requirement (3) and (4).

The synchronisation mechanism described in the previ-
ous section is at the core of Requirement (3). As shown in
figure 6 (table FT STATUS), each phase change is recorded
as a status check event performed by an agent on itself. The
type of phase (sleep, association, receive, and transmit) is
represented through the Status Check Type level, while the
Time level marks the beginning of the current phase and
the end of the previous one. Optionally, the Value measure
could be used to explicitly denote the duration of each
phase.

As for Requirement (4), each packet exchanged between
the nodes of the network can be represented by a message
event as shown in figure 6 (table FT MESSAGE). Specif-
ically, the analyses performed in the study presented by
Giorgetti et alia [23] involved the computation of two scores,
the fraction of packets sent (FPS) and the packet retransmission
rate (PRR). The former is computed as the number of packets
sent from node T to node R, divided by the total number of
packets sent by R; FPS is thus used to identify which net-
work paths are most (or least) used. The latter score quan-
tifies the quality of a given link between two nodes and is
computed as the percentage of retransmitted packets. Both
scores can be easily computed based on the data contained
in table FT MESSAGE. Indeed, each event represents either
an attempt of transmitting a packet (Received = ’No’) or a
successful transmission (Received = ’Yes’). To compute FPS
is sufficient to count the number of successful transmission
between all pairs of nodes, while for PRR the relevant events
that have to be counted are the failed transmissions.

6 CONCLUSIONS

We have presented a reference architecture and model for
constructing DWs of sensor data. We propose such models

as a solution to the challenges posed by the collection and
long-term retention and querying of sensor datasets. With-
out well-founded data handling, we can have no confidence
in the conclusions we draw a long time after the data
has been collected, which severely limits the applications
and analyses we can support. But without such high-value
analyses, many sensor network deployments are financially
inviable or scientifically questionable. We therefore believe
that the use of data warehousing techniques is a crucial
component to the evolving landscape of sensor and IoT
systems.

We aimed in this paper to cross-fertilise the fields of
sensor networks with contributions coming from the data
analysis and big data communities. Although the three
fields are perceived as quite closed, the requests from both
academics and practitioners for a well-defined, robust, and
comprehensive architecture and model are frequently ap-
parent. Our experiences in both IoT and “pure” sensing
projects show that the adoption of naïve or off-the-shelf
solutions reduce analytic capabilities, and such choices, once
adopted, are difficult if not impossible to recover from.

Technology for data analysis and big data is evolving
fast. Nonetheless the functional architecture proposed as
well as the usage of multidimensional cubes are well-
established, and for this reason we believe that our proposal
can be a starting point for a robustm long-term data analysis
solution for sensor systems. We intend in future work to
validate these ideas more thoroughly against real-world
deployments.

Acknowledgements

The work underlying this paper started as a result of a visit
that the third author made to St Andrews in the summer of
2016, and has been partially supported by the UK EPSRC
under grant number EP/N007565/1, “Science of Sensor
Systems Software”.

REFERENCES

[1] J. Coutaz, J. Crowley, S. Dobson, and D. Garlan, “Context is key,”
Communications of the ACM, vol. 48, no. 3, pp. 49–53, 2005.

[2] L. Fang and S. Dobson, “Towards data-centric control of sensor
networks through Bayesian dynamic linear modelling,” in Proc.
SASO, 2015.

[3] H. Fang, “Managing data lakes in big data era: What’s a data lake
and why has it became popular in data management ecosystem,”
in Proc. CYBER, 2015, pp. 820–824.

[4] M. Golfarelli and S. Rizzi, Data warehouse design: Modern principles
and methodologies. McGraw-Hill, Inc., 2009.

[5] Z. Huo, M. Mukherjee, L. Shu, Y. Chen, and Z. Zhou, “Cloud-
based data-intensive framework towards fault diagnosis in large-
scale petrochemical plants,” in Proc. IWCMC, 2016, pp. 1080–1085.

[6] M. Scriney, M. F. O’Connor, and M. Roantree, “Generating cubes
from smart city web data,” in Proc. ACSW, Geelong, Australia,
2017, pp. 49:1–49:8.

[7] M. Golfarelli, D. Maio, and S. Rizzi, “Conceptual design of data
warehouses from E/R schemes,” in Proc. HICSS, vol. 7. IEEE,
1998, pp. 334–343.

[8] M. Golfarelli, S. Graziani, and S. Rizzi, “Starry vault: Automating
multidimensional modeling from data vaults,” in Proc. ADBIS,
2016, pp. 137–151.

[9] O. G. Consortium et al., “OGC R© SensorML: Model and XML
encoding standard,” Retrieved from http://www. opengeospatial.
org/standards/sensorml, 2014.

[10] S. De, P. Barnaghi, M. Bauer, and S. Meissner, “Service modelling
for the internet of things,” in Proc. FedCSIS, 2011, pp. 949–955.

12

[11] T. G. Stavropoulos, D. Vrakas, D. Vlachava, and N. Bassiliades,
“Bonsai: a smart building ontology for ambient intelligence,” in
Proc. WIMS, 2012, p. 30.

[12] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott,
S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne,
et al., “OWL-S: Semantic markup for web services,” W3C member
submission, vol. 22, pp. 2007–04, 2004.

[13] F. Cicirelli, G. Fortino, A. Guerrieri, G. Spezzano, and A. Vinci,
“Metamodeling of smart environments: from design to imple-
mentation,” Advanced Engineering Informatics, vol. 33, pp. 274–284,
2017.

[14] J. Ye, L. Fang, and S. Dobson, “Discovery and recognition
of unknown activities,” in Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Computing
(Ubicomp’16): Adjunct, 2016, pp. 783–792. [Online]. Available:
doi://10.1145/2968219.2968288

[15] M. L. L. De Faria, C. E. Cugnasca, and J. R. A. Amazonas, “Insights
into IoT data and an innovative DWT-based technique to denoise
sensor signals,” IEEE Sensors Journal, vol. 18, no. 1, pp. 237–247,
2018.

[16] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, et al., “Apache
spark: A unified engine for big data processing,” Communications
of the ACM, vol. 59, no. 11, pp. 56–65, 2016.

[17] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proc. MSST, 2010, pp. 1–10.

[18] A. Floratou, U. F. Minhas, and F. Özcan, “SQL-on-Hadoop: Full
circle back to shared-nothing database architectures,” PVLDB,
vol. 7, no. 12, pp. 1295–1306, 2014.

[19] P. J. Sadalage and M. Fowler, NoSQL distilled: a brief guide to the
emerging world of polyglot persistence. Pearson Education, 2012.

[20] F. Ming, S. Guannan, and L. Shuaishuai, “Research on multidimen-
sional analysis method of drilling information based on Hadoop,”
in Proc. ICCC. IEEE, 2017, pp. 2319–2322.

[21] S. Russell, P. Norvig, and A. Intelligence, “A modern approach,”
Artificial Intelligence, vol. 25, p. 27, 1995.

[22] S. Rivest, Y. Bédard, M.-J. Proulx, M. Nadeau, F. Hubert, and
J. Pastor, “SOLAP technology: Merging business intelligence with
geospatial technology for interactive spatio-temporal exploration
and analysis of data,” ISPRS, vol. 60, no. 1, pp. 17–33, 2005.

[23] A. Giorgetti, M. Lucchi, E. Tavelli, M. Barla, G. Gigli, N. Casagli,
M. Chiani, and D. Dardari, “A robust wireless sensor network
for landslide risk analysis: System design, deployment, and field
testing,” IEEE Sensors Journal, vol. 16, no. 16, pp. 6374–6386, 2016.

