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ABSTRACT. Two polymorphic phases of ω-(4'-methylbiphenyl-4-yl) butane-1-thiol (BP4) 

molecules formed on Au(111) were investigated by multi-dimensional atomic force microscopy,

combining conductivity measurements, electrostatic characterization, friction force mapping and

normal force spectroscopy. Based on the same molecular structure but differing in molecular

order, packing density and molecular tilt, the two phases serve as a test bench to establish the

structure-property relationships in self-assembled monolayers (SAMs). From a detailed analysis

of the charge transport and electrostatics the contributions of geometrical and electronic effects

to the tunneling are discussed.
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INTRODUCTION

Conceptualizing the transport characteristics of molecules bonded between metal electrodes is

of fundamental importance for molecular scale electronics. Both theoretical and experimental

studies have established that the systems’ properties are determined by a complex interplay of

factors comprising the intrinsic properties of molecules, their supramolecular arrangement, and

geometry and chemistry of the contacts between molecule and electrode.1–6 While the field has

advanced to the single molecule level,7,8 the challenges associated with the generation of reliable

single molecule devices9 make nanoscopic ensembles of molecules a more likely scenario for

technological exploitation. From this point of view self-assembled monolayers (SAMs) are

attractive systems,10,11,12 owing to the versatility of designing and manipulating their structure,

chemical functionality and electronic properties by appropriate choice of the molecular building

blocks. For instance, modification of the work function of electrodes by SAMs altering the

interfacial dipole is one of the methods employed to reduce the injection barrier in organic

electronic devices. 13,14 Exemplifying the role of SAMs for controlling interfacial properties, this

is accomplished by tailoring of the molecular structure.15,16 However, alterations at the molecular

level are also likely to affect the molecular packing which, from a fundamental point of view,

raises the question of how much a change in the arrangement of the molecules contributes to the

overall change in the property of a SAM. To address this point, access to different structures

without altering the molecular architecture is required and this has been exploited in studies

establishing the influence of molecular packing on mechanical/tribological properties4,17 and

charge transport18,19 in alkanethiol SAMs. Similarly, aromatic SAMs have been investigated.20–23

Compared to the archetypal alkanethiol SAMs, layers based on aromatic molecules display a
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range of properties of interest for potential applications, such as their behavior towards electron

radiation24–26 and charge transfer processes,27–29 which make them attractive for molecular

electronics and electrode modification.30,31 A specific type of aromatic thiol SAM, featuring a

combination of an aromatic unit with a short alkane spacer,32–35 is of particular interest as regards

the understanding of the above mentioned influence of the molecular packing on film properties.

SAMs of thiols combining a biphenyl moiety with an even-numbered alkane chain have been

shown to exhibit polymorphism on Au(111),36,37 thus enabling to scrutinize the influence of the

supramolecular arrangement on different surface properties. In addition, the selected system of

ω-(4'-methylbiphenyl-4-yl) butane-1-thiol (BP4) has also been employed to shed light onto an 

equally important question related to the inherent limit of scanning tunneling microscopy (STM)

to accurately determine sub-nanometric topographic differences between molecular phases

coexisting in organic thin films. Contrasting STM, in which surface topography and density of

states (DOS) are convoluted, conductive atomic force microscope (C-AFM) can be employed to

provide simultaneous measurements of topography and conductive response of the film.

A combined strategy, in which conventional C-AFM is complemented by spectroscopic

measurements, is presented as a reliable means to determine the relationship between structure

and electronic properties of self-assembled monolayers. Besides reconciling topographic and

electronic characteristics, the local work function obtained by Kelvin probe force microscopy

(KPFM) helps analyzing the role played by the molecular dipoles.

EXPERIMENTAL



4

Self-assembled monolayers of BP4 on gold were prepared as previously detailed.32,36,38 Gold

films, 300 nm thick, evaporated onto mica were used as substrates (Georg Albert PVD,

Germany). To obtain large and atomically flat (111)-oriented terraces, the substrates were flame

annealed in air. Complete monolayers exhibiting exclusively the low-temperature α-phase were 

prepared by immersing the substrate in a 0.1–1 mM solution of BP4 in ethanol at 338 K for 12–

24 h. It is noted that neither concentration nor immersion time is critical for the preparation.36

The transition to the high-temperature β-phase is induced by post annealing the α-phase sample 

at 373 K in a nitrogen atmosphere.36 Coexistence of the two phases is achieved by annealing the

sample for about 15–18 h. The ratio between areas covered by each phase can be adjusted by

varying the annealing time. The structure of these two molecular phases (see below) has been

reported in detail.36,37

A commercial head from Nanotec Electronica was used for atomic force microscopy (AFM)

measurements which were performed in an N2 environment (RH  2%) to eliminate humidity

effects. All data were analyzed using the WSxM freeware.39 Samples were comprehensively

characterized by acquiring topography, friction, conductivity and electrostatic data from exactly

the same locations. To exclude any induced surface modification, AFM images were acquired in

a non-invasive manner by using either the contact operation mode at the lowest possible applied

load (attractive regime close to the pull off force) or the non-contact regime during dynamic

measurements. Thus, the pull off contact mode was employed in topographic AFM, in friction

force microscopy (FFM), as well as in conductive AFM (C-AFM) and the dynamic non-contact

Kelvin probe force microscopy (KPFM) was used to measure the local contact potential

difference (CPD) between tip and sample.
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Depending on the specific experiment, tips of different materials mounted on cantilevers with

the appropriate stiffness were employed: i) Si tips and low nominal force constant (k = 0.05

Nm1) cantilevers for FFM; ii) conducting Cr-Pt coated tips in cantilevers with nominal k = 0.2

Nm1 and resonance frequency 13 kHz or k = 3 Nm1 and resonance frequency 75 kHz for C-

AFM or KPFM, respectively. The same tip was used in all the experiments of at least one set.

The choice of cantilevers with appropriate stiffness enabled us to switch from contact to non-

contact mode measurements, under controlled experimental conditions without changing surface

location. Therefore, we obtained unambiguous correlation between topography, conductivity and

electrostatic information of the structurally different phases existing side by side.

In addition to common imaging, the so-called three-dimensional (3D) mode was employed to

combine conductivity and electrostatic characterization with force spectroscopy.40,41 These

modes are a convenient way for recording images fi(x1, x2) where fast (x1) and slow (x2) scan

axis do not necessarily correspond to distances.42,43 In particular, monitoring the normal force (f1

= Fn) and current flow (f2 = I) as a function of tip–sample voltage (x1 = Vtip) and vertical piezo-

displacement (x2 = z), Fn(Vtip, z) and I(Vtip, z) images can be obtained at specific surface points.

Starting at a distance above the surface, the tip is approached until contact. In this way, the

electrostatics and conductivity together with the mechanical response of the sample are probed as

a function of the piezo displacement. On the one hand, force versus distance (F-z) curves

correspond to vertical line profiles in the Fn(Vtip, z) image. On the other hand, at tip-sample

distances prior to tip-sample contact, horizontal profiles in Fn(Vtip, z) should present the

parabolic curves corresponding to electrostatic interaction centered at the tip-sample CPD.
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Horizontal line profiles on I(Vtip, z) provide current versus voltage characteristics (I-V curves).

These 3D operation modes offer the advantage of independent yet simultaneous data acquisition,

thus minimizing time-dependent changes in the properties of sample or probes or any uncertainty

in position, while maintaining a precise control over the applied load and the tip-sample

distance.40,44,45

To derive the local work function, CPD values obtained by KPFM imaging were cross-

checked by using the above described 3D mode in which the electrostatic force was measured at

a given surface point as a function of the applied voltage.41 In the employed geometry the

voltage is applied to the tip and, as a consequence higher CPD values indicate lower work

function (). More details on the experimental techniques are provided in the Supporting

Information.

RESULTS AND DISCUSSION

Details on the two structural phases of BP4 on Au(111) have been investigated by different

surface science techniques including STM.37,38 They are described by a rectangular centered 5√3 

x3 (-phase) and an oblique 6√3 x2√3 (-phase) unit cell. Both containing eight molecules their

dimensions are 24.94 Å x 8.64 Å and 29.93 Å x 9.98 Å which correspond to an area per

molecule of Aα = 27.05 Å2 and Aβ = 32.4 Å2, respectively. The estimated molecular tilt angles

for each phase are   40° and   45-49° with respect to the surface normal.32,38 In principle,

for a sample where both phases coexist, the difference in the film thickness between them might
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be determined by STM. However, due to the inherent convolution of topography and electronic

effects in STM, on surfaces with laterally heterogeneous DOS, the height difference measured by

STM in constant current mode (cc-STM) may differ from the geometric value. This is pinpointed

by comparison of data from ellipsometry and X-ray photoelectron spectroscopy (XPS) with STM

data. For samples in which complete SAMs of only one of the phases exist (see Experimental),

the spectroscopies yield values for the film thickness of d = 16.2  0.7 Å and d = 14.4  0.7 Å,

i.e., a height difference of d = 1.8 Å.32,37,38 In comparison, the difference measured by cc-STM

in samples where both phases coexist (see Figure S1 in Supporting Information) amounts to h-

 = 0.8  0.2 Å, which is considerably smaller than the spectroscopic value. Since one of the

factors determining the apparent height measured by cc-STM is the work function, its local

variations must be taken into account. In an attempt of reconciling results from different

techniques, we investigate the influence of electronic effects by employing a combination of

AFM modes which allow simultaneous measurements.
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Figure 1. (a, c) Contact AFM topographic and (b, d) simultaneously measured lateral force

(forward) images for a BP4 SAM on Au(111). z-scale in (a) is 18 nm and lateral dimensions in

(c) are 400 nm x 215 nm. (e) Height histogram and (f) topographic profile corresponding to the

red dashed rectangular area and the black segment indicated in (c) and (g) schematics of the two

molecular packings.

Previous studies of the BP4 system,22,23 combining high resolution and sensitive friction

measurements, established a distinct difference in the tribological response of the  and 

phases. This makes lateral force imaging a convenient method for their identification as

illustrated by the large scale images of Figure 1 which show simultaneously measured

topography and friction. The two phases are clearly distinguished in lateral force (Figure 1b) in

contrast to topography (Figure 1a) where the large z range needed to follow the topography of
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the substrate (hundreds of Ångstroms) masks the small height difference between  and  phases

(below two Å). Therefore, throughout the present work, lateral force imaging was used to easily

distinguish between the two phases and unambiguously correlate them with their properties. It is

noted that, as seen from Figures 1c-d, the -phase exhibits the higher friction.22,23 The difference

in thickness between the two phases was accurately determined from high magnification

topographic images as displayed in Figure 1c. Evaluation of height histograms (Figure 1e) and

line profiles (Figure 1f) yields a value of d- = 1.2  0.2 Å which is between the 1.8 Å and 0.8

Å derived from XPS37 and cc-STM, and ascribed to the phase dependent molecular packing and

orientation. Models of the two phases are shown in Figure 1g. The most important differences

between the phases are the intermolecular distances, and the tilt and twist angles of the biphenyl

moieties. Referring to previous work37 for a detailed discussion, we note at this point that the

depicted models reflect structures which are consistent with the STM and spectroscopic data32,37

but cannot claim to reflect all details due to limitations in the interpretation of the experimental

data. One important parameter in this regard is the twist angle of the aromatic moieties which, as

known from experiment, differ substantially in the two phases. However, the exact nature of this

difference is unclear as the experiments cannot identify the torsion between the rings of a

biphenyl unit. While the models display the biphenyl units in the usually assumed coplanar

conformation, this is likely to be oversimplified as DFT calculations on aromatic SAMs find

some torsion.46–49 Since the torsional angle affects the conductance48,49 it is important to

disentangle electronic and topographic contributions in order to fully understand the structural

details of the SAMs and the apparent discrepancy between the topographic data from the

different techniques. Therefore, assessing the phase dependent conductivity and work function

by C-AFM and KPFM measurements is essential.



10

Figure 2. (a) Topographic image and (b) KPFM map of the same surface location.(c) Normal

force versus bias voltage parabolas measured on the locations of the  (black) and  (gray)

phases indicated in (a). (d) Contact potential difference profile taken along the line indicated in

the KPFM map of (b). Inset: schematic representation of the molecular dipole for the two tilted

configurations.

It is known that the same molecule can have different ionization potentials when it is isolated

or part of an ordered supramolecular structure,50 thus making the work function dependent on the
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structural details of the molecular layer. As we have already demonstrated for both organic and

inorganic laterally heterogeneous surfaces,41,51,52 CPD measurements provide a map of the work

function change independent of the tip material (see also Supporting Information). Results for

the mixed phase BP4 SAM are shown in Figure 2. Comparison between Figure 2a and 2b

indicates that the thicker -phase (d > d) is associated with regions of lower work function (

< ). The difference in CPD values between the  and  phases is CPD  30-40 mV either

by direct measurement of force versus voltage Fn(V) curves at specific surface locations (Figure

2c) or by KPFM mapping (Figure 2d). These results were verified by cross-checking

measurements including topographic, FFM and CPD data on diverse surface regions (Figure S2

in the Supporting Information).

Commonly, the measured change in CPD is ascribed to a change in the work function

introduced by a surface layer of point dipoles. Within the classical electrostatics approach this is

described by the Helmholtz equation:53

Δϕ = −
� �
� � �

(1)

where 0 is the vacuum permittivity, z is the normal component of the dipole of one

individual molecule within the layer and A is the surface area occupied by the molecule.

Unexpectedly low work function changes have been successfully described by introducing an

effective dielectric constant, eff, in the Helmholtz equation which resolves the shortcomings of

the point dipole approximation.54 The effective dielectric constant of the monolayer material

would also account for the reduced molecular dipole in densely packed layers. Accordingly, the

difference in work function between regions covered by the two BP4 phases can be described by:
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where the subscripts indicate correspondingly the  and  phases. That is,  is determined

by a combination of parameters comprising packing density, static dipole moment, and the

molecular polarizability expressed by the effective dielectric constant, all of which are dependent

on the orientation of the molecules. Deconvolution of all this factors by detailed modeling and

electrostatic calculations being out of the scope of the present work, we take a phenomenological

approach and investigate by phase dependent conductivity measurements how all contributions

together affect the conductance of the layers.

Figure 3. (a) Two-layer tunnel junction model in cc-STM with t and t denoting the vacuum

barrier widths on the corresponding phases of the BP4 SAM. (b) Schematics of thickness

difference measurements by contact AFM.

Assessing conductance in laterally heterogeneous SAMs by cc-STM, the obtained topographic

image is described within the two-layer tunnel junction barrier model 55 sketched in Figure 3a
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(for explanation of the two-barrier model for conductance through SAMs see Supporting

Information), and the electron tunneling between the STM tip and the Au(111) substrate is

defined by the product of the SAM and vacuum gap conductances (G = Ggap GSAM). In

comparison, C-AFM (Figure 3b) eliminates the vacuum gap and the difference in thickness

obtained by the two techniques can, in principle, be estimated from the difference in barrier

width for each one of the BP4 phases hSTM = hAFM + t. As shown later on, t = t  t can be

deduced if transport across the layers is determined by specially designed C-AFM experiments

presented next.

Local current versus voltage characteristics (I-V curves) were obtained for both polymorphic

phases of the BP4 layer by employing the 3D mode described above. The AFM tip was located

at specific points (scan disabled) on top of the  and  phases, avoiding gold grain boundaries

and defects within the monolayer. By combining the information from the simultaneously

acquired Fn(V, z) and I(V, z) images, I-V curves are obtained for different applied loads, i.e.,

under controlled mechanical response of the organic layer. Figure 4 illustrates the procedure. For

simplicity, only the normal force image of the -phase is shown as a three-dimensional plot

(Figure 4a). Along the fast scan direction the applied voltage is varied between ± 1 V and along

the slow scan direction the sample moves 15 nm towards the tip (from top to bottom in (a)). The

approach travel range was chosen to ensure no SAM deformation or indentation. The vertical

profile at V = 0 in the force image, Fn(0, z), is presented in Figure 4b. This F-z curve serves to

establish the repulsive and attractive interaction regimes during the tip-sample approach. The tip

is initially out of contact (starting position, z = 0) and there is no cantilever deflection up to a

travel distance of z  3.5 nm where a sudden drop of the force indicates that the tip jumps into

contact with the SAM surface. Beyond this point, the force increases linearly. Three
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representative points have been marked in this part of the F-z curve by different colors. Fn

increases with z during the attractive regime (red point) and changes after crossing the zero load

point (green dot) to the repulsive regime (e.g. dark blue dot) at z  11 nm. The Fn(V, z)

corresponding to the -phase (not shown) was similar to that of the -phase, with the same F-z

slope and only a small variation of  0.1 nN in the adhesion force. In both cases the linear

response indicated no film deformation under the force range employed.

Figure 4. (a) 3D mode normal force image, Fn(V, z), acquired on top of the α-phase. Voltage 

range is ±1V and total piezo displacement is 15 nm. (b) F-z curve corresponding to the Fn(0,z)

line indicated in (a). (c) and (d) Current images, I(V,z),acquired on the  and -phases,
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respectively. (e) and (f) Selected horizontal line profiles extracted from (c) and (d) at the applied

loads indicated by the same colors in (b).

The simultaneous I(V, z) images obtained on top of the  and -phases are shown in Figures

4c and 4d, respectively. The horizontal profiles in these images are the respective I-V

characteristics corresponding to the applied loads obtained from the F-z curve on each molecular

layer. Therefore, a straightforward comparison between the conducting responses of the two

polymorphic phases is possible by direct comparison of I-V curves for specific applied loads.

The small currents measured on the α-phase were close to the detection limit ( 10 pA) and, only

for clarity and guiding the eye, solid line curves are superimposed to the experimental points

(Figure 4e) while just raw current data are given for the -phase (Figure 4f). The load dependent

acquisition of I-V curves stopped long before observing the linear behavior characteristic of the

ohmic tip-metal substrate contact, thus, guaranteeing no tip penetration into the films.40

Commonly, I-V curves of SAMs measured by either STM or C-AFM lead to sigmoidal

curves,40,45 which including intramolecular and intermolecular paths are interpreted within the

tunneling mechanism modeled by Simmons.56 However, all I-V curves recorded on both BP4

phases, Figure 4 (e, f), show only a slightly sigmoidal shape. The junction resistance estimated

from the linear low bias region ( 0.4 V) was found to be R  102 G and R  103 G for 

and , respectively. The ratio R/R 10 is in agreement with relative values for similarly tilted

SAMs.1,18 In the analyzed low force regime, the resistance scales as � ∝ � �
� � / � (see Figure S3 in

Supporting Information) which corresponds to the contact area dependence with load in the

elastic regime.57 The small asymmetry observed for larger voltages can be accounted for by
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using the rectification ratio (RR), defined as RR = I(V)/I(+V), i.e., the absolute value of the

quotient between currents for negative and positive voltages.58 For V =  1V, we obtain RR()

= 1.6 and RR() = 1.9. While these asymmetries can be attributed to diverse factors related to the

different top and bottom SAM-electrode contacts, the different asymmetry between phases is

directly correlated to differences in the arrangement of the BP4 molecules.18,59 On the one hand,

the contact is different at the two electrode-molecule interfaces not only because of differences in

materials of top (tip) and bottom (substrate) electrodes but also because the BP4 anchoring end is

chemically bonded to the Au substrate whereas its end group is not.10 On the other hand, the

asymmetric chemical structure of the molecule itself, with the alkyl chain and the biphenyl

moiety on the respective SAM sides, can play an important role. Firstly, the efficiency of

electron injection at each contact should be different and, secondly, transport across the film

(intra and intermolecular) is also anticipated to be non-symmetric.32,33,60 Independent of all these

contributions, RR is sufficiently small only in the very near zero region (below  400 mV) to

permit fitting the complete I-V curves by a Simmons model but excellent fits are obtained in the

range of  1V when decomposing the curves into negative and positive branches (see details in

Supporting Information). The obtained decay constants are κ = 0.98 0.05 Ă1 and κ = 0.95 

0.05 Ă1, for each phase. These values are larger than those corresponding to SAMs of

oligophenylene thiols (κPh  0.6-0. 7 Ă1)61,62 but in good accordance with reported values

obtained by STM on BP4 SAMs for non-penetration conditions.60 The difference can be ascribed

to the presence of methylene units between the aromatic rings and the sulfur anchoring group,

which has been argued to increase the decay constant to a value similar to that of a length-

matched saturated aliphatic SAM.21,63
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Figure 5. Simultaneously measured topography (a), friction (b) and current (c) obtained at tip-

sample voltage V = 100 mV. Lateral x-scan size is 2 m. Color scale in (c) is 2 nA from black to

white. (d) Measured currents and calculated ratios, I()/I(), versus applied voltage.

The local 3D mode employed so far can be extended to maps by exploiting the imaging

capability of AFM. Thus, recording all quantities simultaneously, an unequivocal correlation of

all signals and comparison between the two phases is established. Figure 5(a-c) presents a

complete set of simultaneously recorded topography, friction and current for a given tip-sample

bias. The currents documented in Figure 5d were extracted from histograms of the current maps

obtained for different bias values (Figure S4 in Supporting Information). As a measure of the

precision of the measurements, the error bars in the figure correspond to the standard deviation

of the mean (SDOM) estimated from data obtained in more than ten locations for each case. It is

worth mentioning that, in order to exclude artifacts due to scan-induced modification, only data
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sets with non-changing friction during continuous scanning were used. Interestingly, the ratio

I/I blue in Figure 5d is a rather constant value of about ~ 1.35. By taking into account the

molecular density () of each phase (σ/σ = A/A  0.83), the normalized ratio (I/Imolec 

1.6) reveals that the -phase exhibits a significantly higher conductivity per molecule. This result

can be rationalized considering differences between the phases with regard to both the molecular

conformation and the SAM/substrate interface. While direct tunneling between electrodes can

safely be ignored because such contributions are several orders of magnitude smaller,18 the

pathway of the electronic current flowing through the layers is affected by the structural

differences. In fact, a higher current through the -phase layers (I > I) could be explained by

the a larger tilt of the molecules in the beta phase. Thus forcing the biphenyl moieties into a more

planar conformation a higher conductivity would result compared to a more twisted

geometry.48,49 However, we stress that the magnitude of this effect is unclear as the influence of

the SAM-substrate interface, which has been argued to be substantially different for the two

phases,36,37 is not known at present.
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Figure 6. Schematic summary of topography, friction, current, cc-STM, contact potential and

work function for the  and  phases of BP4 on Au(111).

As commented above, the transconductance of molecular layers as measured in cc-STM can be

understood by using the two-barrier (layer plus vacuum) model in Figure 3. Whereas tunneling

through vacuum is described by a typical decay constant of  κgap  2.2 Å1, the above presented

data provide relative through layer conduction. Since I/I molec  1.6 a tip retraction on the -

phase compared to the -phase is expected. Consequently, the measured height difference

between the phases is smaller than the geometrical difference in film thickness. By taking into

account that in cc-STM the current is kept constant over the whole surface � �
� � �

� �
� � � =

	� �
� � �

� �
� � � and using the structural data for each polymorph while assuming an average decay

constant κSAM = 0.97 Å1 for both phases, we obtain a difference in the vacuum gap of t = t  t
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 0.5 Å (see Supporting Information) that reconciles the difference of hSTM  hAFM  0.4 Å

between the topographic cc-STM and AFM measurements. In summary, although first principle

calculations would be essential to completely disentangle all factors in a quantitative manner,

competition between barrier heights ( < ) and barrier widths (d > d) seems to be balanced

by the relative conducting response through each phase (I > I). Presenting a qualitative

comparison between the different quantities discussed throughout this work, the schematics

shown in Figure 6 illustrates their correspondence between the two polymorphic phases.

CONCLUSIONS

The influence of the molecular packing on the functional properties of a biphenyl based thiol

SAM has been investigated. This is enabled by the occurrence of two structurally different

phases, forming highly crystalline continuous layers, and application of a well-designed

combination of AFM modes. Since the molecular building block is identical amongst the two

polymorphs, leaving molecular conformation and SAM/substrate interface as the main variables,

the relationship between phases and properties is unequivocally established. Besides analyzing

the influence of the film structure on the SAM properties, the selected system has been also

employed to address the inherent limit of cc-STM for accurately determining topographic

differences in the sub-nanometre range between molecular phases coexisting in organic thin

films. Considering that coexistence of polymorphs constitutes an ideal scenario for

characterization, the presented results are a step forward in the fundamental understanding of

structure-property-function correlations in organic layers.
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Supporting Information. Additional cc-STM and AFM data, including FFM and C-AFM are

provided along with details on the employed experimental measuring modes. The following files

are available free of charge (pdf).
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